Sample records for shock physics experimental

  1. Joint Actinide Shock Physics Experimental Research - JASPER

    ScienceCinema

    None

    2018-01-16

    Commonly known as JASPER the Joint Actinide Shock Physics Experimental Research facility is a two stage light gas gun used to study the behavior of plutonium and other materials under high pressures, temperatures, and strain rates.

  2. Overview and recent progress of the Magnetized Shock Experiment (MSX)

    NASA Astrophysics Data System (ADS)

    Weber, T. E.; Intrator, T. P.; Smith, R. J.; Hutchinson, T. M.; Boguski, J. C.; Sears, J. A.; Swan, H. O.; Gao, K. W.; Chapdelaine, L. J.; Winske, D.; Dunn, J. P.

    2013-10-01

    The Magnetized Shock Experiment (MSX) has been constructed to study the physics of super-Alfvènic, supercritical, magnetized shocks. Exhibiting transitional length and time scales much smaller than can be produced through collisional processes, these shocks are observed to create non-thermal distributions, amplify magnetic fields, and accelerate particles to relativistic velocities. Shocks are produced through the acceleration and subsequent stagnation of Field Reversed Configuration (FRC) plasmoids against a high-flux magnetic mirror with a conducting boundary or a plasma target with embedded field. Adjustable shock velocity, density, and magnetic geometry (B parallel, perpendicular, or oblique to k) provide unique access to a wide range of dimensionless parameters relevant to astrophysical shocks. Information regarding the experimental configuration, diagnostics suite, recent simulations, experimental results, and physics goals will be presented. This work is supported by DOE OFES and NNSA under LANS contract DE-AC52-06NA25369 Approved for Public Release: LA-UR-13-24859.

  3. Probing the underlying physics of ejecta production from shocked Sn samples

    NASA Astrophysics Data System (ADS)

    Zellner, M. B.; McNeil, W. Vogan; Hammerberg, J. E.; Hixson, R. S.; Obst, A. W.; Olson, R. T.; Payton, J. R.; Rigg, P. A.; Routley, N.; Stevens, G. D.; Turley, W. D.; Veeser, L.; Buttler, W. T.

    2008-06-01

    This effort investigates the underlying physics of ejecta production for high explosive (HE) shocked Sn surfaces prepared with finishes typical to those roughened by tool marks left from machining processes. To investigate the physical mechanisms of ejecta production, we compiled and re-examined ejecta data from two experimental campaigns [W. S. Vogan et al., J. Appl. Phys. 98, 113508 (1998); M. B. Zellner et al., ibid. 102, 013522 (2007)] to form a self-consistent data set spanning a large parameter space. In the first campaign, ejecta created upon shock release at the back side of HE shocked Sn samples were characterized for samples with varying surface finishes but at similar shock-breakout pressures PSB. In the second campaign, ejecta were characterized for HE shocked Sn samples with a constant surface finish but at varying PSB.

  4. Collisionless Weibel shocks: Full formation mechanism and timing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.; Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real; Stockem, A.

    2014-07-15

    Collisionless shocks in plasmas play an important role in space physics (Earth's bow shock) and astrophysics (supernova remnants, relativistic jets, gamma-ray bursts, high energy cosmic rays). While the formation of a fluid shock through the steepening of a large amplitude sound wave has been understood for long, there is currently no detailed picture of the mechanism responsible for the formation of a collisionless shock. We unravel the physical mechanism at work and show that an electromagnetic Weibel shock always forms when two relativistic collisionless, initially unmagnetized, plasma shells encounter. The predicted shock formation time is in good agreement with 2Dmore » and 3D particle-in-cell simulations of counterstreaming pair plasmas. By predicting the shock formation time, experimental setups aiming at producing such shocks can be optimised to favourable conditions.« less

  5. Dynamic structure of confined shocks undergoing sudden expansion

    NASA Astrophysics Data System (ADS)

    Abate, G.; Shyy, W.

    2002-01-01

    The gas dynamic phenomenon associated with a normal shock wave within a tube undergoing a sudden area expansion consists of highly transient flow and diffraction that give rise to turbulent, compressible, vortical flows. These interactions can occur at time scales typically ranging from micro- to milliseconds. In this article, we review recent experimental and numerical results to highlight the flow phenomena and main physical mechanisms associated with this geometry. The topics addressed include time-accurate shock and vortex locations, flowfield evolution and structure, wall-shock Mach number, two- vs. three-dimensional sudden expansions, and the effect of viscous dissipation on planar shock-front expansions. Between axisymmetric and planar geometries, the flow structure evolves very similarly early on in the sudden expansion process (i.e., within the first two shock tube diameters). Both numerical and experimental studies confirm that the trajectory of the vortex formed at the expansion corner is convected into the flowfield faster in the axisymmetric case than the planar case. The lateral propagation of the vortices correlates very well between axisymmetric and planar geometries. In regard to the rate of dissipation of turbulent kinetic energy (TKE) for a two-dimensional planar shock undergoing a sudden expansion within a confined chamber, calculations show that the solenoidal dissipation is confined to the region of high strain rates arising from the expansion corner. Furthermore, the dilatational dissipation is concentrated mainly at the curvature of the incident, reflected, and barrel shock fronts. The multiple physical mechanisms identified, including shock-strain rate interaction, baroclinic effect, vorticity generation, and different aspects of viscous dissipation, have produced individual and collective flow structures observed experimentally.

  6. Design and Construction of a Shock Tube Experiment for Multiphase Instability Experiments

    NASA Astrophysics Data System (ADS)

    Middlebrooks, John; Black, Wolfgang; Avgoustopoulos, Constantine; Allen, Roy; Kathakapa, Raj; Guo, Qiwen; McFarland, Jacob

    2016-11-01

    Hydrodynamic instabilities are important phenomena that have a wide range of practical applications in engineering and physics. One such instability, the shock driven multiphase instability (SDMI), arises when a shockwave accelerates an interface between two particle-gas mixtures with differing multiphase properties. The SDMI is present in high energy explosives, scramjets, and supernovae. A practical way of studying shock wave driven instabilities is through experimentation in a shock tube laboratory. This poster presentation will cover the design and data acquisition process of the University of Missouri's Fluid Mixing Shock Tube Laboratory. In the shock tube, a pressure generated shockwave is passed through a multiphase interface, creating the SDMI instability. This can be photographed for observation using high speed cameras, lasers, and advance imaging techniques. Important experimental parameters such as internal pressure and temperature, and mass flow rates of gases can be set and recorded by remotely controlled devices. The experimental facility provides the University of Missouri's Fluid Mixing Shock Tube Laboratory with the ability to validate simulated experiments and to conduct further inquiry into the field of shock driven multiphase hydrodynamic instabilities. Advisor.

  7. Pseudo-shock waves and their interactions in high-speed intakes

    NASA Astrophysics Data System (ADS)

    Gnani, F.; Zare-Behtash, H.; Kontis, K.

    2016-04-01

    In an air-breathing engine the flow deceleration from supersonic to subsonic conditions takes places inside the isolator through a gradual compression consisting of a series of shock waves. The wave system, referred to as a pseudo-shock wave or shock train, establishes the combustion chamber entrance conditions, and therefore influences the performance of the entire propulsion system. The characteristics of the pseudo-shock depend on a number of variables which make this flow phenomenon particularly challenging to be analysed. Difficulties in experimentally obtaining accurate flow quantities at high speeds and discrepancies of numerical approaches with measured data have been readily reported. Understanding the flow physics in the presence of the interaction of numerous shock waves with the boundary layer in internal flows is essential to developing methods and control strategies. To counteract the negative effects of shock wave/boundary layer interactions, which are responsible for the engine unstart process, multiple flow control methodologies have been proposed. Improved analytical models, advanced experimental methodologies and numerical simulations have allowed a more in-depth analysis of the flow physics. The present paper aims to bring together the main results, on the shock train structure and its associated phenomena inside isolators, studied using the aforementioned tools. Several promising flow control techniques that have more recently been applied to manipulate the shock wave/boundary layer interaction are also examined in this review.

  8. Numerical and Experimental Investigation of Multiple Shock Wave/Turbulent Boundary Layer Interactions in a Rectangular Duct

    DTIC Science & Technology

    1988-01-06

    the bottom % kall followin,, the interaction. At 6Wuh = 0.35 the shock train would not stay attached to a single wall long enough for the surface...Interaction of a Shock Wave with a Laminar Boundary Layer," Lecture Notes in Physics, Vol. 8, Springer-Verlag, 1971 , pp. 151-163. 51 MacCormack, R. W

  9. First results of transcritical magnetized collisionless shock studies on MSX

    NASA Astrophysics Data System (ADS)

    Weber, T. E.; Smith, R. J.; Hutchinson, T. M.; Taylor, S. F.; Hsu, S. C.

    2014-10-01

    Magnetized collisionless shocks exhibit transitional length and time scales much shorter than can be created through collisional processes. They are common throughout the cosmos, but have historically proven difficult to create in the laboratory. The Magnetized Shock Experiment (MSX) at LANL produces super-Alfvénic shocks through the acceleration and subsequent stagnation of Field Reversed Configuration (FRC) plasmoids against a strong magnetic mirror and flux-conserving vacuum boundary. Plasma flows have been produced with sonic and Alfvén Mach numbers up to ~10 over a wide range of plasma beta with embedded perpendicular, oblique, and parallel magnetic field. Macroscopic ion skin-depth and long ion-gyroperiod enable diagnostic access to relevant shock physics using common methods. Variable plasmoid velocity, density, temperature, and magnetic field provide access to a wide range of shock conditions, and a campaign to study the physics of transcritical and supercritical shocks within the FRC plasmoid is currently underway. An overview of the experimental design, diagnostics suite, physics objectives, and recent results will be presented. Supported by DOE Office of Fusion Energy Sciences under DOE Contract DE-AC52-06NA25369.

  10. Exploration of the fragmentation of laser shock-melted aluminum using x-ray backlighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lin, E-mail: zhanglinbox@263.net, E-mail: zhanglinbox@caep.cn; Li, Ying-Hua; Li, Xue-Mei

    The fragmentation of shock-melted metal material is an important scientific problem in shock physics and is suitable for experimentally investigating by the laser-driven x-ray backlighting technique. This letter reports on the exploration of laser shock-melted aluminum fragmentation by means of x-ray backlighting at the SGII high energy facility in China. High-quality and high-resolution radiographs with negligible motion blur were obtained and these images enabled analysis of the mass distribution of the fragmentation product.

  11. Observation and Control of Shock Waves in Individual Nanoplasmas

    DTIC Science & Technology

    2014-03-18

    Observation and Control of Shock Waves in Individual Nanoplasmas Daniel D. Hickstein,1 Franklin Dollar,1 Jim A. Gaffney,2 Mark E. Foord,2 George M...distribution of individual, isolated 100-nm-scale plasmas, we make the first experimental observation of shock waves in nanoplasmas . We demonstrate that...i Nanoscale plasmas ( nanoplasmas ) offer enhanced laser absorption compared to solid or gas targets [1], enabling high-energy physics with tabletop

  12. Chinese research on shock physics. Studies in Chinese Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, N.H.

    1992-07-01

    Shock wave research encompasses many different disciplines. This monograph limits the scope to Chinese research on solids and is based on available open literature sources. For the purpose of this monograph, the papers are divided into seven groups, i.e. review and tutorial; equations of state; phase transitions; geological materials; modeling and simulations; experimental techniques; and mechanical properties. The largest group of papers is experimental techniques and numbers 22, or about 40% of the total sources.

  13. Using a gel/plastic surrogate to study the biomechanical response of the head under air shock loading: a combined experimental and numerical investigation.

    PubMed

    Zhu, Feng; Wagner, Christina; Dal Cengio Leonardi, Alessandra; Jin, Xin; Vandevord, Pamela; Chou, Clifford; Yang, King H; King, Albert I

    2012-03-01

    A combined experimental and numerical study was conducted to determine a method to elucidate the biomechanical response of a head surrogate physical model under air shock loading. In the physical experiments, a gel-filled egg-shaped skull/brain surrogate was exposed to blast overpressure in a shock tube environment, and static pressures within the shock tube and the surrogate were recorded throughout the event. A numerical model of the shock tube was developed using the Eulerian approach and validated against experimental data. An arbitrary Lagrangian-Eulerian (ALE) fluid-structure coupling algorithm was then utilized to simulate the interaction of the shock wave and the head surrogate. After model validation, a comprehensive series of parametric studies was carried out on the egg-shaped surrogate FE model to assess the effect of several key factors, such as the elastic modulus of the shell, bulk modulus of the core, head orientation, and internal sensor location, on pressure and strain responses. Results indicate that increasing the elastic modulus of the shell within the range simulated in this study led to considerable rise of the overpressures. Varying the bulk modulus of the core from 0.5 to 2.0 GPa, the overpressure had an increase of 7.2%. The curvature of the surface facing the shock wave significantly affected both the peak positive and negative pressures. Simulations of the head surrogate with the blunt end facing the advancing shock front had a higher pressure compared to the simulations with the pointed end facing the shock front. The influence of an opening (possibly mimicking anatomical apertures) on the peak pressures was evaluated using a surrogate head with a hole on the shell of the blunt end. It was revealed that the presence of the opening had little influence on the positive pressures but could affect the negative pressure evidently.

  14. Mesoscale Computational Investigation of Shocked Heterogeneous Materials with Application to Large Impact Craters

    NASA Technical Reports Server (NTRS)

    Crawford, D. A.; Barnouin-Jha, O. S.; Cintala, M. J.

    2003-01-01

    The propagation of shock waves through target materials is strongly influenced by the presence of small-scale structure, fractures, physical and chemical heterogeneities. Pre-existing fractures often create craters that appear square in outline (e.g. Meteor Crater). Reverberations behind the shock from the presence of physical heterogeneity have been proposed as a mechanism for transient weakening of target materials. Pre-existing fractures can also affect melt generation. In this study, we are attempting to bridge the gap in numerical modeling between the micro-scale and the continuum, the so-called meso-scale. To accomplish this, we are developing a methodology to be used in the shock physics hydrocode (CTH) using Monte-Carlo-type methods to investigate the shock properties of heterogeneous materials. By comparing the results of numerical experiments at the micro-scale with experimental results and by using statistical techniques to evaluate the performance of simple constitutive models, we hope to embed the effect of physical heterogeneity into the field variables (pressure, stress, density, velocity) allowing us to directly imprint the effects of micro-scale heterogeneity at the continuum level without incurring high computational cost.

  15. Experimental investigation of flow induced dust acoustic shock waves in a complex plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaiswal, S., E-mail: surabhijaiswal73@gmail.com; Bandyopadhyay, P.; Sen, A.

    2016-08-15

    We report on experimental observations of flow induced large amplitude dust-acoustic shock waves in a complex plasma. The experiments have been carried out in a Π shaped direct current glow discharge experimental device using kaolin particles as the dust component in a background of Argon plasma. A strong supersonic flow of the dust fluid is induced by adjusting the pumping speed and neutral gas flow into the device. An isolated copper wire mounted on the cathode acts as a potential barrier to the flow of dust particles. A sudden change in the gas flow rate is used to trigger themore » onset of high velocity dust acoustic shocks whose dynamics are captured by fast video pictures of the evolving structures. The physical characteristics of these shocks are delineated through a parametric scan of their dynamical properties over a range of flow speeds and potential hill heights. The observed evolution of the shock waves and their propagation characteristics are found to compare well with model numerical results based on a modified Korteweg-de-Vries-Burgers type equation.« less

  16. The Chemistry of Shocked High-energy Materials: Connecting Atomistic Simulations to Experiments

    NASA Astrophysics Data System (ADS)

    Islam, Md Mahbubul; Strachan, Alejandro

    2017-06-01

    A comprehensive atomistic-level understanding of the physics and chemistry of shocked high energy (HE) materials is crucial for designing safe and efficient explosives. Advances in the ultrafast spectroscopy and laser shocks enabled the study of shock-induced chemistry at extreme conditions occurring at picosecond timescales. Despite this progress experiments are not without limitations and do not enable a direct characterization of chemical reactions. At the same time, large-scale reactive molecular dynamics (MD) simulations are capable of providing description of the shocked-induced chemistry but the uncertainties resulting from the use of approximate descriptions of atomistic interactions remain poorly quantified. We use ReaxFF MD simulations to investigate the shock and temperature induced chemical decomposition mechanisms of polyvinyl nitrate, RDX, and nitromethane. The effect of various shock pressures on reaction initiation mechanisms is investigated for all three materials. We performed spectral analysis from atomistic velocities at different shock pressures to enable direct comparison with experiments. The simulations predict volume-increasing reactions at the shock-to-detonation transitions and the shock vs. particle velocity data are in good agreement with available experimental data. The ReaxFF MD simulations validated against experiments enabled prediction of reaction kinetics of shocked materials, and interpretation of experimental spectroscopy data via assignment of the spectral peaks to dictate various reaction pathways at extreme conditions.

  17. Magnetized Collisionless Shock Studies Using High Velocity Plasmoids

    NASA Astrophysics Data System (ADS)

    Weber, Thomas; Intrator, T.

    2013-04-01

    Magnetized collisionless shocks are ubiquitous throughout the cosmos and are observed to accelerate particles to relativistic velocities, amplify magnetic fields, transport energy, and create non-thermal distributions. They exhibit transitional scale lengths much shorter than the collisional mean free path and are mediated by collective interactions rather than Coulomb collisions. The Magnetized Shock Experiment (MSX) leverages advances in Field Reversed Configuration (FRC) plasmoid formation and acceleration to produce highly supersonic and super-Alfvénic supercritical shocks with pre-existing magnetic field at perpendicular, parallel or oblique angles to the direction of propagation. Adjustable shock speed, density, and magnetic field provide unique access to a range of parameter space relevant to a variety of naturally occurring shocks. This effort examines experimentally, analytically, and numerically the physics of collisionless shock formation, structure, and kinetic effects in a laboratory setting and draw comparisons between experimental data and astronomical observations. Supported by DOE Office of Fusion Energy Sciences and National Nuclear Security Administration under LANS contract DE-AC52-06NA25369 Approved for Public Release: LA-UR-12-22886

  18. Shock-driven Rayleigh-Taylor / Richtmyer-Meshkov 2D multimode ripple evolution before and after re-shock

    NASA Astrophysics Data System (ADS)

    Nagel, Sabrina; Huntington, Channing; Bender, Jason; Raman, Kumar; Baumann, Ted; MacLaren, Stephan; Prisbrey, Shon; Zhou, Ye

    2017-10-01

    Laser-driven hydrodynamic experiments allow for the precise control over several important experimental parameters, including the timing of the laser irradiation delivered and the initial conditions of the laser-driven target. Our experimental platform at the National Ignition Facility enables the investigation of the physics of instability growth after the passage of a second shock (``reshock''). This is done by varying the laser to change the strength and timing of the secondary shock. Here we present x-ray images capturing the rapid post-reshock instability growth for a set of reshock strengths. The radiation hydrodynamics simulations used to design these experiments are also introduced. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344. LLNL-ABS-734509.

  19. Emissivity measurements of shocked tin using a multi-wavelength integrating sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seifter, A; Holtkamp, D B; Iverson, A J

    Pyrometric measurements of radiance to determine temperature have been performed on shock physics experiments for decades. However, multi-wavelength pyrometry schemes sometimes fail to provide credible temperatures in experiments, which incur unknown changes in sample emissivity, because an emissivity change also affects the spectral radiance. Hence, for shock physics experiments using pyrometry to measure temperatures, it is essential to determine the dynamic sample emissivity. The most robust way to determine the normal spectral emissivity is to measure the spectral normal-hemispherical reflectance using an integrating sphere. In this paper we describe a multi-wavelength (1.6–5.0 μm) integrating sphere system that utilizes a “reversed”more » scheme, which we use for shock physics experiments. The sample to be shocked is illuminated uniformly by scattering broadband light from inside a sphere onto the sample. A portion of the light reflected from the sample is detected at a point 12° from normal to the sample surface. For this experiment, we used the system to measure emissivity of shocked tin at four wavelengths for shock stress values between 17 and 33 GPa. The results indicate a large increase in effective emissivity upon shock release from tin when the shock is above 24–25 GPa, a shock stress that partially melts the sample. We also recorded an IR image of one of the shocked samples through the integrating sphere, and the emissivity inferred from the image agreed well with the integrating-sphere, pyrometer-detector data. Here, we discuss experimental data, uncertainties, and a data analysis process. We also describe unique emissivity-measurement problems arising from shock experiments and methods to overcome such problems.« less

  20. Modeling Laboratory Astrophysics Experiments in the High-Energy-Density Regime Using the CRASH Radiation-Hydrodynamics Model

    NASA Astrophysics Data System (ADS)

    Grosskopf, M. J.; Drake, R. P.; Trantham, M. R.; Kuranz, C. C.; Keiter, P. A.; Rutter, E. M.; Sweeney, R. M.; Malamud, G.

    2012-10-01

    The radiation hydrodynamics code developed by the Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan has been used to model experimental designs for high-energy-density physics campaigns on OMEGA and other high-energy laser facilities. This code is an Eulerian, block-adaptive AMR hydrodynamics code with implicit multigroup radiation transport and electron heat conduction. CRASH model results have shown good agreement with a experimental results from a variety of applications, including: radiative shock, Kelvin-Helmholtz and Rayleigh-Taylor experiments on the OMEGA laser; as well as laser-driven ablative plumes in experiments by the Astrophysical Collisionless Shocks Experiments with Lasers (ACSEL), collaboration. We report a series of results with the CRASH code in support of design work for upcoming high-energy-density physics experiments, as well as comparison between existing experimental data and simulation results. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.

  1. Microenergetic Shock Initiation Studies on Deposited Films of PETN

    NASA Astrophysics Data System (ADS)

    Tappan, Alexander S.; Wixom, Ryan R.; Trott, Wayne M.; Long, Gregory T.; Knepper, Robert; Brundage, Aaron L.; Jones, David A.

    2009-06-01

    Films of the high explosive PETN (pentaerythritol tetranitrate) up to 500-μm thick have been deposited through physical vapor deposition, with the intent of creating well-defined samples for shock-initiation studies. PETN films were characterized with surface profilometry, scanning electron microscopy, x-ray diffraction, and focused ion beam nanotomography. These high-density films were subjected to strong shocks in both the in-plane and out-of-plane orientations. Initiation behavior was monitored with high-speed framing and streak camera photography. Direct initiation with a donor explosive (either RDX with binder, or CL-20 with binder) was possible in both orientations, but with the addition of a thin aluminum buffer plate (in-plane configuration only), initiation proved to be difficult due to the attenuated shock and the high density of the PETN films. Mesoscale models of microenergetic samples were created using the shock physics code CTH and compared with experimental results. The results of these experiments will be discussed in the context of small sample geometry, deposited film morphology, and density.

  2. Comparison of hydrodynamic simulations with two-shockwave drive target experiments

    NASA Astrophysics Data System (ADS)

    Karkhanis, Varad; Ramaprabhu, Praveen; Buttler, William

    2015-11-01

    We consider hydrodynamic continuum simulations to mimic ejecta generation in two-shockwave target experiments, where metallic surface is loaded by two successive shock waves. Time of second shock in simulations is determined to match experimental amplitudes at the arrival of the second shock. The negative Atwood number (A --> - 1) of ejecta simulations leads to two successive phase inversions of the interface corresponding to the passage of the shocks from heavy to light media in each instance. Metallic phase of ejecta (solid/liquid) depends on shock loading pressure in the experiment, and we find that hydrodynamic simulations quantify the liquid phase ejecta physics with a fair degree of accuracy, where RM instability is not suppressed by the strength effect. In particular, we find that our results of free surface velocity, maximum ejecta velocity, and maximum ejecta areal density are in excellent agreement with their experimental counterparts, as well as ejecta models. We also comment on the parametric space for hydrodynamic simulations in which they can be used to compare with the target experiments.

  3. On A Problem Of Propagation Of Shock Waves Generated By Explosive Volcanic Eruptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gusev, V. A.; Sobissevitch, A. L.

    2008-06-24

    Interdisciplinary study of flows of matter and energy in geospheres has become one of the most significant advances in Earth sciences. It is carried out by means of direct quantitative estimations based on detailed analysis of geological and geophysical observations and experimental data. The actual contribution is the interdisciplinary study of nonlinear acoustics and physical volcanology dedicated to shock wave propagation in a viscous and inhomogeneous medium. The equations governing evolution of shock waves with an arbitrary initial profile and an arbitrary cross-section of a beam are obtained. For the case of low viscous medium, the asymptotic solution meant tomore » calculate a profile of a shock wave in an arbitrary point has been derived. The analytical solution of the problem on propagation of shock pulses from atmosphere into a two-phase fluid-saturated geophysical medium is analysed. Quantitative estimations were carried out with respect to experimental results obtained in the course of real explosive volcanic eruptions.« less

  4. Experimental and numerical investigations of shock wave propagation through a bifurcation

    NASA Astrophysics Data System (ADS)

    Marty, A.; Daniel, E.; Massoni, J.; Biamino, L.; Houas, L.; Leriche, D.; Jourdan, G.

    2018-02-01

    The propagation of a planar shock wave through a split channel is both experimentally and numerically studied. Experiments were conducted in a square cross-sectional shock tube having a main channel which splits into two symmetric secondary channels, for three different shock wave Mach numbers ranging from about 1.1 to 1.7. High-speed schlieren visualizations were used along with pressure measurements to analyze the main physical mechanisms that govern shock wave diffraction. It is shown that the flow behind the transmitted shock wave through the bifurcation resulted in a highly two-dimensional unsteady and non-uniform flow accompanied with significant pressure loss. In parallel, numerical simulations based on the solution of the Euler equations with a second-order Godunov scheme confirmed the experimental results with good agreement. Finally, a parametric study was carried out using numerical analysis where the angular displacement of the two channels that define the bifurcation was changed from 90° , 45° , 20° , and 0° . We found that the angular displacement does not significantly affect the overpressure experience in either of the two channels and that the area of the expansion region is the important variable affecting overpressure, the effect being, in the present case, a decrease of almost one half.

  5. An FDTD-based computer simulation platform for shock wave propagation in electrohydraulic lithotripsy.

    PubMed

    Yılmaz, Bülent; Çiftçi, Emre

    2013-06-01

    Extracorporeal Shock Wave Lithotripsy (ESWL) is based on disintegration of the kidney stone by delivering high-energy shock waves that are created outside the body and transmitted through the skin and body tissues. Nowadays high-energy shock waves are also used in orthopedic operations and investigated to be used in the treatment of myocardial infarction and cancer. Because of these new application areas novel lithotriptor designs are needed for different kinds of treatment strategies. In this study our aim was to develop a versatile computer simulation environment which would give the device designers working on various medical applications that use shock wave principle a substantial amount of flexibility while testing the effects of new parameters such as reflector size, material properties of the medium, water temperature, and different clinical scenarios. For this purpose, we created a finite-difference time-domain (FDTD)-based computational model in which most of the physical system parameters were defined as an input and/or as a variable in the simulations. We constructed a realistic computational model of a commercial electrohydraulic lithotriptor and optimized our simulation program using the results that were obtained by the manufacturer in an experimental setup. We, then, compared the simulation results with the results from an experimental setup in which oxygen level in water was varied. Finally, we studied the effects of changing the input parameters like ellipsoid size and material, temperature change in the wave propagation media, and shock wave source point misalignment. The simulation results were consistent with the experimental results and expected effects of variation in physical parameters of the system. The results of this study encourage further investigation and provide adequate evidence that the numerical modeling of a shock wave therapy system is feasible and can provide a practical means to test novel ideas in new device design procedures. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. A viscous flow study of shock-boundary layer interaction, radial transport, and wake development in a transonic compressor

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Reid, Lonnie

    1991-01-01

    A numerical study based on the 3D Reynolds-averaged Navier-Stokes equation has been conducted to investigate the detailed flow physics inside a transonic compressor. 3D shock structure, shock-boundary layer interaction, flow separation, radial mixing, and wake development are all investigated at design and off-design conditions. Experimental data based on laser anemometer measurements are used to assess the overall quality of the numerical solution. An additional experimental study to investigate end-wall flow with a hot-film was conducted, and these results are compared with the numerical results. Detailed comparison with experimental data indicates that the overall features of the 3D shock structure, the shock-boundary layer interaction, and the wake development are all calculated very well in the numerical solution. The numerical results are further analyzed to examine the radial mixing phenomena in the transonic compressor. A thin sheet of particles is injected in the numerical solution upstream of the compressor. The movement of particles is traced with a 3D plotting package. This numerical survey of tracer concentration reveals the fundamental mechanisms of radial transport in this transonic compressor.

  7. A sealed capsule system for biological and liquid shock-recovery experiments.

    PubMed

    Leighs, James A; Appleby-Thomas, Gareth J; Stennett, Chris; Hameed, Amer; Wilgeroth, James M; Hazell, Paul J

    2012-11-01

    This paper presents an experimental method designed to one-dimensionally shock load and subsequently recover liquid samples. Resultant loading profiles have been interrogated via hydrocode simulation as the nature of the target did not allow for direct application of the diagnostics typically employed in shock physics (e.g., manganin stress gauges or Heterodyne velocimeter (Het-V)). The target setup has been experimentally tested using aluminium flyer plates accelerated by a 50-mm bore single-stage gas-gun reaching projectile impact velocities of up to ~500 ms(-1) (corresponding to peak pressures of up to ca. 4 GPa being experienced by fluid samples). Recovered capsules survived well showing only minor signs of damage. Modelled gauge traces have been validated through the use of a (slightly modified) experiment in which a Het-V facing the rear of the inner capsule was employed. In these tests, good correlation between simulated and experimental traces was observed.

  8. A sealed capsule system for biological and liquid shock-recovery experiments

    NASA Astrophysics Data System (ADS)

    Leighs, James A.; Appleby-Thomas, Gareth J.; Stennett, Chris; Hameed, Amer; Wilgeroth, James M.; Hazell, Paul J.

    2012-11-01

    This paper presents an experimental method designed to one-dimensionally shock load and subsequently recover liquid samples. Resultant loading profiles have been interrogated via hydrocode simulation as the nature of the target did not allow for direct application of the diagnostics typically employed in shock physics (e.g., manganin stress gauges or Heterodyne velocimeter (Het-V)). The target setup has been experimentally tested using aluminium flyer plates accelerated by a 50-mm bore single-stage gas-gun reaching projectile impact velocities of up to ˜500 ms-1 (corresponding to peak pressures of up to ca. 4 GPa being experienced by fluid samples). Recovered capsules survived well showing only minor signs of damage. Modelled gauge traces have been validated through the use of a (slightly modified) experiment in which a Het-V facing the rear of the inner capsule was employed. In these tests, good correlation between simulated and experimental traces was observed.

  9. Swept shock/boundary-layer interactions: Scaling laws, flowfield structure, and experimental methods

    NASA Technical Reports Server (NTRS)

    Settles, Gary S.

    1993-01-01

    A general review is given of several decades of research on the scaling laws and flowfield structures of swept shock wave/turbulent boundary layer interactions. Attention is further restricted to the experimental study and physical understanding of the steady-state aspects of these flows. The interaction produced by a sharp, upright fin mounted on a flat plate is taken as an archetype. An overall framework of quasiconical symmetry describing such interactions is first developed. Boundary-layer separation, the interaction footprint, Mach number scaling, and Reynolds number scaling are then considered, followed by a discussion of the quasiconical similarity of interactions produced by geometrically-dissimilar shock generators. The detailed structure of these interaction flowfields is next reviewed, and is illustrated by both qualitative visualizations and quantitative flow images in the quasiconical framework. Finally, the experimental techniques used to investigate such flows are reviewed, with emphasis on modern non-intrusive optical flow diagnostics.

  10. Getting Shocks: Teaching Secondary School Physics through History.

    ERIC Educational Resources Information Center

    Heering, Peter

    2000-01-01

    Uses several replicas of experimental set-ups that were originally used in electrostatic research in teaching electrostatics through history on secondary school level. Makes visible the change of the style of electrostatic experimentation that took place at the end of the 18th century. (Contains 25 references.) (ASK)

  11. The ability of ewes with lambs to learn a virtual fencing system.

    PubMed

    Brunberg, E I; Bergslid, I K; Bøe, K E; Sørheim, K M

    2017-11-01

    The Nofence technology is a GPS-based virtual fencing system designed to keep sheep within predefined borders, without using physical fences. Sheep wearing a Nofence collar receive a sound signal when crossing the virtual border and a weak electric shock if continuing to walk out from the virtual enclosure. Two experiments testing the functionality of the Nofence system and a new learning protocol is described. In Experiment 1, nine ewes with their lambs were divided into groups of three and placed in an experimental enclosure with one Nofence border. During 2 days, there was a physical fence outside the border, during Day 3 the physical fence was removed and on Day 4, the border was moved to the other end of the enclosure. The sheep received between 6 and 20 shocks with an average of 10.9±2.0 (mean±SE) per ewe during all 4 days. The number of shocks decreased from 4.38±0.63 on Day 3 (when the physical fence was removed) to 1.5±0.71 on Day 4 (when the border was moved). The ewes spent on average 3%, 6%, 46% and 9% of their time outside the border on Days 1, 2, 3 and 4, respectively. In Experiment 2, 32 ewes, with and without lambs, were divided into groups of eight and placed in an experimental enclosure. On Day 1, the enclosure was fenced with three physical fences and one virtual border, which was then increased to two virtual borders on Day 2. To continue to Day 3, when there was supposed to be three virtual borders on the enclosure, at least 50% of the ewes in a group should have received a maximum of four shocks on Day 2. None of the groups reached this learning criterion and the experiment ended after Day 2. The sheep received 4.1±0.32 shocks on Day 1 and 4.7±0.28 shocks on Day 2. In total, 71% of the ewes received the maximum number of five shocks on Day 1 and 77% on Day 2. The individual ewes spent between 0% and 69.5% of Day 1 in the exclusion zone and between 0% and 64% on Day 2. In conclusion, it is too challenging to ensure an efficient learning and hence, animal welfare cannot be secured. There were technical challenges with the collars that may have affected the results. The Nofence prototype was unable to keep the sheep within the intended borders, and thus cannot replace physical fencing for sheep.

  12. A Study of Fundamental Shock Noise Mechanisms

    NASA Technical Reports Server (NTRS)

    Meadows, Kristine R.

    1997-01-01

    This paper investigates two mechanisms fundamental to sound generation in shocked flows: shock motion and shock deformation. Shock motion is modeled numerically by examining the interaction of a sound wave with a shock. This numerical approach is validated by comparison with results obtained by linear theory for a small-disturbance case. Analysis of the perturbation energy with Myers' energy corollary demonstrates that acoustic energy is generated by the interaction of acoustic disturbances with shocks. This analysis suggests that shock motion generates acoustic and entropy disturbance energy. Shock deformation is modeled numerically by examining the interaction of a vortex ring with a shock. These numerical simulations demonstrate the generation of both an acoustic wave and contact surfaces. The acoustic wave spreads cylindrically. The sound intensity is highly directional and the sound pressure increases with increasing shock strength. The numerically determined relationship between the sound pressure and the Mach number is found to be consistent with experimental observations of shock noise. This consistency implies that a dominant physical process in the generation of shock noise is modeled in this study.

  13. Quantifying the Hydrodynamic Performance of an Explosively-Driven Two-Shock Source

    NASA Astrophysics Data System (ADS)

    Furlanetto, Michael; Bauer, Amy; King, Robert; Buttler, William; Olson, Russell; Hagelberg, Carl

    2015-06-01

    An explosively-driven experimental package capable of generating a tunable two-shock drive would enable a host of experiments in shock physics. To make the best use of such a platform, though, its symmetry, reproducibility, and performance must be characterized thoroughly. We report on a series of experiments on a particular two-shock design that used shock reverberation between the sample and a heavy anvil to produce a second shock. Drive package diameters were varied between 50 and 76 mm in order to investigate release wave propagation. We used proton radiography to characterize the detonation and reverberation fronts within the high explosive elements of the packages, as well as surface velocimetry to measure the resulting shock structure in the sample under study. By fielding more than twenty channels of velocimetry per shot, we were able to quantify the symmetry and reproducibility of the drive.

  14. Experimental approach to interaction physics challenges of the shock ignition scheme using short pulse lasers.

    PubMed

    Goyon, C; Depierreux, S; Yahia, V; Loisel, G; Baccou, C; Courvoisier, C; Borisenko, N G; Orekhov, A; Rosmej, O; Labaune, C

    2013-12-06

    An experimental program was designed to study the most important issues of laser-plasma interaction physics in the context of the shock ignition scheme. In the new experiments presented in this Letter, a combination of kilojoule and short laser pulses was used to study the laser-plasma coupling at high laser intensities for a large range of electron densities and plasma profiles. We find that the backscatter is dominated by stimulated Brillouin scattering with stimulated Raman scattering staying at a limited level. This is in agreement with past experiments using long pulses but laser intensities limited to 2×10(15)  W/cm2, or short pulses with intensities up to 5×10(16)  W/cm2 as well as with 2D particle-in-cell simulations.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelsen, Nicholas H.; Kolb, James D.; Kulkarni, Akshay G.

    Mechanical component response to shock environments must be predictable in order to ensure reliability and safety. Whether the shock input results from accidental drops during transportation to projectile impact scenarios, the system must irreversibly transition into a safe state that is incapable of triggering the component . With this critical need in mind, the 2017 Nuclear Weapons Summer Product Realization Institute (NW SPRINT) program objective sought the design of a passive shock failsafe with emphasis on additively manufactured (AM) components. Team Advanced and Exploratory (A&E) responded to the challenge by designing and delivering multiple passive shock sensing mech anisms thatmore » activate within a prescribed mechanical shock threshold. These AM failsafe designs were tuned and validated using analytical and computational techniques including the shock response spectrum (SRS) and finite element analysis (FEA). After rapid prototyping, the devices experienced physical shock tests conducted on Sandia drop tables to experimentally verify performance. Keywords: Additive manufacturing, dynamic system, failsafe, finite element analysis, mechanical shock, NW SPRINT, shock respon se spectrum« less

  16. Measuring the flexoelectric coefficient of bulk barium titanate from a shock wave experiment

    NASA Astrophysics Data System (ADS)

    Hu, Taotao; Deng, Qian; Liang, Xu; Shen, Shengping

    2017-08-01

    In this paper, a phenomenon of polarization introduced by shock waves is experimentally studied. Although this phenomenon has been reported previously in the community of physics, this is the first time to link it to flexoelectricity, the coupling between electric polarization and strain gradients in dielectrics. As the shock waves propagate in a dielectric material, electric polarization is thought to be induced by the strain gradient at the shock front. First, we control the first-order hydrogen gas gun to impact and generate shock waves in unpolarized bulk barium titanate (BT) samples. Then, a high-precision oscilloscope is used to measure the voltage generated by the flexoelectric effect. Based on experimental results, strain elastic wave theory, and flexoelectric theory, a longitudinal flexoelectric coefficient of the bulk BT sample is calculated to be μ 11 = 17.33 × 10 - 6 C/m, which is in accord with the published transverse flexoelectric coefficient. This method effectively suppresses the majority of drawbacks in the quasi-static and low frequency dynamic techniques and provides more reliable results of flexoelectric behaviors.

  17. Fast Hydrogen-Air Flames for Turbulence Driven Deflagration to Detonation Transition

    NASA Astrophysics Data System (ADS)

    Chambers, Jessica; Ahmed, Kareem

    2016-11-01

    Flame acceleration to Detonation produces several combustion modes as the Deflagration-to-Detonation Transition (DDT) is initiated, including fast deflagration, auto-ignition, and quasi-detonation. Shock flame interactions and turbulence levels in the reactant mixture drive rapid flame expansion, formation of a leading shockwave and post-shock conditions. An experimental study to characterize the developing shock and flame front behavior of propagating premixed hydrogen-air flames in a square channel is presented. To produce each flame regime, turbulence levels and flame propagation velocity are controlled using perforated plates in several configurations within the experimental facility. High speed optical diagnostics including Schlieren and Particle Image Velocimetry are used to capture the flow field. In-flow pressure measurements acquired post-shock, detail the dynamic changes that occur in the compressed gas directly ahead of the propagating flame. Emphasis on characterizing the turbulent post-shock environment of the various flame regimes helps identify the optimum conditions to initiate the DDT process. The study aims to further the understanding of complex physical mechanisms that drive transient flame conditions for detonation initiation. American Chemical Society.

  18. Shockwave compression of Ar gas at several initial densities

    NASA Astrophysics Data System (ADS)

    Dattelbaum, Dana M.; Goodwin, Peter M.; Garcia, Daniel B.; Gustavsen, Richard L.; Lang, John M.; Aslam, Tariq D.; Sheffield, Stephen A.; Gibson, Lloyd L.; Morris, John S.

    2017-01-01

    Experimental data of the principal Hugoniot locus of variable density gas-phase noble and molecular gases are rare. The majority of shock Hugoniot data is either from shock tube experiments on low-pressure gases or from plate impact experiments on cryogenic, liquefied gases. In both cases, physics regarding shock compressibility, thresholds for the on-set of shock-driven ionization, and even dissociation chemistry are difficult to infer for gases at intermediate densities. We have developed an experimental target design for gas gun-driven plate impact experiments on noble gases at initial pressures between 200-1000 psi. Using optical velocimetry, we are able to directly determine both the shock and particle velocities of the gas on the principal Hugoniot locus, as well as clearly differentiate ionization thresholds. The target design also results in multiply shocking the gas in a quasi-isentropic fashion yielding off-Hugoniot compression data. We describe the results of a series of plate impact experiments on Ar with starting densities between 0.02-0.05 g/cm3 at room temperature. Furthermore, by coupling optical fibers to the targets, we have measured the time-resolved optical emission from the shocked gas using a spectrometer coupled to an optical streak camera to spectrally-resolve the emission, and with a 5-color optical pyrometer for temperature determination.

  19. Non-linear shipboard shock analysis of the Tomahawk missile shock isolation system

    NASA Technical Reports Server (NTRS)

    Leifer, Joel; Gross, Michael

    1987-01-01

    The identification, quantification, computer modeling and verification of the Tomahawk nonlinear liquid spring shock isolation system in a surface ship Vertical Launch System (VLS) are discussed. The isolation system hardware and mode of operation is detailed in an effort to understand the nonlinearities. These nonlinearities are then quantified and modeled using the MSC/NASTRAN finite element code. The model was verified using experimental data from the Navel Ordnance Systems Center MIL-S-901 medium weight shock tests of August 1986. The model was then used to predict the Tomahawk response to the CG-53 USS Mobile Bay shock trials of May-June 1987. Results indicate that the model is an accurate mathematical representation of the physical system either functioning as designed or in an impaired condition due to spring failure.

  20. DSMC Simulations of Hypersonic Flows With Shock Interactions and Validation With Experiments

    NASA Technical Reports Server (NTRS)

    Moss, James N.; Bird, Graeme A.

    2004-01-01

    The capabilities of a relatively new direct simulation Monte Carlo (DSMC) code are examined for the problem of hypersonic laminar shock/shock and shock/boundary layer interactions, where boundary layer separation is an important feature of the flow. Flow about two model configurations is considered, where both configurations (a biconic and a hollow cylinder-flare) have recent published experimental measurements. The computations are made by using the DS2V code of Bird, a general two-dimensional/axisymmetric time accurate code that incorporates many of the advances in DSMC over the past decade. The current focus is on flows produced in ground-based facilities at Mach 12 and 16 test conditions with nitrogen as the test gas and the test models at zero incidence. Results presented highlight the sensitivity of the calculations to grid resolutions, sensitivity to physical modeling parameters, and comparison with experimental measurements. Information is provided concerning the flow structure and surface results for the extent of separation, heating, pressure, and skin friction.

  1. DSMC Simulations of Hypersonic Flows With Shock Interactions and Validation With Experiments

    NASA Technical Reports Server (NTRS)

    Moss, James N.; Bird, Graeme A.

    2004-01-01

    The capabilities of a relatively new direct simulation Monte Carlo (DSMC) code are examined for the problem of hypersonic laminar shock/shock and shock/boundary layer interactions, where boundary layer separation is an important feature of the flow. Flow about two model configurations is considered, where both configurations (a biconic and a hollow cylinder-flare) have recent published experimental measurements. The computations are made by using the DS2V code of Bird, a general two-dimensional/axisymmetric time accurate code that incorporates many of the advances in DSMC over the past decade. The current focus is on flows produced in ground-based facilities at Mach 12 and 16 test conditions with nitrogen as the test gas and the test models at zero incidence. Results presented highlight the sensitivity of the calculations to grid resolution, sensitivity to physical modeling parameters, and comparison with experimental measurements. Information is provided concerning the flow structure and surface results for the extent of separation, heating, pressure, and skin friction.

  2. Application of a computational glass model to the shock response of soda-lime glass

    DOE PAGES

    Gorfain, Joshua E.; Key, Christopher T.; Alexander, C. Scott

    2016-04-20

    This article details the implementation and application of the glass-specific computational constitutive model by Holmquist and Johnson [1] to simulate the dynamic response of soda-lime glass under high rate and high pressure shock conditions. The predictive capabilities of this model are assessed through comparison of experimental data with numerical results from computations using the CTH shock physics code. The formulation of this glass model is reviewed in the context of its implementation within CTH. Using a variety of experimental data compiled from the open literature, a complete parameterization of the model describing the observed behavior of soda-lime glass is developed.more » Simulation results using the calibrated soda-lime glass model are compared to flyer plate and Taylor rod impact experimental data covering a range of impact and failure conditions spanning an order of magnitude in velocity and pressure. In conclusion, the complex behavior observed in the experimental testing is captured well in the computations, demonstrating the capability of the glass model within CTH.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cada, G.F.; Solomon, J.A.; Loar, J.M.

    This report provides a review of literature concerning the effects of sublethal stresses on predator-prey interactions in aquatic systems. In addition, the results of a preliminary laboratory study of the susceptibility of entrainment-stressed juvenile bluegill to striped bass predation are presented. Juvenile bluegill were exposed to thermal and physical entrainment stresses in the ORNL Power Plant Simulator and subsequently to predation by juvenile striped bass in a susceptibility to predation experimental design. None of the entrainment stresses tested (thermal shock, physical effects of pump and condenser passage, and combination of thermal and physical shock) was found to significantly increase predationmore » rates as compared to controls, and no significant interactions between thermal and physical stresses were detected. The validity of laboratory predator-prey studies and the application of indirect mortality information for setting protective standards and predicting environmental impacts are discussed.« less

  4. Computational and experimental investigation of plasma deflagration jets and detonation shocks in coaxial plasma accelerators

    NASA Astrophysics Data System (ADS)

    Subramaniam, Vivek; Underwood, Thomas C.; Raja, Laxminarayan L.; Cappelli, Mark A.

    2018-02-01

    We present a magnetohydrodynamic (MHD) numerical simulation to study the physical mechanisms underlying plasma acceleration in a coaxial plasma gun. Coaxial plasma accelerators are known to exhibit two distinct modes of operation depending on the delay between gas loading and capacitor discharging. Shorter delays lead to a high velocity plasma deflagration jet and longer delays produce detonation shocks. During a single operational cycle that typically consists of two discharge events, the plasma acceleration exhibits a behavior characterized by a mode transition from deflagration to detonation. The first of the discharge events, a deflagration that occurs when the discharge expands into an initially evacuated domain, requires a modification of the standard MHD algorithm to account for rarefied regions of the simulation domain. The conventional approach of using a low background density gas to mimic the vacuum background results in the formation of an artificial shock, inconsistent with the physics of free expansion. To this end, we present a plasma-vacuum interface tracking framework with the objective of predicting a physically consistent free expansion, devoid of the spurious shock obtained with the low background density approach. The interface tracking formulation is integrated within the MHD framework to simulate the plasma deflagration and the second discharge event, a plasma detonation, formed due to its initiation in a background prefilled with gas remnant from the deflagration. The mode transition behavior obtained in the simulations is qualitatively compared to that observed in the experiments using high framing rate Schlieren videography. The deflagration mode is further investigated to understand the jet formation process and the axial velocities obtained are compared against experimentally obtained deflagration plasma front velocities. The simulations are also used to provide insight into the conditions responsible for the generation and sustenance of the magnetic pinch. The pinch width and number density distribution are compared to experimentally obtained data to calibrate the inlet boundary conditions used to set up the plasma acceleration problem.

  5. Radiation Modeling with Direct Simulation Monte Carlo

    NASA Technical Reports Server (NTRS)

    Carlson, Ann B.; Hassan, H. A.

    1991-01-01

    Improvements in the modeling of radiation in low density shock waves with direct simulation Monte Carlo (DSMC) are the subject of this study. A new scheme to determine the relaxation collision numbers for excitation of electronic states is proposed. This scheme attempts to move the DSMC programs toward a more detailed modeling of the physics and more reliance on available rate data. The new method is compared with the current modeling technique and both techniques are compared with available experimental data. The differences in the results are evaluated. The test case is based on experimental measurements from the AVCO-Everett Research Laboratory electric arc-driven shock tube of a normal shock wave in air at 10 km/s and .1 Torr. The new method agrees with the available data as well as the results from the earlier scheme and is more easily extrapolated to di erent ow conditions.

  6. Comparison of hydrodynamic simulations with two-shockwave drive target experiments

    NASA Astrophysics Data System (ADS)

    Karkhanis, Varad; Ramaprabhu, Praveen; Buttler, William

    2015-11-01

    We consider hydrodynamic continuum simulations to mimic ejecta generation in two-shockwave target experiments, where metallic surface is loaded by two successive shock waves. Time of second shock in simulations is determined to match experimental amplitudes at the arrival of the second shock. The negative Atwood number A --> - 1 of ejecta simulations leads to two successive phase inversions of the interface corresponding to the passage of the shocks from heavy to light media in each instance. Metallic phase of ejecta (solid/liquid) depends on shock loading pressure in the experiment, and we find that hydrodynamic simulations quantify the liquid phase ejecta physics with a fair degree of accuracy, where RM instability is not suppressed by the strength effect. In particular, we find that our results of free surface velocity, maximum ejecta velocity, and maximum ejecta areal density are in excellent agreement with their experimental counterparts, as well as ejecta models. We also comment on the parametric space for hydrodynamic simulations in which they can be used to compare with the target experiments. This work was supported in part by the (U.S.) Department of Energy (DOE) under Contract No. DE-AC52-06NA2-5396.

  7. Shock timing measurements in DT ice layers

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R. J.; Ross, J. S.; Lepape, S.; Ralph, J. E.; Berzak Hopkins, L. F.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.

    2013-10-01

    Shock timing experiments on the National Ignition Facility (NIF) are routinely conducted using the keyhole target geometry, in which the strength and timing of multiple shocks are measured in a liquid-deuterium (D2) filled capsule interior. These targets have recently been modified to improve the surrogacy to ignition implosions by replacing the standard, continuous liquid D2 capsule fill with a deuterium-tritium (DT) ice layer with a central DT gas fill. These experiments remove any possible material surrogacy difference between D2 and DT as well as incorporating the physics of multiple shock release and recompression events from an ice layer of finite thickness, an effect that is absent in the liquid-filled targets. Experimental results and comparisons with numerical simulation are presented. Prepared by LLNL under Contract DE-AC52-07NA27344.

  8. Comparative study of predicted and experimentally detected interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Kartalev, M. D.; Grigorov, K. G.; Smith, Z.; Dryer, M.; Fry, C. D.; Sun, Wei; Deehr, C. S.

    2002-03-01

    We compare the real time space weather prediction shock arrival times at 1 AU made by the USAF/NOAA Shock Time of Arrival (STOA) and Interplanetary Shock Propagation Model (ISPM) models, and the Exploration Physics International/University of Alaska Hakamada-Akasofu-Fry Solar Wind Model (HAF-v2) to a real time analysis analysis of plasma and field ACE data. The comparison is made using an algorithm that was developed on the basis of wavelet data analysis and MHD identification procedure. The shock parameters are estimated for selected "candidate events". An appropriate automatically performing Web-based interface periodically utilizes solar wind observations made by the ACE at L1. Near real time results as well an archive of the registered interesting events are available on a specially developed web site. A number of events are considered. These studies are essential for the validation of real time space weather forecasts made from solar data.

  9. Planar Reflection of Detonations Waves

    NASA Astrophysics Data System (ADS)

    Damazo, Jason; Shepherd, Joseph

    2012-11-01

    An experimental study examining normally reflected gaseous detonation waves is undertaken so that the physics of reflected detonations may be understood. Focused schlieren visualization is used to describe the boundary layer development behind the incident detonation wave and the nature of the reflected shock wave. Reflected shock wave bifurcation-which has received extensive study as it pertains to shock tube performance-is predicted by classical bifurcation theory, but is not observed in the present study for undiluted hydrogen-oxygen and ethylene-oxygen detonation waves. Pressure and thermocouple gauges are installed in the floor of the detonation tube so as to examine both the wall pressure and heat flux. From the pressure results, we observe an inconsistency between the measured reflected shock speed and the measured reflected shock strength with one dimensional flow predictions confirming earlier experiments performed in our laboratory. This research is sponsored by the DHS through the University of Rhode Island, Center of Excellence for Explosives Detection.

  10. Overview and recent results of the Magnetized Shock Experiment (MSX)

    NASA Astrophysics Data System (ADS)

    Weber, T. E.; Smith, R. J.; Hsu, S. C.; Omelchenko, Y.

    2015-11-01

    Recent machine and diagnostics upgrades to the Magnetized Shock Experiment (MSX) at LANL have enabled unprecedented access to the physical processes arising from stagnating magnetized (β ~ 1), collisionless, highly supersonic (M ,MA ~ 10) flows, similar in dimensionless parameters to those found in both space and astrophysical shocks. Hot (100s of eV during translation), dense (1022 - 1023 m-3) Field Reversed Configuration (FRC) plasmoids are accelerated to high velocities (100s of km/s) and subsequently impact against a static target such as a strong parallel or anti-parallel (reconnection-wise) magnetic mirror, a solid obstacle, or neutral gas cloud to recreate the physics of interest with characteristic length and time scales that are both large enough to observe yet small enough to fit within the experiment. Long-lived (>50 μs) stagnated plasmas with density enhancement much greater than predicted by fluid theory (>4x) are observed, accompanied by discontinuous plasma structures indicating shocks and jetting (visible emission and interferometry) and copious >1 keV x-ray emission. An overview of the experimental program will be presented, including machine design and capabilities, diagnostics, and an examination of the physical processes that occur during stagnation against a variety of targets. Supported by the DOE Office of Fusion Energy Sciences under contract DE-AC52-06NA25369.

  11. The Saturnian Environment as a Unique Laboratory for Collisionless Shock Waves

    NASA Astrophysics Data System (ADS)

    Sulaiman, Ali; Masters, Adam; Dougherty, Michele; Burgess, David; Fujimoto, Masaki; Hospodarsky, George

    2016-04-01

    Collisionless shock waves are ubiquitous in the universe and fundamental to understanding the nature of collisionless plasmas. The interplay between particles (ions and electrons) and fields (electromagnetic) introduces a variety of both physical and geometrical parameters such as Mach numbers (e.g. MA, Mf), β, and θBn. These vary drastically from terrestrial to astrophysical regimes resulting in radically different characteristics of shocks. This poses two complexities. Firstly, separating the influences of these parameters on physical mechanisms such as energy dissipation. Secondly, correlating observations of shock waves over a wide range of each parameter, enough to span across different regimes. Investigating the latter has been restricted since the majority of studies on shocks at exotic regimes (such as supernova remnants) have been achieved either remotely or via simulations, but rarely by means of in-situ observations. It is not clear what happens in the higher MA regime. Here we show the parameter space of MA for all bow shock crossings from 2004-2012 as measured by the Cassini spacecraft. We found that the Saturnian bow shock exhibits characteristics akin to both terrestrial and astrophysical regimes (MA of order 100), which is principally controlled by the upstream magnetic field strength. Moreover, we estimated the θbn of each crossing and were able to further constrain the sample into categories of similar features. Our results demonstrate how MA plays a central role in controlling the onset of physical mechanisms in collisionless shocks, particularly reformation. While ongoing studies have investigated this process extensively both theoretically and via simulations, their observations remain few and far between. We show conclusive evidence for cyclic reformation controlled by specular ion reflection occurring at the predicted timescale of ˜0.3 τc, where τc is the ion gyroperiod. In addition, we experimentally underpin the relationship between reformation and MA and focus on the magnetic structure of such shocks to further show that for the same MA, a reforming shock exhibits stronger magnetic field amplification than a shock that is not reforming. We anticipate our comprehensive assessment to give deeper insight to high MA collisionless shocks and provide a broader scope for understanding the structures and mechanisms of collisionless shocks. This can potentially bridge the gap between more modest MA observed in near-Earth space and more exotic astrophysical regimes where shock processes play central roles.

  12. History of ``NANO''-Scale VERY EARLY Solid-State (and Liquid-State) Physics/Chemistry/Metallurgy/ Ceramics; Interstitial-Alloys Carbides/Nitrides/Borides/...Powders and Cermets, Rock Shocks, ...

    NASA Astrophysics Data System (ADS)

    Maiden, Colin; Siegel, Edward

    History of ``NANO'': Siegel-Matsubara-Vest-Gregson[Mtls. Sci. and Eng. 8, 6, 323(`71); Physica Status Solidi (a)11,45(`72)] VERY EARLY carbides/nitrides/borides powders/cermets solid-state physics/chemistry/metallurgy/ ceramics FIRST-EVER EXPERIMENTAL NANO-physics/chemistry[1968 ->Physica Status Solidi (a)11,45(`72); and EARLY NANO-``physics''/NANO-``chemistry'' THEORY(after: Kubo(`62)-Matsubara(`60s-`70s)-Fulde (`65) [ref.: Sugano[Microcluster-Physics, Springer('82 `98)

  13. Advances in NIF Shock Timing Experiments

    NASA Astrophysics Data System (ADS)

    Robey, Harry

    2012-10-01

    Experiments are underway to tune the shock timing of capsule implosions on the National Ignition Facility (NIF). These experiments use a modified cryogenic hohlraum geometry designed to precisely match the performance of ignition hohlraums. The targets employ a re-entrant Au cone to provide optical access to multiple shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of all four shocks is diagnosed with VISAR (Velocity Interferometer System for Any Reflector). Experiments are now routinely conducted in a mirrored keyhole geometry, which allows for simultaneous diagnosis of the shock timing at both the hohlraum pole and equator. Further modifications are being made to improve the surrogacy to ignition hohlraums by replacing the standard liquid deuterium (D2) capsule fill with a deuterium-tritium (DT) ice layer. These experiments will remove any possible surrogacy difference between D2 and DT as well as incorporate the physics of shock release from the ice layer, which is absent in current experiments. Experimental results and comparisons with numerical simulation are presented.

  14. Constitutive modeling of shock response of PTFE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Eric N; Reanyansky, Anatoly D; Bourne, Neil K

    2009-01-01

    The PTFE (polytetrafluoroethylene) material is complex and attracts attention of the shock physics researchers because it has amorphous and crystalline components. In turn, the crystalline component has four known phases with the high pressure transition to phase III. At the same time, as has been recently studied using spectrometry, the crystalline region is growing with load. Stress and velocity shock-wave profiles acquired recently with embedded gauges demonstrate feature that may be related to impedance mismatches between the regions subjected to some transitions resulting in density and modulus variations. We consider the above mentioned amorphous-to-crystalline transition and the high pressure Phasemore » II-to-III transitions as possible candidates for the analysis. The present work utilizes a multi-phase rate sensitive model to describe shock response of the PTFE material. One-dimensional experimental shock wave profiles are compared with calculated profiles with the kinetics describing the transitions. The objective of this study is to understand the role of the various transitions in the shock response of PTFE.« less

  15. Shock wave/turbulent boundary layer interaction in the flow field of a tri-dimension wind tunnel

    NASA Technical Reports Server (NTRS)

    Benay, R.; Pot, T.

    1986-01-01

    The first results of a thorough experimental analysis of a strong three-dimensional shock-wave/turbulent boundary-layer interaction occurring in a three dimensional transonic channel are presented. The aim of this experiment is to help in the physical understanding of a complex field, including several separations, and to provide a well documented case to test computational methods. The flowfield has been probed in many points by means of a three-component laser Doppler velocimeter. The results presented relate only to the mean velocity field. They clearly show the formation in the flow of a strong vortical motion resulting from the shock wave interaction.

  16. Modeling Laser-Driven Laboratory Astrophysics Experiments Using the CRASH Code

    NASA Astrophysics Data System (ADS)

    Grosskopf, Michael; Keiter, P.; Kuranz, C. C.; Malamud, G.; Trantham, M.; Drake, R.

    2013-06-01

    Laser-driven, laboratory astrophysics experiments can provide important insight into the physical processes relevant to astrophysical systems. The radiation hydrodynamics code developed by the Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan has been used to model experimental designs for high-energy-density laboratory astrophysics campaigns on OMEGA and other high-energy laser facilities. This code is an Eulerian, block-adaptive AMR hydrodynamics code with implicit multigroup radiation transport and electron heat conduction. The CRASH model has been used on many applications including: radiative shocks, Kelvin-Helmholtz and Rayleigh-Taylor experiments on the OMEGA laser; as well as laser-driven ablative plumes in experiments by the Astrophysical Collisionless Shocks Experiments with Lasers (ACSEL) collaboration. We report a series of results with the CRASH code in support of design work for upcoming high-energy-density physics experiments, as well as comparison between existing experimental data and simulation results. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.

  17. Sensitivity of shock boundary-layer interactions to weak geometric perturbations

    NASA Astrophysics Data System (ADS)

    Kim, Ji Hoon; Eaton, John K.

    2016-11-01

    Shock-boundary layer interactions can be sensitive to small changes in the inlet flow and boundary conditions. Robust computational models must capture this sensitivity, and validation of such models requires a suitable experimental database with well-defined inlet and boundary conditions. To that end, the purpose of this experiment is to systematically document the effects of small geometric perturbations on a SBLI flow to investigate the flow physics and establish an experimental dataset tailored for CFD validation. The facility used is a Mach 2.1, continuous operation wind tunnel. The SBLI is generated using a compression wedge; the region of interest is the resulting reflected shock SBLI. The geometric perturbations, which are small spanwise rectangular prisms, are introduced ahead of the compression ramp on the opposite wall. PIV is used to study the SBLI for 40 different perturbation geometries. Results show that the dominant effect of the perturbations is a global shift of the SBLI itself. In addition, the bumps introduce weaker shocks of varying strength and angles, depending on the bump height and location. Various scalar validation metrics, including a measure of shock unsteadiness, and their uncertainties are also computed to better facilitate CFD validation. Ji Hoon Kim is supported by an OTR Stanford Graduate Fellowship.

  18. Second sound shock waves and critical velocities in liquid helium 2. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Turner, T. N.

    1979-01-01

    Large amplitude second-sound shock waves were generated and the experimental results compared to the theory of nonlinear second-sound. The structure and thickness of second-sound shock fronts are calculated and compared to experimental data. Theoretically it is shown that at T = 1.88 K, where the nonlinear wave steepening vanishes, the thickness of a very weak shock must diverge. In a region near this temperature, a finite-amplitude shock pulse evolves into an unusual double-shock configuration consisting of a front steepened, temperature raising shock followed by a temperature lowering shock. Double-shocks are experimentally verified. It is experimentally shown that very large second-sound shock waves initiate a breakdown in the superfluidity of helium 2, which is dramatically displayed as a limit to the maximum attainable shock strength. The value of the maximum shock-induced relative velocity represents a significant lower bound to the intrinsic critical velocity of helium 2.

  19. The shock/shear platform for planar radiation-hydrodynamics experiments on the National Ignition Facility

    DOE PAGES

    Doss, F. W.; Kline, J. L.; Flippo, K. A.; ...

    2015-04-17

    An indirectly-driven shock tube experiment fielded on the National Ignition Facility (NIF) was used to create a high-energy-density hydrodynamics platform at unprecedented scale. Scaling up a shear-induced mixing experiment previously fielded at OMEGA, the NIF shear platform drives 130 μm/ns shocks into a CH foam-filled shock tube (~ 60 mg/cc) with interior dimensions of 1.5 mm diameter and 5 mm length. The pulse-shaping capabilities of the NIF are used to extend the drive for >10 ns, and the large interior tube volumes are used to isolate physics-altering edge effects from the region of interest. The scaling of the experiment tomore » the NIF allows for considerable improvement in maximum driving time of hydrodynamics, in fidelity of physics under examination, and in diagnostic clarity. Details of the experimental platform and post-shot simulations used in the analysis of the platform-qualifying data are presented. Hydrodynamic scaling is used to compare shear data from OMEGA with that from NIF, suggesting a possible change in the dimensionality of the instability at late times from one platform to the other.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bischoff, A. J., E-mail: alina.bischoff@iom-leipzig.de; Arabi-Hashemi, A.; Ehrhardt, M.

    Combining experimental methods and classical molecular dynamics (MD) computer simulations, we explore the martensitic transformation in Fe{sub 70}Pd{sub 30} ferromagnetic shape memory alloy thin films induced by laser shock peening. X-ray diffraction and scanning electron microscope measurements at shock wave pressures of up to 2.5 GPa reveal formation of martensitic variants with preferred orientation of the shorter c-axis of the tetragonal unit cell perpendicular to the surface plane. Moreover, consequential merging of growth islands on the film surface is observed. MD simulations unveil the underlying physics that are characterized by an austenite-martensite transformation with a preferential alignment of the c-axis alongmore » the propagation direction of the shock wave, resulting in flattening and in-plane expansion of surface features.« less

  1. Nonequilibrium radiation behind a strong shock wave in CO 2-N 2

    NASA Astrophysics Data System (ADS)

    Rond, C.; Boubert, P.; Félio, J.-M.; Chikhaoui, A.

    2007-11-01

    This work presents experiments reproducing plasma re-entry for one trajectory point of a Martian mission. The typical facility to investigate such hypersonic flow is shock tube; here we used the free-piston shock tube TCM2. Measurements of radiative flux behind the shock wave are realized thanks to time-resolved emission spectroscopy which is calibrated in intensity. As CN violet system is the main radiator in near UV-visible range, we have focused our study on its spectrum. Moreover a physical model, based on a multi-temperature kinetic code and a radiative code, for calculation of non equilibrium radiation behind a shock wave is developed for CO 2-N 2-Ar mixtures. Comparisons between experiments and calculations show that standard kinetic models (Park, McKenzie) are inefficient to reproduce our experimental results. Therefore we propose new rate coefficients in particular for the dissociation of CO 2, showing the way towards a better description of the chemistry of the mixture.

  2. Measurements of the principal Hugoniots of dense gaseous deuterium-helium mixtures: Combined multi-channel optical pyrometry, velocity interferometry, and streak optical pyrometry measurements

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Guo; Chen, Qi-Feng; Gu, Yun-Jun; Zheng, Jun; Chen, Xiang-Rong

    2016-10-01

    The accurate hydrodynamic description of an event or system that addresses the equations of state, phase transitions, dissociations, ionizations, and compressions, determines how materials respond to a wide range of physical environments. To understand dense matter behavior in extreme conditions requires the continual development of diagnostic methods for accurate measurements of the physical parameters. Here, we present a comprehensive diagnostic technique that comprises optical pyrometry, velocity interferometry, and time-resolved spectroscopy. This technique was applied to shock compression experiments of dense gaseous deuterium-helium mixtures driven via a two-stage light gas gun. The advantage of this approach lies in providing measurements of multiple physical parameters in a single experiment, such as light radiation histories, particle velocity profiles, and time-resolved spectra, which enables simultaneous measurements of shock velocity, particle velocity, pressure, density, and temperature and expands understanding of dense high pressure shock situations. The combination of multiple diagnostics also allows different experimental observables to be measured and cross-checked. Additionally, it implements an accurate measurement of the principal Hugoniots of deuterium-helium mixtures, which provides a benchmark for the impedance matching measurement technique.

  3. Experimental and Computational Modeling of Rarefaction Wave Eliminators Suitable for the BRL 2.44 m Shock Tube

    DTIC Science & Technology

    1983-06-01

    made directly from the oscilloscope. Finai data processing was completed with the computer, printer , and plotter. Tables and plots of pressure-time...BASIC DATA ACQUISITION PRINTER FINAL DATA REDUCTION TEKTRONIX 4641 HARD COPY[ TEKTRONIX 4631 PLOTTER COMPUTER TEKTRONIX TEKTRONIX I 4662 4052 DIGITAL...79409 Columbus, OH 43201 1 University of Arkansas 1 Director Department of Physics Applied Physics Laboratory ATTN: Prof 0. Zinke The Johns Hopkins

  4. Electron acceleration by wave turbulence in a magnetized plasma

    NASA Astrophysics Data System (ADS)

    Rigby, A.; Cruz, F.; Albertazzi, B.; Bamford, R.; Bell, A. R.; Cross, J. E.; Fraschetti, F.; Graham, P.; Hara, Y.; Kozlowski, P. M.; Kuramitsu, Y.; Lamb, D. Q.; Lebedev, S.; Marques, J. R.; Miniati, F.; Morita, T.; Oliver, M.; Reville, B.; Sakawa, Y.; Sarkar, S.; Spindloe, C.; Trines, R.; Tzeferacos, P.; Silva, L. O.; Bingham, R.; Koenig, M.; Gregori, G.

    2018-05-01

    Astrophysical shocks are commonly revealed by the non-thermal emission of energetic electrons accelerated in situ1-3. Strong shocks are expected to accelerate particles to very high energies4-6; however, they require a source of particles with velocities fast enough to permit multiple shock crossings. While the resulting diffusive shock acceleration4 process can account for observations, the kinetic physics regulating the continuous injection of non-thermal particles is not well understood. Indeed, this injection problem is particularly acute for electrons, which rely on high-frequency plasma fluctuations to raise them above the thermal pool7,8. Here we show, using laboratory laser-produced shock experiments, that, in the presence of a strong magnetic field, significant electron pre-heating is achieved. We demonstrate that the key mechanism in producing these energetic electrons is through the generation of lower-hybrid turbulence via shock-reflected ions. Our experimental results are analogous to many astrophysical systems, including the interaction of a comet with the solar wind9, a setting where electron acceleration via lower-hybrid waves is possible.

  5. Thin metal thermistors for shock temperature measurements of polymers

    NASA Astrophysics Data System (ADS)

    Taylor, N. E.; Williamson, D. M.; Picard, A.; Cunningham, L. K.; Jardine, A. P.

    2015-06-01

    Equations of state can be used to predict the relationship between pressure, volume and temperature. However, in shock physics, they are usually only constrained by experimental observations of pressure and volume. Direct observation of temperature in a shock is therefore valuable in constraining equations of state. Bloomquist and Sheffield (1980, 1981) and Rosenberg and Partom (1984) have attempted such observations in poly(methyl methacrylate) (PMMA). However, their results disagree strongly above 2 GPa shock pressure. The present authors previously presented an improved fabrication technique, to examine this outstanding issue. This technique made use of the fact that the electrical resistivity of most metals is a known function of both pressure and temperature. By fabricating a thin metal thermistor gauge and measuring its change in resistance during a shock experiment of known pressure, its temperature can be recovered. Heat transfer into the gauge depends strongly on the gauge dimensions and the thermal conductivity of the shocked PMMA. Here we present several improvements to the technique. By varying the gauge thickness over the range 100 nm to 10 μ m we assess the heat transfer into the gauge.

  6. Nonlinear reflection of shock shear waves in soft elastic media.

    PubMed

    Pinton, Gianmarco; Coulouvrat, François; Gennisson, Jean-Luc; Tanter, Mickaël

    2010-02-01

    For fluids, the theoretical investigation of shock wave reflection has a good agreement with experiments when the incident shock Mach number is large. But when it is small, theory predicts that Mach reflections are physically unrealistic, which contradicts experimental evidence. This von Neumann paradox is investigated for shear shock waves in soft elastic solids with theory and simulations. The nonlinear elastic wave equation is approximated by a paraxial wave equation with a cubic nonlinear term. This equation is solved numerically with finite differences and the Godunov scheme. Three reflection regimes are observed. Theory is developed for shock propagation by applying the Rankine-Hugoniot relations and entropic constraints. A characteristic parameter relating diffraction and non-linearity is introduced and its theoretical values are shown to match numerical observations. The numerical solution is then applied to von Neumann reflection, where curved reflected and Mach shocks are observed. Finally, the case of weak von Neumann reflection, where there is no reflected shock, is examined. The smooth but non-monotonic transition between these three reflection regimes, from linear Snell-Descartes to perfect grazing case, provides a solution to the acoustical von Neumann paradox for the shear wave equation. This transition is similar to the quadratic non-linearity in fluids.

  7. A new facility for studying shock-wave passage over dust layers

    NASA Astrophysics Data System (ADS)

    Chowdhury, A. Y.; Marks, B. D.; Johnston, H. Greg; Mannan, M. Sam; Petersen, E. L.

    2016-03-01

    Dust explosion hazards in areas where coal and other flammable materials are found have caused unnecessary loss of life and halted business operations in some instances. The elimination of secondary dust explosion hazards, i.e., reducing dust dispersion, can be characterized in shock tubes to understand shock-dust interactions. For this reason, a new shock-tube test section was developed and integrated into an existing shock-tube facility. The test section has large windows to allow for the use of the shadowgraph technique to track dust-layer growth behind a passing normal shock wave, and it is designed to handle an initial pressure of 1 atm with an incident shock wave Mach number as high as 2 to mimic real-world conditions. The test section features an easily removable dust pan with inserts to allow for adjustment of the dust-layer thickness. The design also allows for changing the experimental variables such as initial pressure, shock Mach number (Ms), dust-layer thickness, and the characteristics of the dust itself. The characterization experiments presented herein demonstrate the advantages of the authors' test techniques toward providing new physical insights over a wider range of data than what have been available heretofore in the literature. Limestone dust with a layer thickness of 3.2 mm was subjected to Ms = 1.23, 1.32, and 1.6 shock waves, and dust-layer rise height was mapped with respect to time after shock passage. Dust particles subjected to a Ms = 1.6 shock wave rose more rapidly and to a greater height with respect to shock wave propagation than particles subjected to Ms = 1.23 and 1.32 shock waves. Although these results are in general agreement with the literature, the new data also highlight physical trends for dust-layer growth that have not been recorded previously, to the best of the authors' knowledge. For example, the dust-layer height rises linearly until a certain time where the growth rate is dramatically reduced, and in this second regime there is clear evidence of surface vertical structures at the dust-air interface.

  8. On the Violence of High Explosive Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarver, C M; Chidester, S K

    High explosive reactions can be caused by three general energy deposition processes: impact ignition by frictional and/or shear heating; bulk thermal heating; and shock compression. The violence of the subsequent reaction varies from benign slow combustion to catastrophic detonation of the entire charge. The degree of violence depends on many variables, including the rate of energy delivery, the physical and chemical properties of the explosive, and the strength of the confinement surrounding the explosive charge. The current state of experimental and computer modeling research on the violence of impact, thermal, and shock-induced reactions is reviewed.

  9. Experimental, Theoretical, and Computational Investigation of Separated Nozzle Flows

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.

    2004-01-01

    A detailed experimental, theoretical, and computational study of separated nozzle flows has been conducted. Experimental testing was performed at the NASA Langley 16-Foot Transonic Tunnel Complex. As part of a comprehensive static performance investigation, force, moment, and pressure measurements were made and schlieren flow visualization was obtained for a sub-scale, non-axisymmetric, two-dimensional, convergent- divergent nozzle. In addition, two-dimensional numerical simulations were run using the computational fluid dynamics code PAB3D with two-equation turbulence closure and algebraic Reynolds stress modeling. For reference, experimental and computational results were compared with theoretical predictions based on one-dimensional gas dynamics and an approximate integral momentum boundary layer method. Experimental results from this study indicate that off-design overexpanded nozzle flow was dominated by shock induced boundary layer separation, which was divided into two distinct flow regimes; three- dimensional separation with partial reattachment, and fully detached two-dimensional separation. The test nozzle was observed to go through a marked transition in passing from one regime to the other. In all cases, separation provided a significant increase in static thrust efficiency compared to the ideal prediction. Results indicate that with controlled separation, the entire overexpanded range of nozzle performance would be within 10% of the peak thrust efficiency. By offering savings in weight and complexity over a conventional mechanical exhaust system, this may allow a fixed geometry nozzle to cover an entire flight envelope. The computational simulation was in excellent agreement with experimental data over most of the test range, and did a good job of modeling internal flow and thrust performance. An exception occurred at low nozzle pressure ratios, where the two-dimensional computational model was inconsistent with the three-dimensional separation observed in the experiment. In general, the computation captured the physics of the shock boundary layer interaction and shock induced boundary layer separation in the nozzle, though there were some differences in shock structure compared to experiment. Though minor, these differences could be important for studies involving flow control or thrust vectoring of separated nozzles. Combined with other observations, this indicates that more detailed, three-dimensional computational modeling needs to be conducted to more realistically simulate shock-separated nozzle flows.

  10. Testing and modeling of PBX-9591 shock initiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Kim; Foley, Timothy; Novak, Alan

    2010-01-01

    This paper describes an ongoing effort to develop a detonation sensitivity test for PBX-9501 that is suitable for studying pristine and damaged HE. The approach involves testing and comparing the sensitivities of HE pressed to various densities and those of pre-damaged samples with similar porosities. The ultimate objectives are to understand the response of pre-damaged HE to shock impacts and to develop practical computational models for use in system analysis codes for HE safety studies. Computer simulation with the CTH shock physics code is used to aid the experimental design and analyze the test results. In the calculations, initiation andmore » growth or failure of detonation are modeled with the empirical HVRB model. The historical LANL SSGT and LSGT were reviewed and it was determined that a new, modified gap test be developed to satisfy the current requirements. In the new test, the donor/spacer/acceptor assembly is placed in a holder that is designed to work with fixtures for pre-damaging the acceptor sample. CTH simulations were made of the gap test with PBX-9501 samples pressed to three different densities. The calculated sensitivities were validated by test observations. The agreement between the computed and experimental critical gap thicknesses, ranging from 9 to 21 mm under various test conditions, is well within 1 mm. These results show that the numerical modeling is a valuable complement to the experimental efforts in studying and understanding shock initiation of PBX-9501.« less

  11. Piecewise parabolic method for simulating one-dimensional shear shock wave propagation in tissue-mimicking phantoms

    NASA Astrophysics Data System (ADS)

    Tripathi, B. B.; Espíndola, D.; Pinton, G. F.

    2017-11-01

    The recent discovery of shear shock wave generation and propagation in the porcine brain suggests that this new shock phenomenology may be responsible for a broad range of traumatic injuries. Blast-induced head movement can indirectly lead to shear wave generation in the brain, which could be a primary mechanism for injury. Shear shock waves amplify the local acceleration deep in the brain by up to a factor of 8.5, which may tear and damage neurons. Currently, there are numerical methods that can model compressional shock waves, such as comparatively well-studied blast waves, but there are no numerical full-wave solvers that can simulate nonlinear shear shock waves in soft solids. Unlike simplified representations, e.g., retarded time, full-wave representations describe fundamental physical behavior such as reflection and heterogeneities. Here we present a piecewise parabolic method-based solver for one-dimensional linearly polarized nonlinear shear wave in a homogeneous medium and with empirical frequency-dependent attenuation. This method has the advantage of being higher order and more directly extendable to multiple dimensions and heterogeneous media. The proposed numerical scheme is validated analytically and experimentally and compared to other shock capturing methods. A Riemann step-shock problem is used to characterize the numerical dissipation. This dissipation is then tuned to be negligible with respect to the physical attenuation by choosing an appropriate grid spacing. The numerical results are compared to ultrasound-based experiments that measure planar polarized shear shock wave propagation in a tissue-mimicking gelatin phantom. Good agreement is found between numerical results and experiment across a 40 mm propagation distance. We anticipate that the proposed method will be a starting point for the development of a two- and three-dimensional full-wave code for the propagation of nonlinear shear waves in heterogeneous media.

  12. Experimental and computational investigation of the tip clearance flow in a transonic axial compressor rotor

    NASA Astrophysics Data System (ADS)

    Suder, Kenneth L.; Celestina, Mark L.

    1995-06-01

    Experimental and computational techniques are used to investigate tip clearance flows in a transonic axial compressor rotor at design and part speed conditions. Laser anemometer data acquired in the endwall region are presented for operating conditions near peak efficiency and near stall at 100% design speed and at near peak efficiency at 60% design speed. The role of the passage shock/leakage vortex interaction in generating endwall blockage is discussed. As a result of the shock/vortex interaction at design speed, the radial influence of the tip clearance flow extends to 20 times the physical tip clearance height. At part speed, in the absence of the shock, the radial extent is only 5 times the tip clearance height. Both measurements and analysis indicate that under part-speed operating conditions a second vortex, which does not originate from the tip leakage flow, forms in the endwall region within the blade passage and exits the passage near midpitch. Mixing of the leakage vortex with primary flow downstream of the rotor at both design and part speed conditions is also discussed.

  13. Inlets, ducts, and nozzles

    NASA Technical Reports Server (NTRS)

    Abbott, John M.; Anderson, Bernhard H.; Rice, Edward J.

    1990-01-01

    The internal fluid mechanics research program in inlets, ducts, and nozzles consists of a balanced effort between the development of computational tools (both parabolized Navier-Stokes and full Navier-Stokes) and the conduct of experimental research. The experiments are designed to better understand the fluid flow physics, to develop new or improved flow models, and to provide benchmark quality data sets for validation of the computational methods. The inlet, duct, and nozzle research program is described according to three major classifications of flow phenomena: (1) highly 3-D flow fields; (2) shock-boundary-layer interactions; and (3) shear layer control. Specific examples of current and future elements of the research program are described for each of these phenomenon. In particular, the highly 3-D flow field phenomenon is highlighted by describing the computational and experimental research program in transition ducts having a round-to-rectangular area variation. In the case of shock-boundary-layer interactions, the specific details of research for normal shock-boundary-layer interactions are described. For shear layer control, research in vortex generators and the use of aerodynamic excitation for enhancement of the jet mixing process are described.

  14. Experimental and Computational Investigation of the Tip Clearance Flow in a Transonic Axial Compressor Rotor

    NASA Technical Reports Server (NTRS)

    Suder, Kenneth L.; Celestina, Mark L.

    1995-01-01

    Experimental and computational techniques are used to investigate tip clearance flows in a transonic axial compressor rotor at design and part speed conditions. Laser anemometer data acquired in the endwall region are presented for operating conditions near peak efficiency and near stall at 100% design speed and at near peak efficiency at 60% design speed. The role of the passage shock/leakage vortex interaction in generating endwall blockage is discussed. As a result of the shock/vortex interaction at design speed, the radial influence of the tip clearance flow extends to 20 times the physical tip clearance height. At part speed, in the absence of the shock, the radial extent is only 5 times the tip clearance height. Both measurements and analysis indicate that under part-speed operating conditions a second vortex, which does not originate from the tip leakage flow, forms in the endwall region within the blade passage and exits the passage near midpitch. Mixing of the leakage vortex with primary flow downstream of the rotor at both design and part speed conditions is also discussed.

  15. Numerical Parameter Optimization of the Ignition and Growth Model for HMX Based Plastic Bonded Explosives

    NASA Astrophysics Data System (ADS)

    Gambino, James; Tarver, Craig; Springer, H. Keo; White, Bradley; Fried, Laurence

    2017-06-01

    We present a novel method for optimizing parameters of the Ignition and Growth reactive flow (I&G) model for high explosives. The I&G model can yield accurate predictions of experimental observations. However, calibrating the model is a time-consuming task especially with multiple experiments. In this study, we couple the differential evolution global optimization algorithm to simulations of shock initiation experiments in the multi-physics code ALE3D. We develop parameter sets for HMX based explosives LX-07 and LX-10. The optimization finds the I&G model parameters that globally minimize the difference between calculated and experimental shock time of arrival at embedded pressure gauges. This work was performed under the auspices of the U.S. DOE by LLNL under contract DE-AC52-07NA27344. LLNS, LLC LLNL-ABS- 724898.

  16. Simulation of the effects of cavitation and anatomy in the shock path of model lithotripters

    PubMed Central

    Krimmel, Jeff; Colonius, Tim; Tanguay, Michel

    2011-01-01

    We report on recent efforts to develop predictive models for the pressure and other flow variables in the focal region of shock wave lithotripters. Baseline simulations of three representative lithotripters (electrohydraulic, electromagnetic, and piezoelectric) compare favorably with in vitro experiments (in a water bath). We proceed to model and investigate how shock focusing is altered by the presence of material interfaces associated with different types of tissue encountered along the shock path, and by the presence of cavitation bubbles that are excited by tensile pressures associated with the focused shock wave. We use human anatomical data, but simplify the description by assuming that the tissue behaves as a fluid, and by assuming cylindrical symmetry along the shock path. Scattering by material interfaces is significant, and regions of high pressure amplitudes (both compressive and tensile) are generated almost 4 cm postfocus. Bubble dynamics generate secondary shocks whose strength depends on the density of bubbles and the pulse repetition frequency (PRF). At sufficiently large densities, the bubbles also attenuate the shock. Together with experimental evidence, the simulations suggest that high PRF may be counter-productive for stone comminution. Finally, we discuss how the lithotripter simulations can be used as input to more detailed physical models that attempt to characterize the mechanisms by which collapsing cavitation models erode stones, and by which shock waves and bubbles may damage tissue. PMID:21063697

  17. Ultrafast dynamic response of single-crystal β-HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine)

    NASA Astrophysics Data System (ADS)

    Zaug, Joseph M.; Austin, Ryan A.; Armstrong, Michael R.; Crowhurst, Jonathan C.; Goldman, Nir; Ferranti, Louis; Saw, Cheng K.; Swan, Raymond A.; Gross, Richard; Fried, Laurence E.

    2018-05-01

    We report experimental and computational studies of shock wave dynamics in single-crystal β-HMX on an ultrafast time scale. Here, a laser-based compression drive (˜1 ns in duration; stresses of up to ˜40 GPa) is used to propagate shock waves normal to the (110) and (010) lattice planes. Ultrafast time-domain interferometry measurements reveal distinct, time-dependent relationships between the shock wave velocity and particle velocity for each crystal orientation, which suggest evolving physical processes on a sub-nanosecond time scale. To help interpret the experimental data, elastic shock wave response was simulated using a finite-strain model of crystal thermoelasticity. At early propagation times (<500 ps), the model is in agreement with the data, which indicates that the mechanical response is dominated by thermoelastic deformation. The model agreement depends on the inclusion of nonlinear elastic effects in both the spherical and deviatoric stress-strain responses. This is achieved by employing an equation-of-state and a pressure-dependent stiffness tensor, which was computed via atomistic simulation. At later times (>500 ps), the crystal samples exhibit signatures of inelastic deformation, structural phase transformation, or chemical reaction, depending on the direction of wave propagation.

  18. Optoheterodyne Doppler measurements of the ballistic expansion of the products of the shock wave-induced surface destruction: Experiment and theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andriyash, A. V.; Astashkin, M. V.; Baranov, V. K.

    2016-06-15

    The results of optoheterodyne Doppler measurements of the ballistic expansion of the products of surface destruction under shock-wave loading are presented. The possibility of determining the physical characteristics of a rapidly flying dust cloud, including the microparticle velocities, the microparticle sizes, and the areal density of the dust cloud, is shown. A compact stand for performing experiments on shock-wave loading of metallic samples is described. Shock-wave loading is performed by a 100-µm-thick tantalum flyer plate accelerated to a velocity of 2.8 km/s. As the samples, lead plates having various thicknesses and the same surface roughness are used. At a shock-wavemore » pressure of 31.5 GPa, the destruction products are solid microparticles about 50 µm in size. At a pressure of 42 and 88 GPa, a liquid-drop dust cloud with a particle size of 10–15 µm is formed. To interpret the spectral data on the optoheterodyne Doppler measurements of the expansion of the surface destruction products (spalled fragments, dust microparticles), a transport equation for the function of mutual coherence of a multiply scattered field is used. The Doppler spectra of a backscattered signal are calculated with the model developed for the dust cloud that appears when a shock wave reaches the sample surface at the parameters that are typical of an experimental situation. Qualitative changes are found in the spectra, depending on the optical thickness of the dust cloud. The obtained theoretical results are in agreement with the experimental data.« less

  19. Computational and experimental investigation of two-dimensional scramjet inlets and hypersonic flow over a sharp flat plate

    NASA Astrophysics Data System (ADS)

    Messitt, Donald G.

    1999-11-01

    The WIND code was employed to compute the hypersonic flow in the shock wave boundary layer merged region near the leading edge of a sharp flat plate. Solutions were obtained at Mach numbers from 9.86 to 15.0 and free stream Reynolds numbers of 3,467 to 346,700 in-1 (1.365 · 105 to 1.365 · 107 m-1) for perfect gas conditions. The numerical results indicated a merged shock wave and viscous layer near the leading edge. The merged region grew in size with increasing free stream Mach number, proportional to Minfinity 2/Reinfinity. Profiles of the static pressure in the merged region indicated a strong normal pressure gradient (∂p/∂y). The normal pressure gradient has been neglected in previous analyses which used the boundary layer equations. The shock wave near the leading edge was thick, as has been experimentally observed. Computed shock wave locations and surface pressures agreed well within experimental error for values of the rarefaction parameter, chi/M infinity2 < 0.3. A preliminary analysis using kinetic theory indicated that rarefied flow effects became important above this value. In particular, the WIND solution agreed well in the transition region between the merged flow, which was predicted well by the theory of Li and Nagamatsu, and the downstream region where the strong interaction theory applied. Additional computations with the NPARC code, WIND's predecessor, demonstrated the ability of the code to compute hypersonic inlet flows at free stream Mach numbers up to 20. Good qualitative agreement with measured pressure data indicated that the code captured the important physical features of the shock wave - boundary layer interactions. The computed surface and pitot pressures fell within the combined experimental and numerical error bounds for most points. The calculations demonstrated the need for extremely fine grids when computing hypersonic interaction flows.

  20. Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Luo, S. N.; Jensen, B. J.; Hooks, D. E.; Fezzaa, K.; Ramos, K. J.; Yeager, J. D.; Kwiatkowski, K.; Shimada, T.

    2012-07-01

    The highly transient nature of shock loading and pronounced microstructure effects on dynamic materials response call for in situ, temporally and spatially resolved, x-ray-based diagnostics. Third-generation synchrotron x-ray sources are advantageous for x-ray phase contrast imaging (PCI) and diffraction under dynamic loading, due to their high photon fluxes, high coherency, and high pulse repetition rates. The feasibility of bulk-scale gas gun shock experiments with dynamic x-ray PCI and diffraction measurements was investigated at the beamline 32ID-B of the Advanced Photon Source. The x-ray beam characteristics, experimental setup, x-ray diagnostics, and static and dynamic test results are described. We demonstrate ultrafast, multiframe, single-pulse PCI measurements with unprecedented temporal (<100 ps) and spatial (˜2 μm) resolutions for bulk-scale shock experiments, as well as single-pulse dynamic Laue diffraction. The results not only substantiate the potential of synchrotron-based experiments for addressing a variety of shock physics problems, but also allow us to identify the technical challenges related to image detection, x-ray source, and dynamic loading.

  1. Practical uncertainty reduction and quantification in shock physics measurements

    DOE PAGES

    Akin, M. C.; Nguyen, J. H.

    2015-04-20

    We report the development of a simple error analysis sampling method for identifying intersections and inflection points to reduce total uncertainty in experimental data. This technique was used to reduce uncertainties in sound speed measurements by 80% over conventional methods. Here, we focused on its impact on a previously published set of Mo sound speed data and possible implications for phase transition and geophysical studies. However, this technique's application can be extended to a wide range of experimental data.

  2. Two examples of industrial applications of shock physics research

    NASA Astrophysics Data System (ADS)

    Sanai, Mohsen

    1996-05-01

    An in-depth understanding of shock physics phenomena has led to many industrial applications. Two recent applications discussed in this paper are a method for assessing explosion safety in industrial plants and a bomb-resistant luggage container for widebody aircraft. Our explosion safety assessment is based on frequent use of computer simulation of postulated accidents to model in detail the detonation of energetic materials, the formation and propagation of the resulting airblast, and the projection of fragments of known material and mass. Using a general load-damage analysis technique referred to as the pressure-impulse (PI) method, we have developed a PC-based computer algorithm that includes a continually expanding library of PI load and damage curves, which can predict and graphically display common structural damage modes and the response of humans to postulated explosion accidents. A second commercial application of shock physics discussed here is a bomb-resistant luggage container for widebody aircraft that can protect the aircraft from a terrorist bomb hidden inside the luggage. This hardened luggage container (HLC) relies on blast management and debris containment provided by a flexible flow-through blanket woven from threads made with a strong lightweight material, such as Spectra or Kevlar. This mitigation blanket forms a continuous and seamless shell around the sides of the luggage container that are parallel to the aircraft axis, leaving the two ends of the container unprotected. When an explosion occurs, the mitigation blanket expands into a nearly circular shell that contains the flying debris while directing the flow into the adjacent containers. The HLC concept has been demonstrated through full-scale experiments conducted at SRI. We believe that these two examples represent a broad class of potential industrial hazard applications of the experimental, analytical, and computational tools possessed by the shock physics community.

  3. The Universal Role of Tubulence in the Propagation of Strong Shocks and Detonation Waves

    NASA Astrophysics Data System (ADS)

    Lee, John H.

    2001-06-01

    The passage of a strong shock wave usually results in irreversible physical and chemical changes in the medium. If the chemical reactions are sufficiently exothermic, the shock wave can be self-propagating, i.e., sustained by the chemical energy release via the expansion work of the reaction products. Although shocks and detonations can be globally stable and propagate at constant velocities (in the direction of motion), their structure may be highly unstable and exhibit large hydrodynamic fluctuations, i.e., turbulence. Recent investigations on plastic deformation of polycrystalline material behind shock waves have revealed particle velocity dispersion at the mesoscopic level, a result of vortical rotational motion similar to that of turbulent fluid flows at high Reynolds number.1 Strong ionizing shocks in noble gases2, as well as dissociating shock waves in carbon dioxide,3 also demonstrate a turbulent density fluctuation in the non-equilibrium shock transition zone. Perhaps the most thoroughly investigated unstable structure is that of detonation waves in gaseous explosives.4 Detonation waves in liquid explosives such as nitromethane also take on similar unstable structure as gaseous detonations.5 There are also indications that detonations in solid explosives have a similar unsteady structure under certain conditions. Thus, it appears that it is more of a rule than an exception that the structure of strong shocks and detonations are unstable and exhibit turbulent-like fluctuations as improved diagnostics now permit us to look more closely at the meso- and micro-levels. Increasing attention is now devoted to the understanding of the shock waves at the micro-scale level in recent years. This is motivated by the need to formulate physical and chemical models that contain the correct physics capable of describing quantitatively the shock transition process. It should be noted that, in spite of its unstable 3-D structure, the steady 1-D conservation laws (in the direction of propagation) apply across the shock transition zone if the downstream equilibrium plane is taken far enough away to ensure the decay of the turbulent fluctuations. Thus, the Hugoniot properties of one-dimensional propagation of shock and detonation waves remain valid. However, the conservation laws do not describe the important propagation mechanisms (i.e., the physical and chemical processes that effect the transition from initial to the final state) in the wave structure. Since gaseous detonations enjoy the advantage of being able to be observed experimentally in great detail, its complex turbulent structure is now quite well established. Furthermore, the equation of state for perfect gases is well known and the chemistry of most gas phase reactions is also sufficiently understood quantitatively to permit detailed numerical simulation of the complex detonation structure. Thus, a good database of information exists for gaseous detonation, and in this paper we shall explore the turbulent structure of gaseous detonation with the aim of answering the question as to "why nature prefers to evoke such a complicated manner to effect its propagation." We will then attempt to generalize the discussion to the "terra incognita" of condensed phase materials where the structure is much less understood. 1. Meshcheryakov, Yu.I., and Atroshenko, S.A., Izv. Vyssh. Uchebn. Zaved. Fiz., 4, 105-123 (1992). 2. Glass, I.I, and Liu, W.S., J. Fluid Mech., 84(1), 55-77 (1978). 3. Griffiths, R.W., Sanderman, R.J., and Hornung, H.G., J. Phys. D., 8, 1681-1691 (1975). 4. Lee, J.H.S., Ann. Rev. Fluid Mech., 16, 311-336 (1984). 5. Mallory, H.D., J. Appl. Physics, 38, 5302-5306 (1967).

  4. Ultrafast Kα x-ray Thomson scattering from shock compressed lithium hydride

    DOE PAGES

    Kritcher, A. L.; Neumayer, P.; Castor, J.; ...

    2009-04-13

    Spectrally and temporally resolved x-ray Thomson scattering using ultrafast Ti Kα x rays has provided experimental validation for modeling of the compression and heating of shocked matter. The coalescence of two shocks launched into a solid density LiH target by a shaped 6 ns heater beam was observed from rapid heating to temperatures of 2.2 eV, enabling tests of shock timing models. Here, the temperature evolution of the target at various times during shock progression was characterized from the intensity of the elastic scattering component. The observation of scattering from plasmons, electron plasma oscillations, at shock coalescence indicates a transitionmore » to a dense metallic plasma state in LiH. From the frequency shift of the measured plasmon feature the electron density was directly determined with high accuracy, providing a material compression of a factor of 3 times solid density. The quality of data achieved in these experiments demonstrates the capability for single shot dynamic characterization of dense shock compressed matter. Here, the conditions probed in this experiment are relevant for the study of the physics of planetary formation and to characterize inertial confinement fusion targets for experiments such as on the National Ignition Facility, Lawrence Livermore National Laboratory.« less

  5. The microphysics of collisionless shock waves.

    PubMed

    Marcowith, A; Bret, A; Bykov, A; Dieckman, M E; Drury, L O'C; Lembège, B; Lemoine, M; Morlino, G; Murphy, G; Pelletier, G; Plotnikov, I; Reville, B; Riquelme, M; Sironi, L; Novo, A Stockem

    2016-04-01

    Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebulæ, active galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space. It is complexified by the impact due to high-energy cosmic rays in astrophysical environments. This review adresses the physics of shock formation, shock dynamics and particle acceleration based on a close examination of available multi-wavelength or in situ observations, analytical and numerical developments. A particular emphasis is made on the different instabilities triggered during the shock formation and in association with particle acceleration processes with regards to the properties of the background upstream medium. It appears that among the most important parameters the background magnetic field through the magnetization and its obliquity is the dominant one. The shock velocity that can reach relativistic speeds has also a strong impact over the development of the micro-instabilities and the fate of particle acceleration. Recent developments of laboratory shock experiments has started to bring some new insights in the physics of space plasma and astrophysical shock waves. A special section is dedicated to new laser plasma experiments probing shock physics.

  6. The microphysics of collisionless shock waves

    NASA Astrophysics Data System (ADS)

    Marcowith, A.; Bret, A.; Bykov, A.; Dieckman, M. E.; O'C Drury, L.; Lembège, B.; Lemoine, M.; Morlino, G.; Murphy, G.; Pelletier, G.; Plotnikov, I.; Reville, B.; Riquelme, M.; Sironi, L.; Stockem Novo, A.

    2016-04-01

    Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebulæ, active galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space. It is complexified by the impact due to high-energy cosmic rays in astrophysical environments. This review adresses the physics of shock formation, shock dynamics and particle acceleration based on a close examination of available multi-wavelength or in situ observations, analytical and numerical developments. A particular emphasis is made on the different instabilities triggered during the shock formation and in association with particle acceleration processes with regards to the properties of the background upstream medium. It appears that among the most important parameters the background magnetic field through the magnetization and its obliquity is the dominant one. The shock velocity that can reach relativistic speeds has also a strong impact over the development of the micro-instabilities and the fate of particle acceleration. Recent developments of laboratory shock experiments has started to bring some new insights in the physics of space plasma and astrophysical shock waves. A special section is dedicated to new laser plasma experiments probing shock physics.

  7. A k-ɛ model for turbulent mixing in shock-tube flows induced by Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Gauthier, Serge; Bonnet, Michel

    1990-09-01

    A k-ɛ model for turbulent mixing induced by Rayleigh-Taylor instability is described. The classical linear closure relations are supplemented with algebraic relations in order to be valid under strong gradients. Calibrations were made against two shock-tube experiments (Andronov et al. [Sov. Phys. JETP 44, 424 (1976); Sov. Phys. Dokl. 27, 393 (1982)] and Houas et al. [Proceedings of the 15th International Symposium on Shock Waves and Shock Tubes (Stanford U.P., Stanford, CA, 1986)]) using the same set of constants. The new interpretation of the experimental data of Brouillette and Sturtevant [Physica D 37, 248 (1989)], where the mixing length is discriminated from the wall jet, requires a different numerical value for the Rayleigh-Taylor source term coefficient. A detailed physical study is given in both cases. It turns out that the spectrum is narrower in the Brouillette and Sturtevant case than in the Andronov et al. case but the small length scales are of the same magnitude.

  8. Shock wave-free interface interaction

    NASA Astrophysics Data System (ADS)

    Frolov, Roman; Minev, Peter; Krechetnikov, Rouslan

    2016-11-01

    The problem of shock wave-free interface interaction has been widely studied in the context of compressible two-fluid flows using analytical, experimental, and numerical techniques. While various physical effects and possible interaction patterns for various geometries have been identified in the literature, the effects of viscosity and surface tension are usually neglected in such models. In our study, we apply a novel numerical algorithm for simulation of viscous compressible two-fluid flows with surface tension to investigate the influence of these effects on the shock-interface interaction. The method combines together the ideas from Finite Volume adaptation of invariant domains preserving algorithm for systems of hyperbolic conservation laws by Guermond and Popov and ADI parallel solver for viscous incompressible NSEs by Guermond and Minev. This combination has been further extended to a two-fluid flow case, including surface tension effects. Here we report on a quantitative study of how surface tension and viscosity affect the structure of the shock wave-free interface interaction region.

  9. Shatter cones formed in large-scale experimental explosion craters

    NASA Technical Reports Server (NTRS)

    Roddy, D. J.; Davis, L. K.

    1977-01-01

    In 1968, a series of 0.5-ton and 100-ton TNT explosion experiments were conducted in granitic rock near Cedar City, Utah, as part of a basic research program on cratering and shock wave propagation. Of special interest was the formation of an important type of shock metamorphic feature, shatter cones. A description is presented of the first reported occurrence of shatter cones in high explosion trials. A background to shatter cone studies is presented and attention is given to the test program, geology and physical properties of the test medium, the observed cratering, and the formational pressures for shatter cones. The high explosion trials conducted demonstrate beyond any doubt, that shatter cones can be formed by shock wave processes during cratering and that average formational pressures in these crystalline rocks are in the 20-60 kb range.

  10. Characterization of Depleted-Uranium Strength and Damage Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, III, George T.; Chen, Shuh-Rong; Bronkhorst, Curt A.

    2012-12-17

    The intent of this report is to document the status of our knowledge of the mechanical and damage behavior of Depleted Uranium(DU hereafter). This report briefly summaries the motivation of the experimental and modeling research conducted at Los Alamos National Laboratory(LANL) on DU since the early 1980’s and thereafter the current experimental data quantifying the strength and damage behavior of DU as a function of a number of experimental variables including processing, strain rate, temperature, stress state, and shock prestraining. The effect of shock prestraining on the structure-property response of DU is described and the effect on post-shock mechanical behaviormore » of DU is discussed. The constitutive experimental data utilized to support the derivation of two constitutive strength (plasticity) models, the Preston-Tonks-Wallace (PTW) and Mechanical Threshold Stress (MTS) models, for both annealed and shock prestrained DU are detailed and the Taylor cylinder validation tests and finite-element modeling (FEM) utilized to validate these strength models is discussed. The similarities and differences in the PTW and MTS model descriptions for DU are discussed for both the annealed and shock prestrained conditions. Quasi-static tensile data as a function of triaxial constraint and spallation test data are described. An appendix additionally briefly describes low-pressure equation-of-state data for DU utilized to support the spallation experiments. The constitutive behavior of DU screw/bolt material is presented. The response of DU subjected to dynamic tensile extrusion testing as a function of temperature is also described. This integrated experimental technique is planned to provide an additional validation test in the future. The damage data as a function of triaxiality, tensile and spallation data, is thereafter utilized to support derivation of the Tensile Plasticity (TEPLA) damage model and simulations for comparison to the DU spallation data are presented. Finally, a discussion of future needs in the area of needed DU strength and damage research at LANL is presented to support the development of physically-based predictive strength and damage modeling capability.« less

  11. Experimental and numerical investigation of reactive shock-accelerated flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonazza, Riccardo

    2016-12-20

    The main goal of this program was to establish a qualitative and quantitative connection, based on the appropriate dimensionless parameters and scaling laws, between shock-induced distortion of astrophysical plasma density clumps and their earthbound analog in a shock tube. These objectives were pursued by carrying out laboratory experiments and numerical simulations to study the evolution of two gas bubbles accelerated by planar shock waves and compare the results to available astrophysical observations. The experiments were carried out in an vertical, downward-firing shock tube, 9.2 m long, with square internal cross section (25×25 cm 2). Specific goals were to quantify themore » effect of the shock strength (Mach number, M) and the density contrast between the bubble gas and its surroundings (usually quantified by the Atwood number, i.e. the dimensionless density difference between the two gases) upon some of the most important flow features (e.g. macroscopic properties; turbulence and mixing rates). The computational component of the work performed through this program was aimed at (a) studying the physics of multi-phase compressible flows in the context of astrophysics plasmas and (b) providing a computational connection between laboratory experiments and the astrophysical application of shock-bubble interactions. Throughout the study, we used the FLASH4.2 code to run hydrodynamical and magnetohydrodynamical simulations of shock bubble interactions on an adaptive mesh.« less

  12. The physics of interstellar shock waves

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Draine, Bruce T.

    1987-01-01

    This review discusses the observations and theoretical models of interstellar shock waves, in both diffuse cloud and molecular cloud environments. It summarizes the relevant gas dynamics, atomic, molecular and grain processes, radiative transfer, and physics of radiative and magnetic precursors in shock models. It then describes the importance of shocks for observations, diagnostics, and global interstellar dynamics. It concludes with current research problems and data needs for atomic, molecular and grain physics.

  13. Theory and Modeling of Liquid Explosive Detonation

    NASA Astrophysics Data System (ADS)

    Tarver, Craig M.; Urtiew, Paul A.

    2010-10-01

    The current understanding of the detonation reaction zones of liquid explosives is discussed in this article. The physical and chemical processes that precede and follow exothermic chemical reaction within the detonation reaction zone are discussed within the framework of the nonequilibrium Zeldovich-von Neumann-Doring (NEZND) theory of self-sustaining detonation. Nonequilibrium chemical and physical processes cause finite time duration induction zones before exothermic chemical energy release occurs. This separation between the leading shock wave front and the chemical energy release needed to sustain it results in shock wave amplification and the subsequent formation of complex three-dimensional cellular structures in all liquid detonation waves. To develop a practical Zeldovich-von Neumann-Doring (ZND) reactive flow model for liquid detonation, experimental data on reaction zone structure, confined failure diameter, unconfined failure diameter, and failure wave velocity in the Dremin-Trofimov test for detonating nitromethane are calculated using the ignition and growth reactive flow model.

  14. Unifying role of dissipative action in the dynamic failure of solids

    NASA Astrophysics Data System (ADS)

    Grady, Dennis E.

    2015-04-01

    A fourth-power law underlying the steady shock-wave structure and solid viscosity of condensed material has been observed for a wide range of metals and non-metals. The fourth-power law relates the steady-wave Hugoniot pressure to the fourth power of the strain rate during passage of the material through the structured shock wave. Preceding the fourth-power law was the observation in a shock transition that the product of the shock dissipation energy and the shock transition time is a constant independent of the shock pressure amplitude. Invariance of this energy-time product implies the fourth-power law. This property of the shock transition in solids was initially identified as a shock invariant. More recently, it has been referred to as the dissipative action, although no relationship to the accepted definitions of action in mechanics has been demonstrated. This same invariant property has application to a wider range of transient failure phenomena in solids. Invariance of this dissipation action has application to spall fracture, failure through adiabatic shear, shock compaction of granular media, and perhaps others. Through models of the failure processes, a clearer picture of the physics underlying the observed invariance is emerging. These insights in turn are leading to a better understanding of the shock deformation processes underlying the fourth-power law. Experimental result and material models encompassing the dynamic failure of solids are explored for the purpose of demonstrating commonalities leading to invariance of the dissipation action. Calculations are extended to aluminum and uranium metals with the intent of predicting micro-scale dynamics and spatial structure in the steady shock wave.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grady, Dennis E.

    A fourth-power law underlying the steady shock-wave structure and solid viscosity of condensed material has been observed for a wide range of metals and non-metals. The fourth-power law relates the steady-wave Hugoniot pressure to the fourth power of the strain rate during passage of the material through the structured shock wave. Preceding the fourth-power law was the observation in a shock transition that the product of the shock dissipation energy and the shock transition time is a constant independent of the shock pressure amplitude. Invariance of this energy-time product implies the fourth-power law. This property of the shock transition inmore » solids was initially identified as a shock invariant. More recently, it has been referred to as the dissipative action, although no relationship to the accepted definitions of action in mechanics has been demonstrated. This same invariant property has application to a wider range of transient failure phenomena in solids. Invariance of this dissipation action has application to spall fracture, failure through adiabatic shear, shock compaction of granular media, and perhaps others. Through models of the failure processes, a clearer picture of the physics underlying the observed invariance is emerging. These insights in turn are leading to a better understanding of the shock deformation processes underlying the fourth-power law. Experimental result and material models encompassing the dynamic failure of solids are explored for the purpose of demonstrating commonalities leading to invariance of the dissipation action. Calculations are extended to aluminum and uranium metals with the intent of predicting micro-scale dynamics and spatial structure in the steady shock wave.« less

  16. Properties of Shocked Polymers: Mbar experiments on Z and multi-scale simulations

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.

    2010-03-01

    Significant progress has been made over the last few years in understanding properties of matter subject to strong shocks and other extreme conditions. High-accuracy multi-Mbar experiments and first-principles theoretical studies together provide detailed insights into the physics and chemistry of high energy-density matter. While comprehensive advances have been made for pure elements like deuterium, helium, and carbon, progress has been slower for equally important, albeit more challenging, materials like molecular crystals, polymers, and foams. Hydrocarbon based polymer foams are common materials and in particular they are used in designing shock- and inertial confinement fusion experiments. Depending on their initial density, foams shock to relatively higher pressure and temperature compared to shocked dense polymers/plastics. As foams and polymers are shocked, they exhibit both structural and chemical transitions. We will present experimental and theoretical results for shocked polymers in the Mbar regime. By shock impact of magnetically launched flyer plates on poly(4-methyl-1-pentene) foams, we create multi-Mbar pressures in a dense plasma mixture of hydrogen, carbon, at temperatures of several eV. Concurrently with executing experiments, we analyze the system by multi-scale simulations, from density functional theory to continuum magneto-hydrodynamics simulations. In particular, density functional theory (DFT) molecular dynamics (MD) and classical MD simulations of the principal shock Hugoniot will be presented in detail for two hydrocarbon polymers: polyethylene (PE) and poly(4-methyl-1-pentene) (PMP).

  17. Ion kinetic dynamics in strongly-shocked plasmas relevant to ICF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinderknecht, H. G.; Amendt, P. A.; Rosenberg, M. J.

    Implosions of thin-shell capsules produce strongly-shocked (M > 10), low-density (ρ ~1 mg/cc -1), high-temperature (T i ~keV) plasmas, comparable to those produced in the strongly-shocked DT-vapor in inertial confinement fusion (ICF) experiments. A series of thin-glass targets filled with mixtures of deuterium and Helium-3 gas ranging from 7% to 100% deuterium was imploded to investigate the impact of multi-species ion kinetic mechanisms in ICF-relevant plasmas over a wide range of Knudsen numbers (N K ≡ λ ii/R). Anomalous trends in nuclear yields and burn-averaged ion temperatures in implosions with N K > 0.5, which have been interpreted as signaturesmore » of ion species separation and ion thermal decoupling, are found not to be consistent with single-species ion kinetic effects alone. Experimentally inferred Knudsen numbers predict an opposite yield trend to those observed, confirming the dominance of multi-species physics in these experiments. In contrast, implosions with N K ~ 0.01 follow the expected yield trend, suggesting single-species kinetic effects are dominant. In conclusion, the impact of the observed kinetic physics mechanisms on the formation of the hotspot in ICF experiments is discussed.« less

  18. Ion kinetic dynamics in strongly-shocked plasmas relevant to ICF

    DOE PAGES

    Rinderknecht, H. G.; Amendt, P. A.; Rosenberg, M. J.; ...

    2017-04-20

    Implosions of thin-shell capsules produce strongly-shocked (M > 10), low-density (ρ ~1 mg/cc -1), high-temperature (T i ~keV) plasmas, comparable to those produced in the strongly-shocked DT-vapor in inertial confinement fusion (ICF) experiments. A series of thin-glass targets filled with mixtures of deuterium and Helium-3 gas ranging from 7% to 100% deuterium was imploded to investigate the impact of multi-species ion kinetic mechanisms in ICF-relevant plasmas over a wide range of Knudsen numbers (N K ≡ λ ii/R). Anomalous trends in nuclear yields and burn-averaged ion temperatures in implosions with N K > 0.5, which have been interpreted as signaturesmore » of ion species separation and ion thermal decoupling, are found not to be consistent with single-species ion kinetic effects alone. Experimentally inferred Knudsen numbers predict an opposite yield trend to those observed, confirming the dominance of multi-species physics in these experiments. In contrast, implosions with N K ~ 0.01 follow the expected yield trend, suggesting single-species kinetic effects are dominant. In conclusion, the impact of the observed kinetic physics mechanisms on the formation of the hotspot in ICF experiments is discussed.« less

  19. Thomas J. Ahrens (1936-2010)

    NASA Astrophysics Data System (ADS)

    Jeanloz, Raymond

    2011-03-01

    Thomas J. Ahrens, a leader in the study of high-pressure shock wave and planetary impact phenomena, died at his home in Pasadena, Calif., on 24 November 2010 at the age of 74. He was the California Institute of Technology's Fletcher Jones Professor of Geophysics, emeritus since 2005 but professionally active to the end. He had been president of AGU's Tectonophysics section, editor of Journal of Geophysical Research, founding member of both the Mineral and Rock Physics and Study of the Earth's Deep Interior focus groups, and editor—more like key driving force—for AGU's Handbook of Physical Constants. Tom was a pioneer in experimental and numerical studies of the effects of projectiles hitting a target at velocities exceeding the speed of sound (hypervelocity impact), arguably the most important geophysical process in the formation, growth, and, in many cases, surface evolution of planets. As a professor at Caltech, he established the foremost university laboratory for shock wave experiments, where students and research associates from around the world pursued basic research in geophysics, planetary science, and other disciplines. Previously, high-pressure shock experiments were conducted primarily in national laboratories, where they were initially associated with the development of nuclear weapons.

  20. Transient Three-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2004-01-01

    Three-dimensional numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, and pressure-based computational fluid dynamics formulation, and a simulated inlet condition based on a system calculation. Finite-rate chemistry was used throughout the study so that combustion effect is always included, and the effect of wall cooling on side load physics is studied. The side load physics captured include the afterburning wave, transition from free- shock to restricted-shock separation, and lip Lambda shock oscillation. With the adiabatic nozzle, free-shock separation reappears after the transition from free-shock separation to restricted-shock separation, and the subsequent flow pattern of the simultaneous free-shock and restricted-shock separations creates a very asymmetric Mach disk flow. With the cooled nozzle, the more symmetric restricted-shock separation persisted throughout the start-up transient after the transition, leading to an overall lower side load than that of the adiabatic nozzle. The tepee structures corresponding to the maximum side load were addressed.

  1. Uncertainty Assessment of Hypersonic Aerothermodynamics Prediction Capability

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; Brown, James L.; Prabhu, Dinesh K.; Gnoffo, Peter; Johnston, Christopher O.; Hollis, Brian

    2011-01-01

    The present paper provides the background of a focused effort to assess uncertainties in predictions of heat flux and pressure in hypersonic flight (airbreathing or atmospheric entry) using state-of-the-art aerothermodynamics codes. The assessment is performed for four mission relevant problems: (1) shock turbulent boundary layer interaction on a compression corner, (2) shock turbulent boundary layer interaction due a impinging shock, (3) high-mass Mars entry and aerocapture, and (4) high speed return to Earth. A validation based uncertainty assessment approach with reliance on subject matter expertise is used. A code verification exercise with code-to-code comparisons and comparisons against well established correlations is also included in this effort. A thorough review of the literature in search of validation experiments is performed, which identified a scarcity of ground based validation experiments at hypersonic conditions. In particular, a shortage of useable experimental data at flight like enthalpies and Reynolds numbers is found. The uncertainty was quantified using metrics that measured discrepancy between model predictions and experimental data. The discrepancy data is statistically analyzed and investigated for physics based trends in order to define a meaningful quantified uncertainty. The detailed uncertainty assessment of each mission relevant problem is found in the four companion papers.

  2. Shock driven melting and resolidification upon release in cerium

    NASA Astrophysics Data System (ADS)

    Bolme, Cindy; Bronkhorst, Curt; Brown, Don; Cherne, Frank; Cooley, Jason; Furlanetto, Michael; Gleason, Arianna; Jensen, Brian; Owens, Charles; Ali, Suzanne; Fratanduono, Dayne; Galtier, Eric; Granados, Eduardo; Lee, Hae Ja; Nagler, Bob

    2017-06-01

    The temperature rise due to increasing entropy during shock compression and the corresponding temperature decrease due to isentropic expansion upon release cause the physics of melting and solidification under dynamic pressure changes to differ fundamentally from the more common liquid-solid transitions governed by thermal diffusion. We investigated laser shock driven melting and resolidification during release in cerium to examine the dynamics of these processes. Cerium was selected as the material of study due to the low pressure at which γ-cerium melts along the principle Hugoniot and due to cerium's anomalous melt boundary at low pressure, which facilitates its transition from liquid to solid during isentropic release. The structural phase of cerium was probed with X-ray diffraction using the LCLS X-ray free electron laser, which provided in situ measurements of the transition dynamics. The experimental results will be presented showing the resolidification occurring over 10s of ns.

  3. 1 D analysis of Radiative Shock damping by lateral radiative losses.

    NASA Astrophysics Data System (ADS)

    Busquet, Michel; Colombier, Jean-Philippe; Stehle, Chantal

    2007-11-01

    It has been shown theoretically and experimentally [1] that the radiative precursor in front of a strong shock in hi-Z material is slowed down by lateral radiative losses. The 2D simulation showed that the shock front and the precursor front remain planar, with an increase of density and a decrease of temperature close to the walls. The damping of the precursor is obviously sensitive to the fraction of self-emitted radiation reflected by the walls (the albedo). In order to perform parametric studies we include the albedo controlled lateral radiative losses in the 1D hydro-code MULTI (created by Ramis et al [2]) both in terms of energy balance and of spectral diagnostic. [1] Gonzales et al, Laser Part. Beams 24, 1-6 (2006) ; Busquet et al, High Energy Density Physics (2007), doi: 10.1016/j.hedp.2007.01.002 [2] Ramis et al, Comp. Phys. Comm., 49 (1988), 475

  4. Benchmarking the SPHINX and CTH shock physics codes for three problems in ballistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, L.T.; Hertel, E.; Schwalbe, L.

    1998-02-01

    The CTH Eulerian hydrocode, and the SPHINX smooth particle hydrodynamics (SPH) code were used to model a shock tube, two long rod penetrations into semi-infinite steel targets, and a long rod penetration into a spaced plate array. The results were then compared to experimental data. Both SPHINX and CTH modeled the one-dimensional shock tube problem well. Both codes did a reasonable job in modeling the outcome of the axisymmetric rod impact problem. Neither code correctly reproduced the depth of penetration in both experiments. In the 3-D problem, both codes reasonably replicated the penetration of the rod through the first plate.more » After this, however, the predictions of both codes began to diverge from the results seen in the experiment. In terms of computer resources, the run times are problem dependent, and are discussed in the text.« less

  5. Analytical scalings of the linear Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Cobos, Francisco; Wouchuk, Juan Gustavo

    2017-11-01

    In the linear Richtmyer-Meshkov instability (RMI), hydrodynamic perturbations are generated behind the transmitted and reflected rippled fronts. The contact surface reaches an asymptotic normal velocity and two different tangential velocities at each side, which are always different for moderate to strong levels of compression, depending on the amount of vorticity generated by the corrugated shocks. We show analytical scaling laws for the ripple velocity (δvi∞)in different physical limits and approximate formulas are provided, valid for arbitrary initial pre-shock parameters. An asymptotic growth for the contact surface ripple of the form ψi(t) ψ∞ + δ vi∞t is obtained. The quantity ψ∞ is in general different from the initial post-shock ripple amplitude, in agreement with the early finding of. Comparison to simulations and experimental work is shown. F.C. acknowledges support from UCLM for a predoctoral fellowship. This work has received support from MINECO, JCCM, and UCLM (Spain).

  6. Transient Three-Dimensional Analysis of Nozzle Side Load in Regeneratively Cooled Engines

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2005-01-01

    Three-dimensional numerical investigations on the start-up side load physics for a regeneratively cooled, high-aspect-ratio nozzle were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system simulation. Computations were performed for both the adiabatic and cooled walls in order to understand the effect of boundary conditions. Finite-rate chemistry was used throughout the study so that combustion effect is always included. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with oscillation of shocks across the lip. Wall boundary conditions drastically affect the computed side load physics: the adiabatic nozzle prefers free-shock separation while the cooled nozzle favors restricted-shock separation, resulting in higher peak side load for the cooled nozzle than that of the adiabatic nozzle. By comparing the computed physics with those of test observations, it is concluded that cooled wall is a more realistic boundary condition, and the oscillation of the restricted-shock separation flow pattern across the lip along with its associated tangential shock motion are the dominant side load physics for a regeneratively cooled, high aspect-ratio rocket engine.

  7. Evolution of wave patterns and temperature field in shock-tube flow

    NASA Astrophysics Data System (ADS)

    Kiverin, A. D.; Yakovenko, I. S.

    2018-05-01

    The paper is devoted to the numerical analysis of wave patterns behind a shock wave propagating in a tube filled with a gaseous mixture. It is shown that the flow inside the boundary layer behind the shock wave is unstable, and the way the instability develops fully corresponds to the solution obtained for the boundary layer over a flat plate. Vortical perturbations inside the boundary layer determine the nonuniformity of the temperature field. In turn, exactly these nonuniformities define the way the ignition kernels arise in the combustible mixture after the reflected shock interaction with the boundary layer. In particular, the temperature nonuniformity determines the spatial limitations of probable ignition kernel position relative to the end wall and side walls of the tube. In the case of low-intensity incident shocks the ignition could start not farther than the point of first interaction between the reflected shock wave and roller vortices formed in the process of boundary layer development. Proposed physical mechanisms are formulated in general terms and can be used for interpretation of the experimental data in any systems with a delayed exothermal reaction start. It is also shown that contact surface thickening occurs due to its interaction with Tollmien-Schlichting waves. This conclusion is of importance for understanding the features of ignition in shock tubes operating in the over-tailored regime.

  8. Thin film metal thermistors with microsecond time response for shock temperature measurements of polymers

    NASA Astrophysics Data System (ADS)

    Taylor, Nicholas; Williamson, David; Jardine, Andrew

    2013-06-01

    Equations of state can be used to predict the relationship between pressure, volume and temperature. However, in shock physics, they are usually only constrained by experimental observations of pressure and volume. Direct observation of temperature in a shock is therefore valuable in constraining equations of state. Bloomquist and Sheffield (1980, 1981) and Rosenberg and Partom (1984) have attempted such observations in PMMA. However, their results disagree strongly above 2 GPa shock pressure. Here we present an improved fabrication technique, to examine this outstanding issue. We make use of the fact that the electrical resistivity of most metals is a known function of both pressure and temperature. If the change in resistance of a thin metal thermistor gauge is measured during a shock experiment of known pressure, the temperature can be calculated directly. The time response is limited by the time taken for the gauge to reach thermal equilibrium with the medium in which it is embedded. Gold gauges of thickness up to 200 nm have been produced by evaporation, and fully embedded in PMMA. These reach thermal equilibrium with the host material in under 1 μs, allowing temperature measurement within the duration of a plate impact experiment.

  9. Evidence for Coordination and Redox Changes of Iron in Shocked Feldspar from Synchrotron MicroXANES

    NASA Technical Reports Server (NTRS)

    Delaney, J. S.; Dyar, M. D.; Hoerz, F.; Johnson, J. R.

    2003-01-01

    Shock modification of feldspar has been documented and experimentally reproduced in many studies since the recognition of maskelynite in Shergotty. Experimentally shocked feldspar samples have been well studied using chemical and crystallographic techniques. The crystallographic, site-specific characterization of major and minor elements is less well documented. We present early x-ray absorption (XAS) spectral data for a suite of albitite samples that were experimentally shocked at pressures between 17 and 50 Gpa.

  10. Development of in situ time-resolved Raman spectroscopy facility for dynamic shock loading in materials

    NASA Astrophysics Data System (ADS)

    Chaurasia, S.; Rastogi, V.; Rao, U.; Sijoy, C. D.; Mishra, V.; Deo, M. N.

    2017-11-01

    The transient state of excitation and relaxation processes in materials under shock compression can be investigated by coupling the laser driven shock facility with Raman spectroscopy. For this purpose, a time resolved Raman spectroscopy setup has been developed to monitor the physical and the chemical changes such as phase transitions, chemical reactions, molecular kinetics etc., under shock compression with nanosecond time resolution. This system consist of mainly three parts, a 2 J/8 ns Nd:YAG laser system used for generation of pump and probe beams, a Raman spectrometer with temporal and spectral resolution of 1.2 ns and 3 cm-1 respectively and a target holder in confinement geometry assembly. Detailed simulation for the optimization of confinement geometry targets is performed. Time resolved measurement of polytetrafluoroethylene (PTFE) targets at focused laser intensity of 2.2 GW/cm2 has been done. The corresponding pressure in the Aluminum and PTFE are 3.6 and 1.7 GPa respectively. At 1.7 GPa in PTFE, a red shift of 5 cm-1 is observed for the CF2 twisting mode (291 cm-1). Shock velocity in PTFE is calculated by measuring rate of change of ratios of the intensity of Raman lines scattered from shocked volume to total volume of sample in the laser focal spot along the laser axis. The calculated shock velocity in PTFE is found to be 1.64 ± 0.16 km/s at shock pressure of 1.7 GPa, for present experimental conditions.

  11. Overview of the Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Chwalowski, Pawel; Florance, Jennifer P.; Wieseman, Carol D.; Schuster, David M.; Perry, Raleigh B.

    2013-01-01

    The Aeroelastic Prediction Workshop brought together an international community of computational fluid dynamicists as a step in defining the state of the art in computational aeroelasticity. This workshop's technical focus was prediction of unsteady pressure distributions resulting from forced motion, benchmarking the results first using unforced system data. The most challenging aspects of the physics were identified as capturing oscillatory shock behavior, dynamic shock-induced separated flow and tunnel wall boundary layer influences. The majority of the participants used unsteady Reynolds-averaged Navier Stokes codes. These codes were exercised at transonic Mach numbers for three configurations and comparisons were made with existing experimental data. Substantial variations were observed among the computational solutions as well as differences relative to the experimental data. Contributing issues to these differences include wall effects and wall modeling, non-standardized convergence criteria, inclusion of static aeroelastic deflection, methodology for oscillatory solutions, post-processing methods. Contributing issues pertaining principally to the experimental data sets include the position of the model relative to the tunnel wall, splitter plate size, wind tunnel expansion slot configuration, spacing and location of pressure instrumentation, and data processing methods.

  12. Revisiting Shock Initiation Modeling of Homogeneous Explosives

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda

    2013-04-01

    Shock initiation of homogeneous explosives has been a subject of research since the 1960s, with neat and sensitized nitromethane as the main materials for experiments. A shock initiation model of homogeneous explosives was established in the early 1960s. It involves a thermal explosion event at the shock entrance boundary, which develops into a superdetonation that overtakes the initial shock. In recent years, Sheffield and his group, using accurate experimental tools, were able to observe details of buildup of the superdetonation. There are many papers on modeling shock initiation of heterogeneous explosives, but there are only a few papers on modeling shock initiation of homogeneous explosives. In this article, bulk reaction reactive flow equations are used to model homogeneous shock initiation in an attempt to reproduce experimental data of Sheffield and his group. It was possible to reproduce the main features of the shock initiation process, including thermal explosion, superdetonation, input shock overtake, overdriven detonation after overtake, and the beginning of decay toward Chapman-Jouget (CJ) detonation. The time to overtake (TTO) as function of input pressure was also calculated and compared to the experimental TTO.

  13. Computational Modeling and Experimental Validation of Shock Induced Damage in Woven E-Glass/Vinylester Laminates

    NASA Astrophysics Data System (ADS)

    Hufner, D. R.; Augustine, M. R.

    2018-05-01

    A novel experimental method was developed to simulate underwater explosion pressure pulses within a laboratory environment. An impact-based experimental apparatus was constructed; capable of generating pressure pulses with basic character similar to underwater explosions, while also allowing the pulse to be tuned to different intensities. Having the capability to vary the shock impulse was considered essential to producing various levels of shock-induced damage without the need to modify the fixture. The experimental apparatus and test method are considered ideal for investigating the shock response of composite material systems and/or experimental validation of new material models. One such test program is presented herein, in which a series of E-glass/Vinylester laminates were subjected to a range of shock pulses that induced varying degrees of damage. Analysis-test correlations were performed using a rate-dependent constitutive model capable of representing anisotropic damage and ultimate yarn failure. Agreement between analytical predictions and experimental results was considered acceptable.

  14. Axial magnetic field and toroidally streaming fast ions in the dense plasma focus are natural consequences of conservation laws in the curved axisymmetric geometry of the current sheath. II. Towards a first principles theory

    NASA Astrophysics Data System (ADS)

    Auluck, S. K. H.

    2017-11-01

    This paper continues earlier discussion [S. K. H. Auluck, Phys. Plasmas 21, 102515 (2014)] concerning the formulation of conservation laws of mass, momentum, and energy in a local curvilinear coordinate system in the dense plasma focus. This formulation makes use of the revised Gratton-Vargas snowplow model [S. K. H. Auluck, Phys. Plasmas 20, 112501 (2013)], which provides an analytically defined imaginary surface in three dimensions which resembles the experimentally determined shape of the plasma. Unit vectors along the local tangent to this surface, along the azimuth, and along the local normal define a right-handed orthogonal local curvilinear coordinate system. The simplifying assumption that physical quantities have significant variation only along the normal enables writing laws of conservation of mass, momentum, and energy in the form of effectively one-dimensional hyperbolic conservation law equations using expressions for various differential operators derived for this coordinate system. This formulation demonstrates the highly non-trivial result that the axial magnetic field and toroidally streaming fast ions, experimentally observed by multiple prestigious laboratories, are natural consequences of conservation of mass, momentum, and energy in the curved geometry of the dense plasma focus current sheath. The present paper continues the discussion in the context of a 3-region shock structure similar to the one experimentally observed: an unperturbed region followed by a hydrodynamic shock containing some current followed by a magnetic piston. Rankine-Hugoniot conditions are derived, and expressions are obtained for the specific volumes and pressures using the mass-flux between the hydrodynamic shock and the magnetic piston and current fraction in the hydrodynamic shock as unknown parameters. For the special case of a magnetic piston that remains continuously in contact with the fluid being pushed, the theory gives closed form algebraic results for the fraction of current flowing in the hydrodynamic shock, specific volume, pressure, and fluid velocity of the hydrodynamic shock region, the tangential, normal, and azimuthal components of velocity in the magnetized plasma, the density of the magnetized plasma, the normal and tangential components of the magnetic field, and the tangential, normal, and azimuthal components of the electric field. This explains the occurrence of azimuthally streaming high energy deuterons experimentally observed by Frascati and Stuttgart. The expression derived for the azimuthal component of vector potential can serve as the basis for a proposed experimental test of the theory.

  15. Symmetry tuning of a near one-dimensional 2-shock platform for code validation at the National Ignition Facility

    DOE PAGES

    Khan, S. F.; MacLaren, S. A.; Salmonson, J. D.; ...

    2016-04-27

    Here, we introduce a new quasi 1-D implosion experimental platform at the National Ignition Facility designed to validate physics models as well as to study various Inertial Confinement Fusion aspects such as implosion symmetry, convergence, hydrodynamic instabilities, and shock timing. The platform has been developed to maintain shell sphericity throughout the compression phase and produce a round hot core at stagnation. This platform utilizes a 2-shock 1 MJ pulse with 340 TW peak power in a near-vacuum AuHohlraum and a CH ablator capsule uniformly doped with 1% Si. We also performed several inflight radiography, symmetry capsule, and shock timing experimentsmore » in order to tune the symmetry of the capsule to near round throughout several epochs of the implosion. Finally, adjusting the relative powers of the inner and outer cones of beams has allowed us to control the drive at the poles and equator of the capsule, thus providing the mechanism to achieve a spherical capsule convergence. Details and results of the tuning experiments are described.« less

  16. First-principles modeling of laser-matter interaction and plasma dynamics in nanosecond pulsed laser shock processing

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongyang; Nian, Qiong; Doumanidis, Charalabos C.; Liao, Yiliang

    2018-02-01

    Nanosecond pulsed laser shock processing (LSP) techniques, including laser shock peening, laser peen forming, and laser shock imprinting, have been employed for widespread industrial applications. In these processes, the main beneficial characteristic is the laser-induced shockwave with a high pressure (in the order of GPa), which leads to the plastic deformation with an ultrahigh strain rate (105-106/s) on the surface of target materials. Although LSP processes have been extensively studied by experiments, few efforts have been put on elucidating underlying process mechanisms through developing a physics-based process model. In particular, development of a first-principles model is critical for process optimization and novel process design. This work aims at introducing such a theoretical model for a fundamental understanding of process mechanisms in LSP. Emphasis is placed on the laser-matter interaction and plasma dynamics. This model is found to offer capabilities in predicting key parameters including electron and ion temperatures, plasma state variables (temperature, density, and pressure), and the propagation of the laser shockwave. The modeling results were validated by experimental data.

  17. Molecular-dynamics simulation of Richtmyer-Meshkov instability on a Li-H2 interface at extreme compressing conditions

    NASA Astrophysics Data System (ADS)

    Huang, Shenghong; Wang, Weirong; Luo, Xisheng

    2018-06-01

    The new characteristics of Richtmyer-Meshkov instability (RMI) under extreme shock conditions are numerically studied by using molecular dynamics simulation incorporated with the electron force field model. The emphasis is placed on the ionization effects caused by different impacting speeds (6-30 km/s) on the microscale RMI on a Li-H2 interface. The linear region of the amplitude growth rate of the shocked interface under extreme shock conditions is observed to be much longer than that at the ordinary impact, which is in good accord with experimental results obtained with a Nova laser. It is also found that the amplitude of the nonlinear region is larger than the ordinary counterpart or the prediction by theory without considering the ionization effect. The two new characteristics are attributed to the ambipolar acceleration induced by the extra electric field due to the electron/ion separation under extreme shock conditions. These new findings may shed new light on the very complex physical process of the inertial confinement fusion on nanoscales.

  18. Hypertonic Saline Resuscitation Restores Inflammatory Cytokine Balance in Post-Traumatic Hemorrhagic Shock Patients

    DTIC Science & Technology

    2004-08-01

    immunocompetant cells experience bidirectional communication with hormones and cytokines [35,40]. Thus, despite compelling experimental findings, HSD has not...hypertonic saline with 6% dextran-70 (HSD) has been shown in experimental studies to reduce shock/resuscitation-induced inflammatory reactions and...alterations have been described in clinical and experimental investigations of post-traumatic hemorrhagic shock [13]. The initial immunological

  19. A Transmission Electron Microscope Study of Experimentally Shocked Pregraphitic Carbon

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1995-01-01

    A transmission electron microscope study of experimental shock metamorphism in natural pre-graphitic carbon simulates the response of the most common natural carbons to increased shock pressure. The d-spacings of this carbon are insensitive to the shock pressure and have no apparent diagnostic value, but progressive comminution occurs in response to increased shock pressure up to 59.6 GPa. The function, P = 869.1 x (size(sub minimum )(exp -0.83), describes the relationship between the minimum root-mean-square subgrain size (nm) and shock pressure (GPa). While a subgrain texture of natural pregraphitic carbons carries little information when pre-shock textures are unknown, this texture may go unnoticed as a shock metamorphic feature.

  20. The effects of extracorporeal shock wave therapy on the pain and function of patients with degenerative knee arthritis.

    PubMed

    Lee, Ji-Hyun; Lee, Sangyong; Choi, SeokJoo; Choi, Yoon-Hee; Lee, Kwansub

    2017-03-01

    [Purpose] The purpose of this study was to identify the effects of extracorporeal shock wave therapy on the pain and function of patients with degenerative knee arthritis. [Subjects and Methods] Twenty patients with degenerative knee arthritis were divided into a conservative physical therapy group (n=10) and an extracorporeal shock wave therapy group (n=10). Both groups received general conservative physical therapy, and the extracorporeal shock wave therapy was additionally treated with extracorporeal shock wave therapy after receiving conservative physical therapy. Both groups were treated three times a week over a four-week period. The visual analogue scale was used to evaluate pain in the knee joints of the subjects, and the Korean Western Ontario and McMaster Universities Osteoarthritis Index was used to evaluate the function of the subjects. [Results] The comparison of the visual analogue scale and Korean Western Ontario and McMaster Universities Osteoarthritis Index scores within each group before and after the treatment showed statistically significant declines in scores in both the conservative physical therapy group and extracorporeal shock wave therapy group. A group comparison after the treatment showed statistically significant differences in these scores in the extracorporeal shock wave therapy group and the conservative physical therapy group. [Conclusion] extracorporeal shock wave therapy may be a useful nonsurgical intervention for reducing the pain of patients with degenerative knee arthritis and improving these patients' function.

  1. Investigation of charge weight and shock factor effect on non-linear transient structural response of rectangular plates subjected to underwater explosion (UNDEX) shock loading

    NASA Astrophysics Data System (ADS)

    Demir, Ozgur; Sahin, Abdurrahman; Yilmaz, Tamer

    2012-09-01

    Underwater explosion induced shock loads are capable of causing considerable structural damage. Investigations of the underwater explosion (UNDEX) effects on structures have seen continuous developments because of security risks. Most of the earlier experimental investigations were performed by military since the World War I. Subsequently; Cole [1] established mathematical relations for modeling underwater explosion shock loading, which were the outcome of many experimental investigations This study predicts and establishes the transient responses of a panel structure to underwater explosion shock loads using non-linear finite element code Ls-Dyna. Accordingly, in this study a new MATLAB code has been developed for predicting shock loading profile for different weight of explosive and different shock factors. Numerical analysis was performed for various test conditions and results are compared with Ramajeyathilagam's experimental study [8].

  2. Assessing the Role of Anhydrite in the KT Mass Extinction: Hints from Shock-loading Experiments

    NASA Technical Reports Server (NTRS)

    Skala, R.; Lnagenhorst, F.; Hoerz, F.

    2004-01-01

    Various killing mechanisms have been suggested to contribute to the mass extinctions at the KT boundary, including severe, global deterioration of the atmosphere and hydrosphere due to SO(x) released from heavily shocked, sulfate-bearing target rocks. The devolatilization of anhydrite is predominantly inferred from thermodynamic considerations and lacks experimental confirmation. To date, the experimentally determined shock behavior of anhydrite is limited to solid-state effects employing X-ray diffraction methods. The present report employs additional methods to characterize experimentally shocked anhydrite.

  3. Experimental research on crossing shock wave boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Settles, G. S.; Garrison, T. J.

    1994-10-01

    An experimental research effort of the Penn State Gas Dynamics Laboratory on the subject of crossing shock wave boundary layer interactions is reported. This three year study was supported by AFOSR Grant 89-0315. A variety of experimental techniques were employed to study the above phenomena including planar laser scattering flowfield visualization, kerosene lampblack surface flow visualization, laser-interferometer skin friction surveys, wall static pressure measurements, and flowfield five-hole probe surveys. For a model configuration producing two intersecting shock waves, measurements were made for a range of oblique shock strengths at freestream Mach numbers of 3.0 and 3.85. Additionally, measurements were made at Mach 3.85 for a configuration producing three intersecting waves. The combined experimental dataset was used to formulate the first detailed flowfield models of the crossing-shock and triple-shock wave/boundary layer interactions. The structure of these interactions was found to be similar over a broad range of interaction strengths and is dominated by a large, separated, viscous flow region.

  4. The use of laser-induced shock wave plasma spectroscopy (LISPS) for examining physical characteristics of pharmaceutical products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdulmadjid, Syahrun Nur, E-mail: syahrun-madjid@yahoo.com; Lahna, Kurnia, E-mail: kurnialahna@gmail.com; Desiyana, Lydia Septa, E-mail: lydia-septa@yahoo.com

    2016-03-11

    An experimental study has been performed to examine the physical characteristics of pharmaceutical products, such as tablet, by employing an emission plasma induced by Nd-YAG laser at a low pressure of Helium gas. The hardness of tablet is one of the parameters that examined during the production process for standard quality of pharmaceutical products. In the Laser-Induced Shock Wave Plasma Spectroscopy (LISPS), the shock wave has a significant role in inducing atomic excitation. It was known that, the speed of the shock wavefront depends on the hardness of the sample, and it correlates with the ionization rate of the ablatedmore » atoms. The hardness of the tablet is examined using the intensity ratio between the ion of Mg (II) 275.2 nm and the neutral of Mg (I) 285.2 nm emission lines detected from the laser-induced plasma. It was observed that the ratio changes with respect to the change in the tablet hardness, namely the ratio is higher for the hard tablet. Besides the ratio measurements, we also measured the depth profile of a tablet by focusing 60 shots of irradiation of laser light at a fixed position on the surface of the tablet. It was found that the depth profile varies differently with the hardness of the tablet. These experiment results show that the technique of LISPS can be applied to examine the quality of pharmaceutical products.« less

  5. Experimental Data from the Benchmark SuperCritical Wing Wind Tunnel Test on an Oscillating Turntable

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Piatak, David J.

    2013-01-01

    The Benchmark SuperCritical Wing (BSCW) wind tunnel model served as a semi-blind testcase for the 2012 AIAA Aeroelastic Prediction Workshop (AePW). The BSCW was chosen as a testcase due to its geometric simplicity and flow physics complexity. The data sets examined include unforced system information and forced pitching oscillations. The aerodynamic challenges presented by this AePW testcase include a strong shock that was observed to be unsteady for even the unforced system cases, shock-induced separation and trailing edge separation. The current paper quantifies these characteristics at the AePW test condition and at a suggested benchmarking test condition. General characteristics of the model's behavior are examined for the entire available data set.

  6. Impacts into quartz sand: Crater formation, shock metamorphism, and ejecta distribution in laboratory experiments and numerical models

    NASA Astrophysics Data System (ADS)

    Wünnemann, Kai; Zhu, Meng-Hua; Stöffler, Dieter

    2016-10-01

    We investigated the ejection mechanics by a complementary approach of cratering experiments, including the microscopic analysis of material sampled from these experiments, and 2-D numerical modeling of vertical impacts. The study is based on cratering experiments in quartz sand targets performed at the NASA Ames Vertical Gun Range. In these experiments, the preimpact location in the target and the final position of ejecta was determined by using color-coded sand and a catcher system for the ejecta. The results were compared with numerical simulations of the cratering and ejection process to validate the iSALE shock physics code. In turn the models provide further details on the ejection velocities and angles. We quantify the general assumption that ejecta thickness decreases with distance according to a power-law and that the relative proportion of shocked material in the ejecta increase with distance. We distinguish three types of shock metamorphic particles (1) melt particles, (2) shock lithified aggregates, and (3) shock-comminuted grains. The agreement between experiment and model was excellent, which provides confidence that the models can predict ejection angles, velocities, and the degree of shock loading of material expelled from a crater accurately if impact parameters such as impact velocity, impactor size, and gravity are varied beyond the experimental limitations. This study is relevant for a quantitative assessment of impact gardening on planetary surfaces and the evolution of regolith layers on atmosphereless bodies.

  7. A Experimental Study of Fluctuating Pressure Loads Beneath Swept Shock Wave/boundary Layer Interactions

    NASA Astrophysics Data System (ADS)

    Garg, Sanjay

    An experimental research program providing basic knowledge and establishing a database on the fluctuating pressure loads produced on aerodynamic surfaces beneath three-dimensional shock wave/boundary layer interactions is described. Such loads constitute a fundamental problem of critical concern to future supersonic and hypersonic flight vehicles. A turbulent boundary layer on a flat plate is subjected to interactions with swept planar shock waves generated by sharp fins. Fin angles from 10 ^circ to 20^circ at freestream Mach numbers of 3 and 4 produce a variety of interaction strengths from weak to very strong. Miniature pressure transducers flush-mounted in the flat plate have been used to measure interaction-induced wall pressure fluctuations. The distributions of properties of the pressure fluctuations, such as their rms level, amplitude distribution and power spectra, are also determined. Measurements have been made for the first time in the aft regions of these interactions, revealing fluctuating pressure levels as high as 155 dB, which places them in the category of significant aeroacoustic load generators. The fluctuations near the foot of the fin are dominated by low frequency (0-5 kHz) components, and are caused by a previously unrecognized random motion of the primary attachment line. This phenomenon is probably intimately linked to the unsteadiness of the separation shock at the start of the interaction. The characteristics of the pressure fluctuations are explained in light of the features of the interaction flowfield. In particular, physical mechanisms responsible for the generation of high levels of surface pressure fluctuations are proposed based on the results of the study. The unsteadiness of the flowfield of the surface is also examined via a novel, non-intrusive optical technique. Results show that the entire shock structure generated by the interaction undergoes relatively low-frequency oscillations.

  8. An experimental investigation of internal area ruling for transonic and supersonic channel flow

    NASA Technical Reports Server (NTRS)

    Roberts, W. B.; Vanrintel, H. L.; Rizvi, G.

    1982-01-01

    A simulated transonic rotor channel model was examined experimentally to verify the flow physics of internal area ruling. Pressure measurements were performed in the high speed wind tunnel at transonic speeds with Mach 1.5 and Mach 2 nozzle blocks to get an indication of the approximate shock losses. The results showed a reduction in losses due to internal area ruling with the Mach 1.5 nozzle blocks. The reduction in total loss coefficient was of the order of 17 percent for a high blockage model and 7 percent for a cut-down model.

  9. Chandra X-ray Observation of a Mature Cloud-Shock Interaction in the Bright Eastern Knot of Puppis A

    NASA Technical Reports Server (NTRS)

    Hwang, Una; Flanagan, Kathryn A.; Petre, Robert

    2005-01-01

    We present Chandra X-ray images and spectra of the most prominent cloud-shock interaction region in the Puppis A supernova remnant. The Bright Eastern Knot (BEK) has two main morphological components: (1) a bright compact knot that lies directly behind the apex of an indentation in the eastern X-ray boundary and (2) lying 1 westward behind the shock, a curved vertical structure (bar) that is separated from a smaller bright cloud (cap) by faint diffuse emission. Based on hardness images and spectra, we identify the bar and cap as a single shocked interstellar cloud. Its morphology strongly resembles the "voided sphere" structures seen at late times in Klein et al. experimental simulat.ions of cloud-shock interactions, when the crushing of the cloud by shear instabilities is well underway. We infer an intera.ction time of roughly cloud-crushing timescales, which translates to 2000-4000 years, based on the X-ray temperature, physical size, and estimated expansion of the shocked cloud. This is the first X-ray identified example of a cloud-shock interaction in this advanced phase. Closer t o the shock front, the X-ray emission of the compact knot in the eastern part of the BEK region implies a recent interaction with relatively denser gas, some of which lies in front of the remnant. The complex spatial relationship of the X-ray emission of the compact knot to optical [O III] emission suggests that there are multiple cloud interactions occurring along the line of sight.

  10. Transient Two-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2004-01-01

    Two-dimensional planar and axisymmetric numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to develop a computational methodology to identify nozzle side load physics using simplified two-dimensional geometries, in order to come up with a computational strategy to eventually predict the three-dimensional side loads. The computational methodology is based on a multidimensional, finite-volume, viscous, chemically reacting, unstructured-grid, and pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system modeling. The side load physics captured in the low aspect-ratio, two-dimensional planar nozzle include the Coanda effect, afterburning wave, and the associated lip free-shock oscillation. Results of parametric studies indicate that equivalence ratio, combustion and ramp rate affect the side load physics. The side load physics inferred in the high aspect-ratio, axisymmetric nozzle study include the afterburning wave; transition from free-shock to restricted-shock separation, reverting back to free-shock separation, and transforming to restricted-shock separation again; and lip restricted-shock oscillation. The Mach disk loci and wall pressure history studies reconfirm that combustion and the associated thermodynamic properties affect the formation and duration of the asymmetric flow.

  11. Density Functional Methods for Shock Physics and High Energy Density Science

    NASA Astrophysics Data System (ADS)

    Desjarlais, Michael

    2017-06-01

    Molecular dynamics with density functional theory has emerged over the last two decades as a powerful and accurate framework for calculating thermodynamic and transport properties with broad application to dynamic compression, high energy density science, and warm dense matter. These calculations have been extensively validated against shock and ramp wave experiments, are a principal component of high-fidelity equation of state generation, and are having wide-ranging impacts on inertial confinement fusion, planetary science, and shock physics research. In addition to thermodynamic properties, phase boundaries, and the equation of state, one also has access to electrical conductivity, thermal conductivity, and lower energy optical properties. Importantly, all these properties are obtained within the same theoretical framework and are manifestly consistent. In this talk I will give a brief history and overview of molecular dynamics with density functional theory and its use in calculating a wide variety of thermodynamic and transport properties for materials ranging from ambient to extreme conditions and with comparisons to experimental data. I will also discuss some of the limitations and difficulties, as well as active research areas. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  12. Strain rate sensitivity of autoclaved aerated concrete from quasi-static regime to shock loading

    NASA Astrophysics Data System (ADS)

    Mespoulet, Jérôme; Plassard, Fabien; Hereil, Pierre Louis

    2015-09-01

    The quasi-static mechanical behavior of autoclaved aerated concrete is well-known and can be expressed as a function of its density. There are however not much studies dealing with its dynamic behavior and its damping ability when subjected to a mechanical shock or a blast. This study presents experimental results obtained at the Shock Physics Laboratory of THIOT INGENIERIE company. The test specimens are made of YTONG(TM ) cellular concrete with porosity in the range of 75 to 80%. Experimental tests cover a large strain rate amplitude (higher than 104 s-1) for specimens up to 250 mm. They were carried out with a small compression press and with two facilities dedicated to dynamic material characterization: JUPITER dynamic large press (2 MN, 3 ms rising time) and TITAN multi-caliber single-stage gas gun. Results in un-confined conditions show an increase of the compressive strength when strain rate increases (45% increase at 5.102 s-1) but dynamic tests induce damage early in the experiment. This competition between dynamic strength raise and specimen fracture makes the complete compaction curve determination not to be done in unconfined dynamic condition. A 25% increase of the compressive strength has been observed between unconfined and confined condition in Q.S. regime.

  13. Theoretical and experimental evaluation of the flow behavior of a magnetorheological damper using an extremely bimodal magnetic fluid

    NASA Astrophysics Data System (ADS)

    Iglesias, G. R.; Ahualli, S.; Echávarri Otero, J.; Fernández Ruiz-Morón, L.; Durán, J. D. G.

    2014-08-01

    The flow behavior of a magnetorheological (MR) fluid, consisting of iron particles dispersed in a ferrofluid carrier (‘MRFF’) in a commercial monotube MR shock absorber is studied. The magnetorheological properties of the MRFF suspensions are compared with those of a conventional oil-based MR fluid (‘MRF’). The mechanical behavior of the MR damper, filled with the MRFF or alternatively with the MRF, is characterized by means of different oscillatory force-displacement and force-velocity tests. The MR shock absorber has an internal electromagnet that generates a controlled magnetic field in the channels through which the MR suspensions flow under operation conditions. The results obtained indicate that the damper filled with MRFF shows a reliable and reproducible behavior. In particular, the response of the shock absorber can be controlled to a large extent by adjusting the electromagnetic current, showing a response that is independent of the mechanical and magnetic history of the MRFF. The non-linear hysteresis model proposed for predicting the damping force provides good agreement with the experimental results when the MRFF is employed. The improved response of the damper loaded with ferrofluid-based MRFF (instead of the conventional MRF) is explained considering the physical properties and the internal structure of the suspension.

  14. Investigation of Weibel-filament growth in the nonlinear regime using laser-irradiated foils of different materials

    NASA Astrophysics Data System (ADS)

    Manuel, Mario

    2017-10-01

    M.J.-E. MANUEL GENERAL ATOMICS, C.M. HUNTINGTON, D.P. HIGGINSON, B.B. POLLOCK, B.A. REMINGTON, H. RINDERKNECHT, J.S. ROSS, D. RYUTOV, G. SWADLING, S. WILKS, A.B. ZYLSTRA, H.-S. PARK LLNL, F. FIUZA, S. TOTORICASLAC, G. GREGORIOXFORD, J. PARK, A. SPITKOVSKYPRINCETON, Y. SAKAWA, H. TAKABEOSAKA, H. SIOMIT, A.B. ZYLSTRALANL. The Weibel instability is presently the leading mechanism proposed to amplify magnetic fields necessary to form `collisionless' shocks in weakly magnetized astrophysical systems, including young supernova remnants and gamma-ray bursts. These systems rely on the presence of strong self-generated magnetic fields to mediate shock formation since the typical collisional mean-free-path is much larger than the system size. The work presented here investigates the development of the Weibel instability in the nonlinear regime through experimental variation of plasma parameters using different ion species and separation distances. Our goal is to investigate the underlying physical mechanism that may allow the formation of collisionless shocks in astrophysical objects. Recent experimental and computational results will be presented and discussed. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956 and in collaboration with LLNL under contract DE-AC52-07NA27344.

  15. Physical realization of the Glauber quantum oscillator.

    PubMed

    Gentilini, Silvia; Braidotti, Maria Chiara; Marcucci, Giulia; DelRe, Eugenio; Conti, Claudio

    2015-11-02

    More than thirty years ago Glauber suggested that the link between the reversible microscopic and the irreversible macroscopic world can be formulated in physical terms through an inverted harmonic oscillator describing quantum amplifiers. Further theoretical studies have shown that the paradigm for irreversibility is indeed the reversed harmonic oscillator. As outlined by Glauber, providing experimental evidence of these idealized physical systems could open the way to a variety of fundamental studies, for example to simulate irreversible quantum dynamics and explain the arrow of time. However, supporting experimental evidence of reversed quantized oscillators is lacking. We report the direct observation of exploding n = 0 and n = 2 discrete states and Γ0 and Γ2 quantized decay rates of a reversed harmonic oscillator generated by an optical photothermal nonlinearity. Our results give experimental validation to the main prediction of irreversible quantum mechanics, that is, the existence of states with quantized decay rates. Our results also provide a novel perspective to optical shock-waves, potentially useful for applications as lasers, optical amplifiers, white-light and X-ray generation.

  16. What do we mean by the word “Shock”?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Runnels, Scott Robert

    From one vantage point, a shock is a continuous but drastic change in state variables that occurs over very small time and length scales. These scales and associated changes in state variables can be measured experimentally. From another vantage point, a shock is a mathematical singularity consisting of instantaneous changes in state variables. This more mathematical view gives rise to analytical solutions to idealized problems. And from a third vantage point, a shock is a structure in a hydrocode prediction. Its width depends on the simulation’s grid resolution and artificial viscosity. These three vantage points can be in conflict whenmore » ideas from the associated fields are combined, and yet combining them is an important goal of an integrated modeling program. This presentation explores an example of how models for real materials in the presence of real shocks react to a hydrocode’s numerical shocks of finite width. The presentation will include an introduction to plasticity for the novice, an historical view of plasticity algorithms, a demonstration of how pursuing the meaning of “shock” has resulted in hydrocode improvements, and will conclude by answering some of the questions that arise from that pursuit. After the technical part of the presentation, a few slides advertising LANL’s Computational Physics Student Summer Workshop will be shown.« less

  17. Steps toward thin film metal thermistors with microsecond time response for shock temperature measurements of polymers

    NASA Astrophysics Data System (ADS)

    Taylor, N. E.; Williamson, D. M.; Jardine, A. P.

    2014-05-01

    Equations of state can be used to predict the relationship between pressure, volume and temperature. However, in shock physics, they are usually only constrained by experimental observations of pressure and volume. Direct observation of temperature in a shock is therefore valuable in constraining equations of state. Bloomquist and Sheffield (1980, 1981) and Rosenberg and Partom (1984) have attempted such observations in poly(methyl methacrylate) (PMMA). However, their results disagree strongly above 2GPa shock pressure. Here we present an improved fabrication technique, to examine this outstanding issue. We make use of the fact that the electrical resistivity of most metals is a known function of both pressure and temperature. If the change in resistance of a thin metal thermistor gauge is measured during a shock experiment of known pressure, the temperature can be calculated directly. The time response is limited by the time taken for the gauge to reach thermal equilibrium with the medium in which it is embedded. Gold gauges of thickness up to 200 nm have been produced by thermal evaporation, and fully embedded in PMMA. These reach thermal equilibrium with the host material in under 1 us, allowing temperature measurement within the duration of a plate impact experiment.

  18. Shock unsteadiness in a thrust optimized parabolic nozzle

    NASA Astrophysics Data System (ADS)

    Verma, S. B.

    2009-07-01

    This paper discusses the nature of shock unsteadiness, in an overexpanded thrust optimized parabolic nozzle, prevalent in various flow separation modes experienced during start up {(δ P0 /δ t > 0)} and shut down {(δ P0/δ t < 0)} sequences. The results are based on simultaneously acquired data from real-time wall pressure measurements using Kulite pressure transducers, high-speed schlieren (2 kHz) of the exhaust flow-field and from strain-gauges installed on the nozzle bending tube. Shock unsteadiness in the separation region is seen to increase significantly just before the onset of each flow transition, even during steady nozzle operation. The intensity of this measure ( rms level) is seen to be strongly influenced by relative locations of normal and overexpansion shock, the decrease in radial size of re-circulation zone in the back-flow region, and finally, the local nozzle wall contour. During restricted shock separation, the pressure fluctuations in separation region exhibit periodic characteristics rather than the usually observed characteristics of intermittent separation. The possible physical mechanisms responsible for the generation of flow unsteadiness in various separation modes are discussed. The results are from an experimental study conducted in P6.2 cold-gas subscale test facility using a thrust optimized parabolic nozzle of area-ratio 30.

  19. Interaction of two glancing, crossing shock waves with a turbulent boundary-layer at various Mach numbers

    NASA Technical Reports Server (NTRS)

    Hingst, Warren R.; Williams, Kevin E.

    1991-01-01

    A preliminary experimental investigation was conducted to study two crossing, glancing shock waves of equal strengths, interacting with the boundary-layer developed on a supersonic wind tunnel wall. This study was performed at several Mach numbers between 2.5 and 4.0. The shock waves were created by fins (shock generators), spanning the tunnel test section, that were set at angles varying from 4 to 12 degrees. The data acquired are wall static pressure measurements, and qualitative information in the form of oil flow and schlieren visualizations. The principle aim is two-fold. First, a fundamental understanding of the physics underlying this flow phenomena is desired. Also, a comprehensive data set is needed for computational fluid dynamic code validation. Results indicate that for small shock generator angles, the boundary-layer remains attached throughout the flow field. However, with increasing shock strengths (increasing generator angles), boundary layer separation does occur and becomes progressively more severe as the generator angles are increased further. The location of the separation, which starts well downstream of the shock crossing point, moves upstream as shock strengths are increased. At the highest generator angles, the separation appears to begin coincident with the generator leading edges and engulfs most of the area between the generators. This phenomena occurs very near the 'unstart' limit for the generators. The wall pressures at the lower generator angles are nominally consistent with the flow geometries (i.e. shock patterns) although significantly affected by the boundary-layer upstream influence. As separation occurs, the wall pressures exhibit a gradient that is mainly axial in direction in the vicinity of the separation. At the limiting conditions the wall pressure gradients are primarily in the axial direction throughout.

  20. Large eddy simulation of shock train in a convergent-divergent nozzle

    NASA Astrophysics Data System (ADS)

    Mousavi, Seyed Mahmood; Roohi, Ehsan

    2014-12-01

    This paper discusses the suitability of the Large Eddy Simulation (LES) turbulence modeling for the accurate simulation of the shock train phenomena in a convergent-divergent nozzle. To this aim, we selected an experimentally tested geometry and performed LES simulation for the same geometry. The structure and pressure recovery inside the shock train in the nozzle captured by LES model are compared with the experimental data, analytical expressions and numerical solutions obtained using various alternative turbulence models, including k-ɛ RNG, k-ω SST, and Reynolds stress model (RSM). Comparing with the experimental data, we observed that the LES solution not only predicts the "locations of the first shock" precisely, but also its results are quite accurate before and after the shock train. After validating the LES solution, we investigate the effects of the inlet total pressure on the shock train starting point and length. The effects of changes in the back pressure, nozzle inlet angle (NIA) and wall temperature on the behavior of the shock train are investigated by details.

  1. Shock Compression of Liquid Noble Gases to Multi-Mbar Pressures

    NASA Astrophysics Data System (ADS)

    Root, Seth

    2011-10-01

    The high pressure - high temperature behavior of noble gases is of considerable interest because of their use in z-pinch liners for fusion studies and for understanding astrophysical and planetary evolution. However, our understanding of the equation of state (EOS) of the noble gases at extreme conditions is limited. A prime example of this is the liquid xenon Hugoniot. Previous EOS models rapidly diverged on the Hugoniot above 1 Mbar because of differences in the treatment of the electronic contribution to the free energy. Similar divergences are observed for krypton EOS. Combining shock compression experiments and density functional theory (DFT) simulations, we can determine the thermo-physical behavior of matter under extreme conditions. The experimental and DFT results have been instrumental to recent developments in planetary astrophysics and inertial confinement fusion. Shock compression experiments are performed using Sandia's Z-Accelerator to determine the Hugoniot of liquid xenon and krypton in the Mbar regime. Under strong pressure, krypton and xenon undergo an insulator to metal transition. In the metallic state, the shock front becomes reflective allowing for a direct measurement of the sample's shock velocity using laser interferometry. The Hugoniot state is determined using a Monte Carlo analysis method that accounts for systematic error in the standards and for correlations. DFT simulations at these extreme conditions show good agreement with the experimental data - demonstrating the attention to detail required for dealing with elements with relativistic core states and d-state electrons. The results from shock compression experiments and DFT simulations are presented for liquid xenon to 840 GPa and for liquid krypton to 800 GPa, decidedly increasing the range of known behavior of both gases. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Mechanical behavior of nanostructured and ultrafine-grained materials under shock wave loadings. experimental data and results of computer simulation

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir

    2012-03-01

    Features of mechanical behavior of nanostructured and ultrafine-grained metals under quasistatic and shock wave loadings are discussed. Features of mechanical behavior of nanostructured and ultrafine grained metals over a wide range of strain rates are discussed. A constitutive model for mechanical behavior of metal alloys under shock wave loading including a grain size distribution, a precipitate hardening, and physical mechanisms of shear stress relaxation is presented. Strain rate sensitivity of the yield stress of face-centered-cubic, hexagonal close-packed metal alloys depends on grain size, whereas the Hugoniot elastic limits of ultrafine-grained copper, aluminum, and titanium alloys are close to values of coarse-grained counterparts. At quasi-static loading the yield strength and the tensile strength of titanium alloys with grain size from 300 to 500 nm are twice higher than at coarse-grained counterparts. But the spall strength of the UFG titanium alloys exceeds the value of coarse-grained counterparts only for 10 percents.

  3. Numerical investigation of homogeneous cavitation nucleation in a microchannel

    NASA Astrophysics Data System (ADS)

    Lyu, Xiuxiu; Pan, Shucheng; Hu, Xiangyu; Adams, Nikolaus A.

    2018-06-01

    The physics of nucleation in water is an important issue for many areas, ranging from biomedical to engineering applications. Within the present study, we investigate numerically homogeneous nucleation in a microchannel induced by shock reflection to gain a better understanding of the mechanism of homogeneous nucleation. The liquid expands due to the reflected shock and homogeneous cavitation nuclei are generated. An Eulerian-Lagrangian approach is employed for modeling this process in a microchanel. Two-dimensional axisymmetric Euler equations are solved for obtaining the time evolution of shock, gas bubble, and the ambient fluid. The dynamics of dispersed vapor bubbles is coupled with the surrounding fluid in a Lagrangian framework, describing bubble location and bubble size variation. Our results reproduce nuclei distributions at different stages of homogeneous nucleation and are in good agreement with experimental results. We obtain numerical data for the negative pressure that water can sustain under the process of homogeneous nucleation. An energy transformation description for the homogeneous nucleation inside a microchannel flow is derived and analyzed in detail.

  4. Surface instabilities in shock loaded granular media

    NASA Astrophysics Data System (ADS)

    Kandan, K.; Khaderi, S. N.; Wadley, H. N. G.; Deshpande, V. S.

    2017-12-01

    The initiation and growth of instabilities in granular materials loaded by air shock waves are investigated via shock-tube experiments and numerical calculations. Three types of granular media, dry sand, water-saturated sand and a granular solid comprising PTFE spheres were experimentally investigated by air shock loading slugs of these materials in a transparent shock tube. Under all shock pressures considered here, the free-standing dry sand slugs remained stable while the shock loaded surface of the water-saturated sand slug became unstable resulting in mixing of the shocked air and the granular material. By contrast, the PTFE slugs were stable at low pressures but displayed instabilities similar to the water-saturated sand slugs at higher shock pressures. The distal surfaces of the slugs remained stable under all conditions considered here. Eulerian fluid/solid interaction calculations, with the granular material modelled as a Drucker-Prager solid, reproduced the onset of the instabilities as seen in the experiments to a high level of accuracy. These calculations showed that the shock pressures to initiate instabilities increased with increasing material friction and decreasing yield strain. Moreover, the high Atwood number for this problem implied that fluid/solid interaction effects were small, and the initiation of the instability is adequately captured by directly applying a pressure on the slug surface. Lagrangian calculations with the directly applied pressures demonstrated that the instability was caused by spatial pressure gradients created by initial surface perturbations. Surface instabilities are also shown to exist in shock loaded rear-supported granular slugs: these experiments and calculations are used to infer the velocity that free-standing slugs need to acquire to initiate instabilities on their front surfaces. The results presented here, while in an idealised one-dimensional setting, provide physical understanding of the conditions required to initiate instabilities in a range of situations involving the explosive dispersion of particles.

  5. A heuristic model of stone comminution in shock wave lithotripsy

    PubMed Central

    Smith, Nathan B.; Zhong, Pei

    2013-01-01

    A heuristic model is presented to describe the overall progression of stone comminution in shock wave lithotripsy (SWL), accounting for the effects of shock wave dose and the average peak pressure, P+(avg), incident on the stone during the treatment. The model is developed through adaptation of the Weibull theory for brittle fracture, incorporating threshold values in dose and P+(avg) that are required to initiate fragmentation. The model is validated against experimental data of stone comminution from two stone types (hard and soft BegoStone) obtained at various positions in lithotripter fields produced by two shock wave sources of different beam width and pulse profile both in water and in 1,3-butanediol (which suppresses cavitation). Subsequently, the model is used to assess the performance of a newly developed acoustic lens for electromagnetic lithotripters in comparison with its original counterpart both under static and simulated respiratory motion. The results have demonstrated the predictive value of this heuristic model in elucidating the physical basis for improved performance of the new lens. The model also provides a rationale for the selection of SWL treatment protocols to achieve effective stone comminution without elevating the risk of tissue injury. PMID:23927195

  6. The formation of reverse shocks in magnetized high energy density supersonic plasma flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebedev, S. V., E-mail: s.lebedev@imperial.ac.uk, E-mail: l.suttle10@imperial.ac.uk; Suttle, L.; Swadling, G. F.

    A new experimental platform was developed, based on the use of supersonic plasma flow from the ablation stage of an inverse wire array z-pinch, for studies of shocks in magnetized high energy density physics plasmas in a well-defined and diagnosable 1-D interaction geometry. The mechanism of flow generation ensures that the plasma flow (Re{sub M} ∼ 50, M{sub S} ∼ 5, M{sub A} ∼ 8, V{sub flow} ≈ 100 km/s) has a frozen-in magnetic field at a level sufficient to affect shocks formed by its interaction with obstacles. It is found that in addition to the expected accumulation of stagnated plasma in a thin layer at the surface ofmore » a planar obstacle, the presence of the magnetic field leads to the formation of an additional detached density jump in the upstream plasma, at a distance of ∼c/ω{sub pi} from the obstacle. Analysis of the data obtained with Thomson scattering, interferometry, and local magnetic probes suggests that the sub-shock develops due to the pile-up of the magnetic flux advected by the plasma flow.« less

  7. Measurements of ion species separation in strong plasma shocks

    NASA Astrophysics Data System (ADS)

    Rinderknecht, Hans

    2017-10-01

    Shocks are important dynamic phenomena in inertial confinement fusion (ICF) and astrophysical plasmas. While the relationship between upstream and downstream plasmas far from the shock front is fully determined by conservation equations, the structure of shock fronts is determined by dynamic kinetic processes. Kinetic theory and simulations predict that the width of a strong (M >2) collisional plasma shock front is on the order of tens of ion mean-free-paths. The shock front structure plays an important role for overall dynamics when the shock front width approaches plasma scale lengths, as in the spherically converging shock in the DT-vapor in an ICF implosion. However, there has been no experimental data benchmarking shock front structure in the plasma phase. The structure of a shock front in a plasma with multiple ion species has been directly measured for the first time using a combination of Thomson scattering and proton radiography in experiments on the OMEGA laser. Thomson scattering of a 263.25 nm probe beam is used to diagnose electron density, electron and ion temperature, ion species concentration, and flow velocity in strong shocks (M 5) propagating through low-density (ρ 0.1 mg/cc) plasmas composed of H(98%) +Ne(2%). Within the shock front, velocity separation of the ion species is observed for the first time: the light species (H) accelerates to of order the shocked fluid velocity (450 microns/ns) before the heavy species (Ne) begins to move. This velocity-space separation implies that the separation of ion species occurs at the shock front, a predicted feature of shocks in multi-species plasmas but never observed experimentally until now. Comparison of experimental data with PIC, Vlasov-Fokker-Planck, and multi-component hydrodynamic simulations will be presented.

  8. Shock waves and shock tubes; Proceedings of the Fifteenth International Symposium, Berkeley, CA, July 28-August 2, 1985

    NASA Technical Reports Server (NTRS)

    Bershader, D. (Editor); Hanson, R. (Editor)

    1986-01-01

    A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles.

  9. Shock waves and shock tubes; Proceedings of the Fifteenth International Symposium, Berkeley, CA, July 28-August 2, 1985

    NASA Astrophysics Data System (ADS)

    Bershader, D.; Hanson, R.

    A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles.

  10. Physical Conditions in Shocked Interstellar Gas Interacting with the Supernova Remnant IC 443

    NASA Astrophysics Data System (ADS)

    Ritchey, Adam M.; Federman, Steven Robert; Jenkins, Edward B.; Caprioli, Damiano; Wallerstein, George

    2018-06-01

    We present the results of a detailed investigation into the physical conditions in interstellar material interacting with the supernova remnant IC 443. Our analysis is based on an examination of high-resolution HST/STIS spectra of two stars probing predominantly neutral gas located both ahead of and behind the supernova shock front. The pre-shock neutral gas is characterized by densities and temperatures typical of diffuse interstellar clouds, while the post-shock material exhibits a range of more extreme physical conditions, including high temperatures (>104 K) in some cases, which may require a sudden heating event to explain. The ionization level is enhanced in the high-temperature post-shock material, which could be the result of enhanced radiation from shocks or from an increase in cosmic-ray ionization. The gas-phase abundances of refractory elements are also enhanced in the high-pressure gas, suggesting efficient destruction of dust grains by shock sputtering. Observations of highly-ionized species at very high velocity indicate a post-shock temperature of 107 K for the hot X-ray emitting plasma of the remnant’s interior, in agreement with studies of thermal X-ray emission from IC 443.

  11. Solitonic Dispersive Hydrodynamics: Theory and Observation

    NASA Astrophysics Data System (ADS)

    Maiden, Michelle D.; Anderson, Dalton V.; Franco, Nevil A.; El, Gennady A.; Hoefer, Mark A.

    2018-04-01

    Ubiquitous nonlinear waves in dispersive media include localized solitons and extended hydrodynamic states such as dispersive shock waves. Despite their physical prominence and the development of thorough theoretical and experimental investigations of each separately, experiments and a unified theory of solitons and dispersive hydrodynamics are lacking. Here, a general soliton-mean field theory is introduced and used to describe the propagation of solitons in macroscopic hydrodynamic flows. Two universal adiabatic invariants of motion are identified that predict trapping or transmission of solitons by hydrodynamic states. The result of solitons incident upon smooth expansion waves or compressive, rapidly oscillating dispersive shock waves is the same, an effect termed hydrodynamic reciprocity. Experiments on viscous fluid conduits quantitatively confirm the soliton-mean field theory with broader implications for nonlinear optics, superfluids, geophysical fluids, and other dispersive hydrodynamic media.

  12. Experimental and numerical study of shock-driven collapse of multiple cavity arrays

    NASA Astrophysics Data System (ADS)

    Betney, Matthew; Anderson, Phillip; Tully, Brett; Doyle, Hugo; Hawker, Nicholas; Ventikos, Yiannis

    2014-10-01

    This study presents a numerical and experimental investigation of the interaction of a single shock wave with multiple air-filled spherical cavities. The 5 mm diameter cavities are cast in a hydrogel, and collapsed by a shock wave generated by the impact of a projectile fired from a single-stage light-gas gun. Incident shock pressures of up to 1 GPa have been measured, and the results compared to simulations conducted using a front-tracking approach. The authors have previously studied the collapse dynamics of a single cavity. An important process is the formation of a high-speed transverse jet, which impacts the leeward cavity wall and produces a shockwave. The speed of this shock has been measured using schlieren imaging, and the density has been measured with a fibre optic probe. This confirmed the computational prediction that the produced shock is of a higher pressure than the original incident shock. When employing multiple cavity arrays, the strong shock produced by the collapse of one cavity can substantially affect the collapse of further cavities. With control over cavity placement, these effects may be utilised to intensify collapse. This intensification is experimentally measured via analysis of the optical emission.

  13. Experimental study on a heavy-gas cylinder accelerated by cylindrical converging shock waves

    NASA Astrophysics Data System (ADS)

    Si, T.; Zhai, Z.; Luo, X.; Yang, J.

    2014-01-01

    The Richtmyer-Meshkov instability behavior of a heavy-gas cylinder accelerated by a cylindrical converging shock wave is studied experimentally. A curved wall profile is well-designed based on the shock dynamics theory [Phys. Fluids, 22: 041701 (2010)] with an incident planar shock Mach number of 1.2 and a converging angle of in a mm square cross-section shock tube. The cylinder mixed with the glycol droplets flows vertically through the test section and is illuminated horizontally by a laser sheet. The images obtained only one per run by an ICCD (intensified charge coupled device) combined with a pulsed Nd:YAG laser are first presented and the complete evolution process of the cylinder is then captured in a single test shot by a high-speed video camera combined with a high-power continuous laser. In this way, both the developments of the first counter-rotating vortex pair and the second counter-rotating vortex pair with an opposite rotating direction from the first one are observed. The experimental results indicate that the phenomena induced by the converging shock wave and the reflected shock formed from the center of convergence are distinct from those found in the planar shock case.

  14. Final Technical Report: Magnetic Reconnection in High-Energy Laser-Produced Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germaschewski, Kai; Fox, William; Bhattacharjee, Amitava

    This report describes the final results from the DOE Grant DE-SC0007168, “Fast Magnetic Reconnection in HED Laser-Produced Plasmas.” The recent generation of laboratory high-energy-density physics facilities has opened significant physics opportunities for experimentally modeling astrophysical plasmas. The goal of this proposal is to use these new tools to study fundamental problems in plasma physics and plasma astrophysics. Fundamental topics in this area involve study of the generation, amplification, and fate of magnetic fields, which are observed to pervade the plasma universe and govern its evolution. This project combined experiments at DOE laser facilities with kinetic plasma simulation to study thesemore » processes. The primary original goal of the project was to study magnetic reconnection using a new experimental platform, colliding magnetized laser-produced plasmas. However through a series of fortuitous discoveries, the work broadened out to allow significant advancement on multiple topics in laboratory astrophysics, including magnetic reconnection, Weibel instability, and collisionless shocks.« less

  15. Bubbles with shock waves and ultrasound: a review.

    PubMed

    Ohl, Siew-Wan; Klaseboer, Evert; Khoo, Boo Cheong

    2015-10-06

    The study of the interaction of bubbles with shock waves and ultrasound is sometimes termed 'acoustic cavitation'. It is of importance in many biomedical applications where sound waves are applied. The use of shock waves and ultrasound in medical treatments is appealing because of their non-invasiveness. In this review, we present a variety of acoustics-bubble interactions, with a focus on shock wave-bubble interaction and bubble cloud phenomena. The dynamics of a single spherically oscillating bubble is rather well understood. However, when there is a nearby surface, the bubble often collapses non-spherically with a high-speed jet. The direction of the jet depends on the 'resistance' of the boundary: the bubble jets towards a rigid boundary, splits up near an elastic boundary, and jets away from a free surface. The presence of a shock wave complicates the bubble dynamics further. We shall discuss both experimental studies using high-speed photography and numerical simulations involving shock wave-bubble interaction. In biomedical applications, instead of a single bubble, often clouds of bubbles appear (consisting of many individual bubbles). The dynamics of such a bubble cloud is even more complex. We shall show some of the phenomena observed in a high-intensity focused ultrasound (HIFU) field. The nonlinear nature of the sound field and the complex inter-bubble interaction in a cloud present challenges to a comprehensive understanding of the physics of the bubble cloud in HIFU. We conclude the article with some comments on the challenges ahead.

  16. Bubbles with shock waves and ultrasound: a review

    PubMed Central

    Ohl, Siew-Wan; Klaseboer, Evert; Khoo, Boo Cheong

    2015-01-01

    The study of the interaction of bubbles with shock waves and ultrasound is sometimes termed ‘acoustic cavitation'. It is of importance in many biomedical applications where sound waves are applied. The use of shock waves and ultrasound in medical treatments is appealing because of their non-invasiveness. In this review, we present a variety of acoustics–bubble interactions, with a focus on shock wave–bubble interaction and bubble cloud phenomena. The dynamics of a single spherically oscillating bubble is rather well understood. However, when there is a nearby surface, the bubble often collapses non-spherically with a high-speed jet. The direction of the jet depends on the ‘resistance' of the boundary: the bubble jets towards a rigid boundary, splits up near an elastic boundary, and jets away from a free surface. The presence of a shock wave complicates the bubble dynamics further. We shall discuss both experimental studies using high-speed photography and numerical simulations involving shock wave–bubble interaction. In biomedical applications, instead of a single bubble, often clouds of bubbles appear (consisting of many individual bubbles). The dynamics of such a bubble cloud is even more complex. We shall show some of the phenomena observed in a high-intensity focused ultrasound (HIFU) field. The nonlinear nature of the sound field and the complex inter-bubble interaction in a cloud present challenges to a comprehensive understanding of the physics of the bubble cloud in HIFU. We conclude the article with some comments on the challenges ahead. PMID:26442143

  17. Two LANL laboratory astrophysics experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Intrator, Thomas P.

    2014-01-24

    Two laboratory experiments are described that have been built at Los Alamos (LANL) to gain access to a wide range of fundamental plasma physics issues germane to astro, space, and fusion plasmas. The overarching theme is magnetized plasma dynamics which includes significant currents, MHD forces and instabilities, magnetic field creation and annihilation, sheared flows and shocks. The Relaxation Scaling Experiment (RSX) creates current sheets and flux ropes that exhibit fully 3D dynamics, and can kink, bounce, merge and reconnect, shred, and reform in complicated ways. Recent movies from a large data set describe the 3D magnetic structure of a drivenmore » and dissipative single flux rope that spontaneously self-saturates a kink instability. Examples of a coherent shear flow dynamo driven by colliding flux ropes will also be shown. The Magnetized Shock Experiment (MSX) uses Field reversed configuration (FRC) experimental hardware that forms and ejects FRCs at 150km/sec. This is sufficient to drive a collision less magnetized shock when stagnated into a mirror stopping field region with Alfven Mach number MA=3 so that super critical shocks can be studied. We are building a plasmoid accelerator to drive Mach numbers MA >> 3 to access solar wind and more exotic astrophysical regimes. Unique features of this experiment include access to parallel, oblique and perpendicular shocks, shock region much larger than ion gyro radii and ion inertial length, room for turbulence, and large magnetic and fluid Reynolds numbers.« less

  18. INTRODUCTION: Award of the 2003 Hannes Alfvén Prize of the European Physical Society to Professor Vladimir Evgenievitch Fortov

    NASA Astrophysics Data System (ADS)

    Wagner, F.

    2003-12-01

    The Hannes Alfvén Prize of the European Physical Society for Outstanding Contributions to Plasma Physics (2003) has been awarded to Vladimir Evgenievitch Fortov `for his seminal contributions in the area of non-ideal plasmas and strongly coupled Coulomb systems, and for his pioneering work on the generation and investigation of plasmas under extreme conditions'. Vladimir Evgenievitch Fortov was born on 23 January 1946 in Noginsk, Russia. He studied physics at the Moscow Institute of Physics and Technology (PhD in 1976). In 1978 he was made a Professor and in 1991 he was awarded the Chair of the Moscow Institute of Physics and Technology. In the same year he became a Member of the Russian Academy of Sciences and was its vice-chairman from 1996 to 2001. From 1996 to 1998, Professor Fortov went into politics where he was just as successful, becoming Deputy Prime Minister of the Government of the Russian Federation and Minister of Science and Technology of the Russian Federation. Professor Fortov has made outstanding experimental and theoretical contributions to low temperature plasma physics. His pioneering work investigating non-ideal plasmas produced by intense shock waves initiated a new research field---the physical properties of highly compressed plasmas with strong inter-particle interactions. Under the leadership of Professor Fortov, experimental methods for generating and diagnosing these plasmas under extreme conditions were developed. To generate intense shock waves, a broad spectrum of drivers was used---chemical explosives, hypervelocity impact, lasers, relativistic electrons, heavy-ion and soft x-ray beams. Measurements of the equation of state, transport and optical properties of strongly coupled plasmas were carried out, including the interesting region lying between condensed matter and rarefied plasmas where specific plasma phase transitions and insulator--metal transitions were expected and explored. In another area of strongly coupled plasmas, Professor Fortov led theoretical and experimental studies on `dusty plasmas', carried out over a wide range of plasma parameters, using a broad spectrum of experimental techniques and devices. These studies embraced thermal combustion, glow and rf discharges and plasmas induced by cosmic ultraviolet and nuclear radiation. Under many of these conditions, ordered structures of dust in plasma liquids and plasma crystals were observed for the first time. Investigations of dusty plasmas induced by solar radiation and dust structures in DC glow discharges were first carried out on the Mir space station under micro-gravity conditions. The Russian--German experiment on dusty plasma crystals in space was successfully started on the International Space Station (ISS) in March 2001. This experiment was the first physics experiment on board the ISS. On the basis of his experimental results, Professor Fortov developed a general method of constructing semi-empirical equations of state of highly compressed materials. He put forward theoretical models of thermodynamical, transport and optical properties of strongly non-ideal plasmas. On the basis of these models Professor Fortov developed two-dimensional and three-dimensional computer codes for computer simulations of the processes in advanced energetic, space, nuclear and aviation systems based on high energy density plasmas. Professor Fortov has not only contributed to plasma theory but also to more applied topics. His laboratory participated in international space projects like the VEGA project (plasma dust impact phenomena), as well as the Halley Comet exploration, and studied plasma and shock wave phenomena stimulated by the impact of the Shoemaker-Levy 9 comet with Jupiter. Professor Fortov is an internationally well known scientist. He collaborates actively with many plasma laboratories and institutions. He has received many national and international awards, including several USSR and Russian State Awards, the A P Karpinskii-Toepfer Scientific Award for Physics and Chemistry (1997), the P Bridgman Award for High Pressure Plasma Investigations and Achievements in High Pressure Physics and Chemistry (1999), the A Einstein Medal of UNESCO (2000) and the Max Planck Award for Physics (2002). It is therefore with great pleasure and honour that the Plasma Physics Division of the European Physical Society has awarded the Hannes Alfvén prize this year to Professor Vladimir Evgenievitch Fortov. This article first appeared on the Europhyisics News website.

  19. The Physics of Molecular Shocks in Star-Forming Regions

    NASA Technical Reports Server (NTRS)

    Hollenbach, David; Cuzzi, Jeffrey (Technical Monitor)

    1996-01-01

    Molecular shocks are produced by the impact of the supersonic infall of gas and dust onto protostars and by the interaction of the supersonic outflow from the protostar with the circumstellar material. Infalling gas creates an accretion shock around the circumstellar disk which emits a unique infrared spectrum and which processes the interstellar dust as it enters the disk. The winds and jets from protostars also impact the disk, the infalling material, and the ambient molecular cloud core creating shocks whose spectrum and morphology diagnose the mass loss processes of the protostar and the orientation and structure of the star forming system. We discuss the physics of these shocks, the model spectra derived from theoretical models, and comparisons with observations of H2O masers, H2 emission, as well as other shocks tracers. We show the strong effect of magnetic fields on molecular shock structure, and elucidate the chemical changes induced by the shock heating and compression.

  20. Invariant Functional Forms for K(r,P) Type Equations of State for Hydrodynamically Driven Flow

    NASA Astrophysics Data System (ADS)

    Hrbek, George

    2001-06-01

    At the 11th American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter, Group Theoretic Methods, as defined by Lie were applied to the problem of temperature independent, hydrodynamic shock in a Birch-Murnaghan continuum. (1) Group parameter ratios were linked to the physical quantities (i.e., KT, K'T, and K''T) specified for the various order Birch-Murnaghan approximations. This technique has now been generalized to provide a mathematical formalism applicable to a wide class of forms (i.e., K(r,P)) for the equation of state. Variations in material expansion and resistance (i.e., counter pressure) are shown to be functions of compression and material variation ahead of the expanding front. Illustrative examples include the Birch-Murnaghan, Vinet, Brennan-Stacey, Shanker, Tait, Poirier, and Jones-Wilkins-Lee (JWL) forms. The results of this study will allow the various equations of state, and their respective fitting coefficients, to be compared with experiments. To do this, one must introduce the group ratios into a numerical simulation for the flow and generate the density, pressure, and particle velocity profiles as the shock moves through the material. (2) (1) Hrbek, G. M., Invariant Functional Forms For The Second, Third, And Fourth Order Birch-Murnaghan Equation of State For Materials Subject to Hydrodynamic Shock, Proceedings of the 11th American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter (SCCM Shock 99), Snowbird, Utah (2) Hrbek, G. M., Physical Interpretation of Mathematically Invariant K(r,P) Type Equations Of State For Hydrodynamically Driven Flows, Submitted to the 12th American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter (SCCM Shock 01), Atlanta, Georgia

  1. Shock wave attenuation by grids and orifice plates

    NASA Astrophysics Data System (ADS)

    Britan, A.; Igra, O.; Ben-Dor, G.; Shapiro, H.

    2006-11-01

    The interaction of weak shock waves with porous barriers of different geometries and porosities is examined. Installing a barrier inside the shock tube test section will cause the development of the following wave pattern upon a head-on collision between the incident shock wave and the barrier: a reflected shock from the barrier and a transmitted shock propagating towards the shock tube end wall. Once the transmitted shock wave reaches the end wall it is reflected back towards the barrier. This is the beginning of multiple reflections between the barrier and the end wall. This full cycle of shock reflections/interactions resulting from the incident shock wave collision with the barrier can be studied in a single shock tube test. A one-dimensional (1D), inviscid flow model was proposed for simulating the flow resulting from the initial collision of the incident shock wave with the barrier. Fairly good agreement is found between experimental findings and simulations based on a 1D flow model. Based on obtained numerical and experimental findings an optimal design procedure for shock wave attenuator is suggested. The suggested attenuator may ensure the safety of the shelter’s ventilation systems.

  2. (BARS) -- Bibliographic Retrieval System Sandia Shock Compression (SSC) database Shock Physics Index (SPHINX) database. Volume 1: UNIX version query guide customized application for INGRES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann, W.; von Laven, G.M.; Parker, T.

    1993-09-01

    The Bibliographic Retrieval System (BARS) is a data base management system specially designed to retrieve bibliographic references. Two databases are available, (i) the Sandia Shock Compression (SSC) database which contains over 5700 references to the literature related to stress waves in solids and their applications, and (ii) the Shock Physics Index (SPHINX) which includes over 8000 further references to stress waves in solids, material properties at intermediate and low rates, ballistic and hypervelocity impact, and explosive or shock fabrication methods. There is some overlap in the information in the two data bases.

  3. Note: A contraction channel design for planar shock wave enhancement

    NASA Astrophysics Data System (ADS)

    Zhan, Dongwen; Li, Zhufei; Yang, Jianting; Zhu, Yujian; Yang, Jiming

    2018-05-01

    A two-dimensional contraction channel with a theoretically designed concave-oblique-convex wall profile is proposed to obtain a smooth planar-to-planar shock transition with shock intensity amplification that can easily overcome the limitations of a conventional shock tube. The concave segment of the wall profile, which is carefully determined based on shock dynamics theory, transforms the shock shape from an initial plane into a cylindrical arc. Then the level of shock enhancement is mainly contributed by the cylindrical shock convergence within the following oblique segment, after which the cylindrical shock is again "bent" back into a planar shape through the third section of the shock dynamically designed convex segment. A typical example is presented with a combination of experimental and numerical methods, where the shape of transmitted shock is almost planar and the post-shock flow has no obvious reflected waves. A quantitative investigation shows that the difference between the designed and experimental transmitted shock intensities is merely 1.4%. Thanks to its advantage that the wall profile design is insensitive to initial shock strength variations and high-temperature gas effects, this method exhibits attractive potential as an efficient approach to a certain, controllable, extreme condition of a strong shock wave with relatively uniform flow behind.

  4. Computational and Experimental Study of Supersonic Nozzle Flow and Shock Interactions

    NASA Technical Reports Server (NTRS)

    Carter, Melissa B.; Elmiligui, Alaa A.; Nayani, Sudheer N.; Castner, Ray; Bruce, Walter E., IV; Inskeep, Jacob

    2015-01-01

    This study focused on the capability of NASA Tetrahedral Unstructured Software System's CFD code USM3D capability to predict the interaction between a shock and supersonic plume flow. Previous studies, published in 2004, 2009 and 2013, investigated USM3D's supersonic plume flow results versus historical experimental data. This current study builds on that research by utilizing the best practices from the early papers for properly capturing the plume flow and then adding a wedge acting as a shock generator. This computational study is in conjunction with experimental tests conducted at the Glenn Research Center 1'x1' Supersonic Wind Tunnel. The comparison of the computational and experimental data shows good agreement for location and strength of the shocks although there are vertical shifts between the data sets that may be do to the measurement technique.

  5. Narrative theory: II. Self-generated and experimenter-provided negative income shock narratives increase delay discounting.

    PubMed

    Mellis, Alexandra M; Snider, Sarah E; Bickel, Warren K

    2018-04-01

    Reading experimenter-provided narratives of negative income shock has been previously demonstrated to increase impulsivity, as measured by discounting of delayed rewards. We hypothesized that writing these narratives would potentiate their effects of negative income shock on decision-making more than simply reading them. In the current study, 193 cigarette-smoking individuals from Amazon Mechanical Turk were assigned to either read an experimenter-provided narrative or self-generate a narrative describing either the negative income shock of job loss or a neutral condition of job transfer. Individuals then completed a task of delay discounting and measures of affective response to narratives, as well as rating various narrative qualities such as personal relevance and vividness. Consistent with past research, narratives of negative income shock increased delay discounting compared to control narratives. No significant differences existed in delay discounting after self-generating compared to reading experimenter-provided narratives. Positive affect was lower and negative affect was higher in response to narratives of job loss, but affect measures did not differ based on whether narratives were experimenter-provided or self-generated. All narratives were rated as equally realistic, but self-generated narratives (whether negative or neutral) were rated as more vivid and relevant than experimenter-provided narratives. These results indicate that the content of negative income shock narratives, regardless of source, consistently drives short-term choices. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  6. Studies of aerothermal loads generated in regions of shock/shock interaction in hypersonic flow

    NASA Technical Reports Server (NTRS)

    Holden, Michael S.; Moselle, John R.; Lee, Jinho

    1991-01-01

    Experimental studies were conducted to examine the aerothermal characteristics of shock/shock/boundary layer interaction regions generated by single and multiple incident shocks. The presented experimental studies were conducted over a Mach number range from 6 to 19 for a range of Reynolds numbers to obtain both laminar and turbulent interaction regions. Detailed heat transfer and pressure measurements were made for a range of interaction types and incident shock strengths over a transverse cylinder, with emphasis on the 3 and 4 type interaction regions. The measurements were compared with the simple Edney, Keyes, and Hains models for a range of interaction configurations and freestream conditions. The complex flowfields and aerothermal loads generated by multiple-shock impingement, while not generating as large peak loads, provide important test cases for code prediction. The detailed heat transfer and pressure measurements proved a good basis for evaluating the accuracy of simple prediction methods and detailed numerical solutions for laminar and transitional regions or shock/shock interactions.

  7. Comparisons of CTH simulations with measured wave profiles for simple flyer plate experiments

    DOE PAGES

    Thomas, S. A.; Veeser, L. R.; Turley, W. D.; ...

    2016-06-13

    We conducted detailed 2-dimensional hydrodynamics calculations to assess the quality of simulations commonly used to design and analyze simple shock compression experiments. Such simple shock experiments also contain data where dynamic properties of materials are integrated together. We wished to assess how well the chosen computer hydrodynamic code could do at capturing both the simple parts of the experiments and the integral parts. We began with very simple shock experiments, in which we examined the effects of the equation of state and the compressional and tensile strength models. We increased complexity to include spallation in copper and iron and amore » solid-solid phase transformation in iron to assess the quality of the damage and phase transformation simulations. For experiments with a window, the response of both the sample and the window are integrated together, providing a good test of the material models. While CTH physics models are not perfect and do not reproduce all experimental details well, we find the models are useful; the simulations are adequate for understanding much of the dynamic process and for planning experiments. However, higher complexity in the simulations, such as adding in spall, led to greater differences between simulation and experiment. Lastly, this comparison of simulation to experiment may help guide future development of hydrodynamics codes so that they better capture the underlying physics.« less

  8. Measurement and Analysis of the Extreme Physical Shock Environment Experienced by Crane-Mounted Radiation Detection Systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, M; Erchinger, J; Marianno, C

    Potentially, radiation detectors at ports of entry could be mounted on container gantry crane spreaders to monitor cargo containers entering and leaving the country. These detectors would have to withstand the extreme physical environment experienced by these spreaders during normal operations. Physical shock data from the gable ends of a spreader were recorded during the loading and unloading of a cargo ship with two Lansmont SAVER 9X30 units (with padding) and two PCB Piezotronics model 340A50 accelerometers (hard mounted). Physical shocks in the form of rapid acceleration were observed in all accelerometer units with values ranging from 0.20 g’s tomore » 199.99 g’s. The majority of the shocks for all the Lansmont and PCB accelerometers were below 50 g’s. The Lansmont recorded mean shocks of 21.83 ± 13.62 g’s and 24.78 ± 11.49 g’s while the PCB accelerometers experienced mean shocks of 34.39 ± 25.51 g’s and 41.77 ± 22.68 g’s for the landside and waterside units, respectively. Encased detector units with external padding should be designed to withstand at least 200 g’s of acceleration without padding and typical shocks of 30 g’s with padding for mounting on a spreader.« less

  9. Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen

    PubMed Central

    Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas

    2016-01-01

    The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent. PMID:27603017

  10. Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen.

    PubMed

    Kuriakose, Matthew; Skotak, Maciej; Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas

    2016-01-01

    The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent.

  11. On the relationship between collisionless shock structure and energetic particle acceleration

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.

    1983-01-01

    Recent experimental research on bow shock structure and theoretical studies of quasi-parallel shock structure and shock acceleration of energetic particles were reviewed, to point out the relationship between structure and particle acceleration. The phenomenological distinction between quasi-parallel and quasi-perpendicular shocks that has emerged from bow shock research; present efforts to extend this work to interplanetary shocks; theories of particle acceleration by shocks; and particle acceleration to shock structures using multiple fluid models were discussed.

  12. Common Problems with Pyrometry at Shock Physics Experiments and How to Avoid Them

    NASA Astrophysics Data System (ADS)

    Seifter, Achim; Obst, Andrew; Holtkamp, David

    2007-06-01

    Temperature is not only one of the most prominent parameters in shock physics experiments but also very hard to determine experimentally. Only a few techniques are available because of difficulties due to the short timescale and often very low temperatures. Pyrometry is the most portable of these techniques but has to deal with some problems which give rise to uncertainties. Only if the experiment is designed very carefully some of these difficulties like background radiation from high explosive burn products, muzzle flash or laser light can be avoided. Other problems like spatial temperature non-uniformities or thermal radiation from a transparent anvil are inherent to the experiment and cannot be avoided. By choosing the proper spectral range covered by the pyrometer and fitting the obtained spectral radiance traces with appropriate models meaningful results can be obtained. In this paper we will describe the most important points to be taken into account when designing the experiment, present considerations for choosing the wavelength range of the pyrometer and show data where spatial non uniformities or radiation from hot anvils occurred and temperature data could still be obtained.

  13. The Study of High-Speed Surface Dynamics Using a Pulsed Proton Beam

    NASA Astrophysics Data System (ADS)

    Buttler, William; Stone, Benjamin; Oro, David; Dimonte, Guy; Preston, Dean; Cherne, Frank; Germann, Timothy; Terrones, Guillermo; Tupa, Dale

    2011-06-01

    Los Alamos National Laboratory is presently engaged in development and implementation of ejecta source term and transport models for integration into LANL hydrodynamic computer codes. Experimental support for the effort spans a broad array of activities, including ejecta source term measurements from machine roughened Sn surfaces shocked by HE or flyer plates. Because the underlying postulate for ejecta formation is that ejecta are characterized by Richtmyer-Meshkov instability (RMI) phenomena, a key element of the theory and modeling effort centers on validation and verification RMI experiments at the LANSCE Proton Radiography Facility (pRad) to compare with modeled ejecta measurements. Here we present experimental results used to define and validate a physics based ejecta model together with remarkable, unexpected results of Sn instability growth in vacuum and gasses, and Sn and Cu RM growth that reveals the sensitivity of the RM instability to the yield strength of the material, Cu. The motivation of this last subject, RM growth linked to material strength, is to probe the shock pressure regions over which ejecta begins to form. Presenter

  14. The Experimental Study of Dynamics of Scaled Gas-Filled Bubble Collapse in Liquid

    NASA Astrophysics Data System (ADS)

    Pavlenko, Alexander

    2011-06-01

    The article provides results of analyzing special features of the single-bubble sonoluminescence, developing the special apparatus to investigate this phenomenon on a larger-scale basis. Certain very important effects of high energy density physics, i.e. liquid compressibility, shock-wave formation under the collapse of the gas cavity in liquid, shock-wave focusing in the gas-filled cavity, occurrence of hot dense plasma in the focusing area, and high-temperature radiation yield are observed in this phenomenon. Specificity of the process is conditioned by the ``ideal'' preparation and sphericity of the gas-and-liquid contact boundary what makes the collapse process efficient due to the reduced influence of hydrodynamic instabilities. Results of experimental investigations; results of developing the facilities, description of methods used to register parameters of facilities and the system under consideration; analytical estimates how gas-filled bubbles evolve in liquid with the regard for scale effects; results of preliminary 1-D gas dynamic calculations of the gas bubble evolution are presented. The work supported by ISTC Project #2116.

  15. Simultaneous density-field visualization and PIV of the Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Prestridge, Katherine; Rightley, Paul; Benjamin, Robert; Kurnit, Norman; Boxx, Isaac; Vorobieff, Peter

    1999-11-01

    We describe a highly-detailed experimental characterization of the Richtmyer-Meshkov instability. A vertical curtain of heavy gas (SF_6) flows into the test section of an air-filled, horizontal shock tube, and the instability evolves after the passage of a Mach 1.2 shock past the curtain. The evolution of the curtain is visualized by seeding the SF6 with small (d ≈ 0.5 μm) glycol/water droplets using a modified theatrical fog generator. Because the event lasts only 1 ms and the initial conditions vary from test to test, rapid and high-resolution (both spatial and temporal) data acquisition is required in order to characterize the initial and dynamic conditions for each experimental event. A customized, frequency-doubled, burst mode Nd:YAG laser and a commercial single-pulse laser are used for the implementation of simultaneous density-field imaging and PIV diagnostics. We have provided data about flow scaling and mixing through image analysis, and PIV data gives us further quantitative physical insight into the evolution of the Richtmyer-Meshkov instability.

  16. Effect of Off-Body Laser Discharge on Drag Reduction of Hemisphere Cylinder in Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Kianvashrad, Nadia; Knight, Doyle; Wilkinson, Stephen P.; Chou, Amanda; Horne, Robert A.; Herring, Gregory C.; Beeler, George B.; Jangda, Moazzam

    2017-01-01

    The interaction of an off-body laser discharge with a hemisphere cylinder in supersonic flow is investigated. The objectives are 1) experimental determination of the drag reduction and energetic efficiency of the laser discharge, and 2) assessment of the capability for accurate simulation of the interaction. The combined computational and experimental study comprises two phases. In the first phase, laser discharge in quiescent air was examined. The temporal behavior of the shock wave formed by the laser discharge was compared between experiment and simulation and good agreement is observed. In the second phase, the interaction of the laser discharge with a hemisphere cylinder was investigated numerically. Details of the pressure drag reduction and the physics of the interaction of the heated region with the bow shock are included. The drag reduction due to this interaction persisted for about five characteristic times where one characteristic time represents the time for the flow to move a distance equal to the hemisphere radius. The energetic efficiency of laser discharge for the case with 50 mJ energy absorbed by the gas is calculated as 3.22.

  17. An experimental investigation of the impingement of a planar shock wave on an axisymmetric body at Mach 3

    NASA Technical Reports Server (NTRS)

    Brosh, A.; Kussoy, M. I.

    1983-01-01

    An experimental study of the flow caused by a planar shock wave impinging obliquely on a cylinder is presented. The complex three dimensional shock wave and boundary layer interaction occurring in practical problems, such as the shock wave impingement from the shuttle nose on an external fuel tank, and store carriage interference on a supersonic tactical aircraft were investigated. A data base for numerical computations of complex flows was also investigated. The experimental techniques included pressure measurements and oil flow patterns on the surface of the cylinder, and shadowgraphs and total and static pressure surveys on the leeward and windward planes of symmetry. The complete data is presented in tabular form. The results reveal a highly complex flow field with two separation zones, regions of high crossflow, and multiple reflected shocks and expansion fans.

  18. Extended charge banking model of dual path shocks for implantable cardioverter defibrillators

    PubMed Central

    Dosdall, Derek J; Sweeney, James D

    2008-01-01

    Background Single path defibrillation shock methods have been improved through the use of the Charge Banking Model of defibrillation, which predicts the response of the heart to shocks as a simple resistor-capacitor (RC) circuit. While dual path defibrillation configurations have significantly reduced defibrillation thresholds, improvements to dual path defibrillation techniques have been limited to experimental observations without a practical model to aid in improving dual path defibrillation techniques. Methods The Charge Banking Model has been extended into a new Extended Charge Banking Model of defibrillation that represents small sections of the heart as separate RC circuits, uses a weighting factor based on published defibrillation shock field gradient measures, and implements a critical mass criteria to predict the relative efficacy of single and dual path defibrillation shocks. Results The new model reproduced the results from several published experimental protocols that demonstrated the relative efficacy of dual path defibrillation shocks. The model predicts that time between phases or pulses of dual path defibrillation shock configurations should be minimized to maximize shock efficacy. Discussion Through this approach the Extended Charge Banking Model predictions may be used to improve dual path and multi-pulse defibrillation techniques, which have been shown experimentally to lower defibrillation thresholds substantially. The new model may be a useful tool to help in further improving dual path and multiple pulse defibrillation techniques by predicting optimal pulse durations and shock timing parameters. PMID:18673561

  19. Vasopressin synthesis by the magnocellular neurons is different in the supraoptic nucleus and in the paraventricular nucleus in human and experimental septic shock.

    PubMed

    Sonneville, Romain; Guidoux, Céline; Barrett, Lucinda; Viltart, Odile; Mattot, Virginie; Polito, Andrea; Siami, Shidasp; de la Grandmaison, Geoffroy Lorin; Blanchard, Anne; Singer, Mervyn; Annane, Djillali; Gray, Françoise; Brouland, Jean-Philippe; Sharshar, Tarek

    2010-05-01

    Impaired arginine vasopressin (AVP) synthesis and release by the neurohypophyseal system, which includes the neurohypophysis and magnocellular neurons of the paraventricular and supraoptic nuclei, have been postulated in septic shock, but changes in this system have never been assessed in human septic shock, and only partially experimentally. We investigated AVP synthesis and release by the neurohypophyseal system in 9 patients who died from septic shock and 10 controls, and in 20 rats with fecal peritonitis-induced sepsis and 8 sham-operation controls. Ten rats died spontaneously from septic shock, and the others were sacrificed. In patients with septic shock, as in rats that died spontaneously following sepsis induction, AVP immunohistochemical expression was decreased in the neurohypophysis and supraoptic magnocellular neurons, whereas it was increased in the paraventricular magnocellular neurons. No significant change was observed in AVP messenger RiboNucleic Acid (mRNA) expression assessed by in situ hybridization in either paraventricular or supraoptic magnocellular cells. This study shows that both in human and experimental septic shock, AVP posttranscriptional synthesis and transport are differently modified in the magnocellular neurons of the supraoptic and paraventricular nuclei. This may account for the inappropriate AVP release in septic shock and suggests that distinct pathogenic mechanisms operate in these nuclei.

  20. Shock wave attenuation in a micro-channel

    NASA Astrophysics Data System (ADS)

    Giordano, J.; Perrier, P.; Meister, L.; Brouillette, M.

    2018-05-01

    This work presents optical measurements of shock wave attenuation in a glass micro-channel. This transparent facility, with a cross section ranging from 1 mm× 150 μm to 1 mm× 500 μm, allowed for the use of high-speed schlieren videography to visualize the propagation of a shock wave within the entire micro-channel and to quantify velocity attenuation of the wave due to wall effects. In this paper, we present the experimental technique and the relevant data treatment we have used to increase the sensitivity of shock wave detection. Then, we compared our experimental results for different channel widths, lengths, and shock wave velocities with the analytical model for shock attenuation proposed by Russell (J Fluid Mech 27(2):305-314, 1967), which assumes laminar flow, and by Mirels (Attenuation in a shock tube due to unsteady-boundary-layer action, NACA Report 1333, 1957) for turbulent flow. We found that these models are inadequate to predict the observed data, owing to the presence of fully developed flow which violates the basic assumption of these models. The data are also compared with the empirical shock attenuation models proposed by Zeitoun (Phys Fluids 27(1):011701, 2015) and Deshpande and Puranik (Shock Waves 26(4):465-475, 2016), where better agreement is observed. Finally, we presented experimental data for the flow field behind the shock wave from measurements of the Mach wave angle which shows globally decreasing flow Mach numbers due to viscous wall effects.

  1. International Shock-Wave Database: Current Status

    NASA Astrophysics Data System (ADS)

    Levashov, Pavel

    2013-06-01

    Shock-wave and related dynamic material response data serve for calibrating, validating, and improving material models over very broad regions of the pressure-temperature-density phase space. Since the middle of the 20th century vast amount of shock-wave experimental information has been obtained. To systemize it a number of compendiums of shock-wave data has been issued by LLNL, LANL (USA), CEA (France), IPCP and VNIIEF (Russia). In mid-90th the drawbacks of the paper handbooks became obvious, so the first version of the online shock-wave database appeared in 1997 (http://www.ficp.ac.ru/rusbank). It includes approximately 20000 experimental points on shock compression, adiabatic expansion, measurements of sound velocity behind the shock front and free-surface-velocity for more than 650 substances. This is still a useful tool for the shock-wave community, but it has a number of serious disadvantages which can't be easily eliminated: (i) very simple data format for points and references; (ii) minimalistic user interface for data addition; (iii) absence of history of changes; (iv) bad feedback from users. The new International Shock-Wave database (ISWdb) is intended to solve these and some other problems. The ISWdb project objectives are: (i) to develop a database on thermodynamic and mechanical properties of materials under conditions of shock-wave and other dynamic loadings, selected related quantities of interest, and the meta-data that describes the provenance of the measurements and material models; and (ii) to make this database available internationally through the Internet, in an interactive form. The development and operation of the ISWdb is guided by an advisory committee. The database will be installed on two mirrored web-servers, one in Russia and the other in USA (currently only one server is available). The database provides access to original experimental data on shock compression, non-shock dynamic loadings, isentropic expansion, measurements of sound speed in the Hugoniot state, and time-dependent free-surface or window-interface velocity profiles. Users are able to search the information in the database and obtain the experimental points in tabular or plain text formats directly via the Internet using common browsers. It is also possible to plot the experimental points for comparison with different approximations and results of equation-of-state calculations. The user can present the results of calculations in text or graphical forms and compare them with any experimental data available in the database. A short history of the shock-wave database will be presented and current possibilities of ISWdb will be demonstrated. Web-site of the project: http://iswdb.info. This work is supported by SNL contracts # 1143875, 1196352.

  2. Formation of X-ray emitting stationary shocks in magnetized protostellar jets

    NASA Astrophysics Data System (ADS)

    Ustamujic, S.; Orlando, S.; Bonito, R.; Miceli, M.; Gómez de Castro, A. I.; López-Santiago, J.

    2016-12-01

    Context. X-ray observations of protostellar jets show evidence of strong shocks heating the plasma up to temperatures of a few million degrees. In some cases, the shocked features appear to be stationary. They are interpreted as shock diamonds. Aims: We investigate the physics that guides the formation of X-ray emitting stationary shocks in protostellar jets; the role of the magnetic field in determining the location, stability, and detectability in X-rays of these shocks; and the physical properties of the shocked plasma. Methods: We performed a set of 2.5-dimensional magnetohydrodynamic numerical simulations that modelled supersonic jets ramming into a magnetized medium and explored different configurations of the magnetic field. The model takes into account the most relevant physical effects, namely thermal conduction and radiative losses. We compared the model results with observations, via the emission measure and the X-ray luminosity synthesized from the simulations. Results: Our model explains the formation of X-ray emitting stationary shocks in a natural way. The magnetic field collimates the plasma at the base of the jet and forms a magnetic nozzle there. After an initial transient, the nozzle leads to the formation of a shock diamond at its exit which is stationary over the time covered by the simulations ( 40-60 yr; comparable with timescales of the observations). The shock generates a point-like X-ray source located close to the base of the jet with luminosity comparable with that inferred from X-ray observations of protostellar jets. For the range of parameters explored, the evolution of the post-shock plasma is dominated by the radiative cooling, whereas the thermal conduction slightly affects the structure of the shock. A movie is available at http://www.aanda.org

  3. Thermo-elastic-plastic analysis for elastic component under high temperature fatigue crack growth rate

    NASA Astrophysics Data System (ADS)

    Ali, Mohammed Ali Nasser

    The research project presents a fundamental understanding of the fatigue crack growth mechanisms of AISI 420 martensitic stainless steel, based on the comparison analysis between the theoretical and numerical modelling, incorporating research findings under isothermal fatigue loading for solid cylindrical specimen and the theoretical modelling with the numerical simulation for tubular specimen when subjected to cyclic mechanical loading superimposed by cyclic thermal shock.The experimental part of this research programme studied the fatigue stress-life data for three types of surface conditions specimen and the isothermal stress-controlled fatigue testing at 300 °C - 600 °C temperature range. It is observed that the highest strength is obtained for the polished specimen, while the machined specimen shows lower strength, and the lowest strength is the notched specimen due to the high effect of the stress concentration. The material behaviour at room and high temperatures shows an initial hardening, followed by slow extension until fully plastic saturation then followed by crack initiation and growth eventually reaching the failure of the specimen, resulting from the dynamic strain ageing occurred from the transformation of austenitic microstructure to martensite and also, the nucleation of precipitation at grain boundaries and the incremental temperature increase the fatigue crack growth rate with stress intensity factor however, the crack growth rate at 600 °C test temperature is less than 500 °C because of the creep-fatigue taking place.The theoretical modelling presents the crack growth analysis and stress and strain intensity factor approaches analysed in two case studies based on the addition of thermo-elastic-plastic stresses to the experimental fatigue applied loading. Case study one estimates the thermal stresses superimposed sinusoidal cyclic mechanical stress results in solid cylinder under isothermal fatigue simulation. Case study two estimates the transient thermal stresses superimposed on cyclic mechanical loading results in hollow cylinder under thermal shock in heating case and down shock cooling case. The combination of stress and strain intensity factor theoretical calculations with the experimental output recorded data shows a similar behaviour with increasing temperature, and there is a fair correlation between the profiles at the beginning and then divergence with increasing the crack length. The transient influence of high temperature in case two, giving a very high thermal shock stress as a heating or cooling effects, shifting up the combined stress, when applied a cyclic mechanical load in fraction of seconds, and the reputations of these shocks, causing a fast failure under high thermal shock stress superimposed with mechanical loading.Finally, the numerical modelling analyses three cases studied were solved due to the types of loading and types of specimen geometry by using finite element models constructed through the ANSYS Workbench version 13.0. The first case is a low cyclic fatigue case for a solid cylinder specimen simulated by applying a cyclic mechanical loading. The second is an isothermal fatigue case for solid cylinder specimen simulated by supplying different constant temperatures on the outer surface with cyclic mechanical loading, where the two cases are similar to the experimental tests and the third case, is a thermo-mechanical fatigue for a hollow cylinder model by simulating a thermal up-shock generated due to transient heating on the outer surface of the model or down shock cooling on the inner surface with the cyclic mechanical loading. The results show a good agreement with the experimental data in terms of alternative stress and life in the first case. In case two results show the strain intensity factor is increases with increasing temperature similar to the theoretical solution due to the influence of the modulus of elasticity and the difference in life estimation with the experimental output record is related to the input data made of theoretical physical properties and the experimental stress-life data.

  4. Focusing of Shear Shock Waves

    NASA Astrophysics Data System (ADS)

    Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco

    2018-01-01

    Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.

  5. Prediction and measurement of heat transfer rates for the shock-induced unsteady laminar boundary layer on a flat plate

    NASA Technical Reports Server (NTRS)

    Cook, W. J.

    1972-01-01

    The unsteady laminar boundary layer induced by the flow-initiating shock wave passing over a flat plate mounted in a shock tube was theoretically and experimentally studied in terms of heat transfer rates to the plate for shock speeds ranging from 1.695 to 7.34 km/sec. The theory presented by Cook and Chapman for the shock-induced unsteady boundary layer on a plate is reviewed with emphasis on unsteady heat transfer. A method of measuring time-dependent heat-transfer rates using thin-film heat-flux gages and an associated data reduction technique are outlined in detail. Particular consideration is given to heat-flux measurement in short-duration ionized shocktube flows. Experimental unsteady plate heat transfer rates obtained in both air and nitrogen using thin-film heat-flux gages generally agree well with theoretical predictions. The experimental results indicate that the theory continues to predict the unsteady boundary layer behavior after the shock wave leaves the trailing edge of the plate even though the theory is strictly applicable only for the time interval in which the shock remains on the plate.

  6. Experimental evaluation of low-pass shock isolation performance of elastomers using frequency-based Kolsky bar analyses

    DOE PAGES

    Knight, Marlene E.; Sanborn, Brett; Song, Bo; ...

    2017-01-26

    Elastomeric materials are used as shock isolation materials in a variety of environments to dampen vibrations and/or absorb energy from external impact to minimize energy transfer between two objects or bodies. Some applications require the shock isolation materials to behave as a low-pass mechanical filter to mitigate the shock/impact at high frequencies but transmit the energy at low frequencies with minimal attenuation. To fulfill this requirement, a shock isolation material needs to be carefully evaluated and selected with proper experimental design, procedures, and analyses. In this study, a Kolsky bar was modified with precompression (up to 15.5 kN) and confinementmore » capabilities to evaluate low-pass shock isolation performance in terms of acceleration attenuation through a variety of elastomers. Also investigated were the effects of preload and specimen geometry on the low-pass shock isolation response.« less

  7. Water Entry and the Cavity-Running Behavior of Missiles

    DTIC Science & Technology

    1975-01-01

    T. H., Tables of Physical and Chemical Constants, John Wiley and Sons, Inc., New York, 13th Ed. 1966 1-5. Wilson, W., "Tables for the Speed of Sound...demonstrated experimentally and theoretically by Chuang (Ref. (4-1)) and at approximately the same time by tests of Verhagen (Ref. (4-2)), Lewison and...the pressures, but Lewison and Maclean stated that rough-water performance was not repeatab*le. While the shock would be much more inrtense if air

  8. Decaying shock studies of phase transitions in MgO-SiO2 systems: implications for the Super-Earths' interiors

    NASA Astrophysics Data System (ADS)

    Bolis, R.; Morard, G.; Vinci, T.; Ravasio, A.; Bambrink, E.; Guarguaglini, M.; Koenig, M.; Musella, R.; Françoise, R.; Bouchet, J.; Ozaki, N.; Miyanishi, K.; Sekine, T.; Sakawa, Y.; Sano, T.; Kodama, R.; Guyot, F. J.; Benuzzi, A.

    2016-12-01

    Mantles of telluric exoplanets, so-called Earth-like and Super-Earths, are expected to be mainly composed of different type of oxides, such as periclase (MgO), enstatite (MgSiO3) and forsterite (Mg2SiO4). Determining the phase diagrams, melting curves and liquid properties of these compounds under extreme pressure (0.2-1 TPa) is crucial to model the internal dynamic of these exoplanets, as the melting of mantle components controls planetary temperature profiles [6]. Experimentally, these planetary thermodynamic states can be achieved with laser-shock compression. Here we present laser-driven decaying shock experiments on MgO, MgSiO3 and Mg2SiO4 samples performed at LULI and GEKKO laser facilities, where we focused 1.2-2.5 ns laser pulses with an intensity between 3-8 1013 W/cm2 exploring pressures between 0.2 and 1 TPa and temperature between 5000 and 30000 K. We determined the thermodynamic states using rear side optical diagnostics. We observed a single transition for MgO associated to melting (at 0.47 TPa ± 0.04 and 9863 ± 812 K) and no evidence of a liquid-liquid transition, dissociation or melting for all the other compounds in the range 150-500 Gpa and 200-800 Gpa respectively for MgSiO3 and Mg2SiO4. Some implications are presented comparing our data experimental and theoretical data found in literature [1, 2, 3, 4, 5]. In particular these results represent a key input to solve the controversy on a possible MgSiO3 liquid-liquid phase transition. Moreover we propose a revision of the phase diagram of MgO, with a lower melting line which results in a lower temperature profile for super-Earths. Finally our data evidence the presence of a poor electrically conducting liquid in the phase diagram of all the studied material, with implications for the modelling of magnetic field generation via dynamo mechanism.[1] McWilliams et al., Science 338 (2012): 1330-1333. [2] Spaulding et al., Physical Review Letters108 (2012): 065701. [3] Root et al., Physical Review Letters 115 (2015): 198501. [4] Miyanishi et al., Physical Review E 92 (2015): 023103. [5] Militzer, High Energy Density Physics 9 (2013): 152-157. [6] Stixrude, Philos. Trans. R. Soc. A 372 (2014): 20130076.

  9. Hugoniot equation of state and dynamic strength of boron carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grady, Dennis E.

    Boron carbide ceramics have been particularly problematic in attempts to develop adequate constitutive model descriptions for purposes of analysis of dynamic response in the shock and impact environment. Dynamic strength properties of boron carbide ceramic differ uniquely from comparable ceramics. Furthermore, boron carbide is suspected, but not definitely shown, to undergoing polymorphic phase transformation under shock compression. In the present paper, shock-wave compression measurements conducted over the past 40 years are assessed for the purpose of achieving improved understanding of the dynamic equation of state and strength of boron carbide. In particular, attention is focused on the often ignored Losmore » Alamos National Laboratory (LANL) Hugoniot measurements performed on porous sintered boron carbide ceramic. The LANL data are shown to exhibit two compression anomalies on the shock Hugoniot within the range of 20–60 GPa that may relate to crystallographic structure transitions. More recent molecular dynamics simulations on the compressibility of the boron carbide crystal lattice reveal compression transitions that bear similarities to the LANL Hugoniot results. The same Hugoniot data are complemented with dynamic isentropic compression data for boron carbide extracted from Hugoniot measurements on boron carbide and copper granular mixtures. Other Hugoniot measurements, however, performed on near-full-density boron carbide ceramic differ markedly from the LANL Hugoniot data. These later data exhibit markedly less compressibility and tend not to show comparable anomalies in compressibility. Alternative Hugoniot anomalies, however, are exhibited by the near-full-density data. Experimental uncertainty, Hugoniot strength, and phase transformation physics are all possible explanations for the observed discrepancies. It is reasoned that experimental uncertainty and Hugoniot strength are not likely explanations for the observed differences. The notable mechanistic difference in the processes of shock compression between the LANL data and that of the other studies is the markedly larger inelastic deformation and dissipation experienced in the shock event brought about by compaction of the substantially larger porosity LANL test ceramics. High-pressure diamond anvil cell experiments reveal extensive amorphization, reasoned to be a reversion product of a higher-pressure crystallographic phase, which is a consequence of application of both high pressure and shear deformation to the boron carbide crystal structure. A dependence of shock-induced high-pressure phase transformation in boron carbide on the extent of shear deformation experienced in the shock process offers a plausible explanation for the differences observed in the LANL Hugoniot data on porous ceramic and that of other shock data on near-full-density boron carbide.« less

  10. Current topics in shock waves; Proceedings of the International Symposium on Shock Waves and Shock Tubes, 17th, Lehigh University, Bethlehem, PA, July 17-21, 1989

    NASA Astrophysics Data System (ADS)

    Kim, Yong W.

    Various papers on shock waves are presented. The general topics addressed include: shock formation, focusing, and implosion; shock reflection and diffraction; turbulence; laser-produced plasmas and waves; ionization and shock-plasma interaction; chemical kinetics, pyrolysis, and soot formation; experimental facilities, techniques, and applications; ignition of detonation and combustion; particle entrainment and shock propagation through particle suspension; boundary layers and blast simulation; computational methods and numerical simulation.

  11. Implications of pressure diffusion for shock waves

    NASA Technical Reports Server (NTRS)

    Ram, Ram Bachan

    1989-01-01

    The report deals with the possible implications of pressure diffusion for shocks in one dimensional traveling waves in an ideal gas. From this new hypothesis all aspects of such shocks can be calculated except shock thickness. Unlike conventional shock theory, the concept of entropy is not needed or used. Our analysis shows that temperature rises near a shock, which is of course an experimental fact; however, it also predicts that very close to a shock, density increases faster than pressure. In other words, a shock itself is cold.

  12. Optical techniques for determination of normal shock position in supersonic flows for aerospace applications

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Eustace, John G.

    1990-01-01

    Techniques for the quantitative determination of shock position in supersonic flows using direct and indirect methods is presented. A description of an experimental setup is also presented, different configurations of shock position sensing systems are explained, and some experimental results are given. All of the methods discussed are analyzed to determine the ease of technology transfer from the laboratory to in-flight operation.

  13. Experimental investigation on the characteristics of supersonic fuel spray and configurations of induced shock waves.

    PubMed

    Wang, Yong; Yu, Yu-Song; Li, Guo-Xiu; Jia, Tao-Ming

    2017-01-05

    The macro characteristics and configurations of induced shock waves of the supersonic sprays are investigated by experimental methods. Visualization study of spray shape is carried out with the high-speed camera. The macro characteristics including spray tip penetration, velocity of spray tip and spray angle are analyzed. The configurations of shock waves are investigated by Schlieren technique. For supersonic sprays, the concept of spray front angle is presented. Effects of Mach number of spray on the spray front angle are investigated. The results show that the shape of spray tip is similar to blunt body when fuel spray is at transonic region. If spray entered the supersonic region, the oblique shock waves are induced instead of normal shock wave. With the velocity of spray increasing, the spray front angle and shock wave angle are increased. The tip region of the supersonic fuel spray is commonly formed a cone. Mean droplet diameter of fuel spray is measured using Malvern's Spraytec. Then the mean droplet diameter results are compared with three popular empirical models (Hiroyasu's, Varde's and Merrigton's model). It is found that the Merrigton's model shows a relative good correlation between models and experimental results. Finally, exponent of injection velocity in the Merrigton's model is fitted with experimental results.

  14. Experimental investigation on the characteristics of supersonic fuel spray and configurations of induced shock waves

    PubMed Central

    Wang, Yong; Yu, Yu-song; Li, Guo-xiu; Jia, Tao-ming

    2017-01-01

    The macro characteristics and configurations of induced shock waves of the supersonic sprays are investigated by experimental methods. Visualization study of spray shape is carried out with the high-speed camera. The macro characteristics including spray tip penetration, velocity of spray tip and spray angle are analyzed. The configurations of shock waves are investigated by Schlieren technique. For supersonic sprays, the concept of spray front angle is presented. Effects of Mach number of spray on the spray front angle are investigated. The results show that the shape of spray tip is similar to blunt body when fuel spray is at transonic region. If spray entered the supersonic region, the oblique shock waves are induced instead of normal shock wave. With the velocity of spray increasing, the spray front angle and shock wave angle are increased. The tip region of the supersonic fuel spray is commonly formed a cone. Mean droplet diameter of fuel spray is measured using Malvern’s Spraytec. Then the mean droplet diameter results are compared with three popular empirical models (Hiroyasu’s, Varde’s and Merrigton’s model). It is found that the Merrigton’s model shows a relative good correlation between models and experimental results. Finally, exponent of injection velocity in the Merrigton’s model is fitted with experimental results. PMID:28054555

  15. Experimental Plans for Subsystems of a Shock Wave Driven Gas Core Reactor

    NASA Technical Reports Server (NTRS)

    Kazeminezhad, F.; Anghai, S.

    2008-01-01

    This Contractor Report proposes a number of plans for experiments on subsystems of a shock wave driven pulsed magnetic induction gas core reactor (PMI-GCR, or PMD-GCR pulsed magnet driven gas core reactor). Computer models of shock generation and collision in a large-scale PMI-GCR shock tube have been performed. Based upon the simulation results a number of issues arose that can only be addressed adequately by capturing experimental data on high pressure (approx.1 atmosphere or greater) partial plasma shock wave effects in large bore shock tubes ( 10 cm radius). There are three main subsystems that are of immediate interest (for appraisal of the concept viability). These are (1) the shock generation in a high pressure gas using either a plasma thruster or pulsed high magnetic field, (2) collision of MHD or gas dynamic shocks, their interaction time, and collision pile-up region thickness, and (3) magnetic flux compression power generation (not included here).

  16. A model for finite-deformation nonlinear thermomechanical response of single crystal copper under shock conditions

    NASA Astrophysics Data System (ADS)

    Luscher, Darby J.; Bronkhorst, Curt A.; Alleman, Coleman N.; Addessio, Francis L.

    2013-09-01

    A physically consistent framework for combining pressure-volume-temperature equations of state with crystal plasticity models is developed for the application of modeling the response of single and polycrystals under shock conditions. The particular model is developed for copper, thus the approach focuses on crystals of cubic symmetry although many of the concepts in the approach are applicable to crystals of lower symmetry. We employ a multiplicative decomposition of the deformation gradient into isochoric elastic, thermoelastic dilation, and plastic parts leading to a definition of isochoric elastic Green-Lagrange strain. This finite deformation kinematic decomposition enables a decomposition of Helmholtz free-energy into terms reflecting dilatational thermoelasticity, strain energy due to long-range isochoric elastic deformation of the lattice and a term reflecting energy stored in short range elastic lattice deformation due to evolving defect structures. A model for the single crystal response of copper is implemented consistent with the framework into a three-dimensional Lagrangian finite element code. Simulations exhibit favorable agreement with single and bicrystal experimental data for shock pressures ranging from 3 to 110 GPa.

  17. Towards validated chemistry at extreme conditions: reactive MD simulations of shocked Polyvinyl Nitrate and Nitromethane

    NASA Astrophysics Data System (ADS)

    Islam, Md Mahbubul; Strachan, Alejandro

    A detailed atomistic-level understanding of the ultrafast chemistry of detonation processes of high energy materials is crucial to understand their performance and safety. Recent advances in laser shocks and ultra-fast spectroscopy is yielding the first direct experimental evidence of chemistry at extreme conditions. At the same time, reactive molecular dynamics (MD) in current high-performance computing platforms enable an atomic description of shock-induced chemistry with length and timescales approaching those of experiments. We use MD simulations with the reactive force field ReaxFF to investigate the shock-induced chemical decomposition mechanisms of polyvinyl nitrate (PVN) and nitromethane (NM). The effect of shock pressure on chemical reaction mechanisms and kinetics of both the materials are investigated. For direct comparison of our simulation results with experimentally derived IR absorption data, we performed spectral analysis using atomistic velocity at various shock conditions. The combination of reactive MD simulations and ultrafast spectroscopy enables both the validation of ReaxFF at extreme conditions and contributes to the interpretation of the experimental data relating changes in spectral features to atomic processes. Office of Naval Research MURI program.

  18. Experimental study of moving throat plug in a shock tunnel

    NASA Astrophysics Data System (ADS)

    Lee, J. K.; Park, C.; Kwon, O. J.

    2015-07-01

    An experimental study has been carried out to investigate the flow in the KAIST shock tunnel with two moving throat plugs at a primary shock velocity of 1.19 km/s. The nozzle reservoir pressure and the Pitot pressure at the exit of the nozzle were measured to examine the influence of the moving throat plugs on the shock tunnel flow. To assess the present experimental results, comparisons with previous work using a stationary throat plug were made. The mechanism for closing the moving throat plug was developed and verified. The source of the force to move the plug was the pressure generated when the primary shock was reflected at the bottom of the plug. It was observed that the two plugs terminated the shock tunnel flow after the steady flow. .The time for the plugs to terminate the flow showed good agreement with the calculation of the proposed simple analytic solution. There was a negligible difference in flow values such as the reflected pressure and the Pitot pressure between the moving and the stationary plugs.

  19. Dynamic Shock Response of an S2 Glass/SC15 Epoxy Woven Fabric Composite Material System

    NASA Astrophysics Data System (ADS)

    Key, Christopher; Alexander, Scott; Harstad, Eric; Schumacher, Shane

    2017-06-01

    The use of S2 glass/SC15 epoxy woven fabric composite materials for blast and ballistic protection has been an area of on-going research over the past decade. In order to accurately model this material system within potential applications under extreme loading conditions, a well characterized and well understood anisotropic equation of state (EOS) is needed. This work details both an experimental program and associated analytical modelling efforts which aim to provide better physical understanding of the anisotropic EOS behavior of this material. Experimental testing focused on planar shock impact tests loading the composite to peak pressures of 15 GPa in both the through-thickness and on-fiber orientation. Test results highlighted the anisotropic response of the material and provided a basis by which the associated numeric micromechanical investigation was compared. Results of the combined experimental and numerical modelling investigation provided insights into not only the constituent material influence on the composite response but also the importance of the geometrical configuration of the plain weave microstructure and the stochastic significance of the microstructural configuration. Sandia National Laboratories is a multi-mission laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. The History of the APS Topical Group on Shock Compression of Condensed Matter

    NASA Astrophysics Data System (ADS)

    Forbes, Jerry W.

    2002-07-01

    In order to provide broader scientific recognition and to advance the science of shock compressed condensed matter, a group of American Physical Society (APS) members worked within the Society to make this field an active part of the APS. Individual papers were presented at APS meetings starting in the 1940's and shock wave sessions were organized starting with the 1967 Pasadena meeting. Shock wave topical conferences began in 1979 in Pullman, WA. Signatures were obtained on a petition in 1984 from a balanced cross-section of the shock wave community to form an APS Topical Group (TG). The APS Council officially accepted the formation of the Shock Compression of Condensed Matter (SCCM) TG at its October 1984 meeting. This action firmly aligned the shock wave field with a major physical science organization. Most early topical conferences were sanctioned by the APS while those held after 1992 were official APS meetings. The topical group organizes a shock wave topical conference in odd numbered years while participating in shock wave/high pressure sessions at APS general meetings in even numbered years.

  1. Interferometric and schlieren characterization of the plasmas and shock wave dynamics during laser-triggered discharge in atmospheric air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Wenfu; Li, Xingwen, E-mail: xwli@mail.xjtu.edu.cn; Wu, Jian

    2014-08-15

    This paper describes our efforts to reveal the underlying physics of laser-triggered discharges in atmospheric air using a Mach-Zehnder interferometer and schlieren photography. Unlike the hemispherical shock waves that are produced by laser ablation, bell-like morphologies are observed during laser-triggered discharges. Phase shifts are recovered from the interferograms at a time of 1000 ns by the 2D fast Fourier transform method, and then the values of the refractive index are deduced using the Abel inversion. An abundance of free electrons is expected near the cathode surface. The schlieren photographs visualize the formation of stagnation layers at ∼600 ns in the interaction zonesmore » of the laser- and discharge-produced plasmas. Multiple reflected waves are observed at later times with the development of shock wave propagations. Estimations using the Taylor-Sedov self-similar solution indicated that approximately 45.8% and 51.9% of the laser and electrical energies are transferred into the gas flow motions, respectively. Finally, numerical simulations were performed, which successfully reproduced the main features of the experimental observations, and provided valuable insights into the plasma and shock wave dynamics during the laser-triggered discharge.« less

  2. Blunt-Body Aerothermodynamic Database from High-Enthalpy CO2 Testing in an Expansion Tunnel

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Prabhu, Dinesh K.; Maclean, Matthew; Dufrene, Aaron

    2016-01-01

    An extensive database of heating, pressure, and flow field measurements on a 70-deg sphere-cone blunt body geometry in high-enthalpy, CO2 flow has been generated through testing in an expansion tunnel. This database is intended to support development and validation of computational tools and methods to be employed in the design of future Mars missions. The test was conducted in an expansion tunnel in order to avoid uncertainties in the definition of free stream conditions noted in previous studies performed in reflected shock tunnels. Data were obtained across a wide range of test velocity/density conditions that produced various physical phenomena of interest, including laminar and transitional/turbulent boundary layers, non-reacting to completely dissociated post-shock gas composition and shock-layer radiation. Flow field computations were performed at the test conditions and comparisons were made with the experimental data. Based on these comparisons, it is recommended that computational uncertainties on surface heating and pressure, for laminar, reacting-gas environments can be reduced to +/-10% and +/-5%, respectively. However, for flows with turbulence and shock-layer radiation, there were not sufficient validation-quality data obtained in this study to make any conclusions with respect to uncertainties, which highlights the need for further research in these areas.

  3. Shock-darkening in ordinary chondrites: Determination of the pressure-temperature conditions by shock physics mesoscale modeling

    NASA Astrophysics Data System (ADS)

    Moreau, J.; Kohout, T.; Wünnemann, K.

    2017-11-01

    We determined the shock-darkening pressure range in ordinary chondrites using the iSALE shock physics code. We simulated planar shock waves on a mesoscale in a sample layer at different nominal pressures. Iron and troilite grains were resolved in a porous olivine matrix in the sample layer. We used equations of state (Tillotson EoS and ANEOS) and basic strength and thermal properties to describe the material phases. We used Lagrangian tracers to record the peak shock pressures in each material unit. The post-shock temperatures (and the fractions of the tracers experiencing temperatures above the melting point) for each material were estimated after the passage of the shock wave and after the reflections of the shock at grain boundaries in the heterogeneous materials. The results showed that shock-darkening, associated with troilite melt and the onset of olivine melt, happened between 40 and 50 GPa with 52 GPa being the pressure at which all tracers in the troilite material reach the melting point. We demonstrate the difficulties of shock heating in iron and also the importance of porosity. Material impedances, grain shapes, and the porosity models available in the iSALE code are discussed. We also discuss possible not-shock-related triggers for iron melt.

  4. Elastic-plastic deformation of molybdenum single crystals shocked along [100

    DOE PAGES

    Mandal, A.; Gupta, Y. M.

    2017-01-24

    To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) – a body-centered cubic (BCC) metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ~0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ~3.6 GPa. Numerical simulations ofmore » the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}<111> and/or {112}<111> slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. As a result, the numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.« less

  5. Observation of a Hydrodynamically Driven, Radiative Precursor Shock

    NASA Astrophysics Data System (ADS)

    Keiter, P. A.; Drake, R. P.; Perry, T. S.; Robey, H.; Remington, B. A.; Iglesias, C. A.; Turner, N.; Stone, J.; Knauer, J.

    2001-10-01

    Many astrophysical systems, such as supernova remnants and jets, produce radiative-precursor shock waves. In a radiative-precursor shock, radiation from the shock ionizes and heats the medium ahead of it. The simulation of such systems requires that one treat both the emission and the absorption of the radiation. An important goal of this effort is to produce an experiment that can be modeled by astrophysical codes without implementing laser absorption physics into an astrophysical code. We report here the first measurements of a radiative-precursor shock in such an experiment. The experimental design is based on a past experiment[1,2] that used the Nova laser facility to simulate young supernova remnants. The target consists of a 60 νm CH plastic plug followed by a 150 νm vacuum gap and 2 mm of SiO2 aerogel foam. For the experiment, the density of the components and the laser-irradiation conditions are chosen so that the driven shock will produce an observable radiative precursor. We observed the radiative-precursor by using absorption spectroscopy. By backlighting the silicate aerogel foam with a thulium backlighter, we were able to observe both the 1s-2p and 1s-3p lines. These observations will allow us to determine the temperature profile in the precursor. 1. R.P. Drake, et al, Phys. Rev. Lett. 81, 2068 (1998). 2. R.P. Drake, et al., Phys. Plasmas, 7, 2142 (2000) Work supported by the U.S. Department of Energy both directly and through the Lawrence Livermore National Laboratory

  6. On Weibull's Spectrum of Nonrelativistic Energetic Particles at IP Shocks: Observations and Theoretical Interpretation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pallocchia, G.; Laurenza, M.; Consolini, G.

    2017-03-10

    Some interplanetary shocks are associated with short-term and sharp particle flux enhancements near the shock front. Such intensity enhancements, known as shock-spike events (SSEs), represent a class of relatively energetic phenomena as they may extend to energies of some tens of MeV or even beyond. Here we present an SSE case study in order to shed light on the nature of the particle acceleration involved in this kind of event. Our observations refer to an SSE registered on 2011 October 3 at 22:23 UT, by STEREO B instrumentation when, at a heliocentric distance of 1.08 au, the spacecraft was sweptmore » by a perpendicular shock moving away from the Sun. The main finding from the data analysis is that a Weibull distribution represents a good fitting function to the measured particle spectrum over the energy range from 0.1 to 30 MeV. To interpret such an observational result, we provide a theoretical derivation of the Weibull spectrum in the framework of the acceleration by “killed” stochastic processes exhibiting power-law growth in time of the velocity expectation, such as the classical Fermi process. We find an overall coherence between the experimental values of the Weibull spectrum parameters and their physical meaning within the above scenario. Hence, our approach based on the Weibull distribution proves to be useful for understanding SSEs. With regard to the present event, we also provide an alternative explanation of the Weibull spectrum in terms of shock-surfing acceleration.« less

  7. Analytical scalings of the linear Richtmyer-Meshkov instability when a shock is reflected.

    PubMed

    Campos, F Cobos; Wouchuk, J G

    2016-05-01

    When a planar shock hits a corrugated contact surface between two fluids, hydrodynamic perturbations are generated in both fluids that result in asymptotic normal and tangential velocity perturbations in the linear stage, the so called Richtmyer-Meshkov instability. In this work, explicit and exact analytical expansions of the asymptotic normal velocity (δv_{i}^{∞}) are presented for the general case in which a shock is reflected back. The expansions are derived from the conservation equations and take into account the whole perturbation history between the transmitted and reflected fronts. The important physical limits of weak and strong shocks and the high/low preshock density ratio at the contact surface are shown. An approximate expression for the normal velocity, valid even for high compression regimes, is given. A comparison with recent experimental data is done. The contact surface ripple growth is studied during the linear phase showing good agreement between theory and experiments done in a wide range of incident shock Mach numbers and preshock density ratios, for the cases in which the initial ripple amplitude is small enough. In particular, it is shown that in the linear asymptotic phase, the contact surface ripple (ψ_{i}) grows as ψ_{∞}+δv_{i}^{∞}t, where ψ_{∞} is an asymptotic ordinate different from the postshock ripple amplitude at t=0+. This work is a continuation of the calculations of F. Cobos Campos and J. G. Wouchuk, [Phys. Rev. E 90, 053007 (2014)PLEEE81539-375510.1103/PhysRevE.90.053007] for a single shock moving into one fluid.

  8. Two LANL laboratory astrophysics experiments

    NASA Astrophysics Data System (ADS)

    Intrator, Thomas; Weber, Thomas; Feng, Yan; Hutchinson, Trevor; Dunn, John; Akcay, Cihan

    2014-06-01

    Two laboratory experiments are described that have been built at Los Alamos (LANL) to gain access to a wide range of fundamental plasma physics issues germane to astro, space, and fusion plasmas. The over arching theme is magnetized plasma dynamics which includes significant currents, MHD forces and instabilities, magnetic field creation and annihilation, sheared flows and shocks. The Relaxation Scaling Experiment (RSX) creates current sheets and flux ropes that exhibit fully 3D dynamics, and can kink, bounce, merge and reconnect, shred, and reform in complicated ways. Recent movies from a large data set describe the 3D magnetic structure of a driven and dissipative single flux rope that spontaneously self saturates a kink instability. Examples of a coherent shear flow dynamo driven by colliding flux ropes will also be shown.The Magnetized Shock Experiment (MSX) uses Field reversed configuration (FRC) experimental hardware that forms and ejects FRCs at 150km/sec. This is sufficient to drive a collision less magnetized shock when stagnated into a mirror stopping field region with Alfven Mach number MA=3 so that super critical shocks can be studied. We are building a plasmoid accelerator to drive Mach numbers MA >> 3 to access solar wind and more exotic astrophysical regimes. Unique features of this experiment include access to parallel, oblique and perpendicular shocks, shock region much larger than ion gyro radii and ion inertial length, room for turbulence, and large magnetic and fluid Reynolds numbers.*DOE Office of Fusion Energy Sciences under LANS contract DE-AC52-06NA25396, NASA Geospace NNHIOA044I, Basic, Center for Magnetic Self Organization

  9. On physical and numerical instabilities arising in simulations of non-stationary radiatively cooling shocks

    NASA Astrophysics Data System (ADS)

    Badjin, D. A.; Glazyrin, S. I.; Manukovskiy, K. V.; Blinnikov, S. I.

    2016-06-01

    We describe our modelling of the radiatively cooling shocks and their thin shells with various numerical tools in different physical and calculational setups. We inspect structure of the dense shell, its formation and evolution, pointing out physical and numerical factors that sustain its shape and also may lead to instabilities. We have found that under certain physical conditions, the circular shaped shells show a strong bending instability and successive fragmentation on Cartesian grids soon after their formation, while remain almost unperturbed when simulated on polar meshes. We explain this by physical Rayleigh-Taylor-like instabilities triggered by corrugation of the dense shell surfaces by numerical noise. Conditions for these instabilities follow from both the shell structure itself and from episodes of transient acceleration during re-establishing of dynamical pressure balance after sudden radiative cooling onset. They are also easily excited by physical perturbations of the ambient medium. The widely mentioned non-linear thin shell instability, in contrast, in tests with physical perturbations is shown to have only limited chances to develop in real radiative shocks, as it seems to require a special spatial arrangement of fluctuations to be excited efficiently. The described phenomena also set new requirements on further simulations of the radiatively cooling shocks in order to be physically correct and free of numerical artefacts.

  10. Hypertonic Saline Resuscitation Restores Inflammatory Cytokine Balance in Post-Traumatic Hemorrhagic Shock Patients

    DTIC Science & Technology

    2004-09-01

    hypertonic saline with 6% dextran-70 (HSD) has been shown in experimental studies to reduce shock/resuscitation-induced inflammatory reactions and...hemodynamics and reestablishing inflammatory equilibrium [12]. Various immunoinflammatory alterations have been described in clinical and experimental ...ultimately causing greater morbidity and mortality [4]. Moreover, convincing experimental evidence indicates that conventional large-volume fluid

  11. Exposure to whole-body vibration and mechanical shock: a field study of quad bike use in agriculture.

    PubMed

    Milosavljevic, Stephan; McBride, David I; Bagheri, Nasser; Vasiljev, Radivoj M; Mani, Ramakrishnan; Carman, Allan B; Rehn, Borje

    2011-04-01

    The purpose of this study was to determine exposure to whole-body vibration (WBV) and mechanical shock in rural workers who use quad bikes and to explore how personal, physical, and workplace characteristics influence exposure. A seat pad mounted triaxial accelerometer and data logger recorded full workday vibration and shock data from 130 New Zealand rural workers. Personal, physical, and workplace characteristics were gathered using a modified version of the Whole Body Vibration Health Surveillance Questionnaire. WBVs and mechanical shocks were analysed in accordance with the International Standardization for Organization (ISO 2631-1 and ISO 2631-5) standards and are presented as vibration dose value (VDV) and mechanical shock (S(ed)) exposures. VDV(Z) consistently exceeded European Union (Guide to good practice on whole body vibration. Directive 2002/44/EC on minimum health and safety, European Commission Directorate General Employment, Social Affairs and Equal Opportunities. 2006) guideline exposure action thresholds with some workers exceeding exposure limit thresholds. Exposure to mechanical shock was also evident. Increasing age had the strongest (negative) association with vibration and shock exposure with body mass index (BMI) having a similar but weaker effect. Age, daily driving duration, dairy farming, and use of two rear shock absorbers created the strongest multivariate model explaining 33% of variance in VDV(Z). Only age and dairy farming combined to explain 17% of the variance for daily mechanical shock. Twelve-month prevalence for low back pain was highest at 57.7% and lowest for upper back pain (13.8%). Personal (age and BMI), physical (shock absorbers and velocity), and workplace characteristics (driving duration and dairy farming) suggest that a mix of engineered workplace and behavioural interventions is required to reduce this level of exposure to vibration and shock.

  12. A review of recent developments in the understanding of transonic shock buffet

    NASA Astrophysics Data System (ADS)

    Giannelis, Nicholas F.; Vio, Gareth A.; Levinski, Oleg

    2017-07-01

    Within a narrow band of flight conditions in the transonic regime, interactions between shock-waves and intermittently separated shear layers result in large amplitude, self-sustained shock oscillations. This phenomenon, known as transonic shock buffet, limits the flight envelope and is detrimental to both platform handling quality and structural integrity. The severity of this instability has incited a plethora of research to ascertain an underlying physical mechanism, and yet, with over six decades of investigation, aspects of this complex phenomenon remain inexplicable. To promote continual progress in the understanding of transonic shock buffet, this review presents a consolidation of recent investigations in the field. The paper begins with a conspectus of the seminal literature on shock-induced separation and modes of shock oscillation. The currently prevailing theories for the governing physics of transonic shock buffet are then detailed. This is followed by an overview of computational studies exploring the phenomenon, where the results of simulation are shown to be highly sensitive to the specific numerical methods employed. Wind tunnel investigations on two-dimensional aerofoils at shock buffet conditions are then outlined and the importance of these experiments for the development of physical models stressed. Research considering dynamic structural interactions in the presence of shock buffet is also highlighted, with a particular emphasis on the emergence of a frequency synchronisation phenomenon. An overview of three-dimensional buffet is provided next, where investigations suggest the governing mechanism may differ significantly from that of two-dimensional sections. Subsequently, a number of buffet suppression technologies are described and their efficacy in mitigating shock oscillations is assessed. To conclude, recommendations for the direction of future research efforts are given.

  13. Compact all-fiber interferometer system for shock acceleration measurement

    NASA Astrophysics Data System (ADS)

    Zhao, Jiang; Pi, Shaohua; Hong, Guangwei; Zhao, Dong; Jia, Bo

    2013-08-01

    Acceleration measurement plays an important role in a variety of fields in science and engineering. In particular, the accurate, continuous and non-contact recording of the shock acceleration profiles of the free target surfaces is considered as a critical technique in shock physics. Various kinds of optical interferometers have been developed to monitor the motion of the surfaces of shocked targets since the 1960s, for instance, the velocity interferometer system for any reflector, the fiber optic accelerometer, the photonic Doppler velocimetry system and the displacement interferometer. However, most of such systems rely on the coherent quasi-monochromatic illumination and discrete optic elements, which are costly in setting-up and maintenance. In 1996, L. Levin et al reported an interferometric fiber-optic Doppler velocimeter with high-dynamic range, in which fiber-coupled components were used to replace the discrete optic elements. However, the fringe visibility of the Levin's system is low because of the coupled components, which greatly limits the reliability and accuracy in the shock measurement. In this paper, a compact all-fiber interferometer system for measuring the shock acceleration is developed and tested. The advantage of the system is that not only removes the non-interfering light and enhances the fringe visibility, but also reduces polarization induced signal fading and the polarization induced phase shift. Moreover, it also does not require a source of long coherence length. The system bases entirely on single-mode fiber optics and mainly consists of a polarization beam splitter, a faraday rotator, a depolarizer and a 3×3 single-mode fiber coupler which work at 1310 nm wavelength. The optical systems of the interferometer are described and the experimental results compared with a shock acceleration calibration system with a pneumatic exciter (PneuShockTM Model 9525C by The Modal Shop) are reported. In the shock acceleration test, the interferometer system measured shock acceleration with peak accelerations of ~100,000 m/s2 and the durations of ~0.2 ms which are conformed to the results of the shock acceleration calibration system. The measured relative error of the acceleration is within 3%.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kay, Jeffrey J.; Park, Samuel; Kohl, Ian Thomas

    In this work, shock-induced reactions in high explosives and their chemical mechanisms were investigated using state-of-the-art experimental and theoretical techniques. Experimentally, ultrafast shock interrogation (USI, an ultrafast interferometry technique) and ultrafast absorption spectroscopy were used to interrogate shock compression and initiation of reaction on the picosecond timescale. The experiments yielded important new data that appear to indicate reaction of high explosives on the timescale of tens of picoseconds in response to shock compression, potentially setting new upper limits on the timescale of reaction. Theoretically, chemical mechanisms of shock-induced reactions were investigated using density functional theory. The calculations generated important insightsmore » regarding the ability of several hypothesized mechanisms to account for shock-induced reactions in explosive materials. The results of this work constitute significant advances in our understanding of the fundamental chemical reaction mechanisms that control explosive sensitivity and initiation of detonation.« less

  15. Computational modeling of electrostatic charge and fields produced by hypervelocity impact

    DOE PAGES

    Crawford, David A.

    2015-05-19

    Following prior experimental evidence of electrostatic charge separation, electric and magnetic fields produced by hypervelocity impact, we have developed a model of electrostatic charge separation based on plasma sheath theory and implemented it into the CTH shock physics code. Preliminary assessment of the model shows good qualitative and quantitative agreement between the model and prior experiments at least in the hypervelocity regime for the porous carbonate material tested. The model agrees with the scaling analysis of experimental data performed in the prior work, suggesting that electric charge separation and the resulting electric and magnetic fields can be a substantial effectmore » at larger scales, higher impact velocities, or both.« less

  16. Obituary: Thomas Julian Ahrens (1936-2010)

    NASA Astrophysics Data System (ADS)

    Jeanloz, Raymond; Asimow, Paul

    2011-12-01

    Thomas J. Ahrens, a leader in the use of shock waves to study planetary interiors and impact phenomena, died at his home in Pasadena, California on November 24, 2010, at the age of 74. He was the California Institute of Technology's Fletcher Jones Professor of Geophysics, formally emeritus since 2005 but professionally active to the end. Tom was a pioneer in experimental and numerical studies of the effects of hypervelocity impact, arguably the most important geophysical process in the formation, growth and - in many cases - surface evolution of planets. As a professor at Caltech, he established the foremost university laboratory for shock wave experiments, where students and research associates from around the world pursued basic research in geophysics, planetary science and other disciplines. Previously, high-pressure shock experiments were primarily conducted in national laboratories, where they were initially associated with development of nuclear weapons. The shock wave laboratory at Caltech was noted for key measurements addressing major questions in planetary geophysics. Equation-of-state studies on silicate melts showed that magma deep in Earth's mantle could be denser than the coexisting crystals, implying downward transport of melts (and associated heat) rather than the upward eruption of lavas observed in volcanic regions at Earth's surface. Shock-melting experiments on iron at pressures of Earth's core provide a crucial constraint on the temperature at the center of our planet. And studies of hydrous, carbonate and sulphate minerals under shock compression document how climate-altering molecules can be released by major impacts, such as the K/T event associated with the most recent mass extinction of biota in Earth history. In addition, Tom was a leader in numerical simulation of cratering, bringing the most recent laboratory measurements into the modeling of planetary impacts. Tom's training was in geophysics and applied experimental physics, as exemplified by the ultrasonic wave-velocity measurements of his Ph.D. research at Rensselaer Polytechnic Institute (geophysics Ph.D. in 1962, following a B.S. in geology and geophysics from Massachusetts Institute of Technology in 1957, and M.S. in geophysics from Caltech in 1958). He served in the U.S. Army (1959-60) and was employed at Stanford Research Institute (1962-67), where he conducted shock wave experiments, before joining the faculty at Caltech in 1967. With such a broad background, Tom combined condensed-matter physics, continuum mechanics, petrology and seismology, for instance in characterizing polymorphic phase transformations in Earth's mantle (1967 J. Geophys. Res. Paper with Y. Syono); using shock wave measurements to interpret seismological data on Earth's deep interior (1969 Rev. Geophysics paper with D. L. Anderson and A. E. Ringwood); modeling geodynamic effects of phase-transition kinetics (1975 Rev. Geophysics paper with G. Shubert); characterizing the effects of gravity and crustal strength on crater formation (1981 Rev. Geophysics paper with J. D. O'Keefe); and quantifying impact erosion of terrestrial planetary atmospheres (1993 Annual Review of Earth and Planetary Sciences). The span of his science was also reflected in collaborations with - among others - Paul D. Asimow, George R. Rossman and Edward M. Stolper at Caltech, as well as Arthur C. Mitchell and William J. Nellis at Lawrence Livermore National Laboratory. His accomplishments included conducting the first shock-wave experiments on lunar samples and solid hydrogen; measuring the first absorption spectra of minerals under shock loading; discovering major phase changes in CaO, FeO, KAlSi3O8, and KFeS2; measuring shock temperatures in silicates, metals, and oxides; conducting the first planetary cratering calculations for mass of melted and vaporized material, and mass and energy of ejecta as a function of planetary escape velocity; experimentally documenting shock vaporization on volatile-bearing minerals, and applying the results to understanding the formation of oceans and atmospheres; conducting the first dynamic-compression experiments on molten silicates, with applications to characterizing the maximum depth of volcanism on terrestrial planets, as well as the crystallization sequence of magma oceans; performing the first thermodynamic calculations delineating the impact-shock conditions for melting and vaporization of planetary materials; carrying out the first smoothed particle hydrodynamic calculations to investigate energy partitioning upon impact in self-gravitating planetary systems; and conducting the first quantitative tensile failure studies for brittle media, relating crack-density to elastic velocity deficits and the onset of damage. Tom was also Co-Investigator on the NASA Cosmic Dust Analyzer Experiment, and the NASA/ESA Cassini Mission to Saturn. Honors included the AGU Hess Medal, Geological Society of America Day Medal, Meteoritical Society Barringer Medal, APS Shock Compression of Condensed Matter' Topical Groups's Duvall Medal and AAAS Newcomb-Cleveland Prize. He had been President of AGU's Tectonophysics Section, Editor of Journal of Geophysical Research, founding member of both the Mineral and Rock Physics and Study of Earth's Deep Interior focus groups, and Editor - more like key driving force - for AGU's Handbook of Physical Constants. He was a fellow of the AGU, American Academy of Arts and Sciences, American Association for the Advancement of Science, and Geochemical Society; and member of the U.S. National Academy of Sciences, as well as Foreign Associate of the Russian Academy of Sciences. Main-belt asteroid 4739 Tomahrens (1985 TH1) was named after him. Tom made it clear, however, that it was his students (more than 30), research associates (15 or more) and many collaborators who were the real mark of success. No doubt driven by the need to sustain a major, expensive research facility, as well as to satisfy an inner drive, he maintained a daunting work schedule - including evenings, weekends and holidays - that challenged and stimulated so many around him, perhaps even frightening or frustrating some. He could play as hard as he worked, enjoying sailing, skiing and other outdoor activities over the years.

  17. Numerical and experimental investigation of VG flow control for a low-boom inlet

    NASA Astrophysics Data System (ADS)

    Rybalko, Michael

    The application of vortex generators (VGs) for shock/boundary layer interaction flow control in a novel external compression, axisymmetric, low-boom concept inlet was studied using numerical and experimental methods. The low-boom inlet design features a zero-angle cowl and relaxed isentropic compression centerbody spike, resulting in defocused oblique shocks and a weak terminating normal shock. This allows reduced external gas dynamic waves at high mass flow rates but suffers from flow separation near the throat and a large hub-side boundary layer at the Aerodynamic Interface Plane (AIP), which marks the inflow to the jet engine turbo-machinery. Supersonic VGs were investigated to reduce the shock-induced flow separation near the throat while subsonic VGs were investigated to reduce boundary layer radial distortion at the AIP. To guide large-scale inlet experiments, Reynolds-Averaged Navier-Stokes (RANS) simulations using three-dimensional, structured, chimera (overset) grids and the WIND-US code were conducted. Flow control cases included conventional and novel types of vortex generators at positions both upstream of the terminating normal shock (supersonic VGs) and downstream (subsonic VGs). The performance parameters included incompressible axisymmetric shape factor, post-shock separation area, inlet pressure recovery, and mass flow ratio. The design of experiments (DOE) methodology was used to select device size and location, analyze the resulting data, and determine the optimal choice of device geometry. Based on the above studies, a test matrix of supersonic and subsonic VGs was adapted for a large-scale inlet test to be conducted at the 8'x6' supersonic wind tunnel at NASA Glenn Research Center (GRC). Comparisons of RANS simulations with data from the Fall 2010 8'x6' inlet test showed that predicted VG performance trends and case rankings for both supersonic and subsonic devices were consistent with experimental results. For example, experimental surface oil flow visualization revealed a significant post-shock separation bubble with flow recirculation for the baseline (no VG) case that was substantially broken up in the micro-ramp VG case, consistent with simulations. Furthermore, the predicted subsonic VG performance with respect to a reduction in radial distortion (quantified in terms of axisymmetric incompressible shape factor) was found to be consistent with boundary layer rake measurements. To investigate the unsteady turbulent flow features associated with the shock-induced flow separation and the hub-side boundary layer, a detached eddy simulation (DES) approach using the WIND-US code was employed to model the baseline inlet flow field. This approach yielded improved agreement with experimental data for time-averaged diffuser stagnation pressure profiles and allowed insight into the pressure fluctuations and turbulent kinetic energy distributions which may be present at the AIP. In addition, streamwise shock position statistics were obtained and compared with experimental Schlieren results. The predicted shock oscillations were much weaker than those seen experimentally (by a factor of four), which indicates that the mechanism for the experimental shock oscillations was not captured. In addition, the novel supersonic vortex generator geometries were investigated experimentally (prior to the large-scale inlet 8'x6' wind tunnel tests) in an inlet-relevant flow field containing a Mach 1.4 normal shock wave followed by a subsonic diffuser. A parametric study of device height and distance upstream of the normal shock was undertaken for split-ramp and ramped-vane geometries. Flow field diagnostics included high-speed Schlieren, oil flow visualization, and Pitot-static pressure measurements. Parameters including flow separation, pressure recovery, centerline incompressible boundary layer shape factor, and shock stability were analyzed and compared to the baseline uncontrolled case. While all vortex generators tested eliminated centerline flow separation, the presence of VGs also increased the significant three-dimensionality of the flow via increased side-wall interaction. The stronger streamwise vorticity generated by ramped-vanes also yielded improved pressure recovery and fuller boundary layer velocity profiles within the subsonic diffuser. (Abstract shortened by UMI.)

  18. Numerical simulations of quasi-perpendicular collisionless shocks

    NASA Technical Reports Server (NTRS)

    Goodrich, C. C.

    1985-01-01

    Numerical simulations of collisionless quasi-perpendicular shock waves are reviewed. The strengths and limitations of these simulations are discussed and their experimental (laboratory and spacecraft) context is given. Recent simulation results are emphasized that, with ISEE bow shock observations, are responsible for recent progress in understanding quasi-steady shock structure.

  19. Equations of State for Mixtures: Results from DFT Simulations of Xenon/Ethane Mixtures Compared to High Accuracy Validation Experiments on Z

    NASA Astrophysics Data System (ADS)

    Magyar, Rudolph

    2013-06-01

    We report a computational and validation study of equation of state (EOS) properties of liquid / dense plasma mixtures of xenon and ethane to explore and to illustrate the physics of the molecular scale mixing of light elements with heavy elements. Accurate EOS models are crucial to achieve high-fidelity hydrodynamics simulations of many high-energy-density phenomena such as inertial confinement fusion and strong shock waves. While the EOS is often tabulated for separate species, the equation of state for arbitrary mixtures is generally not available, requiring properties of the mixture to be approximated by combining physical properties of the pure systems. The main goal of this study is to access how accurate this approximation is under shock conditions. Density functional theory molecular dynamics (DFT-MD) at elevated-temperature and pressure is used to assess the thermodynamics of the xenon-ethane mixture. The simulations are unbiased as to elemental species and therefore provide comparable accuracy when describing total energies, pressures, and other physical properties of mixtures as they do for pure systems. In addition, we have performed shock compression experiments using the Sandia Z-accelerator on pure xenon, ethane, and various mixture ratios thereof. The Hugoniot results are compared to the DFT-MD results and the predictions of different rules for combing EOS tables. The DFT-based simulation results compare well with the experimental points, and it is found that a mixing rule based on pressure equilibration performs reliably well for the mixtures considered. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. Predictive Analytical Model for Isolator Shock-Train Location in a Mach 2.2 Direct-Connect Supersonic Combustion Tunnel

    NASA Astrophysics Data System (ADS)

    Lingren, Joe; Vanstone, Leon; Hashemi, Kelley; Gogineni, Sivaram; Donbar, Jeffrey; Akella, Maruthi; Clemens, Noel

    2016-11-01

    This study develops an analytical model for predicting the leading shock of a shock-train in the constant area isolator section in a Mach 2.2 direct-connect scramjet simulation tunnel. The effective geometry of the isolator is assumed to be a weakly converging duct owing to boundary-layer growth. For some given pressure rise across the isolator, quasi-1D equations relating to isentropic or normal shock flows can be used to predict the normal shock location in the isolator. The surface pressure distribution through the isolator was measured during experiments and both the actual and predicted locations can be calculated. Three methods of finding the shock-train location are examined, one based on the measured pressure rise, one using a non-physics-based control model, and one using the physics-based analytical model. It is shown that the analytical model performs better than the non-physics-based model in all cases. The analytic model is less accurate than the pressure threshold method but requires significantly less information to compute. In contrast to other methods for predicting shock-train location, this method is relatively accurate and requires as little as a single pressure measurement. This makes this method potentially useful for unstart control applications.

  1. Physical Intrepretation of Mathematically Invariant K(r,P) Type Equations of State for Hydrodynamically Driven Flow

    NASA Astrophysics Data System (ADS)

    Hrbek, George

    2001-06-01

    At SCCM Shock 99, Lie Group Theory was applied to the problem of temperature independent, hydrodynamic shock in a Birch-Murnaghan continuum. (1) Ratios of the group parameters were shown to be linked to the physical parameters specified in the second, third, and fourth order BM-EOS approximations. This effort has subsequently been extended to provide a general formalism for a wide class of mathematical forms (i.e., K(r,P)) of the equation of state. Variations in material expansion and resistance (i.e., counter pressure) are shown to be functions of compression and material variation ahead of the expanding front. Specific examples included the Birch-Murnaghan, Vinet, Brennan-Stacey, Shanker, Tait, Poirier, and Jones-Wilkins-Lee (JWL) forms. (2) With these ratios defined, the next step is to predict the behavior of these K(r,P) type solids. To do this, one must introduce the group ratios into a numerical simulation for the flow and generate the density, pressure, and particle velocity profiles as the shock moves through the material. This will allow the various equations of state, and their respective fitting coefficients, to be compared with experiments, and additionally, allow the empirical coefficients for these EOS forms to be adjusted accordingly. (1) Hrbek, G. M., Invariant Functional Forms For The Second, Third, And Fourth Order Birch-Murnaghan Equation of State For Materials Subject to Hydrodynamic Shock, Proceedings of the 11th American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter (SCCM Shock 99), Snowbird, Utah (2) Hrbek, G. M., Invariant Functional Forms For K(r,P) Type Equations Of State For Hydrodynamically Driven Flows, Submitted to the 12th American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter (SCCM Shock 01), Atlanta, Georgia

  2. Color temperature measurement in laser-driven shock waves

    NASA Astrophysics Data System (ADS)

    Hall, T. A.; Benuzzi, A.; Batani, D.; Beretta, D.; Bossi, S.; Faral, B.; Koenig, M.; Krishnan, J.; Löautwer, Th.; Mahdieh, M.

    1997-06-01

    A simultaneous measurement of color temperature and shock velocity in laser-driven shocks is presented. The color temperature was measured from the target rear side emissivity, and the shock velocity by using stepped targets. A very good planarity of the shock was ensured by the phase zone plate smoothing technique. A simple model of the shock luminosity has been developed in order to estimate the shock temperature from the experimental rear side emissivity. Results have been compared to temperatures obtained from the shock velocity for a material of a known equation of state.

  3. Laser-driven, magnetized quasi-perpendicular collisionless shocks on the Large Plasma Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaeffer, D. B., E-mail: dschaeffer@physics.ucla.edu; Everson, E. T.; Bondarenko, A. S.

    2014-05-15

    The interaction of a laser-driven super-Alfvénic magnetic piston with a large, preformed magnetized ambient plasma has been studied by utilizing a unique experimental platform that couples the Raptor kJ-class laser system [Niemann et al., J. Instrum. 7, P03010 (2012)] to the Large Plasma Device [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the University of California, Los Angeles. This platform provides experimental conditions of relevance to space and astrophysical magnetic collisionless shocks and, in particular, allows a detailed study of the microphysics of shock formation, including piston-ambient ion collisionless coupling. An overview of the platform and its capabilitiesmore » is given, and recent experimental results on the coupling of energy between piston and ambient ions and the formation of collisionless shocks are presented and compared to theoretical and computational work. In particular, a magnetosonic pulse consistent with a low-Mach number collisionless shock is observed in a quasi-perpendicular geometry in both experiments and simulations.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandal, A.; Gupta, Y. M.

    To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) – a body-centered cubic (BCC) metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ~0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ~3.6 GPa. Numerical simulations ofmore » the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}<111> and/or {112}<111> slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. As a result, the numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.« less

  5. Experimental validation of thermodynamic mixture rules at extreme pressures and densities

    NASA Astrophysics Data System (ADS)

    Bradley, P. A.; Loomis, E. N.; Merritt, E. C.; Guzik, J. A.; Denne, P. H.; Clark, T. T.

    2018-01-01

    Accurate modeling of a mixed material Equation of State (EOS) at high pressures (˜1 to 100 Mbar) is critical for simulating inertial confinement fusion and high energy density systems. This paper presents a comparison of two mixing rule models to the experiment to assess their applicability in this regime. The shock velocities of polystyrene, aluminum, and nickel aluminide (NiAl) were measured at a shock pressure of ˜3 TPa (˜30 Mbar) on the Omega EP laser facility (Laboratory for Laser Energetics, University of Rochester, New York). The resultant shock velocities were compared to those derived from the RAGE (Eulerian) hydrodynamics code to validate various mixing rules used to construct an EOS for NiAl. The simulated shock transit time through the sample (Al or NiAl) matched the measurements to within the ±45ps measurement uncertainty. The law of partial volume (Amagat) and the law of partial pressure (Dalton) mixture rules provided equally good matches to the NiAl shock data. Other studies showed that the Amagat mixing rule is superior, and we recommend it since our results also show a satisfactory match. The comparable quality of the simulation to data for the Al and NiAl samples implies that a mixture rule can supply an EOS for plasma mixtures with adequate fidelity for simulations where mixing takes place, such as advective mix in an Eulerian code or when two materials are mixed together via diffusion, turbulence, or other physical processes.

  6. Experimental validation of thermodynamic mixture rules at extreme pressures and densities

    DOE PAGES

    Bradley, Paul Andrew; Loomis, Eric Nicholas; Merritt, Elizabeth Catherine; ...

    2018-01-19

    Accurate modeling of a mixed material Equation of State (EOS) at high pressures (~1 to 100 Mbar) is critical for simulating inertial confinement fusion and high energy density systems. Here, this paper presents a comparison of two mixing rule models to the experiment to assess their applicability in this regime. The shock velocities of polystyrene, aluminum, and nickel aluminide (NiAl) were measured at a shock pressure of ~3 TPa (~30 Mbar) on the Omega EP laser facility (Laboratory for Laser Energetics, University of Rochester, New York). The resultant shock velocities were compared to those derived from the RAGE (Eulerian) hydrodynamicsmore » code to validate various mixing rules used to construct an EOS for NiAl. The simulated shock transit time through the sample (Al or NiAl) matched the measurements to within the ±45ps measurement uncertainty. The law of partial volume (Amagat) and the law of partial pressure (Dalton) mixture rules provided equally good matches to the NiAl shock data. Other studies showed that the Amagat mixing rule is superior, and we recommend it since our results also show a satisfactory match. In conclusion, the comparable quality of the simulation to data for the Al and NiAl samples implies that a mixture rule can supply an EOS for plasma mixtures with adequate fidelity for simulations where mixing takes place, such as advective mix in an Eulerian code or when two materials are mixed together via diffusion, turbulence, or other physical processes.« less

  7. CFD on hypersonic flow geometries with aeroheating

    NASA Astrophysics Data System (ADS)

    Sohail, Muhammad Amjad; Chao, Yan; Hui, Zhang Hui; Ullah, Rizwan

    2012-11-01

    The hypersonic flowfield around a blunted cone and cone-flare exhibits some of the major features of the flows around space vehicles, e.g. a detached bow shock in the stagnation region and the oblique shock wave/boundary layer interaction at the cone-flare junction. The shock wave/boundary layer interaction can produce a region of separated flow. This phenomenon may occur, for example, at the upstream-facing corner formed by a deflected control surface on a hypersonic entry vehicle, where the length of separation has implications for control effectiveness. Computational fluid-dynamics results are presented to show the flowfield around a blunted cone and cone-flare configurations in hypersonic flow with separation. This problem is of particular interest since it features most of the aspects of the hypersonic flow around planetary entry vehicles. The region between the cone and the flare is particularly critical with respect to the evaluation of the surface pressure and heat flux with aeroheating. Indeed, flow separation is induced by the shock wave boundary layer interaction, with subsequent flow reattachment, that can dramatically enhance the surface heat transfer. The exact determination of the extension of the recirculation zone is a particularly delicate task for numerical codes. Laminar flow and turbulent computations have been carried out using a full Navier-Stokes solver, with freestream conditions provided by the experimental data obtained at Mach 6, 8, and 16.34 wind tunnel. The numerical results are compared with the measured pressure and surface heat flux distributions in the wind tunnel and a good agreement is found, especially on the length of the recirculation region and location of shock waves. The critical physics of entropy layer, boundary layers, boundary layers and shock wave interaction and flow behind shock are properly captured and elaborated.. Hypersonic flows are characterized by high Mach number and high total enthalpy. An elevated temperature often results in thermo-chemical reactions in the gas, which play a major role in aero thermodynamic characterization of high-speed aerospace vehicles. Computational simulation of such flows, therefore, needs to account for a range of physical phenomena. Further, the numerical challenges involved in resolving strong gradients and discontinuities add to the complexity of computational fluid dynamics (CFD) simulation. In this article, physical modeling and numerical methodology-related issues involved in hypersonic flow simulation are highlighted. State-of-the-art CFD challenges are discussed in the context of many prominent applications of hypersonic flows. In the first part of paper, hypersonic flow is simulated and aerodynamics characteristics are calculated. Then aero heating with chemical reactions are added in the simulations and in the end part heat transfer with turbulence modeling is simulated. Results are compared with available data.

  8. Classical and ab-initio simulations of hydrogen in the dissociating regime

    NASA Astrophysics Data System (ADS)

    Clerouin, Jean; Blottiau, Patrick; Bernard, Stephane; Dufreche, Jean-Francois

    1999-11-01

    Recent experiments on shock compressed hydrogen ( L. B. Da Silva, P. Cellires, G. W. Collins., et al., Physical Review Letters 78, 483-486 (1997).) have motivated a large number of theoretical studies to try to reproduce the experimental Hugoniot data. In spite of the simplicity of the hydrogen molecule, a precise description of its dissociation under pressure and temperature is still missing. Here, we compare three different approaches: the empirical Ross model (M. Ross, Physical Review B 58, 669-677 (1998).) which reproduces the experimental data, a classical molecular dynamics model, which allows for the computation of transport coefficients such as the viscosity footnote J. F. Dufreche and J. Clerouin, Physical Review E , submitted (1999). and ab initio simulations for a detailed description of the dissociation process. This comparison reveals that in the region [0.1 g/cm^3< ρ< 1g/cm^3, 2000K

  9. Nonholonomic Hamiltonian Method for Meso-macroscale Simulations of Reacting Shocks

    NASA Astrophysics Data System (ADS)

    Fahrenthold, Eric; Lee, Sangyup

    2015-06-01

    The seamless integration of macroscale, mesoscale, and molecular scale models of reacting shock physics has been hindered by dramatic differences in the model formulation techniques normally used at different scales. In recent research the authors have developed the first unified discrete Hamiltonian approach to multiscale simulation of reacting shock physics. Unlike previous work, the formulation employs reacting themomechanical Hamiltonian formulations at all scales, including the continuum. Unlike previous work, the formulation employs a nonholonomic modeling approach to systematically couple the models developed at all scales. Example applications of the method show meso-macroscale shock to detonation simulations in nitromethane and RDX. Research supported by the Defense Threat Reduction Agency.

  10. Influence of shockwave profile on ejecta: An experimental and computational study

    NASA Astrophysics Data System (ADS)

    Zellner, Michael; Germann, Timothy; Hammerberg, James; Rigg, Paulo; Stevens, Gerald; Turley, William; Buttler, William

    2009-06-01

    This effort investigates the relation between shock-pulse shape and the amount of micron-scale fragments ejected (ejecta) upon shock release at the metal/vacuum interface of shocked Sn targets. Two shock-pulse shapes are considered: a supported shock created by impacting a Sn target with a sabot that was accelerated using a powder gun; and an unsupported or Taylor shockwave, created by detonation of high explosive that was press-fit to the front-side of the Sn target. Ejecta production at the back-side or free-side of the Sn coupons were characterized through use of piezoelectric pins, Asay foils, optical shadowgraph, and x-ray attenuation. In addition to the experimental results, SPaSM, a short-ranged parallel molecular dynamics code developed at Los Alamos National Laboratory, was used to investigate the relation between shock-pulse shape and production of ejecta from a first principles point-of-view.

  11. Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory.

    PubMed

    Schaeffer, D B; Fox, W; Haberberger, D; Fiksel, G; Bhattacharjee, A; Barnak, D H; Hu, S X; Germaschewski, K

    2017-07-14

    We present the first laboratory generation of high-Mach-number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number M_{ms}≈12. Particle-in-cell simulations constrained by experimental data further detail the shock formation and separate dynamics of the multi-ion-species ambient plasma. The results show that the shocks form on time scales as fast as one gyroperiod, aided by the efficient coupling of energy, and the generation of a magnetic barrier between the piston and ambient ions. The development of this experimental platform complements present remote sensing and spacecraft observations, and opens the way for controlled laboratory investigations of high-Mach number collisionless shocks, including the mechanisms and efficiency of particle acceleration.

  12. An experimental investigation of compressible three-dimensional boundary layer flow in annular diffusers

    NASA Technical Reports Server (NTRS)

    Om, Deepak; Childs, Morris E.

    1987-01-01

    An experimental study is described in which detailed wall pressure measurements have been obtained for compressible three-dimensional unseparated boundary layer flow in annular diffusers with and without normal shock waves. Detailed mean flow-field data were also obtained for the diffuser flow without a shock wave. Two diffuser flows with shock waves were investigated. In one case, the normal shock existed over the complete annulus whereas in the second case, the shock existed over a part of the annulus. The data obtained can be used to validate computational codes for predicting such flow fields. The details of the flow field without the shock wave show flow reversal in the circumferential direction on both inner and outer surfaces. However, there is a lag in the flow reversal between the inner nad the outer surfaces. This is an interesting feature of this flow and should be a good test for the computational codes.

  13. Wedge Shock and Nozzle Exhaust Plume Interaction in a Supersonic Jet Flow

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Zaman, Khairul; Fagan, Amy; Heath, Christopher

    2014-01-01

    Fundamental research for sonic boom reduction is needed to quantify the interaction of shock waves generated from the aircraft wing or tail surfaces with the nozzle exhaust plume. Aft body shock waves that interact with the exhaust plume contribute to the near-field pressure signature of a vehicle. The plume and shock interaction was studied using computational fluid dynamics and compared with experimental data from a coaxial convergent-divergent nozzle flow in an open jet facility. A simple diamond-shaped wedge was used to generate the shock in the outer flow to study its impact on the inner jet flow. Results show that the compression from the wedge deflects the nozzle plume and shocks form on the opposite plume boundary. The sonic boom pressure signature of the nozzle exhaust plume was modified by the presence of the wedge. Both the experimental results and computational predictions show changes in plume deflection.

  14. Experimentally Shock-loaded Anhydrite: Unit-Cell Dimensions, Microstrain and Domain Size from X-Ray Diffraction

    NASA Technical Reports Server (NTRS)

    Skala, R.; Hoerz, F.

    2003-01-01

    Cretaceous Tertiary (K/T) boundary is traditionally associated with one of the most dramatic mass extinctions in the Earth history. A number of killing mechanisms have been suggested to contribute to the widespread extinctions of Cretaceous biota at this boundary, including severe, global deterioration of the atmosphere and hydrosphere from the shock-induced release of CO2 and SO(x) from carbonate- and sulfate-bearing target rocks, respectively. Recently carried out calculations revealed that the global warming caused by CO2 release was considerably less important than the cooling due to SO(x) gases release during the Chicxulub impact event. Considering apparent potential importance of the response of sulfates to the shock metamorphism, relative lack of the data on shock behavior of sulfates as well as some general difficulties encountered during thermodynamic modeling of the shock-induced CO2 loss from carbonates we subjected anhydrite to a series of shock experiments designed for complete recovery of the shocked material. We report here on the detail X-ray diffraction analysis of seven samples that were subjected to experimental shock-loading from 10 to 65 GPa.

  15. Proceedings of the 15th International Symposium on Shock Waves and Shock Tubes

    NASA Astrophysics Data System (ADS)

    Bershader, Daniel; Hanson, Ronald

    1986-09-01

    One hundred ten papers were presented in 32 sessions. Topics included: The application of Hook-method spectroscopy to the diagnosis of shock-heated gases. The nonintrusive destruction of kidney stones by underwater focused shock waves. Several of the papers reflect the recent and continuing interest in shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive configurations. The major subject areas were: shock propagation and interactions; shock-general chemical kinetics; shock computation, modeling, and stability problems; shock wave aerodynamics; experimental methods; shocks in multiphase and heterogeneous media; high energy gas excitation and wave phenomena; and technical applications and shocks in condensed matter.

  16. A numerical study of fundamental shock noise mechanisms. Ph.D. Thesis - Cornell Univ.

    NASA Technical Reports Server (NTRS)

    Meadows, Kristine R.

    1995-01-01

    The results of this thesis demonstrate that direct numerical simulation can predict sound generation in unsteady aerodynamic flows containing shock waves. Shock waves can be significant sources of sound in high speed jet flows, on helicopter blades, and in supersonic combustion inlets. Direct computation of sound permits the prediction of noise levels in the preliminary design stage and can be used as a tool to focus experimental studies, thereby reducing cost and increasing the probability of a successfully quiet product in less time. This thesis reveals and investigates two mechanisms fundamental to sound generation by shocked flows: shock motion and shock deformation. Shock motion is modeled by the interaction of a sound wave with a shock. During the interaction, the shock wave begins to move and the sound pressure is amplified as the wave passes through the shock. The numerical approach presented in this thesis is validated by the comparison of results obtained in a quasi-one dimensional simulation with linear theory. Analysis of the perturbation energy demonstrated for the first time that acoustic energy is generated by the interaction. Shock deformation is investigated by the numerical simulation of a ring vortex interacting with a shock. This interaction models the passage of turbulent structures through the shock wave. The simulation demonstrates that both acoustic waves and contact surfaces are generated downstream during the interaction. Analysis demonstrates that the acoustic wave spreads cylindrically, that the sound intensity is highly directional, and that the sound pressure level increases significantly with increasing shock strength. The effect of shock strength on sound pressure level is consistent with experimental observations of shock noise, indicating that the interaction of a ring vortex with a shock wave correctly models a dominant mechanism of shock noise generation.

  17. Al 1s-2p absorption spectroscopy of shock-wave heating and compression in laser-driven planar foil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, H.; Regan, S. P.; Radha, P. B.

    Time-resolved Al 1s-2p absorption spectroscopy is used to diagnose direct-drive, shock-wave heating and compression of planar targets having nearly Fermi-degenerate plasma conditions (T{sub e}{approx}10-40 eV, {rho}{approx}3-11 g/cm{sup 3}) on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. A planar plastic foil with a buried Al tracer layer was irradiated with peak intensities of 10{sup 14}-10{sup 15} W/cm{sup 2} and probed with the pseudocontinuum M-band emission from a point-source Sm backlighter in the range of 1.4-1.7 keV. The laser ablation process launches 10-70 Mbar shock waves into the CH/Al/CH target. The Al 1s-2p absorption spectramore » were analyzed using the atomic physic code PRISMSPECT to infer T{sub e} and {rho} in the Al layer, assuming uniform plasma conditions during shock-wave heating, and to determine when the heat front penetrated the Al layer. The drive foils were simulated with the one-dimensional hydrodynamics code LILAC using a flux-limited (f=0.06 and f=0.1) and nonlocal thermal-transport model [V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)]. The predictions of simulated shock-wave heating and the timing of heat-front penetration are compared to the observations. The experimental results for a wide variety of laser-drive conditions and buried depths have shown that the LILAC predictions using f=0.06 and the nonlocal model accurately model the shock-wave heating and timing of the heat-front penetration while the shock is transiting the target. The observed discrepancy between the measured and simulated shock-wave heating at late times of the drive can be explained by the reduced radiative heating due to lateral heat flow in the corona.« less

  18. Al 1s-2p Absorption Spectroscopy of Shock-Wave Heating and Compression in Laser-Driven Planar Foil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, H.; Regan, S.P.; Radha, P.B.

    Time-resolved Al 1s-2p absorption spectroscopy is used to diagnose direct-drive, shock-wave heating and compression of planar targets having nearly Fermi-degenerate plasma conditions (Te ~ 10–40 eV, rho ~ 3–11 g/cm^3) on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. A planar plastic foil with a buried Al tracer layer was irradiated with peak intensities of 10^14–10^15 W/cm^2 and probed with the pseudocontinuum M-band emission from a point-source Sm backlighter in the range of 1.4–1.7 keV. The laser ablation process launches 10–70 Mbar shock waves into the CH/Al/CH target. The Al 1s-2p absorption spectra weremore » analyzed using the atomic physic code PRISMSPECT to infer Te and rho in the Al layer, assuming uniform plasma conditions during shock-wave heating, and to determine when the heat front penetrated the Al layer. The drive foils were simulated with the one-dimensional hydrodynamics code LILAC using a flux-limited (f =0.06 and f =0.1) and nonlocal thermal-transport model [V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)]. The predictions of simulated shock-wave heating and the timing of heat-front penetration are compared to the observations. The experimental results for a wide variety of laser-drive conditions and buried depths have shown that the LILAC predictions using f = 0.06 and the nonlocal model accurately model the shock-wave heating and timing of the heat-front penetration while the shock is transiting the target. The observed discrepancy between the measured and simulated shock-wave heating at late times of the drive can be explained by the reduced radiative heating due to lateral heat flow in the corona.« less

  19. Experimental and computational investigation of supersonic counterflow jet interaction in atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Ivanchenko, Oleksandr

    The flow field generated by the interaction of a converging-diverging nozzle (exit diameter, D=26 mm M=1.5) flow and a choked flow from a minor jet (exit diameter, d=2.6 mm) in a counterflow configuration was investigated. During the tests both the main C-D nozzle and the minor jet stagnation pressures were varied as well as the region of interaction. Investigations were made in the near field, at most about 2D distance, and in the far field, where the repeated patterns of shock waves were eliminated by turbulence. Both nozzles exhausted to the atmospheric pressure conditions. The flow physics was studied using Schlieren imaging techniques, Pitot-tube, conical Mach number probe, Digital Particle Image Velocimetry (DPIV) and acoustic measurement methods. During the experiments in the far field the jets interaction was observed as the minor jet flow penetrates into the main jet flow. The resulting shock structure caused by the minor jet's presence was dependent on the stagnation pressure ratio between the two jets. The penetration length of the minor jet into the main jet was also dependent on the stagnation pressure ratio. In the far field, increasing the minor jet stagnation pressure moved the bow shock forward, towards the main jet exit. In the near field, the minor jet flow penetrates into the main jet flow, and in some cases modified the flow pattern generated by the main jet, revealing a new effect of jet flow interaction that was previously unknown. A correlation function between the flow modes and the jet stagnation pressure ratios was experimentally determined. Additionally the flow interaction between the main and minor jets was simulated numerically using FLUENT. The optimal mesh geometry was found and the k-epsilon turbulence model was defined as the best fit. The results of the experimental and computational studies were used to describe the shock attenuation effect as self-sustain oscillations in supersonic flow. The effects described here can be used in different flow fields to reduce the total pressure losses that occur due to the presence of shock waves. It will result in better designs of ramjet/scramjets combustors, fighter aircraft inlets and as well as in noise reduction of existing aircraft engines. It can also improve performance of rotating machinery; ramjet fuel injectors and aircraft control mechanisms.

  20. ZrCuAl Bulk Metallic Glass spall induced by laser shock

    NASA Astrophysics Data System (ADS)

    Jodar, Benjamin; Loison, Didier; Yokoyama, Yoshihiko; Lescoute, Emilien; Berthe, Laurent; Sangleboeuf, Jean-Christophe

    2017-06-01

    To face High Velocity Impacts, the aerospace industry is always seeking for innovative materials usable as debris shielding components. Bulk Metallic Glasses (BMG) revealed interesting mechanical properties in case of static and quasi-static loading conditions: high elasticity, high tenacity, low density and high fracture threshold... The department of Mechanics and Glass of the Institut of Physics Rennes conducted on the ELFIE facility, laser shock experiments to study the behavior of a ternary ZrCuAl BMG under high strain rate, up-to fragmentation process. On the one hand, in-situ diagnostics were used to measure ejection velocities with PDV and debris morphologies were observed by Shadowgraphy. On the other hand, spalled areas (dimensions and features) were characterized through post-mortem analysis (optical observations, profilometry and SEM). These results are compared to experimental and numerical data on the crystalline forms of the ZrCuAl basic compounds.

  1. Numerical simulation of aerothermal loads in hypersonic engine inlets due to shock impingement

    NASA Technical Reports Server (NTRS)

    Ramakrishnan, R.

    1992-01-01

    The effect of shock impingement on an axial corner simulating the inlet of a hypersonic vehicle engine is modeled using a finite-difference procedure. A three-dimensional dynamic grid adaptation procedure is utilized to move the grids to regions with strong flow gradients. The adaptation procedure uses a grid relocation stencil that is valid at both the interior and boundary points of the finite-difference grid. A linear combination of spatial derivatives of specific flow variables, calculated with finite-element interpolation functions, are used as adaptation measures. This computational procedure is used to study laminar and turbulent Mach 6 flows in the axial corner. The description of flow physics and qualitative measures of heat transfer distributions on cowl and strut surfaces obtained from the analysis are compared with experimental observations. Conclusions are drawn regarding the capability of the numerical scheme for enhanced modeling of high-speed compressible flows.

  2. Single-bubble and multibubble cavitation in water triggered by laser-driven focusing shock waves

    NASA Astrophysics Data System (ADS)

    Veysset, D.; Gutiérrez-Hernández, U.; Dresselhaus-Cooper, L.; De Colle, F.; Kooi, S.; Nelson, K. A.; Quinto-Su, P. A.; Pezeril, T.

    2018-05-01

    In this study a single laser pulse spatially shaped into a ring is focused into a thin water layer, creating an annular cavitation bubble and cylindrical shock waves: an outer shock that diverges away from the excitation laser ring and an inner shock that focuses towards the center. A few nanoseconds after the converging shock reaches the focus and diverges away from the center, a single bubble nucleates at the center. The inner diverging shock then reaches the surface of the annular laser-induced bubble and reflects at the boundary, initiating nucleation of a tertiary bubble cloud. In the present experiments, we have performed time-resolved imaging of shock propagation and bubble wall motion. Our experimental observations of single-bubble cavitation and collapse and appearance of ring-shaped bubble clouds are consistent with our numerical simulations that solve a one-dimensional Euler equation in cylindrical coordinates. The numerical results agree qualitatively with the experimental observations of the appearance and growth of large bubble clouds at the smallest laser excitation rings. Our technique of shock-driven bubble cavitation opens interesting perspectives for the investigation of shock-induced single-bubble or multibubble cavitation phenomena in thin liquids.

  3. Thermal infrared spectroscopy of experimentally shocked anorthosite and pyroxenite: Implications for remote sensing of Mars

    USGS Publications Warehouse

    Johnson, J. R.; Horz, F.; Lucey, P.G.; Christensen, P.R.

    2002-01-01

    The feldspar and pyroxene mineralogies on Mars revealed by the Thermal Emission Spectrometer (TES) on Mars Global Surveyor likely record a variety of shock effects, as suggested by petrologic analyses of the Martian meteorites and the abundance of impact craters on the planet's surface. To study the effects of shock pressures on thermal infrared spectra of these minerals, we performed shock recovery experiments on orthopyroxenite and anorthosite samples from the Stillwater Complex (Montana) over peak pressures from 17 to 63 GPa. We acquired emissivity and hemispherical reflectance spectra (350-1400 cm-1; ???7-29 ??m) of both coherent chips and fine-grained powders of shocked and unshocked samples. These spectra are more directly comparable to remotely sensed data of Mars (e.g., TES) than previously acquired absorption or transmission spectra of shocked minerals. The spectra of experimentally shocked feldspar show systematic changes with increasing pressure due to depolymerization of the silica tetrahedra. For the spectra of chips, this includes the disappearance of small bands in the 500-650 cm-1 region and a strong band at 1115 cm-1, and changes in positions of a strong band near 940 cm-1 and the Christiansen feature near 1250 cm-1. Spectra of the shocked powders show the gradual disappearance of a transparency feature near 830 cm-1. Fewer changes are observed in the pyroxene spectra at pressures as high as 63 GPa. Spectra of experimentally shocked minerals will help identify more precisely the mineralogy of rocks and soils not only from TES but also from Mars instruments such as miniTES and THEMIS.

  4. Luminescence from edge fracture in shocked lithium fluoride crystals

    DOE PAGES

    Turley, W. D.; Stevens, G. D.; Capelle, G. A.; ...

    2013-04-03

    Light emitted from a [100] lithium fluoride crystal was characterized under shock wave compression to 28 GPa followed by complete stress release at the edges. We examined the light using time-gated optical spectrometry and imaging, time-resolved optical emission measurements, and hydrodynamic modeling. The shock arrival at the circumference of the crystal was delayed relative to the center so that the two regions could be studied at different times. The majority of the light emission originated when the shock waves released at the circumference of the crystal. Unlike previously reported results for shocked lithium fluoride, we found that the light spectrummore » is not strictly broad band, but has spectral lines associated with atomic lithium in addition to a broad band background. Also, the emission spectrum depends strongly on the gas surrounding the sample. Based on our observations, the line emission appears to be related to fracture of the lithium fluoride crystal from the shock wave releasing at the edges. Moreover, experimenters frequently utilize lithium fluoride crystals as transparent windows for observing shock compressed samples. Because of the experimental geometries used, the shock wave in such cases often reaches the circumference of the window at nearly the same moment as when it reaches the center of the sample-window interface. Light generated at the circumference could contaminate the measurement at the interface when this light scatters into the observed region. Finally, this background light may be reduced or avoided using experimental geometries which delay the arrival of the shock wave at the edges of the crystal.« less

  5. Head-on collision of normal shock waves with rigid porous materials

    NASA Astrophysics Data System (ADS)

    Levy, A.; Ben-Dor, G.; Skews, B. W.; Sorek, S.

    1993-08-01

    The head-on collision of a planar shock wave with a rigid porous material has been investigated experimentally in a 75 mm × 75 mm shock tube. The experimental study indicated that unlike the reflection from a flexible porous material (e.g., polyurethane foam) where the transmitted compression waves do not converge to a sharp shock wave, in the case of a rigid porous material (e.g., alumina) the transmitted compression waves do converge to a sharp shock wave, which decays as it propagates along the porous material. In addition to this major difference, many other differences were observed. They are outlined in the following sections. Based on these observations a suggestion modifying the phenomenology of the reflection/interaction process in the case a porous material with large permeability is proposed.

  6. Accretion shock geometries in the magnetic variables

    NASA Technical Reports Server (NTRS)

    Stockman, H. S.

    1988-01-01

    The first self consistent shock models for the AM Herculis-type systems successfully identified the dominant physical processes and their signatures. These homogenous shock models predict unpolarized, Rayleigh-Jeans optical spectra with sharp cutoffs and rising polarizations as the shocks become optically thin in the ultraviolet. However, the observed energy distributions are generally flat with intermediate polarizations over a broad optical band. These and other observational evidence support a non-homogenous accretion profile which may extend over a considerable fraction of the stellar surface. Both the fundamental assumptions underlying the canonical 1-D shock model and the extension of this model to inhomogenous accretion shocks were identified, for both radial and linear structures. The observational evidence was also examined for tall shocks and little evidence was found for relative shock heights in excess of h/R(1) greater than or equal to 0.1. For several systems, upper limits to the shock height can be obtained from either x ray or optical data. These lie in the region h/R(1) is approximately 0.01 and are in general agreement with the current physical picture for these systems. The quasi-periodic optical variations observed in several magnetic variables may eventually prove to be a major aid in further understanding their accretion shock geometries.

  7. Optical observation of shock waves and cavitation bubbles in high intensity laser-induced shock processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marti-Lopez, L.; Ocana, R.; Porro, J. A.

    2009-07-01

    We report an experimental study of the temporal and spatial dynamics of shock waves, cavitation bubbles, and sound waves generated in water during laser shock processing by single Nd:YAG laser pulses of nanosecond duration. A fast ICCD camera (2 ns gate time) was employed to record false schlieren photographs, schlieren photographs, and Mach-Zehnder interferograms of the zone surrounding the laser spot site on the target, an aluminum alloy sample. We recorded hemispherical shock fronts, cylindrical shock fronts, plane shock fronts, cavitation bubbles, and phase disturbance tracks.

  8. Observation of shock transverse waves in elastic media.

    PubMed

    Catheline, S; Gennisson, J-L; Tanter, M; Fink, M

    2003-10-17

    We report the first experimental observation of a shock transverse wave propagating in an elastic medium. This observation was possible because the propagation medium, a soft solid, allows one to reach a very high Mach number. In this extreme configuration, the shock formation is observed over a distance of less than a few wavelengths, thanks to a prototype of an ultrafast scanner (that acquires 5000 frames per second). A comparison of these new experimental data with theoretical predictions, based on a modified Burger's equation, shows good agreement.

  9. The Significance of Splenectomy in Experimental Swine Models of Controlled Hemorrhagic Shock

    DTIC Science & Technology

    2013-11-01

    carefully eval uated in other experimental models of hem orrhage (e.g., uncontrolled hemorrhage, models with concomitant blunt or orthopedic trauma , and...hemorrhagic shock. J Trauma . 2006;61(1):75 81. 3. Pottecher J, Chemla D, Xavier L, et al. The pulse pressure/heart rate ratio as a marker of stroke volume...changes during hemorrhagic shock and resuscitation in anesthetized swine. J Trauma Acute Care Surg. 2013;74(6):1438 1445. 4.Devlin JJ, Kircher SJ

  10. On the low pressure shock initiation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine based plastic bonded explosives

    NASA Astrophysics Data System (ADS)

    Vandersall, Kevin S.; Tarver, Craig M.; Garcia, Frank; Chidester, Steven K.

    2010-05-01

    In large explosive and propellant charges, relatively low shock pressures on the order of 1-2 GPa impacting large volumes and lasting tens of microseconds can cause shock initiation of detonation. The pressure buildup process requires several centimeters of shock propagation before shock to detonation transition occurs. In this paper, experimentally measured run distances to detonation for lower input shock pressures are shown to be much longer than predicted by extrapolation of high shock pressure data. Run distance to detonation and embedded manganin gauge pressure histories are measured using large diameter charges of six octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) based plastic bonded explosives (PBX's): PBX 9404; LX-04; LX-07; LX-10; PBX 9501; and EDC37. The embedded gauge records show that the lower shock pressures create fewer and less energetic "hot spot" reaction sites, which consume the surrounding explosive particles at reduced reaction rates and cause longer distances to detonation. The experimental data is analyzed using the ignition and growth reactive flow model of shock initiation in solid explosives. Using minimum values of the degrees of compression required to ignite hot spot reactions, the previously determined high shock pressure ignition and growth model parameters for the six explosives accurately simulate the much longer run distances to detonation and much slower growths of pressure behind the shock fronts measured during the shock initiation of HMX PBX's at several low shock pressures.

  11. Physical mechanisms in shock-induced turbulent separated flow

    NASA Astrophysics Data System (ADS)

    Dolling, D. S.

    1987-12-01

    It has been demonstrated that the flow downstream of the moving shock is separated and that the foot of the shock is effectively the instantaneous separation point. The shock induced turbulent separation is an intermittant process and the separation line indicated by surface tracer methods, such as kerosene-lampblack, is a downstream boundary of a region of intermittent separation.

  12. Understanding the Flow Physics of Shock Boundary-Layer Interactions Using CFD and Numerical Analyses

    NASA Technical Reports Server (NTRS)

    Friedlander, David J.

    2013-01-01

    Computational fluid dynamic (CFD) analyses of the University of Michigan (UM) Shock/Boundary-Layer Interaction (SBLI) experiments were performed as an extension of the CFD SBLI Workshop held at the 48th AIAA Aerospace Sciences Meeting in 2010. In particular, the UM Mach 2.75 Glass Tunnel with a semi-spanning 7.75deg wedge was analyzed in attempts to explore key physics pertinent to SBLI's, including thermodynamic and viscous boundary conditions as well as turbulence modeling. Most of the analyses were 3D CFD simulations using the OVERFLOW flow solver, with additional quasi-1D simulations performed with an in house MATLAB code interfacing with the NIST REFPROP code to explore perfect verses non-ideal air. A fundamental exploration pertaining to the effects of particle image velocimetry (PIV) on post-processing data is also shown. Results from the CFD simulations showed an improvement in agreement with experimental data with key contributions including adding a laminar zone upstream of the wedge and the necessity of mimicking PIV particle lag for comparisons. Results from the quasi-1D simulation showed that there was little difference between perfect and non-ideal air for the configuration presented.

  13. Experimental study of subcritical laboratory magnetized collisionless shocks using a laser-driven magnetic piston

    NASA Astrophysics Data System (ADS)

    Schaeffer, D. B.; Everson, E. T.; Bondarenko, A. S.; Clark, S. E.; Constantin, C. G.; Winske, D.; Gekelman, W.; Niemann, C.

    2015-11-01

    Recent experiments at the University of California, Los Angeles have successfully generated subcritical magnetized collisionless shocks, allowing new laboratory studies of shock formation relevant to space shocks. The characteristics of these shocks are compared with new data in which no shock or a pre-shock formed. The results are consistent with theory and 2D hybrid simulations and indicate that the observed shock or shock-like structures can be organized into distinct regimes by coupling strength. With additional experiments on the early time parameters of the laser plasma utilizing Thomson scattering, spectroscopy, and fast-gate filtered imaging, these regimes are found to be in good agreement with theoretical shock formation criteria.

  14. Experimental Database with Baseline CFD Solutions: 2-D and Axisymmetric Hypersonic Shock-Wave/Turbulent-Boundary-Layer Interactions

    NASA Technical Reports Server (NTRS)

    Marvin, Joseph G.; Brown, James L.; Gnoffo, Peter A.

    2013-01-01

    A database compilation of hypersonic shock-wave/turbulent boundary layer experiments is provided. The experiments selected for the database are either 2D or axisymmetric, and include both compression corner and impinging type SWTBL interactions. The strength of the interactions range from attached to incipient separation to fully separated flows. The experiments were chosen based on criterion to ensure quality of the datasets, to be relevant to NASA's missions and to be useful for validation and uncertainty assessment of CFD Navier-Stokes predictive methods, both now and in the future. An emphasis on datasets selected was on surface pressures and surface heating throughout the interaction, but include some wall shear stress distributions and flowfield profiles. Included, for selected cases, are example CFD grids and setup information, along with surface pressure and wall heating results from simulations using current NASA real-gas Navier-Stokes codes by which future CFD investigators can compare and evaluate physics modeling improvements and validation and uncertainty assessments of future CFD code developments. The experimental database is presented tabulated in the Appendices describing each experiment. The database is also provided in computer-readable ASCII files located on a companion DVD.

  15. Experimental Investigation of SBLI to Unravel Inlet Unstart Physics

    NASA Astrophysics Data System (ADS)

    Funderburk, Morgan; Narayanaswamy, Venkateswaran

    2016-11-01

    The phenomenon of shock boundary layer interaction (SBLI) driven inlet unstart persists as one of the most significant problems facing supersonic ramjet/scramjet engines. In order to determine how the characteristics of the SBLI units specific to rectangular inlets evolve during an unstart event, an experimental investigation is made using surface streakline methods and pitot/wall pressure measurements in the vicinity of the floor and corner SBLI induced by a compression ramp in a rectangular channel. Mean and unsteady measurements were taken at a variety of shock strengths to simulate the evolution of the combustion-induced back pressure ratio during unstart. The freestream Mach number was also varied. Statistical correlation methods were used to determine the degree of interaction between the floor and corner SBLI with different flowfield locations for the various test conditions. Finally, comparison to a two-dimensional compression ramp SBLI was made to determine any modification caused by the introduction of the corner SBLI. Results indicate that the floor and corner SBLI transition from distinct units to members of a global separated flow with increasing back pressure, and that considerable modification of the floor SBLI by the corner flow occurs. AFOSR Grant FA9550-15-1-0296.

  16. Shock-wave generation and bubble formation in the retina by lasers

    NASA Astrophysics Data System (ADS)

    Sun, Jinming; Gerstman, Bernard S.; Li, Bin

    2000-06-01

    The generation of shock waves and bubbles has been experimentally observed due to absorption of sub-nanosecond laser pulses by melanosomes, which are found in retinal pigment epithelium cells. Both the shock waves and bubbles may be the cause of retinal damage at threshold fluence levels. The theoretical modeling of shock wave parameters such as amplitude, and bubble size, is a complicated problem due to the non-linearity of the phenomena. We have used two different approaches for treating pressure variations in water: the Tait Equation and a full Equation Of State (EOS). The Tait Equation has the advantage of being developed specifically to model pressure variations in water and is therefore simpler, quicker computationally, and allows the liquid to sustain negative pressures. Its disadvantage is that it does not allow for a change of phase, which prevents modeling of bubbles and leads to non-physical behavior such as the sustaining of ridiculously large negative pressures. The full EOS treatment includes more of the true thermodynamic behavior, such as phase changes that produce bubbles and avoids the generation of large negative pressures. Its disadvantage is that the usual stable equilibrium EOS allows for no negative pressures at all, since tensile stress is unstable with respect to a transition to the vapor phase. In addition, the EOS treatment requires longer computational times. In this paper, we compare shock wave generation for various laser pulses using the two different mathematical approaches and determine the laser pulse regime for which the simpler Tait Equation can be used with confidence. We also present results of our full EOS treatment in which both shock waves and bubbles are simultaneously modeled.

  17. On the role of vibrational excitation in dissociative recombination

    NASA Technical Reports Server (NTRS)

    Cunningham, A. J.; Omalley, T. F.; Hobson, R. M.

    1981-01-01

    An improved physical model of dissociative recombination is presented and applied to experimental data on the temperature dependence of rate coefficients for the rare-gas and atmospheric-gas ions. It is shown that in the charge neutralisation of the rare-gas dimer ions, autoionisation plays an important role (at least in comparison with the atmospheric-gas ions) and contributes to the fast fall-off in the rate coefficient with vibrational excitation observed in shock tube studies. Numerical estimates of the observed fall-off in rate coefficient with increasing vibrational excitation are also presented.

  18. Assessment of nonequilibrium radiation computation methods for hypersonic flows

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra

    1993-01-01

    The present understanding of shock-layer radiation in the low density regime, as appropriate to hypersonic vehicles, is surveyed. Based on the relative importance of electron excitation and radiation transport, the hypersonic flows are divided into three groups: weakly ionized, moderately ionized, and highly ionized flows. In the light of this division, the existing laboratory and flight data are scrutinized. Finally, an assessment of the nonequilibrium radiation computation methods for the three regimes in hypersonic flows is presented. The assessment is conducted by comparing experimental data against the values predicted by the physical model.

  19. Thermophysical properties of multi-shock compressed dense argon.

    PubMed

    Chen, Q F; Zheng, J; Gu, Y J; Chen, Y L; Cai, L C; Shen, Z J

    2014-02-21

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.

  20. Thermophysical properties of multi-shock compressed dense argon

    NASA Astrophysics Data System (ADS)

    Chen, Q. F.; Zheng, J.; Gu, Y. J.; Chen, Y. L.; Cai, L. C.; Shen, Z. J.

    2014-02-01

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ˜6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.

  1. Shock and Release Response of Unreacted Epon 828: Shot 2s-905

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pisa, Matthew Alexander; Fredenburg, David A.; Dattelbaum, Dana M.

    This document summarizes the shock and release response of Epon 828 measured in the dynamic impact experiment 2s-905. Experimentally, a thin Kel-F impactor backed by a low impedance foam impacted an Epon 828 target with embedded electromagnetic gauges. Computationally, a one dimensional simulation of the impact event was performed, and tracer particles were located at the corresponding electromagnetic gauge locations. The experimental configuration was such that the Epon 828 target was initially shocked, and then allowed to release from the high-pressure state. Comparisons of the experimental gauge and computational tracer data were made to assess the performance of equation ofmore » state (EOS) 7603, a SESAME EOS for Epon 828, on and off the principal shock Hugoniot. Results indicate that while EOS 7603 can capture the Hugoniot response to better that 1%, while the sound speeds at pressure are under-predicted by 6 - 7%.« less

  2. Experiments and simulations of single shock Richtmeyer-Meshkov Instability with measured, volumetric initial conditions

    NASA Astrophysics Data System (ADS)

    Sewell, Everest; Ferguson, Kevin; Greenough, Jeffrey; Jacobs, Jeffrey

    2014-11-01

    We describe new experiments of single shock Richtmeyer-Meshkov Instability (RMI) performed on the shock tube apparatus at the University of Arizona in which the initial conditions are volumetrically imaged prior to shock wave arrival. Initial perturbation plays a major role in the evolution of RMI, and previous experimental efforts only capture a narrow slice of the initial condition. The method presented uses a rastered laser sheet to capture additional images in the depth of the initial condition shortly before the experimental start time. These images are then used to reconstruct a volumetric approximation of the experimental perturbation, which is simulated using the hydrodynamics code ARES, developed at Lawrence Livermore National Laboratory (LLNL). Comparison is made between the time evolution of the interface width and the mixedness ratio measured from the experiments against the predictions from the numerical simulations.

  3. TIME EVOLUTION OF KELVIN–HELMHOLTZ VORTICES ASSOCIATED WITH COLLISIONLESS SHOCKS IN LASER-PRODUCED PLASMAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuramitsu, Y.; Moritaka, T.; Mizuta, A.

    2016-09-10

    We report experimental results on Kelvin–Helmholtz (KH) instability and resultant vortices in laser-produced plasmas. By irradiating a double plane target with a laser beam, asymmetric counterstreaming plasmas are created. The interaction of the plasmas with different velocities and densities results in the formation of asymmetric shocks, where the shear flow exists along the contact surface and the KH instability is excited. We observe the spatial and temporal evolution of plasmas and shocks with time-resolved diagnostics over several shots. Our results clearly show the evolution of transverse fluctuations, wavelike structures, and circular features, which are interpreted as the KH instability andmore » resultant vortices. The relevant numerical simulations demonstrate the time evolution of KH vortices and show qualitative agreement with experimental results. Shocks, and thus the contact surfaces, are ubiquitous in the universe; our experimental results show general consequences where two plasmas interact.« less

  4. On the boundary conditions on a shock wave for hypersonic flow around a descent vehicle

    NASA Astrophysics Data System (ADS)

    Golomazov, M. M.; Ivankov, A. A.

    2013-12-01

    Stationary hypersonic flow around a descent vehicle is examined by considering equilibrium and nonequilibrium reactions. We study how physical-chemical processes and shock wave conditions for gas species influence the shock-layer structure. It is shown that conservation conditions of species on the shock wave cause high-temperature and concentration gradients in the shock layer when we calculate spacecraft deceleration trajectory in the atmosphere at 75 km altitude.

  5. Dynamic Electromechanical Characterization of the Ferroelectric Ceramic PZT 95/5

    NASA Astrophysics Data System (ADS)

    Setchell, R. E.; Chhabildas, L. C.; Furnish, M. D.; Montgomery, S. T.; Holman, G. T.

    1997-07-01

    Shock-induced depoling of the ferroelectric ceramic PZT 95/5 has been utilized in a number of pulsed power applications. The dynamic behavior of the poled ceramic is complex, with nonlinear coupling between mechanical and electrical variables. Recent efforts to improve numerical simulations of this process have been limited by the scarcity of relevant experimental studies within the last twenty years. Consequently, we have initiated an extensive experimental study of the dynamic electromechanical behavior of this material. Samples of the poled ceramic are shocked to axial stresses from 0.5 to 5 GPa in planar impact experiments and observed with laser interferometry (VISAR) to obtain transmitted wave profiles. Current generation due to shock-induced depoling is observed using different external loads to vary electric field strengths within the samples. Experimental configurations either have the remanent polarization parallel to the direction of shock motion (axially poled) or perpendicular (normally poled). Initial experiments on unpoled samples utilized PVDF stress gauges as well as VISAR, and extended prior data on shock loading and release behavior. (Supported by the U. S. Department of Energy under contract DE-AC04-94AL85000). abstract.

  6. Numerical predictions of shock propagation through unreactive and reactive liquids with experimental validation

    NASA Astrophysics Data System (ADS)

    Stekovic, Svjetlana; Nissen, Erin; Bhowmick, Mithun; Stewart, Donald S.; Dlott, Dana D.

    2017-06-01

    The objective of this work is to numerically analyze shock behavior as it propagates through compressed, unreactive and reactive liquid, such as liquid water and liquid nitromethane. Parameters, such as pressure and density, are analyzed using the Mie-Gruneisen EOS and each multi-material system is modeled using the ALE3D software. The motivation for this study is based on provided high-resolution, optical interferometer (PDV) and optical pyrometer measurements. In the experimental set-up, a liquid is placed between an Al 1100 plate and Pyrex BK-7 glass. A laser-driven Al 1100 flyer impacts the plate, causing the liquid to be highly compressed. The numerical model investigates the influence of the high pressure, shock-compressed behavior in each liquid, the energy transfer, and the wave impedance at the interface of each material in contact. The numerical results using ALE3D will be validated by experimental data. This work aims to provide further understanding of shock-compressed behavior and how the shock influences phase transition in each liquid.

  7. Transmission of singularities through a shock wave and the sound generation

    NASA Technical Reports Server (NTRS)

    Ting, L.

    1974-01-01

    The interaction of a plane shock wave of finite strength with a vortex line, point vortex, doublet or quadrupole of weak strength is studied. Based upon the physical condition that a free vortex line cannot support a pressure difference, rules are established which define the change of the linear intensity of the segment of the vortex line after its passage through the shock. The rules for point vortex, doublet, and quadrupole are then established as limiting cases. These rules can be useful for the construction of the solution of the entire flow field and for its physical interpretation. However, the solution can be obtained directly by the technique developed for shock diffraction problems. Explicit solutions and the associated sound generation are obtained for the passage of a point vortex through the shock wave.

  8. Computational Modeling and Validation for Hypersonic Inlets

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    1996-01-01

    Hypersonic inlet research activity at NASA is reviewed. The basis for the paper is the experimental tests performed with three inlets: the NASA Lewis Research Center Mach 5, the McDonnell Douglas Mach 12, and the NASA Langley Mach 18. Both three-dimensional PNS and NS codes have been used to compute the flow within the three inlets. Modeling assumptions in the codes involve the turbulence model, the nature of the boundary layer, shock wave-boundary layer interaction, and the flow spilled to the outside of the inlet. Use of the codes and the experimental data are helping to develop a clearer understanding of the inlet flow physics and to focus on the modeling improvements required in order to arrive at validated codes.

  9. Shock treatment: using immersive digital realism to restage and re-examine milgram's 'obedience to authority' research.

    PubMed

    Haslam, S Alexander; Reicher, Stephen D; Millard, Kathryn

    2015-01-01

    Attempts to revisit Milgram's 'Obedience to Authority' (OtA) paradigm present serious ethical challenges. In recent years new paradigms have been developed to circumvent these challenges but none involve using Milgram's own procedures and asking naïve participants to deliver the maximum level of shock. This was achieved in the present research by using Immersive Digital Realism (IDR) to revisit the OtA paradigm. IDR is a dramatic method that involves a director collaborating with professional actors to develop characters, the strategic withholding of contextual information, and immersion in a real-world environment. 14 actors took part in an IDR study in which they were assigned to conditions that restaged Milgrams's New Baseline ('Coronary') condition and four other variants. Post-experimental interviews also assessed participants' identification with Experimenter and Learner. Participants' behaviour closely resembled that observed in Milgram's original research. In particular, this was evidenced by (a) all being willing to administer shocks greater than 150 volts, (b) near-universal refusal to continue after being told by the Experimenter that "you have no other choice, you must continue" (Milgram's fourth prod and the one most resembling an order), and (c) a strong correlation between the maximum level of shock that participants administered and the mean maximum shock delivered in the corresponding variant in Milgram's own research. Consistent with an engaged follower account, relative identification with the Experimenter (vs. the Learner) was also a good predictor of the maximum shock that participants administered.

  10. Physical nature of strain rate sensitivity of metals and alloys at high strain rates

    NASA Astrophysics Data System (ADS)

    Borodin, E. N.; Gruzdkov, A. A.; Mayer, A. E.; Selyutina, N. S.

    2018-04-01

    The role of instabilities of plastic flow at plastic deformation of various materials is one of the important cross-disciplinary problems which is equally important in physics, mechanics and material science. The strain rate sensitivities under slow and high strain rate conditions of loading have different physical nature. In the case of low strain rate, the sensitivity arising from the inertness of the defect structures evolution can be expressed by a single parameter characterizing the plasticity mechanism. In our approach, this is the value of the characteristic relaxation time. In the dynamic case, there are additional effects of “high-speed sensitivity” associated with the micro-localization of the plastic flow near the stress concentrators. In the frames of mechanical description, this requires to introduce additional strain rate sensitivity parameters, which is realized in numerous modifications of Johnson–Cook and Zerilli–Armstrong models. The consideration of both these factors is fundamental for an adequate description of the problems of dynamic deformation of highly inhomogeneous metallic materials such as steels and alloys. The measurement of the dispersion of particle velocities on the free surface of a shock-loaded material can be regarded as an experimental expression of the effect of micro-localization. This is also confirmed by our results of numerical simulation of the propagation of shock waves in a two-dimensional formulation and analytical estimations.

  11. Modeling of molecular nitrogen collisions and dissociation processes for direct simulation Monte Carlo.

    PubMed

    Parsons, Neal; Levin, Deborah A; van Duin, Adri C T; Zhu, Tong

    2014-12-21

    The Direct Simulation Monte Carlo (DSMC) method typically used for simulating hypersonic Earth re-entry flows requires accurate total collision cross sections and reaction probabilities. However, total cross sections are often determined from extrapolations of relatively low-temperature viscosity data, so their reliability is unknown for the high temperatures observed in hypersonic flows. Existing DSMC reaction models accurately reproduce experimental equilibrium reaction rates, but the applicability of these rates to the strong thermal nonequilibrium observed in hypersonic shocks is unknown. For hypersonic flows, these modeling issues are particularly relevant for nitrogen, the dominant species of air. To rectify this deficiency, the Molecular Dynamics/Quasi-Classical Trajectories (MD/QCT) method is used to accurately compute collision and reaction cross sections for the N2(Σg+1)-N2(Σg+1) collision pair for conditions expected in hypersonic shocks using a new potential energy surface developed using a ReaxFF fit to recent advanced ab initio calculations. The MD/QCT-computed reaction probabilities were found to exhibit better physical behavior and predict less dissociation than the baseline total collision energy reaction model for strong nonequilibrium conditions expected in a shock. The MD/QCT reaction model compared well with computed equilibrium reaction rates and shock-tube data. In addition, the MD/QCT-computed total cross sections were found to agree well with established variable hard sphere total cross sections.

  12. Stability of stagnation via an expanding accretion shock wave

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Murakami, M.; Taylor, B. D.; Giuliani, J. L.; Zalesak, S. T.; Iwamoto, Y.

    2016-05-01

    Stagnation of a cold plasma streaming to the center or axis of symmetry via an expanding accretion shock wave is ubiquitous in inertial confinement fusion (ICF) and high-energy-density plasma physics, the examples ranging from plasma flows in x-ray-generating Z pinches [Maron et al., Phys. Rev. Lett. 111, 035001 (2013)] to the experiments in support of the recently suggested concept of impact ignition in ICF [Azechi et al., Phys. Rev. Lett. 102, 235002 (2009); Murakami et al., Nucl. Fusion 54, 054007 (2014)]. Some experimental evidence indicates that stagnation via an expanding shock wave is stable, but its stability has never been studied theoretically. We present such analysis for the stagnation that does not involve a rarefaction wave behind the expanding shock front and is described by the classic ideal-gas Noh solution in spherical and cylindrical geometry. In either case, the stagnated flow has been demonstrated to be stable, initial perturbations exhibiting a power-law, oscillatory or monotonic, decay with time for all the eigenmodes. This conclusion has been supported by our simulations done both on a Cartesian grid and on a curvilinear grid in spherical coordinates. Dispersion equation determining the eigenvalues of the problem and explicit formulas for the eigenfunction profiles corresponding to these eigenvalues are presented, making it possible to use the theory for hydrocode verification in two and three dimensions.

  13. Stability of stagnation via an expanding accretion shock wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velikovich, A. L.; Giuliani, J. L.; Murakami, M.

    Stagnation of a cold plasma streaming to the center or axis of symmetry via an expanding accretion shock wave is ubiquitous in inertial confinement fusion (ICF) and high-energy-density plasma physics, the examples ranging from plasma flows in x-ray-generating Z pinches [Maron et al., Phys. Rev. Lett. 111, 035001 (2013)] to the experiments in support of the recently suggested concept of impact ignition in ICF [Azechi et al., Phys. Rev. Lett. 102, 235002 (2009); Murakami et al., Nucl. Fusion 54, 054007 (2014)]. Some experimental evidence indicates that stagnation via an expanding shock wave is stable, but its stability has never beenmore » studied theoretically. We present such analysis for the stagnation that does not involve a rarefaction wave behind the expanding shock front and is described by the classic ideal-gas Noh solution in spherical and cylindrical geometry. In either case, the stagnated flow has been demonstrated to be stable, initial perturbations exhibiting a power-law, oscillatory or monotonic, decay with time for all the eigenmodes. This conclusion has been supported by our simulations done both on a Cartesian grid and on a curvilinear grid in spherical coordinates. Dispersion equation determining the eigenvalues of the problem and explicit formulas for the eigenfunction profiles corresponding to these eigenvalues are presented, making it possible to use the theory for hydrocode verification in two and three dimensions.« less

  14. Chemical kinetic modeling of propane oxidation behind shock waves

    NASA Technical Reports Server (NTRS)

    Mclain, A. G.; Jachimowski, C. J.

    1977-01-01

    The stoichiometric combustion of propane behind incident shock waves was studied experimentally and analytically over a temperature range from 1700 K to 2600 K and a pressure range from 1.2 to 1.9 atm. Measurements of the concentrations of carbon monoxide (CO) and carbon dioxide (CO2) and the product of the oxygen atom and carbon dioxide concentrations (O)(CO) were made after passage of the incident shock wave. A kinetic mechanism was developed which, when used in a computer program for a flowing, reacting gas behind an incident shock wave predicted experimentally measured results quite well. Ignition delay times from the literature were also predicted quite well. The kinetic mechanism consisted of 59 individual kinetic steps.

  15. FUN3D Analyses in Support of the First Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Chwalowski, Pawel; Heeg, Jennifer; Wieseman, Carol D.; Florance, Jennifer P.

    2013-01-01

    This paper presents the computational aeroelastic results generated in support of the first Aeroelastic Prediction Workshop for the Benchmark Supercritical Wing (BSCW) and the HIgh REynolds Number AeroStructural Dynamics (HIRENASD) configurations and compares them to the experimental data. The computational results are obtained using FUN3D, an unstructured grid Reynolds-averaged Navier-Stokes solver developed at NASA Langley Research Center. The analysis results for both configurations include aerodynamic coefficients and surface pressures obtained for steady-state or static aeroelastic equilibrium (BSCW and HIRENASD, respectively) and for unsteady flow due to a pitching wing (BSCW) or modally-excited wing (HIRENASD). Frequency response functions of the pressure coefficients with respect to displacement are computed and compared with the experimental data. For the BSCW, the shock location is computed aft of the experimentally-located shock position. The pressure distribution upstream of this shock is in excellent agreement with the experimental data, but the pressure downstream of the shock in the separated flow region does not match as well. For HIRENASD, very good agreement between the numerical results and the experimental data is observed at the mid-span wing locations.

  16. Shock Waves in Supernova Ejecta

    NASA Astrophysics Data System (ADS)

    Raymond, J. C.

    2018-02-01

    Astrophysical shock waves are a major mechanism for dissipating energy, and by heating and ionizing the gas they produce emission spectra that provide valuable diagnostics for the shock parameters, for the physics of collisionless shocks, and for the composition of the shocked material. Shocks in SN ejecta in which H and He have been burned to heavier elements behave differently than shocks in ordinary astrophysical gas because of their very large radiative cooling rates. In particular, extreme departures from thermal equilibrium among ions and electrons and from ionization equilibrium may arise. This paper discusses the consequences of the enhanced metal abundances for the structure and emission spectra of those shocks.

  17. Simulation Study of Structure and Properties of Plasma Liners for the PLX- α Project

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Shih, Wen; Hsu, Scott; PLX-Alpha Team

    2017-10-01

    Detailed numerical studies of the propagation and merger of high-Mach-number plasma jets and the formation and implosion of plasma liners have been performed using the FronTier code in support of the Plasma Liner Experiment-ALPHA (PLX- α) project. Physics models include radiation, physical diffusion, plasma-EOS models, and an anisotropic diffusion model that mimics deviations from fully collisional hydrodynamics in outer layers of plasma jets. Detailed structure and non-uniformity of plasma liners of due to primary and secondary shock waves have been studies as well as averaged quantities of ram pressure and Mach number. Synthetic data from simulations have been compared with available experimental data from a multi-chord interferometer and survey and high-resolution spectrometers. Numerical studies of the sensitivity of liner properties to experimental errors in the initial masses of jets and the synchronization of plasma gun valves have also been performed. Supported by the ARPA-E ALPHA program.

  18. Experimental Investigation of the Flow Field in a Transonic, Axial Flow Compressor with Respect to the Development of Blockage and Loss

    NASA Technical Reports Server (NTRS)

    Suder, Kenneth L.

    1996-01-01

    A detailed experimental investigation to understand and quantify the development of loss and blockage in the flow field of a transonic, axial flow compressor rotor has been undertaken. Detailed laser anemometer measurements were acquired upstream, within, and downstream of a transonic, axial compressor rotor operating at design and off-design conditions. The rotor was operated at 100%, 85%, 80%, and 60% of design speed which provided inlet relative Mach numbers at the blade tip of 1.48, 1.26, 1.18, and 0.89 respectively. At design speed the blockage is evaluated ahead of the rotor passage shock, downstream of the rotor passage shock, and near the trailing edge of the blade row. The blockage is evaluated in the core flow area as well as in the casing endwall region. Similarly at pm speed conditions for the cases of (1) where the rotor passage shock is much weaker than that at design speed and (2) where there is no rotor passage shock, the blockage and loss are evaluated and compared to the results at design speed. Specifically, the impact of the rotor passage shock on the blockage and loss development, pertaining to both the shock/boundary layer interactions and the shock/tip clearance flow interactions, is discussed. In addition, the blockage evaluated from the experimental data is compared to (1) an existing correlation of blockage development which was based on computational results, and (2) computational results on a limited basis. The results indicate that for this rotor the blockage in the endwall region is 2-3 times that of the core flow region and the blockage in the core flow region more than doubles when the shock strength is sufficient to separate the suction surface boundary layer. The distribution of losses in the care flow region indicate that the total loss is primarily comprised of the shock loss when the shock strength is not sufficient to separate the suction surface boundary layer. However, when the shock strength is sufficient to separate the suction surface boundary layer, the profile loss is comparable to the shock loss and can exceed the shock loss.

  19. Grid Convergence of High Order Methods for Multiscale Complex Unsteady Viscous Compressible Flows

    NASA Technical Reports Server (NTRS)

    Sjoegreen, B.; Yee, H. C.

    2001-01-01

    Grid convergence of several high order methods for the computation of rapidly developing complex unsteady viscous compressible flows with a wide range of physical scales is studied. The recently developed adaptive numerical dissipation control high order methods referred to as the ACM and wavelet filter schemes are compared with a fifth-order weighted ENO (WENO) scheme. The two 2-D compressible full Navier-Stokes models considered do not possess known analytical and experimental data. Fine grid solutions from a standard second-order TVD scheme and a MUSCL scheme with limiters are used as reference solutions. The first model is a 2-D viscous analogue of a shock tube problem which involves complex shock/shear/boundary-layer interactions. The second model is a supersonic reactive flow concerning fuel breakup. The fuel mixing involves circular hydrogen bubbles in air interacting with a planar moving shock wave. Both models contain fine scale structures and are stiff in the sense that even though the unsteadiness of the flows are rapidly developing, extreme grid refinement and time step restrictions are needed to resolve all the flow scales as well as the chemical reaction scales.

  20. Analytic Analysis of Convergent Shocks to Multi-Gigabar Conditions

    NASA Astrophysics Data System (ADS)

    Ruby, J. J.; Rygg, J. R.; Collins, G. W.; Bachmann, B.; Doeppner, T.; Ping, Y.; Gaffney, J.; Lazicki, A.; Kritcher, A. L.; Swift, D.; Nilsen, J.; Landen, O. L.; Hatarik, R.; Masters, N.; Nagel, S.; Sterne, P.; Pardini, T.; Khan, S.; Celliers, P. M.; Patel, P.; Gericke, D.; Falcone, R.

    2017-10-01

    The gigabar experimental platform at the National Ignition Facility is designed to increase understanding of the physical states and processes that dominate in the hydrogen at pressures from several hundreds of Mbar to tens of Gbar. Recent experiments using a solid CD2 ball reached temperatures and densities of order 107 K and several tens of g/cm3 , respectively. These conditions lead to the production of D-D fusion neutrons and x-ray bremsstrahlung photons, which allow us to place constraints on the thermodynamic states at peak compression. We use an analytic model to connect the neutron and x-ray emission with the state variables at peak compression. This analytic model is based on the self-similar Guderley solution of an imploding shock wave and the self-similar solution of the point explosion with heat conduction from Reinicke. Work is also being done to create a fully self-similar solution of an imploding shock wave coupled with heat conduction and radiation transport using a general equation of state. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  1. Experimental Study of Shock Wave Interference Heating on a Cylindrical Leading Edge. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wieting, Allan R.

    1987-01-01

    An experimental study of shock wave interference heating on a cylindrical leading edge representative of the cowl of a rectangular hypersonic engine inlet at Mach numbers of 6.3, 6.5, and 8.0 is presented. Stream Reynolds numbers ranged from 0.5 x 106 to 4.9 x 106 per ft. and stream total temperature ranged from 2100 to 3400 R. The model consisted of a 3" dia. cylinder and a shock generation wedge articulated to angles of 10, 12.5, and 15 deg. A fundamental understanding was obtained of the fluid mechanics of shock wave interference induced flow impingement on a cylindrical leading edge and the attendant surface pressure and heat flux distributions. The first detailed heat transfer rate and pressure distributions for two dimensional shock wave interference on a cylinder was provided along with insight into the effects of specific heat variation with temperature on the phenomena. Results show that the flow around a body in hypersonic flow is altered significantly by the shock wave interference pattern that is created by an oblique shock wave from an external source intersecting the bow shock wave produced in front of the body.

  2. Characterization for the performance of capacitive switches activated by mechanical shock.

    PubMed

    Younis, Mohammad I; Alsaleem, Fadi M; Miles, Ronald; Su, Quang

    2007-01-01

    This paper presents experimental and theoretical investigation of a new concept of switches (triggers) that are actuated at or beyond a specific level of mechanical shock or acceleration. The principle of operation of the switches is based on dynamic pull-in instability induced by the combined interaction between electrostatic and mechanical shock forces. These switches can be tuned to be activated at various shock and acceleration thresholds by adjusting the DC voltage bias. Two commercial off-the-shelf capacitive accelerometers operating in air are tested under mechanical shock and electrostatic loading. A single-degree-of-freedom model accounting for squeeze-film damping, electrostatic forces, and mechanical shock is utilized for the theoretical investigation. Good agreement is found between simulation results and experimental data. Our results indicate that designing these new switches to respond quasi-statically to mechanical shock makes them robust against variations in shock shape and duration. More importantly, quasi-static operation makes the switches insensitive to variations in damping conditions. This can be promising to lower the cost of packaging for these switches since they can operate in atmospheric pressure with no hermetic sealing or costly package required.

  3. Shock wave and flame front induced detonation in a rapid compression machine

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Qi, Y.; Xiang, S.; Mével, R.; Wang, Z.

    2018-05-01

    The present study focuses on one mode of detonation initiation observed in a rapid compression machine (RCM). This mode is referred to as shock wave and flame front-induced detonation (SWFID). Experimental high-speed imaging and two-dimensional numerical simulations with skeletal chemistry are combined to unravel the dominant steps of detonation initiation under SWFID conditions. It is shown that the interaction between the shock wave generated by the end-gas auto-ignition and the spherical flame creates a region of high pressure and temperature which enables the acceleration of the flame front and the detonation onset. The experimental observation lacks adequate spatial and temporal resolution despite good reproducibility of the detonation onset. Based on the numerical results, phenomenological interpretation of the event within the framework of shock wave refraction indicates that the formation of a free-precursor shock wave at the transition between regular and irregular refraction may be responsible for detonation onset. The present results along with previous findings on shock wave reflection-induced detonation in the RCM indicate that super-knock occurs after the interaction of the shock wave generated by end-gas auto-ignition with the RCM walls, preignition flame, or another shock wave.

  4. Characterization for the performance of capacitive switches activated by mechanical shock

    PubMed Central

    Younis, Mohammad I.; Alsaleem, Fadi M; Miles, Ronald; Su, Quang

    2009-01-01

    This paper presents experimental and theoretical investigation of a new concept of switches (triggers) that are actuated at or beyond a specific level of mechanical shock or acceleration. The principle of operation of the switches is based on dynamic pull-in instability induced by the combined interaction between electrostatic and mechanical shock forces. These switches can be tuned to be activated at various shock and acceleration thresholds by adjusting the DC voltage bias. Two commercial off-the-shelf capacitive accelerometers operating in air are tested under mechanical shock and electrostatic loading. A single-degree-of-freedom model accounting for squeeze-film damping, electrostatic forces, and mechanical shock is utilized for the theoretical investigation. Good agreement is found between simulation results and experimental data. Our results indicate that designing these new switches to respond quasi-statically to mechanical shock makes them robust against variations in shock shape and duration. More importantly, quasi-static operation makes the switches insensitive to variations in damping conditions. This can be promising to lower the cost of packaging for these switches since they can operate in atmospheric pressure with no hermetic sealing or costly package required. PMID:21720493

  5. Thermal infrared spectroscopy and modeling of experimentally shocked basalts

    USGS Publications Warehouse

    Johnson, J. R.; Staid, M.I.; Kraft, M.D.

    2007-01-01

    New measurements of thermal infrared emission spectra (250-1400 cm-1; ???7-40 ??m) of experimentally shocked basalt and basaltic andesite (17-56 GPa) exhibit changes in spectral features with increasing pressure consistent with changes in the structure of plagioclase feldspars. Major spectral absorptions in unshocked rocks between 350-700 cm-1 (due to Si-O-Si octahedral bending vibrations) and between 1000-1250 cm-1 (due to Si-O antisymmetric stretch motions of the silica tetrahedra) transform at pressures >20-25 GPa to two broad spectral features centered near 950-1050 and 400-450 cm-1. Linear deconvolution models using spectral libraries composed of common mineral and glass spectra replicate the spectra of shocked basalt relatively well up to shock pressures of 20-25 GPa, above which model errors increase substantially, coincident with the onset of diaplectic glass formation in plagioclase. Inclusion of shocked feldspar spectra in the libraries improves fits for more highly shocked basalt. However, deconvolution models of the basaltic andesite select shocked feldspar end-members even for unshocked samples, likely caused by the higher primary glass content in the basaltic andesite sample.

  6. Lunar and Planetary Science XXXV: Effects of Impacts: Shock and Awe

    NASA Technical Reports Server (NTRS)

    Kyte, F. T.; Koeberl, C.

    2004-01-01

    This document discusses the following topics: Zircon as a Shock Indicator in Impactites of Drill Core Yaxcopoil-1, Chicxulub Impact Structure, Mexico; Experimental Investigation of Shock Effects in a Metapelitic Granulite; Experimental Reproduction of Shock Veins in Single-Crystal Minerals; Post-Shock Crystal-Plastic Processes in Quartz from Crystalline Target Rocks of the Charlevoix Impact Structure; Shock Reequilibration of Fluid Inclusions; How Does Tektite Glass Lose Its Water?; Assessing the Role of Anhydrite in the KT Mass Extinction: Hints from Shock-loading Experiments; A Mineralogical and Geochemical Study of the Nonmarine Permian/Triassic Boundary in the Southern Karoo Basin, South Africa; Extraterrestrial Chromium in the Permian-Triassic Boundary at Graphite Peak, Antarctica; Magnetic Fe,Si,Al-rich Impact Spherules from the P-T Boundary Layer at Graphite Peak, Antarctica; A Newly Recognized Late Archean Impact Spherule Layer in the Reivilo Formation, Griqualand West Basin, South Africa; Initial Cr-Isotopic and Iridium Measurements of Concentrates from Late Eocene Cpx-Spherule Deposits; An Ordinary Chondrite Impactor Composition for the Bosumtwi Impact Structure, Ghana, West Africa: Discussion of Siderophile Element Contents and Os and Cr Isotope Data.

  7. Shock waves in weakly compressed granular media.

    PubMed

    van den Wildenberg, Siet; van Loo, Rogier; van Hecke, Martin

    2013-11-22

    We experimentally probe nonlinear wave propagation in weakly compressed granular media and observe a crossover from quasilinear sound waves at low impact to shock waves at high impact. We show that this crossover impact grows with the confining pressure P0, whereas the shock wave speed is independent of P0-two hallmarks of granular shocks predicted recently. The shocks exhibit surprising power law attenuation, which we model with a logarithmic law implying that shock dissipation is weak and qualitatively different from other granular dissipation mechanisms. We show that elastic and potential energy balance in the leading part of the shocks.

  8. The effects of shockwave profile shape and shock obliquity on spallation in Cu and Ta: kinetic and stress-state effects on damage evolution(u)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, George T

    2010-12-14

    Widespread research over the past five decades has provided a wealth of experimental data and insight concerning shock hardening and the spallation response of materials subjected to square-topped shock-wave loading profiles. Less quantitative data have been gathered on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (or triangular-wave) loading profile shock loading on the shock hardening, damage evolution, or spallation response of materials. Explosive loading induces an impulse dubbed a 'Taylor Wave'. This is a significantly different loading history than that achieved by a square-topped impulse in terms of both the pulse duration at a fixed peak pressure,more » and a different unloading strain rate from the peak Hugoniot state achieved. The goal of this research is to quantify the influence of shockwave obliquity on the spallation response of copper and tantalum by subjecting plates of each material to HE-driven sweeping detonation-wave loading and quantify both the wave propagation and the post-mortem damage evolution. This talk will summarize our current understanding of damage evolution during sweeping detonation-wave spallation loading in Cu and Ta and show comparisons to modeling simulations. The spallation responses of Cu and Ta are both shown to be critically dependent on the shockwave profile and the stress-state of the shock. Based on variations in the specifics of the shock drive (pulse shape, peak stress, shock obliquity) and sample geometry in Cu and Ta, 'spall strength' varies by over a factor of two and the details of the mechanisms of the damage evolution is seen to vary. Simplistic models of spallation, such as P{sub min} based on 1-D square-top shock data lack the physics to capture the influence of kinetics on damage evolution such as that operative during sweeping detonation loading. Such considerations are important for the development of predictive models of damage evolution and spallation in metals and alloys.« less

  9. Laws of attenuation of axially symmetrical shock waves in shells of detonating extended charges

    NASA Astrophysics Data System (ADS)

    Kuzin, E. N.; Zagarskih, V. I.; Efanov, V. V.

    2016-12-01

    The procedure and algorithms are proposed for an experimental and computational estimate of attenuation of radial shock waves occurring in shells of detonating extended charges during glancing detonation of their ammunition (explosives). Based on results of experimental, the semiempirical dependence characterizing the attenuation law for such waves is obtained.

  10. Consolidation of Bimetallic Nanosized Particles and Formation of Nanocomposites Depending on Conditions of Shock Wave Compaction

    NASA Astrophysics Data System (ADS)

    Vorozhtsov, S. A.; Kudryashova, O. B.; Lerner, M. I.; Vorozhtsov, A. B.; Khrustalyov, A. P.; Pervikov, A. V.

    2017-11-01

    The authors consider and evaluate the physical parameters and regularities of the process of consolidation of Fe-Cu, Cu-Nb, Ag-Ni, Fe-Pb nanoparticles when creating composite materials by means of shock wave compaction. As a result of theoretical consideration of explosive compaction process, researchers established and discussed the physical process conditions, established a number of threshold pressure values corresponding to different target indicators of the state of the compact. The time of shock wave impact on powders for powder consolidation was estimated.

  11. Transient bow shock around a cylinder in a supersonic dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, John K.; Merlino, Robert L.

    2013-07-15

    Visual observations of the formation of a bow shock in the transient supersonic flow of a dusty plasma incident on a biased cylinder are presented. The bow shock formed when the advancing front of a streaming dust cloud was reflected by the obstacle. After its formation, the density jump of the bow shock increased as it moved upstream of the obstacle. A physical picture for the formation of the electrohydrodynamic bow shock is discussed.

  12. Rippled Quasiperpendicular Shock Observed by the Magnetospheric Multiscale Spacecraft.

    PubMed

    Johlander, A; Schwartz, S J; Vaivads, A; Khotyaintsev, Yu V; Gingell, I; Peng, I B; Markidis, S; Lindqvist, P-A; Ergun, R E; Marklund, G T; Plaschke, F; Magnes, W; Strangeway, R J; Russell, C T; Wei, H; Torbert, R B; Paterson, W R; Gershman, D J; Dorelli, J C; Avanov, L A; Lavraud, B; Saito, Y; Giles, B L; Pollock, C J; Burch, J L

    2016-10-14

    Collisionless shock nonstationarity arising from microscale physics influences shock structure and particle acceleration mechanisms. Nonstationarity has been difficult to quantify due to the small spatial and temporal scales. We use the closely spaced (subgyroscale), high-time-resolution measurements from one rapid crossing of Earth's quasiperpendicular bow shock by the Magnetospheric Multiscale (MMS) spacecraft to compare competing nonstationarity processes. Using MMS's high-cadence kinetic plasma measurements, we show that the shock exhibits nonstationarity in the form of ripples.

  13. Rippled Quasiperpendicular Shock Observed by the Magnetospheric Multiscale Spacecraft

    NASA Technical Reports Server (NTRS)

    Johlander, A.; Schwartz, S. J.; Vaivads, A.; Khotyaintsev, Yu. V.; Gingell, I.; Peng, I. B.; Markidis, S.; Lindqvist, P.-A.; Ergun, R. E.; Marklund, G. T.; hide

    2016-01-01

    Collisionless shock nonstationarity arising from microscale physics influences shock structure and particle acceleration mechanisms. Nonstationarity has been difficult to quantify due to the small spatial and temporal scales. We use the closely spaced (subgyroscale), high-time-resolution measurements from one rapid crossing of Earths quasiperpendicular bow shock by the Magnetospheric Multiscale (MMS) spacecraft to compare competing nonstationarity processes. Using MMSs high-cadence kinetic plasma measurements, we show that the shock exhibits nonstationarity in the form of ripples.

  14. A Computational Examination of Detonation Physics and Blast Chemistry

    DTIC Science & Technology

    2011-08-01

    State 5 3 Detonation and Shock Hugoniots for TNT using the JWL Equation of State 6 4 Detonation and Shock Hugoniots for HMX using the JWL ...Equation of State 6 5 Detonation and Shock Hugoniots for Composition C-4 using the JWL Equation of State 7 6 Detonation and Shock...Hugoniots for PBX-9502 using the JWL Equation of State 7 7 Detonation and Shock Hugoniots for PETN using the JWL Equation of State 8 8

  15. A Computational Examination of Detonation Physics and Blast Chemistry

    DTIC Science & Technology

    2011-08-01

    Equation of State 5 3 Detonation and Shock Hugoniots for TNT using the JWL Equation of State 6 4 Detonation and Shock Hugoniots for HMX using the... JWL Equation of State 6 5 Detonation and Shock Hugoniots for Composition C-4 using the JWL Equation of State 7 6 Detonation and...Shock Hugoniots for PBX-9502 using the JWL Equation of State 7 7 Detonation and Shock Hugoniots for PETN using the JWL Equation of State 8

  16. Shock Waves for Possible Application in Regenerative Medicine

    NASA Astrophysics Data System (ADS)

    Hosseini, S. H. R.; Nejad, S. Moosavi; Akiyama, H.

    The paper reports experimental study of underwater shock waves effects in modification and possible control of embryonic stem cell differentiation and proliferation. The study is motivated by its application in regenerativemedicine. Underwater shock waves have been of interest for various scientific, industrial, and medical applications.

  17. Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory

    DOE PAGES

    Schaeffer, D. B.; Fox, W.; Haberberger, D.; ...

    2017-07-13

    Here, we present the first laboratory generation of high-Mach-number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number M ms ≈ 12. Particle-in-cell simulations constrained by experimental data further detail the shock formation and separate dynamics of the multi-ion-species ambient plasma. The results show that the shocks form on time scales as fast as one gyroperiod, aided by the efficient coupling of energy, and the generation of a magneticmore » barrier between the piston and ambient ions. The development of this experimental platform complements present remote sensing and spacecraft observations, and opens the way for controlled laboratory investigations of high-Mach number collisionless shocks, including the mechanisms and efficiency of particle acceleration.« less

  18. Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaeffer, D. B.; Fox, W.; Haberberger, D.

    Here, we present the first laboratory generation of high-Mach-number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number M ms ≈ 12. Particle-in-cell simulations constrained by experimental data further detail the shock formation and separate dynamics of the multi-ion-species ambient plasma. The results show that the shocks form on time scales as fast as one gyroperiod, aided by the efficient coupling of energy, and the generation of a magneticmore » barrier between the piston and ambient ions. The development of this experimental platform complements present remote sensing and spacecraft observations, and opens the way for controlled laboratory investigations of high-Mach number collisionless shocks, including the mechanisms and efficiency of particle acceleration.« less

  19. Hugoniot equation of state of rock materials under shock compression

    PubMed Central

    Braithwaite, C. H.; Zhao, J.

    2017-01-01

    Two sets of shock compression tests (i.e. conventional and reverse impact) were conducted to determine the shock response of two rock materials using a plate impact facility. Embedded manganin stress gauges were used for the measurements of longitudinal stress and shock velocity. Photon Doppler velocimetry was used to capture the free surface velocity of the target. Experimental data were obtained on a fine-grained marble and a coarse-grained gabbro over a shock pressure range of approximately 1.5–12 GPa. Gabbro exhibited a linear Hugoniot equation of state (EOS) in the pressure–particle velocity (P–up) plane, while for marble a nonlinear response was observed. The EOS relations between shock velocity (US) and particle velocity (up) are linearly fitted as US = 2.62 + 3.319up and US = 5.4 85 + 1.038up for marble and gabbro, respectively. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956506

  20. Effects of Pre-Existing Target Structure on the Formation of Large Craters

    NASA Technical Reports Server (NTRS)

    Barnouin-Jha, O. S.; Cintala, M. J.; Crawford, D. A.

    2003-01-01

    The shapes of large-scale craters and the mechanics responsible for melt generation are influenced by broad and small-scale structures present in a target prior to impact. For example, well-developed systems of fractures often create craters that appear square in outline, good examples being Meteor Crater, AZ and the square craters of 433 Eros. Pre-broken target material also affects melt generation. Kieffer has shown how the shock wave generated in Coconino sandstone at Meteor crater created reverberations which, in combination with the natural target heterogeneity present, created peaks and troughs in pressure and compressed density as individual grains collided to produce a range of shock mineralogies and melts within neighboring samples. In this study, we further explore how pre-existing target structure influences various aspects of the cratering process. We combine experimental and numerical techniques to explore the connection between the scales of the impact generated shock wave and the pre-existing target structure. We focus on the propagation of shock waves in coarse, granular media, emphasizing its consequences on excavation, crater growth, ejecta production, cratering efficiency, melt generation, and crater shape. As a baseline, we present a first series of results for idealized targets where the particles are all identical in size and possess the same shock impedance. We will also present a few results, whereby we increase the complexities of the target properties by varying the grain size, strength, impedance and frictional properties. In addition, we investigate the origin and implications of reverberations that are created by the presence of physical and chemical heterogeneity in a target.

  1. 28th Lanchester Memorial Lecture - Experimental real-gas hypersonics

    NASA Astrophysics Data System (ADS)

    Hornung, H. G.

    1988-12-01

    It is possible to simulate a number of dissociative real-gas effects in the laboratory by means quite different from those of the perfect-gas Mach-Reynolds simulation, as presently demonstrated for two sets of results obtained in a free-piston shock tunnel experimental facility designed and built for this purpose. The results concern blunt body flows, which involve the phenomenon of dissociation quenching, and shock detachment from a wedge, which revealed a novel effect of reacting flows in which a thin subsonic layer exists after the shock, followed by a supersonic flow.

  2. WIRGO in TIC's? [What (on Earth) is Really Going On in Terrestrial Impact Craters?

    NASA Astrophysics Data System (ADS)

    Dence, Michael R.

    2003-02-01

    Canada is well endowed with impact craters formed in crystalline rocks with relatively homogeneous physical properties. They exhibit all the main morphological-structural variations with crater size seen in craters on other rocky planets, from small simple bowl to large peak and ring forms. Lacking stratigraphy, analysis is based on the imprint of shock melting and metamorphism, the position of the GPL (limit of initial Grady-Kipp fracturing due to shock wave reverberations) relative to shock level, the geometry of late stage shears and breccias and the volume of shocked material beyond the GPL. Simple craters, exemplified by Brent (D = 3.7 km) allow direct comparison with models and experimental data. Results of interest include: 1. The central pool of impact melt and underlying breccia at the base of the crater fill is interpreted as the remnant of the transient crater lining; 2. The overlying main mass of breccias filling the final apparent crater results from latestage slumping of large slabs bounded by a primary shear surface that conforms to a sphere segment of radius, rs approx. = 2dtc, where dtc is the transient crater depth; 3. The foot of the primary shear intersects above the GPL at the centre of the melt pool and the rapid emplacement of slumped slabs produces further brecciation while suppressing any tendency for the centre to rise. In the autochthonous breccias below the melt and in the underlying para-allochthone below the GPL, shock metamorphism weakens with depth. The apparent attenuation of the shock pulse can be compared with experimentally derived rates of attenuation to give a measure of displacements down axis and estimates of the size of a nominal bolide of given velocity, the volume of impact melt and the energy released on impact. In larger complex craters (e.g. Charlevoix, D = 52 km) apparent shock attenuation is low near the centre but is higher towards the margin. The inflection point marks the change from uplift of deep material in the centre to subsidence of near-surface material at the margins. From the observed general relationship PGPL = 3.5 D0.5, where PGPL (in GPa) is the estimated level of shock metamorphism at the Grady-Kipp fracture limit, it is apparent that the differential stress due to shock wave reflections weakens at about twice the attenuation rate of the initial shock pulse. Thus, with increasing size, compression of the para-authochthone below the GPL plays an increasingly larger role in controlling the depth of the transient crater and hence the radius of the primary shear. It follows that, where the rate of relaxation of the para-authochthone is more rapid than the propagation of the primary shear from the rim towards the centre, the shear surface intersects below the GPL and central uplift occurs.

  3. Forsterite Shock Temperatures and Entropy: New Scaling Laws for Impact Melting and Vaporization

    NASA Astrophysics Data System (ADS)

    Davies, E.; Root, S.; Kraus, R. G.; Townsend, J. P.; Spaulding, D.; Stewart, S. T.; Jacobsen, S. B.; Fratanduono, D.; Millot, M. A.; Mattsson, T. R.; Hanshaw, H. L.

    2017-12-01

    The observed masses, radii and temperatures of thousands of extra-solar planets have challenged our theoretical understanding of planet formation and planetary structures. Planetary materials are subject to extreme pressures and temperatures during formation and within the present-day interiors of large bodies. Here, we focus on improving understanding of the physical properties of rocky planets for calculations of internal structure and the outcomes of giant impacts. We performed flyer plate impact experiments on forsterite [Mg2SiO4] on the Z-Machine at Sandia National Laboratory and decaying shock temperature measurements at the Omega EP laser at U. Rochester. At Z, planar, supported shock waves are generated in single crystal samples, permitting observation of both compressed and released states. Using available static and dynamic thermodynamic data, we calculate absolute entropy and heat capacity along the forsterite shock Hugoniot. Entropy and heat capacity on the Hugoniot are larger than previous estimates. Our data constrain the thermodynamic properties of forsterite liquid at high pressures and temperatures and the amount of melt and vapor produced during impact events. For an ambient pressure of 1 bar, shock-vaporization begins upon reaching the liquid region on the forsterite Hugoniot (about 200 GPa). Using hydrocode simulations of giant impacts between rocky planets with forsterite mantles and iron cores and the new experimentally-constrained forsterite shock entropy, we present a new scaling law for the fraction of mantle that is melted or vaporized by the initial shock wave. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. Prepared by LLNL under Contract DE-AC52-07NA27344. Prepared by the Center for Frontiers in High Energy Density Science

  4. Dust Ion-Acoustic Shock Waves in a Multicomponent Magnetorotating Plasma

    NASA Astrophysics Data System (ADS)

    Kaur, Barjinder; Saini, N. S.

    2018-02-01

    The nonlinear properties of dust ion-acoustic (DIA) shock waves in a magnetorotating plasma consisting of inertial ions, nonextensive electrons and positrons, and immobile negatively charged dust are examined. The effects of dust charge fluctuations are not included in the present investigation, but the ion kinematic viscosity (collisions) is a source of dissipation, leading to the formation of stable shock structures. The Zakharov-Kuznetsov-Burgers (ZKB) equation is derived using the reductive perturbation technique, and from its solution the effects of different physical parameters, i.e. nonextensivity of electrons and positrons, kinematic viscosity, rotational frequency, and positron and dust concentrations, on the characteristics of shock waves are examined. It is observed that physical parameters play a very crucial role in the formation of DIA shocks. This study could be useful in understanding the electrostatic excitations in dusty plasmas in space (e.g. interstellar medium).

  5. Simulating Shock Triggered Star Formation with AstroBEAR2.0

    NASA Astrophysics Data System (ADS)

    Li, Shule; Frank, Adam; Blackman, Eric

    2013-07-01

    Star formation can be triggered by the compression from shocks running over stable clouds. Triggered star formation is a favored explanation for the traces of SLRI's in our solar system. Previous research has shown that when parameters such as shock speed are within a certain range, the gravitational collapse of otherwise stable, dense cloud cores is possible. However, these studies usually focus on the precursors of star formation, and the conditions for the triggering. We use AstroBEAR2.0 code to simulate the collapse and subsequent evolution of a stable Bonnor-Ebert cloud by an incoming shock. Through our simulations, we show that interesting physics happens when the newly formed star interacts with the cloud residue and the post-shock flow. We identify these interactions as controlled by the initial conditions of the triggering and study the flow pattern as well as the evolution of important physics quantities such as accretion rate and angular momentum.

  6. Physical activity, muscle, and the HSP70 response.

    PubMed

    Kilgore, J L; Musch, T I; Ross, C R

    1998-06-01

    Selye (1936) described how organisms react to various external stimuli (i.e., stressors). These reactions generally follow a programmed series of events and help the organism adapt to the imposed stress. The heat shock response is a common cellular reaction to external stressors, including physical activity. A characteristic set of proteins is synthesised shortly after the organism is exposed to stress. Researchers have not determined how heat shock proteins affect the exercise response. However, their role in adaptation to exercise and training might be inferred, since the synthetic patterns correlate well with the stress adaptation syndrome that Selye described. This review addresses the 70 kilodalton heat shock protein family (HSP70), the most strongly induced heat shock proteins. This paper provides an overview of the general heat shock response and a brief review of literature on HSP70 function, structure, regulation, and potential applications. Potential applications in health, exercise, and medicine are provided.

  7. Professor Thomas J. Ahrens and Shock Wave Physics in Russia

    NASA Astrophysics Data System (ADS)

    Fortov, Vladimir E.; Kanel, Gennady I.

    2011-06-01

    Since his earlier works on the equations of state and dynamic mechanical properties of rocks and other materials Prof. T.J. Ahrens furnished large influence on development of the shock wave physics in Russia. He always demonstrates a choice of excellent problems and a level of productivity in the field of shock compression science which is unparalleled. In recognition of his great contribution into science and international scientific collaboration Prof. Ahrens has been elected in Russian Academy of Sciences as its foreign member. In the presentation, emphasis will be done on the Comet Shoemaker-Levy project in which we had fruitful informal collaboration, on the problem of wide-range equations of state, and on stress relaxation at shock compression of solids.

  8. Diaphragm opening effects on shock wave formation and acceleration in a rectangular cross section channel

    NASA Astrophysics Data System (ADS)

    Pakdaman, S. A.; Garcia, M.; Teh, E.; Lincoln, D.; Trivedi, M.; Alves, M.; Johansen, C.

    2016-11-01

    Shock wave formation and acceleration in a high-aspect ratio cross section shock tube were studied experimentally and numerically. The relative importance of geometric effects and diaphragm opening time on shock formation are assessed. The diaphragm opening time was controlled through the use of slit-type (fast opening time) and petal-type (slow opening time) diaphragms. A novel method of fabricating the petal-type diaphragms, which results in a consistent burst pressure and symmetric opening without fragmentation, is presented. High-speed schlieren photography was used to visualize the unsteady propagation of the lead shock wave and trailing gas dynamic structures. Surface-mounted pressure sensors were used to capture the spatial and temporal development of the pressure field. Unsteady Reynolds-Averaged Navier-Stokes simulation predictions using the shear-stress-transport turbulence model are compared to the experimental data. Simulation results are used to explain the presence of high-frequency pressure oscillations observed experimentally in the driver section as well as the cause of the initial acceleration and subsequent rapid decay of shock velocity measured along the top and bottom channel surfaces. A one-dimensional theoretical model predicting the effect of the finite opening time of the diaphragm on the rate of driver depressurization and shock acceleration is proposed. The model removes the large amount of empiricism that accompanies existing models published in the literature. Model accuracy is assessed through comparisons with experiments and simulations. Limitations of and potential improvements in the model are discussed.

  9. An experimental nonlinear low dynamic stiffness device for shock isolation

    NASA Astrophysics Data System (ADS)

    Francisco Ledezma-Ramirez, Diego; Ferguson, Neil S.; Brennan, Michael J.; Tang, Bin

    2015-07-01

    The problem of shock generated vibration is very common in practice and difficult to isolate due to the high levels of excitation involved and its transient nature. If not properly isolated it could lead to large transmitted forces and displacements. Typically, classical shock isolation relies on the use of passive stiffness elements to absorb energy by deformation and some damping mechanism to dissipate residual vibration. The approach of using nonlinear stiffness elements is explored in this paper, focusing in providing an isolation system with low dynamic stiffness. The possibilities of using such a configuration for a shock mount are studied experimentally following previous theoretical models. The model studied considers electromagnets and permanent magnets in order to obtain nonlinear stiffness forces using different voltage configurations. It is found that the stiffness nonlinearities could be advantageous in improving shock isolation in terms of absolute displacement and acceleration response when compared with linear elastic elements.

  10. Equation of state for shock compression of distended solids

    NASA Astrophysics Data System (ADS)

    Grady, Dennis; Fenton, Gregg; Vogler, Tracy

    2014-05-01

    Shock Hugoniot data for full-density and porous compounds of boron carbide, silicon dioxide, tantalum pentoxide, uranium dioxide and playa alluvium are investigated for the purpose of equation-of-state representation of intense shock compression. Complications of multivalued Hugoniot behavior characteristic of highly distended solids are addressed through the application of enthalpy-based equations of state of the form originally proposed by Rice and Walsh in the late 1950's. Additive measures of cold and thermal pressure intrinsic to the Mie-Gruneisen EOS framework is replaced by isobaric additive functions of the cold and thermal specific volume components in the enthalpy-based formulation. Additionally, experimental evidence reveals enhancement of shock-induced phase transformation on the Hugoniot with increasing levels of initial distension for silicon dioxide, uranium dioxide and possibly boron carbide. Methods for addressing this experimentally observed feature of the shock compression are incorporated into the EOS model.

  11. Equation of State for Shock Compression of High Distension Solids

    NASA Astrophysics Data System (ADS)

    Grady, Dennis

    2013-06-01

    Shock Hugoniot data for full-density and porous compounds of boron carbide, silicon dioxide, tantalum pentoxide, uranium dioxide and playa alluvium are investigated for the purpose of equation-of-state representation of intense shock compression. Complications of multivalued Hugoniot behavior characteristic of highly distended solids are addressed through the application of enthalpy-based equations of state of the form originally proposed by Rice and Walsh in the late 1950's. Additivity of cold and thermal pressure intrinsic to the Mie-Gruneisen EOS framework is replaced by isobaric additive functions of the cold and thermal specific volume components in the enthalpy-based formulation. Additionally, experimental evidence supports acceleration of shock-induced phase transformation on the Hugoniot with increasing levels of initial distention for silicon dioxide, uranium dioxide and possibly boron carbide. Methods for addressing this experimentally observed facet of the shock compression are introduced into the EOS model.

  12. Strength and viscosity effects on perturbed shock front stability in metals

    DOE PAGES

    Opie, Saul; Loomis, Eric Nicholas; Peralta, Pedro; ...

    2017-05-09

    Here, computational modeling and experimental measurements on metal samples subject to a laser-driven, ablative Richtmyer-Meshkov instability showed differences between viscosity and strength effects. In particular, numerical and analytical solutions, coupled with measurements of fed-through perturbations, generated by perturbed shock fronts onto initially flat surfaces, show promise as a validation method for models of deviatoric response in the post shocked material. Analysis shows that measurements of shock perturbation amplitudes at low sample thickness-to-wavelength ratios are not enough to differentiate between strength and viscosity effects, but that surface displacement data of the fed-through fed-thru perturbations appears to resolve the ambiguity. Additionally, analyticalmore » and numerical results show shock front perturbation evolution dependence on initial perturbation amplitude and wavelength is significantly different in viscous and materials with strength, suggesting simple experimental geometry changes should provide data supporting one model or the other.« less

  13. Shock response of nanoporous Cu--A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhao, Fengpeng

    2015-06-01

    Shock response of porous materials can be of crucial significance for shock physics and bears many practical applications in materials synthesis and engineering. Molecular dynamics simulations are carried out to investigate shock response of nanoporous metal materials, including elastic-plastic deformation, Hugoniot states, shock-induced melting, partial or complete void collapse, hotspot formation, nanojetting, and vaporization. A model nanoporous Cu with cylindrical voids and a high porosity under shocking is established to investigate such physical properties as velocity, temperature, density, stress and von Mises stress at different stages of compression and release. The elastic-plastic and overtaking shocks are observed at different shock strengths. A modified power-law P- α model is proposed to describe the Hugoniot states. The Grüneisen equation of state is validated. Shock-induced melting shows no clear signs of bulk premelting or superheating. Void collapse via plastic flow nucleated from voids, and the exact processes are shock strength dependent. With increasing shock strengths, void collapse transits from the ``geometrical'' mode (collapse of a void is dominated by crystallography and void geometry and can be different from that of one another) to ``hydrodynamic'' mode (collapse of a void is similar to one another). The collapse may be achieved predominantly by plastic flows along the {111} slip planes, by way of alternating compression and tension zones, by means of transverse flows, via forward and transverse flows, or through forward nano-jetting. The internal jetting induces pronounced shock front roughening, leading to internal hotspot formation and sizable high speed jets on atomically flat free surfaces. P. O. Box 919-401, Mianyang, 621900, Sichuan, PRC.

  14. THE ROLE OF PICKUP IONS ON THE STRUCTURE OF THE VENUSIAN BOW SHOCK AND ITS IMPLICATIONS FOR THE TERMINATION SHOCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Quanming; Shan Lican; Zhang Tielong

    2013-08-20

    The recent crossing of the termination shock by Voyager 2 has demonstrated the important role of pickup ions (PUIs) in the physics of collisionless shocks. The Venus Express (VEX) spacecraft orbits Venus in a 24 hr elliptical orbit that crosses the bow shock twice a day. VEX provides a unique opportunity to investigate the role of PUIs on the structure of collisionless shocks more generally. Using VEX observations, we find that the strength of the Venusian bow shock is weaker when solar activity is strong. We demonstrate that this surprising anti-correlation is due to PUIs mediating the Venusian bow shock.

  15. Radiative precursors driven by converging blast waves in noble gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burdiak, G. C.; Lebedev, S. V.; Harvey-Thompson, A. J.

    2014-03-15

    A detailed study of the radiative precursor that develops ahead of converging blast waves in gas-filled cylindrical liner z-pinch experiments is presented. The experiment is capable of magnetically driving 20 km s{sup −1} blast waves through gases of densities of the order 10{sup −5} g cm{sup −3} (see Burdiak et al. [High Energy Density Phys. 9(1), 52–62 (2013)] for a thorough description). Data were collected for Ne, Ar, and Xe gas-fills. The geometry of the setup allows a determination of the plasma parameters both in the precursor and across the shock, along a nominally uniform line of sight that is perpendicularmore » to the propagation of the shock waves. Radiation from the shock was able to excite NeI, ArII, and XeII/XeIII precursor spectral features. It is shown that the combination of interferometry and optical spectroscopy data is inconsistent with upstream plasmas being in LTE. Specifically, electron density gradients do not correspond to any apparent temperature change in the emission spectra. Experimental data are compared to 1D radiation hydrodynamics HELIOS-CR simulations and to PrismSPECT atomic physics calculations to assist in a physical interpretation of the observations. We show that upstream plasma is likely in the process of being radiatively heated and that the emission from a small percentage of ionised atoms within a cool background plasma dominates the emission spectra. Experiments were carried out on the MAGPIE and COBRA pulsed-power facilities at Imperial College London and Cornell University, respectively.« less

  16. Effects of heat conduction on artificial viscosity methods for shock capturing

    DOE PAGES

    Cook, Andrew W.

    2013-12-01

    Here we investigate the efficacy of artificial thermal conductivity for shock capturing. The conductivity model is derived from artificial bulk and shear viscosities, such that stagnation enthalpy remains constant across shocks. By thus fixing the Prandtl number, more physical shock profiles are obtained, only on a larger scale. The conductivity model does not contain any empirical constants. It increases the net dissipation of a computational algorithm but is found to better preserve symmetry and produce more robust solutions for strong-shock problems.

  17. Quartz and feldspar glasses produced by natural and experimental shock.

    NASA Technical Reports Server (NTRS)

    Stoeffler, D.; Hornemann, U.

    1972-01-01

    Refractive index, density, and infrared absorption studies of naturally and experimentally shocked-produced glasses formed from quartz, plagioclase, and alkali-feldspar confirm the existence of two main groups of amorphous forms of the framework silicates: solid-state and liquid-state glasses. These were apparently formed as metastable release products of high-pressure-phases above and below the glass transition temperatures. Solid-state glasses exhibit a series of structural states with increasing disorder caused by increasing shock pressures and temperatures. They gradually merge into the structural state of fused minerals similar to that of synthetic glasses quenched from a melt. Shock-fused alkali feldspars can, however, be distinguished from their laboratory-fused counterparts by infrared absorption and by higher density.

  18. Plane shock loading on mono- and nano-crystalline silicon carbide

    NASA Astrophysics Data System (ADS)

    Branicio, Paulo S.; Zhang, Jingyun; Rino, José P.; Nakano, Aiichiro; Kalia, Rajiv K.; Vashishta, Priya

    2018-03-01

    The understanding of the nanoscale mechanisms of shock damage and failure in SiC is essential for its application in effective and damage tolerant coatings. We use molecular-dynamics simulations to investigate the shock properties of 3C-SiC along low-index crystallographic directions and in nanocrystalline samples with 5 nm and 10 nm grain sizes. The predicted Hugoniot in the particle velocity range of 0.1 km/s-6.0 km/s agrees well with experimental data. The shock response transitions from elastic to plastic, predominantly deformation twinning, to structural transformation to the rock-salt phase. The predicted strengths from 12.3 to 30.9 GPa, at the Hugoniot elastic limit, are in excellent agreement with experimental data.

  19. Simulations of the Richtmyer-Meshkov Instability in a two-shock vertical shock tube

    NASA Astrophysics Data System (ADS)

    Ferguson, Kevin; Olson, Britton; Jacobs, Jeffrey

    2017-11-01

    Simulations of the Richtmyer-Meshkov Instability (RMI) in a new two-shock vertical shock tube configuration are presented. The simulations are performed using the ARES code at Lawrence-Livermore National Laboratory (LLNL). Two M=1.2 shock waves travel in opposing directions and impact an initially stationary interface formed by sulfur hexaflouride (SF6) and air. The delay between the two shocks is controlled to achieve a prescribed temporal separation in shock wave arrival time. Initial interface perturbations and diffusion profiles are generated in keeping with previously gathered experimental data. The effect of varying the inter-shock delay and initial perturbation structure on instability growth and mixing parameters is examined. Information on the design, construction, and testing of a new two-shock vertical shock tube are also presented.

  20. Recent developments in shock tube research; Proceedings of the Ninth International Symposium, Stanford University, Stanford, Calif., July 16-19, 1973

    NASA Technical Reports Server (NTRS)

    Bershader, D. (Editor); Griffith, W.

    1973-01-01

    Recent advances in shock tube research are described in papers dealing with the design and performance features of new devices as well as applications in aerodynamic, chemical, and physics experiments. Topics considered include a cryogenic shock tube for studying liquid helium fluid mechanics, studies of shock focusing and nonlinear resonance in shock tubes, applications in gas laser studies, very-low and very-high temperature chemical kinetic measurements, shock tube studies of ionization and recombination phenomena, applications in bioacoustic research, shock-tube simulation studies of sonic booms, and plasma research. Individual items are announced in this issue.

  1. Computational and Experimental Analysis of Mach 5 Air Flow over a Cylinder with a Nanosecond Pulse Discharge

    DTIC Science & Technology

    2012-01-01

    wind tunnel t = 4:1 s after a discharge event. The compression wave pushes the bow - shock outward, as seen in the red region. Consistent with the two... wind tunnel , which was able to computationally replicate the bow - shock structure seen in the schlieren photography, predict the width of the tunnel’s...from the pulse source. As the shock wave travels upstream, it interacts with the standing bow - shock and momentarily increases the bow - shock

  2. Electromagnetically driven radiative shocks and their measurements

    NASA Astrophysics Data System (ADS)

    Kondo, K.; Nakajima, M.; Kawamura, T.; Horioka, K.

    2006-06-01

    Experimental results on a generation of strong shocks in a compact pulse power device are reported. To make a strong and plain shock wave, electrodes are tapered and an acrylic guiding tube is located on the top of the electrodes. It drives a quasi-one-dimensional strong shock in the guiding tube. When the front speed is more than the critical speed Drad, an interesting structure is confirmed at the shock front, which indicate a phenomenon proceeded by the radiative transport.

  3. Shock wave physics and detonation physics — a stimulus for the emergence of numerous new branches in science and engineering

    NASA Astrophysics Data System (ADS)

    Krehl, Peter O. K.

    2011-07-01

    In the period of the Cold War (1945-1991), Shock Wave Physics and Detonation Physics (SWP&DP) — until the beginning of WWII mostly confined to gas dynamics, high-speed aerodynamics, and military technology (such as aero- and terminal ballistics, armor construction, chemical explosions, supersonic gun, and other firearms developments) — quickly developed into a large interdisciplinary field by its own. This rapid expansion was driven by an enormous financial support and two efficient feedbacks: the Terminal Ballistic Cycleand the Research& Development Cycle. Basic knowledge in SWP&DP, initially gained in the Classic Period(from 1808) and further extended in the Post-Classic Period(from the 1930s to present), is now increasingly used also in other branches of Science and Engineering (S&E). However, also independent S&E branches developed, based upon the fundamentals of SWP&DP, many of those developments will be addressed (see Tab. 2). Thus, shock wave and detonation phenomena are now studied within an enormous range of dimensions, covering microscopic, macroscopic, and cosmic dimensions as well as enormous time spans ranging from nano-/picosecond shock durations (such as produced by ultra-short laser pulses) to shock durations that continue for centuries (such as blast waves emitted from ancient supernova explosions). This paper reviews these developments from a historical perspective.

  4. Physiological Arousal in the Context of a Specified Anticipatory Period and Experimentally Induced Expectancy for Shock

    ERIC Educational Resources Information Center

    Mead, John D.; Dengerink, Harold A.

    1977-01-01

    The major intent of this research was to provide a further test of the relationships between physiological arousal and event probability by experimentally generating subjective expectancies for shock. The relationship of event probability to stress was discussed with respect to length of the anticipatory periods and methods used to establish…

  5. Validation of High-Speed Turbulent Boundary Layer and Shock-Boundary Layer Interaction Computations with the OVERFLOW Code

    NASA Technical Reports Server (NTRS)

    Oliver, A. B.; Lillard, R. P.; Blaisdell, G. A.; Lyrintizis, A. S.

    2006-01-01

    The capability of the OVERFLOW code to accurately compute high-speed turbulent boundary layers and turbulent shock-boundary layer interactions is being evaluated. Configurations being investigated include a Mach 2.87 flat plate to compare experimental velocity profiles and boundary layer growth, a Mach 6 flat plate to compare experimental surface heat transfer,a direct numerical simulation (DNS) at Mach 2.25 for turbulent quantities, and several Mach 3 compression ramps to compare computations of shock-boundary layer interactions to experimental laser doppler velocimetry (LDV) data and hot-wire data. The present paper describes outlines the study and presents preliminary results for two of the flat plate cases and two small-angle compression corner test cases.

  6. Shock Treatment: Using Immersive Digital Realism to Restage and Re-examine Milgram’s ‘Obedience to Authority’ Research

    PubMed Central

    Haslam, S. Alexander; Reicher, Stephen D.; Millard, Kathryn

    2015-01-01

    Attempts to revisit Milgram’s ‘Obedience to Authority’ (OtA) paradigm present serious ethical challenges. In recent years new paradigms have been developed to circumvent these challenges but none involve using Milgram’s own procedures and asking naïve participants to deliver the maximum level of shock. This was achieved in the present research by using Immersive Digital Realism (IDR) to revisit the OtA paradigm. IDR is a dramatic method that involves a director collaborating with professional actors to develop characters, the strategic withholding of contextual information, and immersion in a real-world environment. 14 actors took part in an IDR study in which they were assigned to conditions that restaged Milgrams’s New Baseline (‘Coronary’) condition and four other variants. Post-experimental interviews also assessed participants’ identification with Experimenter and Learner. Participants’ behaviour closely resembled that observed in Milgram’s original research. In particular, this was evidenced by (a) all being willing to administer shocks greater than 150 volts, (b) near-universal refusal to continue after being told by the Experimenter that “you have no other choice, you must continue” (Milgram’s fourth prod and the one most resembling an order), and (c) a strong correlation between the maximum level of shock that participants administered and the mean maximum shock delivered in the corresponding variant in Milgram’s own research. Consistent with an engaged follower account, relative identification with the Experimenter (vs. the Learner) was also a good predictor of the maximum shock that participants administered. PMID:25730318

  7. Experimental studies of shock-wave/wall-jet interaction in hypersonic flow

    NASA Technical Reports Server (NTRS)

    Holden, Michael S.; Rodriguez, Kathleen

    1994-01-01

    Experimental studies have been conducted to examine slot film cooling effectiveness and the interaction between the cooling film and an incident planar shock wave in turbulent hypersonic flow. The experimental studies were conducted in the 48-inch shock tunnel at Calspan at a freestream Mach number of close to 6.4 and at a Reynolds number of 35 x 10(exp 6) based on the length of the model at the injection point. The Mach 2.3 planar wall jet was generated from 40 transverse nozzles (with heights of both 0.080 inch and 0.120 inch), producing a film that extended the full width of the model. The nozzles were operated at pressures and velocities close to matching the freestream, as well as at conditions where the nozzle flows were over- and under-expanded. A two-dimensional shock generator was used to generate oblique shocks that deflected the flow through total turnings of 11, 16, and 21 degrees; the flows impinged downstream of the nozzle exits. Detailed measurements of heat transfer and pressure were made both ahead and downstream of the injection station, with the greatest concentration of measurements in the regions of shock-wave/boundary layer interaction. The major objectives of these experimental studies were to explore the effectiveness of film cooling in the presence of regions of shock-wave/boundary layer interaction and, more specifically, to determine how boundary layer separation and the large recompression heating rates were modified by film cooling. Detailed distributions of heat transfer and pressure were obtained in the incident shock/wall-jet interaction region for a series of shock strengths and impingement positions for each of the two nozzle heights. Measurements were also made to examine the effects of nozzle lip thickness on cooling effectiveness. The major conclusion from these studies was that the effect of the cooling film could be readily dispersed by relatively weak incident shocks, so the peak heating in the recompression region was not significantly reduced by even the largest levels of film cooling. For the case studies in the absence of film cooling, the interaction regions were unseparated. However, adding film cooling resulted in regions of boundary layer separation induced in the film cooling layer -- the size of which regions first increased and then decreased with increased film cooling. Surprisingly, the size of the separated regions and the magnitude of the recompression heating were not strongly influenced by the thickness of the cooling film, nor by the point of shock impingement relative to the exit plane of the nozzles. The lip thickness was found to have little effect on cooling effectiveness. Measurements with and in the absence of shock interaction were compared with the results of earlier experimental studies and correlated in terms of the major parameters controlling these flows.

  8. Experimental studies of shock-wave/wall-jet interaction in hypersonic flow, part A

    NASA Technical Reports Server (NTRS)

    Holden, Michael S.; Rodriguez, Kathleen

    1994-01-01

    Experimental studies have been conducted to examine slot film cooling effectiveness and the interaction between the cooling film and an incident planar shock wave in turbulent hypersonic flow. The experimental studies were conducted in the 48-inch shock tunnel at Calspan at a freestream Mach number of close to 6.4 and at a Reynolds number of 35 x 10(exp 6) based on the length of the model at the injection point. The Mach 2.3 planar wall jet was generated from 40 transverse nozzles (with heights of both 0.080 inch and 0.120 inch), producing a film that extended the full width of the model. The nozzles were operated at pressures and velocities close to matching the freestream, as well as at conditions where the nozzle flows were over- and under-expanded. A two-dimensional shock generator was used to generate oblique shocks that deflected the flow through total turnings of 11, 16, and 21 degrees; the flows impinged downstream of the nozzle exits. Detailed measurements of heat transfer and pressure were made both ahead and downstream of the injection station, with the greatest concentration of measurements in the regions of shock-wave/boundary layer interaction. The major objectives of these experimental studies were to explore the effectiveness of film cooling in the presence of regions of shock-wave/boundary layer interaction and, more specifically, to determine how boundary layer separation and the large recompression heating rates were modified by film cooling. Detailed distributions of heat transfer and pressure were obtained in the incident-shock/wall-jet interaction region for a series of shock strengths and impingement positions for each of the two nozzle heights. Measurements were also made to examine the effects of nozzle lip thickness on cooling effectiveness. The major conclusion from these studies was that the effect of the cooling film could be readily dispersed by relatively weak incident shocks, so the peak heating in the recompression region was not significantly reduced by even the largest levels of film cooling. For the case studies in the absence of film cooling, the interaction regions were unseparated. However, adding film cooling resulted in regions of boundary layer separation induced in the film cooling layer, the size of which regions first increased and then decreased with increased film cooling. Surprisingly, the size of the separated regions and the magnitude of the recompression heating were not strongly influenced by the thickness of the cooling film, nor by the point of shock impingement relative to the exit plane of the nozzles. The lip thickness was found to have little effect on cooling effectiveness. Measurements with and in the absence of shock interaction were compared with the results of earlier experimental studies and correlated in terms of the major parameters controlling these flows.

  9. Experimental Data in Support of the 1991 Shock Classification of Chondrites

    NASA Astrophysics Data System (ADS)

    Schmitt, R. T.; Stoffler, D.

    1995-09-01

    We present results of shock recovery experiments performed on the H6(S1) chondrite Kernouv . These data and new observations on ordinary chondrites confirm the recently proposed classification system [1] and provide additional criteria for determining the shock stage, the shock pressure, and, under certain conditions, also the ambient (pre-shock) temperature during shock metamorphism of any chondrite sample. Two series of experiments at 293 K and 920 K and 10, 15, 20, 25, 30, 45, and 60 GPa were made with a high explosive device [2] using 0.5 mm thick disks of the Kernouv chondrite. Shock effects in olivine, orthopyroxene, plagioclase, and troilite and shock-induced melt products were studied by optical [3], electron optical and X-ray diffraction methods. All essential characteristics of the six progressive stages of shock metamorphism (S1 - S6) observed in natural samples of chondrites [1] have been reproduced experimentally except for opaque shock veins and the high pressure polymorphs of olivine and pyroxene (ringwoodite/wadsleyite and majorite), well known from naturally shocked chondrites. This is probably due to the special sample and containment geometry and the extremely short pressure pulses (0.2 - 0.8 microseconds) in the experiments. The shock experiments provided a clear understanding of the shock wave behavior of troilite and of the shock-induced melting, mobilization, and exsolution-recrystallization of composite troilite-metal grains. At 293 K troilite is monocrystalline up to 35 GPa displaying undulatory extinction from 10 to 25 GPa, partial recrystallization from 30 - 45 GPa, and complete recrystallization above 45 GPa. Local melting of troilite/metal grains starts at 30 GPa and composite grains displaying exsolution textures of both phases are formed which get mobilized and deposited into fractures of neighbouring silicate grains above 45 GPa. For a pre-shock temperature of 293 K the pressure at which diagnostic shock effects are formed, is somewhat lower in the experimentally shocked Kernouve than in single crystals [1] (Table 1). Based on the Kernouve calibration and on new observations made in natural samples of shocked chondrites an updated version of the 1991 shock classification system is given in Table 1 which holds for low temperatures. In general, the increase of the pre-shock temperature (e.g., 920 K) leads to a distinct decrease of the pressure at which certain shock effects are produced (Table 1). This effect, most distinct for recrystallization and melting phenomena in olivine and troilite, can be used as a pre-shock thermometer. Provided that a post-shock thermal event can be excluded, an estimate of the pre-shock ambient temperature of chondrites of shock stages S2 - S5 can be made by monitoring the texture of troilite. If troilite is monocrystalline, this temperature was low. Polycrystalline troilite indicates a pre-shock temperature higher than 300 K, probably as high as some 900 K. For chondrites of shock stage S6, the ambient pre-shock temperature exceeded 300 K distinctly if olivine near local melt zones lacks the yellow-brown staining characteristic for shock metamorphism at low temperatures. References: [1] Stoffler D. et al. (1991) GCA, 55, 3845-3867. [2] Stoffler D. and Langenhorst F. (1994) Meteoritics, 29, 155-181. [3] Schmitt R. T. et al. (1993) Meteoritics, 29, 529-530.

  10. Uncovering noisy social signals: Using optimization methods from experimental physics to study social phenomena.

    PubMed

    Kaptein, Maurits; van Emden, Robin; Iannuzzi, Davide

    2017-01-01

    Due to the ubiquitous presence of treatment heterogeneity, measurement error, and contextual confounders, numerous social phenomena are hard to study. Precise control of treatment variables and possible confounders is often key to the success of studies in the social sciences, yet often proves out of the realm of control of the experimenter. To amend this situation we propose a novel approach coined "lock-in feedback" which is based on a method that is routinely used in high-precision physics experiments to extract small signals out of a noisy environment. Here, we adapt the method to noisy social signals in multiple dimensions and evaluate it by studying an inherently noisy topic: the perception of (subjective) beauty. We show that the lock-in feedback approach allows one to select optimal treatment levels despite the presence of considerable noise. Furthermore, through the introduction of an external contextual shock we demonstrate that we can find relationships between noisy variables that were hitherto unknown. We therefore argue that lock-in methods may provide a valuable addition to the social scientist's experimental toolbox and we explicitly discuss a number of future applications.

  11. Uncovering noisy social signals: Using optimization methods from experimental physics to study social phenomena

    PubMed Central

    2017-01-01

    Due to the ubiquitous presence of treatment heterogeneity, measurement error, and contextual confounders, numerous social phenomena are hard to study. Precise control of treatment variables and possible confounders is often key to the success of studies in the social sciences, yet often proves out of the realm of control of the experimenter. To amend this situation we propose a novel approach coined “lock-in feedback” which is based on a method that is routinely used in high-precision physics experiments to extract small signals out of a noisy environment. Here, we adapt the method to noisy social signals in multiple dimensions and evaluate it by studying an inherently noisy topic: the perception of (subjective) beauty. We show that the lock-in feedback approach allows one to select optimal treatment levels despite the presence of considerable noise. Furthermore, through the introduction of an external contextual shock we demonstrate that we can find relationships between noisy variables that were hitherto unknown. We therefore argue that lock-in methods may provide a valuable addition to the social scientist’s experimental toolbox and we explicitly discuss a number of future applications. PMID:28306728

  12. Laboratory Study of the Shaping and Evolution of Magnetized Episodic Plasma Jets

    NASA Astrophysics Data System (ADS)

    Higginson, Drew

    2015-11-01

    The expansion of hot, dense plasma (100 eV, 1018 cm-3) into vacuum occupied by a strong magnetic field (β =Pkinetic /Pmag ~ 1) along the expansion axis is a seemingly elementary physics problem, yet it is one that has scarcely been investigated. As well as being a fundamental problem in plasma physics, understanding such a situation is important to provide an explanation of large-scale jets observed in the formation of young stellar objects (YSO). Additionally, the ability to manipulate such a situation (e.g. to optimize x-ray emission) may be essential to the feasibility of recently proposed inertial confinement fusion (ICF) schemes with an imposed magnetic field. To investigate these situations, a CF2 foil is irradiated with the ELFIE laser (1013 W/cm2, 0.6 ns) in an external axial magnetic field of 20 T. As the plasma expands radially it is restricted by magnetic pressure that creates a cavity with a shock at the expansion edge. This shock redirects flow back on axis and creates a strong, stationary, conical shock that collimates the flow into a jet traveling over 1000 km/s and extending many centimeters. The effect of episodic heating (e.g. from variable mass ejection in a YSO, or pulse shaping in ICF) was investigated by irradiating the target with a precursor laser (1012 W/cm2, 0.6 ns) at 9 to 19 ns prior to the main pulse. The addition of this relatively small addition of energy (<20% of the main pulse energy) changed the dynamics of the expansion dramatically by increasing the strength of the conical shock, reducing the forward expansion of the cavity and dramatically increasing emission. We also present MHD simulations that reproduce the experimental observables and help to understand dynamics of jet and cavity formation. Prepared by LLNL under Contract DE-AC52-07NA27344. Presently at Lawrence Livermore National Laboratory.

  13. Numerical modeling of the early interaction of a planar shock with a dense particle field

    NASA Astrophysics Data System (ADS)

    Regele, Jonathan; Blanquart, Guillaume

    2011-11-01

    Dense compressible multiphase flows are of interest for multiphase turbomachinary and energetic material detonations. Still, there is little understanding of the detailed interaction mechanisms between shock waves and dense (particle volume fraction αd > 0 . 001) particle fields. A recent experimental study [Wagner et al, AIAA Aero. Sci., Orlando, 2011-188] has focused on the impingement of a planar shock wave on a dense particle curtain. In the present work, numerical solutions of the Euler equations in one and two dimensions are performed for a planar shock wave impinging on a fixed particle curtain and are compared to the experimental data for early times. Comparison of the one- and two-dimensional results demonstrate that the one-dimensional description captures the large scale flow behavior, but is inadequate to capture all the details observed in the experiments. The two-dimensional solutions are shown to reproduce the experimentally observed flow structures and provide insight into how these details originate.

  14. Dissipation Mechanisms and Particle Acceleration at the Earth's Bow Shock

    NASA Astrophysics Data System (ADS)

    Desai, M. I.; Burch, J. L.; Fuselier, S. A.; Genestreti, K. J.; Torbert, R. B.; Ergun, R.; Russell, C.; Wei, H.; Phan, T.; Giles, B. L.; Chen, L. J.; Mauk, B.

    2016-12-01

    Collisionless shocks are a major producer of suprathermal and energetic particles throughout space and astrophysical plasma environments. Theoretical studies combined with in-situ observations during the space age have significantly advanced our understanding of how such shocks are formed, the manner in which they evolve and dissipate their energy, and the physical mechanisms by which they heat the local plasma and accelerate the energetic particles. Launched in March 2015, NASA's Magnetospheric Multiscale (MMS) mission has four spacecraft separated between 10-40 km and equipped with identical state-of-the-art instruments that acquire magnetic and electric field, plasma wave, and particle data at unprecedented temporal resolution to study the fundamental physics of magnetic reconnection in the Earth's magnetosphere. Serendipitously, during Phase 1a, the MMS mission also encountered and crossed the Earth's bow shock more than 300 times. In this paper, we combine and analyze the highest available time resolution MMS burst data during 140 bow shock crossings from October 2015 through December 31, 2015 to shed new light on key open questions regarding the formation, evolution, dissipation, and particle injection and energization at collisionless shocks. In particular, we compare and contrast the differences in shock dissipation and particle acceleration mechanisms at quasi-parallel and quasi-perpendicular shocks.

  15. Characterizing the energy output generated by a standard electric detonator using shadowgraph imaging

    NASA Astrophysics Data System (ADS)

    Petr, V.; Lozano, E.

    2017-09-01

    This paper overviews a complete method for the characterization of the explosive energy output from a standard detonator. Measurements of the output of explosives are commonly based upon the detonation parameters of the chemical energy content of the explosive. These quantities provide a correct understanding of the energy stored in an explosive, but they do not provide a direct measure of the different modes in which the energy is released. This optically based technique combines high-speed and ultra-high-speed imaging to characterize the casing fragmentation and the detonator-driven shock load. The procedure presented here could be used as an alternative to current indirect methods—such as the Trauzl lead block test—because of its simplicity, high data accuracy, and minimum demand for test repetition. This technique was applied to experimentally measure air shock expansion versus time and calculating the blast wave energy from the detonation of the high explosive charge inside the detonator. Direct measurements of the shock front geometry provide insight into the physics of the initiation buildup. Because of their geometry, standard detonators show an initial ellipsoidal shock expansion that degenerates into a final spherical wave. This non-uniform shape creates variable blast parameters along the primary blast wave. Additionally, optical measurements are validated using piezoelectric pressure transducers. The energy fraction spent in the acceleration of the metal shell is experimentally measured and correlated with the Gurney model, as well as to several empirical formulations for blasts from fragmenting munitions. The fragment area distribution is also studied using digital particle imaging analysis and correlated with the Mott distribution. Understanding the fragmentation distribution plays a critical role when performing hazard evaluation from these types of devices. In general, this technique allows for characterization of the detonator within 6-8% error with no knowledge of the amount or type of explosive contained within the shell, making it also suitable for the study of unknown improvised explosive devices.

  16. Uncertainty Assessments of 2D and Axisymmetric Hypersonic Shock Wave - Turbulent Boundary Layer Interaction Simulations at Compression Corners

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Berry, Scott A.; VanNorman, John W.

    2011-01-01

    This paper is one of a series of five papers in a special session organized by the NASA Fundamental Aeronautics Program that addresses uncertainty assessments for CFD simulations in hypersonic flow. Simulations of a shock emanating from a compression corner and interacting with a fully developed turbulent boundary layer are evaluated herein. Mission relevant conditions at Mach 7 and Mach 14 are defined for a pre-compression ramp of a scramjet powered vehicle. Three compression angles are defined, the smallest to avoid separation losses and the largest to force a separated flow engaging more complicated flow physics. The Baldwin-Lomax and the Cebeci-Smith algebraic models, the one-equation Spalart-Allmaras model with the Catrix-Aupoix compressibility modification and two-equation models including Menter SST, Wilcox k-omega 98, and Wilcox k-omega 06 turbulence models are evaluated. Each model is fully defined herein to preclude any ambiguity regarding model implementation. Comparisons are made to existing experimental data and Van Driest theory to provide preliminary assessment of model form uncertainty. A set of coarse grained uncertainty metrics are defined to capture essential differences among turbulence models. Except for the inability of algebraic models to converge for some separated flows there is no clearly superior model as judged by these metrics. A preliminary metric for the numerical component of uncertainty in shock-turbulent-boundary-layer interactions at compression corners sufficiently steep to cause separation is defined as 55%. This value is a median of differences with experimental data averaged for peak pressure and heating and for extent of separation captured in new, grid-converged solutions presented here. This value is consistent with existing results in a literature review of hypersonic shock-turbulent-boundary-layer interactions by Roy and Blottner and with more recent computations of MacLean.

  17. Molecule formation and infrared emission in fast interstellar shocks. I Physical processes

    NASA Technical Reports Server (NTRS)

    Hollenbach, D.; Mckee, C. F.

    1979-01-01

    The paper analyzes the structure of fast shocks incident upon interstellar gas of ambient density from 10 to the 7th per cu cm, while focusing on the problems of formation and destruction of molecules and infrared emission in the cooling, neutral post shock gas. It is noted that such fast shocks initially dissociate almost all preexisting molecules. Discussion covers the physical processes which determine the post shock structure between 10 to the 4 and 10 to the 2 K. It is shown that the chemistry of important molecular coolants H2, CO, OH, and H2O, as well as HD and CH, is reduced to a relatively small set of gas phase and grain surface reactions. Also, the chemistry follows the slow conversion of atomic hydrogen into H2, which primarily occurs on grain surfaces. The dependence of this H2 formation rate on grain and gas temperatures is examined and the survival of grains behind fast shocks is discussed. Post shock heating and cooling rates are calculated and an appropriate, analytic, universal cooling function is developed for molecules other than hydrogen which includes opacities from both the dust and the lines.

  18. Thermophysical Properties of Matter - The TPRC Data Series. Volume 3. Thermal Conductivity - Nonmetallic Liquids and Gases

    DTIC Science & Technology

    1970-01-01

    design and experimentation. I. The Shock- Tube Method Smiley [546] introduced the use of shock waves...one of the greatest disadvantages of this technique. Both the unique adaptability of the shock tube method for high -temperature measurement of...Line-Source Flow Method H. The Hot-Wire Thermal Diffusion Column Method I. The Shock- Tube Method J. The Arc Method K. The Ultrasonic Method .

  19. Biomechanics of stair walking and jumping.

    PubMed

    Loy, D J; Voloshin, A S

    1991-01-01

    Physical activities such as stair walking and jumping result in increased dynamic loading on the human musculoskeletal system. Use of light weight, externally attached accelerometers allows for in-vivo monitoring of the shock waves invading the human musculoskeletal system during those activities. Shock waves were measured in four subjects performing stair walking up and down, jumping in place and jumping off a fixed elevation. The results obtained show that walking down a staircase induced shock waves with amplitude of 130% of that observed in walking up stairs and 250% of the shock waves experienced in level gait. The jumping test revealed levels of the shock waves nearly eight times higher than that in level walking. It was also shown that the shock waves invading the human musculoskeletal system may be generated not only by the heel strike, but also by the metatarsal strike. To moderate the risk of degenerative joint disorders four types of viscoelastic insoles were utilized to reduce the impact generated shock waves. The insoles investigated were able to reduce the amplitude of the shock wave by between 9% and 41% depending on the insole type and particular physical activity. The insoles were more effective in the reduction of the heel strike impacts than in the reduction of the metatarsal strike impacts. In all instances, the shock attenuation capacities of the insoles tested were greater in the jumping trials than in the stair walking studies. The insoles were ranked in three groups on the basis of their shock absorbing capacity.

  20. Shock Train/Boundary-Layer Interaction in Rectangular Scramjet Isolators

    NASA Astrophysics Data System (ADS)

    Geerts, Jonathan Simon

    Numerous studies of the dual-mode scramjet isolator, a critical component in preventing inlet unstart and/or vehicle loss by containing a collection of flow disturbances called a shock train, have been performed since the dual-mode propulsion cycle was introduced in the 1960s. Low momentum corner flow and other three-dimensional effects inherent to rectangular isolators have, however, been largely ignored in experimental studies of the boundary layer separation driven isolator shock train dynamics. Furthermore, the use of two dimensional diagnostic techniques in past works, be it single-perspective line-of-sight schlieren/shadowgraphy or single axis wall pressure measurements, have been unable to resolve the three-dimensional flow features inside the rectangular isolator. These flow characteristics need to be thoroughly understood if robust dual-mode scramjet designs are to be fielded. The work presented in this thesis is focused on experimentally analyzing shock train/boundary layer interactions from multiple perspectives in aspect ratio 1.0, 3.0, and 6.0 rectangular isolators with inflow Mach numbers ranging from 2.4 to 2.7. Secondary steady-state Computational Fluid Dynamics studies are performed to compare to the experimental results and to provide additional perspectives of the flow field. Specific issues that remain unresolved after decades of isolator shock train studies that are addressed in this work include the three-dimensional formation of the isolator shock train front, the spatial and temporal low momentum corner flow separation scales, the transient behavior of shock train/boundary layer interaction at specific coordinates along the isolator's lateral axis, and effects of the rectangular geometry on semi-empirical relations for shock train length prediction. (Abstract shortened by ProQuest.).

  1. Shock loading and reactive flow modeling studies of void induced AP/AL/HTPB propellant

    NASA Astrophysics Data System (ADS)

    Miller, P. J.; Lindfors, A. J.

    1998-07-01

    The unreactive Hugoniot of a class 1.3 propellant has been investigated by shock compression experiments. The results are analyzed in terms of an ignition and growth reactive flow model using the DYNA2D hydrocode. The calculated shock ignition parameters of the model show a linear dependence on measured void volume which appears to reproduce the observed gauge records well. Shock waves were generated by impact in a 75 mm single stage powder gun. Manganin and PVDF pressure gauges provided pressure-time histories to 140 kbar. The propellants were of similar formulation differing only in AP particle size and the addition of a burn rate modifer (Fe2O3) from that of previous investigations. Results show neglible effect of AP particle size on shock response in contrast to the addition of Fe2O3 which appears to `stiffen' the unreactive Hugoniot and enhances significantly the reactive rates under shock. The unreactive Hugoniot, within experimental error, compares favorably to the solid AP Hugoniot. Shock experiments were performed on propellant samples strained to induce insitu voids. The material state was quantified by uniaxial tension dialatometry. The experimental records show a direct correlation between void volume (0 to 1.7%) and chemical reactivity behind the shock front. These results are discussed in terms of `hot spot' ignition resulting from the shock collapse of the voids.

  2. Quantification of the effect of surface heating on shock wave modification by a plasma actuator in a low-density supersonic flow over a flat plate

    NASA Astrophysics Data System (ADS)

    Joussot, Romain; Lago, Viviana; Parisse, Jean-Denis

    2015-05-01

    This paper describes experimental and numerical investigations focused on the shock wave modification induced by a dc glow discharge. The model is a flat plate in a Mach 2 air flow, equipped with a plasma actuator composed of two electrodes. A weakly ionized plasma was created above the plate by generating a glow discharge with a negative dc potential applied to the upstream electrode. The natural flow exhibited a shock wave with a hyperbolic shape. Pitot measurements and ICCD images of the modified flow revealed that when the discharge was ignited, the shock wave angle increased with the discharge current. The spatial distribution of the surface temperature was measured with an IR camera. The surface temperature increased with the current and decreased along the model. The temperature distribution was reproduced experimentally by placing a heating element instead of the active electrode, and numerically by modifying the boundary condition at the model surface. For the same surface temperature, experimental investigations showed that the shock wave angle was lower with the heating element than for the case with the discharge switched on. The results show that surface heating is responsible for roughly 50 % of the shock wave angle increase, meaning that purely plasma effects must also be considered to fully explain the flow modifications observed.

  3. Detonation-to-shock wave transmission at a contact discontinuity

    NASA Astrophysics Data System (ADS)

    Peace, J. T.; Lu, F. K.

    2018-02-01

    The one-dimensional interaction of a detonation wave with a contact discontinuity was investigated analytically and experimentally for oxyhydrogen detonations. The analytical and experimental results showed that the transmitted shock through the contact surface and into a non-combustible gas can either be amplified or attenuated depending on the reflection type at the contact surface and on the ratio of acoustic impedance across it. Experiments were performed with a detonation-driven shock tube facility to determine the transmitted shock velocity into a non-combustible He/air mixture. The oxyhydrogen equivalence ratio in the detonation section was varied from 0.5 to 1.5, and the driven section He mole fraction was varied from 0.0 to 1.0 to test a broad range of acoustic impedance ratios ranging from approximately 0.36 to 1.69. The analytical results were shown to have acceptable agreement with the measured transmitted shock wave velocity in the case of a reflected rarefaction from the contact surface. Additionally, the results indicated that the detonation wave reaction zone properties could have an important role that influences the transmitted shock properties in the case of a reflected shock from the contact surface.

  4. On the dynamics of a shock-bubble interaction

    NASA Technical Reports Server (NTRS)

    Quirk, James J.; Karni, Smadar

    1994-01-01

    We present a detailed numerical study of the interaction of a weak shock wave with an isolated cylindrical gas inhomogenity. Such interactions have been studied experimentally in an attempt to elucidate the mechanisms whereby shock waves propagating through random media enhance mixing. Our study concentrates on the early phases of the interaction process which are dominated by repeated refractions of acoustic fronts at the bubble interface. Specifically, we have reproduced two of the experiments performed by Haas and Sturtevant : M(sub s) = 1.22 planar shock wave, moving through air, impinges on a cylindrical bubble which contains either helium or Refrigerant 22. These flows are modelled using the two-dimensional, compressible Euler equations for a two component fluid (air-helium or air-Refrigerant 22). Although simulations of shock wave phenomena are now fairly commonplace, they are mostly restricted to single component flows. Unfortunately, multi-component extensions of successful single component schemes often suffer from spurious oscillations which are generated at material interfaces. Here we avoid such problems by employing a novel, nonconservative shock-capturing scheme. In addition, we have utilized a sophisticated adaptive mesh refinement algorithm which enables extremely high resolution simulations to be performed relatively cheaply. Thus we have been able to reproduce numerically all the intricate mechanisms that were observed experimentally (e.g., transitions from regular to irregular refraction, cusp formation and shock wave focusing, multi-shock and Mach shock structures, jet formation, etc.), and we can now present an updated description for the dynamics of a shock-bubble interaction.

  5. Explosively driven two-shockwave tools with applications

    NASA Astrophysics Data System (ADS)

    Buttler, W. T.; Oró, D. M.; Mariam, F. G.; Saunders, A.; Andrews, M. J.; Cherne, F. J.; Hammerberg, J. E.; Hixson, R. S.; Monfared, S. K.; Morris, C.; Olson, R. T.; Preston, D. L.; Stone, J. B.; Terrones, G.; Tupa, D.; Vogan-McNeil, W.

    2014-05-01

    We present the development of an explosively driven physics tool to generate two mostly uniaxial shockwaves. The tool is being used to extend single shockwave ejecta models to account for a second shockwave a few microseconds later. We explore techniques to vary the amplitude of both the first and second shockwaves, and we apply the tool experimentally at the Los Alamos National Laboratory Proton Radiography (pRad)facility. The tools have been applied to Sn with perturbations of wavelength λ = 550 μm, and various amplitudes that give wavenumber amplitude products of kh in {3/4,1/2,1/4,1/8}, where h is the perturbation amplitude, and k = 2π/λ is the wavenumber. The pRad data suggest the development of a second shock ejecta model based on unstable Richtmyer-Meshkov physics.

  6. Collisionless Shocks and Particle Acceleration.

    NASA Astrophysics Data System (ADS)

    Malkov, M.

    2016-12-01

    Collisionless shocks emerged in the 50s and 60s of the last century as an important branch of plasma physics and have remained ever since. New applications pose new challenges to our understanding of collisionless shock mechanisms. Particle acceleration in astrophysical settings, primarily studied concerning the putative origin of cosmic rays (CR) in supernova remnant (SNR) shocks, stands out with the collisionless shock mechanism being the key. Among recent laboratory applications, a laser-based tabletop proton accelerator is an affordable compact alternative to big synchrotron accelerators. The much-anticipated proof of cosmic ray (CR) acceleration in supernova remnants is hindered by our limited understanding of collisionless shock mechanisms. Over the last decade, dramatically improved observations were puzzling the theorists with unexpected discoveries. The difference between the helium/carbon and proton CR rigidity (momentum to charge ratio) spectra, seemingly inconsistent with the acceleration and propagation theories, and the perplexing positron excess in the 10-300 GeV range are just two recent examples. The latter is now also actively discussed in the particle physics and CR communities as a possible signature of decay or annihilation of hypothetical dark matter particles. By considering an initial (injection) phase of a diffusive shock acceleration mechanism, including particle reflection off the shock front - where an elemental similarity of particle dynamics does not apply - I will discuss recent suggestions of how to address the new data from the collisionless shock perspective. The backreaction of accelerated particles on the shock structure, its environment, and visibility across the electromagnetic spectrum from radio to gamma rays is another key aspect of collisionless shock that will be discussed.

  7. Fragmentation of Solid Materials Using Shock Tubes. Part 1: First Test Series in a Small Diameter Shock Tube

    DTIC Science & Technology

    2017-01-01

    time histories with peak pressures of approximately 250 psi and 500 psi. 1.2 TESTING OBJECTIVES The first goal of this test series was to explore how...finally the late- time at-rest fragments were physically collected and analyzed post-test. Because this test series physically collected over 50,000...for a single fragmenting object. Comparing the three measurement techniques used in this test series , the late- time physically- collected mass

  8. Shock Magnetization and Demagnetization of Rocks: What we Have Learnt From Experimental Studies

    NASA Astrophysics Data System (ADS)

    Gattacceca, J.; Rochette, P.; Boustie, M.; Berthe, L.; Natalia, B.; de Resseguier, T.

    2008-12-01

    We will present new results of simultaneous shock magnetization and shock demagnetization experiments performed on titanomagnetite-bearing basalt samples with a pulsed laser in controlled magnetic field. These new results provide the opportunity to discuss the main properties of the these two phenomena. What is the efficiency of the acquisition of shock remanent magnetization (SRM) acquisition with respect to thermoremanent magnetization? Is shock demagnetization equivalent to shock magnetization in zero field? Do we observe scattered SRM direction in shocked samples? Can we predict the shock demagnetization/remagnetization behavior of a rock knowing its rock magnetic properties? Eventually we will discuss the implications of these results for the understanding of the paleomagnetic signal of shocked rocks (meteorites in paticular) and of the magnetic anomalies above impact basins.

  9. The study of high-speed surface dynamics using a pulsed proton beam

    NASA Astrophysics Data System (ADS)

    Buttler, William T.; Oro, David M.; Preston, Dean; Mikaelian, Karnig O.; Cherne, Frank J.; Hixson, Robert S.; Mariam, Fesseha G.; Morris, Christopher L.; Stone, Joseph B.; Terrones, Guillermo; Tupa, Dale

    2012-03-01

    We present experimental results supporting physics based ejecta model development, where we assume ejecta form as a special limiting case of a Richtmyer-Meshkov (RM) instability with Atwood number A = -1. We present and use data to test established RM spike and bubble growth rate theory through application of modern laser Doppler velocimetry techniques applied in a novel manner to coincidentally measure bubble and spike velocities from shocked metals. We also explore the link of ejecta formation from a solid material to its plastic flow stress at high-strain rates (107/s) and high strains (700%).

  10. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part 1: Pressure distribution

    NASA Technical Reports Server (NTRS)

    Messiter, A. F.

    1979-01-01

    Analytical solutions are derived which incorporate additional physical effects as higher order terms for the case when the sonic line is very close to the wall. The functional form used for the undisturbed velocity profile is described to indicate how various parameters will be calculated for later comparison with experiment. The basic solutions for the pressure distribution are derived. Corrections are added for flow along a wall having longitudinal curvature and for flow in a circular pipe, and comparisons with available experimental data are shown.

  11. On the impact of the elastic-plastic flow upon the process of destruction of the solenoid in a super strong pulsed magnetic field

    NASA Astrophysics Data System (ADS)

    Krivosheev, S. I.; Magazinov, S. G.; Alekseev, D. I.

    2018-01-01

    At interaction of super strong magnetic fields with a solenoid material, a specific mode of the material flow forms. To describe this process, magnetohydrodynamic approximation is traditionally used. The formation of plastic shock-waves in material in a rapidly increasing pressure of 100 GPa/μs, can significantly alter the distribution of the physical parameters in the medium and affect the flow modes. In this paper, an analysis of supporting results of numerical simulations in comparison with available experimental data is presented.

  12. The behavior of a compressible turbulent boundary layer in a shock-wave-induced adverse pressure gradient. Ph.D. Thesis - Washington Univ., Seattle, Aug. 1972

    NASA Technical Reports Server (NTRS)

    Rose, W. C.

    1973-01-01

    The results of an experimental investigation of the mean- and fluctuating-flow properties of a compressible turbulent boundary layer in a shock-wave-induced adverse pressure gradient are presented. The turbulent boundary layer developed on the wall of an axially symmetric nozzle and test section whose nominal free-stream Mach number and boundary-layer thickness Reynolds number were 4 and 100,000, respectively. The adverse pressure gradient was induced by an externally generated conical shock wave. Mean and time-averaged fluctuating-flow data, including the complete experimental Reynolds stress tensor and experimental turbulent mass- and heat-transfer rates are presented for the boundary layer and external flow, upstream, within and downstream of the pressure gradient. The mean-flow data include distributions of total temperature throughout the region of interest. The turbulent mixing properties of the flow were determined experimentally with a hot-wire anemometer. The calibration of the wires and the interpretation of the data are discussed. From the results of the investigation, it is concluded that the shock-wave - boundary-layer interaction significantly alters the turbulent mixing characteristics of the boundary layer.

  13. Assessment of Turbulent Shock-Boundary Layer Interaction Computations Using the OVERFLOW Code

    NASA Technical Reports Server (NTRS)

    Oliver, A. B.; Lillard, R. P.; Schwing, A. M.; Blaisdell, G> A.; Lyrintzis, A. S.

    2007-01-01

    The performance of two popular turbulence models, the Spalart-Allmaras model and Menter s SST model, and one relatively new model, Olsen & Coakley s Lag model, are evaluated using the OVERFLOWcode. Turbulent shock-boundary layer interaction predictions are evaluated with three different experimental datasets: a series of 2D compression ramps at Mach 2.87, a series of 2D compression ramps at Mach 2.94, and an axisymmetric coneflare at Mach 11. The experimental datasets include flows with no separation, moderate separation, and significant separation, and use several different experimental measurement techniques (including laser doppler velocimetry (LDV), pitot-probe measurement, inclined hot-wire probe measurement, preston tube skin friction measurement, and surface pressure measurement). Additionally, the OVERFLOW solutions are compared to the solutions of a second CFD code, DPLR. The predictions for weak shock-boundary layer interactions are in reasonable agreement with the experimental data. For strong shock-boundary layer interactions, all of the turbulence models overpredict the separation size and fail to predict the correct skin friction recovery distribution. In most cases, surface pressure predictions show too much upstream influence, however including the tunnel side-wall boundary layers in the computation improves the separation predictions.

  14. Shock Wave Technology and Application: An Update☆

    PubMed Central

    Rassweiler, Jens J.; Knoll, Thomas; Köhrmann, Kai-Uwe; McAteer, James A.; Lingeman, James E.; Cleveland, Robin O.; Bailey, Michael R.; Chaussy, Christian

    2012-01-01

    Context The introduction of new lithotripters has increased problems associated with shock wave application. Recent studies concerning mechanisms of stone disintegration, shock wave focusing, coupling, and application have appeared that may address some of these problems. Objective To present a consensus with respect to the physics and techniques used by urologists, physicists, and representatives of European lithotripter companies. Evidence acquisition We reviewed recent literature (PubMed, Embase, Medline) that focused on the physics of shock waves, theories of stone disintegration, and studies on optimising shock wave application. In addition, we used relevant information from a consensus meeting of the German Society of Shock Wave Lithotripsy. Evidence synthesis Besides established mechanisms describing initial fragmentation (tear and shear forces, spallation, cavitation, quasi-static squeezing), the model of dynamic squeezing offers new insight in stone comminution. Manufacturers have modified sources to either enlarge the focal zone or offer different focal sizes. The efficacy of extracorporeal shock wave lithotripsy (ESWL) can be increased by lowering the pulse rate to 60–80 shock waves/min and by ramping the shock wave energy. With the water cushion, the quality of coupling has become a critical factor that depends on the amount, viscosity, and temperature of the gel. Fluoroscopy time can be reduced by automated localisation or the use of optical and acoustic tracking systems. There is a trend towards larger focal zones and lower shock wave pressures. Conclusions New theories for stone disintegration favour the use of shock wave sources with larger focal zones. Use of slower pulse rates, ramping strategies, and adequate coupling of the shock wave head can significantly increase the efficacy and safety of ESWL. PMID:21354696

  15. Achieving high-density states through shock-wave loading of precompressed samples

    PubMed Central

    Jeanloz, Raymond; Celliers, Peter M.; Collins, Gilbert W.; Eggert, Jon H.; Lee, Kanani K. M.; McWilliams, R. Stewart; Brygoo, Stéphanie; Loubeyre, Paul

    2007-01-01

    Materials can be experimentally characterized to terapascal pressures by sending a laser-induced shock wave through a sample that is precompressed inside a diamond-anvil cell. This combination of static and dynamic compression methods has been experimentally demonstrated and ultimately provides access to the 10- to 100-TPa (0.1–1 Gbar) pressure range that is relevant to planetary science, testing first-principles theories of condensed matter, and experimentally studying a new regime of chemical bonding. PMID:17494771

  16. Shock compression response of highly reactive Ni + Al multilayered thin foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Sean C.; Thadhani, Naresh N., E-mail: naresh.thadhani@mse.gatech.edu

    2016-03-07

    The shock-compression response of Ni + Al multilayered thin foils is investigated using laser-accelerated thin-foil plate-impact experiments over the pressure range of 2 to 11 GPa. The foils contain alternating Ni and Al layers (parallel but not flat) of nominally 50 nm bilayer spacing. The goal is to determine the equation of state and shock-induced reactivity of these highly reactive fully dense thin-foil materials. The laser-accelerated thin-foil impact set-up involved combined use of photon-doppler-velocimetry to monitor the acceleration and impact velocity of an aluminum flyer, and VISAR interferometry was used to monitor the back free-surface velocity of the impacted Ni + Al multilayered target. The shock-compressionmore » response of the Ni + Al target foils was determined using experimentally measured parameters and impedance matching approach, with error bars identified considering systematic and experimental errors. Meso-scale CTH shock simulations were performed using real imported microstructures of the cross-sections of the multilayered Ni + Al foils to compute the Hugoniot response (assuming no reaction) for correlation with their experimentally determined equation of state. It was observed that at particle velocities below ∼150 m/s, the experimentally determined equation of state trend matches the CTH-predicted inert response and is consistent with the observed unreacted state of the recovered Ni + Al target foils from this velocity regime. At higher particle velocities, the experimentally determined equation of state deviates from the CTH-predicted inert response. A complete and self-sustained reaction is also seen in targets recovered from experiments performed at these higher particle velocities. The deviation in the measured equation of state, to higher shock speeds and expanded volumes, combined with the observation of complete reaction in the recovered multilayered foils, confirmed via microstructure characterization, is indicative of the occurrence of shock-induced chemical reaction occurring in the time-scale of the high-pressure state. TEM characterization of recovered shock-compressed (unreacted) Ni + Al multilayered foils exhibits distinct features of constituent mixing revealing jetted layers and inter-mixed regions. These features were primarily observed in the proximity of the undulations present in the alternating layers of the Ni + Al starting foils, suggesting the important role of such instabilities in promoting shock-induced intermetallic-forming reactions in the fully dense highly exothermic multilayered thin foils.« less

  17. Bifurcation parameters of a reflected shock wave in cylindrical channels of different roughnesses

    NASA Astrophysics Data System (ADS)

    Penyazkov, O.; Skilandz, A.

    2018-03-01

    To investigate the effect of bifurcation on the induction time in cylindrical shock tubes used for chemical kinetic experiments, one should know the parameters of the bifurcation structure of a reflected shock wave. The dynamics and parameters of the shock wave bifurcation, which are caused by reflected shock wave-boundary layer interactions, are studied experimentally in argon, in air, and in a hydrogen-nitrogen mixture for Mach numbers M = 1.3-3.5 in a 76-mm-diameter shock tube without any ramp. Measurements were taken at a constant gas density behind the reflected shock wave. Over a wide range of experimental conditions, we studied the axial projection of the oblique shock wave and the pressure distribution in the vicinity of the triple Mach configuration at 50, 150, and 250 mm from the endwall, using side-wall schlieren and pressure measurements. Experiments on a polished shock tube and a shock tube with a surface roughness of 20 {μ }m Ra were carried out. The surface roughness was used for initiating small-scale turbulence in the boundary layer behind the incident shock wave. The effect of small-scale turbulence on the homogenization of the transition zone from the laminar to turbulent boundary layer along the shock tube perimeter was assessed, assuming its influence on a subsequent stabilization of the bifurcation structure size versus incident shock wave Mach number, as well as local flow parameters behind the reflected shock wave. The influence of surface roughness on the bifurcation development and pressure fluctuations near the wall, as well as on the Mach number, at which the bifurcation first develops, was analyzed. It was found that even small additional surface roughness can lead to an overshoot in pressure growth by a factor of two, but it can stabilize the bifurcation structure along the shock tube perimeter.

  18. Primary blast-induced traumatic brain injury: lessons from lithotripsy

    NASA Astrophysics Data System (ADS)

    Nakagawa, A.; Ohtani, K.; Armonda, R.; Tomita, H.; Sakuma, A.; Mugikura, S.; Takayama, K.; Kushimoto, S.; Tominaga, T.

    2017-11-01

    Traumatic injury caused by explosive or blast events is traditionally divided into four mechanisms: primary, secondary, tertiary, and quaternary blast injury. The mechanisms of blast-induced traumatic brain injury (bTBI) are biomechanically distinct and can be modeled in both in vivo and in vitro systems. The primary bTBI injury mechanism is associated with the response of brain tissue to the initial blast wave. Among the four mechanisms of bTBI, there is a remarkable lack of information regarding the mechanism of primary bTBI. On the other hand, 30 years of research on the medical application of shock waves (SWs) has given us insight into the mechanisms of tissue and cellular damage in bTBI, including both air-mediated and underwater SW sources. From a basic physics perspective, the typical blast wave consists of a lead SW followed by shock-accelerated flow. The resultant tissue injury includes several features observed in primary bTBI, such as hemorrhage, edema, pseudo-aneurysm formation, vasoconstriction, and induction of apoptosis. These are well-described pathological findings within the SW literature. Acoustic impedance mismatch, penetration of tissue by shock/bubble interaction, geometry of the skull, shear stress, tensile stress, and subsequent cavitation formation are all important factors in determining the extent of SW-induced tissue and cellular injury. In addition, neuropsychiatric aspects of blast events need to be taken into account, as evidenced by reports of comorbidity and of some similar symptoms between physical injury resulting in bTBI and the psychiatric sequelae of post-traumatic stress. Research into blast injury biophysics is important to elucidate specific pathophysiologic mechanisms of blast injury, which enable accurate differential diagnosis, as well as development of effective treatments. Herein we describe the requirements for an adequate experimental setup when investigating blast-induced tissue and cellular injury; review SW physics, research, and the importance of engineering validation (visualization/pressure measurement/numerical simulation); and, based upon our findings of SW-induced injury, discuss the potential underlying mechanisms of primary bTBI.

  19. Walter B. Cannon's World War I experience: treatment of traumatic shock then and now.

    PubMed

    Ryan, Kathy L

    2018-06-01

    Walter B. Cannon (1871-1945), perhaps America's preeminent physiologist, volunteered for service with the Army Expeditionary Force (AEF) during World War I. He initially served with Base Hospital No. 5, a unit made up of Harvard clinicians, before moving forward to the front lines to serve at a casualty clearing station run by the British. During his time there, he performed research on wounded soldiers to understand the nature and causes of traumatic shock. Subsequently, Cannon performed animal experimentation on the causes of traumatic shock in the London laboratory of Dr. William Bayliss before being assigned to the AEF Central Medical Laboratory in Dijon, France, where he continued his experimental studies. During this time, he also developed and taught a curriculum on resuscitation of wounded soldiers to medical providers. Although primarily a researcher and teacher, Cannon also performed clinical duties throughout the war, serving with distinction under fire. After the war, Cannon wrote a monograph entitled Traumatic Shock (New York: Appleton, 1923), which encapsulated the knowledge that had been gained during the war, both from direct observation of wounded soldiers, as well as laboratory experimentation on the causes and treatment of traumatic shock. In his monograph, Cannon elucidates a number of principles concerning hemorrhagic shock that were later forgotten, only to be "rediscovered" during the current conflicts in Iraq and Afghanistan. This paper summarizes Cannon's wartime experiences and the knowledge gained concerning traumatic shock during World War I, with a comparison of current combat casualty care practices and knowledge to that which Cannon and his colleagues understood a century ago.

  20. Experimental growth of inertial forced Richtmyer-Meshkov instabilities for different Atwood numbers

    NASA Astrophysics Data System (ADS)

    Redondo, J. M.; Castilla, R.

    2009-04-01

    Richtmyer-Meshkov instability occurs when a shock wave impinges on an interface separating two fluids having different densities [1,2]. The instability causes perturbations on the interface to grow, bubbles and spikes, producing vortical structures which potentially result in a turbulent mixing layer. In addition to shock tube experiments, the incompressible Richtmyer-Meshkov instability has also been studied by impulsively accelerating containers of incompressible fluids. Castilla and Redondo (1994) [3] first exploited this technique by dropping tanks containing a liquid and air or two liquids onto a cushioned surface. This technique was improved upon by Niederhaus and Jacobs (2003)[4] by mounting the tank onto a rail system and then allowing it to bounce off of a fixed spring. A range of both miscible and inmiscible liquids were used, giving a wide range of Atwood numbers using the combinations of air, water, alcohol, oil and mercury. Experimental results show the different pattern selection of both the bubbles and spikes for the different Atwood numbers. Visual analysis of the marked interfaces allows to distinguish the regions of strong mixing and compare self-similarity growth of the mixing region. [1] Meshkov, E. E. 1969 Instability of the interface of two gases accelerated by a shock wave. Fluid Dynamics 4, 101-104. [2] Brouillette, M. & Sturtevant, B. 1994 Experiments on the Richtmyer-Meshkov instability: single-scale perturbations on a continuous interface. Journal of Fluid Mechanics 263, 271-292. [3] Castilla, R. & Redondo, J. M. 1994 Mixing Front Growth in RT and RM Instabilities. Proceedings of the Fourth International Workshop on the Physics of Compressible Turbulent Mixing, Cambridge, United Kingdom, edited by P. F. Linden, D. L. Youngs, and S. B. Dalziel, 11-31. [4] Niederhaus, C. E. & Jacobs, J. W. 2003 Experimental study of the Richtmyer-Meshkov instability of incompressible fluids. Journal of Fluid Mechanics 485, 243-277.

  1. Teller Award acceptance speech

    NASA Astrophysics Data System (ADS)

    Kirillov, Gennady A.

    Since I am not good at speaking English, I would like to ask Dr.Kochemasov to translate my Russian. Here I would like to talk shortly about studies on ion-laser physics at Arzamas-16. We have begun these investigations since 1965. The group was under the leadership of Khariton and Kohmir, and I was one of the active scientists. In the beginning, the research was proceeded in collaboration with Basov and Krohkin at Levedev institute. In 1961, it was reported that in terms of molecular dissociation it is possible to achieve inversion population. It was 1965 when a practical ion-laser system was first realized. We then got started on the research with the following experimental set up. First, a crystal tube was filled with xenon gas. Then, by means of a high explosive a strong shock wave was launched. The shock wave propagated along the tube. The radiation temperature observed was as high as 46,000C. Through the experiments, we could obtain various dependencies of physical quantities under different conditions. In the end, we could develop a laser system without using the crystal tube. The laser was further improved by changing the configuration of the surrounding explosives. As a result, laser energy of 100 kJ was successfully extracted at the quantum efficiency of about 100%.

  2. A computational fluid dynamics simulation of the hypersonic flight of the Pegasus(TM) vehicle using an artificial viscosity model and a nonlinear filtering method. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Mendoza, John Cadiz

    1995-01-01

    The computational fluid dynamics code, PARC3D, is tested to see if its use of non-physical artificial dissipation affects the accuracy of its results. This is accomplished by simulating a shock-laminar boundary layer interaction and several hypersonic flight conditions of the Pegasus(TM) launch vehicle using full artificial dissipation, low artificial dissipation, and the Engquist filter. Before the filter is applied to the PARC3D code, it is validated in one-dimensional and two-dimensional form in a MacCormack scheme against the Riemann and convergent duct problem. For this explicit scheme, the filter shows great improvements in accuracy and computational time as opposed to the nonfiltered solutions. However, for the implicit PARC3D code it is found that the best estimate of the Pegasus experimental heat fluxes and surface pressures is the simulation utilizing low artificial dissipation and no filter. The filter does improve accuracy over the artificially dissipative case but at a computational expense greater than that achieved by the low artificial dissipation case which has no computational time penalty and shows better results. For the shock-boundary layer simulation, the filter does well in terms of accuracy for a strong impingement shock but not as well for weaker shock strengths. Furthermore, for the latter problem the filter reduces the required computational time to convergence by 18.7 percent.

  3. Effects of Alcohol and Sexual Prejudice on Aggression Toward Sexual Minorities

    PubMed Central

    Parrott, Dominic J.; Lisco, Claire G.

    2014-01-01

    Objective This study was the first to test the moderating effect of acute alcohol intoxication on the relation between heterosexual men’s sexual prejudice and perpetration of aggression toward gay men and lesbians. Method Participants were 320 heterosexual men aged 21-30 recruited from a large southeastern United States city. Participants completed a measure of prejudice toward sexual minorities and were randomly assigned to one of eight experimental groups within a 2 (Beverage: Alcohol, No-Alcohol Control) × 2 (Opponent Gender: Male, Female) × 2 (Opponent Sexual Orientation: Homosexual, Heterosexual) design. Following beverage consumption, participants were provoked via reception of electric shocks from a fictitious opponent. Participants’ physical aggression was measured using a shock-based aggression task. Results The association between sexual prejudice and aggression toward the gay male opponent was stronger among intoxicated, relative to sober, participants. This pattern of association was not observed among participants who competed against the heterosexual male, heterosexual female, or lesbian opponent. Conclusions Findings provide the first experimental evidence that alcohol intoxication moderates sexually-prejudiced aggression toward gay men. These data offer a first step toward understanding how alcohol facilitates bias-motivated aggression. Such knowledge contributes to the empirical foundation needed to guide the development of interventions for alcohol-related aggression toward sexual minorities. PMID:26171278

  4. Types of flow on the lee side of delta wings

    NASA Astrophysics Data System (ADS)

    Narayan, K. Yegna; Seshadri, S. N.

    1997-03-01

    Delta wings have found wide application in a variety of aerospace vehicles including high performance combat aircraft, supersonic civil aircraft, (proposed) hypersonic aircraft and the space shuttle orbiter. A considerable amount of research work has been carried out over the past three decades and an extensive body of literature is available. The present review focuses attention on the nine possible types of flow that can occur on the lee side of delta wings in a Mach number range which extends from subsonic to hypersonic. The dependence of the flow types on geometrical and freestream parameters has been discussed in detail. The extensive experimental data available has made it possible to obtain a broad physical understanding of the mechanisms underlying the different flow types. However much more work needs to be done to determine the effects of Reynolds number, particularly when either the state of the boundary layer is transitional or when the type of flow is changing from leading edge attached to separated. Computational methods have made spectacular advances in recent years. In particular, solutions of Reynolds averaged Navier-Stokes equations at fairly high Reynolds number have become possible and these computations have captured eight of the nine experimentally observed flow types, including those involving cross flow shock waves and shock-induced separation.

  5. Shock wave driven microparticles for pharmaceutical applications

    NASA Astrophysics Data System (ADS)

    Menezes, V.; Takayama, K.; Gojani, A.; Hosseini, S. H. R.

    2008-10-01

    Ablation created by a Q-switched Nd:Yttrium Aluminum Garnet (Nd:YAG) laser beam focusing on a thin aluminum foil surface spontaneously generates a shock wave that propagates through the foil and deforms it at a high speed. This high-speed foil deformation can project dry micro- particles deposited on the anterior surface of the foil at high speeds such that the particles have sufficient momentum to penetrate soft targets. We used this method of particle acceleration to develop a drug delivery device to deliver DNA/drug coated microparticles into soft human-body targets for pharmaceutical applications. The device physics has been studied by observing the process of particle acceleration using a high-speed video camera in a shadowgraph system. Though the initial rate of foil deformation is over 5 km/s, the observed particle velocities are in the range of 900-400 m/s over a distance of 1.5-10 mm from the launch pad. The device has been tested by delivering microparticles into liver tissues of experimental rats and artificial soft human-body targets, modeled using gelatin. The penetration depths observed in the experimental targets are quite encouraging to develop a future clinical therapeutic device for treatments such as gene therapy, treatment of cancer and tumor cells, epidermal and mucosal immunizations etc.

  6. Shock wave oscillation driven by turbulent boundary layer fluctuations

    NASA Technical Reports Server (NTRS)

    Plotkin, K. J.

    1972-01-01

    Pressure fluctuations due to the interaction of a shock wave with a turbulent boundary layer were investigated. A simple model is proposed in which the shock wave is convected from its mean position by velocity fluctuations in the turbulent boundary layer. Displacement of the shock is assumed limited by a linear restoring mechanism. Predictions of peak root mean square pressure fluctuation and spectral density are in excellent agreement with available experimental data.

  7. Simulation of transient flow in a shock tunnel and a high Mach number nozzle

    NASA Technical Reports Server (NTRS)

    Jacobs, P. A.

    1991-01-01

    A finite volume Navier-Stokes code was used to simulate the shock reflection and nozzle starting processes in an axisymmetric shock tube and a high Mach number nozzle. The simulated nozzle starting processes were found to match the classical quasi-1-D theory and some features of the experimental measurements. The shock reflection simulation illustrated a new mechanism for the driver gas contamination of the stagnated test gas.

  8. Revisiting the thermal effect on shock wave propagation in weakly ionized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qianhong, E-mail: zhou-qianhong@iapcm.ac.cn; Dong, Zhiwei; Yang, Wei

    2016-07-15

    Many researchers have investigated shock propagation in weakly ionized plasmas and observed the following anomalous effects: shock acceleration, shock recovery, shock weakening, shock spreading, and splitting. It was generally accepted that the thermal effect can explain most of the experimental results. However, little attention was paid to the shock recovery. In this paper, the shock wave propagation in weakly ionized plasmas is studied by fluid simulation. It is found that the shock acceleration, weakening, and splitting appear after it enters the plasma (thermal) region. The shock splits into two parts right after it leaves the thermal region. The distance betweenmore » the splitted shocks keeps decreasing until they recover to one. This paper can explain a whole set of features of the shock wave propagation in weakly ionized plasmas. It is also found that both the shock curvature and the splitting present the same photoacoustic deflection (PAD) signals, so they cannot be distinguished by the PAD experiments.« less

  9. Ethane-xenon mixtures under shock conditions

    DOE PAGES

    Magyar, Rudolph J.; Root, Seth; Mattsson, Thomas; ...

    2015-04-22

    Mixtures of light elements with heavy elements are important in inertial confinement fusion. We explore the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT-MD) at elevated temperature and pressure is used to obtain the thermodynamic state properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. In order to validate these simulations, we have performed shock compression experiments using the Sandia Z-Machine. A bond tracking analysis correlates the sharp rise in the Hugoniot curve with the completion of dissociation in ethane. Furthermore, themore » DFT-based simulation results compare well with the experimental data along the principal Hugoniots and are used to provide insight into the dissociation and temperature along the Hugoniots as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for several compositions suggesting a limiting compression for C-C bonded systems.« less

  10. Assessing the Two-Plasmon Decay Threat Through Simulations and Experiments on the NIKE Laser System

    NASA Astrophysics Data System (ADS)

    Phillips, Lee; Weaver, J. L.; Oh, J.; Schmitt, A. J.; Obenschain, S.

    2010-11-01

    NIKE is a Krf laser system at the Naval Research Laboratory used to explore hydrodynamic stability, equation of state, and other physics problems arising in IFE research. The comparatively short KrF wavelength is expected to raise the threshold of most parametric instabilities. We report on simulations performed using the FAST3d radiation hydrocode to design TPD experiments that have have allowed us to explore the validity of simple threshold formulas and help establish the accuracy of our simulations. We have also studied proposed high-gain shock ignition designs and devised experiments that can approach the relevant scalelength-temperature regime, allowing us a potential experimental method to study the LPI threat to these designs by direct observation. Through FAST3d studies of shock-ignited and conventional direct-drive designs with KrF (248 nm) and 3rd harmonic (351nm) drivers, we examine the benefits of the shorter wavelength KrF light in reducing the LPI threat.

  11. Measuring the properties of shock released Quartz and Parylene-N

    NASA Astrophysics Data System (ADS)

    Hawreliak, James; Karasik, Max; Oh, Jaechul; Aglitskiy, Yefim

    2016-10-01

    The high pressure and temperature properties of Quartz and hydrocarbons are important to high energy density (HED) research and inertial confinement fusion (ICF) science. The bulk of HED material research studies the single shock Hugoniot. Here, we present experimental results from the NIKE laser where quartz and parylene-N are shock compressed to high pressure and temperature and the release state is measured through x-ray imaging. The shock state is characterized by shock front velocity measurements using VISAR and the release state is characterized by using side-on streaked x-ray radiography.

  12. Detonation waves in pentaerythritol tetranitrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarver, C.M.; Breithaupt, R.D.; Kury, J.W.

    1997-06-01

    Fabry{endash}Perot laser interferometry was used to obtain nanosecond time resolved particle velocity histories of the free surfaces of tantalum discs accelerated by detonating pentaerythritol tetranitrate (PETN) charges and of the interfaces between PETN detonation products and lithium fluoride crystals. The experimental records were compared to particle velocity histories calculated using very finely zoned meshes of the exact dimensions with the DYNA2D hydrodynamic code. The duration of the PETN detonation reaction zone was demonstrated to be less than the 5 ns initial resolution of the Fabry{endash}Perot technique, because the experimental records were accurately calculated using an instantaneous chemical reaction, the Chapman{endash}Jouguetmore » (C-J) model of detonation, and the reaction product Jones{endash}Wilkins{endash}Lee (JWL) equation of state for PETN detonation products previously determined by supracompression (overdriven detonation) studies. Some of the PETN charges were pressed to densities approaching the crystal density and exhibited the phenomenon of superdetonation. An ignition and growth Zeldovich{endash}von Neumann{endash}Doring (ZND) reactive flow model was developed to explain these experimental records and the results of previous PETN shock initiation experiments on single crystals of PETN. Good agreement was obtained for the induction time delays preceding chemical reaction, the run distances at which the initial shock waves were overtaken by the detonation waves in the compressed PETN, and the measured particle velocity histories produced by the overdriven detonation waves before they could relax to steady state C-J velocity and pressure. {copyright} {ital 1997 American Institute of Physics.}« less

  13. Shock initiation of nitromethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, C.S.; Holmes, N.C.

    1994-07-10

    The shock initiation processes of nitromethane have been examined by using a fast time-resolved emission spectroscopy at a two-stage gas gun. A broad, but strong emission has been observed in a spectral range between 350 nm and 700 nm from the shocked nitromethane above 9 GPa. The temporal profile suggests that the shocked nitromethane detonates through three characteristic periods, namely an induction period, a shock initiation period, and a thermal explosion period. In this paper we will discuss the temporal and chemical characteristics of these periods and present the temperature of the shock-detonating nitromethane at pressures between 9 and 15more » GPa. [copyright]American Institute of Physics« less

  14. Imaging shock waves in diamond with both high temporal and spatial resolution at an XFEL

    DOE PAGES

    Schropp, Andreas; Hoppe, Robert; Meier, Vivienne; ...

    2015-06-18

    The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnifiedmore » x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions.« less

  15. Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL.

    PubMed

    Schropp, Andreas; Hoppe, Robert; Meier, Vivienne; Patommel, Jens; Seiboth, Frank; Ping, Yuan; Hicks, Damien G; Beckwith, Martha A; Collins, Gilbert W; Higginbotham, Andrew; Wark, Justin S; Lee, Hae Ja; Nagler, Bob; Galtier, Eric C; Arnold, Brice; Zastrau, Ulf; Hastings, Jerome B; Schroer, Christian G

    2015-06-18

    The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnified x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions.

  16. Transonic Shock-Wave/Boundary-Layer Interactions on an Oscillating Airfoil

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.; Malcolm, Gerald N.

    1980-01-01

    Unsteady aerodynamic loads were measured on an oscillating NACA 64A010 airfoil In the NASA Ames 11 by 11 ft Transonic Wind Tunnel. Data are presented to show the effect of the unsteady shock-wave/boundary-layer interaction on the fundamental frequency lift, moment, and pressure distributions. The data show that weak shock waves induce an unsteady pressure distribution that can be predicted quite well, while stronger shock waves cause complex frequency-dependent distributions due to flow separation. An experimental test of the principles of linearity and superposition showed that they hold for weak shock waves while flows with stronger shock waves cannot be superimposed.

  17. X-ray emission from reverse-shocked ejecta in supernova remnants

    NASA Technical Reports Server (NTRS)

    Cioffi, Denis F.; Mckee, Christopher F.

    1990-01-01

    A simple physical model of the dynamics of a young supernova remnant is used to derive a straightforward kinematical description of the reverse shock. With suitable approximations, formulae can then be developed to give the X-ray emission of the reverse-shocked ejecta. The results are found to agree favorably with observations of SN1006.

  18. The big bang as a higher-dimensional shock wave

    NASA Astrophysics Data System (ADS)

    Wesson, P. S.; Liu, H.; Seahra, S. S.

    2000-06-01

    We give an exact solution of the five-dimensional field equations which describes a shock wave moving in time and the extra (Kaluza-Klein) coordinate. The matter in four-dimensional spacetime is a cosmology with good physical properties. The solution suggests to us that the 4D big bang was a 5D shock wave.

  19. Shock-induced CO2 loss from CaCO3: Implications for early planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Lange, M. A.; Ahrens, T. J.

    1984-01-01

    Recovered samples from shock recovery experiments on single crystal calcite were subjected to thermogravimetric analysis to determine the amount of post-shock CO2, the decarbonization interval and the activation energy, for the removal of remaining CO2 in shock-loaded calcite. Comparison of post-shock CO2 with that initially present determines shock-induced CO2 loss as a function of shock pressure. Incipient to complete CO2 loss occurs over a pressure range of approximately 10 to approximately 70 GPa. Optical and scanning electron microscopy reveal structural changes, which are related to the shock-loading. The occurrence of dark, diffuse areas, which can be resolved as highly vesicular areas as observed with a scanning electron microscope are interpreted as representing quenched partial melts, into which shock-released CO2 was injected. The experimental results are used to constrain models of shock-produced, primary CO2 atmospheres on the accreting terrestrial planets.

  20. Catching the radio flare in CTA 102. I. Light curve analysis

    NASA Astrophysics Data System (ADS)

    Fromm, C. M.; Perucho, M.; Ros, E.; Savolainen, T.; Lobanov, A. P.; Zensus, J. A.; Aller, M. F.; Aller, H. D.; Gurwell, M. A.; Lähteenmäki, A.

    2011-07-01

    Context. The blazar CTA 102 (z = 1.037) underwent a historical radio outburst in April 2006. This event offered a unique chance to study the physical properties of the jet. Aims: We used multifrequency radio and mm observations to analyze the evolution of the spectral parameters during the flare as a test of the shock-in-jet model under these extreme conditions. Methods: For the analysis of the flare we took into account that the flaring spectrum is superimposed on a quiescent spectrum. We reconstructed the latter from archival data and fitted a synchrotron self-absorbed distribution of emission. The uncertainties of the derived spectral parameters were calculated using Monte Carlo simulations. The spectral evolution is modeled by the shock-in-jet model, and the derived results are discussed in the context of a geometrical model (varying viewing angle) and shock-shock interaction Results: The evolution of the flare in the turnover frequency-turnover flux density (νm - Sm) plane shows a double peak structure. The nature of this evolution is dicussed in the frame of shock-in-jet models. We discard the generation of the double peak structure in the νm - Sm plane purely based on geometrical changes (variation of the Doppler factor). The detailed modeling of the spectral evolution favors a shock-shock interaction as a possible physical mechanism behind the deviations from the standard shock-in-jet model.

  1. Nature of the wiggle instability of galactic spiral shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Woong-Tae; Kim, Yonghwi; Kim, Jeong-Gyu, E-mail: wkim@astro.snu.ac.kr, E-mail: kimyh@astro.snu.ac.kr, E-mail: jgkim@astro.snu.ac.kr

    Gas in disk galaxies interacts nonlinearly with an underlying stellar spiral potential to form galactic spiral shocks. While numerical simulations typically show that spiral shocks are unstable to wiggle instability (WI) even in the absence of magnetic fields and self-gravity, its physical nature has remained uncertain. To clarify the mechanism behind the WI, we conduct a normal-mode linear stability analysis and nonlinear simulations assuming that the disk is isothermal and infinitesimally thin. We find that the WI is physical, originating from the generation of potential vorticity at a deformed shock front, rather than Kelvin-Helmholtz instabilities as previously thought. Since gasmore » in galaxy rotation periodically passes through the shocks multiple times, the potential vorticity can accumulate successively, setting up a normal mode that grows exponentially with time. Eigenfunctions of the WI decay exponentially downstream from the shock front. Both shock compression of acoustic waves and a discontinuity of shear across the shock stabilize the WI. The wavelength and growth time of the WI depend on the arm strength quite sensitively. When the stellar-arm forcing is moderate at 5%, the wavelength of the most unstable mode is about 0.07 times the arm-to-arm spacing, with the growth rate comparable to the orbital angular frequency, which is found to be in good agreement with the results of numerical simulations.« less

  2. On the structure of nonlinear waves in liquids with gas bubbles

    NASA Astrophysics Data System (ADS)

    Beylich, Alfred E.; Gülhan, Ali

    1990-08-01

    Transient wave phenomena in two-phase mixtures with a liquid as the matrix and gas bubbles as the dispersed phase have been studied in a shock tube using glycerine as the liquid and He, N2, and SF6 as gases having a large variation in the ratio of specific heats and the thermal diffusivity. Two different sizes of bubble radii have been produced , R0=1.15 and 1.6 mm, with a dispersion in size of less than 5%. The void fraction was varied over one order of magnitude, φ0=0.2%-2%. The measured pressure profiles were averaged by superimposing many shots, typically 20. Speeds and profiles were measured for shock waves and for wave packets. Investigation of the wave structure allows one to approach the fundamental question of how the physics on the level of the microstructure influences the behavior on the macroscale. In the theoretical work, modeling on the basis of a hierarchy of characteristic length scales is developed. Bubble interactions, transient heat transfer, and dissipation due to molecular and bulk viscosities are included. Solutions for small void fractions and moderate amplitudes are obtained for the steady cases of shock waves and solitons and are compared with the experimental results.

  3. Numerical Simulation of the Generation of Axisymmetric Mode Jet Screech Tones

    NASA Technical Reports Server (NTRS)

    Shen, Hao; Tam, Christopher K. W.

    1998-01-01

    An imperfectly expanded supersonic jet, invariably, radiates both broadband noise and discrete frequency sound called screech tones. Screech tones are known to be generated by a feedback loop driven by the large scale instability waves of the jet flow. Inside the jet plume is a quasi-periodic shock cell structure. The interaction of the instability waves and the shock cell structure, as the former propagates through the latter, is responsible for the generation of the tones. Presently, there are formulas that can predict the tone frequency fairly accurately. However, there is no known way to predict the screech tone intensity. In this work, the screech phenomenon of an axisymmetric jet at low supersonic Mach number is reproduced by numerical simulation. The computed mean velocity profiles and the shock cell pressure distribution of the jet are found to be in good agreement with experimental measurements. The same is true with the simulated screech frequency. Calculated screech tone intensity and directivity at selected jet Mach number are reported in this paper. The present results demonstrate that numerical simulation using computational aeroacoustics methods offers not only a reliable way to determine the screech tone intensity and directivity but also an opportunity to study the physics and detailed mechanisms of the phenomenon by an entirely new approach.

  4. Detection of Supernova Neutrinos on the Earth for Large θ13

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Huang, Ming-Yang; Hu, Li-Jun; Guo, Xin-Heng; Young, Bing-Lin

    2014-02-01

    Supernova (SN) neutrinos detected on the Earth are subject to the shock wave effects, the Mikheyev—Smirnov—Wolfenstein (MSW) effects, the neutrino collective effects and the Earth matter effects. Considering the recent experimental result about the large mixing angle θ13 (≃ 8.8°) provided by the Daya Bay Collaboration and applying the available knowledge for the neutrino conversion probability in the high resonance region of SN, PH, which is in the form of hypergeometric function in the case of large θ13, we deduce the expression of PH taking into account the shock wave effects. It is found that PH is not zero in a certain range of time due to the shock wave effects. After considering all the four physical effects and scanning relevant parameters, we calculate the event numbers of SN neutrinos for the “Garching” distribution of neutrino energy spectrum. From the numerical results, it is found that the behaviors of neutrino event numbers detected on the Earth depend on the neutrino mass hierarchy and neutrino spectrum parameters including the dimensionless pinching parameter βα (where α refers to neutrino flavor), the average energy , and the SN neutrino luminosities Lα. Finally, we give the ranges of SN neutrino event numbers that will be detected at the Daya Bay experiment.

  5. Aftershocks of Chile's Earthquake for an Ongoing, Large-Scale Experimental Evaluation

    ERIC Educational Resources Information Center

    Moreno, Lorenzo; Trevino, Ernesto; Yoshikawa, Hirokazu; Mendive, Susana; Reyes, Joaquin; Godoy, Felipe; Del Rio, Francisca; Snow, Catherine; Leyva, Diana; Barata, Clara; Arbour, MaryCatherine; Rolla, Andrea

    2011-01-01

    Evaluation designs for social programs are developed assuming minimal or no disruption from external shocks, such as natural disasters. This is because extremely rare shocks may not make it worthwhile to account for them in the design. Among extreme shocks is the 2010 Chile earthquake. Un Buen Comienzo (UBC), an ongoing early childhood program in…

  6. Thermal shock resistance of ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Carper, D. M.; Nied, H. F.

    1993-01-01

    The experimental and analytical investigation of the thermal shock phenomena in ceramic matrix composites is detailed. The composite systems examined were oxide-based, consisting of an aluminosilicate matrix with either polycrystalline aluminosilicate or single crystal alumina fiber reinforcement. The program was divided into three technical tasks; baseline mechanical properties, thermal shock modeling, and thermal shock testing. The analytical investigation focused on the development of simple expressions for transient thermal stresses induced during thermal shock. The effect of various material parameters, including thermal conductivity, elastic modulus, and thermal expansion, were examined analytically for their effect on thermal shock performance. Using a simple maximum stress criteria for each constituent, it was observed that fiber fracture would occur only at the most extreme thermal shock conditions and that matrix fracture, splitting parallel to the reinforcing fiber, was to be expected for most practical cases. Thermal shock resistance for the two material systems was determined experimentally by subjecting plates to sudden changes in temperature on one surface while maintaining the opposite surface at a constant temperature. This temperature change was varied in severity (magnitude) and in number of shocks applied to a given sample. The results showed that for the most severe conditions examined that only surface matrix fracture was present with no observable fiber fracture. The impact of this damage on material performance was limited to the matrix dominated properties only. Specifically, compression strength was observed to decrease by as much as 50 percent from the measured baseline.

  7. Shapes of strong shock fronts in an inhomogeneous solar wind

    NASA Technical Reports Server (NTRS)

    Heinemann, M. A.; Siscoe, G. L.

    1974-01-01

    The shapes expected for solar-flare-produced strong shock fronts in the solar wind have been calculated, large-scale variations in the ambient medium being taken into account. It has been shown that for reasonable ambient solar wind conditions the mean and the standard deviation of the east-west shock normal angle are in agreement with experimental observations including shocks of all strengths. The results further suggest that near a high-speed stream it is difficult to distinguish between corotating shocks and flare-associated shocks on the basis of the shock normal alone. Although the calculated shapes are outside the range of validity of the linear approximation, these results indicate that the variations in the ambient solar wind may account for large deviations of shock normals from the radial direction.

  8. Non-equilibrium effects of diatomic and polyatomic gases on the shock-vortex interaction based on the second-order constitutive model of the Boltzmann-Curtiss equation

    NASA Astrophysics Data System (ADS)

    Singh, S.; Karchani, A.; Myong, R. S.

    2018-01-01

    The rotational mode of molecules plays a critical role in the behavior of diatomic and polyatomic gases away from equilibrium. In order to investigate the essence of the non-equilibrium effects, the shock-vortex interaction problem was investigated by employing an explicit modal discontinuous Galerkin method. In particular, the first- and second-order constitutive models for diatomic and polyatomic gases derived rigorously from the Boltzmann-Curtiss kinetic equation were solved in conjunction with the physical conservation laws. As compared with a monatomic gas, the non-equilibrium effects result in a substantial change in flow fields in both macroscale and microscale shock-vortex interactions. Specifically, the computational results showed three major effects of diatomic and polyatomic gases on the shock-vortex interaction: (i) the generation of the third sound waves and additional reflected shock waves with strong and enlarged expansion, (ii) the dominance of viscous vorticity generation, and (iii) an increase in enstrophy with increasing bulk viscosity, related to the rotational mode of gas molecules. Moreover, it was shown that there is a significant discrepancy in flow fields between the microscale and macroscale shock-vortex interactions in diatomic and polyatomic gases. The quadrupolar acoustic wave source structures, which are typically observed in macroscale shock-vortex interactions, were not found in any microscale shock-vortex interactions. The physics of the shock-vortex interaction was also investigated in detail to examine vortex deformation and evolution dynamics over an incident shock wave. A comparative study of first- and second-order constitutive models was also conducted for the enstrophy and dissipation rate. Finally, the study was extended to the shock-vortex pair interaction case to examine the effects of pair interaction on vortex deformation and evolution dynamics.

  9. PHYSICAL CONDITIONS OF CORONAL PLASMA AT THE TRANSIT OF A SHOCK DRIVEN BY A CORONAL MASS EJECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susino, R.; Bemporad, A.; Mancuso, S., E-mail: susino@oato.inaf.it

    2015-10-20

    We report here on the determination of plasma physical parameters across a shock driven by a coronal mass ejection using white light (WL) coronagraphic images and radio dynamic spectra (RDS). The event analyzed here is the spectacular eruption that occurred on 2011 June 7, a fast CME followed by the ejection of columns of chromospheric plasma, part of them falling back to the solar surface, associated with a M2.5 flare and a type-II radio burst. Images acquired by the Solar and Heliospheric Observatory/LASCO coronagraphs (C2 and C3) were employed to track the CME-driven shock in the corona between 2–12 R{submore » ⊙} in an angular interval of about 110°. In this interval we derived two-dimensional (2D) maps of electron density, shock velocity, and shock compression ratio, and we measured the shock inclination angle with respect to the radial direction. Under plausible assumptions, these quantities were used to infer 2D maps of shock Mach number M{sub A} and strength of coronal magnetic fields at the shock's heights. We found that in the early phases (2–4 R{sub ⊙}) the whole shock surface is super-Alfvénic, while later on (i.e., higher up) it becomes super-Alfvénic only at the nose. This is in agreement with the location for the source of the observed type-II burst, as inferred from RDS combined with the shock kinematic and coronal densities derived from WL. For the first time, a coronal shock is used to derive a 2D map of the coronal magnetic field strength over intervals of 10 R{sub ⊙} altitude and ∼110° latitude.« less

  10. Thermal infrared spectroscopy and modeling of experimentally shocked plagioclase feldspars

    USGS Publications Warehouse

    Johnson, J. R.; Horz, F.; Staid, M.I.

    2003-01-01

    Thermal infrared emission and reflectance spectra (250-1400 cm-1; ???7???40 ??m) of experimentally shocked albite- and anorthite-rich rocks (17-56 GPa) demonstrate that plagioclase feldspars exhibit characteristic degradations in spectral features with increasing pressure. New measurements of albite (Ab98) presented here display major spectral absorptions between 1000-1250 cm-1 (8-10 ??m) (due to Si-O antisymmetric stretch motions of the silica tetrahedra) and weaker absorptions between 350-700 cm-1 (14-29 ??m) (due to Si-O-Si octahedral bending vibrations). Many of these features persist to higher pressures compared to similar features in measurements of shocked anorthite, consistent with previous thermal infrared absorption studies of shocked feldspars. A transparency feature at 855 cm-1 (11.7 ??m) observed in powdered albite spectra also degrades with increasing pressure, similar to the 830 cm-1 (12.0 ??m) transparency feature in spectra of powders of shocked anorthite. Linear deconvolution models demonstrate that combinations of common mineral and glass spectra can replicate the spectra of shocked anorthite relatively well until shock pressures of 20-25 GPa, above which model errors increase substantially, coincident with the onset of diaplectic glass formation. Albite deconvolutions exhibit higher errors overall but do not change significantly with pressure, likely because certain clay minerals selected by the model exhibit absorption features similar to those in highly shocked albite. The implication for deconvolution of thermal infrared spectra of planetary surfaces (or laboratory spectra of samples) is that the use of highly shocked anorthite spectra in end-member libraries could be helpful in identifying highly shocked calcic plagioclase feldspars.

  11. Laboratory Observation of High-Mach Number, Laser-Driven Magnetized Collisionless Shocks

    NASA Astrophysics Data System (ADS)

    Schaeffer, Derek; Fox, Will; Haberberger, Dan; Fiksel, Gennady; Bhattacharjee, Amitava; Barnak, Daniel; Hu, Suxing; Germaschewski, Kai

    2017-06-01

    Collisionless shocks are common phenomena in space and astrophysical systems, including solar and planetary winds, coronal mass ejections, supernovae remnants, and the jets of active galactic nuclei, and in many the shocks are believed to efficiently accelerate particles to some of the highest observed energies. Only recently, however, have laser and diagnostic capabilities evolved sufficiently to allow the detailed study in the laboratory of the microphysics of collisionless shocks over a large parameter regime. We present the first laboratory generation of high-Mach number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number Mms≈12. Particle-in-cell simulations constrained by experimental data further detail the shock formation and separate dynamics of the multi-ion-species ambient plasma. The results show that the shocks form on timescales as fast as one gyroperiod, aided by the efficient coupling of energy, and the generation of a magnetic barrier, between the piston and ambient ions. The development of this experimental platform complements present remote sensing and spacecraft observations, and opens the way for controlled laboratory investigations of high-Mach number collisionless shocks, including the mechanisms and efficiency of particle acceleration. The platform is also flexible, allowing us to study shocks in different magnetic field geometries, in different ambient plasma conditions, and in relation to other effects in magnetized, high-Mach number plasmas such as magnetic reconnection or the Weibel instability.

  12. Experimental study of shock-accelerated inclined heavy gas cylinder

    DOE PAGES

    Olmstead, Dell; Wayne, Patrick; Yoo, Jae-Hwun; ...

    2017-05-23

    An experimental study examines shock acceleration with an initially diffuse cylindrical column of sulfur hexafluoride surrounded by air and inclined with respect to the shock front. Three-dimensional vorticity deposition produces flow patterns whose evolution is captured with planar laser-induced fluorescence in two planes. Both planes are thus parallel to the direction of the shock propagation. The first plane is vertical and passes through the axis of the column. The second visualization plane is normal to the first plane and passes through the centerline of the shock tube. Vortex formation in the vertical and centerline planes is initially characterized by differentmore » rates and morphologies due to differences in initial vorticity deposition. In the vertical plane, the vortex structure manifests a periodicity that varies with Mach number. The dominant wavelength in the vertical plane can be related to the geometry and compressibility of the initial conditions. At later times, the vortex interaction produces a complex and irregular three-dimensional pattern suggesting transition to turbulence. We present highly repeatable experimental data for Mach numbers 1.13, 1.4, 1.7, and 2.0 at column incline angles of 0, 20, and 30 degrees for about 50 nominal cylinder diameters (30 cm) of downstream travel.« less

  13. Reverse Radiative Shock Experiments Relevant to Accreting Stream-Disk Impact in Interacting Binaries

    NASA Astrophysics Data System (ADS)

    Krauland, Christine; Drake, R. P.; Kuranz, C. K.; Huntington, C. M.; Grosskopf, M. J.; Marion, D. C.; Young, R.; Plewa, T.

    2011-05-01

    In many Cataclysmic Binary systems, mass onto an accretion disk produces a `hot spot’ where the infalling supersonic flow obliquely strikes the rotating accretion disk. This collision region has many ambiguities as a radiation hydrodynamic system, but shock development in the infalling flow can be modeled. Depending upon conditions, it has been argued (Armitage & Livio, ApJ 493, 898) that the shocked region may be optically thin, thick, or intermediate, which has the potential to significantly alter the hot spot's structure and emissions. We report the first experimental attempt to produce colliding flows that create a radiative reverse shock at the Omega-60 laser facility. Obtaining a radiative reverse shock in the laboratory requires producing a sufficiently fast flow (> 100 km/s) within a material whose opacity is large enough to produce energetically significant emission from experimentally achievable layers. We will discuss the experimental design, the available data, and our astrophysical context. Funded by the NNSA-DS and SC-OFES Joint Prog. in High-Energy-Density Lab. Plasmas, by the Nat. Laser User Facility Prog. in NNSA-DS and by the Predictive Sci. Acad. Alliances Prog. in NNSA-ASC, under grant numbers are DE-FG52-09NA29548, DE-FG52-09NA29034, and DE-FC52-08NA28616.

  14. Interaction of a weak shock wave with a discontinuous heavy-gas cylinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiansheng; Yang, Dangguo; Wu, Junqiang

    2015-06-15

    The interaction between a cylindrical inhomogeneity and a weak planar shock wave is investigated experimentally and numerically, and special attention is given to the wave patterns and vortex dynamics in this scenario. A soap-film technique is realized to generate a well-controlled discontinuous cylinder (SF{sub 6} surrounded by air) with no supports or wires in the shock-tube experiment. The symmetric evolving interfaces and few disturbance waves are observed in a high-speed schlieren photography. Numerical simulations are also carried out for a detailed analysis. The refracted shock wave inside the cylinder is perturbed by the diffracted shock waves and divided into threemore » branches. When these shock branches collide, the shock focusing occurs. A nonlinear model is then proposed to elucidate effects of the wave patterns on the evolution of the cylinder. A distinct vortex pair is gradually developing during the shock-cylinder interaction. The numerical results show that a low pressure region appears at the vortex core. Subsequently, the ambient fluid is entrained into the vortices which are expanding at the same time. Based on the relation between the vortex motion and the circulation, several theoretical models of circulation in the literature are then checked by the experimental and numerical results. Most of these theoretical circulation models provide a reasonably good prediction of the vortex motion in the present configuration.« less

  15. Comparison of femtosecond laser ablation of aluminum in water and in air by time-resolved optical diagnosis.

    PubMed

    Hu, Haofeng; Liu, Tiegen; Zhai, Hongchen

    2015-01-26

    The dynamic process of material ejection and shock wave evolution during one single femtosecond laser pulse ablation of aluminum target in water and air is experimentally investigated by employing pump-probe technique. Shadowgraphs and digital holograms with high temporal resolution are recorded, which intuitively reveal the characteristics of femtosecond laser ablation in the water-confined environment. The experimental result indicates that the liquid significantly restrict the diffusion of the ejected material, and it has a considerable effect on the attenuation of the shock wave. In addition, the expansion Mach wave generated by the ultrasonic expansion of the shock wave is observed.

  16. Shocks and Molecules in Protostellar Outflows

    NASA Astrophysics Data System (ADS)

    Arce, Héctor

    2014-06-01

    As protostars form through the gravitational infall of material from their parent molecular cloud, they power energetic bipolar outflows that interact with the surrounding medium. Protostellar outflows are important to the chemical evolution of star forming regions, as the shocks produced by the interaction of the high-velocity protostellar wind and the ambient cloud can heat the surrounding medium and trigger chemical and physical processes that would otherwise not take place in a quiescent molecular cloud. Protostellar outflows, are therefore a great laboratory to study shock physics and shock-induced chemistry. I will present results from millimeter-wave observations of a small sample of outflow shocks. The spectra show clear evidence of the existence of complex organic molecules (e.g., methyl formate, ethanol, acetaldehyde) and high abundance of certain simple molecules (e.g., HCO^+, HCN, H_2O) in outflows. Results indicate that, most likely, the complex species formed on the surface of grains and were then ejected from the grain mantles by the shock. Spectral surveys of shocked regions using ALMA could therefore be used to probe the composition of dust in molecular clouds. Our results demonstrate that outflows modify the chemical composition of the surrounding gaseous environment and that this needs to be considered when using certain species to study active star forming regions.

  17. Nonlinear theory of diffusive acceleration of particles by shock waves

    NASA Astrophysics Data System (ADS)

    Malkov, M. A.; Drury, L. O'C.

    2001-04-01

    Among the various acceleration mechanisms which have been suggested as responsible for the nonthermal particle spectra and associated radiation observed in many astrophysical and space physics environments, diffusive shock acceleration appears to be the most successful. We review the current theoretical understanding of this process, from the basic ideas of how a shock energizes a few reactionless particles to the advanced nonlinear approaches treating the shock and accelerated particles as a symbiotic self-organizing system. By means of direct solution of the nonlinear problem we set the limit to the test-particle approximation and demonstrate the fundamental role of nonlinearity in shocks of astrophysical size and lifetime. We study the bifurcation of this system, proceeding from the hydrodynamic to kinetic description under a realistic condition of Bohm diffusivity. We emphasize the importance of collective plasma phenomena for the global flow structure and acceleration efficiency by considering the injection process, an initial stage of acceleration and, the related aspects of the physics of collisionless shocks. We calculate the injection rate for different shock parameters and different species. This, together with differential acceleration resulting from nonlinear large-scale modification, determines the chemical composition of accelerated particles. The review concentrates on theoretical and analytical aspects but our strategic goal is to link the fundamental theoretical ideas with the rapidly growing wealth of observational data.

  18. Laser Light Scattering by Shock Waves

    NASA Technical Reports Server (NTRS)

    Panda, J.; Adamovsky, G.

    1995-01-01

    Scattering of coherent light as it propagates parallel to a shock wave, formed in front of a bluff cylindrical body placed in a supersonic stream, is studied experimentally and numerically. Two incident optical fields are considered. First, a large diameter collimated beam is allowed to pass through the shock containing flow. The light intensity distribution in the resultant shadowgraph image, measured by a low light CCD camera, shows well-defined fringes upstream and downstream of the shadow cast by the shock. In the second situation, a narrow laser beam is brought to a grazing incidence on the shock and the scattered light, which appears as a diverging sheet from the point of interaction, is visualized and measured on a screen placed normal to the laser path. Experiments are conducted on shocks formed at various free-stream Mach numbers, M, and total pressures, P(sub 0). It is found that the widths of the shock shadows in a shadowgraph image become independent of M and P(sub 0) when plotted against the jump in the refractive index, (Delta)n, created across the shock. The total scattered light measured from the narrow laser beam and shock interaction also follows the same trend. In the numerical part of the study, the shock is assumed to be a 'phase object', which introduces phase difference between the upstream and downstream propagating parts of the light disturbances. For a given shape and (Delta)n of the bow shock the phase and amplitude modulations are first calculated by ray tracing. The wave front is then propagated to the screen using the Fresnet diffraction equation. The calculated intensity distribution, for both of the incident optical fields, shows good agreement with the experimental data.

  19. [Learning to use semiautomatic external defibrillators through audiovisual materials for schoolchildren].

    PubMed

    Jorge-Soto, Cristina; Abelairas-Gómez, Cristian; Barcala-Furelos, Roberto; Gregorio-García, Carolina; Prieto-Saborit, José Antonio; Rodríguez-Núñez, Antonio

    2016-01-01

    To assess the ability of schoolchildren to use a automated external defibrillator (AED) to provide an effective shock and their retention of the skill 1 month after a training exercise supported by audiovisual materials. Quasi-experimental controlled study in 205 initially untrained schoolchildren aged 6 to 16 years old. SAEDs were used to apply shocks to manikins. The students took a baseline test (T0) of skill, and were then randomized to an experimental or control group in the first phase (T1). The experimental group watched a training video, and both groups were then retested. The children were tested in simulations again 1 month later (T2). A total of 196 students completed all 3 phases. Ninety-six (95.0%) of the secondary school students and 54 (56.8%) of the primary schoolchildren were able to explain what a SAED is. Twenty of the secondary school students (19.8%) and 8 of the primary schoolchildren (8.4%) said they knew how to use one. At T0, 78 participants (39.8%) were able to simulate an effective shock. At T1, 36 controls (34.9%) and 56 experimental-group children (60.2%) achieved an effective shock (P< .001). At T2, 53 controls (51.4%) and 61 experimental-group children (65.6%) gave effective shocks (P=.045). All the students completed the tests in 120 seconds. Their average times decreased with each test. The secondary school students achieved better results. Previously untrained secondary school students know what a AED is and half of them can manage to use one in simulations. Brief narrative, audiovisual instruction improves students' skill in managing a SAED and helps them retain what they learned for later use.

  20. Shatter cones - An outstanding problem in shock mechanics. [geological impact fracture surface in cratering

    NASA Technical Reports Server (NTRS)

    Milton, D. J.

    1977-01-01

    Shatter cone characteristics are surveyed. Shatter cones, a form of rock fracture in impact structures, apparently form as a shock front interacts with inhomogeneities or discontinuities in the rock. Topics discussed include morphology, conditions of formation, shock pressure of formation, and theories of formation. It is thought that shatter cones are produced within a limited range of shock pressures extending from about 20 to perhaps 250 kbar. Apical angles range from less than 70 deg to over 120 deg. Tentative hypotheses concerning the physical process of shock coning are considered. The range in shock pressures which produce shatter cones might correspond to the range in which shock waves decompose into elastic and deformational fronts.

  1. Further Experimental Investigations of the Richtmyer-Meshkov Instability

    NASA Astrophysics Data System (ADS)

    Miller, P. L.; Peyser, T. A.; Stry, P. E.; Logory, L. M.; Farley, D. R.

    1996-11-01

    We report on further experimental investigations of the Richtmyer-Meshkov instability from an initially nonlinear perturbation, conducted on the Nova laser. The experiments use a Nova hohlraum as a driver source for a strong shock in a miniature shock tube attached to the hohlraum. The shock tube contains brominated plastic and low-density carbon foam as the two working fluids, with a micro-machined sawtooth interface between them serving as the perturbation. The shock, upon crossing the interface, instigates the Richtmyer-Meshkov instability from the perturbation. The resulting growth of the mixing layer is diagnosed radiographically. We have previously reported upon a results from a single wavelength and amplitude of perturbation (T. A. Peyser et al., Phys. Rev. Lett.) 75, 2332 (1996).. A study of the effect of variations in amplitude and wavelength on the nonlinear growth of the instability will be discussed.

  2. Experiments and simulations of Richtmyer-Meshkov Instability with measured,volumetric initial conditions

    NASA Astrophysics Data System (ADS)

    Sewell, Everest; Ferguson, Kevin; Jacobs, Jeffrey; Greenough, Jeff; Krivets, Vitaliy

    2016-11-01

    We describe experiments of single-shock Richtmyer-Meskhov Instability (RMI) performed on the shock tube apparatus at the University of Arizona in which the initial conditions are volumetrically imaged prior to shock wave arrival. Initial perturbations play a major role in the evolution of RMI, and previous experimental efforts only capture a single plane of the initial condition. The method presented uses a rastered laser sheet to capture additional images throughout the depth of the initial condition immediately before the shock arrival time. These images are then used to reconstruct a volumetric approximation of the experimental perturbation. Analysis of the initial perturbations is performed, and then used as initial conditions in simulations using the hydrodynamics code ARES, developed at Lawrence Livermore National Laboratory (LLNL). Experiments are presented and comparisons are made with simulation results.

  3. Analytical solutions of hypersonic type IV shock - shock interactions

    NASA Astrophysics Data System (ADS)

    Frame, Michael John

    An analytical model has been developed to predict the effects of a type IV shock interaction at high Mach numbers. This interaction occurs when an impinging oblique shock wave intersects the most normal portion of a detached bow shock. The flowfield which develops is complicated and contains an embedded jet of supersonic flow, which may be unsteady. The jet impinges on the blunt body surface causing very high pressure and heating loads. Understanding this type of interaction is vital to the designers of cowl lips and leading edges on air- breathing hypersonic vehicles. This analytical model represents the first known attempt at predicting the geometry of the interaction explicitly, without knowing beforehand the jet dimensions, including the length of the transmitted shock where the jet originates. The model uses a hyperbolic equation for the bow shock and by matching mass continuity, flow directions and pressure throughout the flowfield, a prediction of the interaction geometry can be derived. The model has been shown to agree well with the flowfield patterns and properties of experiments and CFD, but the prediction for where the peak pressure is located, and its value, can be significantly in error due to a lack of sophistication in the model of the jet fluid stagnation region. Therefore it is recommended that this region of the flowfield be modeled in more detail and more accurate experimental and CFD measurements be used for validation. However, the analytical model has been shown to be a fast and economic prediction tool, suitable for preliminary design, or for understanding the interactions effects, including the basic physics of the interaction, such as the jet unsteadiness. The model has been used to examine a wide parametric space of possible interactions, including different Mach number, impinging shock strength and location, and cylinder radius. It has also been used to examine the interaction on power-law shaped blunt bodies, a possible candidate for hypersonic leading edges. The formation of vortices at the termination shock of the supersonic jet has been modeled using the analytical method. The vortices lead to deflections in the jet terminating flow, and the presence of the cylinder surface seems to causes the vortices to break off the jet resulting in an oscillation in the jet flow.

  4. Septic shock: desperately seeking treatment.

    PubMed

    Huet, Olivier; Chin-Dusting, Jaye P F

    2014-01-01

    Septic shock results from the dysregulation of the innate immune response following infection. Despite major advances in fundamental and clinical research, patients diagnosed with septic shock still have a poor prognostic outcome, with a mortality rate of up to 50%. Indeed, the reasons leading to septic shock are still poorly understood. First postulated 30 years ago, the general view of septic shock as an acute and overwhelming inflammatory response still prevails today. Recently, the fact that numerous clinical trials have failed to demonstrate any positive medical outcomes has caused us to question our fundamental understanding of this condition. New and sophisticated technologies now allow us to accurately profile the various stages and contributory components of the inflammatory response defining septic shock, and many studies now report a more complex inflammatory response, particularly during the early phase of sepsis. In addition, novel experimental approaches, using more clinically relevant animal models, to standardize and stratify research outcomes are now being argued for. In the present review, we discuss the most recent findings in relation to our understanding of the underlying mechanisms involved in septic shock, and highlight the attempts made to improve animal experimental models. We also review recent studies reporting promising results with two vastly different therapeutic approaches influencing the renin-angiotensin system and applying mesenchymal stem cells for clinical intervention.

  5. A program for calculating expansion-tube flow quantities for real-gas mixtures and comparison with experimental results

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III

    1972-01-01

    A computer program written in FORTRAN 4 language is presented which determines expansion-tube flow quantities for real test gases CO2 N2, O2, Ar, He, and H2, or mixtures of these gases, in thermochemical equilibrium. The effects of dissociation and first and second ionization are included. Flow quantities behind the incident shock into the quiescent test gas are determined from the pressure and temperature of the quiescent test gas in conjunction with: (1) incident-shock velocity, (2) static pressure immediately behind the incident shock, or (3) pressure and temperature of the driver gas (imperfect hydrogen or helium). The effect of the possible existence of a shock reflection at the secondary diaphragm of the expansion tube is included. Expansion-tube test-section flow conditions are obtained by performing an isentropic unsteady expansion from the conditions behind the incident shock or reflected shock to either the test-region velocity or the static pressure. Both a thermochemical-equilibrium expansion and a frozen expansion are included. Flow conditions immediately behind the bow shock of a model positioned at the test section are also determined. Results from the program are compared with preliminary experimental data obtained in the Langley 6-inch expansion tube.

  6. Effect of shock interactions on the attitude stability of a toroidal ballute for reentry vehicles

    NASA Astrophysics Data System (ADS)

    Otsu, Hirotaka; Abe, Takashi

    2016-11-01

    The effect of shock interactions on the attitude stability of a reentry vehicle system with a toroidal ballute was investigated. The hypersonic wind tunnel experimental results showed that when the shock interaction occurred near or outside the ballute, an unstable oscillation of the ballute was observed. This was caused by the local high-pressure region on the ballute surface created by the shock interaction between the shock from the reentry capsule and the shock from the ballute. To avoid this unstable oscillation, the radius of the ballute should be designed to be large enough so that the shock from the capsule will be located inside the ballute, which can avoid the local high-pressure region on the ballute surface.

  7. Progress towards experimental realization of extreme-velocity flow-dominated magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Weber, T. E.; Adams, C. S.; Welch, D. R.; Kagan, G.; Bean, I. A.; Henderson, B. R.; Klim, A. J.

    2017-10-01

    Interactions of flow-dominated plasmas with other plasmas, neutral gases, magnetic fields, solids etc., take place with sufficient velocity that kinetic energy dominates the dynamics of the interaction (as opposed to magnetic or thermal energy, which dominates in most laboratory plasma experiments). Building upon progress made by the Magnetized Shock Experiment (MSX) at LANL, we are developing the experimental and modeling capability to increase our ultimate attainable plasma velocities well in excess of 1000 km/s. Ongoing work includes designing new pulsed power switches, triggering, and inductive adder topologies; development of novel high-speed optical diagnostics; and exploration of new numerical techniques to specifically model the unique physics of translating/stagnating flow-dominated plasmas. Furthering our understanding of the physical mechanisms of energy conversion from kinetic to other forms, such as thermal energy, non-thermal tails/accelerated populations, enhanced magnetic fields, and radiation (both continuum and line), has wide-ranging significance in basic plasma science, astrophysics, and plasma technology applications such as inertial confinement fusion and intense radiation sources. This work is supported by the U.S. Department of Energy, National Nuclear Security Administration. LA-UR-17-25786.

  8. Violent flows in aqueous foams III: physical multi-phase model comparison with aqueous foam shock tube experiments

    NASA Astrophysics Data System (ADS)

    Redford, J. A.; Ghidaglia, J.-M.; Faure, S.

    2018-06-01

    Mitigation of blast waves in aqueous foams is a problem that has a strong dependence on multi-phase effects. Here, a simplified model is developed from the previous articles treating violent flows (D'Alesio et al. in Eur J Mech B Fluids 54:105-124, 2015; Faure and Ghidaglia in Eur J Mech B Fluids 30:341-359, 2011) to capture the essential phenomena. The key is to have two fluids with separate velocities to represent the liquid and gas phases. This allows for the interaction between the two phases, which may include terms for drag, heat transfer, mass transfer due to phase change, added mass effects, to be included explicitly in the model. A good test for the proposed model is provided by two experimental data sets that use a specially designed shock tube. The first experiment has a test section filled with spray droplets, and the second has a range of aqueous foams in the test section. A substantial attenuation of the shock wave is seen in both cases, but a large difference is observed in the sound speeds. The droplets cause no observable change from the air sound speed, while the foams have a reduced sound speed of approximately 50-75 m/s . In the model given here, an added mass term is introduced in the governing equations to capture the low sound speed. The match between simulation and experiment is found to be satisfactory for both droplets and the foam. This is especially good when considering the complexity of the physics and the effects that are unaccounted for, such as three-dimensionality and droplet atomisation. The resulting statistics illuminate the processes occurring in such flows.

  9. A Study of Free-Piston Double-Diaphragm Drivers for Expansion Tubes. Report 1

    NASA Technical Reports Server (NTRS)

    Kendall, M. A.

    1997-01-01

    In recent years the free-piston double-diaphragm driver has been used to increase the performance of the XI pilot expansion tube to super-orbital test conditions. However, the actual performance of the double-diaphragm driver was found to be considerably less than ideal. An experimental study of the double-diaphragm driver was carried out on the XI facility over a range of conditions with the objective of determining the effect of. heat losses; and the non-ideal rupture of the 'light' secondary diaphragm on the driver performance. The disparity between the theoretical and measured performance envelope are highlighted. A viscous limit for the experiments vas established. Heat transfer behind the primary shock is shown to be the mechanism behind this limit Incident, reflected and transmitted shock trajectories for the secondary diaphragm were experimentally determined and compared with computed trajectories from a one-dimensional diaphragm inertia model. It was found that the diaphragm did influence the unsteady expansion. A good agreement between experimental and computed shock trajectories was obtained using a diaphragm inertia model assuming that the diaphragm mass became negligible 3 microns after shock impact.

  10. Safety of sports for athletes with implantable cardioverter-defibrillators: results of a prospective, multinational registry.

    PubMed

    Lampert, Rachel; Olshansky, Brian; Heidbuchel, Hein; Lawless, Christine; Saarel, Elizabeth; Ackerman, Michael; Calkins, Hugh; Estes, N A Mark; Link, Mark S; Maron, Barry J; Marcus, Frank; Scheinman, Melvin; Wilkoff, Bruce L; Zipes, Douglas P; Berul, Charles I; Cheng, Alan; Law, Ian; Loomis, Michele; Barth, Cheryl; Brandt, Cynthia; Dziura, James; Li, Fangyong; Cannom, David

    2013-05-21

    The risks of sports participation for implantable cardioverter-defibrillator (ICD) patients are unknown. Athletes with ICDs (age, 10-60 years) participating in organized (n=328) or high-risk (n=44) sports were recruited. Sports-related and clinical data were obtained by phone interview and medical records. Follow-up occurred every 6 months. ICD shock data and clinical outcomes were adjudicated by 2 electrophysiologists. Median age was 33 years (89 subjects <20 years of age); 33% were female. Sixty were competitive athletes (varsity/junior varsity/traveling team). A pre-ICD history of ventricular arrhythmia was present in 42%. Running, basketball, and soccer were the most common sports. Over a median 31-month (interquartile range, 21-46 months) follow-up, there were no occurrences of either primary end point-death or resuscitated arrest or arrhythmia- or shock-related injury-during sports. There were 49 shocks in 37 participants (10% of study population) during competition/practice, 39 shocks in 29 participants (8%) during other physical activity, and 33 shocks in 24 participants (6%) at rest. In 8 ventricular arrhythmia episodes (device defined), multiple shocks were received: 1 at rest, 4 during competition/practice, and 3 during other physical activity. Ultimately, the ICD terminated all episodes. Freedom from lead malfunction was 97% at 5 years (from implantation) and 90% at 10 years. Many athletes with ICDs can engage in vigorous and competitive sports without physical injury or failure to terminate the arrhythmia despite the occurrence of both inappropriate and appropriate shocks. These data provide a basis for more informed physician and patient decision making in terms of sports participation for athletes with ICDs.

  11. The formation and evolution of reconnection-driven, slow-mode shocks in a partially ionised plasma

    NASA Astrophysics Data System (ADS)

    Hillier, A.; Takasao, S.; Nakamura, N.

    2016-06-01

    The role of slow-mode magnetohydrodynamic (MHD) shocks in magnetic reconnection is of great importance for energy conversion and transport, but in many astrophysical plasmas the plasma is not fully ionised. In this paper, we use numerical simulations to investigate the role of collisional coupling between a proton-electron, charge-neutral fluid and a neutral hydrogen fluid for the one-dimensional (1D) Riemann problem initiated in a constant pressure and density background state by a discontinuity in the magnetic field. This system, in the MHD limit, is characterised by two waves. The first is a fast-mode rarefaction wave that drives a flow towards a slow-mode MHD shock wave. The system evolves through four stages: initiation, weak coupling, intermediate coupling, and a quasi-steady state. The initial stages are characterised by an over-pressured neutral region that expands with characteristics of a blast wave. In the later stages, the system tends towards a self-similar solution where the main drift velocity is concentrated in the thin region of the shock front. Because of the nature of the system, the neutral fluid is overpressured by the shock when compared to a purely hydrodynamic shock, which results in the neutral fluid expanding to form the shock precursor. Once it has formed, the thickness of the shock front is proportional to ξ I-1.2 , which is a smaller exponent than would be naively expected from simple scaling arguments. One interesting result is that the shock front is a continuous transition of the physical variables of subsonic velocity upstream of the shock front (a c-shock) to a sharp jump in the physical variables followed by a relaxation to the downstream values for supersonic upstream velocity (a j-shock). The frictional heating that results from the velocity drift across the shock front can amount to ~2 per cent of the reference magnetic energy.

  12. Update on Phelix Pulsed-Power Hydrodynamics Experiments and Modeling

    DTIC Science & Technology

    2013-06-01

    underway to assess the feasibility of using the PHELIX driver as an electromagnetic launcher for planer shock-physics experiments. I. INTRODUCTION...inductance loads. Cylindrical liners or planer flyer plates can achieve km/s velocities and kbar pressures. A schematic of PHELIX is shown in Figure 1. Each...using the PHELIX driver as an electromagnetic launcher for planer shock-physics experiments. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17

  13. Experimental studies of hypersonic shock-wave boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Lu, Frank K.

    1992-01-01

    Two classes of shock-wave boundary-layer interactions were studied experimentally in a shock tunnel in which a low Reynolds number, turbulent flow at Mach 8 was developed on a cold, flat test surface. The two classes of interactions were: (1) a swept interaction generated by a wedge ('fin') mounted perpendicularly on the flat plate; and (2) a two-dimensional, unseparated interaction induced by a shock impinging near an expansion corner. The swept interaction, with wedge angles of 5-20 degrees, was separated and there was also indication that the strongest interactions prossessed secondary separation zones. The interaction spread out extensively from the inviscid shock location although no indication of quasi-conical symmetry was evident. The surface pressure from the upstream influence to the inviscid shock was relatively low compared to the inviscid downstream value but it rose rapidly past the inviscid shock location. However, the surface pressure did not reach the downstream inviscid value and reasons were proposed for this anomalous behavior compared to strongly separated, supersonic interactions. The second class of interactions involved weak shocks impinging near small expansion corners. As a prelude to studying this interaction, a hypersonic similarity parameter was identified for the pure, expansion corner flow. The expansion corner severely damped out surface pressure fluctuations. When a shock impinged upstream of the corner, no significant changes to the surface pressure were found as compared to the case when the shock impinged on a flat plate. But, when the shock impinged downstream of the corner, a close coupling existed between the two wave systems, unlike the supersonic case. This close coupling modified the upstream influence. Regardless of whether the shock impinged ahead or behind the corner, the downstream region was affected by the close coupling between the shock and the expansion. Not only was the mean pressure distribution modified but the unsteadiness in the surface pressure was reduced compared to the flat-plate case.

  14. Particle acceleration, transport and turbulence in cosmic and heliospheric physics

    NASA Technical Reports Server (NTRS)

    Matthaeus, W.

    1992-01-01

    In this progress report, the long term goals, recent scientific progress, and organizational activities are described. The scientific focus of this annual report is in three areas: first, the physics of particle acceleration and transport, including heliospheric modulation and transport, shock acceleration and galactic propagation and reacceleration of cosmic rays; second, the development of theories of the interaction of turbulence and large scale plasma and magnetic field structures, as in winds and shocks; third, the elucidation of the nature of magnetohydrodynamic turbulence processes and the role such turbulence processes might play in heliospheric, galactic, cosmic ray physics, and other space physics applications.

  15. Selective weathering of shocked minerals and chondritic enrichment of the Martian fines

    NASA Technical Reports Server (NTRS)

    Boslough, M. B.

    1987-01-01

    In a recent paper, Boslough and Cygan reported the observation of shock-enhanced chemical weathering kinetics of three silicate minerals. Based on the experimental data and on those of Tyburczy and Ahrens for enhanced dehydration kinetics of shocked serpentine, a mechnaism is proposed by which shock-activated minerals are selectively weathered on the surface of Mars. The purpose of the present abstract is to argue on the basis of relative volumes of shocked materials that, as a direct consequence of selective weathering, the composition of the weathered surface units on Mars should be enriched in meteoritic material.

  16. Study of compressible turbulent flows in supersonic environment by large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Genin, Franklin

    The numerical resolution of turbulent flows in high-speed environment is of fundamental importance but remains a very challenging problem. First, the capture of strong discontinuities, typical of high-speed flows, requires the use of shock-capturing schemes, which are not adapted to the resolution of turbulent structures due to their intrinsic dissipation. On the other hand, low-dissipation schemes are unable to resolve shock fronts and other sharp gradients without creating high amplitude numerical oscillations. Second, the nature of turbulence in high-speed flows differs from its incompressible behavior, and, in the context of Large-Eddy Simulation, the subgrid closure must be adapted to the modeling of compressibility effects and shock waves on turbulent flows. The developments described in this thesis are two-fold. First, a state of the art closure approach for LES is extended to model subgrid turbulence in compressible flows. The energy transfers due to compressible turbulence and the diffusion of turbulent kinetic energy by pressure fluctuations are assessed and integrated in the Localized Dynamic ksgs model. Second, a hybrid numerical scheme is developed for the resolution of the LES equations and of the model transport equation, which combines a central scheme for turbulent resolutions to a shock-capturing method. A smoothness parameter is defined and used to switch from the base smooth solver to the upwind scheme in regions of discontinuities. It is shown that the developed hybrid methodology permits a capture of shock/turbulence interactions in direct simulations that agrees well with other reference simulations, and that the LES methodology effectively reproduces the turbulence evolution and physical phenomena involved in the interaction. This numerical approach is then employed to study a problem of practical importance in high-speed mixing. The interaction of two shock waves with a high-speed turbulent shear layer as a mixing augmentation technique is considered. It is shown that the levels of turbulence are increased through the interaction, and that the mixing is significantly improved in this flow configuration. However, the region of increased mixing is found to be localized to a region close to the impact of the shocks, and that the statistical levels of turbulence relax to their undisturbed levels some short distance downstream of the interaction. The present developments are finally applied to a practical configuration relevant to scramjet injection. The normal injection of a sonic jet into a supersonic crossflow is considered numerically, and compared to the results of an experimental study. A fair agreement in the statistics of mean and fluctuating velocity fields is obtained. Furthermore, some of the instantaneous flow structures observed in experimental visualizations are identified in the present simulation. The dynamics of the interaction for the reference case, based on the experimental study, as well as for a case of higher freestream Mach number and a case of higher momentum ratio, are examined. The classical instantaneous vortical structures are identified, and their generation mechanisms, specific to supersonic flow, are highlighted. Furthermore, two vortical structures, recently revealed in low-speed jets in crossflow but never documented for high-speed flows, are identified during the flow evolution.

  17. Shocks and cold fronts in merging and massive galaxy clusters: new detections with Chandra

    NASA Astrophysics Data System (ADS)

    Botteon, A.; Gastaldello, F.; Brunetti, G.

    2018-06-01

    A number of merging galaxy clusters show the presence of shocks and cold fronts, i.e. sharp discontinuities in surface brightness and temperature. The observation of these features requires an X-ray telescope with high spatial resolution like Chandra, and allows to study important aspects concerning the physics of the intracluster medium (ICM), such as its thermal conduction and viscosity, as well as to provide information on the physical conditions leading to the acceleration of cosmic rays and magnetic field amplification in the cluster environment. In this work we search for new discontinuities in 15 merging and massive clusters observed with Chandra by using different imaging and spectral techniques of X-ray observations. Our analysis led to the discovery of 22 edges: six shocks, eight cold fronts, and eight with uncertain origin. All the six shocks detected have M< 2 derived from density and temperature jumps. This work contributed to increase the number of discontinuities detected in clusters and shows the potential of combining diverse approaches aimed to identify edges in the ICM. A radio follow-up of the shocks discovered in this paper will be useful to study the connection between weak shocks and radio relics.

  18. Experimental determination of Grunieisen gamma for two dissimilar materials (PEEK and Al 5083) via the shock-reverberation technique

    NASA Astrophysics Data System (ADS)

    Roberts, Andrew; Appleby-Thomas, Gareth; Hazell, Paul

    2011-06-01

    Following multiple loading events the resultant shock state of a material will lie away from the principle Hugoniot. Prediction of such states requires knowledge of a materials equation-of-state. The material-specific variable Grunieisen gamma (Γ) defines the shape of ``off-Hugoniot'' points in energy-volume-pressure space. Experimentally the shock-reverberation technique (based on the principle of impedance-matching) has previously allowed estimation of the first-order Grunieisen gamma term (Γ1) for a silicone elastomer. Here, this approach was employed to calculate Γ1 for two dissimilar materials, Polyether ether ketone (PEEK) and the armour-grade aluminium alloy 5083 (H32); thereby allowing discussion of limitations of this technique in the context of plate-impact experiments employing Manganin stress gauges. Finally, the experimentally determined values for Γ1 were further refined by comparison between experimental records and numerical simulations carried out using the commercial code ANYSYS Autodyn®.

  19. Material-Model-Based Determination of the Shock-Hugoniot Relations in Nanosegregated Polyurea

    NASA Astrophysics Data System (ADS)

    Grujicic, Mica; Snipes, J. S.; Galgalikar, R.; Ramaswami, S.

    2014-02-01

    Previous experimental investigations reported in the open literature have indicated that applying polyurea external coatings and/or internal linings can substantially improve ballistic penetration resistance and blast survivability of buildings, vehicles, and laboratory/field test-plates, as well as the blast-mitigation capacity of combat helmets. The protective role of polyurea coatings/linings has been linked to polyurea microstructure, which consists of discrete hard-domains distributed randomly within a compliant/soft matrix. When this protective role is investigated computationally, the availability of reliable, high-fidelity constitutive models for polyurea is vitally important. In the present work, a comprehensive overview and a critical assessment of a polyurea material constitutive model, recently proposed by Shim and Mohr (Int J Plast 27:868-886, 2011), are carried out. The review revealed that this model can accurately account for the experimentally measured uniaxial-stress versus strain data obtained under monotonic and multistep compressive loading/unloading conditions, as well as under stress relaxation conditions. On the other hand, by combining analytical and finite-element procedures with the material model in order to define the basic shock-Hugoniot relations for this material, it was found that the computed shock-Hugoniot relations differ significantly from their experimental counterparts. Potential reasons for the disagreement between the computed and experimental shock-Hugoniot relations are identified.

  20. High-speed helicopter rotor noise - Shock waves as a potent source of sound

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Lee, Yung-Jang; Tadghighi, H.; Holz, R.

    1991-01-01

    In this paper we discuss the problem of high speed rotor noise prediction. In particular, we propose that from the point of view of the acoustic analogy, shocks around rotating blades are sources of sound. We show that, although for a wing at uniform steady rectilinear motion with shocks the volume quadrupole and shock sources cancel in the far field to the order of 1/r, this cannot happen for rotating blades. In this case, some cancellation between volume quadrupoles and shock sources occurs, yet the remaining shock noise contribution is still potent. A formula for shock noise prediction is presented based on mapping the deformable shock surface to a time independent region. The resulting equation is similar to Formulation 1A of Langley. Shock noise prediction for a hovering model rotor for which experimental noise data exist is presented. The comparison of measured and predicted acoustic data shows good agreement.

  1. The Shock and Vibration Bulletin. Part 1. Invited Papers, Submarine Shock Testing, Shock Analysis, Shock Testing

    DTIC Science & Technology

    1973-06-01

    approximately 4. Use of a cold gas for determining was determined and presented in Figure 3. This analysis was unsteady flow characteristics and...driven by a hydraulic motor. shown experimentally that drawbar force re- Roller motion develops a high rotating force , ductions greater than one part in...of doors, a water table flow bient pressure. The interest in determining this decay time is analogy was used. With this analogy, a two-dimensional

  2. Analysis of the flow in a 1-MJ electric-arc shock tunnel

    NASA Technical Reports Server (NTRS)

    Reller, J. O., Jr.; Reddy, N. M.

    1972-01-01

    In the electric-arc-heated shock tunnel, the facility performance over a range of shock Mach numbers from 7 to 19 was evaluated. The efficiency of the arc-heated driver is deduced using an improved form of the shock tube equation. A theoretical and experimental analysis is made of the tailored-interface condition. The free stream properties in the test section, with nitrogen as the test gas, are evaluated using a method based on stagnation point, heat transfer measurements.

  3. Effectiveness of Misattribution (Projection) of Arousal in Coping with Stress.

    ERIC Educational Resources Information Center

    Burish, Thomas G.; And Others

    Subjects in five stress groups were threatened with electric shock while subjects in a sixth group were not. In one of the stress groups subjects were encouraged to misattribute (i.e., project) their feelings from the threat of shock to the experimenter instead of to the shock, while subjects in the remaining stress groups were not encouraged to…

  4. CARS Measurement of Vibrational/Rotational Temperatures with Total Radiation Visualization behind Strong Shock Waves of 5-7 km/s

    NASA Astrophysics Data System (ADS)

    Sakurai, K.; Bindu, V. Hima; Niinomi, S.; Ota, M.; Maeno, K.

    2011-05-01

    In the development of aerospace technology the design of space vehicles is important in phase of reentry flight. The space vehicles reenter into the atmosphere with range of 6-8 km/s. The non-equilibrium flow with radiative heating from strongly shocked air ahead of the vehicles plays an important role on the heat flux to the wall surface structure as well as convective heating. The experimental data for re-entry analyses, however, have remained in classical level. Recent development of optical instruments enables us to have novel approach of diagnostics to the re-entry problems. We employ the CARS (Coherent Anti-Stokes Raman Spectroscopy) method for measurement of real gas temperatures of N2 with radiation of the strong shock wave. The CARS signal can be acquired even in the strong radiation area behind the strong shock waves. In addition, we try to use the CCD camera to obtain 2D images of total radiation simultaneously. The strong shock wave in front of the reentering space vehicles is experimentally realigned by free-piston, double-diaphragm shock tube with low density test gas.

  5. Shock Desensitization Effect in the STANAG 4363 Confined Explosive Component Water Gap Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefrancois, A S; Lee, R S; Tarver, C M

    2006-06-07

    The Explosive Component Water Gap Test (ECWGT) in the Stanag 4363 has been recently investigated to assess the shock sensitivity of lead and booster components having a diameter less than 5 mm. For that purpose, Pentaerythritol Tetranitrate (PETN) based pellets having a height and diameter of 3 mm have been confined by a steel annulus of wall thickness 1-3.5 mm and with the same height as the pellet. 1-mm wall thickness makes the component more sensitive (larger gap). As the wall thickness is increased to 2-mm, the gap increases a lesser amount, but when the wall thickness is increased tomore » 3.5-mm a decrease in sensitivity is observed (smaller gap). This decrease of the water gap has been reproduced experimentally by many nations. Numerical simulations using Ignition and Growth model have been performed in this paper and have reproduced the experimental results for the steel confinement up to 2 mm thick and aluminum confinement. A stronger re-shock following the first input shock from the water is focusing on the axis due to the confinement. The double shock configuration is well-known to lead in some cases to shock desensitization.« less

  6. Metal ions induced heat shock protein response by elevating superoxide anion level in HeLa cells transformed by HSE-SEAP reporter gene.

    PubMed

    Yu, Zhanjiang; Yang, Xiaoda; Wang, Kui

    2006-06-01

    The aim of this work is to define the relationship between heat shock protein (HSP) and reactive oxygen species (ROS) in the cells exposed to different concentrations of metal ions, and to evaluate a new method for tracing the dynamic levels of cellular reactive oxygen species using a HSE-SEAP reporter gene. The expression of heat shock protein was measured using a secreted alkaline phosphatase (SEAP) reporter gene transformed into HeLa cell strain, the levels of superoxide anion (O(2)(-)) and hydrogen peroxide (H(2)O(2)) were determined by NBT reduction assay and DCFH staining flow cytometry (FCM), respectively. The experimental results demonstrated that the expression of heat shock protein induced by metal ions was linearly related to the cellular superoxide anion level before cytotoxic effects were observed, but not related to the cellular hydrogen peroxide level. The experimental results suggested that metal ions might induce heat shock protein by elevating cellular superoxide anion level, and thus the expression of heat shock protein indicated by the HSE-SEAP reporter gene can be an effective model for monitoring the dynamic level of superoxide anion and early metal-induced oxidative stress/cytotoxicity.

  7. Experimental impact cratering provides ground truth data for understanding planetary-scale collision processes

    NASA Astrophysics Data System (ADS)

    Poelchau, Michael H.; Deutsch, Alex; Kenkmann, Thomas

    2013-04-01

    Impact cratering is generally accepted as one of the primary processes that shape planetary surfaces in the solar system. While post-impact analysis of craters by remote sensing or field work gives many insights into this process, impact cratering experiments have several advantages for impact research: 1) excavation and ejection processes can be directly observed, 2) physical parameters of the experiment are defined and can be varied, and 3) cratered target material can be analyzed post-impact in an unaltered, uneroded state. The main goal of the MEMIN project is to comprehensively quantify impact processes by conducting a stringently controlled experimental impact cratering campaign on the meso-scale with a multidisciplinary analytical approach. As a unique feature we use two-stage light gas guns capable of producing impact craters in the decimeter size-range in solid rocks that, in turn, allow detailed spatial analysis of petrophysical, structural, and geochemical changes in target rocks and ejecta. In total, we have carried out 24 experiments at the facilities of the Fraunhofer EMI, Freiburg - Germany. Steel, aluminum, and iron meteorite projectiles ranging in diameter from 2.5 to 12 mm were accelerated to velocities ranging from 2.5 to 7.8 km/s. Targets were solid rocks, namely sandstone, quartzite and tuff that were either dry or saturated with water. In the experimental setup, high speed framing cameras monitored the impact process, ultrasound sensors were attached to the target to record the passage of the shock wave, and special particle catchers were positioned opposite of the target surface to capture the ejected target and projectile material. In addition to the cratering experiments, planar shock recovery experiments were performed on the target material, and numerical models of the cratering process were developed. The experiments resulted in craters with diameters up to 40 cm, which is unique in laboratory cratering research. Target porosity exponentially reduces crater volumes and cratering efficiency relative to non-porous rocks, and also yields less steep ejecta angles. Microstructural analysis of the subsurface shows a zone of pervasive grain crushing and pore space reduction. This is in good agreement with new mesoscale numerical models, which are able to quantify localized shock pressure behavior in the target's pore space. Planar shock recovery experiments confirm these local pressure excursions, based on microanalysis of shock metamorphic features in quartz. Saturation of porous target rocks with water counteracts many of the effects of porosity. Post-impact analysis of projectile remnants shows that during mixing of projectile and target melts, the Fe of the projectile is preferentially partitioned into target melt to a greater degree than Ni and Co. We plan to continue evaluating the experimental results in combination with numerical models. These models help to quantify and evaluate cratering processes, while experimental data serve as benchmarks to validate the improved numerical models, thus helping to "bridge the gap" between experiments and nature. The results confirm and expand current crater scaling laws, and make an application to craters on planetary surfaces possible.

  8. Organic synthesis in experimental impact shocks

    NASA Technical Reports Server (NTRS)

    McKay, C. P.; Borucki, W. J.

    1997-01-01

    Laboratory simulations of shocks created with a high-energy laser demonstrate that the efficacy of organic production depends on the molecular, not just the elemental composition of the shocked gas. In a methane-rich mixture that simulates a low-temperature equilibrium mixture of cometary material, hydrogen cyanide and acetylene were produced with yields of 5 x 10(17) molecules per joule. Repeated shocking of the methane-rich mixture produced amine groups, suggesting the possible synthesis of amino acids. No organic molecules were produced in a carbon dioxide-rich mixture, which is at odds with thermodynamic equilibrium approaches to shock chemistry and has implications for the modeling of shock-produced organic molecules on early Earth.

  9. Shock Generation and Control Using DBD Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Patel, Mehul P.; Cain, Alan B.; Nelson, Christopher C.; Corke, Thomas C.; Matlis, Eric H.

    2012-01-01

    This report is the final report of a NASA Phase I SBIR contract, with some revisions to remove company proprietary data. The Shock Boundary Layer Interaction (SBLI) phenomena in a supersonic inlet involve mutual interaction of oblique shocks with boundary layers, forcing the boundary layer to separate from the inlet wall. To improve the inlet efficiency, it is desired to prevent or delay shock-induced boundary layer separation. In this effort, Innovative Technology Applications Company (ITAC), LLC and the University of Notre Dame (UND) jointly investigated the use of dielectric-barrier-discharge (DBD) plasma actuators for control of SBLI in a supersonic inlet. The research investigated the potential for DBD plasma actuators to suppress flow separation caused by a shock in a turbulent boundary layer. The research involved both numerical and experimental investigations of plasma flow control for a few different SBLI configurations: (a) a 12 wedge flow test case at Mach 1.5 (numerical and experimental), (b) an impinging shock test case at Mach 1.5 using an airfoil as a shock generator (numerical and experimental), and (c) a Mach 2.0 nozzle flow case in a simulated 15 X 15 cm wind tunnel with a shock generator (numerical). Numerical studies were performed for all three test cases to examine the feasibility of plasma flow control concepts. These results were used to guide the wind tunnel experiments conducted on the Mach 1.5 12 degree wedge flow (case a) and the Mach 1.5 impinging shock test case (case b) which were at similar flow conditions as the corresponding numerical studies to obtain experimental evidence of plasma control effects for SBLI control. The experiments also generated data that were used in validating the numerical studies for the baseline cases (without plasma actuators). The experiments were conducted in a Mach 1.5 test section in the University of Notre Dame Hessert Laboratory. The simulation results from cases a and b indicated that multiple spanwise actuators in series and at a voltage of 75 kVp-p could fully suppress the flow separation downstream of the shock. The simulation results from case c showed that the streamwise plasma actuators are highly effective in creating pairs of counter-rotating vortices, much like the mechanical vortex generators, and could also potentially have beneficial effects for SBLI control. However, to achieve these effects, the positioning and the quantity of the DBD actuators used must be optimized. The wind tunnel experiments mapped the baseline flow with good agreement to the numerical simulations. The experimental results were conducted with spanwise actuators for cases a and b, but were limited by the inability to generate a sufficiently high voltage due to arcing in the wind-tunnel test-section. The static pressure in the tunnel was lower than the static pressure in an inlet at flight conditions, promoting arching and degrading the actuator performance.

  10. Microenergetic Shock Initiation Studies on Deposited Films of Petn

    NASA Astrophysics Data System (ADS)

    Tappan, Alexander S.; Wixom, Ryan R.; Trott, Wayne M.; Long, Gregory T.; Knepper, Robert; Brundage, Aaron L.; Jones, David A.

    2009-12-01

    Films of the high explosive PETN (pentaerythritol tetranitrate) up to 500-μm thick have been deposited through physical vapor deposition, with the intent of creating well-defined samples for shock-initiation studies. PETN films were characterized with microscopy, x-ray diffraction, and focused ion beam nanotomography. These high-density films were subjected to strong shocks in both the out-of-plane and in-plane orientations. Initiation behavior was monitored with high-speed framing and streak camera photography. Direct initiation with a donor explosive (either RDX with binder, or CL-20 with binder) was possible in both orientations, but with the addition of a thin aluminum buffer plate (in-plane configuration only), initiation proved to be difficult. Initiation was possible with an explosively-driven 0.13-mm thick Kapton flyer and direct observation of initiation behavior was examined using streak camera photography at different flyer velocities. Models of this configuration were created using the shock physics code CTH.

  11. Interaction of strong converging shock wave with SF6 gas bubble

    NASA Astrophysics Data System (ADS)

    Liang, Yu; Zhai, ZhiGang; Luo, XiSheng

    2018-06-01

    Interaction of a strong converging shock wave with an SF6 gas bubble is studied, focusing on the effects of shock intensity and shock shape on interface evolution. Experimentally, the converging shock wave is generated by shock dynamics theory and the gas bubble is created by soap film technique. The post-shock flow field is captured by a schlieren photography combined with a high-speed video camera. Besides, a three-dimensional program is adopted to provide more details of flow field. After the strong converging shock wave impact, a wide and pronged outward jet, which differs from that in planar shock or weak converging shock condition, is derived from the downstream interface pole. This specific phenomenon is considered to be closely associated with shock intensity and shock curvature. Disturbed by the gas bubble, the converging shocks approaching the convergence center have polygonal shapes, and the relationship between shock intensity and shock radius verifies the applicability of polygonal converging shock theory. Subsequently, the motion of upstream point is discussed, and a modified nonlinear theory considering rarefaction wave and high amplitude effects is proposed. In addition, the effects of shock shape on interface morphology and interface scales are elucidated. These results indicate that the shape as well as shock strength plays an important role in interface evolution.

  12. New Evidence for Efficient Collisionless Heating of Electrons at the Reverse Shock of a Young Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Yamaguchi, Hiroya; Eriksen, Kristoffer A.; Badenes, Carles; Hughes, John P.; Brickhouse, Nancy S.; Foster, Adam R.; Patnaude, Daniel J.; Petre, Robert; Slane, Patrick O.; Smith, Randall K.

    2013-01-01

    Although collisionless shocks are ubiquitous in astrophysics, certain key aspects of them are not well understood. In particular, the process known as collisionless electron heating, whereby electrons are rapidly energized at the shock front, is one of the main open issues in shock physics. Here, we present the first clear evidence for efficient collisionless electron heating at the reverse shock of Tycho's supernova remnant (SNR), revealed by Fe K diagnostics using high-quality X-ray data obtained by the Suzaku satellite. We detect K beta (3p yields 1s) fluorescence emission from low-ionization Fe ejecta excited by energetic thermal electrons at the reverse shock front, which peaks at a smaller radius than Fe K alpha (2p yields 1s) emission dominated by a relatively highly ionized component. Comparisons with our hydrodynamical simulations imply instantaneous electron heating to a temperature 1000 times higher than expected from Coulomb collisions alone. The unique environment of the reverse shock, which is propagating with a high Mach number into rarefied ejecta with a low magnetic field strength, puts strong constraints on the physical mechanism responsible for this heating and favors a cross-shock potential created by charge deflection at the shock front. Our sensitive observation also reveals that the reverse shock radius of this SNR is about 10% smaller than the previous measurement using the Fe K alpha morphology from the Chandra observations. Since strong Fe K beta fluorescence is expected only from low-ionization plasma where Fe ions still have many 3p electrons, this feature is key to diagnosing the plasma state and distribution of the immediate postshock ejecta in a young SNR.

  13. Multiscale modeling of shock wave localization in porous energetic material

    NASA Astrophysics Data System (ADS)

    Wood, M. A.; Kittell, D. E.; Yarrington, C. D.; Thompson, A. P.

    2018-01-01

    Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (<6 GPa), atomistic simulations of pore collapse are used to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock waves interacting with pores as a function of this viscoplastic material response. We find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.

  14. Remote shock sensing and notification system

    DOEpatents

    Muralidharan, Govindarajan [Knoxville, TN; Britton, Charles L [Alcoa, TN; Pearce, James [Lenoir City, TN; Jagadish, Usha [Knoxville, TN; Sikka, Vinod K [Oak Ridge, TN

    2010-11-02

    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interface circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitter with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  15. Remote shock sensing and notification system

    DOEpatents

    Muralidharan, Govindarajan; Britton, Charles L.; Pearce, James; Jagadish, Usha; Sikka, Vinod K.

    2008-11-11

    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interference circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitting with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  16. An investigation of bleed configurations and their effect on shock wave/boundary layer interactions

    NASA Technical Reports Server (NTRS)

    Hamed, Awatef

    1995-01-01

    The design of high efficiency supersonic inlets is a complex task involving the optimization of a number of performance parameters such as pressure recovery, spillage, drag, and exit distortion profile, over the flight Mach number range. Computational techniques must be capable of accurately simulating the physics of shock/boundary layer interactions, secondary corner flows, flow separation, and bleed if they are to be useful in the design. In particular, bleed and flow separation, play an important role in inlet unstart, and the associated pressure oscillations. Numerical simulations were conducted to investigate some of the basic physical phenomena associated with bleed in oblique shock wave boundary layer interactions that affect the inlet performance.

  17. Experimental Investigation of Normal Shock Boundary-Layer Interaction with Hybrid Flow Control

    NASA Technical Reports Server (NTRS)

    Vyas, Manan A.; Hirt, Stefanie M.; Anderson, Bernhard H.

    2012-01-01

    Hybrid flow control, a combination of micro-ramps and micro-jets, was experimentally investigated in the 15x15 cm Supersonic Wind Tunnel (SWT) at the NASA Glenn Research Center. Full factorial, a design of experiments (DOE) method, was used to develop a test matrix with variables such as inter-ramp spacing, ramp height and chord length, and micro-jet injection flow ratio. A total of 17 configurations were tested with various parameters to meet the DOE criteria. In addition to boundary-layer measurements, oil flow visualization was used to qualitatively understand shock induced flow separation characteristics. The flow visualization showed the normal shock location, size of the separation, path of the downstream moving counter-rotating vortices, and corner flow effects. The results show that hybrid flow control demonstrates promise in reducing the size of shock boundary-layer interactions and resulting flow separation by means of energizing the boundary layer.

  18. Impact of the volume of rooms on shock wave propagation within a multi-chamber system

    NASA Astrophysics Data System (ADS)

    Julien, B.; Sochet, I.; Vaillant, T.

    2016-03-01

    The behavior of a shock wave generated by a hemispherical gaseous charge and propagating within a confined multi-chamber system is analyzed through the evolution of some of the shock parameters (maximum overpressure and positive impulse). The influence of a variation in the volume of the rooms on the pressure history inside the building is also studied. Several small-scale experiments have been carried out using an adjustable model representative of a pyrotechnic workshop. The experimental results show that the pressure histories are very complex. Yet, using a global approach, we were able to link the evolution of the arrival time of the shock wave within the building with the reference obtained in the free field. New parameters were developed to best fit the experimental maximal overpressure in the cells and in the corridor leading to two predictive laws used to estimate the maximal overpressure in the model.

  19. Study of the hydrodynamics of the formation of flows caused by the interaction of a shock wave with two-dimensional density perturbations on the Iskra-5 laser facility

    NASA Astrophysics Data System (ADS)

    Babanov, A. V.; Barinov, M. A.; Barinov, S. P.; Garanin, R. V.; Zhidkov, N. V.; Kalmykov, N. A.; Kovalenko, V. P.; Kokorin, S. N.; Pinegin, A. V.; Solomatina, E. Yu.; Solomatin, I. I.; Suslov, N. A.

    2017-03-01

    The hydrodynamics of the flow formation due to the interaction of a shock wave with two-dimensional density perturbations is experimentally investigated on the Iskra-5 laser facility. Shadow images of a jet arising as a result of the impact of a shock wave (formed by a soft X-ray pulse from a target-illuminator) on a flat aluminium target with a blind cylindrical cavity are recorded in experiments with point-like X-ray backlighting having a photon energy of ~4.5 keV. The sizes and mass of the jet ejected from the aluminium cavity by this shock wave are estimated. The experimental data are compared with the results of numerical simulation of the jet formation and dynamics according to the two-dimensional MID-ND2D code.

  20. Shock-induced microstructural response of mono- and nanocrystalline SiC ceramics

    NASA Astrophysics Data System (ADS)

    Branicio, Paulo S.; Zhang, Jingyun; Rino, José P.; Nakano, Aiichiro; Kalia, Rajiv K.; Vashishta, Priya

    2018-04-01

    The dynamic behavior of mono- and nanocrystalline SiC ceramics under plane shock loading is revealed using molecular-dynamics simulations. The generation of shock-induced elastic compression, plastic deformation, and structural phase transformation is characterized at different crystallographic directions as well as on a 5-nm grain size nanostructure at 10 K and 300 K. Shock profiles are calculated in a wide range of particle velocities 0.1-6.0 km/s. The predicted Hugoniot agree well with experimental data. Results indicate the generation of elastic waves for particle velocities below 0.8-1.9 km/s, depending on the crystallographic direction. In the intermediate range of particle velocities between 2 and 5 km/s, the shock wave splits into an elastic precursor and a zinc blende-to-rock salt structural transformation wave, which is triggered by shock pressure over the ˜90 GPa threshold value. A plastic wave, with a strong deformation twinning component, is generated ahead of the transformation wave for shocks in the velocity range between 1.5 and 3 km/s. For particle velocities greater than 5-6 km/s, a single overdriven transformation wave is generated. Surprisingly, shocks on the nanocrystalline sample reveal the absence of wave splitting, and elastic, plastic, and transformation wave components are seamlessly connected as the shock strength is continuously increased. The calculated strengths 15.2, 31.4, and 30.9 GPa for ⟨001⟩, ⟨111⟩, and ⟨110⟩ directions and 12.3 GPa for the nanocrystalline sample at the Hugoniot elastic limit are in excellent agreement with experimental data.

  1. Combining collective, MSW, and turbulence effects in supernova neutrino flavor evolution

    NASA Astrophysics Data System (ADS)

    Lund, Tina; Kneller, James P.

    2013-07-01

    In order to decode the neutrino burst signal from a Galactic core-collapse supernova (ccSN) and reveal the complicated inner workings of the explosion we need a thorough understanding of the neutrino flavor evolution from the proto-neutron star outwards. The flavor content of the signal evolves due to both neutrino collective effects and matter effects which can lead to a highly interesting interplay and distinctive spectral features. In this paper we investigate the supernova neutrino flavor evolution in three different progenitors and include collective flavor effects, the evolution of the Mikheyev, Smirnov & Wolfenstein (MSW) conversion due to the shock wave passage through the star, and the impact of turbulence. We consider both normal and inverted neutrino mass hierarchies and a value of θ13 close to the current experimental measurements. In the Oxygen-Neon-Magnesium (ONeMg) supernova we find that the impact of turbulence is both brief and slight during a window of 1-2 seconds post bounce. This is because the shock races through the star extremely quickly and the turbulence amplitude is expected to be small, less than 10%, since these stars do not require multidimensional physics to explode. Thus the spectral features of collective and shock effects in the neutrino signals from Oxygen-Neon-Magnesium supernovae may be almost turbulence free making them the easiest to interpret. For the more massive progenitors we again find that small amplitude turbulence, up to 10%, leads to a minimal modification of the signal, and the emerging neutrino spectra retain both collective and MSW features. However, when larger amounts of turbulence is added, 30% and 50%, which is justified by the requirement of multidimensional physics in order to make these stars explode, the features of collective and shock wave effects in the high (H) density resonance channel are almost completely obscured at late times. Yet at the same time we find the other mixing channels—the low (L) density resonance channel and the nonresonant channels—begin to develop turbulence signatures. Large amplitude turbulent motions in the outer layers of more massive, iron core-collapse supernovae may obscure the most obvious fingerprints of collective and shock wave effects in the neutrino signal but cannot remove them completely, and additionally bring about new features in the signal.

  2. Counterpropagating Radiative Shock Experiments on the Orion Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki-Vidal, F.; Clayson, T.; Stehlé, C.

    We present new experiments to study the formation of radiative shocks and the interaction between two counterpropagating radiative shocks. The experiments are performed at the Orion laser facility, which is used to drive shocks in xenon inside large aspect ratio gas cells. The collision between the two shocks and their respective radiative precursors, combined with the formation of inherently three-dimensional shocks, provides a novel platform particularly suited for the benchmarking of numerical codes. The dynamics of the shocks before and after the collision are investigated using point-projection x-ray backlighting while, simultaneously, the electron density in the radiative precursor was measuredmore » via optical laser interferometry. Modeling of the experiments using the 2D radiation hydrodynamic codes nym and petra shows very good agreement with the experimental results.« less

  3. Terminal shock position and restart control of a Mach 2.7, two-dimensional, twin duct mixed compression inlet

    NASA Technical Reports Server (NTRS)

    Cole, G. L.; Neiner, G. H.; Baumbick, R. J.

    1973-01-01

    Experimental results of terminal shock and restart control system tests of a two-dimensional, twin-duct mixed compression inlet are presented. High-response (110-Hz bandwidth) overboard bypass doors were used, both as the variable to control shock position and as the means of disturbing the inlet airflow. An inherent instability in inlet shock position resulted in noisy feedback signals and thus restricted the terminal shock position control performance that was achieved. Proportional-plus-integral type controllers using either throat exit static pressure or shock position sensor feedback gave adequate low-frequency control. The inlet restart control system kept the terminal shock control loop closed throughout the unstart-restart transient. The capability to restart the inlet was non limited by the inlet instability.

  4. Counterpropagating Radiative Shock Experiments on the Orion Laser.

    PubMed

    Suzuki-Vidal, F; Clayson, T; Stehlé, C; Swadling, G F; Foster, J M; Skidmore, J; Graham, P; Burdiak, G C; Lebedev, S V; Chaulagain, U; Singh, R L; Gumbrell, E T; Patankar, S; Spindloe, C; Larour, J; Kozlova, M; Rodriguez, R; Gil, J M; Espinosa, G; Velarde, P; Danson, C

    2017-08-04

    We present new experiments to study the formation of radiative shocks and the interaction between two counterpropagating radiative shocks. The experiments are performed at the Orion laser facility, which is used to drive shocks in xenon inside large aspect ratio gas cells. The collision between the two shocks and their respective radiative precursors, combined with the formation of inherently three-dimensional shocks, provides a novel platform particularly suited for the benchmarking of numerical codes. The dynamics of the shocks before and after the collision are investigated using point-projection x-ray backlighting while, simultaneously, the electron density in the radiative precursor was measured via optical laser interferometry. Modeling of the experiments using the 2D radiation hydrodynamic codes nym and petra shows very good agreement with the experimental results.

  5. Counterpropagating Radiative Shock Experiments on the Orion Laser

    DOE PAGES

    Suzuki-Vidal, F.; Clayson, T.; Stehlé, C.; ...

    2017-08-02

    We present new experiments to study the formation of radiative shocks and the interaction between two counterpropagating radiative shocks. The experiments are performed at the Orion laser facility, which is used to drive shocks in xenon inside large aspect ratio gas cells. The collision between the two shocks and their respective radiative precursors, combined with the formation of inherently three-dimensional shocks, provides a novel platform particularly suited for the benchmarking of numerical codes. The dynamics of the shocks before and after the collision are investigated using point-projection x-ray backlighting while, simultaneously, the electron density in the radiative precursor was measuredmore » via optical laser interferometry. Modeling of the experiments using the 2D radiation hydrodynamic codes nym and petra shows very good agreement with the experimental results.« less

  6. The Principal Hugoniot of Forsterite to 950 GPa

    NASA Astrophysics Data System (ADS)

    Root, Seth; Townsend, Joshua P.; Davies, Erik; Lemke, Raymond W.; Bliss, David E.; Fratanduono, Dayne E.; Kraus, Richard G.; Millot, Marius; Spaulding, Dylan K.; Shulenburger, Luke; Stewart, Sarah T.; Jacobsen, Stein B.

    2018-05-01

    Forsterite (Mg2SiO4) single crystals were shock compressed to pressures between 200 and 950 GPa using independent plate-impact steady shocks and laser-driven decaying shock compression experiments. Additionally, we performed density functional theory-based molecular dynamics to aid interpretation of the experimental data and to investigate possible phase transformations and phase separations along the Hugoniot. We show that the experimentally obtained Hugoniot cannot distinguish between a pure liquid Mg2SiO4 and an assemblage of solid MgO plus liquid magnesium silicate. The measured reflectivity is nonzero and increases with pressure, which implies that the liquid is a poor electrical conductor at low pressures and that the conductivity increases with pressure.

  7. Experimental investigation of a two-dimensional shock-turbulent boundary layer interaction with bleed

    NASA Technical Reports Server (NTRS)

    Hingst, W. R.; Tanji, F. T.

    1983-01-01

    The two-dimensional interaction of an oblique shock wave with a turbulent boundary layer that included the effect of bleed was examined experimentally using a shock generator mounted across a supersonic wind tunnel The studies were performed at Mach numbers 2.5 and 2.0 and unit Reynolds number of approximately 2.0 x 10 to the 7th/meter. The study includes surface oil flow visualization, wall static pressure distributions and boundary layer pitot pressure profiles. In addition, the variation of the local bleed rates were measured. The results show the effect of the bleed on the boundary layer as well as the effect of the flow conditions on the local bleed rate.

  8. Experimental exploration of underexpanded supersonic jets

    NASA Astrophysics Data System (ADS)

    André, Benoît; Castelain, Thomas; Bailly, Christophe

    2014-01-01

    Two underexpanded free jets at fully expanded Mach numbers = 1.15 and 1.50 are studied. Schlieren visualizations as well as measurements of static pressure, Pitot pressure and velocity are performed. All these experimental techniques are associated to obtain an accurate picture of the jet flow development. In particular, expansion, compression and neutral zones have been identified in each shock cell. Particle lag is considered by integrating the equation of motion for particles in a fluid flow and it is found that the laser Doppler velocimetry is suitable for investigating shock-containing jets. Even downstream of the normal shock arising in the = 1.50 jet, the measured gradual velocity decrease is shown to be relevant.

  9. Understanding Volcanic Conduit Dynamics: from Experimental Fragmentation to Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Arciniega-Ceballos, A.; Alatorre-Ibarguengoitia, M. A.; Scheu, B.; Dingwell, D. B.

    2011-12-01

    The investigation of conduit dynamics at high pressure, under controlled laboratory conditions is a powerful tool to understand the physics behind volcanic processes before an eruption. In this work, we analyze the characteristics of the seismic response of an "experimental volcano" focusing on the dynamics of the conduit behavior during the fragmentation process of volcanic rocks. The "experimental volcano" is represented by a shock tube apparatus, which consists of a low-pressure voluminous tank (3 x 0.40 m), for sample recovery; and a high-pressure pipe-like conduit (16.5 x 2,5 cm), which represents the volcanic source mechanism, where rock samples are pressurized and fragmented. These two serial steel pipes are connected and sealed by a set of diaphragms that bear pressures in a range of 4 to 20 MPa. The history of the overall process of an explosion consists of four steps: 1) the slow pressurization of the pipe-like conduit filled with solid pumice and gas, 2) the sudden removal of the diaphragms, 3) the rapid decompression of the system and 4) the ejection of the gas-particle mixture. Each step imprints distinctive features on the microseismic records, reflecting the conduit dynamics during the explosion. In this work we show how features such as waveform characteristics, the three components of the force system acting on the conduit, the independent components of the moment tensor, the volumetric change of the source mechanism, the arrival time of the shock wave and its velocity, are quantified from the experimental microseismic data. Knowing these features, each step of the eruptive process, the conduit conditions and the source mechanism characteristics can be determined. The procedure applied in this experimental approach allows the use of seismic field data to estimate volcanic conduit conditions before an eruption takes place. We state on the hypothesis that the physics behind the pressurization and depressurization process of any conduit is the same and the effects of such process on the conduit dynamics are independent of size. We first described the very-long period (VLP) and long-period (LP) signals, observed in many active volcanoes around the world, and from comparison of waveform characteristics with their experimental analogues (eLP and eVLP signals) we found remarkable similarities and equivalent physical meaning. Based on our experimental investigations and analysis of field data recorded during volcanic eruptions we may conclude that VLP signals are caused by the inflation-deflation behavior of the volcanic conduit due to the decompression process, and that LP signals are manly associated with cracking and fragmentation of the magmatic material (ash, magma and gas) filling the conduit and ascending to the surface. In addition, we accounted for the repetitive character of LP and VLP signals, as a consequence of contraction and dilatation of a steady non-destructive source mechanism, which systematically responds to pressure changes of the volcanic system.

  10. Enteral tranexamic acid attenuates vasopressor resistance and changes in α1-adrenergic receptor expression in hemorrhagic shock.

    PubMed

    Santamaria, Marco Henry; Aletti, Federico; Li, Joyce B; Tan, Aaron; Chang, Monica; Leon, Jessica; Schmid-Schönbein, Geert W; Kistler, Erik B

    2017-08-01

    Irreversible hemorrhagic shock is characterized by hyporesponsiveness to vasopressor and fluid therapy. Little is known, however, about the mechanisms that contribute to this phenomenon. Previous studies have shown that decreased intestinal perfusion in hemorrhagic shock leads to proteolytically mediated increases in gut permeability, with subsequent egress of vasoactive substances systemically. Maintenance of blood pressure is achieved in part by α1 receptor modulation, which may be affected by vasoactive factors; we thus hypothesized that decreases in hemodynamic stability and vasopressor response in shock can be prevented by enteral protease inhibition. Rats were exposed to experimental hemorrhagic shock (35 mm Hg mean arterial blood pressure for 2 hours, followed by reperfusion for 2 hours) and challenged with phenylephrine (2 μg/kg) at discrete intervals to measure vasopressor responsiveness. A second group of animals received enteral injections with the protease inhibitor tranexamic acid (TXA) (127 mM) along the small intestine and cecum 1 hour after induction of hemorrhagic shock. Blood pressure response (duration and amplitude) to phenylephrine after reperfusion was significantly attenuated in animals subjected to hemorrhagic shock compared with baseline and control nonshocked animals and was restored to near baseline by enteral TXA. Arteries from shocked animals also displayed decreased α1 receptor density with restoration to baseline after enteral TXA treatment. In vitro, rat shock plasma decreased α1 receptor density in smooth muscle cells, which was also abrogated by enteral TXA treatment. Results from this study demonstrate that experimental hemorrhagic shock leads to decreased response to the α1-selective agonist phenylephrine and decreased α1 receptor density via circulating shock factors. These changes are mitigated by enteral TXA with correspondingly improved hemodynamics. Proteolytic inhibition in the lumen of the small intestine improves hemodynamics in hemorrhagic shock, possibly by restoring α1 adrenergic functionality necessary to maintain systemic blood pressure and perfusion.

  11. Investigation of hypersonic shock-induced combustion in a hydrogen-air system

    NASA Technical Reports Server (NTRS)

    Ahuja, J. K.; Tiwari, S. N.; Singh, D. J.

    1992-01-01

    A numerical study is conducted to simulate the ballistic range experiments at Mach 5.11 and 6.46. The flow field is found to be unsteady with periodic instabilities originating in the stagnation zone. The unsteadiness of the flow field decreased with increase in the Mach number, thus indicating that it is possible to stabilize such flow fields with a high degree of overdrive. The frequency of periodic instability is determined using Fourier power spectrum and is found to be in good agreement with the experimental data. The physics of the instability is explained by the wave interaction models available in the literature.

  12. Downstream boundary effects on the frequency of self-excited oscillations in transonic diffuser flows

    NASA Astrophysics Data System (ADS)

    Hsieh, T.

    1986-10-01

    Investigation of downstream boundary effects on the frequency of self-excited oscillations in two-dimensional, separated transonic diffuser flows were conducted numerically by solving the compressible, Reynolds-averaged, thin-layer Navier-Stokes equation with two equation turbulence models. It was found that the flow fields are very sensitive to the location of the downstream boundary. Extension of the diffuser downstream boundary significantly reduces the frequency and amplitude of oscillations for pressure, velocity, and shock. The existence of a suction slot in the experimental setpup obscures the physical downstream boundary and therefore presents a difficulty for quantitative comparisons between computation and experiment.

  13. The Biermann Catastrophe in Numerical Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Graziani, Carlo; Tzeferacos, Petros; Lee, Dongwook; Lamb, Donald Q.; Weide, Klaus; Fatenejad, Milad; Miller, Joshua

    2015-03-01

    The Biermann battery effect is frequently invoked in cosmic magnetogenesis and studied in high-energy density laboratory physics experiments. Generation of magnetic fields by the Biermann effect due to misaligned density and temperature gradients in smooth flow behind shocks is well known. We show that a Biermann-effect magnetic field is also generated within shocks. Direct implementation of the Biermann effect in MHD codes does not capture this physical process, and worse, it produces unphysical magnetic fields at shocks whose value does not converge with resolution. We show that this convergence breakdown is due to naive discretization, which fails to account for the fact that discretized irrotational vector fields have spurious solenoidal components that grow without bound near a discontinuity. We show that careful consideration of the kinetics of ion viscous shocks leads to a formulation of the Biermann effect that gives rise to a convergent algorithm. We note two novel physical effects: a resistive magnetic precursor, in which a Biermann-generated field in the shock “leaks” resistively upstream, and a thermal magnetic precursor, in which a field is generated by the Biermann effect ahead of the shock front owing to gradients created by the shock’s electron thermal conduction precursor. Both effects appear to be potentially observable in experiments at laser facilities. We reexamine published studies of magnetogenesis in galaxy cluster formation and conclude that the simulations in question had inadequate resolution to reliably estimate the field generation rate. Corrected estimates suggest primordial field values in the range B˜ {{10}-22}-10-19 G by z = 3.

  14. Experimental investigation of supersonic low pressure air plasma flows obtained with different arc-jet operating conditions

    NASA Astrophysics Data System (ADS)

    Lago, Viviana; Ndiaye, Abdoul-Aziz

    2012-11-01

    A stationary arc-jet plasma flow at low pressure is used to simulate some properties of the gas flow surrounding a vehicle during its entry into celestial body's atmospheres. This paper presents an experimental study concerning plasmas simulating a re-entry into our planet. Optical measurements have been carried out for several operating plasma conditions in the free stream, and in the shock layer formed in front of a flat cylindrical plate, placed in the plasma jet. The analysis of the spectral radiation enabled the identification of the emitting species, the determination of the rotational and vibrational temperatures in the free-stream and in the shock layer and the determination of the distance of the shock to the flat plate face. Some plasma fluid parameters like, stagnation pressure, specific enthalpy and heat flux have been determined experimentally along the plasma-jet axis.

  15. Machine learning to analyze images of shocked materials for precise and accurate measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dresselhaus-Cooper, Leora; Howard, Marylesa; Hock, Margaret C.

    A supervised machine learning algorithm, called locally adaptive discriminant analysis (LADA), has been developed to locate boundaries between identifiable image features that have varying intensities. LADA is an adaptation of image segmentation, which includes techniques that find the positions of image features (classes) using statistical intensity distributions for each class in the image. In order to place a pixel in the proper class, LADA considers the intensity at that pixel and the distribution of intensities in local (nearby) pixels. This paper presents the use of LADA to provide, with statistical uncertainties, the positions and shapes of features within ultrafast imagesmore » of shock waves. We demonstrate the ability to locate image features including crystals, density changes associated with shock waves, and material jetting caused by shock waves. This algorithm can analyze images that exhibit a wide range of physical phenomena because it does not rely on comparison to a model. LADA enables analysis of images from shock physics with statistical rigor independent of underlying models or simulations.« less

  16. Density Shock Waves in Confined Microswimmers

    NASA Astrophysics Data System (ADS)

    Tsang, Alan Cheng Hou; Kanso, Eva

    2016-01-01

    Motile and driven particles confined in microfluidic channels exhibit interesting emergent behavior, from propagating density bands to density shock waves. A deeper understanding of the physical mechanisms responsible for these emergent structures is relevant to a number of physical and biomedical applications. Here, we study the formation of density shock waves in the context of an idealized model of microswimmers confined in a narrow channel and subject to a uniform external flow. Interestingly, these density shock waves exhibit a transition from "subsonic" with compression at the back to "supersonic" with compression at the front of the population as the intensity of the external flow increases. This behavior is the result of a nontrivial interplay between hydrodynamic interactions and geometric confinement, and it is confirmed by a novel quasilinear wave model that properly captures the dependence of the shock formation on the external flow. These findings can be used to guide the development of novel mechanisms for controlling the emergent density distribution and the average population speed, with potentially profound implications on various processes in industry and biotechnology, such as the transport and sorting of cells in flow channels.

  17. Foreword to the Special Issue on Ejecta

    DOE PAGES

    Buttler, William Tillman; Williams, Robin J. R.; Najjar, Fady M.

    2017-05-22

    We report that ejecta physics is a young field, having developed over the last 60 years or so. Essentially, ejecta forms as a spray of dense particles generated from the free surface of metals subjected to strong shocks, but the detailed mechanisms controlling the properties of this particulate ejecta are only now being fully elucidated. The field is dynamic and rapidly growing, with military and industrial applications, and applications to areas such as fusion research. This Special Issue on Ejecta reports the current state of the art in ejecta physics, describing experimental, theoretical and computational work by research groups aroundmore » the world. While much remains to be done, the dramatic recent progress in the field, some of it first reported here, means that this volume provides a particularly timely review. In this foreword, we provide a brief historical overview of the development of ejecta physics, to define the context for the work in the rest of this Special Issue.« less

  18. Transient multi-physics analysis of a magnetorheological shock absorber with the inverse Jiles-Atherton hysteresis model

    NASA Astrophysics Data System (ADS)

    Zheng, Jiajia; Li, Yancheng; Li, Zhaochun; Wang, Jiong

    2015-10-01

    This paper presents multi-physics modeling of an MR absorber considering the magnetic hysteresis to capture the nonlinear relationship between the applied current and the generated force under impact loading. The magnetic field, temperature field, and fluid dynamics are represented by the Maxwell equations, conjugate heat transfer equations, and Navier-Stokes equations. These fields are coupled through the apparent viscosity and the magnetic force, both of which in turn depend on the magnetic flux density and the temperature. Based on a parametric study, an inverse Jiles-Atherton hysteresis model is used and implemented for the magnetic field simulation. The temperature rise of the MR fluid in the annular gap caused by core loss (i.e. eddy current loss and hysteresis loss) and fluid motion is computed to investigate the current-force behavior. A group of impulsive tests was performed for the manufactured MR absorber with step exciting currents. The numerical and experimental results showed good agreement, which validates the effectiveness of the proposed multi-physics FEA model.

  19. Experimental studies of transpiration cooling with shock interaction in hypersonic flow, part B

    NASA Technical Reports Server (NTRS)

    Holden, Michael S.

    1994-01-01

    This report describes the result of experimental studies conducted to examine the effects of the impingement of an oblique shock on the flowfield and surface characteristics of a transpiration-cooled wall in turbulent hypersonic flow. The principal objective of this work was to determine whether the interaction between the oblique shock and the low-momentum region of the transpiration-cooled boundary layer created a highly distorted flowfield and resulted in a significant reduction in the cooling effectiveness of the transpiration-cooled surface. As a part of this program, we also sought to determine the effectiveness of transpiration cooling with nitrogen and helium injectants for a wide range of blowing rates under constant-pressure conditions in the absence of shock interaction. This experimental program was conducted in the Calspan 48-Inch Shock Tunnel at nominal Mach numbers of 6 and 8, for a Reynolds number of 7.5 x 10(exp 6). For these test conditions, we obtained fully turbulent boundary layers upstream of the interaction regions over the transpiration-cooled segment of the flat plate. The experimental program was conducted in two phases. In the first phase, we examined the effects of mass-addition level and coolant properties on the cooling effectiveness of transpiration-cooled surfaces in the absence of shock interaction. In the second phase of the program, we examined the effects of oblique shock impingement on the flowfield and surface characteristics of a transpiration-cooled surface. The studies were conducted for a range of shock strengths with nitrogen and helium coolants to examine how the distribution of heat transfer and pressure and the characteristics of the flowfield in the interaction region varied with shock strength and the level of mass addition from the transpiration-cooled section of the model. The effects of the distribution of the blowing rate along the interaction regions were also examined for a range of blowing rates through the transpiration-cooled panels. The regions of shockwave/boundary layer interaction examined in these studies were induced by oblique shocks generated with a sharp, flat plate, inclined to the freestream at angles of 5 degrees, 7.5 degrees, and 10 degrees. It was found that, in the absence of an incident shock, transpiration cooling was a very effective method for reducing both the heat transfer and the skin friction loads on the surface. The helium coolant was found to be significantly more effective than nitrogen, because of its low molecular weight and high specific heat. The studies of shock-wave/transpiration-cooled surface interaction demonstrated that the interaction region between the incident shock and the low-momentum transpiration-cooled boundary layer did not result in a significant increase in the size of attached or separated interaction regions, and did not result in significant flowfield distortions above the interaction region. The increase in heating downstream of the shock-impingement point could easily be reduced to the values without shock impingement by a relatively small increase in the transpiration cooling in this region. Surprisingly, this increase in cooling rate did not result in a significant increase in size of the region ahead of the incident shock or create a significantly enlarged interaction region with a resultant increase in the distortion level in the inviscid flow. Thus, transpiration cooling appears to be a very effective technique to cool the internal surfaces of scramjet engines, where shocks in the engine would induce large local increases in wall heating and create viscous/inviscid interactions that could significantly disturb the smooth flow through the combustor. However, if hydrogen is used as the coolant, burning upstream of shock impingement might result in localized hot spots. Clearly, further research is needed in this area.

  20. Studies of shock/shock interaction on smooth and transpiration-cooled hemispherical nosetips in hypersonic flow

    NASA Technical Reports Server (NTRS)

    Holden, Michael S.; Rodriguez, Kathleen M.

    1992-01-01

    A program of experimental research and analysis was conducted to examine the heat transfer and pressure distributions in regions of shock/shock interaction over smooth and transpiration-cooled hemispherical noseshapes. The objective of this investigation was to determine whether the large heat transfer generated in regions of shock/shock interaction can be reduced by transpiration cooling. The experimental program was conducted at Mach numbers of 12 to 16 in the Calspan 48-Inch Shock Tunnel. Type 3 and type 4 interaction regions were generated for a range of freestream unit Reynolds numbers to provide shear layer Reynolds numbers from 10 exp 4 to 10 exp 6 to enable laminar and turbulent interaction regions to be studied. Shock/shock interactions were investigated on a smooth hemispherical nosetip and a similar transpiration-cooled nosetip, with the latter configuration being examined for a range of surface blowing rates up to one-third of the freestream mass flux. While the heat transfer measurements on the smooth hemisphere without shock/shock interaction were in good agreement with Fay-Riddell predictions, those on the transpiration-cooled nosetip indicated that its intrinsic roughness caused heating-enhancement factors of over 1.5. In the shock/shock interaction studies on the smooth nosetip, detailed heat transfer and pressure measurements were obtained to map the variation of the distributions with shock-impingement position for a range of type 3 and type 4 interactions. Such sets of measurements were obtained for a range of unit Reynolds numbers and Mach numbers to obtain both laminar and turbulent interactions. The measurements indicated that shear layer transition has a significant influence on the heating rates for the type 4 interaction as well as the anticipated large effects on type 3 interaction heating. In the absence of blowing, the peak heating in the type 3 and type 4 interaction regions, over the transpiration-cooled model, did not appear to be influenced by the model's rough surface characteristics. The studies of the effects of the transpiration cooling on type 3 and type 4 shock/shock interaction regions demonstrated that large surface blowing rates had significant effect on the structure of the flowfield, enlarging the shock layer and moving the region of peak-heating interaction around the body.

  1. Experimental study on the flow separation and self-excited oscillation phenomenon in a rectangular duct

    NASA Astrophysics Data System (ADS)

    Xiong, Bing; Wang, Zhen-Guo; Fan, Xiao-Qiang; Wang, Yi

    2017-04-01

    To study the characteristics of flow separation and self-excited oscillation of a shock train in a rectangular duct, a simple test case has been conducted and analyzed. The high-speed Schlieren technique and high-frequency pressure measurements have been adopted to collect the data. The experimental results show that there are two separation modes in the duct under M3 incoming condition. The separation mode switch has great effects on the flow effects, such as the pressure distribution, the standard deviation distribution and so on. The separation mode switch can be judged by the history of pressure standard deviation. When it comes to the self-excited oscillation of a shock train, the frequency contents in the undisturbed region, the intermittent region, and the separated bubble have been compared. It was found that the low-frequency disturbance induced by the upstream shock foot motions can travel downstream and the frequency will be magnified by the separation bubble. The oscillation of the small shock foot and the oscillation of the large shock foot are associated with each other rather than oscillating independently.

  2. Internal structure of shock waves in disparate mass mixtures

    NASA Technical Reports Server (NTRS)

    Chung, Chan-Hong; De Witt, Kenneth J.; Jeng, Duen-Ren; Penko, Paul F.

    1992-01-01

    The detailed flow structure of a normal shock wave for a gas mixture is investigated using the direct-simulation Monte Carlo method. A variable diameter hard-sphere (VDHS) model is employed to investigate the effect of different viscosity temperature exponents (VTE) for each species in a gas mixture. Special attention is paid to the irregular behavior in the density profiles which was previously observed in a helium-xenon experiment. It is shown that the VTE can have substantial effects in the prediction of the structure of shock waves. The variable hard-sphere model of Bird shows good agreement, but with some limitations, with the experimental data if a common VTE is chosen properly for each case. The VDHS model shows better agreement with the experimental data without adjusting the VTE. The irregular behavior of the light-gas component in shock waves of disparate mass mixtures is observed not only in the density profile, but also in the parallel temperature profile. The strength of the shock wave, the type of molecular interactions, and the mole fraction of heavy species have substantial effects on the existence and structure of the irregularities.

  3. Relationship between energy deposition and shock wave phenomenon in an underwater electrical wire explosion

    NASA Astrophysics Data System (ADS)

    Han, Ruoyu; Zhou, Haibin; Wu, Jiawei; Qiu, Aici; Ding, Weidong; Zhang, Yongmin

    2017-09-01

    An experimental study of pressure waves generated by an exploding copper wire in a water medium is performed. We examined the effects of energy deposited at different stages on the characteristics of the resulting shock waves. In the experiments, a microsecond time-scale pulsed current source was used to explode a 300-μm-diameter, 4-cm-long copper wire with initial stored energies ranging from 500 to 2700 J. Our experimental results indicated that the peak pressure (4.5-8.1 MPa) and energy (49-287 J) of the shock waves did not follow a simple relationship with any electrical parameters, such as peak voltage or deposited energy. Conversely, the impulse had a quasi-linear relationship with the parameter Π. We also found that the peak pressure was mainly influenced by the energy deposited before separation of the shock wave front and the discharge plasma channel (DPC). The decay time constant of the pressure waveform was affected by the energy injection after the separation. These phenomena clearly demonstrated that the deposited energy influenced the expansion of the DPC and affected the shock wave characteristics.

  4. Modeling Shock Train Leading Edge Detection in Dual-Mode Scramjets

    NASA Astrophysics Data System (ADS)

    Ladeinde, Foluso; Lou, Zhipeng; Li, Wenhai

    2016-11-01

    The objective of this study is to accurately model the detection of shock train leading edge (STLE) in dual-mode scramjet (DMSJ) engines intended for hypersonic flight in air-breathing propulsion systems. The associated vehicles have applications in military warfare and intelligence, and there is commercial interest as well. Shock trains are of interest because they play a significant role in the inability of a DMSJ engine to develop the required propulsive force. The experimental approach to STLE detection has received some attention; as have numerical calculations. However, virtually all of the numerical work focus on mechanically- (i.e., pressure-) generated shock trains, which are much easier to model relative to the phenomenon in the real system where the shock trains are generated by combustion. A focus on combustion, as in the present studies, enables the investigation of the effects of equivalence ratio, which, together with the Mach number, constitutes an important parameter determining mode transition. The various numerical approaches implemented in our work will be reported, with result comparisons to experimental data. The development of an STLE detection procedure in an a priori manner will also be discussed.

  5. Using second-sound shock waves to probe the intrinsic critical velocity of liquid helium II

    NASA Technical Reports Server (NTRS)

    Turner, T. N.

    1983-01-01

    A critical velocity truly intrinsic to liquid helium II is experimentally sought in the bulk fluid far from the apparatus walls. Termed the 'fundamental critical velocity,' it necessarily is caused by mutual interactions which operate between the two fluid components and which are activated at large relative velocities. It is argued that flow induced by second-sound shock waves provides the ideal means by which to activate and isolate the fundamental critical velocity from other extraneous fluid-wall interactions. Experimentally it is found that large-amplitude second-sound shock waves initiate a breakdown in the superfluidity of helium II, which is dramatically manifested as a limit to the maximum attainable shock strength. This breakdown is shown to be caused by a fundamental critical velocity. Secondary effects include boiling for ambient pressures near the saturated vapor pressure or the formation of helium I boundary layers at higher ambient pressures. When compared to the intrinsic critical velocity discovered in highly restricted geometries, the shock-induced critical velocity displays a similar temperature dependence and is the same order of magnitude.

  6. Non-Doppler shift related experimental shock wave measurements using velocity interferometer systems for any reflector.

    PubMed

    Forsman, A C; Kyrala, G A

    2001-05-01

    Velocity interferometer system for any reflectors (VISARs), are becoming increasingly popular in the measurement of shock waves in solids and liquids. VISAR techniques are used in measurements of transit time, speed of shock waves in flight in transparent media [L. C. Chhabildas and J. L. Wise, in Proceedings of the 4th APS Topical Conference on Shock Waves in Condensed Matter, Spokane, Washington, 1985, edited by Y. M. Gupta (Plenum, New York, 1986); P. M. Celliers et al., Appl. Phys. Lett. 73, 1320 (1998)], and in measurements of particle velocity. However, in cases where shock compression or release may change the index of refraction n+ik of the material being studied, the VISAR technique must be applied with care. Changes in n and k introduce phase shifts into the VISAR results that are not associated with changes in velocity. This paper presents a derivation of the theoretical output of a line VISAR that includes the effects of changing n and k and an experimental observation of a non-Doppler shift related effect.

  7. Experimental investigation of door dynamic opening caused by impinging shock wave

    NASA Astrophysics Data System (ADS)

    Biamino, L.; Jourdan, G.; Mariani, C.; Igra, O.; Massol, A.; Houas, L.

    2011-02-01

    To prevent damage caused by accidental overpressure inside a closed duct (e.g. jet engine) safety valves are introduced. The present study experimentally investigates the dynamic opening of such valves by employing a door at the end of a shock tube driven section. The door is hung on an axis and is free to rotate, thereby opening the tube. The evolved flow and wave pattern due to a collision of an incident shock wave with the door, causing the door opening, is studied by employing a high speed schlieren system and recording pressures at different places inside the tube as well as on the rotating door. Analyzing this data sheds light on the air flow evolution and the behavior of the opening door. In the present work, emphasis is given to understanding the complex, unsteady flow developed behind the transmitted shock wave as it diffracts over the opening door. It is shown that both the door inertia and the shock wave strength influence the opening dynamic evolution, but not in the proportions that might be expected.

  8. Experimental design for research on shock-turbulence interaction

    NASA Technical Reports Server (NTRS)

    Radcliffe, S. W.

    1969-01-01

    Report investigates the production of acoustic waves in the interaction of a supersonic shock and a turbulence environment. The five stages of the investigation are apparatus design, development of instrumentation, preliminary experiment, turbulence generator selection, and main experiments.

  9. Experimental study of pressure and heating rate on a swept cylindrical leading edge resulting from swept shock wave interference. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Glass, Christopher E.

    1989-01-01

    The effects of cylindrical leading edge sweep on surface pressure and heat transfer rate for swept shock wave interference were investigated. Experimental tests were conducted in the Calspan 48-inch Hypersonic Shock Tunnel at a nominal Mach number of 8, nominal unit Reynolds number of 1.5 x 10 to the 6th power per foot, leading edge and incident shock generator sweep angles of 0, 15, and 30 deg, and incident shock generator angle-of-attack fixed at 12.5 deg. Detailed surface pressure and heat transfer rate on the cylindircal leading edge of a swept shock wave interference model were measured at the region of the maximum surface pressure and heat transfer rate. Results show that pressure and heat transfer rate on the cylindrical leading edge of the shock wave interference model were reduced as the sweep was increased over the range of tested parameters. Peak surface pressure and heat transfer rate on the cylinder were about 10 and 30 times the undisturbed flow stagnation point value, respectively, for the 0 deg sweep test. A comparison of the 15 and 30 deg swept results with the 0 deg swept results showed that peak pressure was reduced about 13 percent and 44 percent, respectively, and peak heat transfer rate was reduced about 7 percent and 27 percent, respectively.

  10. A Study of SDT in an Ammonium Nitrate (NH4 NO3) Based Granular Explosive

    NASA Astrophysics Data System (ADS)

    Burns, Malcolm; Taylor, Peter

    2007-06-01

    In order to study the SDT process in a granular non ideal explosive (NIE) an experimental technique has been developed that allows the granular explosive to be shock initiated at a well controlled ``tap density''. The granular NIE was contained in a PMMA cone and a planar shock was delivered to the explosive through buffer plates of varying material. A combination of piezoelectric probes, ionization pins, PVDF stress gauges and a high speed framing camera were used to measure the input shock pressure and shock and detonation wave positions in the explosive. Four trials were performed to characterize the run to detonation distance versus pressure relationship (Pop plot) of the granular NH4 NO3 explosive. Input pressures ranged from close to the 4GPa predicted CJ pressure of the granular explosive down to 1.4 GPa, giving run distances up to 14mm for the lowest pressure. The data indicates a steady acceleration of the input shock to the detonation velocity, implying significant reaction growth at the shock front. This is in contrast to the behaviour of most high density pressed PBXs which show little growth in shock front velocity before transit to detonation. The experimentally observed initiation behaviour is compared to that predicted by a simple JWL++ reactive burn model for the granular NH4 NO3 explosive which has been fitted to other detonics experiments on this material.

  11. Shock Structure Analysis and Aerodynamics in a Weakly Ionized Gas Flow

    NASA Technical Reports Server (NTRS)

    Saeks, R.; Popovic, S.; Chow, A. S.

    2006-01-01

    The structure of a shock wave propagating through a weakly ionized gas is analyzed using an electrofluid dynamics model composed of classical conservation laws and Gauss Law. A viscosity model is included to correctly model the spatial scale of the shock structure, and quasi-neutrality is not assumed. A detailed analysis of the structure of a shock wave propagating in a weakly ionized gas is presented, together with a discussion of the physics underlying the key features of the shock structure. A model for the flow behind a shock wave propagating through a weakly ionized gas is developed and used to analyze the effect of the ionization on the aerodynamics and performance of a two-dimensional hypersonic lifting body.

  12. Measurement of the Shock Velocity and Symmetry History in Decaying Shock Pulses

    NASA Astrophysics Data System (ADS)

    Baker, Kevin; Milovich, Jose; Jones, Oggie; Robey, Harry; Smalyuk, Vladimir; Casey, Daniel; Celliers, Peter; Clark, Dan; Giraldez, Emilio; Haan, Steve; Hamza, Alex; Berzak-Hopkins, Laura; Jancaitis, Ken; Kroll, Jeremy; Lafortune, Kai; MacGowan, Brian; Macphee, Andrew; Moody, John; Nikroo, Abbas; Peterson, Luc; Raman, Kumar; Weber, Chris; Widmayer, Clay

    2014-10-01

    Decaying first shock pulses are predicted in simulations to provide more stable implosions and still achieve a low adiabat in the fuel, enabling a higher fuel compression similar to ``low foot'' laser pulses. The first step in testing these predictions was to measure the shock velocity for both a three shock and a four shock adiabat-shaped pulse in a keyhole experimental platform. We present measurements of the shock velocity history, including the decaying shock velocity inside the ablator, and compare it with simulations, as well as with previous low and high foot pulses. Using the measured pulse shape, the predicted adiabat from simulations is presented and compared with the calculated adiabat from low and high foot laser pulse shapes. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  13. A shock absorber model for structure-borne noise analyses

    NASA Astrophysics Data System (ADS)

    Benaziz, Marouane; Nacivet, Samuel; Thouverez, Fabrice

    2015-08-01

    Shock absorbers are often responsible for undesirable structure-borne noise in cars. The early numerical prediction of this noise in the automobile development process can save time and money and yet remains a challenge for industry. In this paper, a new approach to predicting shock absorber structure-borne noise is proposed; it consists in modelling the shock absorber and including the main nonlinear phenomena responsible for discontinuities in the response. The model set forth herein features: compressible fluid behaviour, nonlinear flow rate-pressure relations, valve mechanical equations and rubber mounts. The piston, base valve and complete shock absorber model are compared with experimental results. Sensitivity of the shock absorber response is evaluated and the most important parameters are classified. The response envelope is also computed. This shock absorber model is able to accurately reproduce local nonlinear phenomena and improves our state of knowledge on potential noise sources within the shock absorber.

  14. Numerical solutions of Navier-Stokes equations for compressible turbulent two/three dimensional flows in terminal shock region of an inlet/diffuser

    NASA Technical Reports Server (NTRS)

    Liu, N. S.; Shamroth, S. J.; Mcdonald, H.

    1983-01-01

    The multidimensional ensemble averaged compressible time dependent Navier Stokes equations in conjunction with mixing length turbulence model and shock capturing technique were used to study the terminal shock type of flows in various flight regimes occurring in a diffuser/inlet model. The numerical scheme for solving the governing equations is based on a linearized block implicit approach and the following high Reynolds number calculations were carried out: (1) 2 D, steady, subsonic; (2) 2 D, steady, transonic with normal shock; (3) 2 D, steady, supersonic with terminal shock; (4) 2 D, transient process of shock development and (5) 3 D, steady, transonic with normal shock. The numerical results obtained for the 2 D and 3 D transonic shocked flows were compared with corresponding experimental data; the calculated wall static pressure distributions agree well with the measured data.

  15. An electromagnetic railgun accelerator: a generator of strong shock waves in channels

    NASA Astrophysics Data System (ADS)

    Bobashev, S. V.; Zhukov, B. G.; Kurakin, R. O.; Ponyaev, S. A.; Reznikov, B. I.

    2014-11-01

    Processes that accompany the generation of strong shock waves during the acceleration of a free plasma piston (PP) in the electromagnetic railgun channel have been experimentally studied. The formation of shock waves in the railgun channel and the motion of a shock-wave-compressed layer proceed (in contrast to the case of a classical shock tube) in a rather strong electric field (up to 300 V/cm). The experiments were performed at the initial gas pressures in the channel ranging from 25 to 500 Torr. At 25 Torr, the shock-wave Mach numbers reached 32 in argon and 16 in helium. At high concentrations of charged particles behind the shock wave, the electric field causes the passage of a part of the discharge current through the volume of the shock-wave-compressed layer, which induces intense glow comparable with that of the PP glow.

  16. Detonation onset following shock wave focusing

    NASA Astrophysics Data System (ADS)

    Smirnov, N. N.; Penyazkov, O. G.; Sevrouk, K. L.; Nikitin, V. F.; Stamov, L. I.; Tyurenkova, V. V.

    2017-06-01

    The aim of the present paper is to study detonation initiation due to focusing of a shock wave reflected inside a cone. Both numerical and experimental investigations were conducted. Comparison of results made it possible to validate the developed 3-d transient mathematical model of chemically reacting gas mixture flows incorporating hydrogen - air mixtures. The results of theoretical and numerical experiments made it possible improving kinetic schemes and turbulence models. Several different flow scenarios were detected in reflection of shock waves all being dependent on incident shock wave intensity: reflecting of shock wave with lagging behind combustion zone, formation of detonation wave in reflection and focusing, and intermediate transient regimes.

  17. Experimental investigation of shock wave diffraction over a single- or double-sphere model

    NASA Astrophysics Data System (ADS)

    Zhang, L. T.; Wang, T. H.; Hao, L. N.; Huang, B. Q.; Chen, W. J.; Shi, H. H.

    2017-01-01

    In this study, the unsteady drag produced by the interaction of a shock wave with a single- and a double-sphere model is measured using imbedded accelerometers. The shock wave is generated in a horizontal circular shock tube with an inner diameter of 200 mm. The effect of the shock Mach number and the dimensionless distance between spheres is investigated. The time-history of the drag coefficient is obtained based on Fast Fourier Transformation (FFT) band-block filtering and polynomial fitting of the measured acceleration. The measured peak values of the drag coefficient, with the associated uncertainty, are reported.

  18. AEROFROSH: a shock condition calculator for multi-component fuel aerosol-laden flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Matthew Frederick; Haylett, D. R.; Davidson, D. F.

    Here, this paper introduces an algorithm that determines the thermodynamic conditions behind incident and reflectedshocksinaerosol-ladenflows.Importantly,the algorithm accounts for the effects of droplet evaporation on post-shock properties. Additionally, this article describes an algorithm for resolving the effects of multiple-component- fuel droplets. This article presents the solution methodology and compares the results to those of another similar shock calculator. It also provides examples to show the impact of droplets on post-shock properties and the impact that multi-component fuel droplets have on shock experimental parameters. Finally, this paper presents a detailed uncertainty analysis of this algorithm’s calculations given typical exper- imental uncertainties

  19. X-ray photoelectron spectroscopy and paramagnetic resonance evidence for shock-induced intramolecular bond breaking in some energetic solids

    NASA Astrophysics Data System (ADS)

    Owens, F. J.; Sharma, J.

    1980-03-01

    Solid samples of 1,3,5, trinitro 1,3,5, triazacyclohexane (RDX), trinitrotoluene (TNT), and ammonium nitrate were subjected to shock pulses of strength and duration less than the threshold to cause detonation. The recovered shocked samples were studied by x-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR). The results of these measurements indicate that the shock pulse either broke or altered the internal bonds of the molecules of the solid. The results of the shock decomposition are compared with measurements of the uv and slow thermal decomposition of these materials using the same experimental techniques.

  20. AEROFROSH: a shock condition calculator for multi-component fuel aerosol-laden flows

    DOE PAGES

    Campbell, Matthew Frederick; Haylett, D. R.; Davidson, D. F.; ...

    2015-08-18

    Here, this paper introduces an algorithm that determines the thermodynamic conditions behind incident and reflectedshocksinaerosol-ladenflows.Importantly,the algorithm accounts for the effects of droplet evaporation on post-shock properties. Additionally, this article describes an algorithm for resolving the effects of multiple-component- fuel droplets. This article presents the solution methodology and compares the results to those of another similar shock calculator. It also provides examples to show the impact of droplets on post-shock properties and the impact that multi-component fuel droplets have on shock experimental parameters. Finally, this paper presents a detailed uncertainty analysis of this algorithm’s calculations given typical exper- imental uncertainties

  1. Shock-produced olivine glass: First observation

    USGS Publications Warehouse

    Jeanloz, R.; Ahrens, T.J.; Lally, J.S.; Nord, G.L.; Christie, J.M.; Heuer, A.H.

    1977-01-01

    Transmission electron microscope (TEM) observations of an experimentally shock-deformed single crystal of natural peridot, (Mg0.88Fe 0.12SiO4 recovered from peak pressures of about 56 ?? 109 pascals revealed the presence of amorphous zones located within crystalline regions with a high density of tangled dislocations. This is the first reported observation ofolivine glass. The shocked sample exhibits a wide variation in the degree of shock deformation on a small scale, and the glass appears to be intimately associated with the highest density of dislocations. This study suggests that olivine glass may be formed as a result of shock at pressures above about 50 to 55 ?? 109 pascals and that further TEM observations of naturally shocked olivines may demonstrate the presence of glass.

  2. Research on Formation Mechanism of Dynamic Response and Residual Stress of Sheet Metal Induced by Laser Shock Wave

    NASA Astrophysics Data System (ADS)

    Feng, Aixin; Cao, Yupeng; Wang, Heng; Zhang, Zhengang

    2018-01-01

    In order to reveal the quantitative control of the residual stress on the surface of metal materials, the relevant theoretical and experimental studies were carried out to investigate the dynamic response of metal thin plates and the formation mechanism of residual stress induced by laser shock wave. In this paper, the latest research trends on the surface residual stress of laser shock processing technology were elaborated. The main progress of laser shock wave propagation mechanism and dynamic response, laser shock, and surface residual stress were discussed. It is pointed out that the multi-scale characterization of laser and material, surface residual stress and microstructure change is a new hotspot in laser shock strengthening technology.

  3. Experimental gastric ulcers induced by immobilization and electric shock of rats and their pharmacotherapy

    NASA Technical Reports Server (NTRS)

    Zabrodin, O. N.

    1980-01-01

    The mechanism of development of experimental gastric ulcers, induced in rats by combined immobilization and electric shock, was analyzed pharmacologically with peripheral neurotropic agents. It is concluded that: (1) The most marked preventive effect in the development of the experimentally induced gastric ulcers was displayed by agents capable of blocking the ascending activation system of the reticular formation. (2) Sympathetic fibers, which disrupt the trophism of the gastric wall, form the efferent portion of the reflex arc. (3) Gastric secretion does not appear to be the primary cause of ulceration.

  4. Assessment of CFD capability for prediction of hypersonic shock interactions

    NASA Astrophysics Data System (ADS)

    Knight, Doyle; Longo, José; Drikakis, Dimitris; Gaitonde, Datta; Lani, Andrea; Nompelis, Ioannis; Reimann, Bodo; Walpot, Louis

    2012-01-01

    The aerothermodynamic loadings associated with shock wave boundary layer interactions (shock interactions) must be carefully considered in the design of hypersonic air vehicles. The capability of Computational Fluid Dynamics (CFD) software to accurately predict hypersonic shock wave laminar boundary layer interactions is examined. A series of independent computations performed by researchers in the US and Europe are presented for two generic configurations (double cone and cylinder) and compared with experimental data. The results illustrate the current capabilities and limitations of modern CFD methods for these flows.

  5. Depth and Extent of Gas-Ablator Mix in Symcap Implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Pino, Jesse; Ma, T.; MacLaren, S. A.; Salmonson, J. D.; Ho, D.; Khan, S. F.; Masse, L.; Ralph, J. E.; Czajka, C.; Casey, D.; Sacks, R.; Smalyuk, V. A.; Tipton, R. E.; Kyrala, G. A.

    2017-10-01

    A longstanding question in ICF physics has been the extent to which capsule ablator material mixes into the burning fusion fuel and degrades performance. Several recent campaigns at the National Ignition Facility have examined this question through the use of separated reactants. A layer of CD plastic is placed on the inner surface of the CH shell and the shell is filled with a gas mixture of H and T. This allows for simultaneous neutron signals that inform different aspects of the physics; we get core TT neutron yield, atomic mix from the DT neutrons, and information about shell heating from the DD neutron signal. By systematically recessing the CD layer away from the gas boundary we gain an inference of the depth of the mixing layer. This presentation will cover three campaigns to look at mixing depth: An ignition-like design (``Low-foot'') at two convergence ratios, as well as a robust, nearly one-dimensional, low convergence, symmetric platform designed to minimize ablation front feed-through (HED 2-shock). We show that the 2-shock capsule has less ablator-gas mix, and compare the experimental results to mix-model simulations. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344, LLNS, LLC.

  6. Calculating shock arrival in expansion tubes and shock tunnels using Bayesian changepoint analysis

    NASA Astrophysics Data System (ADS)

    James, Christopher M.; Bourke, Emily J.; Gildfind, David E.

    2018-06-01

    To understand the flow conditions generated in expansion tubes and shock tunnels, shock speeds are generally calculated based on shock arrival times at high-frequency wall-mounted pressure transducers. These calculations require that the shock arrival times are obtained accurately. This can be non-trivial for expansion tubes especially because pressure rises may be small and shock speeds high. Inaccurate shock arrival times can be a significant source of uncertainty. To help address this problem, this paper investigates two separate but complimentary techniques. Principally, it proposes using a Bayesian changepoint detection method to automatically calculate shock arrival, potentially reducing error and simplifying the shock arrival finding process. To compliment this, a technique for filtering the raw data without losing the shock arrival time is also presented and investigated. To test the validity of the proposed techniques, tests are performed using both a theoretical step change with different levels of noise and real experimental data. It was found that with conditions added to ensure that a real shock arrival time was found, the Bayesian changepoint analysis method was able to automatically find the shock arrival time, even for noisy signals.

  7. Hot spot formation from shock reflections

    NASA Astrophysics Data System (ADS)

    Menikoff, R.

    2011-04-01

    Heterogeneities sensitize an explosive to shock initiation. This is due to hot-spot formation and the sensitivity of chemical reaction rates to temperature. Here, we describe a numerical experiment aimed at elucidating a mechanism for hot-spot formation that occurs when a shock wave passes over a high-density impurity. The simulation performed is motivated by a physical experiment in which glass beads are added to liquid nitromethane. The impedance mismatch between the beads and the nitromethane results in shock reflections. These, in turn, give rise to transverse waves along the lead shock front. Hot spots arise on local portions of the lead front with a higher shock strength, rather than on the reflected shocks behind the beads. Moreover, the interactions generated by reflected waves from neighboring beads can significantly increase the peak hot-spot temperature when the beads are suitably spaced.

  8. Multiscale modeling of shock wave localization in porous energetic material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, M. A.; Kittell, D. E.; Yarrington, C. D.

    Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (< 6 GPa), atomistic simulations of pore collapse are used here to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock wavesmore » interacting with pores as a function of this viscoplastic material response. Finally, we find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.« less

  9. Multiscale modeling of shock wave localization in porous energetic material

    DOE PAGES

    Wood, M. A.; Kittell, D. E.; Yarrington, C. D.; ...

    2018-01-30

    Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (< 6 GPa), atomistic simulations of pore collapse are used here to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock wavesmore » interacting with pores as a function of this viscoplastic material response. Finally, we find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.« less

  10. The Embedded Atom Model and large-scale MD simulation of tin under shock loading

    NASA Astrophysics Data System (ADS)

    Sapozhnikov, F. A.; Ionov, G. V.; Dremov, V. V.; Soulard, L.; Durand, O.

    2014-05-01

    The goal of the work was to develop an interatomic potential, that can be used in large-scale classical MD simulations to predict tin properties near the melting curve, the melting curve itself, and the kinetics of melting and solidification when shock and ramp loading. According to phase diagram, shocked tin melts from bcc phase, and since the main objective was to investigate melting, the EAM was parameterized for bcc phase. The EAM was optimized using isothermal compression data (experimental at T=300 K and ab-initio at T=0 K for bcc, fcc, bct structures), experimental and QMD data on the Hugoniot and on the melting at elevated pressures. The Hugoniostat calculations centred at β-tin at ambient conditions showed that the calculated Hugoniot is in good agreement with experimental and QMD data above p-bct transition pressure. Calculations of overcooled liquid in pressure range corresponding to bcc phase showed crystallization into bcc phase. Since the principal Hugoniot of tin originates from the β-tin that is not described by this EAM the special initial state of bcc samples was constructed to perform large-scale MD simulations of shock loading.

  11. Temperature maxima in stable two-dimensional shock waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kum, O.; Hoover, W.G.; Hoover, C.G.

    1997-07-01

    We use molecular dynamics to study the structure of moderately strong shock waves in dense two-dimensional fluids, using Lucy{close_quote}s pair potential. The stationary profiles show relatively broad temperature maxima, for both the longitudinal and the average kinetic temperatures, just as does Mott-Smith{close_quote}s model for strong shock waves in dilute three-dimensional gases. {copyright} {ital 1997} {ital The American Physical Society}

  12. Transparency of the strong shock-compressed diamond for 532 nm laser light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhiyu; Department of Engineering Physics, Tsinghua University, Beijing 100084; Zhao, Yang

    2016-04-15

    An optical reflectivity and transmissivity model for the shock-compressed diamond is established and used to calculate the optical reflectivity and transmissivity of the diamond under different shock compressions. The simulated results indicate that the reflection occurs at the shock front and does not depend on the thickness of the compressed diamond, but the transmissivity decreases with the thickness. The simulated reflectivity is consistent with the experimental results in the literature, which validates the model. It is shown that the diamond keeps transparent when the shock pressure is lower than 2.00 Mbar, and becomes opaque but does not reflect the probemore » laser as the shock pressure increases from 2.00 Mbar to 4.60 Mbar and reflects the probe laser markedly when the shock pressure is higher than 4.60 Mbar.« less

  13. NMR spectroscopy of experimentally shocked single crystal quartz: A reexamination of the NMR shock barometer

    NASA Technical Reports Server (NTRS)

    Fiske, P. S.; Gratz, A. J.; Nellis, W. J.

    1993-01-01

    Cygan and others report a broadening of the Si-29 nuclear magnetic resonance (NMR) peak for synthetic quartz powders with increasing shock pressure which they propose as a shock wave barometer for natural systems. These results are expanded by studying single crystal quartz shocked to 12 and 33 GPa using the 6.5 m two-stage light-gas gun at Lawrence Livermore National Laboratories. Our NMR results differ substantially from those of Cygan and others and suggest that the proposed shock wave barometer may require refinement. The difference in results between this study and that of Cygan and others is most likely caused by different starting materials (single crystal vs. powder) and different shock loading histories. NMR results from single crystal studies may be more applicable to natural systems.

  14. Shock interactions with heterogeneous energetic materials

    NASA Astrophysics Data System (ADS)

    Yarrington, Cole D.; Wixom, Ryan R.; Damm, David L.

    2018-03-01

    The complex physical phenomenon of shock wave interaction with material heterogeneities has significant importance and nevertheless remains little understood. In many materials, the observed macroscale response to shock loading is governed by characteristics of the microstructure. Yet, the majority of computational studies aimed at predicting phenomena affected by these processes, such as the initiation and propagation of detonation waves in explosives or shock propagation in geological materials, employ continuum material and reactive burn model treatment. In an effort to highlight the grain-scale processes that underlie the observable effects in an energetic system, a grain-scale model for hexanitrostilbene (HNS) has been developed. The measured microstructures were used to produce synthetic computational representations of the pore structure, and a density functional theory molecular dynamics derived equation of state (EOS) was used for the fully dense HNS matrix. The explicit inclusion of the microstructure along with a fully dense EOS resulted in close agreement with historical shock compression experiments. More recent experiments on the dynamic reaction threshold were also reproduced by inclusion of a global kinetics model. The complete model was shown to reproduce accurately the expected response of this heterogeneous material to shock loading. Mesoscale simulations were shown to provide a clear insight into the nature of threshold behavior and are a way to understand complex physical phenomena.

  15. Shock interactions with heterogeneous energetic materials

    DOE PAGES

    Yarrington, Cole D.; Wixom, Ryan R.; Damm, David L.

    2018-03-14

    The complex physical phenomenon of shock wave interaction with material heterogeneities has significant importance and nevertheless remains little understood. In many materials, the observed macroscale response to shock loading is governed by characteristics of the microstructure. Yet the majority of computational studies aimed at predicting phenomena affected by these processes, such as initiation and propagation of detonation waves in explosives, or shock propagation in geological materials, employ continuum material and reactive burn model treatment. In an effort to highlight the grain-scale processes that underlie the observable effects in an energetic system, a grain-scale model for hexanitrostilbene (HNS) has been developed.more » Measured microstructures were used to produce synthetic computational representations of the pore structure, and a density functional theory molecular dynamics (DFT-MD) derived equation of state (EOS) was used for the fully dense HNS matrix. The explicit inclusion of microstructure along with a fully-dense EOS resulted in close agreement with historical shock compression experiments. More recent experiments on dynamic reaction threshold were also reproduced by inclusion of a global kinetics model. The complete model was shown to reproduce accurately the expected response of this heterogeneous material to shock loading. Mesoscale simulations were shown to provide clear insight into the nature of threshold behavior, and are a way to understand complex physical phenomena.« less

  16. OT2_pbjerkel_1: Herschel observations of the shocked gas in HH54

    NASA Astrophysics Data System (ADS)

    Bjerkeli, P.

    2011-09-01

    A shock that can be studied in detail, using a very limited amount of Herschel time, is the Herbig-Haro object HH54 located in the nearby Chamaeleon II cloud at a distance of 180 pc. The shocked region has an angular extent of roughly 30'' and is not contaminated with emission from other nearby objects. The gas, traced by H2O and CO, emits radiation predominantly in the far-infrared regime. For that reason, this program can only be executed using the instruments aboard the Herschel Space Observatory. We propose spectroscopy of rotational H2O and CO transitions, falling in the wavelength range covered by SPIRE and PACS. These observations will allow us to stratify the shocked region in different physical/kinematical components. We will also improve our understanding of the mechanisms responsible for water production and destruction. Given the relatively large angular extent of the region, we will determine the types of shock responsible for the emission in different positions along the shocked surface. We also propose HIFI observations of selected CO and H2O transitions. A bullet feature has previously been observed in several CO line profiles. Using HIFI, we will constrain the origin and physical properties of the region responsible for this emission.

  17. The Shock Compression Laboratory at Harvard: A New Facility for Planetary Impact Processes

    NASA Technical Reports Server (NTRS)

    Stewart, S. T.

    2004-01-01

    The Shock Compression Laboratory in the Department of Earth and Planetary Sciences at Harvard is a new facility for the study of impact and collisional phenomena. The following describes the experimental capabilities of the laboratory.

  18. Simulation of hypersonic shock wave - laminar boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Kianvashrad, N.; Knight, D.

    2017-06-01

    The capability of the Navier-Stokes equations with a perfect gas model for simulation of hypersonic shock wave - laminar boundary layer interactions is assessed. The configuration is a hollow cylinder flare. The experimental data were obtained by Calspan-University of Buffalo (CUBRC) for total enthalpies ranging from 5.07 to 21.85 MJ/kg. Comparison of the computed and experimental surface pressure and heat transfer is performed and the computed §ow¦eld structure is analyzed.

  19. Effect of Shock Waves on Dielectric Properties of KDP Crystal

    NASA Astrophysics Data System (ADS)

    Sivakumar, A.; Suresh, S.; Pradeep, J. Anto; Balachandar, S.; Martin Britto Dhas, S. A.

    2018-05-01

    An alternative non-destructive approach is proposed and demonstrated for modifying electrical properties of crystal using shock-waves. The method alters dielectric properties of a potassium dihydrogen phosphate (KDP) crystal by loading shock-waves generated by a table-top shock tube. The experiment involves launching the shock-waves perpendicular to the (100) plane of the crystal using a pressure driven table-top shock tube with Mach number 1.9. Electrical properties of dielectric constant, dielectric loss, permittivity, impedance, AC conductivity, DC conductivity and capacitance as a function of spectrum of frequency from 1 Hz to 1 MHz are reported for both pre- and post-shock wave loaded conditions of the KDP crystal. The experimental results reveal that dielectric constant of KDP crystal is sensitive to the shock waves such that the value decreases for the shock-loaded KDP sample from 158 to 147. The advantage of the proposed approach is that it is an alternative to the conventional doping process for tailoring dielectric properties of this type of crystal.

  20. The CHESS survey of the L1157-B1 bow-shock: Dissecting the water content

    NASA Astrophysics Data System (ADS)

    Busquet, Gemma; Lefloch, Bertrand; Benedettini, Milena; Ceccarelli, Cecilia; Codella, Claudio; Cabrit, Sylvie; Nisini, Brunella; Viti, Serena; Gómez-Ruiz, Arturo; Gusdorf, Antoine; Di Giorgio, Anna Maria; Wiesenfeld, Laurent

    2013-07-01

    Molecular outflows powered by young protostars strongly affect the kinematics and chemistry of the natal molecular cloud through strong shocks, resulting in an increase of the abundance of several species. In particular, water is a powerful tracer of shocked material due to its sensitivity to both physical conditions and chemical processes. The observations of the "Chemical Herschel Survey of Star forming regions" (CHESS) key program towards the shock region L1157-B1 offered a unique and comprehensive view of the water emission in a typical protostellar bow shock across the submillimeter and far-infrared window. A grand total of 13 water lines have been detected with the PACS and HIFI instruments, probing a wide range of excitation conditions and providing us with a detailed picture on both the kinematics and the spatial distribution of water emission. Several gas components have been identified coexisting in the L1157-B1 shock region. Large Velocity Gradient (LVG) analysis reveals that these components have different excitation conditions: i) a warm (T~250 K) and dense (n(H2)~10^6 cm-3) gas component seen also with the CO lines and associated with the partly dissociative shock produced by the impact of the protostellar jet against the bow shock; ii) a compact (size~5''), hot (T~700 K), and less dense (n(H2)~10^4 cm-3) gas component, and iii) an extended component associated with the B1 outflow cavity. These three components present clear differences in terms of water enrichment. Finally, we confront the physical and chemical properties of the H2O emission to the predictions of current shock models.

Top