Sample records for shock position control

  1. Terminal shock position and restart control of a Mach 2.7, two-dimensional, twin duct mixed compression inlet

    NASA Technical Reports Server (NTRS)

    Cole, G. L.; Neiner, G. H.; Baumbick, R. J.

    1973-01-01

    Experimental results of terminal shock and restart control system tests of a two-dimensional, twin-duct mixed compression inlet are presented. High-response (110-Hz bandwidth) overboard bypass doors were used, both as the variable to control shock position and as the means of disturbing the inlet airflow. An inherent instability in inlet shock position resulted in noisy feedback signals and thus restricted the terminal shock position control performance that was achieved. Proportional-plus-integral type controllers using either throat exit static pressure or shock position sensor feedback gave adequate low-frequency control. The inlet restart control system kept the terminal shock control loop closed throughout the unstart-restart transient. The capability to restart the inlet was non limited by the inlet instability.

  2. Investigation of Inlet Control Parameters for an External-internal-compression Inlet from Mach 2.1 to 3.0

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Bowditch, D. N.

    1958-01-01

    Investigation of the control parameters of an external-internal compression inlet indicates that the cowl-lip shock provides a signal to position the spike and to start the inlet over a Mach number range from 2.1 to 3.0. Use of a single fixed probe position to control the spike over the range of conditions resulted in a 3.7-count loss in total-pressure recovery at Mach 3.0 and 0 deg angle of attack. Three separate shock-sensing-probe positions were required to set the spike for peak recovery from Mach 2.1 to 3.0 and angles of attack from 0 deg to 6 deg. When the inlet was unstarted, an erroneous signal was obtained from the normal-shock control through most of the starting cycle that prevented the inlet from starting. Therefore, it was necessary to over-ride the normal-shock control signal and not allow the control to position the terminal shock until the spike was positioned.

  3. Application of quadratic optimization to supersonic inlet control.

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.; Zeller, J. R.

    1972-01-01

    This paper describes the application of linear stochastic optimal control theory to the design of the control system for the air intake, the inlet, of a supersonic air-breathing propulsion system. The controls must maintain a stable inlet shock position in the presence of random airflow disturbances and prevent inlet unstart. Two different linear time invariant controllers are developed. One is designed to minimize a nonquadratic index, the expected frequency of inlet unstart, and the other is designed to minimize the mean square value of inlet shock motion. The quadratic equivalence principle is used to obtain a linear controller that minimizes the nonquadratic index. The two controllers are compared on the basis of unstart prevention, control effort requirements, and frequency response. It is concluded that while controls designed to minimize unstarts are desirable in that the index minimized is physically meaningful, computation time required is longer than for the minimum mean square shock position approach. The simpler minimum mean square shock position solution produced expected unstart frequency values which were not significantly larger than those of the nonquadratic solution.

  4. Control of quasi-monoenergetic electron beams from laser-plasma accelerators by adjusting shock density profile

    NASA Astrophysics Data System (ADS)

    Tsai, Hai-En; Swanson, Kelly K.; Lehe, Remi; Barber, Sam K.; Isono, Fumika; Otero, Jorge G.; Liu, Xinyao; Mao, Hann-Shin; Steinke, Sven; Tilborg, Jeroen Van; Geddes, Cameron G. R.; Leemans, Wim

    2017-10-01

    High-level control of a laser-plasma accelerator (LPA) using a shock injector was demonstrated by systematically varying the shock injector profile, including the shock angle, up-ramp width and shock position. Particle-in-cell (PIC) simulation explored how variations in the shock profile impacted the injection process and confirmed results obtained through acceleration experiments. These results establish that, by adjusting shock position, up-ramp, and angle, beam energy, energy spread, and pointing can be controlled. As a result, e-beam were highly tunable from 25 to 300 MeV with <8% energy spread, 1.5 mrad divergence and <1 mrad pointing fluctuation. This highly controllable LPA represents an ideal and compact beam source for the ongoing MeV Thomson photon experiments. Set-up and initial experimental design on a newly constructed one hundred TW laser system will be presented. This work is supported by the US DOE under Contract No. DE-AC02-05CH11231, and by the US DOE National Nuclear Security Administration, Defense Nuclear Nonproliferation R&D (NA22).

  5. Collisionless Electrostatic Shock Modeling and Simulation

    DTIC Science & Technology

    2016-10-21

    unlimited. PA#16490 Dissipation Controls Wave Train Under- and Over-damped Shocks – Under-damped: • Dissipation is weak, ripples persist. • High...Density Position – Over-damped: ● Strong dissipation damps ripples . ● Low Density Position 12 Position Distribution A. Approved for public release...distribution unlimited. PA#16490 Model Verification Comparison with Linearized Solution – Evolution of the First Ripple Wavelength: • Simulated

  6. Control of quasi-monoenergetic electron beams from laser-plasma accelerators with adjustable shock density profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.

    The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically v aried the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔE FWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-rampmore » width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.« less

  7. Control of quasi-monoenergetic electron beams from laser-plasma accelerators with adjustable shock density profile

    DOE PAGES

    Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.; ...

    2018-04-13

    The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically v aried the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔE FWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-rampmore » width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.« less

  8. Control of quasi-monoenergetic electron beams from laser-plasma accelerators with adjustable shock density profile

    NASA Astrophysics Data System (ADS)

    Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.; Lehe, Remi; Mao, Hann-Shin; Mittelberger, Daniel E.; Steinke, Sven; Nakamura, Kei; van Tilborg, Jeroen; Schroeder, Carl; Esarey, Eric; Geddes, Cameron G. R.; Leemans, Wim

    2018-04-01

    The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically varied the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔEFWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-ramp width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.

  9. Digital-computer normal shock position and restart control of a Mach 2.5 axisymmetric mixed-compression inlet

    NASA Technical Reports Server (NTRS)

    Neiner, G. H.; Cole, G. L.; Arpasi, D. J.

    1972-01-01

    Digital computer control of a mixed-compression inlet is discussed. The inlet was terminated with a choked orifice at the compressor face station to dynamically simulate a turbojet engine. Inlet diffuser exit airflow disturbances were used. A digital version of a previously tested analog control system was used for both normal shock and restart control. Digital computer algorithms were derived using z-transform and finite difference methods. Using a sample rate of 1000 samples per second, the digital normal shock and restart controls essentially duplicated the inlet analog computer control results. At a sample rate of 100 samples per second, the control system performed adequately but was less stable.

  10. Numerical Simulation Of Shock Response To Wall Changes In High Speed Intakes

    NASA Astrophysics Data System (ADS)

    Fincham, J.; Taylor, N. V.

    2011-05-01

    Hypersonic flight presents a number of challenges to the designer, one of which is the intake behaviour. Minimising drag requires careful positioning of the intake shock structure, while accurate understanding of the dynamic behaviour is required to allow minimisation of margins. In this paper, a two shock external compression intake derived from the Reaction Engines Limited SABRE engine is examined using inviscid axisymmetric CFD analysis to determine the response of the normal shockwave to axial motion of the intake centrebody. An approximately linear relationship between centrebody position and both the normal shock position and additive drag in steady flow is demonstrated. Initial results from an unsteady analysis are also given, which show complex behaviours may be triggered by rapid motion of the centrebody in response to control input.

  11. Issue At Point: Until Electric Shocks Are Legal

    ERIC Educational Resources Information Center

    Buddenhagen, R. G.

    1971-01-01

    Examined are two alternatives to the use of electric shock to control destructive or repugnant behaviors in severely retarded or schizophrenic children: continued use of noncorporal punishment, and widescale application of appropriately arranged contingencies of positive reinforcement. (KW)

  12. Associative learning for danger avoidance nullifies innate positive chemotaxis to host olfactory stimuli in a parasitic wasp

    NASA Astrophysics Data System (ADS)

    Benelli, Giovanni; Stefanini, Cesare; Giunti, Giulia; Geri, Serena; Messing, Russell H.; Canale, Angelo

    2014-09-01

    Animals rely on associative learning for a wide range of purposes, including danger avoidance. This has been demonstrated for several insects, including cockroaches, mosquitoes, drosophilid flies, paper wasps, stingless bees, bumblebees and honeybees, but less is known for parasitic wasps. We tested the ability of Psyttalia concolor (Hymenoptera: Braconidae) females to associate different dosages of two innately attractive host-induced plant volatiles (HIPVs), ethyl octanoate and decanal, with danger (electric shocks). We conducted an associative treatment involving odours and shocks and two non-associative controls involving shocks but not odours and odours but not shocks. In shock-only and odour-only trained wasps, females preferred on HIPV-treated than on blank discs. In associative-trained wasps, however, P. concolor's innate positive chemotaxis for HIPVs was nullified (lowest HIPV dosage tested) or reversed (highest HIPV dosage tested). This is the first report of associative learning of olfactory cues for danger avoidance in parasitic wasps, showing that the effects of learning can override innate positive chemotaxes.

  13. Interplanetary magnetic field control of the Mars bow shock: Evidence for Venuslike interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, T.L.; Schwingenschuh, K.; Lichtenegger, H.

    1991-07-01

    The Mars bow shock location and shape have been determined by examining the PHOBOS spacecraft magnetometer data. Observations show that the position of the terminator bow shock varies with interplanetary magnetic field orientation in the same way as at Venus. The shock is farthest from Mars in the direction of the interplanetary electric field, consistent with the idea that mass loading plays an important role in the solar wind interaction with Mars. The authors also find that the shock cross section at the terminator plane is asymmetric and is controlled by the interplanetary magnetic field as expected from the asymmetricmore » propagation velocity of the fast magnetosonic wave. Comparing with earlier mission data, they show that the Mars shock location varies with solar activity. The shock is farther from Mars during solar maximum. Thus the solar wind interaction with Mars appears to be Venuslike, with a magnetic moment too small to affect significantly the solar wind interaction.« less

  14. Stress-induced alterations in interferon production and class II histocompatibility antigen expression

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.; Cunnick, J. E.; Armfield, A. V.; Wood, P. G.; Rabin, B. S.

    1992-01-01

    Mild electric foot-shock has been shown to be a stressor that can alter immune responses. Male Lewis rats were exposed to one session of 16 5.0-s 1.6-mA foot-shocks. Production of interferon-gamma by splenocytes in response to concanavalin-A was decreased in spleens from the shocked rats compared to control spleens. Spleen cells from rats treated with nadolol, a peripherally acting beta-adrenergic receptor antagonist, and then shocked, showed dose-dependent attenuation of the suppression of interferon-gamma production. This suggests that catecholamines mediate shock-induced suppression of interferon-gamma production. The percentage of splenic mononuclear cells expressing class II histocompatibility (Ia) antigens on their surfaces from spleens of shocked rats was determined by flow cytometry. Significantly decreased class II positive mononuclear cells were present in the spleens of shocked rats in comparison to the spleens of control rats. This may reflect an alteration of cell trafficking or decreased production of class II antigens.

  15. Repetitive extracorporeal shock wave applications are superior in inducing angiogenesis after full thickness burn compared to single application.

    PubMed

    Goertz, O; von der Lohe, L; Lauer, H; Khosrawipour, T; Ring, A; Daigeler, A; Lehnhardt, M; Kolbenschlag, J

    2014-11-01

    Burn wounds remain a challenge due to subsequent wound infection and septicemia, which can be prevented by acceleration of wound healing. The aim of the study was to analyze microcirculation and leukocyte endothelium interaction with particular focus on angiogenesis after full-thickness burn using three different repetitions of low energy shock waves. Full-thickness burns were inflicted to the ears of hairless mice (n=44; area: 1.6±0.05 mm2 (mean±SEM)). Mice were randomized into four groups: the control group received a burn injury but no shock waves; group A received ESWA (0.03 mJ/mm2) on day one after burn injury; group B received shock waves on day one and day three after burn injury; group C ESWA on day one, three and seven after burn injury. Intravital fluorescent microscopy was used to assess microcirculatory parameters, angiogenesis and leukocyte interaction. Values were obtained before burn (baseline value) immediately after and on days 1, 3, 7 and 12 after burn. Shock-wave treated groups showed significantly accelerated angiogenesis compared to the control group. The non-perfused area (NPA) is regarded as a parameter for angiogenesis and showed the following data on day 12 2.7±0.4% (group A, p=0.001), 1.4±0.5% (group B, p<0.001), 1.0±0.3% (group C, p<0.001), 6.1±0.9% (control group). Edema formation is positively correlated with the number of shock wave applications: day 12: group A: 173.2±9.8%, group B: 184.2±6.6%, group C: 201.1±6.9%, p=0.009 vs. control: 162.3±8.7% (all data: mean±SEM). According to our data shock waves positively impact the wound healing process following burn injury. Angiogenesis showed significantly improved activity after shock wave application. In all three treatment groups angiogenesis was higher compared to the control group. Within the ESWA groups, double applications showed better results than single application and three applications showed better results than single or double applications. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  16. Advanced Shock Position Control for Mode Transition in a Turbine Based Combined Cycle Engine Inlet Model

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Stueber, Thomas J.

    2013-01-01

    A dual flow-path inlet system is being tested to evaluate methodologies for a Turbine Based Combined Cycle (TBCC) propulsion system to perform a controlled inlet mode transition. Prior to experimental testing, simulation models are used to test, debug, and validate potential control algorithms. One simulation package being used for testing is the High Mach Transient Engine Cycle Code simulation, known as HiTECC. This paper discusses the closed loop control system, which utilizes a shock location sensor to improve inlet performance and operability. Even though the shock location feedback has a coarse resolution, the feedback allows for a reduction in steady state error and, in some cases, better performance than with previous proposed pressure ratio based methods. This paper demonstrates the design and benefit with the implementation of a proportional-integral controller, an H-Infinity based controller, and a disturbance observer based controller.

  17. Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen

    PubMed Central

    Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas

    2016-01-01

    The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent. PMID:27603017

  18. Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen.

    PubMed

    Kuriakose, Matthew; Skotak, Maciej; Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas

    2016-01-01

    The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent.

  19. Diagnostic value of Vbeta2-positive T-cell expansion in toxic shock syndrome.

    PubMed

    Wenisch, Christoph; Strunk, D; Krause, R; Smolle, K H

    2007-06-01

    diagnostic dilemma in toxic shock syndrome (TSS) is that the results of microbiologic investigations are often not available immediately because of the need for incubation, or no obvious entry point can be found. We describe three patients with a clinical diagnosis of TSS in whom microbiologic tests were negative. All patients had complicated courses with vasopressor-dependent shock, renal and respiratory failure, and disseminated intravascular coagulation for at least 1 week. In all three patients, diagnosis was considerably faster with the assessment of the expansion of T-cell-receptor Vbeta2-positive T cells (> 15%) than by Centers for Disease Control and Prevention (CDC) diagnosis, because of the complicated clinical picture or the delay caused by waiting for the results of microbiologic investigations. Our results indicate that diagnostic procedures incorporating Vbeta2-positive T cells could be a useful tool for the diagnosis of TSS.

  20. Cation disorder in shocked orthopyroxene.

    NASA Technical Reports Server (NTRS)

    Dundon, R. W.; Hafner, S. S.

    1971-01-01

    The study of cation distributions over nonequivalent lattice sites in minerals may reveal information on the history of temperature and pressure in rocks. Chemically homogeneous orthopyroxene specimens were shocked under well-controlled conditions in the laboratory in order to provide a basis for the interpretation of more complex natural materials. As a result of the investigation it is concluded that the distribution of magnesium and iron over the M1 and M2 positions in Bamle enstatite shocked at 1 megabar is highly disordered. It corresponds to an equilibrium distribution of at least 1000 C.

  1. Motivational Modulation of Self-Initiated and Externally Triggered Movement Speed Induced by Threat of Shock: Experimental Evidence for Paradoxical Kinesis in Parkinson’s Disease

    PubMed Central

    McDonald, Louise M.; Griffin, Harry J.; Angeli, Aikaterini; Torkamani, Mariam; Georgiev, Dejan; Jahanshahi, Marjan

    2015-01-01

    Background Paradoxical kinesis has been observed in bradykinetic people with Parkinson’s disease. Paradoxical kinesis occurs in situations where an individual is strongly motivated or influenced by relevant external cues. Our aim was to induce paradoxical kinesis in the laboratory. We tested whether the motivation of avoiding a mild electric shock was sufficient to induce paradoxical kinesis in externally-triggered and self-initiated conditions in people with Parkinson’s disease tested on medication and in age-matched controls. Methods Participants completed a shock avoidance behavioural paradigm in which half of the trials could result in a mild electric shock if the participant did not move fast enough. Half of the trials of each type were self-initiated and half were externally-triggered. The criterion for avoiding shock was a maximum movement time, adjusted according to each participant’s performance on previous trials using a staircase tracking procedure. Results On trials with threat of shock, both patients with Parkinson’s disease and controls had faster movement times compared to no potential shock trials, in both self-initiated and externally-triggered conditions. The magnitude of improvement of movement time from no potential shock to potential shock trials was positively correlated with anxiety ratings. Conclusions When motivated to avoid mild electric shock, patients with Parkinson’s disease, similar to healthy controls, showed significant speeding of movement execution. This was observed in both self-initiated and externally-triggered versions of the task. Nevertheless, in the ET condition the improvement of reaction times induced by motivation to avoid shocks was greater for the PD patients than controls, highlighting the value of external cues for movement initiation in PD patients. The magnitude of improvement from the no potential shock to the potential shock trials was associated with the threat-induced anxiety. This demonstration of paradoxical kinesis in the laboratory under both self-initiated and externally-triggered conditions has implications for motivational and attentional enhancement of movement speed in Parkinson’s disease. PMID:26284366

  2. Investigation of passive shock wave-boundary layer control for transonic airfoil drag reduction

    NASA Technical Reports Server (NTRS)

    Nagamatsu, H. T.; Brower, W. B., Jr.; Bahi, L.; Ross, J.

    1982-01-01

    The passive drag control concept, consisting of a porous surface with a cavity beneath it, was investigated with a 12-percent-thick circular arc and a 14-percent-thick supercritical airfoil mounted on the test section bottom wall. The porous surface was positioned in the shock wave/boundary layer interaction region. The flow circulating through the porous surface, from the downstream to the upstream of the terminating shock wave location, produced a lambda shock wave system and a pressure decrease in the downstream region minimizing the flow separation. The wake impact pressure data show an appreciably drag reduction with the porous surface at transonic speeds. To determine the optimum size of porosity and cavity, tunnel tests were conducted with different airfoil porosities, cavities and flow Mach numbers. A higher drag reduction was obtained by the 2.5 percent porosity and the 1/4-inch deep cavity.

  3. Epicardial shock-wave therapy improves ventricular function in a porcine model of ischaemic heart disease.

    PubMed

    Holfeld, Johannes; Zimpfer, Daniel; Albrecht-Schgoer, Karin; Stojadinovic, Alexander; Paulus, Patrick; Dumfarth, Julia; Thomas, Anita; Lobenwein, Daniela; Tepeköylü, Can; Rosenhek, Raphael; Schaden, Wolfgang; Kirchmair, Rudolf; Aharinejad, Seyedhossein; Grimm, Michael

    2016-12-01

    Previously we have shown that epicardial shock-wave therapy improves left ventricular ejection fraction (LVEF) in a rat model of myocardial infarction. In the present experiments we aimed to address the safety and efficacy of epicardial shock-wave therapy in a preclinical large animal model and to further evaluate mechanisms of action of this novel therapy. Four weeks after left anterior descending (LAD) artery ligation in pigs, the animals underwent re-thoracotomy with (shock-wave group, n = 6) or without (control group, n = 5) epicardial shock waves (300 impulses at 0.38 mJ/mm 2 ) applied to the infarcted anterior wall. Efficacy endpoints were improvement of LVEF and induction of angiogenesis 6 weeks after shock-wave therapy. Safety endpoints were haemodynamic stability during treatment and myocardial damage. Four weeks after LAD ligation, LVEF decreased in both the shock-wave (43 ± 3%, p < 0.001) and control (41 ± 4%, p = 0.012) groups. LVEF markedly improved in shock-wave animals 6 weeks after treatment (62 ± 9%, p = 0.006); no improvement was observed in controls (41 ± 4%, p = 0.36), yielding a significant difference. Quantitative histology revealed significant angiogenesis 6 weeks after treatment (controls 2 ± 0.4 arterioles/high-power field vs treatment group 9 ± 3; p = 0.004). No acute or chronic adverse effects were observed. As a potential mechanism of action in vitro experiments showed stimulation of VEGF receptors after shock-wave treatment in human coronary artery endothelial cells. Epicardial shock-wave treatment in a large animal model of ischaemic heart failure exerted a positive effect on LVEF improvement and did not show any adverse effects. Angiogenesis was induced by stimulation of VEGF receptors. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Shock Positioning Controls Designs for a Supersonic Inlet

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.

    2010-01-01

    Under the NASA Fundamental Aeronautics Program, the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The supersonic inlet design that is utilized to efficiently compress the incoming air and deliver it to the engine has many design challenges. Among those challenges is the shock positioning of internal compression inlets, which requires active control in order to maintain performance and to prevent inlet unstarts due to upstream (freestream) and downstream (engine) disturbances. In this paper a novel feedback control technique is presented, which emphasizes disturbance attenuation among other control performance criteria, while it ties the speed of the actuation system(s) to the design of the controller. In this design, the desired performance specifications for the overall control system are used to design the closed loop gain of the feedback controller and then, knowing the transfer function of the plant, the controller is calculated to achieve this performance. The innovation is that this design procedure is methodical and allows maximization of the performance of the designed control system with respect to actuator rates, while the stability of the calculated controller is guaranteed.

  5. Application of quadratic optimization to supersonic inlet control

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.; Zeller, J. R.

    1971-01-01

    The application of linear stochastic optimal control theory to the design of the control system for the air intake (inlet) of a supersonic air-breathing propulsion system is discussed. The controls must maintain a stable inlet shock position in the presence of random airflow disturbances and prevent inlet unstart. Two different linear time invariant control systems are developed. One is designed to minimize a nonquadratic index, the expected frequency of inlet unstart, and the other is designed to minimize the mean square value of inlet shock motion. The quadratic equivalence principle is used to obtain the best linear controller that minimizes the nonquadratic performance index. The two systems are compared on the basis of unstart prevention, control effort requirements, and sensitivity to parameter variations.

  6. Does extracorporeal shock wave lithotripsy cause hearing impairment in children?

    PubMed

    Tuncer, Murat; Sahin, Cahit; Yazici, Ozgur; Kafkasli, Alper; Turk, Akif; Erdogan, Banu A; Faydaci, Gokhan; Sarica, Kemal

    2015-03-01

    We evaluated the possible effects of noise created by high energy shock waves on the hearing function of children treated with extracorporeal shock wave lithotripsy. A total of 65 children with normal hearing function were included in the study. Patients were divided into 3 groups, ie those becoming stone-free after 1 session of shock wave lithotripsy (group 1, 22 children), those requiring 3 sessions to achieve stone-free status (group 2, 21) and healthy children/controls (group 3, 22). Extracorporeal shock wave lithotripsy was applied with patients in the supine position with a 90-minute frequency and a total of 2,000 shock waves in each session (Compact Sigma, Dornier MedTech, Wessling, Germany). Second energy level was used with a maximum energy value of 58 joules per session in all patients. Hearing function and possible cochlear impairment were evaluated by transient evoked otoacoustic emissions test at 1.0, 1.4, 2.0, 2.8 and 4.0 kHz frequencies before the procedure, 2 hours later, and 1 month after completion of the first shock wave lithotripsy session in groups 1 and 2. In controls the same evaluation procedures were performed at the beginning of the study and 7 weeks later. Regarding transient evoked otoacoustic emissions data, in groups 1 and 2 there was no significant alteration in values obtained after shock wave lithotripsy compared to values obtained at the beginning of the study, similar to controls. A well planned shock wave lithotripsy procedure is a safe and effective treatment in children with urinary stones and causes no detectable harmful effect on hearing function. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  7. [Anaphylactic shock revealing anisakiasis].

    PubMed

    Magnaval, Jean-François; Berry, Antoine; Nadrigny, Michel

    2002-09-07

    The manifestations of anisakiasis are essentially digestive pain, nausea or transit disorders. When it is initially asymptomatic, it is later revealed by a major complication, which is occlusion on an eosinophilic granuloma of the ileum. Over the past 5 years, the international literature has reported allergic manifestations related to this helminthozoonose, such as urticaria, angioedema, bronchospasm and occasionally anaphylactic shock. A 60 year-old man presented with an anaphylactic shock and diarrhea. One month later, he exhibited persisting asthenia, cough and intermittant pruriginous rashes. Blood hypereosinophilia was borderline and total IgE was clearly increased. The initial event was retrospectively labeled "histaminic shock following ingestion of tuna fish". The discovery of highly positive anisakiasis serology, conducted simultaneously in 2 different laboratories, corrected the diagnosis. The patient was treated with albendazole (10 mg/kg/day for 7 days) with excellent results on the clinical and biological symptomatology. With the occurrence of an allergic reaction, whether major or minor, a notion of ingestion of fresh fish must be searched for and, if positive, an immunodiagnosis of anisakiasis must be requested. Any seriological positivity should be controled by gastro-duodenal endoscopy. If the search for larvae is negative, we recommend anthelminthic treatment as a precaution.

  8. Timing in the Absence of Supraspinal Input I: Variable, but not Fixed, Spaced Stimulation of the Sciatic Nerve Undermines Spinally-Mediated Instrumental Learning

    PubMed Central

    Baumbauer, Kyle M.; Hoy, Kevin C.; Huie, John R.; Hughes, Abbey J.; Woller, Sarah A.; Puga, Denise A.; Setlow, Barry; Grau, James W.

    2008-01-01

    Rats with complete spinal transections are capable of acquiring a simple instrumentally trained response. If rats receive shock to one hindlimb when the limb is extended (controllable shock), the spinal cord will learn to hold the leg in a flexed position that minimizes shock exposure. If shock is delivered irrespective of leg position, subjects do not exhibit an increase in flexion duration and subsequently fail to learn when tested with controllable shock (learning deficit). Just 6 min of variable intermittent shock produces a learning deficit that lasts 24 hrs. Evidence suggests that the neural mechanisms underlying the learning deficit may be related to those involved in other instances of spinal plasticity (e.g., wind-up, long-term potentiation). The present paper begins to explore these relations by demonstrating that direct stimulation of the sciatic nerve also impairs instrumental learning. Six minutes of electrical stimulation (mono- or biphasic direct current [DC]) of the sciatic nerve in spinally transected rats produced a voltage-dependent learning deficit that persisted for 24 hr (Experiments 1–2) and was dependent on C-fiber activation (Experiment 7). Exposure to continuous stimulation did not produce a deficit, but intermittent burst or single pulse (as short as 0.1 ms) stimulation (delivered at a frequency of 0.5 Hz) did, irrespective of the pattern (fixed or variable) of stimulus delivery (Experiments 3–6, 8). When the duration of stimulation was extended from 6 to 30 min, a surprising result emerged; shocks applied in a random (variable) fashion impaired subsequent learning whereas shocks given in a regular pattern (fixed spacing) did not (Experiments 9–10). The results imply that spinal neurons are sensitive to temporal relations and that stimulation at regular intervals can have a restorative effect. PMID:18674601

  9. Right ventricular apical versus non-apical implantable cardioverter defibrillator lead: A systematic review and meta-analysis.

    PubMed

    Garg, Jalaj; Chaudhary, Rahul; Shah, Neeraj; Palaniswamy, Chandrasekar; Bozorgnia, Babak; Nazir, Talha; Natale, Andrea; Kutyifa, Valentina

    We aimed to study the effect of right ventricular implantable cardioverter defibrillator (ICD) lead positioning on clinical outcomes in patients undergoing ICD placement. A systematic literature search was performed using PubMed, EMBASE, Web of Science, and Cochrane Central Register of Controlled Trials to identify clinical trials comparing outcomes in patients with ICD leads in apical and non-apical positions. The primary outcome of our study was death at 1-year follow-up. Secondary outcomes studied were "death at 3years", "total number of shocks", "appropriate shocks", "inappropriate shocks" and "cut-to-suture time". We analyzed a total of 3731 patients (2852 in apical and 879 in non-apical ICD groups) enrolled in 4 clinical trials. No significant difference was observed between the apical and non-apical ICD groups in all-cause mortality at 1year (OR 0.88; 95% CI 0.51-1.49, p=0.63; I 2 =5.32%). Similarly, no differences were seen between the two groups in death at 3years (OR=0.76; 95% CI 0.56-1.04, p=0.08; I 2 =0%), total number of shocks (OR 0.99; 95% CI 0.81-1.22, p=0.95; I 2 =0%), appropriate shocks (OR 1.00; 95% CI 0.79-1.27, p=0.99; I 2 =0%), inappropriate shocks (OR 0.98; 95% CI 0.70-1.37, p=0.91; I 2 =0%) and cut-to-suture time (Standard mean difference=-0.03; 95% CI -0.20 to 0.14, p=0.73; I 2 =0%). No publication bias was seen. Non-apical RV ICD lead implantation is non-inferior to traditional RV apical position with no significant differences in mortality, total number of shocks, appropriate shocks, inappropriate shocks and procedural time. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Blood autotransfusion outcomes compared with Ringer lactate infusion in dogs with hemorrhagic shock induced by controlled bleeding.

    PubMed

    Safaei, Mansour; Takami, Hassan Mousavi

    2011-10-01

    The most common cause of shock in the surgical or trauma patient is hemorrhage. Crystalloid solutions and blood transfusion are the mainstays of treatment of hemorrhagic shock. Considering the disadvantages of allogeneic blood transfusion, such as risk of transmission of infectious diseases, and access and maintenance limitations, treatment of shock with autologous blood seems to be a decent solution. Autologous blood accumulated in body cavities in traumatic bleeding (such hemothorax), and bloodshed in operation field during open heart or vascular surgeries, and similar situations, can be utilized again. In this study, autotransfusion effects compared with crystalloid fluid in the treatment of hemorrhagic shock was investigated. After induction of hemorrhagic shock in dogs by Wiggers type controlled bleeding, treating them in a group with autologous blood and another group with Ringer lactate were performed, and the results of treatment were studied. There was no mortality in both treatment approaches. Immediately after treatment, crystalloid positive effects such as renormalized vital signs and appropriate consciousness were more noticeable than autotransfusion, while twenty-four hours after, the desired effects of autologous blood were more pronounced like decreased metabolic acidosis and improvement of diuresis. Crystalloid during the first hours after treatment of hemorrhagic shock may be better than autologous blood as preferred treatment, while autotransfusion showed its benefits some hours after. This finding can be used to develop better strategies for treatment of hemorrhagic shock.

  11. Trajectory Control of Small Rotating Projectiles by Laser Sparks

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Limbach, Christopher; Miles, Richard

    2015-09-01

    The possibility of controlling the trajectory of the supersonic motion of a rotating axisymmetric projectile using a remotely generated laser spark was investigated. The dynamic images of the interaction of thermal inhomogeneity created by the laser spark with the bow shock in front of the projectile were obtained. The criterion for a strong shock wave interaction with the thermal inhomogeneity at different angles of a shock wave was derived. Significant changes in the configuration of the bow shock wave and changes in the pressure distribution over the surface of the rotating projectile can appear for laser spark temperature of T' = 2500-3000 K. The experiment showed that strong interaction takes place for both plane and oblique shock waves. The measurement of the velocity of the precession of the rotating projectile axis from the initial position in time showed that the angle of attack of the projectile deviates with a typical time of perturbation propagation along the projectile's surface. Thus the laser spark can change the trajectory of the rotating projectile, moving at supersonic speed, through the creation of thermal heterogeneity in front of it.

  12. Plumbing system shock absorbers as a source of Legionella pneumophila.

    PubMed

    Memish, Z A; Oxley, C; Contant, J; Garber, G E

    1992-12-01

    Water distribution systems have been demonstrated to be a major source of nosocomial legionellosis. We describe an outbreak in our institution in which a novel source of Legionella pneumophila was identified in the plumbing system. After an outbreak of 10 cases of legionellosis in our hospital, recommended measures including superheating of the hot water to 80 degrees C, hyperchlorination to 2 ppm, and flushing resulted in no new cases in the following 5 years. Recently, despite these control measures, three new cases occurred. Surveillance cultures of shower heads and water tanks were negative; cultures of tap water samples remained positive. This prompted a search for another reservoir. Shock absorbers installed within water pipes to decrease noise were suspected. One hundred twenty-five shock absorbers were removed and cultured. A total of 13 (10%) yielded heavy growth of L. pneumophila (serogroup 1). Since their removal, no new cases have been found and the percentage of positive results of random tap water culture has dropped from 20% to 5%. This is the first report that identifies shock absorbers as a possible reservoir for L. pneumophila. We recommend that institutions with endemic legionellosis assess the water system for possible removal of shock absorbers.

  13. The effects of physical therapy with neuromuscular electrical stimulation in patients with septic shock

    PubMed Central

    Lago, Alessandra Fabiane; de Oliveira, Anamaria Siriani; de Souza, Hugo Celso Dutra; da Silva, João Santana; Basile-Filho, Anibal; Gastaldi, Ada Clarice

    2018-01-01

    Abstract Introduction: Septic shock is a potentially fatal organ dysfunction caused by an imbalance of the host response to infection. The changes in microcirculation during sepsis can be explained by the alterations in the endothelial barrier function. Endothelial progenitor cells (EPCs) are a potential recovery index of endothelial function and it an increase in response to neuromuscular electrical stimulation (NMES) was demonstrated. Therefore, the objective of this study is to investigate the effects of NMES in patients with septic shock. Methods and analysis: It is a study protocol for a randomized cross-over design in an intensive care unit of a tertiary University hospital. Thirty-one patients aged 18 to 65 years. The study will be divided in 2 phases: the phase one will be held in the first 72 hours of septic shock and the phase two after 3 days of first assessment. Patients will be randomly selected to the intervention protocol (decubitus position with the limbs raised and NMES) and control protocol (decubitus position with the limbs raised without NMES). After this procedure, the patients will be allocated in group 1 (intervention and control protocol) or group 2 (control and intervention protocol) with a wash-out period of 4 to 6 hours between them. The main outcome is mobilization of EPCs. The secondary outcome is metabolic and hemodynamic data. A linear mixed model will be used for analysis of dependent variables and estimated values of the mean of the differences of each effect. PMID:29419665

  14. Effect of back-pressure forcing on shock train structures in rectangular channels

    NASA Astrophysics Data System (ADS)

    Gnani, F.; Zare-Behtash, H.; White, C.; Kontis, K.

    2018-04-01

    The deceleration of a supersonic flow to the subsonic regime inside a high-speed engine occurs through a series of shock waves, known as a shock train. The generation of such a flow structure is due to the interaction between the shock waves and the boundary layer inside a long and narrow duct. The understanding of the physics governing the shock train is vital for the improvement of the design of high-speed engines and the development of flow control strategies. The present paper analyses the sensitivity of the shock train configuration to a back-pressure variation. The complex characteristics of the shock train at an inflow Mach number M = 2 in a channel of constant height are investigated with two-dimensional RANS equations closed by the Wilcox k-ω turbulence model. Under a sinusoidal back-pressure variation, the simulated results indicate that the shock train executes a motion around its mean position that deviates from a perfect sinusoidal profile with variation in oscillation amplitude, frequency, and whether the pressure is first increased or decreased.

  15. Use of ILTV Control Laws for LaNCETS Flight Research

    NASA Technical Reports Server (NTRS)

    Moua, Cheng

    2010-01-01

    A report discusses the Lift and Nozzle Change Effects on Tail Shock (LaNCETS) test to investigate the effects of lift distribution and nozzle-area ratio changes on tail shock strength of an F-15 aircraft. Specific research objectives are to obtain inflight shock strength for multiple combinations of nozzle-area ratio and lift distribution; compare results with preflight prediction tools; and update predictive tools with flight results. The objectives from a stability and control perspective are to ensure adequate aircraft stability for the changes in lift distribution and plume shape, and ensure manageable transient from engaging and disengaging the ILTV research control laws. In order to change the lift distribution and plume shape of the F-15 aircraft, a decade-old Inner Loop Thrust Vectoring (ILTV) research control law was used. Flight envelope expansion was performed for the test configuration and flight conditions prior to the probing test points. The approach for achieving the research objectives was to utilize the unique capabilities of NASA's NF-15B-837 aircraft to allow the adjustment of the nozzle-area ratio and/or canard positions by engaging the ILTV research control laws. The ILTV control laws provide the ability to add trim command biases to canard positions, nozzle area ratios, and thrust vectoring through the use of datasets. Datasets consist of programmed test inputs (PTIs) that define trims to change the nozzle-area ratio and/or canard positions. The trims are applied as increments to the normally commanded positions. A LaNCETS non-linear, six-degrees-of-freedom simulation capable of realtime pilot-in-the-loop, hardware-in-the-loop, and non-real-time batch support was developed and validated. Prior to first flight, extensive simulation analyses were performed to show adequate stability margins with the changes in lift distribution and plume shape. Additionally, engagement/disengagement transient analysis was also performed to show manageable transients.

  16. Analyzing Raman - Infrared spectral correlation in the recently found meteorite Csátalja

    NASA Astrophysics Data System (ADS)

    Kereszturi, A.; Gyollai, I.; Kereszty, Zs.; Kiss, K.; Szabó, M.; Szalai, Z.; Ringer, M.; Veres, M.

    2017-02-01

    Correlating the Raman and infrared spectra of shocked minerals in Csátalja ordinary chondrite (H4, S2, W2) with controlling the composition by EPMA measurements, we identified and improved various shock indicators, as infrared spectro-microscopic analysis has been poorly used for shock impact alteration studies of meteorites to date. We also provide reference spectra as SOM for the community with local mineralogical and shock alteration related context to support further standardization of the IR ATR based measurements. Raman band positions shifted in conjunction with the increase in full width half maximum (FWHM) with shock stage in olivine minerals while in the infrared spectra when comparing the IR band positions and IR maximal absorbance, increasing correlation was found as a function of increasing shock effects. This is the first observational confirmation with the ATR method of the already expected shock related disordering. In the case of shocked pyroxenes the well-known peak broadening and peak shift was confirmed by Raman method, beyond the level that could have been produced by only chemical changes. With increasing shock level the 852-864 cm- 1 and 1055-1071 cm- 1 FTIR bands finally disappeared. From the shock effect occasionally mixed mineral structures formed, especially feldspars together with pyroxene. Feldspars were only present in the shock melted volumes, thus produced by the shock effect itself. Based on the above mentioned observations in Csátalja meteorite the less shocked (only fractured) part witnessed 2-6 GPa shock pressure with temperature below 100 °C. The moderately shocked parts (minerals with mosaicism and mechanical twins) witnessed 5-10 GPa pressure and 900 °C temperature. The strongly shocked area (many olivine and pyroxene grains) was subject to 10-15 GPa and 1000 °C. The existence of broad peak near 510 cm- 1 and disappearance of other peaks of feldspar at 480 and 570 cm- 1 indicate the presence of maskelynite, which proposes that the peak shock pressure could reach 20 GPa at certain locations. We identified higher shock levels than earlier works in this meteorite and provided examples how heterogeneous the shock effect and level could be at small spatial scale. The provided reference spectra support the future improvement for the standardization of infrared ATR based methods and the understanding of shock-related mineral alterations beyond the optical appearance.

  17. Density and delay of punishment of free-operant avoidance1

    PubMed Central

    Baron, Alan; Kaufman, Arnold; Fazzini, Dan

    1969-01-01

    In two experiments, the free-operant shock-avoidance behavior of rats was punished by electric shock. Two aspects of the schedule of response-produced shock were varied: the frequency of punishment over time (punishment density) and the temporal interval between the punished response and the punishment (punishment delay). The general finding was that response-produced shock suppressed avoidance responding under most of the density-delay combinations studied, and suppression increased as a function of increases in density and decreases in delay. Rate increases of small magnitude also were observed, usually as an initial reaction to the lesser densities and longer delays. Response suppression, while decreasing the number of punishment shocks received, also increased the number of avoidance shocks, so that the total number of shocks received usually was greater than the minimal number possible. The results were discussed from the standpoint of similarities between the effects of punishing positively and negatively reinforced behavior. The finding that subjects did not minimize the total number of shocks suggested that when avoidance behavior is punished, responding is controlled more by the local consequences of responding than by overall shock frequencies during the course of the session. PMID:16811408

  18. Blood autotransfusion outcomes compared with Ringer lactate infusion in dogs with hemorrhagic shock induced by controlled bleeding*

    PubMed Central

    Safaei, Mansour; Takami, Hassan Mousavi

    2011-01-01

    BACKGROUND: The most common cause of shock in the surgical or trauma patient is hemorrhage. Crystalloid solutions and blood transfusion are the mainstays of treatment of hemorrhagic shock. Considering the disadvantages of allogeneic blood transfusion, such as risk of transmission of infectious diseases, and access and maintenance limitations, treatment of shock with autologous blood seems to be a decent solution. Autologous blood accumulated in body cavities in traumatic bleeding (such hemothorax), and bloodshed in operation field during open heart or vascular surgeries, and similar situations, can be utilized again. In this study, autotransfusion effects compared with crystalloid fluid in the treatment of hemorrhagic shock was investigated. METHODS: After induction of hemorrhagic shock in dogs by Wiggers type controlled bleeding, treating them in a group with autologous blood and another group with Ringer lactate were performed, and the results of treatment were studied. RESULTS: There was no mortality in both treatment approaches. Immediately after treatment, crystalloid positive effects such as renormalized vital signs and appropriate consciousness were more noticeable than autotransfusion, while twenty-four hours after, the desired effects of autologous blood were more pronounced like decreased metabolic acidosis and improvement of diuresis. CONCLUSIONS: Crystalloid during the first hours after treatment of hemorrhagic shock may be better than autologous blood as preferred treatment, while autotransfusion showed its benefits some hours after. This finding can be used to develop better strategies for treatment of hemorrhagic shock. PMID:22973328

  19. The apelinergic system as an alternative to catecholamines in low-output septic shock.

    PubMed

    Coquerel, David; Sainsily, Xavier; Dumont, Lauralyne; Sarret, Philippe; Marsault, Éric; Auger-Messier, Mannix; Lesur, Olivier

    2018-01-19

    Catecholamines, in concert with fluid resuscitation, have long been recommended in the management of septic shock. However, not all patients respond positively and controversy surrounding the efficacy-to-safety profile of catecholamines has emerged, trending toward decatecholaminization. Contextually, it is time to re-examine the "maintaining blood pressure" paradigm by identifying safer and life-saving alternatives. We put in perspective the emerging and growing knowledge on a promising alternative avenue: the apelinergic system. This target exhibits invaluable pleiotropic properties, including inodilator activity, cardio-renal protection, and control of fluid homeostasis. Taken together, its effects are expected to be greatly beneficial for patients in septic shock.

  20. Shock loading predictions from application of indicial theory to shock-turbulence interactions

    NASA Technical Reports Server (NTRS)

    Keefe, Laurence R.; Nixon, David

    1991-01-01

    A sequence of steps that permits prediction of some of the characteristics of the pressure field beneath a fluctuating shock wave from knowledge of the oncoming turbulent boundary layer is presented. The theory first predicts the power spectrum and pdf of the position and velocity of the shock wave, which are then used to obtain the shock frequency distribution, and the pdf of the pressure field, as a function of position within the interaction region. To test the validity of the crucial assumption of linearity, the indicial response of a normal shock is calculated from numerical simulation. This indicial response, after being fit by a simple relaxation model, is used to predict the shock position and velocity spectra, along with the shock passage frequency distribution. The low frequency portion of the shock spectra, where most of the energy is concentrated, is satisfactorily predicted by this method.

  1. CONTROL RODS FOR NUCLEAR REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, F.R.

    1963-01-16

    A means for controlling the control rod in emergency, when it is desired to shutdown the reactor with the shortest possible delay, is described. When the emergency occurs the control rod is allowed to drop freely under gravity from the control rod support tube into the bore in the reactor core. A normal shutdown is reached almost at the lowest rod position. In the shut-down position and also below it, the control rod had its full effect of reducing the level of activity in the core. When the shut-down position was reached, a brake came into action to decelerate themore » rod and reduce shock and the likelihood of damage. (C.E.S.)« less

  2. Minutes - Accredited Standards Committee on Mechanical Shock and Vibration, S2. U.S. Tag for ISO/TC108 Mechanical Vibration and Shock

    DTIC Science & Technology

    1991-08-02

    if required) - Hanning Window - (4) averages (linear, non -overlapping) At the designated measurement positions suitable surfaces shall be provided such...these efforts of particular importance in order to remain competitive in the international arena with respect to noise control technology and noise...Organizational matters and reports on working grouos , including reports on letter ballots and international matters (continued) b) S3/WG39 (2) - Human

  3. A shock surface geometry - The February 15-16, 1967, event. [solar flare associated interplanetary shock

    NASA Technical Reports Server (NTRS)

    Lepping, R. P.; Chao, J. K.

    1976-01-01

    An estimated shape is presented for the surface of the flare-associated interplanetary shock of February 15-16, 1967, as seen in the ecliptic-plane cross section. The estimate is based on observations by Explorer 33 and Pioneers 6 and 7. The estimated shock normal at the Explorer 33 position is obtained by a least-squares shock parameter-fitting procedure for that satellite's data; the shock normal at the Pioneer 7 position is found by using the magnetic coplanarity theorem and magnetic-field data. The average shock speed from the sun to each spacecraft is determined along with the local speed at Explorer 33 and the relations between these speeds and the position of the initiating solar flare. The Explorer 33 shock normal is found to be severely inclined and not typical of interplanetary shocks. It is shown that the curvature of the shock surface in the ecliptic plane near the earth-Pioneer 7 region is consistent with a radius of not more than 0.4 AU.

  4. 77 FR 58325 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ...,275 1,275 installation, and operational test hour = 1, 275. (one Group 2 Model 737 airplane). Wire... AD would require installing a new relay and doing certain wiring changes of the entertainment control... when the entertainment control switch is in the OFF position, which could cause an electrical shock...

  5. The effects of physical therapy with neuromuscular electrical stimulation in patients with septic shock: Study protocol for a randomized cross-over design.

    PubMed

    Lago, Alessandra Fabiane; de Oliveira, Anamaria Siriani; de Souza, Hugo Celso Dutra; da Silva, João Santana; Basile-Filho, Anibal; Gastaldi, Ada Clarice

    2018-02-01

    Septic shock is a potentially fatal organ dysfunction caused by an imbalance of the host response to infection. The changes in microcirculation during sepsis can be explained by the alterations in the endothelial barrier function. Endothelial progenitor cells (EPCs) are a potential recovery index of endothelial function and it an increase in response to neuromuscular electrical stimulation (NMES) was demonstrated. Therefore, the objective of this study is to investigate the effects of NMES in patients with septic shock. It is a study protocol for a randomized cross-over design in an intensive care unit of a tertiary University hospital. Thirty-one patients aged 18 to 65 years. The study will be divided in 2 phases: the phase one will be held in the first 72 hours of septic shock and the phase two after 3 days of first assessment. Patients will be randomly selected to the intervention protocol (decubitus position with the limbs raised and NMES) and control protocol (decubitus position with the limbs raised without NMES). After this procedure, the patients will be allocated in group 1 (intervention and control protocol) or group 2 (control and intervention protocol) with a wash-out period of 4 to 6 hours between them. The main outcome is mobilization of EPCs. The secondary outcome is metabolic and hemodynamic data. A linear mixed model will be used for analysis of dependent variables and estimated values of the mean of the differences of each effect.

  6. Calibration of a shock wave position sensor using artificial neural networks

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Weiland, Kenneth E.

    1993-01-01

    This report discusses the calibration of a shock wave position sensor. The position sensor works by using artificial neural networks to map cropped CCD frames of the shadows of the shock wave into the value of the shock wave position. This project was done as a tutorial demonstration of method and feasibility. It used a laboratory shadowgraph, nozzle, and commercial neural network package. The results were quite good, indicating that artificial neural networks can be used efficiently to automate the semi-quantitative applications of flow visualization.

  7. Fuel assembly for nuclear reactors

    DOEpatents

    Creagan, Robert J.; Frisch, Erling

    1977-01-01

    A new and improved fuel assembly is formed to minimize the amount of parasitic structural material wherein a plurality of hollow tubular members are juxtaposed to the fuel elements of the assembly. The tubular members may serve as guide tubes for control elements and are secured to a number of longitudinally spaced grid members along the fuel assembly. The grid members include means thereon engaging each of the fuel elements to laterally position the fuel elements in a predetermined array. Openings in the bottom of each hollow member serve as a shock absorber to cushion shock transmitted to the structure when the control elements are rapidly inserted in their corresponding tubular members.

  8. The Impact of Positive Income Shocks on Risky Sexual Behavior: Experimental Evidence from Tanzania.

    PubMed

    Wagner, Zachary; Gong, Erick; de Walque, Damien; Dow, William H

    2017-03-01

    In this paper, we exploit a lottery in Tanzania, which randomly assigned eligible participants to receive $100 cash grants. The randomized nature of the lottery allows us to estimate the causal impact of positive income shocks on risky sexual behavior. We found that winning the lottery led men to have 0.28 (95 % CI 0.14, 0.55) more sexual partners and to a 0.21 (95 % CI 0.01-0.4) increase in the probability of unprotected sex with a non-primary partner relative to a control group of eligible non-winners. We found no significant effect of winning the lottery on the sexual behavior of women.

  9. Impact of Behavioral Control on the Processing of Nociceptive Stimulation

    PubMed Central

    Grau, James W.; Huie, J. Russell; Garraway, Sandra M.; Hook, Michelle A.; Crown, Eric D.; Baumbauer, Kyle M.; Lee, Kuan H.; Hoy, Kevin C.; Ferguson, Adam R.

    2012-01-01

    How nociceptive signals are processed within the spinal cord, and whether these signals lead to behavioral signs of neuropathic pain, depends upon their relation to other events and behavior. Our work shows that these relations can have a lasting effect on spinal plasticity, inducing a form of learning that alters the effect of subsequent nociceptive stimuli. The capacity of lower spinal systems to adapt, in the absence of brain input, is examined in spinally transected rats that receive a nociceptive shock to the tibialis anterior muscle of one hind leg. If shock is delivered whenever the leg is extended (controllable stimulation), it induces an increase in flexion duration that minimizes net shock exposure. This learning is not observed in subjects that receive the same amount of shock independent of leg position (uncontrollable stimulation). These two forms of stimulation have a lasting, and divergent, effect on subsequent learning: controllable stimulation enables learning whereas uncontrollable stimulation disables it (learning deficit). Uncontrollable stimulation also enhances mechanical reactivity. We review evidence that training with controllable stimulation engages a brain-derived neurotrophic factor (BDNF)-dependent process that can both prevent and reverse the consequences of uncontrollable shock. We relate these effects to changes in BDNF protein and TrkB signaling. Controllable stimulation is also shown to counter the effects of peripheral inflammation (from intradermal capsaicin). A model is proposed that assumes nociceptive input is gated at an early sensory stage. This gate is sensitive to current environmental relations (between proprioceptive and nociceptive input), allowing stimulation to be classified as controllable or uncontrollable. We further propose that the status of this gate is affected by past experience and that a history of uncontrollable stimulation will promote the development of neuropathic pain. PMID:22934018

  10. Sharp plasma pinnacle structure based on shockwave for an improved laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Fang, Ming; Zhang, Zhijun; Wang, Wentao; Liu, Jiansheng; Li, Ruxin

    2018-07-01

    We created a sharp plasma pinnacle structure for localized electron injection and controlled acceleration in a laser wakefield accelerator. The formation of this shockwave-based pinnacle structure was investigated using aerodynamic theory. Details and scaling laws for the shockwave angle, shock position, shock width, and density ratio were experimentally and theoretically presented. Such work is crucial to yielding an expected plasma density distribution in a laser–plasma experiment but has had little discussion in the literature. Compared with the commonly used shock downramp structure, the particle-in-cell simulations demonstrated that the e beam injected in the created pinnacle structure could be accelerated to higher energy with much smaller root-mean-square relative energy spread. Moreover, this study indicated that the beam charge and transverse emittance can be tuned by the shock angle.

  11. Dynamic control of Hsf1 during heat shock by a chaperone switch and phosphorylation

    PubMed Central

    Zheng, Xu; Krakowiak, Joanna; Patel, Nikit; Beyzavi, Ali; Ezike, Jideofor; Khalil, Ahmad S; Pincus, David

    2016-01-01

    Heat shock factor (Hsf1) regulates the expression of molecular chaperones to maintain protein homeostasis. Despite its central role in stress resistance, disease and aging, the mechanisms that control Hsf1 activity remain unresolved. Here we show that in budding yeast, Hsf1 basally associates with the chaperone Hsp70 and this association is transiently disrupted by heat shock, providing the first evidence that a chaperone repressor directly regulates Hsf1 activity. We develop and experimentally validate a mathematical model of Hsf1 activation by heat shock in which unfolded proteins compete with Hsf1 for binding to Hsp70. Surprisingly, we find that Hsf1 phosphorylation, previously thought to be required for activation, in fact only positively tunes Hsf1 and does so without affecting Hsp70 binding. Our work reveals two uncoupled forms of regulation - an ON/OFF chaperone switch and a tunable phosphorylation gain - that allow Hsf1 to flexibly integrate signals from the proteostasis network and cell signaling pathways. DOI: http://dx.doi.org/10.7554/eLife.18638.001 PMID:27831465

  12. Observation of laser-driven shock propagation by nanosecond time-resolved Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Guoyang; Zheng, Xianxu; Song, Yunfei; Zeng, Yangyang; Guo, Wencan; Zhao, Jun; Yang, Yanqiang

    2015-01-01

    An improved nanosecond time-resolved Raman spectroscopy is performed to observe laser-driven shock propagation in the anthracene/epoxy glue layer. The digital delay instead of optical delay line is introduced for sake of unlimited time range of detection, which enables the ability to observe both shock loading and shock unloading that always lasts several hundred nanoseconds. In this experiment, the peak pressure of shock wave, the pressure distribution, and the position of shock front in gauge layer were determined by fitting Raman spectra of anthracene using the Raman peak shift simulation. And, the velocity of shock wave was calculated by the time-dependent position of shock front.

  13. Digital integrated control of a Mach 2.5 mixed-compression supersonic inlet and an augmented mixed-flow turbofan engine

    NASA Technical Reports Server (NTRS)

    Batterton, P. G.; Arpasi, D. J.; Baumbick, R. J.

    1974-01-01

    A digitally implemented integrated inlet-engine control system was designed and tested on a mixed-compression, axisymmetric, Mach 2.5, supersonic inlet with 45 percent internal supersonic area contraction and a TF30-P-3 augmented turbofan engine. The control matched engine airflow to available inlet airflow. By monitoring inlet terminal shock position and over-board bypass door command, the control adjusted engine speed so that in steady state, the shock would be at the desired location and the overboard bypass doors would be closed. During engine-induced transients, such as augmentor light-off and cutoff, the inlet operating point was momentarily changed to a more supercritical point to minimize unstarts. The digital control also provided automatic inlet restart. A variable inlet throat bleed control, based on throat Mach number, provided additional inlet stability margin.

  14. Re-forming supercritical quasi-parallel shocks. I - One- and two-dimensional simulations

    NASA Technical Reports Server (NTRS)

    Thomas, V. A.; Winske, D.; Omidi, N.

    1990-01-01

    The process of reforming supercritical quasi-parallel shocks is investigated using one-dimensional and two-dimensional hybrid (particle ion, massless fluid electron) simulations both of shocks and of simpler two-stream interactions. It is found that the supercritical quasi-parallel shock is not steady. Instread of a well-defined shock ramp between upstream and downstream states that remains at a fixed position in the flow, the ramp periodically steepens, broadens, and then reforms upstream of its former position. It is concluded that the wave generation process is localized at the shock ramp and that the reformation process proceeds in the absence of upstream perturbations intersecting the shock.

  15. Shock Interaction with a Finite Thickness Two-Gas Interface

    NASA Astrophysics Data System (ADS)

    Labenski, John; Kim, Yong

    2006-03-01

    A dual-driver shock tube was used to investigate the growth rate of a finite thickness two-gas interface after shock forcing. One driver was used to create an argon-refrigerant interface as the contact surface behind a weak shock wave. The other driver, at the opposite end of the driven section, generates a stronger shock of Mach 1.1 to 1.3 to force the interface back in front of the detector station. Two schlieren systems record the density fluctuations while light scattering detectors record the density of the refrigerant as a function of position over the interface during both it's initial passage and return. A pair of digital cameras take stereo images of the interface, as mapped out by the tracer particles under illumination by a Q-switched ruby laser. The amount of time that the interface is allowed to travel up the driven section determines the interaction time as a control. Comparisons made between the schlieren signals, light scattering detector outputs, and the images quantify the fingered characteristics of the interface and its growth due to shock forcing. The results show that the interface has a distribution of thicknesses and that the interaction with a shock further broadens the interface.

  16. Longitudinal investigation on learned helplessness tested under negative and positive reinforcement involving stimulus control.

    PubMed

    Oliveira, Emileane C; Hunziker, Maria Helena

    2014-07-01

    In this study, we investigated whether (a) animals demonstrating the learned helplessness effect during an escape contingency also show learning deficits under positive reinforcement contingencies involving stimulus control and (b) the exposure to positive reinforcement contingencies eliminates the learned helplessness effect under an escape contingency. Rats were initially exposed to controllable (C), uncontrollable (U) or no (N) shocks. After 24h, they were exposed to 60 escapable shocks delivered in a shuttlebox. In the following phase, we selected from each group the four subjects that presented the most typical group pattern: no escape learning (learned helplessness effect) in Group U and escape learning in Groups C and N. All subjects were then exposed to two phases, the (1) positive reinforcement for lever pressing under a multiple FR/Extinction schedule and (2) a re-test under negative reinforcement (escape). A fourth group (n=4) was exposed only to the positive reinforcement sessions. All subjects showed discrimination learning under multiple schedule. In the escape re-test, the learned helplessness effect was maintained for three of the animals in Group U. These results suggest that the learned helplessness effect did not extend to discriminative behavior that is positively reinforced and that the learned helplessness effect did not revert for most subjects after exposure to positive reinforcement. We discuss some theoretical implications as related to learned helplessness as an effect restricted to aversive contingencies and to the absence of reversion after positive reinforcement. This article is part of a Special Issue entitled: insert SI title. Copyright © 2014. Published by Elsevier B.V.

  17. Analysis of proto-oncogene and heat-shock protein gene expression in human derived cell-lines exposed in vitro to an intermittent 1.9 GHz pulse-modulated radiofrequency field.

    PubMed

    Chauhan, Vinita; Mariampillai, Anusiyanthan; Gajda, Greg B; Thansandote, Artnarong; McNamee, James P

    2006-05-01

    Several studies have reported that radiofrequency (RF) fields, as emitted by mobile phones, may cause changes in gene expression in cultured human cell-lines. The current study was undertaken to evaluate this possibility in two human-derived immune cell-lines. HL-60 and Mono-Mac-6 (MM6) cells were individually exposed to intermittent (5 min on, 10 min off) 1.9 GHz pulse-modulated RF fields at a average specific absorption rate (SAR) of 1 and 10 W/kg at 37 +/- 0.5 degrees C for 6 h. Concurrent negative and positive (heat-shock for 1 h at 43 degrees C) controls were conducted with each experiment. Immediately following RF field exposure (T = 6 h) and 18 h post-exposure (T = 24 h), cell pellets were collected from each of the culture dishes and analyzed for transcript levels of proto-oncogenes (c-jun, c-myc and c-fos) and the stress-related genes (heat shock proteins (HSP) HSP27 and HSP70B) by quantitative reverse transcriptase polymerase chain reaction (RT-PCR). No significant effects were observed in mRNA expression of HSP27, HSP70, c-jun, c-myc or c-fos between the sham and RF-exposed groups, in either of the two cell-lines. However, the positive (heat-shock) control group displayed a significant elevation in the expression of HSP27, HSP70, c-fos and c-jun in both cell-lines at T = 6 and 24 h, relative to the sham and negative control groups. This study found no evidence that exposure of cells to non-thermalizing levels of 1.9 GHz pulse-modulated RF fields can cause any detectable change in stress-related gene expression.

  18. Shock Position Control for Mode Transition in a Turbine Based Combined Cycle Engine Inlet Model

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Stueber, Thomas J.

    2013-01-01

    A dual flow-path inlet for a turbine based combined cycle (TBCC) propulsion system is to be tested in order to evaluate methodologies for performing a controlled inlet mode transition. Prior to experimental testing, simulation models are used to test, debug, and validate potential control algorithms which are designed to maintain shock position during inlet disturbances. One simulation package being used for testing is the High Mach Transient Engine Cycle Code simulation, known as HiTECC. This paper discusses the development of a mode transition schedule for the HiTECC simulation that is analogous to the development of inlet performance maps. Inlet performance maps, derived through experimental means, describe the performance and operability of the inlet as the splitter closes, switching power production from the turbine engine to the Dual Mode Scram Jet. With knowledge of the operability and performance tradeoffs, a closed loop system can be designed to optimize the performance of the inlet. This paper demonstrates the design of the closed loop control system and benefit with the implementation of a Proportional-Integral controller, an H-Infinity based controller, and a disturbance observer based controller; all of which avoid inlet unstart during a mode transition with a simulated disturbance that would lead to inlet unstart without closed loop control.

  19. FLP recombinase in transgenic plants: constitutive activity in stably transformed tobacco and generation of marked cell clones in Arabidopsis.

    PubMed

    Kilby, N J; Davies, G J; Snaith, M R

    1995-11-01

    FLP site-specific recombinase was expressed in stably transformed tobacco and Arabidopsis. FLP-expressing tobacco lines were crossed with other transformed tobacco lines that contained a stably integrated FLP recognition target construct(s). The target construct consisted of two directly-oriented FLP recognition targets (FRTs), flanking a hygromycin resistance cassette located between a GUS coding region and an upstream 35S CaMV promoter. Excision of the hygromycin resistance cassette by FLP-mediated recombination between FRTs brings the GUS coding region under the transcriptional control of the CaMV 35S promoter. In the absence of FLP-mediated recombination, the GUS gene is transcriptionally silent. GUS activity was observed in the progeny of all crosses made between FLP recombinase-expressing and target-containing tobacco lines, but not in the selfs of parents. The predicted recombination product remaining after excision was confirmed by PCR and Southern analysis. In Arabidopsis, inducible expression of FLP recombinase was achieved from the soybean Gmhsp 17.6L heat-shock promoter. Heat-shock induction of FLP expression in plants containing the target construct led to activation of constitutive GUS expression in a subset of cells, whose progeny, therefore, were GUS-positive. A variety of clonal sectors were produced in plants derived from seed that was heat-shocked during germination. The ability to control the timing of GUS activation was demonstrated by heat-shock of unopened flower heads which produced large sectors. It was concluded that heat-shock-induced expression of FLP recombinase provides a readily controllable method for generating marked clonal sectors in Arabidopsis, the size and distribution of which reflects the timing of applied heat-shock.

  20. Mixing Characteristics of Elliptical Jet Control with Crosswire

    NASA Astrophysics Data System (ADS)

    Manigandan, S.; Vijayaraja, K.

    2018-02-01

    The aerodynamic mixing efficiency of elliptical sonic jet flow with the effect of crosswire is studied computationally and experimentally at different range of nozzle pressure ratio with different orientation along the minor axis of the exit. The cross wire of different orientation is found to reduce the strength of the shock wave formation. Due to the presence of crosswire the pitot pressure oscillation is reduced fast, which weakens the shock cell structure. When the cross wire is placed at center position we see high mixing along the major axis. Similarly, when the cross wire is placed at ¼ and ¾ position we see high mixing promotion along minor axis. It also proves, as the position of the cross wire decreased along minor axis there will be increase in the mixing ratio. In addition to that we also found that, jet spread is high in major axis compared to minor axis due to bifurcation of jet along upstream

  1. Acidic pH shock induced overproduction of ε-poly-L-lysine in fed-batch fermentation by Streptomyces sp. M-Z18 from agro-industrial by-products.

    PubMed

    Ren, Xi-Dong; Chen, Xu-Sheng; Zeng, Xin; Wang, Liang; Tang, Lei; Mao, Zhong-Gui

    2015-06-01

    ε-Poly-L-lysine (ε-PL) is produced by Streptomyces as a secondary metabolite with wide industrial applications, but its production still needs to be further enhanced. Environmental stress is an important approach for the promotion of secondary metabolites production by Streptomyces. In this study, the effect of acidic pH shock on enhancing ε-PL production by Streptomyces sp. M-Z18 was investigated in a 5-L fermenter. Based on the evaluation of acidic pH shock on mycelia metabolic activity and shock parameters optimization, an integrated pH-shock strategy was developed as follows: pre-acid-shock adaption at pH 5.0 to alleviate the damage caused by the followed pH shock, and then acidic pH shock at 3.0 for 12 h (including pH decline from 4.0 to 3.0) to positively regulate mycelia metabolic activity, finally restoring pH to 4.0 to provide optimal condition for ε-PL production. After 192 h of fed-batch fermentation, the maximum ε-PL production and productivity reached 54.70 g/L and 6.84 g/L/day, respectively, which were 52.50 % higher than those of control without pH shock. These results demonstrated that acidic pH shock is an efficient approach for improving ε-PL production. The information obtained should be useful for ε-PL production by other Streptomyces.

  2. Serum proteomic analysis of extracorporeal shock wave therapy-enhanced diabetic wound healing in a streptozotocin-induced diabetes model.

    PubMed

    Yang, Ming-Yu; Chiang, Yuan-Cheng; Huang, Yu-Ting; Chen, Chien-Chang; Wang, Feng-Sheng; Wang, Ching-Jen; Kuo, Yur-Ren

    2014-01-01

    Previous studies have demonstrated that extracorporeal shock wave therapy has a significant positive effect on accelerating diabetic wound healing. However, the systemic effect after therapy is still unclear. This study investigated the plasma protein expression in the extracorporeal shock wave therapy group and diabetic controls using proteomic study. A dorsal skin defect (6 × 5 cm) in a streptozotocin-induced diabetic Wistar rat model was used. Diabetic rats receiving either no therapy or extracorporeal shock wave therapy after wounding were analyzed. The spots of interest were subjected to in-gel trypsin digestion and matrix-assisted laser desorption ionization time-of-flight mass spectrometry to elucidate the peptide mass fingerprints. The mass spectrometric characteristics of the identified proteins, including their theoretical isoelectric points, molecular weights, sequence coverage, and Mascot score, were analyzed. Protein expression was validated using immunohistochemical analysis of topical periwounding tissues. The proteomic study revealed that at days 3 and 10 after therapy rats had significantly higher abundance of haptoglobin and significantly lower levels of the vitamin D-binding protein precursor as compared with the diabetic controls. Immunohistochemical staining of topical periwounding tissue also revealed significant upregulation of haptoglobin and downregulation of vitamin D-binding protein expression in the extracorporeal shock wave therapy group, which was consistent with the systemic proteome study. Proteome analyses demonstrated an upregulation of haptoglobin and a downregulation of vitamin D-binding protein in extracorporeal shock wave therapy-enhanced diabetic wound healing.

  3. Trauma hemostasis and oxygenation research position paper on remote damage control resuscitation: definitions, current practice, and knowledge gaps.

    PubMed

    Jenkins, Donald H; Rappold, Joseph F; Badloe, John F; Berséus, Olle; Blackbourne, Lorne; Brohi, Karim H; Butler, Frank K; Cap, Andrew P; Cohen, Mitchell Jay; Davenport, Ross; DePasquale, Marc; Doughty, Heidi; Glassberg, Elon; Hervig, Tor; Hooper, Timothy J; Kozar, Rosemary; Maegele, Marc; Moore, Ernest E; Murdock, Alan; Ness, Paul M; Pati, Shibani; Rasmussen, Todd; Sailliol, Anne; Schreiber, Martin A; Sunde, Geir Arne; van de Watering, Leo M G; Ward, Kevin R; Weiskopf, Richard B; White, Nathan J; Strandenes, Geir; Spinella, Philip C

    2014-05-01

    The Trauma Hemostasis and Oxygenation Research Network held its third annual Remote Damage Control Resuscitation Symposium in June 2013 in Bergen, Norway. The Trauma Hemostasis and Oxygenation Research Network is a multidisciplinary group of investigators with a common interest in improving outcomes and safety in patients with severe traumatic injury. The network's mission is to reduce the risk of morbidity and mortality from traumatic hemorrhagic shock, in the prehospital phase of resuscitation through research, education, and training. The concept of remote damage control resuscitation is in its infancy, and there is a significant amount of work that needs to be done to improve outcomes for patients with life-threatening bleeding secondary to injury. The prehospital phase of resuscitation is critical in these patients. If shock and coagulopathy can be rapidly identified and minimized before hospital admission, this will very likely reduce morbidity and mortality. This position statement begins to standardize the terms used, provides an acceptable range of therapeutic options, and identifies the major knowledge gaps in the field.

  4. Optical techniques for determination of normal shock position in supersonic flows for aerospace applications

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Eustace, John G.

    1990-01-01

    Techniques for the quantitative determination of shock position in supersonic flows using direct and indirect methods is presented. A description of an experimental setup is also presented, different configurations of shock position sensing systems are explained, and some experimental results are given. All of the methods discussed are analyzed to determine the ease of technology transfer from the laboratory to in-flight operation.

  5. Sudden infant death syndrome: no significant expression of heat-shock proteins (HSP27, HSP70).

    PubMed

    Doberentz, Elke; Führing, Sarah; Madea, Burkhard

    2016-03-01

    In industrialized countries, sudden infant death is the most common cause of death in young children. Although prone sleeping position is a well-known risk factor, hyperthermia might also be important. Pathognomonic findings of premortem hyperthermia do not exist. During stress, including thermal effects, heat-shock protein (HSP) expression increases. This study investigated hyperthermia as a contributing or pathogenic factor for sudden infant death syndrome (SIDS). Immunohistochemical staining for HSP27 and HSP70 in the kidney, heart, and lung from 120 SIDS cases was examined. HSP70 immunostaining was negative in kidney, heart, and lung tissues in all cases and in tissues from the control group. HSP27 staining was positive in the kidney from one case, and was positive in the lungs (respiratory epithelia in 27% of cases; vascular endothelia in 19% of cases) and was negative in the heart. In the control group HSP27 was positive in 8% of renal tubular tissues and in 29% of renal vascular endothelia. Staining for HSP27 in lung tissues was positive in respiratory epithelia in 8% of cases and for vascular endothelia in 29%, whereas tissues from the heart were positive in only 4%. The hypothesis of hyperthermia being a pathogenic factor for SIDS was not supported by immunohistochemical visualization of HSP70 or HSP27.

  6. Shock Generation and Control Using DBD Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Patel, Mehul P.; Cain, Alan B.; Nelson, Christopher C.; Corke, Thomas C.; Matlis, Eric H.

    2012-01-01

    This report is the final report of a NASA Phase I SBIR contract, with some revisions to remove company proprietary data. The Shock Boundary Layer Interaction (SBLI) phenomena in a supersonic inlet involve mutual interaction of oblique shocks with boundary layers, forcing the boundary layer to separate from the inlet wall. To improve the inlet efficiency, it is desired to prevent or delay shock-induced boundary layer separation. In this effort, Innovative Technology Applications Company (ITAC), LLC and the University of Notre Dame (UND) jointly investigated the use of dielectric-barrier-discharge (DBD) plasma actuators for control of SBLI in a supersonic inlet. The research investigated the potential for DBD plasma actuators to suppress flow separation caused by a shock in a turbulent boundary layer. The research involved both numerical and experimental investigations of plasma flow control for a few different SBLI configurations: (a) a 12 wedge flow test case at Mach 1.5 (numerical and experimental), (b) an impinging shock test case at Mach 1.5 using an airfoil as a shock generator (numerical and experimental), and (c) a Mach 2.0 nozzle flow case in a simulated 15 X 15 cm wind tunnel with a shock generator (numerical). Numerical studies were performed for all three test cases to examine the feasibility of plasma flow control concepts. These results were used to guide the wind tunnel experiments conducted on the Mach 1.5 12 degree wedge flow (case a) and the Mach 1.5 impinging shock test case (case b) which were at similar flow conditions as the corresponding numerical studies to obtain experimental evidence of plasma control effects for SBLI control. The experiments also generated data that were used in validating the numerical studies for the baseline cases (without plasma actuators). The experiments were conducted in a Mach 1.5 test section in the University of Notre Dame Hessert Laboratory. The simulation results from cases a and b indicated that multiple spanwise actuators in series and at a voltage of 75 kVp-p could fully suppress the flow separation downstream of the shock. The simulation results from case c showed that the streamwise plasma actuators are highly effective in creating pairs of counter-rotating vortices, much like the mechanical vortex generators, and could also potentially have beneficial effects for SBLI control. However, to achieve these effects, the positioning and the quantity of the DBD actuators used must be optimized. The wind tunnel experiments mapped the baseline flow with good agreement to the numerical simulations. The experimental results were conducted with spanwise actuators for cases a and b, but were limited by the inability to generate a sufficiently high voltage due to arcing in the wind-tunnel test-section. The static pressure in the tunnel was lower than the static pressure in an inlet at flight conditions, promoting arching and degrading the actuator performance.

  7. Method for inducing saprolegniasis in channel catfish

    USGS Publications Warehouse

    Howe, G.E.; Rach, J.J.; Olson, J.J.

    1998-01-01

    A method was developed to uniformly and systematically induce saprolegniasis in channel catfish Ictalurus punctatus. Three different methods for inducing saprolegniasis were evaluated in waters containing known zoospore concentrations of Saprolegnia parasitica (1) low-temperature shock to induce immunosuppression: (2) physical abrasion stress; and (3) a combination of both low temperature shock and abrasion stress. Low-temperature shock or abrasion stress alone were not effective for inducing saprolegniasis. Only 10% of fish stressed by low-temperature shock alone became infected. No fish receiving abrasion stress treatments alone became infected even though these fish were subject to significant abrasion and dewatering stress. A combination of low-temperature and abrasion stress, however, was sufficient to induce saprolegniasis in 100% of fish tested and resulted in 90% mortality. No fish became infected in the positive control group (exposed to zoospores of S. Parasitica without stress) or in the negative control group. The combined-stress method should enable researchers to induce saprolegniasis in channel catfish at will to study its pathogenesis or to test the efficacy of candidate antifungal treatments. In conducting efficacy studies, therapeutic treatments must begin immediately when the first signs of saprolegniasis are observed because the disease progresses quickly and is deadly.

  8. Shock interaction with a two-gas interface in a novel dual-driver shock tube

    NASA Astrophysics Data System (ADS)

    Labenski, John R.

    Fluid instabilities exist at the interface between two fluids having different densities if the flow velocity and density gradient are anti-parallel or if a shock wave crosses the boundary. The former case is called the Rayleigh-Taylor (R-T) instability and the latter, the Richtmyer-Meshkov (R-M) instability. Small initial perturbations on the interface destabilize and grow into larger amplitude structures leading to turbulent mixing. Instabilities of this type are seen in inertial confinement fusion (ICF) experiments, laser produced plasmas, supernova explosions, and detonations. A novel dual-driver shock tube was used to investigate the growth rate of the R-M instability. One driver is used to create an argon-refrigerant interface, and the other at the opposite end of the driven section generates a shock to force the interface with compressible flows behind the shock. The refrigerant gas in the first driver is seeded with sub-micron oil droplets for visualization of the interface. The interface travels down the driven section past the test section for a fixed amount of time. A stronger shock of Mach 1.1 to 1.3 drives the interface back past the test section where flow diagnostics are positioned. Two schlieren systems record the density fluctuations while light scattering detectors record the density of the refrigerant as a function of position over the interface. A pair of digital cameras take stereo images of the interface, as mapped out by the tracer particles under illumination by a Q-switched ruby laser. The amount of time that the interface is allowed to travel up the driven section determines the interaction time as a control. Comparisons made between the schlieren signals, light scattering detector outputs, and the images quantify the fingered characteristics of the interface and its growth due to shock forcing. The results show that the interface has a distribution of thickness and that the interaction with a shock further broadens the interface. The growth rate was found to exhibit a dependence on the shock strength.

  9. 21 CFR 870.5225 - External counter-pulsating device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., prescription device used to assist the heart by applying positive or negative pressure to one or more of the body's limbs in synchrony with the heart cycle. (b) Classification. (1) Class II (special controls... angina pectoris; acute myocardial infarction; cardiogenic shock; congestive heart failure; postoperative...

  10. Wind tunnel evaluation of YF-12 inlet response to internal airflow disturbances with and without control. [Lewis 10 by 10 ft supersonic wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Cole, G. L.; Neiner, G. H.; Dustin, M. O.

    1978-01-01

    The response of terminal-shock position and static pressures in the subsonic duct of a YF-12 aircraft flight-hardware inlet to perturbations in simulated engine corrected airflow were obtained with and without inlet control. Frequency response data, obtained with inlet controls inactive, indicated the general nature of the inherent inlet dynamics, assisted in the design of controls, and provided a baseline reference for responses with active controls. All the control laws were implemented by means of a digital computer that could be programmed to behave like the flight inlet's existing analog control. The experimental controls were designed using an analytical optimization technique. The capabilities of the controls were limited primarily by the actuation hardware. The experimental controls provided somewhat better attenuation of terminal shock excursions than did the YF-13 inlet control. Controls using both the forward and aft bypass systems also provided somewhat better attenuation than those using just the forward bypass. The main advantage of using both bypasses is in the greater control flexibility that is achieved.

  11. Evaluation of the Effect of Different Doses of Low Energy Shock Wave Therapy on the Erectile Function of Streptozotocin (STZ)-Induced Diabetic Rats

    PubMed Central

    Liu, Jing; Zhou, Feng; Li, Guang-Yong; Wang, Lin; Li, Hui-Xi; Bai, Guang-Yi; Guan, Rui-Li; Xu, Yong-De; Gao, Ze-Zhu; Tian, Wen-Jie; Xin, Zhong-Cheng

    2013-01-01

    To investigate the therapeutic effect of different doses of low energy shock wave therapy (LESWT) on the erectile dysfunction (ED) in streptozotocin (STZ) induced diabetic rats. SD rats (n = 75) were randomly divided into 5 groups (normal control, diabetic control, 3 different dose LESWT treated diabetic groups). Diabetic rats were induced by intra-peritoneal injection of STZ (60 mg/kg) and rats with fasting blood glucose ≥ 300 mg/dL were selected as diabetic models. Twelve weeks later, different doses of LESWT (100, 200 and 300 shocks each time) treatment on penises were used to treat ED (7.33 MPa, 2 shocks/s) three times a week for two weeks. The erectile function was evaluated by intracavernous pressure (ICP) after 1 week washout period. Then the penises were harvested for histological study. The results showed LESWT could significantly improve the erectile function of diabetic rats, increase smooth muscle and endothelial contents, up-regulate the expression of α-SMA, vWF, nNOS and VEGF, and down- regulate the expression of RAGE in corpus cavernosum. The therapeutic effect might relate to treatment dose positively, and the maximal therapeutic effect was noted in the LESWT300 group. Consequently, 300 shocks each time might be the ideal LESWT dose for diabetic ED treatment. PMID:23698784

  12. Evaluation of the effect of different doses of low energy shock wave therapy on the erectile function of streptozotocin (STZ)-induced diabetic rats.

    PubMed

    Liu, Jing; Zhou, Feng; Li, Guang-Yong; Wang, Lin; Li, Hui-Xi; Bai, Guang-Yi; Guan, Rui-Li; Xu, Yong-De; Gao, Ze-Zhu; Tian, Wen-Jie; Xin, Zhong-Cheng

    2013-05-21

    To investigate the therapeutic effect of different doses of low energy shock wave therapy (LESWT) on the erectile dysfunction (ED) in streptozotocin (STZ) induced diabetic rats. SD rats (n = 75) were randomly divided into 5 groups (normal control, diabetic control, 3 different dose LESWT treated diabetic groups). Diabetic rats were induced by intra-peritoneal injection of STZ (60 mg/kg) and rats with fasting blood glucose ≥ 300 mg/dL were selected as diabetic models. Twelve weeks later, different doses of LESWT (100, 200 and 300 shocks each time) treatment on penises were used to treat ED (7.33 MPa, 2 shocks/s) three times a week for two weeks. The erectile function was evaluated by intracavernous pressure (ICP) after 1 week washout period. Then the penises were harvested for histological study. The results showed LESWT could significantly improve the erectile function of diabetic rats, increase smooth muscle and endothelial contents, up-regulate the expression of α-SMA, vWF, nNOS and VEGF, and down- regulate the expression of RAGE in corpus cavernosum. The therapeutic effect might relate to treatment dose positively, and the maximal therapeutic effect was noted in the LESWT300 group. Consequently, 300 shocks each time might be the ideal LESWT dose for diabetic ED treatment.

  13. Precision Blasting Techniques For Avalanche Control

    NASA Astrophysics Data System (ADS)

    Powell, Kevin M.

    Experimental firings sponsored by the Center For Snow Science at Alta, Utah have demonstrated the potential of a unique prototype shaped charge device designed to stimulate snow pack and ice. These studies, conducted against stable snow pack, demonstrated a fourfold increase in crater volume yield and introduced a novel application of Shock Tube technology to facilitate position control, detonation and dud recovery of manually deployed charges. The extraordinary penetration capability of the shaped charge mechanism has been exploited in many non-military applications to meet a wide range of rapidpiercing and/or cutting requirements. The broader exploitation of the potential of the shaped charge mechanism has nevertheless remained confined to defence based applications. In the studies reported in this paper, the inimitable ability of the shaped charge mechanism to project shock energy, or a liner material, into a highly focussed energetic stream has been applied uniquely to the stimulation of snow pack. Recent research and development work, conducted within the UK, has resulted in the integration of shaped charge technology into a common Avalauncher and hand charge device. The potential of the common charge configuration and spooled Shock Tube fire and control system to improve the safety and cost effectiveness of explosives used in avalanche control operations was successfully demonstrated at Alta in March 2001. Future programmes of study will include focussed shock/blast mechanisms for suspended wire traverse techniques, application of the shaped charge mechanism to helibombing, and the desig n and development of non-fragmenting shaped charge ammunition formilitary artillery gun systems.

  14. Functional Diversity of AAA+ Protease Complexes in Bacillus subtilis

    PubMed Central

    Elsholz, Alexander K. W.; Birk, Marlene S.; Charpentier, Emmanuelle; Turgay, Kürşad

    2017-01-01

    Here, we review the diverse roles and functions of AAA+ protease complexes in protein homeostasis, control of stress response and cellular development pathways by regulatory and general proteolysis in the Gram-positive model organism Bacillus subtilis. We discuss in detail the intricate involvement of AAA+ protein complexes in controlling sporulation, the heat shock response and the role of adaptor proteins in these processes. The investigation of these protein complexes and their adaptor proteins has revealed their relevance for Gram-positive pathogens and their potential as targets for new antibiotics. PMID:28748186

  15. Functional Diversity of AAA+ Protease Complexes in Bacillus subtilis.

    PubMed

    Elsholz, Alexander K W; Birk, Marlene S; Charpentier, Emmanuelle; Turgay, Kürşad

    2017-01-01

    Here, we review the diverse roles and functions of AAA+ protease complexes in protein homeostasis, control of stress response and cellular development pathways by regulatory and general proteolysis in the Gram-positive model organism Bacillus subtilis . We discuss in detail the intricate involvement of AAA+ protein complexes in controlling sporulation, the heat shock response and the role of adaptor proteins in these processes. The investigation of these protein complexes and their adaptor proteins has revealed their relevance for Gram-positive pathogens and their potential as targets for new antibiotics.

  16. Mechanism analysis of Magnetohydrodynamic heat shield system and optimization of externally applied magnetic field

    NASA Astrophysics Data System (ADS)

    Li, Kai; Liu, Jun; Liu, Weiqiang

    2017-04-01

    As a novel thermal protection technique for hypersonic vehicles, Magnetohydrodynamic (MHD) heat shield system has been proved to be of great intrinsic value in the hypersonic field. In order to analyze the thermal protection mechanisms of such a system, a physical model is constructed for analyzing the effect of the Lorentz force components in the counter and normal directions. With a series of numerical simulations, the dominating Lorentz force components are analyzed for the MHD heat flux mitigation in different regions of a typical reentry vehicle. Then, a novel magnetic field with variable included angle between magnetic induction line and streamline is designed, which significantly improves the performance of MHD thermal protection in the stagnation and shoulder areas. After that, the relationships between MHD shock control and MHD thermal protection are investigated, based on which the magnetic field above is secondarily optimized obtaining better performances of both shock control and thermal protection. Results show that the MHD thermal protection is mainly determined by the Lorentz force's effect on the boundary layer. From the stagnation to the shoulder region, the flow deceleration effect of the counter-flow component is weakened while the flow deflection effect of the normal component is enhanced. Moreover, there is no obviously positive correlation between the MHD shock control and thermal protection. But once a good Lorentz force's effect on the boundary layer is guaranteed, the thermal protection performance can be further improved with an enlarged shock stand-off distance by strengthening the counter-flow Lorentz force right after shock.

  17. Paresev 1-A on lakebed with tow plane

    NASA Image and Video Library

    1962-08-24

    The Paresev 1-A (Paraglider Research Vehicle) and the tow airplane, 450-hp Stearman sport Biplane, sitting on Rogers dry lakebed, Edwards, California. The control system in the Paresev 1-A had a more conventional control stick position and was cable-operated; the main landing gear used shocks and bungees with the 100-square-foot wing membrane being made of 6-ounce unsealed Dacron.

  18. Paresev 1-A on lakebed with tow plane

    NASA Technical Reports Server (NTRS)

    1962-01-01

    The Paresev 1-A (Paraglider Research Vehicle) and the tow airplane, 450-hp Stearman sport Biplane, sitting on Rogers dry lakebed, Edwards, California. The control system in the Paresev 1-A had a more conventional control stick position and was cable-operated; the main landing gear used shocks and bungees with the 150-square-foot wing membrane being made of 6-ounce unsealed Dacron.

  19. Higher-Order Corrections to Earthʼs Ionosphere Shocks

    NASA Astrophysics Data System (ADS)

    Abdelwahed, H. G.; El-Shewy, E. K.

    2017-01-01

    Nonlinear shock wave structures in unmagnetized collisionless viscous plasmas composed fluid of positive (negative) ions and nonthermally electron distribution are examined. For ion shock formation, a reductive perturbation technique applied to derive Burgers equation for lowest-order potential. As the shock amplitude decreasing or enlarging, its steepness and velocity deviate from Burger equation. Burgers type equation with higher order dissipation must be obtained to avoid this deviation. Solution for the compined two equations has been derived using renormalization analysis. Effects of higher-order, positive- negative mass ratio Q, electron nonthermal parameter δ and kinematic viscosities coefficient of positive (negative) ions {η }1 and {η }2 on the electrostatic shocks in Earth’s ionosphere are also argued. Supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the Research Project No. 2015/01/4787

  20. Trauma Hemostasis and Oxygenation Research Network position paper on the role of hypotensive resuscitation as part of remote damage control resuscitation.

    PubMed

    Woolley, Thomas; Thompson, Patrick; Kirkman, Emrys; Reed, Richard; Ausset, Sylvain; Beckett, Andrew; Bjerkvig, Christopher; Cap, Andrew P; Coats, Tim; Cohen, Mitchell; Despasquale, Marc; Dorlac, Warren; Doughty, Heidi; Dutton, Richard; Eastridge, Brian; Glassberg, Elon; Hudson, Anthony; Jenkins, Donald; Keenan, Sean; Martinaud, Christophe; Miles, Ethan; Moore, Ernest; Nordmann, Giles; Prat, Nicolas; Rappold, Joseph; Reade, Michael C; Rees, Paul; Rickard, Rory; Schreiber, Martin; Shackelford, Stacy; Skogran Eliassen, Håkon; Smith, Jason; Smith, Mike; Spinella, Philip; Strandenes, Geir; Ward, Kevin; Watts, Sarah; White, Nathan; Williams, Steve

    2018-06-01

    The Trauma Hemostasis and Oxygenation Research (THOR) Network has developed a consensus statement on the role of permissive hypotension in remote damage control resuscitation (RDCR). A summary of the evidence on permissive hypotension follows the THOR Network position on the topic. In RDCR, the burden of time in the care of the patients suffering from noncompressible hemorrhage affects outcomes. Despite the lack of published evidence, and based on clinical experience and expertise, it is the THOR Network's opinion that the increase in prehospital time leads to an increased burden of shock, which poses a greater risk to the patient than the risk of rebleeding due to slightly increased blood pressure, especially when blood products are available as part of prehospital resuscitation.The THOR Network's consensus statement is, "In a casualty with life-threatening hemorrhage, shock should be reversed as soon as possible using a blood-based HR fluid. Whole blood is preferred to blood components. As a part of this HR, the initial systolic blood pressure target should be 100 mm Hg. In RDCR, it is vital for higher echelon care providers to receive a casualty with sufficient physiologic reserve to survive definitive surgical hemostasis and aggressive resuscitation. The combined use of blood-based resuscitation and limiting systolic blood pressure is believed to be effective in promoting hemostasis and reversing shock".

  1. Electronic firing systems and methods for firing a device

    DOEpatents

    Frickey, Steven J [Boise, ID; Svoboda, John M [Idaho Falls, ID

    2012-04-24

    An electronic firing system comprising a control system, a charging system, an electrical energy storage device, a shock tube firing circuit, a shock tube connector, a blasting cap firing circuit, and a blasting cap connector. The control system controls the charging system, which charges the electrical energy storage device. The control system also controls the shock tube firing circuit and the blasting cap firing circuit. When desired, the control system signals the shock tube firing circuit or blasting cap firing circuit to electrically connect the electrical energy storage device to the shock tube connector or the blasting cap connector respectively.

  2. Quasi 1D Modeling of Mixed Compression Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Woolwine, Kyle J.

    2012-01-01

    The AeroServoElasticity task under the NASA Supersonics Project is developing dynamic models of the propulsion system and the vehicle in order to conduct research for integrated vehicle dynamic performance. As part of this effort, a nonlinear quasi 1-dimensional model of the 2-dimensional bifurcated mixed compression supersonic inlet is being developed. The model utilizes computational fluid dynamics for both the supersonic and subsonic diffusers. The oblique shocks are modeled utilizing compressible flow equations. This model also implements variable geometry required to control the normal shock position. The model is flexible and can also be utilized to simulate other mixed compression supersonic inlet designs. The model was validated both in time and in the frequency domain against the legacy LArge Perturbation INlet code, which has been previously verified using test data. This legacy code written in FORTRAN is quite extensive and complex in terms of the amount of software and number of subroutines. Further, the legacy code is not suitable for closed loop feedback controls design, and the simulation environment is not amenable to systems integration. Therefore, a solution is to develop an innovative, more simplified, mixed compression inlet model with the same steady state and dynamic performance as the legacy code that also can be used for controls design. The new nonlinear dynamic model is implemented in MATLAB Simulink. This environment allows easier development of linear models for controls design for shock positioning. The new model is also well suited for integration with a propulsion system model to study inlet/propulsion system performance, and integration with an aero-servo-elastic system model to study integrated vehicle ride quality, vehicle stability, and efficiency.

  3. A Study of SDT in an Ammonium Nitrate (NH4 NO3) Based Granular Explosive

    NASA Astrophysics Data System (ADS)

    Burns, Malcolm; Taylor, Peter

    2007-06-01

    In order to study the SDT process in a granular non ideal explosive (NIE) an experimental technique has been developed that allows the granular explosive to be shock initiated at a well controlled ``tap density''. The granular NIE was contained in a PMMA cone and a planar shock was delivered to the explosive through buffer plates of varying material. A combination of piezoelectric probes, ionization pins, PVDF stress gauges and a high speed framing camera were used to measure the input shock pressure and shock and detonation wave positions in the explosive. Four trials were performed to characterize the run to detonation distance versus pressure relationship (Pop plot) of the granular NH4 NO3 explosive. Input pressures ranged from close to the 4GPa predicted CJ pressure of the granular explosive down to 1.4 GPa, giving run distances up to 14mm for the lowest pressure. The data indicates a steady acceleration of the input shock to the detonation velocity, implying significant reaction growth at the shock front. This is in contrast to the behaviour of most high density pressed PBXs which show little growth in shock front velocity before transit to detonation. The experimentally observed initiation behaviour is compared to that predicted by a simple JWL++ reactive burn model for the granular NH4 NO3 explosive which has been fitted to other detonics experiments on this material.

  4. Numerical and experimental investigation of VG flow control for a low-boom inlet

    NASA Astrophysics Data System (ADS)

    Rybalko, Michael

    The application of vortex generators (VGs) for shock/boundary layer interaction flow control in a novel external compression, axisymmetric, low-boom concept inlet was studied using numerical and experimental methods. The low-boom inlet design features a zero-angle cowl and relaxed isentropic compression centerbody spike, resulting in defocused oblique shocks and a weak terminating normal shock. This allows reduced external gas dynamic waves at high mass flow rates but suffers from flow separation near the throat and a large hub-side boundary layer at the Aerodynamic Interface Plane (AIP), which marks the inflow to the jet engine turbo-machinery. Supersonic VGs were investigated to reduce the shock-induced flow separation near the throat while subsonic VGs were investigated to reduce boundary layer radial distortion at the AIP. To guide large-scale inlet experiments, Reynolds-Averaged Navier-Stokes (RANS) simulations using three-dimensional, structured, chimera (overset) grids and the WIND-US code were conducted. Flow control cases included conventional and novel types of vortex generators at positions both upstream of the terminating normal shock (supersonic VGs) and downstream (subsonic VGs). The performance parameters included incompressible axisymmetric shape factor, post-shock separation area, inlet pressure recovery, and mass flow ratio. The design of experiments (DOE) methodology was used to select device size and location, analyze the resulting data, and determine the optimal choice of device geometry. Based on the above studies, a test matrix of supersonic and subsonic VGs was adapted for a large-scale inlet test to be conducted at the 8'x6' supersonic wind tunnel at NASA Glenn Research Center (GRC). Comparisons of RANS simulations with data from the Fall 2010 8'x6' inlet test showed that predicted VG performance trends and case rankings for both supersonic and subsonic devices were consistent with experimental results. For example, experimental surface oil flow visualization revealed a significant post-shock separation bubble with flow recirculation for the baseline (no VG) case that was substantially broken up in the micro-ramp VG case, consistent with simulations. Furthermore, the predicted subsonic VG performance with respect to a reduction in radial distortion (quantified in terms of axisymmetric incompressible shape factor) was found to be consistent with boundary layer rake measurements. To investigate the unsteady turbulent flow features associated with the shock-induced flow separation and the hub-side boundary layer, a detached eddy simulation (DES) approach using the WIND-US code was employed to model the baseline inlet flow field. This approach yielded improved agreement with experimental data for time-averaged diffuser stagnation pressure profiles and allowed insight into the pressure fluctuations and turbulent kinetic energy distributions which may be present at the AIP. In addition, streamwise shock position statistics were obtained and compared with experimental Schlieren results. The predicted shock oscillations were much weaker than those seen experimentally (by a factor of four), which indicates that the mechanism for the experimental shock oscillations was not captured. In addition, the novel supersonic vortex generator geometries were investigated experimentally (prior to the large-scale inlet 8'x6' wind tunnel tests) in an inlet-relevant flow field containing a Mach 1.4 normal shock wave followed by a subsonic diffuser. A parametric study of device height and distance upstream of the normal shock was undertaken for split-ramp and ramped-vane geometries. Flow field diagnostics included high-speed Schlieren, oil flow visualization, and Pitot-static pressure measurements. Parameters including flow separation, pressure recovery, centerline incompressible boundary layer shape factor, and shock stability were analyzed and compared to the baseline uncontrolled case. While all vortex generators tested eliminated centerline flow separation, the presence of VGs also increased the significant three-dimensionality of the flow via increased side-wall interaction. The stronger streamwise vorticity generated by ramped-vanes also yielded improved pressure recovery and fuller boundary layer velocity profiles within the subsonic diffuser. (Abstract shortened by UMI.)

  5. Reaction Buildup of PBX Explosives JOB-9003 under Different Initiation Pressures

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Wang, Yan-fei; Hung, Wen-bin; Gu, Yan; Zhao, Feng; Wu, Qiang; Yu, Xin; Yu, Heng

    2017-04-01

    Aluminum-based embedded multiple electromagnetic particle velocity gauge technique has been developed in order to measure the shock initiation behavior of JOB-9003 explosives. In addition, another gauge element called a shock tracker has been used to monitor the progress of the shock front as a function of time, thus providing a position-time trajectory of the wave front as it moves through the explosive sample. The data are used to determine the position and time for shock to detonation transition. All the experimental results show that: the rising-up time of Al-based electromagnetic particle velocity gauge was very fast and less than 20 ns; the reaction buildup velocity profiles and the position-time for shock to detonation transition of HMX-based PBX explosive JOB-9003 with 1-8 mm depth from the origin of impact plane under different initiation pressures are obtained with high accuracy.

  6. Optical Probes for Laser Induced Shocks

    DTIC Science & Technology

    1992-03-01

    target by the strong water. As the shock passes the material interface, it is pressure transients. only partially transmitted. The shock pressure is...T. Swimm , J. Appl. Phys. 61, evaporated, t1137(1987). vapor flow substantially. The coupling coefficient thus de- 3 v. A. Batanov and V. B. Fedorov...Waist-Surface Distance [mm] isurface on the drilling mechanismC Positive ( negative ) To roughly estimate the total recoil momentum positions

  7. Indifference between punishment and free shock: evidence for the negative law of effect1

    PubMed Central

    Schuster, Richard; Rachlin, Howard

    1968-01-01

    Pigeons were trained to respond under two conditions with two identical variable-interval schedules of positive reinforcement. While the schedules operated for separate response keys, they were not available concurrently. During one condition, each response was punished with electric shock. During the other condition, shocks were delivered independently of responding. The punishment suppressed responding but the free shocks did not. However, when allowed to choose, the pigeons preferred the condition associated with the lowest rate of shock regardless of whether or not the shock was dependent on responding. In general, shocks exerted their greatest effect on whichever response had the greatest influence on shocks. In this respect, punishment is instrumental in suppressing behavior and the properties of punishment are symmetrical to those of reinforcement. This empirical symmetry dictates a corresponding conceptual symmetry in terms of a positive law of effect accounting for response increments and a negative law accounting for response decrements. PMID:16811322

  8. Analysis of the dynamic response of a supersonic inlet to flow-field perturbations upstream of the normal shock

    NASA Technical Reports Server (NTRS)

    Cole, G. L.; Willoh, R. G.

    1975-01-01

    A linearized mathematical analysis is presented for determining the response of normal shock position and subsonic duct pressures to flow-field perturbations upstream of the normal shock in mixed-compression supersonic inlets. The inlet duct cross-sectional area variation is approximated by constant-area sections; this approximation results in one-dimensional wave equations. A movable normal shock separates the supersonic and subsonic flow regions, and a choked exit is assumed for the inlet exit condition. The analysis leads to a closed-form matrix solution for the shock position and pressure transfer functions. Analytical frequency response results are compared with experimental data and a method of characteristics solution.

  9. Crystal Clear? The Relationship Between Methamphetamine Use and Sexually Transmitted Infections.

    PubMed

    Mialon, Hugo M; Nesson, Erik T; Samuel, Michael C

    2016-03-01

    Public health officials have cited methamphetamine control as a tool with which to decrease HIV and other sexually transmitted infections, based on previous research that finds a strong positive correlation between methamphetamine use and risky sexual behavior. However, the observed correlation may not be causal, as both methamphetamine use and risky sexual behavior could be driven by a third factor, such as a preference for risky behavior. We estimate the effect of methamphetamine use on risky sexual behavior using monthly data on syphilis diagnoses in California and quarterly data on syphilis, gonorrhea, and chlamydia diagnoses across all states. To circumvent possible endogeneity, we use a large exogenous supply shock in the US methamphetamine market that occurred in May 1995 and a later shock stemming from the Methamphetamine Control Act, which went into effect in October 1997. While the supply shocks had large negative effects on methamphetamine use, we find no evidence that they decreased syphilis, gonorrhea, or chlamydia rates. Our results have broad implications for public policies designed to decrease sexually transmitted infection rates. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Thrust shock vector control of an axisymmetric conical supersonic nozzle via secondary transverse gas injection

    NASA Astrophysics Data System (ADS)

    Zmijanovic, V.; Lago, V.; Sellam, M.; Chpoun, A.

    2014-01-01

    Transverse secondary gas injection into the supersonic flow of an axisymmetric convergent-divergent nozzle is investigated to describe the effects of the fluidic thrust vectoring within the framework of a small satellite launcher. Cold-flow dry-air experiments are performed in a supersonic wind tunnel using two identical supersonic conical nozzles with the different transverse injection port positions. The complex three-dimensional flow field generated by the supersonic cross-flows in these test nozzles was examined. Valuable experimental data were confronted and compared with the results obtained from the numerical simulations. Different nozzle models are numerically simulated under experimental conditions and then further investigated to determine which parameters significantly affect thrust vectoring. Effects which characterize the nozzle and thrust vectoring performances are established. The results indicate that with moderate secondary to primary mass flow rate ratios, ranging around 5 %, it is possible to achieve pertinent vector side forces. It is also revealed that injector positioning and geometry have a strong effect on the shock vector control system and nozzle performances.

  11. Detection of the human 70-kD and 60-kD heat shock proteins in the vagina: relation to microbial flora, vaginal pH, and method of contraception.

    PubMed Central

    Giraldo, P; Neuer, A; Ribeiro-Filho, A; Linhares, I; Witkin, S S

    1999-01-01

    The expression of the 60-kD and 70-kD heat shock proteins (hsp60 and hsp70) in the vaginas of 43 asymptomatic women of reproductive age with or without a history of recurrent vulvovaginitis (RVV) were compared. Vaginal wash samples were obtained and assayed by enzyme-linked immunosorbent assay (ELISA) for human hsp60 and hsp70. Heat shock protein 70 was not detected in any of the 19 women with no history of RVV, and hsp60 was present in only one woman in this group. In contrast, in the RVV group, 11 (45.8%) were hsp60-positive and eight (33.3%) were hsp70-positive. The presence of either heat shock protein in the vagina was associated with an elevated vaginal pH (>4.5). Bacterial vaginosis or Candida was identified in some of the asymptomatic subjects; their occurrence was significantly higher in women with vaginal hsp70 than in women with no heat shock proteins. Oral contraceptives were used by 35.7% of subjects who were negative for vaginal heat shock proteins, as opposed to only 12.5% of women who were positive for hsp70 and 8.3% who were positive for hsp60. Expression of heat shock proteins in the vagina may indicate an altered vaginal environment and a susceptibility to vulvovaginal symptoms. PMID:10231004

  12. Expression of small heat shock proteins from pea seedlings under gravity altered conditions

    NASA Astrophysics Data System (ADS)

    Talalaev, Alexandr S.

    2005-08-01

    A goal of our study was to evaluate the stress gene expression in Pisum sativum seedlings exposed to altered gravity and temperature elevation. We investigate message for the two inducible forms of the cytosolic small heat shock proteins (sHsp), sHsp 17.7 and sHsp 18.1. Both proteins are able to enhance the refolding of chemically denatured proteins in an ATP- independent manner, in other words they can function as molecular chaperones. We studied sHsps expression in pea seedlings cells by Western blotting. Temperature elevation, as the positive control, significantly increased PsHsp 17.7 and PsHsp 18.1 expression. Expression of the housekeeping protein, actin was constant and comparable to unstressed controls for all treatments. We concluded that gravitational perturbations incurred by clinorotation did not change sHsp genes expression.

  13. Endoscopically-controlled electrohydraulic intracorporeal shock wave lithotripsy (EISL) of salivary stones.

    PubMed

    Königsberger, R; Feyh, J; Goetz, A; Kastenbauer, E

    1993-02-01

    Twenty-nine patients with salivary stones were treated with the endoscopically-controlled electrohydraulic shock wave lithotripsy (EISL). This new minimally invasive treatment of sialolithiasis is performed under local anesthesia on an outpatient basis with little inconvenience to the patient. For endoscopy, a flexible fibroscope with an additional probe to generate shock waves is placed into the submandibular duct and advanced until the stone is identified. For shock wave-induced stone disintegration, the probe electrode must be placed 1 mm in front of the concrement. The shock waves are generated by a sparkover at the tip of the probe. By means of the endoscopically-controlled shock wave lithotripsy it was possible to achieve complete stone fragmentation in 20 out of 29 patients without serious side effects. In three patients, only partial stone fragmentation could be achieved due to the stone quality. Endoscopically-controlled electrohydraulic intracorporeal shock wave lithotripsy represents a novel minimally invasive therapy for endoscopically accessible salivary gland stones. The advantage in comparison to the endoscopically-controlled laser lithotripsy will be discussed.

  14. Separation control by vortex generator devices in a transonic channel flow

    NASA Astrophysics Data System (ADS)

    Bur, Reynald; Coponet, Didier; Carpels, Yves

    2009-12-01

    An experimental study was conducted in a transonic channel to control by mechanical vortex generator devices the strong interaction between a shock wave and a separated turbulent boundary layer. Control devices—co-rotating and counter-rotating vane-type vortex generators—were implemented upstream of the shock foot region and tested both on a steady shock wave and on a forced shock oscillation configurations. The spanwise spacing of vortex generator devices along the channel appeared to be an important parameter to control the flow separation region. When the distance between each device is decreased, the vortices merging is more efficient to reduce the separation. Their placement upstream of the shock wave is determinant to ensure that vortices have mixed momentum all spanwise long before they reach the separation line, so as to avoid separation cells. Then, vortex generators slightly reduced the amplitude of the forced shock wave oscillation by delaying the upstream displacement of the leading shock.

  15. Major Depression Is Not Associated with Blunting of Aversive Responses; Evidence for Enhanced Anxious Anticipation

    PubMed Central

    Grillon, Christian; Franco-Chaves, Jose A.; Mateus, Camilo F.; Ionescu, Dawn F.; Zarate, Carlos A.

    2013-01-01

    According to the emotion-context insensitivity (ECI) hypothesis, major depressive disorder (MDD) is associated with a diminished ability to react emotionally to positive stimuli and with blunting of defensive responses to threat. That defensive responses are blunted in MDD seems inconsistent with the conceptualization and diagnostic nosology of MDD. The present study tested the ECI hypothesis in MDD using a threat of shock paradigm. Twenty-eight patients with MDD (35.5±10.4 years) were compared with 28 controls (35.1±7.4 years). Participants were exposed to three conditions: no shock, predictable shock, and unpredictable shock. Startle magnitude was used to assess defensive responses. Inconsistent with the ECI hypothesis, startle potentiation to predictable and unpredictable shock was not reduced in the MDD group. Rather, MDD patients showed elevated startle throughout testing as well as increased contextual anxiety during the placement of the shock electrodes and in the predictable condition. A regression analysis indicated that illness duration and Beck depression inventory scores explained 37% (p<.005) of the variance in patients’ startle reactivity. MDD is not associated with emotional blunting but rather enhanced defensive reactivity during anticipation of harm. These results do not support a strong version of the ECI hypothesis. Understanding the nature of stimuli or situations that lead to blunted or enhanced defensive reactivity will provide better insight into dysfunctional emotional experience in MDD. PMID:23951057

  16. High-energy extracorporeal shock wave therapy as a treatment for chronic noninsertional Achilles tendinopathy.

    PubMed

    Furia, John P

    2008-03-01

    High-energy extracorporeal shock wave therapy has been shown to be an effective treatment for chronic insertional Achilles tendinopathy. The results of high-energy shock wave therapy for chronic noninsertional Achilles tendinopathy have not been determined. Shock wave therapy is an effective treatment for noninsertional Achilles tendinopathy. Case control study; Level of evidence, 3. Thirty-four patients with chronic noninsertional Achilles tendinopathy were treated with a single dose of high-energy shock wave therapy (shock wave therapy group; 3000 shocks; 0.21 mJ/mm(2); total energy flux density, 604 mJ/mm(2)). Thirty-four patients with chronic noninsertional Achilles tendinopathy were treated not with shock wave therapy but with additional forms of nonoperative therapy (control group). All shock wave therapy procedures were performed using regional anesthesia. Evaluation was by change in visual analog score and by Roles and Maudsley score. One month, 3 months, and 12 months after treatment, the mean visual analog scores for the control and shock wave therapy groups were 8.4 and 4.4 (P < .001), 6.5 and 2.9 (P < .001), and 5.6 and 2.2 (P < .001), respectively. At final follow-up, the number of excellent, good, fair, and poor results for the shock wave therapy and control groups were 12 and 0 (P < .001), 17 and 9 (P < .001), 5 and 17 (P < .001), and 0 and 8 (P < .001), respectively. A chi(2) analysis revealed that the percentage of patients with excellent ("1") or good ("2") Roles and Maudsley scores, that is, successful results, 12 months after treatment was statistically greater in the shock wave therapy group than in the control group (P < .001). Shock wave therapy is an effective treatment for chronic noninsertional Achilles tendinopathy.

  17. Early and Definitive Diagnosis of Toxic Shock Syndrome by Detection of Marked Expansion of T-Cell-Receptor Vβ2-Positive T Cells

    PubMed Central

    Kato, Hidehito; Yamada, Ritsuko; Okano, Hiroya; Ohta, Hiroaki; Imanishi, Ken’ichi; Kikuchi, Ken; Totsuka, Kyouichi; Uchiyama, Takehiko

    2003-01-01

    We describe two cases of early toxic shock syndrome, caused by the superantigen produced from methicillin-resistant Staphylococcus aureus and diagnosed on the basis of an expansion of T-cell-receptor Vβ2-positive T cells. One case-patient showed atypical symptoms. Our results indicate that diagnostic systems incorporating laboratory techniques are essential for rapid, definitive diagnosis of toxic shock syndrome. PMID:12643839

  18. Hydraulic shock waves in an inclined chute contraction

    NASA Astrophysics Data System (ADS)

    Jan, C.-D.; Chang, C.-J.

    2009-04-01

    A chute contraction is a common structure used in hydraulic engineering for typical reasons such as increase of bottom slope, transition from side channel intakes to tunnel spillways, reduction of chute width due to bridges, transition structures in flood diversion works, among others. One of the significant chute contractions in Taiwan is that used in the Yuanshantzu Flood Diversion Project of Keelung River. The diversion project is designed to divert flood water from upper Keelung River into East Sea with a capasity of 1,310 cubic meters per second for mitigating the flood damage of lower part of Keelung River basin in Northern Taiwan. An inclined chute contraction is used to connect Keelung River and a diversion turnel. The inlet and outlet works of the diversion project is located at Ruifang in the Taipei County of north Taiwan. The diameter of diversion tunnel is 12 meters and the total length of tunnel is 2,484 meters. The diversion project has been completed and successfully executed many times since 2004 to lower the water level of Keelung River in typhoon seasons for avioding flooding problems in the lower part of Keelung River basin. Flow in a chute contraction has complicated flow pattern due to the existence of shock waves in it. A simple and useful calculation procedure for the maximum height and its position of shock waves is essentially needed for the preliminary design stage of a chute contraction. Hydraulic shock waves in an inclined chute contraction were experimentally and numerically investigated in this study with the consideration of the effects of sidewall deflection angle, bottom inclination angle and Froude number of approaching flow. The flow pattern of hydraulic shock waves in a chute contraction was observed. The main issue of designing chute contraction is to estimate the height and position of maximum shock wave for the consideration of freeboards. Achieving this aim, the experimental data are adopted and analyzed for the shock angle, the height of maximum shock wave and the corresponding position of maximum shock wave. The dimensionless relations for the shock angle, the height of maximum shock wave and the corresponding position of maximum shock wave are obtained by regression analysis. These empirical regression relations, basically relating to the sidewall deflection angle, bottom angle and approach Froude number, are very useful for further practical engineering applications in chute contraction design for avoiding flow overtopping.

  19. Implementation of an Inpatient Pediatric Sepsis Identification Pathway.

    PubMed

    Bradshaw, Chanda; Goodman, Ilyssa; Rosenberg, Rebecca; Bandera, Christopher; Fierman, Arthur; Rudy, Bret

    2016-03-01

    Early identification and treatment of severe sepsis and septic shock improves outcomes. We sought to identify and evaluate children with possible sepsis on a pediatric medical/surgical unit through successful implementation of a sepsis identification pathway. The sepsis identification pathway, a vital sign screen and subsequent physician evaluation, was implemented in October 2013. Quality improvement interventions were used to improve physician and nursing adherence with the pathway. We reviewed charts of patients with positive screens on a monthly basis to assess for nursing recognition/physician notification, physician evaluation for sepsis, and subsequent physician diagnosis of sepsis and severe sepsis/septic shock. Adherence data were analyzed on a run chart and statistical process control p-chart. Nursing and physician pathway adherence of >80% was achieved over a 6-month period and sustained for the following 6 months. The direction of improvements met standard criteria for special causes. Over a 1-year period, there were 963 admissions to the unit. Positive screens occurred in 161 (16.7%) of these admissions and 38 (23.5%) of these had a physician diagnosis of sepsis, severe sepsis, or septic shock. One patient with neutropenia and septic shock had a negative sepsis screen due to lack of initial fever. Using quality improvement methodology, we successfully implemented a sepsis identification pathway on our pediatric unit. The pathway provided a standardized process to identify and evaluate children with possible sepsis requiring timely evaluation and treatment. Copyright © 2016 by the American Academy of Pediatrics.

  20. Plasma levels of F-actin and F:G-actin ratio as potential new biomarkers in patients with septic shock.

    PubMed

    Belsky, Justin B; Morris, Daniel C; Bouchebl, Ralph; Filbin, Michael R; Bobbitt, Kevin R; Jaehne, Anja K; Rivers, Emanuel P

    2016-01-01

    To compare plasma levels of F-actin, G-actin and thymosin beta 4 (TB4) in humans with septic shock, noninfectious systemic inflammatory response syndrome (SIRS) and healthy controls. F-actin was significantly elevated in septic shock as compared with noninfectious SIRS and healthy controls. G-actin levels were greatest in the noninfectious SIRS group but significantly elevated in septic shock as compared with healthy controls. TB4 was not detectable in the septic shock or noninfectious SIRS group above the assay's lowest detection range (78 ng/ml). F-actin is significantly elevated in patients with septic shock as compared with noninfectious SIRS. F-actin and the F:G-actin ratio are potential biomarkers for the diagnosis of septic shock.

  1. The effect of high-energy extracorporeal shock waves on hyaline cartilage of adult rats in vivo.

    PubMed

    Mayer-Wagner, Susanne; Ernst, Judith; Maier, Markus; Chiquet, Matthias; Joos, Helga; Müller, Peter E; Jansson, Volkmar; Sievers, Birte; Hausdorf, Jörg

    2010-08-01

    The aim of this study was to determine if extracorporeal shock wave therapy (ESWT) in vivo affects the structural integrity of articular cartilage. A single bout of ESWT (1500 shock waves of 0.5 mJ/mm(2)) was applied to femoral heads of 18 adult Sprague-Dawley rats. Two sham-treated animals served as controls. Cartilage of each femoral head was harvested at 1, 4, or 10 weeks after ESWT (n = 6 per treatment group) and scored on safranin-O-stained sections. Expression of tenascin-C and chitinase 3-like protein 1 (Chi3L1) was analyzed by immunohistochemistry. Quantitative real-time polymerase chain reaction (PCR) was used to examine collagen (II)alpha(1) (COL2A1) expression and chondrocyte morphology was investigated by transmission electron microscopy no changes in Mankin scores were observed after ESWT. Positive immunostaining for tenascin-C and Chi3L1 was found up to 10 weeks after ESWT in experimental but not in control cartilage. COL2A1 mRNA was increased in samples 1 and 4 weeks after ESWT. Alterations found on the ultrastructural level showed expansion of the rough-surfaced endoplasmatic reticulum, detachment of the cell membrane and necrotic chondrocytes. Extracorporeal shock waves caused alterations of hyaline cartilage on a molecular and ultrastructural level that were distinctly different from control. Similar changes were described before in the very early phase of osteoarthritis (OA). High-energy ESWT might therefore cause degenerative changes in hyaline cartilage as they are found in initial OA. Copyright 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. Controllable seismic source

    DOEpatents

    Gomez, Antonio; DeRego, Paul Jeffrey; Ferrell, Patrick Andrew; Thom, Robert Anthony; Trujillo, Joshua J.; Herridge, Brian

    2015-09-29

    An apparatus for generating seismic waves includes a housing, a strike surface within the housing, and a hammer movably disposed within the housing. An actuator induces a striking motion in the hammer such that the hammer impacts the strike surface as part of the striking motion. The actuator is selectively adjustable to change characteristics of the striking motion and characteristics of seismic waves generated by the impact. The hammer may be modified to change the physical characteristics of the hammer, thereby changing characteristics of seismic waves generated by the hammer. The hammer may be disposed within a removable shock cavity, and the apparatus may include two hammers and two shock cavities positioned symmetrically about a center of the apparatus.

  3. Controllable seismic source

    DOEpatents

    Gomez, Antonio; DeRego, Paul Jeffrey; Ferrel, Patrick Andrew; Thom, Robert Anthony; Trujillo, Joshua J.; Herridge, Brian

    2014-08-19

    An apparatus for generating seismic waves includes a housing, a strike surface within the housing, and a hammer movably disposed within the housing. An actuator induces a striking motion in the hammer such that the hammer impacts the strike surface as part of the striking motion. The actuator is selectively adjustable to change characteristics of the striking motion and characteristics of seismic waves generated by the impact. The hammer may be modified to change the physical characteristics of the hammer, thereby changing characteristics of seismic waves generated by the hammer. The hammer may be disposed within a removable shock cavity, and the apparatus may include two hammers and two shock cavities positioned symmetrically about a center of the apparatus.

  4. Controlled cavitation to augment SWL stone comminution: mechanistic insights in vitro.

    PubMed

    Duryea, Alexander P; Roberts, William W; Cain, Charles A; Hall, Timothy L

    2013-02-01

    Stone comminution in shock wave lithotripsy (SWL) has been documented to result from mechanical stresses conferred directly to the stone, as well as the activity of cavitational microbubbles. Studies have demonstrated that the presence of this cavitation activity is crucial for stone subdivision; however, its exact role in the comminution process remains somewhat weakly defined, in part because it is difficult to isolate the cavitational component from the shock waves themselves. In this study, we further explored the importance of cavitation in SWL stone comminution through the use of histotripsy ultrasound therapy. Histotripsy was used to target model stones designed to mimic the mid-range tensile fracture strength of naturally occurring cystine calculi with controlled cavitation at strategic time points in the SWL comminution process. All SWL was applied at a peak positive pressure (p+) of 34 MPa and a peak negative pressure (p-) of 8 MPa; a shock rate of 1 Hz was used. Histotripsy pulses had a p- of 33 MPa and were applied at a pulse repetition frequency (PRF) of 100 Hz. Ten model stones were sonicated in vitro with each of five different treatment schemes: A) 10 min of SWL (600 shocks) with 0.7 s of histotripsy interleaved between successive shocks (totaling to 42 000 pulses); B) 10 min of SWL (600 shocks) followed by 10 min of histotripsy applied in 0.7-s bursts (1 burst per second, totaling to 42 000 pulses); C) 10 min of histotripsy applied in 0.7-s bursts (42 000 pulses) followed by 10 min of SWL (600 shocks); D) 10 min of SWL only (600 shocks); E) 10 min of histotripsy only, applied in 0.7-s bursts (42 000 pulses). Following sonication, debris was collected and sieved through 8-, 6-, 4-, and 2-mm filters. It was found that scheme D, SWL only, generated a broad range of fragment sizes, with an average of 14.9 ± 24.1% of the original stone mass remaining > 8 mm. Scheme E, histotripsy only, eroded the surface of stones to tiny particulate debris that was small enough to pass through the finest filter used in this study (<2 mm), leaving behind a single primary stone piece (>8 mm) with mass 85.1 ± 1.6% of the original following truncated sonication. The combination of SWL and histotripsy (schemes A, B, and C) resulted in a shift in the size distribution toward smaller fragments and complete elimination of debris > 8 mm. When histotripsy-controlled cavitation was applied following SWL (B), the increase in exposed stone surface area afforded by shock wave stone subdivision led to enhanced cavitation erosion. When histotripsy-controlled cavitation was applied before SWL (C), it is likely that stone surface defects induced by cavitation erosion provided sites for crack nucleation and accelerated shock wave stone subdivision. Both of these effects are likely at play in the interleaved therapy (A), although shielding of shock waves by remnant histotripsy microbubble nuclei may have limited the efficacy of this scheme. Nevertheless, these results demonstrate the important role played by cavitation in the stone comminution process, and suggest that the application of controlled cavitation at strategic time points can provide an adjunct to traditional SWL therapy.

  5. Recruitment of phosphorylated small heat shock protein Hsp27 to nuclear speckles without stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryantsev, A.L.; Chechenova, M.B.; Shelden, E.A.

    During stress, the mammalian small heat shock protein Hsp27 enters cell nuclei. The present study examines the requirements for entry of Hsp27 into nuclei of normal rat kidney (NRK) renal epithelial cells, and for its interactions with specific nuclear structures. We find that phosphorylation of Hsp27 is necessary for the efficient entry into nuclei during heat shock but not sufficient for efficient nuclear entry under control conditions. We further report that Hsp27 is recruited to an RNAse sensitive fraction of SC35 positive nuclear speckles, but not other intranuclear structures, in response to heat shock. Intriguingly, Hsp27 phosphorylation, in the absencemore » of stress, is sufficient for recruitment to speckles found in post-anaphase stage mitotic cells. Additionally, pseudophosphorylated Hsp27 fused to a nuclear localization peptide (NLS) is recruited to nuclear speckles in unstressed interphase cells, but wildtype and nonphosphorylatable Hsp27 NLS fusion proteins are not. The expression of NLS-Hsp27 mutants does not enhance colony forming abilities of cells subjected to severe heat shock, but does regulate nuclear speckle morphology. These data demonstrate that phosphorylation, but not stress, mediates Hsp27 recruitment to an RNAse soluble fraction of nuclear speckles and support a site-specific role for Hsp27 within the nucleus.« less

  6. Principles and application of extracorporeal shock wave lithotripsy.

    PubMed

    Robinson, S N; Crane, V S; Jones, D G; Cochran, J S; Williams, O B

    1987-04-01

    The physics, instrumentation, and patient-care aspects of extracorporeal shock wave lithotripsy (ESWL) in the treatment of kidney stone disease are described. The kidney stone is located through the use of two integrated roentgenographic imaging systems. The x-ray tubes, fixed on either side of a tub of water in which the patient is partially immersed, are directed upward. The patient is maneuvered until the imaging systems indicate the kidney stone is within the second focus of the reflector and within the 1.5-cu cm target area. Once within this alignment, the stone is ready for shock wave treatment; general or regional anesthesia is used to immobilize the patient so that the position of the stone can be maintained within the focus of the shock wave. When the stone is repeatedly subjected to this high-energy force, it begins to disintegrate until fragments of less than 1 mm are left. ESWL can (1) disintegrate kidney stones of all types, (2) be efficiently transmitted over distances that allow the shock wave source to be outside the body, (3) safely pass through living tissue, and (4) be precisely controlled and focused into a small target area. ESWL is a safe, effective, and cost-saving treatment that can be used for 90% of all kidney stone disease that previously required surgery.

  7. Combination of Heat Shock and Enhanced Thermal Regime to Control the Growth of a Persistent Legionella pneumophila Strain

    PubMed Central

    Bédard, Emilie; Boppe, Inès; Kouamé, Serge; Martin, Philippe; Pinsonneault, Linda; Valiquette, Louis; Racine, Jules; Prévost, Michèle

    2016-01-01

    Following nosocomial cases of Legionella pneumophila, the investigation of a hot water system revealed that 81.5% of sampled taps were positive for L. pneumophila, despite the presence of protective levels of copper in the water. A significant reduction of L. pneumophila counts was observed by culture after heat shock disinfection. The following corrective measures were implemented to control L. pneumophila: increasing the hot water temperature (55 to 60 °C), flushing taps weekly with hot water, removing excess lengths of piping and maintaining a water temperature of 55 °C throughout the system. A gradual reduction in L. pneumophila counts was observed using the culture method and qPCR in the 18 months after implementation of the corrective measures. However, low level contamination was retained in areas with hydraulic deficiencies, highlighting the importance of maintaining a good thermal regime at all points within the system to control the population of L. pneumophila. PMID:27092528

  8. Flight Demonstration of a Shock Location Sensor Using Constant Voltage Hot-Film Anemometry

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.; Sarma, Garimella R.; Mangalam, Siva M.

    1997-01-01

    Flight tests have demonstrated the effectiveness of an array of hot-film sensors using constant voltage anemometry to determine shock position on a wing or aircraft surface at transonic speeds. Flights were conducted at the NASA Dryden Flight Research Center using the F-15B aircraft and Flight Test Fixture (FTF). A modified NACA 0021 airfoil was attached to the side of the FTF, and its upper surface was instrumented to correlate shock position with pressure and hot-film sensors. In the vicinity of the shock-induced pressure rise, test results consistently showed the presence of a minimum voltage in the hot-film anemometer outputs. Comparing these results with previous investigations indicate that hot-film anemometry can identify the location of the shock-induced boundary layer separation. The flow separation occurred slightly forward of the shock- induced pressure rise for a laminar boundary layer and slightly aft of the start of the pressure rise when the boundary layer was tripped near the airfoil leading edge. Both minimum mean output and phase reversal analyses were used to identify the shock location.

  9. Unsteady Aerodynamic Phenomena in Turbomachines

    DTIC Science & Technology

    1990-02-01

    transducer position will be approximately 10 es for the recompression shock nabe The position and strength of the bow shock wave is strongly dependent upon...built as a standard rig probe and now is undergoing preliminary test studies. LIST Or SY BOLS C Absolute flow velocity d Probe inlet hole diameter K

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Zhaohuan; Ju, Wenhua; Stone, James M., E-mail: zhzhu@physics.unlv.edu

    Circumplanetary disks (CPDs) control the growth of planets, supply material for satellites to form, and provide observational signatures of young forming planets. We have carried out two-dimensional hydrodynamical simulations with radiative cooling to study CPDs and suggested a new mechanism to drive the disk accretion. Two spiral shocks are present in CPDs, excited by the central star. We find that spiral shocks can at least contribute to, if not dominate, the angular momentum transport and energy dissipation in CPDs. Meanwhile, dissipation and heating by spiral shocks have a positive feedback on shock-driven accretion itself. As the disk is heated up bymore » spiral shocks, the shocks become more open, leading to more efficient angular momentum transport. This shock-driven accretion is, on the other hand, unsteady due to production and destruction of vortices in disks. After being averaged over time, a quasi-steady accretion is reached from the planet’s Hill radius all the way to the planet surface, and the disk α  coefficient characterizing angular momentum transport is ∼0.001–0.02. The disk surface density ranges from 10 to 1000 g cm{sup −2} in our simulations, which is at least three orders of magnitude smaller than the “minimum-mass subnebula” model used to study satellite formation; instead it is more consistent with the “gas-starved” satellite formation model. Finally, we calculate the millimeter flux emitted by CPDs at ALMA and EVLA wavelength bands and predict the flux for several recently discovered CPD candidates, which suggests that ALMA is capable of discovering these accreting CPDs.« less

  11. Use of the Exponential and Exponentiated Demand Equations to Assess the Behavioral Economics of Negative Reinforcement

    PubMed Central

    Fragale, Jennifer E. C.; Beck, Kevin D.; Pang, Kevin C. H.

    2017-01-01

    Abnormal motivation and hedonic assessment of aversive stimuli are symptoms of anxiety and depression. Symptoms influenced by motivation and anhedonia predict treatment success or resistance. Therefore, a translational approach to the study of negatively motivated behaviors is needed. We describe a novel use of behavioral economics demand curve analysis to investigate negative reinforcement in animals that separates hedonic assessment of footshock termination (i.e., relief) from motivation to escape footshock. In outbred Sprague Dawley (SD) rats, relief increased as shock intensity increased. Likewise, motivation to escape footshock increased as shock intensity increased. To demonstrate the applicability to anxiety disorders, hedonic and motivational components of negative reinforcement were investigated in anxiety vulnerable Wistar Kyoto (WKY) rats. WKY rats demonstrated increased motivation for shock cessation with no difference in relief as compared to control SD rats, consistent with a negative bias for motivation in anxiety vulnerability. Moreover, motivation was positively correlated with relief in SD, but not in WKY. This study is the first to assess the hedonic and motivational components of negative reinforcement using behavioral economic analysis. This procedure can be used to investigate positive and negative reinforcement in humans and animals to gain a better understanding of the importance of motivated behavior in stress-related disorders. PMID:28270744

  12. Cold Shock Induction of Thermal Sensitivity in Listeria monocytogenes

    PubMed Central

    Miller, Arthur J.; Bayles, Darrell O.; Eblen, B. Shawn

    2000-01-01

    Cold shock at 0 to 15°C for 1 to 3 h increased the thermal sensitivity of Listeria monocytogenes. In a model broth system, thermal death time at 60°C was reduced by up to 45% after L. monocytogenes Scott A was cold shocked for 3 h. The duration of the cold shock affected thermal tolerance more than did the magnitude of the temperature downshift. The Z values were 8.8°C for controls and 7.7°C for cold-shocked cells. The D values of cold-shocked cells did not return to control levels after incubation for 3 h at 28°C followed by heating at 60°C. Nine L. monocytogenes strains that were cold shocked for 3 h exhibited D60 values that were reduced by 13 to 37%. The D-value reduction was greatest in cold-shocked stationary-phase cells compared to cells from cultures in either the lag or exponential phases of growth. In addition, cold-shocked cells were more likely to be inactivated by a given heat treatment than nonshocked cells, which were more likely to experience sublethal injury. The D values of chloramphenicol-treated control cells and chloramphenicol-treated cold-shocked cells were no different from those of untreated cold-shocked cells, suggesting that cold shock suppresses synthesis of proteins responsible for heat protection. In related experiments, the D values of L. monocytogenes Scott A were decreased 25% on frankfurter skins and 15% in ultra-high temperature milk if the inoculated products were first cold shocked. Induction of increased thermal sensitivity in L. monocytogenes by thermal flux shows potential to become a practical and efficacious preventative control method. PMID:11010880

  13. Lactated ringer's solution and hetastarch but not plasma resuscitation after rat hemorrhagic shock is associated with immediate lung apoptosis by the up-regulation of the Bax protein.

    PubMed

    Deb, S; Sun, L; Martin, B; Talens, E; Burris, D; Kaufmann, C; Rich, N; Rhee, P

    2000-07-01

    We previously demonstrated that the type of resuscitation fluid used in hemorrhagic shock affects apoptosis. Unlike crystalloid, whole blood seems to attenuate programmed cell death. The purpose of this study was to determine whether the acellular components of whole blood (plasma, albumin) attenuated apoptosis and to determine whether this process involved the Bax protein pathway. Rats were hemorrhaged 27.5 mL/kg, kept in hypovolemic shock for 75 minutes, then resuscitated over 1 hour (n = 44). Control animals underwent anesthesia only (sham, n = 7). Treatment animals were bled then randomly assigned to the following resuscitation groups: no resuscitation (n = 6), whole blood (n = 6), plasma (n = 6), 5% human albumin (n = 6), 6% hetastarch (n = 7), and lactated Ringer's solution (LR, n = 6). Hetastarch was used to control for any colloid effect. LR was used as positive control. Immediately after resuscitation, the lung was collected and evaluated for apoptosis by using two methods. TUNEL stain was used to determine general DNA damage, and Bax protein was used to specifically determine intrinsic pathway involvement. LR and hetastarch treatment resulted in significantly increased apoptosis in the lung as determined by both TUNEL and Bax expression (p < 0.05). Plasma infusion resulted in significantly less apoptosis than LR and hetastarch resuscitation. Multiple cell types (epithelium, endothelium, smooth muscle, monocytes) underwent apoptosis in the lung as demonstrated by the TUNEL stain, whereas Bax expression was limited to cells residing in the perivascular and peribronchial spaces. Apoptosis after volume resuscitation of hemorrhagic shock can be affected by the type of resuscitation fluid used. Manufactured fluids such as lactated Ringer's solution and 6% hetastarch resuscitation resulted in the highest degree of lung apoptosis. The plasma component of whole blood resulted in the least apoptosis. The process of apoptosis after hemorrhagic shock resuscitation involves the Bax protein.

  14. The Statistical Studies of 0.5-100 keV Electrons Near The ICME-drivens At 1 AU

    NASA Astrophysics Data System (ADS)

    Yang, L.; Wang, W.; Wang, L.; Li, G.; Wimmer-Schweingruber, R. F.; He, J.; Tu, C. Y.; Bale, S. D.

    2017-12-01

    We present a statistical survey of the 0.5 - 100 keV electrons near the ICME-driven shocks at 1 AU, using the WIND/3DP electron measurements from 1995 to 2014. We select 74 good ICME-driven shocks, and use the "Rankine-Hugoniot" shock fitting technique to obtain the shock normal, θBn, magnetic compression ratio rB, and magnetosonic Mach number Ms. After averaging the electron data in the 10-minute interval immediately after the shock to obtain the sheath electron fluxes, Jsheath, and in the 2-hour quiet-time interval before the shock to obtain the pre-event electron fluxes, Jpre-event, we calculate the flux ratio, α, of Jsheath over Jpre-event. We find that, in the 59 quasi-perpendicular shocks, both Jsheath and Jpre-event are positively correlated with Ms and α is positively correlated with rB. In the 15 quasi-parallel cases, α is positively correlated with Ms, while neither Jsheath nor Jpre-event has any correlation with the shock parameters. Furthermore, we find that both the pre-event and sheath electron fluxes generally fit well to a double power-law spectrum, . At 0.5 - 2 keV, the fitted spectral index β1 ranges from 2.1 to 5.9, and it becomes larger in the sheah than in the pre-event in nearly a half of the 74 cases and remains the same in the other half of the cases. At 2 - 100 keV, the fitted index β2 ranges from 1.9 to 3.4, similar to the spectral indexes of solar wind superhalo electrons at quiet times (Wang et al., 2015). And β2 becomes larger in the sheah than in the pre-event in over half of the cases. In addition, neither β1 nor β2 is consistent with the diffusive shock theoretical predication. These results suggest that the shock drift acceleration may play a more important role in electron acceleration than the diffusive shock acceleration near 1 AU, and the interplanetary shock acceleration can contribute to the production of solar wind superhalo electrons.

  15. Narrative theory: II. Self-generated and experimenter-provided negative income shock narratives increase delay discounting.

    PubMed

    Mellis, Alexandra M; Snider, Sarah E; Bickel, Warren K

    2018-04-01

    Reading experimenter-provided narratives of negative income shock has been previously demonstrated to increase impulsivity, as measured by discounting of delayed rewards. We hypothesized that writing these narratives would potentiate their effects of negative income shock on decision-making more than simply reading them. In the current study, 193 cigarette-smoking individuals from Amazon Mechanical Turk were assigned to either read an experimenter-provided narrative or self-generate a narrative describing either the negative income shock of job loss or a neutral condition of job transfer. Individuals then completed a task of delay discounting and measures of affective response to narratives, as well as rating various narrative qualities such as personal relevance and vividness. Consistent with past research, narratives of negative income shock increased delay discounting compared to control narratives. No significant differences existed in delay discounting after self-generating compared to reading experimenter-provided narratives. Positive affect was lower and negative affect was higher in response to narratives of job loss, but affect measures did not differ based on whether narratives were experimenter-provided or self-generated. All narratives were rated as equally realistic, but self-generated narratives (whether negative or neutral) were rated as more vivid and relevant than experimenter-provided narratives. These results indicate that the content of negative income shock narratives, regardless of source, consistently drives short-term choices. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  16. Cognitive Function and Heat Shock Protein 70 in Children With Temporal Lobe Epilepsy.

    PubMed

    Oraby, Azza M; Raouf, Ehab R Abdol; El-Saied, Mostafa M; Abou-Khadra, Maha K; Helal, Suzette I; Hashish, Adel F

    2017-01-01

    We conducted the present study to examine cognitive function and serum heat shock protein 70 levels among children with temporal lobe epilepsy. The Stanford-Binet Intelligence Test was carried out to examine cognitive function in 30 children with temporal lobe epilepsy and 30 controls. Serum heat shock protein 70 levels were determined with an enzyme-linked immunosorbent assay. The epilepsy group had significantly lower cognitive function testing scores and significantly higher serum heat shock protein 70 levels than the control group; there were significant negative correlations between serum heat shock protein 70 levels and short-term memory and composite scores. Children with uncontrolled seizures had significantly lower verbal reasoning scores and significantly higher serum heat shock protein 70 levels than children with controlled seizures. Children with temporal lobe epilepsy have cognitive dysfunction and elevated levels of serum heat shock protein 70, which may be considered a stress biomarker.

  17. Effects of Extremely High ’G’ Acceleration Forces on NASA’s Control and Space Exposed Tomato Seeds

    DTIC Science & Technology

    1991-12-01

    mechanical shock test; tomatoes staked 28 and interplanted with dwarf marigolds for nematode protection of tomatoes 28 NASA control seed mechanical shock...plants transplanted to garden Figure 27. NASA control seed mechanical shock test; tomatoes staked and interplanted with dwarf marigolds for nematode

  18. Oil price fluctuations and the Gulf Cooperation Council (GCC) countries, 1960--2004

    NASA Astrophysics Data System (ADS)

    Alotaibi, Bader

    The dissertation examines the effect of oil price fluctuations on GCC economies for the period 1960-2004. The objective of chapter two is to investigate whether oil price fluctuations have asymmetric effects on GDP growth. Does a negative oil price shock have merely an opposite effect as does a positive price shock or are there differences in degrees? Many past studies have examined asymmetries between oil prices and output growth in oil importing countries. A fixed effect model is used. We find that negative oil price shocks dominate positive shocks. The objective of chapter three is to investigate the impact of oil price shocks on real exchange rates and price levels. A structural Vector Autoregression (VAR) model for each country is used containing three and four variables in the first and second specifications, respectively. Oil price shocks are found to be not only important but persistent. In most countries, supply shocks play larger roles than do demand shocks. Nominal shocks have only short-run effects on the real exchange rate and the price level. The objective of chapter four is to investigate fluctuations in budget and trade deficits. Do agents smooth over income shocks due to fluctuations in oil prices or do oil price shocks have large effects? Also, are the budget and trade deficits causally related? If so, what direction does this causal relation take? Many studies have considered links between budget and trade deficits but most have been conducted for countries where oil is not a major concern. A VAR model containing three variables for each country is used. Oil price shocks are found to be persistent. Also, the results support the twin deficits hypothesis. Budget deficit shocks cause deterioration in the trade deficits in GCC countries.

  19. Highly trabeculated structure of the human endocardium underlies asymmetrical response to low-energy monophasic shocks

    NASA Astrophysics Data System (ADS)

    Connolly, Adam; Robson, Matthew D.; Schneider, Jürgen; Burton, Rebecca; Plank, Gernot; Bishop, Martin J.

    2017-09-01

    Novel low-energy defibrillation therapies are thought to be driven by virtual-electrodes (VEs), due to the interaction of applied monophasic electric shocks with fine-scale anatomical structures within the heart. Significant inter-species differences in the cardiac (micro)-anatomy exist, however, particularly with respect to the degree of endocardial trabeculations, which may underlie important differences in response to low-energy defibrillation protocols. Understanding the interaction of monophasic electric fields with the specific human micro-anatomy is therefore imperative in facilitating the translation and optimisation of these promising experimental therapies to the clinic. In this study, we sought to investigate how electric fields from implanted devices interact with the highly trabeculated human endocardial surface to better understand shock success in order to help optimise future clinical protocols. A bi-ventricular human computational model was constructed from high resolution (350 μm) ex-vivo MR data, including anatomically accurate endocardial structures. Monophasic shocks were applied between a basal right ventricular catheter and an exterior ground. Shocks of varying strengths were applied with both anodal [positive right ventricle (RV) electrode] and cathodal (negative RV electrode) polarities at different states of tissue refractoriness and during induced arrhythmias. Anodal shocks induced isolated positive VEs at the distal side of "detached" trabeculations, which rapidly spread into hyperpolarised tissue on the surrounding endocardial surfaces following the shock. Anodal shocks thus depolarised more tissue 10 ms after the shock than cathodal shocks where the propagation of activation from VEs induced on the proximal side of "detached" trabeculations was prevented due to refractory endocardium. Anodal shocks increased arrhythmia complexity more than cathodal shocks during failed anti-arrhythmia shocks. In conclusion, multiple detached trabeculations in the human ventricle interact with anodal stimuli to induce multiple secondary sources from VEs, facilitating more rapid shock-induced ventricular excitation compared to cathodal shocks. Such a mechanism may help explain inter-species differences in response to shocks and help to develop novel defibrillation strategies.

  20. The dynamics and control of fluctuating pressure loads in the reattachment region of a supersonic free shear layer

    NASA Technical Reports Server (NTRS)

    Smits, A. J.

    1990-01-01

    The primary aim is to investigate the mechanisms which cause the unsteady wall-pressure fluctuations in shock wave turbulent shear layer interactions. The secondary aim is to find means to reduce the magnitude of the fluctuating pressure loads by controlling the unsteady shock motion. The particular flow proposed for study is the unsteady shock wave interaction formed in the reattachment zone of a separated supersonic flow. Similar flows are encountered in many practical situations, and they are associated with high levels of fluctuating wall pressure. Wall pressure fluctuations were measured in the reattachment region of the supersonic free shear layer. The free shear layer was formed by the separation of a Mach 2.9 turbulent boundary layer from a backward facing step. Reattachment occurred on a 20 deg ramp. By adjusting the position of the ramp, the base pressure was set equal to the freestream pressure, and the free shear layer formed in the absence of a separation shock. An array of flush-mounted, miniature, high-frequency pressure transducers was used to make multichannel measurements of the fluctuating wall pressure in the vicinity of the reattachment region. Contrary to previous observations of this flow, the reattachment region was found to be highly unsteady, and the pressure fluctuations were found to be significant. The overall behavior of the wall pressure loading is similar in scale and magnitude to the unsteadiness of the wall pressure field in compression ramp flows at the same Mach number. Rayleigh scattering was used to visualize the instantaneous shock structure in the streamwise and spanwise direction. Spanwise wrinkles on the order of half the boundary layer thickness were observed.

  1. 75 FR 41078 - Revisions to the Commerce Control List To Update and Clarify Crime Control License Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... * * * * * 0A985 Discharge type arms and devices to administer electric shock, for example, stun guns, shock batons, shock shields, electric cattle prods, immobilization guns and projectiles; except equipment used...

  2. Ultrasound-induced hyperthermia for the spatio-temporal control of gene expression in bone repair

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher; Padilla, Frédéric; Zhang, Man; Vilaboa, Nuria; Kripfgans, Oliver; Fowlkes, Brian; Franceschi, Renny

    2012-10-01

    Spatial and temporal control over the expression of growth/differentiation factors is of great interest for regeneration of bone, but technologies capable of providing tight and active control over gene expression remain elusive. We propose the use of focused ultrasound for the targeted activation of heat shock-sensitive expression systems in engineered bone. We report in vitro results with cells that express firefly luciferase (fLuc) under the control of a heat shock protein promoter. Cells were embedded in fibrin scaffolds and exposed to focused ultrasound, using a custom 3.3MHz transducer (focal length 4", f-number 1.33", focal dimension 1.2mm lateral FWHM) in CW mode for 2-20 minutes at intensities ISPTA=120-440 W/cm2. The kinetics of ultrasound-mediated activation of the cells was compared with that of strictly thermal activation. Bioluminescence imaging revealed fLuc expression in an area ≥2.5mm in diameter at the position of the ultrasound focus, and the diameter and intensity of the signal increased with the amplitude of the acoustic energy. We also found that ultrasound activated fLuc expression with substantially shorter exposures than thermal activation. Our results demonstrate the potential for focused ultrasound to selectively activate the expression of a gene of interest in an engineered tissue and suggest that focused ultrasound activates the heat shock pathway by a combination of thermal and non-thermal mechanisms.

  3. Stimuli inevitably generated by behavior that avoids electric shock are inherently reinforcing.

    PubMed Central

    Dinsmoor, J A

    2001-01-01

    A molecular analysis based on the termination of stimuli that are positively correlated with shock and the production of stimuli that are negatively correlated with shock provides a parsimonious count for both traditional discrete-trial avoidance behavior and the data derived from more recent free-operant procedures. The necessary stimuli are provided by the intrinsic feedback generated by the subject's behavior, in addition to those presented by the experimenter. Moreover, all data compatible with the molar principle of shock-frequency reduction as reinforcement are also compatible with a delay-of-shock gradient, but some data compatible with the delay gradient are not compatible with frequency reduction. The delay gradient corresponds to functions relating magnitude of behavioral effect to the time between conditional and unconditional stimuli, the time between conditioned and primary reinforcers, and the time between responses and positive reinforcers. PMID:11453621

  4. A note on supersonic flow control with nanosecond plasma actuator

    NASA Astrophysics Data System (ADS)

    Zheng, J. G.; Cui, Y. D.; Li, J.; Khoo, B. C.

    2018-04-01

    A concept study on supersonic flow control using nanosecond pulsed plasma actuator is conducted by means of numerical simulation. The nanosecond plasma discharge is characterized by the generation of a micro-shock wave in ambient air and a residual heat in the discharge volume arising from the rapid heating of near-surface gas by the quick discharge. The residual heat has been found to be essential for the flow separation control over aerodynamic bodies like airfoil and backward-facing step. In this study, novel experiment is designed to utilize the other flow feature from discharge, i.e., instant shock wave, to control supersonic flow through shock-shock interaction. Both bow shock in front of a blunt body and attached shock anchored at the tip of supersonic projectile are manipulated via the discharged-induced shock wave in an appropriate manner. It is observed that drag on the blunt body is reduced appreciably. Meanwhile, a lateral force on sharp-edged projectile is produced, which can steer the body and give it an effective angle of attack. This opens a promising possibility for extending the applicability of this flow control technique in supersonic flow regime.

  5. Asymmetries in the location of the Venus and Mars bow shock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, T.L.; Schwingenschuh, K.; Russell, C.T.

    1991-02-01

    An examination of observations of the position of the terminator bow shock at Venus and Mars shows that the terminator bow shock varies with the angle between the local bow shock normal and the upstream magnetic field, {theta}{sub BN}. The part of the shock on the quasi-parallel side is closer to the planet than the part on the quasi-perpendicular side, a result which had been sggested by an earlier computer simulation by Thomas and Winske (1990). This bow shock asymmetry is observed to be larger at Mars than at Venus.

  6. Decreased delivery of inappropriate shocks achieved by remote monitoring of ICD: a substudy of the ECOST trial.

    PubMed

    Guédon-Moreau, Laurence; Kouakam, Claude; Klug, Didier; Marquié, Christelle; Brigadeau, François; Boulé, Stéphane; Blangy, Hugues; Lacroix, Dominique; Clémenty, Jacques; Sadoul, Nicolas; Kacet, Salem

    2014-07-01

    Inappropriate shocks remain a highly challenging complication of implantable cardioverter defibrillators (ICD). We examined whether automatic wireless remote monitoring (RM) of ICD, by providing early notifications of triggering events, lowers the incidence of inappropriate shocks. We studied 433 patients randomly assigned to RM (n = 221; active group) versus ambulatory follow-up (n = 212; control group). Patients in the active group were seen in the ambulatory department once a year, unless RM reported an event requiring an earlier ambulatory visit. Patients in the control group were seen in the ambulatory department every 6 months. The occurrence of first and further inappropriate shocks, and their causes in each group were compared. The characteristics of the study groups, including pharmaceutical regimens, were similar. Over a follow-up of 27 months, 5.0% of patients in the active group received ≥1 inappropriate shocks versus 10.4% in the control group (P = 0.03). A total of 28 inappropriate shocks were delivered in the active versus 283 in the control group. Shocks were triggered by supraventricular tachyarrhythmias (SVTA) in 48.5%, noise oversensing in 21.2%, T wave oversensing in 15.2%, and lead dysfunction in 15.2% of patients. The numbers of inappropriate shocks delivered per patient, triggered by SVTA and by lead dysfunction, were 74% and 98% lower, respectively, in the active than in the control group. RM was highly effective in the long-term prevention of inappropriate ICD shocks. © 2014 Wiley Periodicals, Inc.

  7. Regulation of heat shock protein message in Jurkat cells cultured under serum-starved and gravity-altered conditions

    NASA Technical Reports Server (NTRS)

    Lewis, M. L.; Hughes-Fulford, M.

    2000-01-01

    Although our understanding of effects of space flight on human physiology has advanced significantly over the past four decades, the potential contribution of stress at the cellular and gene regulation level is not characterized. The objective of this ground-based study was to evaluate stress gene regulation in cells exposed to altered gravity and environmentally suboptimal conditions. We designed primers to detect message for both the constitutive and inducible forms of the heat shock protein, HSP-70. Applying the reverse transcriptase-polymerase chain reaction (RT-PCR), we probed for HSP-70 message in human acute T-cell leukemia cells, Jurkat, subjected to three types of environmental stressors: (1) altered gravity achieved by centrifugation (hypergravity) and randomization of the gravity vector in rotating bioreactors, (2) serum starvation by culture in medium containing 0.05% serum, and (3) temperature elevation (42 degrees C). Temperature elevation, as the positive control, significantly increased HSP-70 message, while centrifugation and culture in rotating bioreactors did not upregulate heat shock gene expression. We found a fourfold increase in heat shock message in serum-starved cells. Message for the housekeeping genes, actin and cyclophilin, were constant and comparable to unstressed controls for all treatments. We conclude that gravitational perturbations incurred by centrifugal forces, exceeding those characteristic of a Space Shuttle launch (3g), and culture in rotating bioreactors do not upregulate HSP-70 gene expression. In addition, we found RT-PCR useful for evaluating stress in cultured cells. Copyright 2000 Wiley-Liss, Inc.

  8. Test Operations Procedure (TOP) 10-2-400 Open End Compressed Gas Driven Shock Tube

    DTIC Science & Technology

    gas-driven shock tube. Procedures are provided for instrumentation, test item positioning, estimation of key test parameters, operation of the shock...tube, data collection, and reporting. The procedures in this document are based on the use of helium gas and Mylar film diaphragms.

  9. A Parametric Approach to Shape Field-Relevant Blast Wave Profiles in Compressed-Gas-Driven Shock Tube

    PubMed Central

    Sundaramurthy, Aravind; Chandra, Namas

    2014-01-01

    Detonation of a high-explosive produces shock-blast wave, shrapnel, and gaseous products. While direct exposure to blast is a concern near the epicenter, shock-blast can affect subjects, even at farther distances. When a pure shock-blast wave encounters the subject, in the absence of shrapnels, fall, or gaseous products the loading is termed as primary blast loading and is the subject of this paper. The wave profile is characterized by blast overpressure, positive time duration, and impulse and called herein as shock-blast wave parameters (SWPs). These parameters in turn are uniquely determined by the strength of high explosive and the distance of the human subjects from the epicenter. The shape and magnitude of the profile determine the severity of injury to the subjects. As shown in some of our recent works (1–3), the profile not only determines the survival of the subjects (e.g., animals) but also the acute and chronic biomechanical injuries along with the following bio-chemical sequelae. It is extremely important to carefully design and operate the shock tube to produce field-relevant SWPs. Furthermore, it is vital to identify and eliminate the artifacts that are inadvertently introduced in the shock-blast profile that may affect the results. In this work, we examine the relationship between shock tube adjustable parameters (SAPs) and SWPs that can be used to control the blast profile; the results can be easily applied to many of the laboratory shock tubes. Further, replication of shock profile (magnitude and shape) can be related to field explosions and can be a standard in comparing results across different laboratories. Forty experiments are carried out by judiciously varying SAPs such as membrane thickness, breech length (66.68–1209.68 mm), measurement location, and type of driver gas (nitrogen, helium). The effects SAPs have on the resulting shock-blast profiles are shown. Also, the shock-blast profiles of a TNT explosion from ConWep software is compared with the profiles obtained from the shock tube. To conclude, our experimental results demonstrate that a compressed-gas shock tube when designed and operated carefully can replicate the blast time profiles of field explosions accurately. Such a faithful replication is an essential first step when studying the effects of blast induced neurotrauma using animal models. PMID:25520701

  10. Experimental Investigation of Diffuser Pressure-ratio Control with Shock-positioning Limit on 28-inch Ram-jet Engine

    NASA Technical Reports Server (NTRS)

    Dunbar, William R; Wentworth, Carl B; Crowl, Robert J

    1957-01-01

    The performance of a control system designed for variable thrust applications was determined in an altitude free-jet facility at various Mach numbers, altitudes and angles of attack for a wide range of engine operation. The results are presented as transient response characteristics for step disturbances in fuel flow and stability characteristics as a function of control constants and engine operating conditions. The results indicate that the control is capable of successful operation over the range of conditions tested, although variations in engine gains preclude optimum response characteristics at all conditions with fixed control constants.

  11. Influence of Tanshinone IIa on heat shock protein 70, Bcl-2 and Bax expression in rats with spinal ischemia/reperfusion injury.

    PubMed

    Zhang, Li; Gan, Weidong; An, Guoyao

    2012-12-25

    Tanshinone IIa is an effective monomer component of Danshen, which is a traditional Chinese medicine for activating blood circulation to dissipate blood stasis. Tanshinone IIa can effectively improve brain tissue ischemia/hypoxia injury. The present study established a rat model of spinal cord ischemia/reperfusion injury and intraperitoneally injected Tanshinone IIa, 0.5 hour prior to model establishment. Results showed that Tanshinone IIa promoted heat shock protein 70 and Bcl-2 protein expression, but inhibited Bax protein expression in the injured spinal cord after ischemia/reperfusion injury. Furthermore, Nissl staining indicated a reduction in nerve cell apoptosis and fewer pathological lesions in the presence of Tanshinone IIa, compared with positive control Danshen injection.

  12. Legionella control in the water system of antiquated hospital buildings by shock and continuous hyperchlorination: 5 years experience.

    PubMed

    Orsi, Giovanni Battista; Vitali, Matteo; Marinelli, Lucia; Ciorba, Veronica; Tufi, Daniela; Del Cimmuto, Angela; Ursillo, Paolo; Fabiani, Massimo; De Santis, Susi; Protano, Carmela; Marzuillo, Carolina; De Giusti, Maria

    2014-07-16

    To control the presence of Legionella in an old hospital water system, an integrated strategy of water disinfection-filtration was implemented in the university hospital Umberto I in Rome. Due to antiquated buildings, hospital water system design and hospital extension (38 buildings), shock hyperchlorination (sodium hypochlorite, 20-50 ppm of free chlorine at distal points for 1-2 h) followed by continuous hyperchlorination (0.5-1.0 mg/L at distal points) were adopted, and microbiological and chemical monitoring of the water supply was carried out in the university hospital (December 2006-December 2011). Overall, 1308 samples of cold <20°C (44.5%), mixed ≥20°C ≤ 45°C (37.7%) and hot >45°C (17.8%) water were collected, determining residual free chlorine (0.43 ± 0.44 mg/L), pH (7.43 ± 0.29) and trihalomethanes (8.97 ± 18.56 μg/L). Legionella was isolated in 102 (9.8%) out of 1.041 water samples without filters (L. pneumophila sg 1 17.6%, L. pneumophila sg 2-14 28.4%, L. non pneumophila 53.9%), and in none of the 267 samples with filters. Legionella was recovered in 23 buildings out of 38 and 29 samples (28.4%) exceeded 103 cfu/L. When considering the disinfection treatment Legionella was isolated: before shock hyperchlorination (21.1%), 15 days after shock hyperchlorination (7.8%), 30 days after shock hyperchlorination (3.5%), during continuous hyperchlorination (5.5%) and without continuous hyperchlorination (27.3%). Continuous hyperchlorination following the shock treatment achieved >70% reduction of positive samples, whereas no continuous hyperchlorination after shock treatment was more frequently associated to Legionella isolation (OR 6.41; 95% CI 3.10-13.26; p <0.001). Independent risk factors for Legionella isolation were: residual free chlorine <0.5 mg/L (OR 13.0; 95% CI 1.37 - 123.2; p <0.03), water T° ≥20°C ≤ 45°C (OR 12.0; 95% CI 1.28 - 111.48; p <0.03) and no continuous hyperchlorination after shock treatment (OR 10.3; 95% CI 1.06 - 100.05; p <0.05). Shock and continuous hyperchlorination achieved significant Legionella reduction, but effective chlorine levels (>0.5 < 1.0 mg/L) deteriorated water quality (organoleptic and chemical). However, shock and continuous hyperchlorination remains a valid-term option in old buildings with no water system rational design, managing problems due to hospital extension and absence of a proper hot water recirculation system.

  13. Investigation of radiative bow-shocks in magnetically accelerated plasma flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bott-Suzuki, S. C., E-mail: sbottsuzuki@ucsd.edu; Caballero Bendixsen, L. S.; Cordaro, S. W.

    2015-05-15

    We present a study of the formation of bow shocks in radiatively cooled plasma flows. This work uses an inverse wire array to provide a quasi-uniform, large scale hydrodynamic flow accelerated by Lorentz forces to supersonic velocities. This flow impacts a stationary object placed in its path, forming a well-defined Mach cone. Interferogram data are used to determine a Mach number of ∼6, which may increase with radial position suggesting a strongly cooling flow. Self-emission imaging shows the formation of a thin (<60 μm) strongly emitting shock region, where T{sub e} ∼ 40–50 eV, and rapid cooling behind the shock. Emission is observed upstreammore » of the shock position which appears consistent with a radiation driven phenomenon. Data are compared to 2-dimensional simulations using the Gorgon MHD code, which show good agreement with the experiments. The simulations are also used to investigate the effect of magnetic field in the target, demonstrating that the bow-shocks have a high plasma β, and the influence of B-field at the shock is small. This consistent with experimental measurement with micro bdot probes.« less

  14. Electrical Aversion Conditioning with Chronic Alcoholics

    ERIC Educational Resources Information Center

    Vogler, Roger E.; And Others

    1970-01-01

    Pseudoconditioning (random shock delivery), sham conditioning (no shock), and ward controls (routine hospital treatment) ( were compared with two conditioning groups. Conditioning only (contingent shock) and booster Ss (additional conditioning sessions after release from hospital) were shocked for drinking and reinforced by shock termination for…

  15. Twenty Four-Hour Exposure to a 0.12 THz Electromagnetic Field Does Not Affect the Genotoxicity, Morphological Changes, or Expression of Heat Shock Protein in HCE-T Cells.

    PubMed

    Koyama, Shin; Narita, Eijiro; Shimizu, Yoko; Shiina, Takeo; Taki, Masao; Shinohara, Naoki; Miyakoshi, Junji

    2016-08-05

    To investigate the cellular effects of terahertz (THz) exposure, human corneal epithelial (HCE-T) cells derived from human eye were exposed to 0.12 THz radiation at 5 mW/cm² for 24 h, then the genotoxicity, morphological changes, and heat shock protein (Hsp) expression of the cells were examined. There was no statistically significant increase in the micronucleus (MN) frequency of cells exposed to 0.12 THz radiation compared with sham-exposed controls and incubator controls, whereas the MN frequency of cells treated with bleomycin for 1 h (positive control) did increase significantly. Similarly, there were no significant morphological changes in cells exposed to 0.12 THz radiation compared to sham-exposed controls and incubator controls, and Hsp expression (Hsp27, Hsp70, and Hsp90α) was also not significantly different between the three treatments. These results indicate that exposure to 0.12 THz radiation using the present conditions appears to have no or very little effect on MN formation, morphological changes, and Hsp expression in cells derived from human eye.

  16. Adrenal glands in hypovolemic shock: preservation of contrast enhancement at dynamic computed tomography.

    PubMed

    Ito, Katsuyoshi; Higashi, Hiroki; Kanki, Akihiko; Tamada, Tsutomu; Yamashita, Takenori; Yamamoto, Akira; Watanabe, Shigeru

    2010-07-01

    To evaluate contrast enhancement effects of the adrenal glands at dynamic computed tomography (CT) in adult severe trauma patients with hypovolemic shock in comparison with patients without hypovolemic shock. This study population included a total of 74 patients with (n = 24) and without (n = 50) blunt trauma and hypovolemic shock. Measurement of CT attenuation values of the adrenal gland and calculation of the enhancement washout percentages were performed. The mean +/- SD CT attenuation values of the adrenal glands in the arterial phase of dynamic CT in patients with hypovolemic shock (137.3 +/- 41.7 Hounsfield unit [HU]) were not significantly different (P = 0.16) from those in control subjects (127.3 +/- 19.6 HU). The mean CT attenuation values of the adrenal glands in the delayed phase of dynamic CT in patients with hypovolemic shock (82.0 +/- 14.7 HU) were also not significantly different (P = 0.89) from those in control subjects (82.4 +/- 10.0 HU). The mean percentage (35%) of enhancement washout of the adrenal glands in patients with hypovolemic shock was not significantly different (P = 0.81) from that (34%) in control subjects. Contrast enhancement effects of the adrenal glands at contrast-enhanced dynamic CT in patients with hypovolemic shock were similar to those in control subjects, indicating the preserved enhancement and perfusion of the adrenal gland rather than intense and persistent enhancement in patients with hypovolemic shock.

  17. Micro-Ramps for External Compression Low-Boom Inlets

    NASA Technical Reports Server (NTRS)

    Rybalko, Michael; Loth, Eric; Chima, Rodrick V.; Hirt, Stefanie M.; DeBonis, James R.

    2010-01-01

    The application of vortex generators for flow control in an external compression, axisymmetric, low-boom concept inlet was investigated using RANS simulations with three-dimensional (3-D), structured, chimera (overset) grids and the WIND-US code. The low-boom inlet design is based on previous scale model 1- by 1-ft wind tunnel tests and features a zero-angle cowl and relaxed isentropic compression centerbody spike, resulting in defocused oblique shocks and a weak terminating normal shock. Validation of the methodology was first performed for micro-ramps in supersonic flow on a flat plate with and without oblique shocks. For the inlet configuration, simulations with several types of vortex generators were conducted for positions both upstream and downstream of the terminating normal shock. The performance parameters included incompressible axisymmetric shape factor, separation area, inlet pressure recovery, and massflow ratio. The design of experiments (DOE) methodology was used to select device size and location, analyze the resulting data, and determine the optimal choice of device geometry. The optimum upstream configuration was found to substantially reduce the post-shock separation area but did not significantly impact recovery at the aerodynamic interface plane (AIP). Downstream device placement allowed for fuller boundary layer velocity profiles and reduced distortion. This resulted in an improved pressure recovery and massflow ratio at the AIP compared to the baseline solid-wall configuration.

  18. Apparatus and Method for Measuring Air Temperature Ahead of an Aircraft for Controlling a Variable Inlet/Engine Assembly

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L. (Inventor)

    2001-01-01

    The apparatus and method employ remote sensing to measure the air temperature a sufficient distance ahead of the aircraft to allow time for a variable inlet/engine assembly to be reconfigured in response to the measured temperature, to avoid inlet unstart and/or engine compressor stall. In one embodiment, the apparatus of the invention has a remote sensor for measuring at least one air temperature ahead of the vehicle and an inlet control system for varying the inlet. The remote sensor determines a change in temperature value using at least one temperature measurement and prior temperature measurements corresponding to the location of the aircraft. The control system uses the change in air temperature value to vary the inlet configuration to maintain the position of the shock wave during the arrival of the measured air in the inlet. In one embodiment, the method of the invention includes measuring at least one air temperature ahead of the vehicle, determining an air temperature at the vehicle from prior air temperature measurements, determining a change in temperature value using the air temperature at the vehicle and the at least one air temperature measurement ahead of the vehicle, and using the change in temperature value to-reposition the airflow inlet, to cause the shock wave to maintain substantially the same position within the inlet as the airflow temperature changes within the inlet.

  19. Effects of cavity size on the control of transonic internal flow around a biconvex circular arc airfoil

    NASA Astrophysics Data System (ADS)

    Rahman, M. Mostaqur; Hasan, A. B. M. Toufique; Rabbi, M. S.

    2017-06-01

    In transonic flow conditions, self-sustained shock wave oscillation on biconvex airfoils is initiated by the complex shock wave boundary layer interaction which is frequently observed in several modern internal aeronautical applications such as inturbine cascades, compressor blades, butterfly valves, fans, nozzles, diffusers and so on. Shock wave boundary layer interaction often generates serious problems such as unsteady boundary layer separation, self-excited shock waveoscillation with large pressure fluctuations, buffeting excitations, aeroacoustic noise, nonsynchronous vibration, high cycle fatigue failure and intense drag rise. Recently, the control of the self-excited shock oscillation around an airfoil using passive control techniques is getting intense interest. Among the passive means, control using open cavity has found promising. In this study, the effect of cavity size on the control of self-sustained shock oscillation was investigated numerically. The present computations are validated with available experimental results. The results showed that the average root mean square (RMS) of pressure oscillation around the airfoil with open cavity has reduced significantly when compared to airfoil without cavity (clean airfoil).

  20. The Shock and Vibration Bulletin: Proceedings on the Symposium on ShocK and Vibration (52nd) Held in New Orleans, Louisiana on 26-28 October 1981. Part 5. Mathematical Modeling and Structural Dynamics

    DTIC Science & Technology

    1982-05-01

    ment analysis to evaluate viscoelastic damping treatments for HCF control . Steps for analyzing passive damping treatments are presented. Design criteria... design earthquake levels could structures such as piers, drydocks, power result in destruction of such critical strut- plants, control towers, and...and J.R. Curreri, "Some Aspects of 2 Vibration Control Support Designs ," The Shock p m 0.0005161 lb-sec n and vibration Symposium Bulletin, The Shock

  1. Depressed left ventricular performance. Response to volume infusion in patients with sepsis and septic shock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ognibene, F.P.; Parker, M.M.; Natanson, C.

    Volume infusion, to increase preload and to enhance ventricular performance, is accepted as initial management of septic shock. Recent evidence has demonstrated depressed myocardial function in human septic shock. We analyzed left ventricular performance during volume infusion using serial data from simultaneously obtained pulmonary artery catheter hemodynamic measurements and radionuclide cineangiography. Critically ill control subjects (n = 14), patients with sepsis but without shock (n = 21), and patients with septic shock (n = 21) had prevolume infusion hemodynamic measurements determined and received statistically similar volumes of fluid resulting in similar increases in pulmonary capillary wedge pressure. There was amore » strong trend (p = 0.004) toward less of a change in left ventricular stroke work index (LVSWI) after volume infusion in patients with sepsis and septic shock compared with control subjects. The LVSWI response after volume infusion was significantly less in patients with septic shock when compared with critically ill control subjects (p less than 0.05). These data demonstrate significantly altered ventricular performance, as measured by LVSWI, in response to volume infusion in patients with septic shock.« less

  2. Ameliorating Impact of Prophylactic Intranasal Oxytocin on Signs of Fear in a Rat Model of Traumatic Stress

    PubMed Central

    Renicker, Micah D.; Cysewski, Nicholas; Palmer, Samuel; Nakonechnyy, Dmytro; Keef, Andrew; Thomas, Morgan; Magori, Krisztian; Daberkow, David P.

    2018-01-01

    Oxytocin treatment reduces signs of long-term emotional stress after exposure to trauma; however, little is known about the potential protective effects of oxytocin treatment on behavioral and physiological changes associated with extreme stress exposure. The objective of this study was to investigate oxytocin treatment as a prophylactic measure against rat signs of fear. Two separate experiments were conducted in which the time of intranasal oxytocin administration differed. Intranasal oxytocin (1.0 μg/kg) was administered 5 min after daily exposure to foot shock in Experiment #1 and 1 h before foot shock in Experiment #2. In Experiment #1, possible massage-evoked oxytocin release (5 min after foot shock) was also investigated. In both experiments, a contextual fear conditioning procedure was employed in which stress was induced via inescapable foot shock (3 days, 40 shocks/day, 8 mA/shock) in a fear conditioning chamber. Male Sprague-Dawley rats (n = 24) were divided into four groups (n = 6, per group) for each experiment. Experiment #1 groups: Control Exp#1 (intranasal saline and no foot shock); Stress Exp#1 (intranasal saline 5 min after foot shock); Massage+Stress Exp#1 (massage-like stroking and intranasal saline 5 min after foot shock); Oxytocin+Stress Exp#1 (intranasal oxytocin 5 min after foot shock). Experiment #2 groups: Control Exp#2 (intranasal saline and no foot shock); Stress Exp#2 (intranasal saline 1 h before foot shock); Oxytocin Exp#2 (intranasal oxytocin and no foot shock); Oxytocin+Stress Exp#2 (intranasal oxytocin 1 h before foot shock). One week after fear conditioning (and other treatments), rats were independently evaluated for behavioral signs of fear. Two weeks after conditioning, physiological signs of fear were also assessed (Experiment #1). Relative to controls, rats treated with intranasal oxytocin 5 min after daily foot shock sessions exhibited significantly less immobility upon re-exposure to the shock chamber and attenuated physiological responses related to fear (e.g., elevated heart rate and blood pressure). Furthermore, intranasal oxytocin treatment given 1 h before daily foot shock sessions significantly decreased immobility and defecation upon re-exposure to the shock chamber, relative to controls. The results of this study suggest that prophylactic intranasal oxytocin, administered contemporaneously with aversive stimuli, mitigates behavioral and physiological responses associated with traumatic stress. PMID:29892216

  3. Capabilities of electrodynamic shakers when used for mechanical shock testing

    NASA Technical Reports Server (NTRS)

    Keegan, W. B.

    1973-01-01

    The results of a research task to investigate the capabilities of electrodynamic vibrators (shakers) to perform mechanical shock tests are presented. The simulation method employed was that of developing a transient whose shock response spectrum matched the desired shock response spectrum. Areas investigated included the maximum amplitude capabilities of the shaker systems, the ability to control the shape of the resultant shock response spectrum, the response levels induced at frequencies outside the controlled bandwidth, and the nonlinearities in structural response induced by a change in test level.

  4. Egg Viability, Mating Frequency and Male Mating Ability Evolve in Populations of Drosophila melanogaster Selected for Resistance to Cold Shock

    PubMed Central

    Singh, Karan; Kochar, Ekta; Prasad, N. G.

    2015-01-01

    Background Ability to resist temperature shock is an important component of fitness of insects and other ectotherms. Increased resistance to temperature shock is known to affect life-history traits. Temperature shock is also known to affect reproductive traits such as mating ability and viability of gametes. Therefore selection for increased temperature shock resistance can affect the evolution of reproductive traits. Methods We selected replicate populations of Drosophila melanogaster for resistance to cold shock. We then investigated the evolution of reproductive behavior along with other components of fitness- larval survivorship, adult mortality, fecundity, egg viability in these populations. Results We found that larval survivorship, adult mortality and fecundity post cold shock were not significantly different between selected and control populations. However, compared to the control populations, the selected populations laid significantly higher percentage of fertile eggs (egg viability) 24 hours post cold shock. The selected populations had higher mating frequency both with and without cold shock. After being subjected to cold shock, males from the selected populations successfully mated with significantly more non-virgin females and sired significantly more progeny compared to control males. Conclusions A number of studies have reported the evolution of survivorship in response to selection for temperature shock resistance. Our results clearly indicate that adaptation to cold shock can involve changes in components of reproductive fitness. Our results have important implications for our understanding of how reproductive behavior can evolve in response to thermal stress. PMID:26065704

  5. Shock wave oscillation driven by turbulent boundary layer fluctuations

    NASA Technical Reports Server (NTRS)

    Plotkin, K. J.

    1972-01-01

    Pressure fluctuations due to the interaction of a shock wave with a turbulent boundary layer were investigated. A simple model is proposed in which the shock wave is convected from its mean position by velocity fluctuations in the turbulent boundary layer. Displacement of the shock is assumed limited by a linear restoring mechanism. Predictions of peak root mean square pressure fluctuation and spectral density are in excellent agreement with available experimental data.

  6. Heat shock protein-containing exosomes in mid-trimester amniotic fluids.

    PubMed

    Asea, Alexzander; Jean-Pierre, Claudel; Kaur, Punit; Rao, Preethi; Linhares, Iara M; Skupski, Daniel; Witkin, Steven S

    2008-10-01

    Exosomes are multivesicular bodies formed by inverse membrane budding into the lumen of an endocytic compartment. Fusion with the plasma membrane leads to their release into the external milieu. The incorporation of heat shock proteins into exosomes has been associated with immune regulatory activity. We have examined whether heat shock protein-containing exosomes are present in mid-trimester amniotic fluid. Exosomes were isolated from mid-trimester amniotic fluids by sequential low-speed and high-speed centrifugation followed by sucrose density gradient centrifugation. Biochemical characterization included floatation pattern in sucrose gradients, acetylcholinesterase (AChE) activity and Western blot analysis for exosome-containing proteins. Exosomes were present in each of 23 amniotic fluids tested. They banded at a density of 1.17g/ml in sucrose gradients, were positive for AChE activity and contained tubulin, the inducible 72kDa heat shock protein, Hsp72 and the constitutively expressed heat shock protein, Hsc73; they were negative for calnexin. Exosome concentrations correlated positively with the number of pregnancies. Heat shock protein-containing exosomes are constituents of mid-trimester amniotic fluids and may contribute to immune regulation within the amniotic cavity.

  7. Evaluation of Euler fluxes by a high-order CFD scheme: shock instability

    NASA Astrophysics Data System (ADS)

    Tu, Guohua; Zhao, Xiaohui; Mao, Meiliang; Chen, Jianqiang; Deng, Xiaogang; Liu, Huayong

    2014-05-01

    The construction of Euler fluxes is an important step in shock-capturing/upwind schemes. It is well known that unsuitable fluxes are responsible for many shock anomalies, such as the carbuncle phenomenon. Three kinds of flux vector splittings (FVSs) as well as three kinds of flux difference splittings (FDSs) are evaluated for the shock instability by a fifth-order weighted compact nonlinear scheme. The three FVSs are Steger-Warming splitting, van Leer splitting and kinetic flux vector splitting (KFVS). The three FDSs are Roe's splitting, advection upstream splitting method (AUSM) type splitting and Harten-Lax-van Leer (HLL) type splitting. Numerical results indicate that FVSs and high dissipative FDSs undergo a relative lower risk on the shock instability than that of low dissipative FDSs. However, none of the fluxes evaluated in the present study can entirely avoid the shock instability. Generally, the shock instability may be caused by any of the following factors: low dissipation, high Mach number, unsuitable grid distribution, large grid aspect ratio, and the relative shock-internal flow state (or position) between upstream and downstream shock waves. It comes out that the most important factor is the relative shock-internal state. If the shock-internal state is closer to the downstream state, the computation is at higher susceptibility to the shock instability. Wall-normal grid distribution has a greater influence on the shock instability than wall-azimuthal grid distribution because wall-normal grids directly impact on the shock-internal position. High shock intensity poses a high risk on the shock instability, but its influence is not as much as the shock-internal state. Large grid aspect ratio is also a source of the shock instability. Some results of a second-order scheme and a first-order scheme are also given. The comparison between the high-order scheme and the two low-order schemes indicates that high-order schemes are at a higher risk of the shock instability. Adding an entropy fix is very helpful in suppressing the shock instability for the two low-order schemes. When the high-order scheme is used, the entropy fix still works well for Roe's flux, but its effect on the Steger-Warming flux is trivial and not much clear.

  8. Differential expression of heat shock protein (HSP) 70-2 gene polymorphism in benign and malignant pancreatic disorders and its relationship with disease severity and complications.

    PubMed

    Srivastava, Puja; Shafiq, Nusrat; Bhasin, Deepak Kumar; Rana, Surinder Singh; Pandhi, Promila; Behera, Arunanshu; Kapoor, Rakesh; Malhotra, Samir; Gupta, Rajesh

    2012-07-10

    The role of heat shock protein (HSP) 70-2 gene polymorphism (at position 1267, A to G transition) in patients with pancreatic disorders is not clear. To evaluate HSP 70-2 gene polymorphism (at position 1267, A to G transition) in patients with acute and chronic pancreatitis as well as pancreatic carcinoma, and to find any association of this polymorphism with disease complications and severity. One-hundred and fifty patients (50 each of acute, chronic pancreatitis, and pancreatic carcinoma) and 50 healthy blood donors as controls were prospectively studied. Three alleles (AA, AG and GG) of HSP 70-2 gene determined by PstI restriction fragment length polymorphism. There was a statistically significant difference in the distribution pattern of HSP 70-2 gene polymorphism in patients with acute pancreatitis (P=0.001) and pancreatic carcinoma (P<0.001) as compared to controls. The frequency of mutant allele (G allele) was significantly higher in diseased group as compared to control group (19% in control group, 40% in acute pancreatitis, 33% in chronic pancreatitis and 45% in pancreatic carcinoma). No association of this polymorphism was found with disease severity in patients with acute and chronic pancreatitis or pancreatic carcinoma. In our patient sample the frequency of mutant allele (G allele) of HSP 70-2 gene is significantly higher in patients with acute pancreatitis and pancreatic carcinoma compared to controls (50 healthy blood donors). However, this polymorphism was not associated with disease severity and complications.

  9. Seropositivity for the human heat shock protein (Hsp)60 accompanying seropositivity for Chlamydia trachomatis is less prevalent among tubal ectopic pregnancy cases than individuals with normal reproductive history.

    PubMed

    Ozyurek, Eser S; Karacan, Tolga; Ozdalgicoglu, Cenk; Yilmaz, Salih; Isik, Salman; San, Mevlide; Kaya, Erdal

    2018-04-01

    To investigate the role of anti-human heat shock protein 60 (hHsp60) antibody positivity in the pathogenesis of ectopic pregnancy, following Chlamydia trachomatis (CT) infection. In a case-control study, serological tests for anti-hHsp60 were performed in ectopic pregnancies (study group) and parturients with normal reproductive histories (control group). All participants in both groups were CT IgG(+). hHsp60 IgG(+) prevalences were compared between the two groups, by semiquantitative ELISA. Data were evaluated using nonparametric and parametric tests and multivariable regression. After an initial pilot study, two groups were formed: 63 ectopic gestations (study group) and 95 normal parturients (control group), all CT IgG(+). Blood samples from all cases were tested for anti-hHsp60 IgG. Age, gravidity, and practising contraception were higher in the control group, while a history of pelvic infections were more common in the study group. Hsp60 IgG(+) was found to be significantly higher in the control group (63/95, 66.3%) compared to study group (30/63, 47.6%). Regression analysis revealed anti-hHsp60 positivity was an independent factor delineating the two groups. Immunity to hHsp60 is less common in CT IgG(+) ectopic pregnancies than CT IgG(+) fertile subjects without a history of ectopic pregnancies. Hence, our findings suggest that hHsp60 seropositivity may decrease the probability of an ectopic gestation in subjects with previous CT infections. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Risk factors and outcomes of sepsis-induced myocardial dysfunction and stress-induced cardiomyopathy in sepsis or septic shock: A comparative retrospective study.

    PubMed

    Jeong, Han Saem; Lee, Tae Hyub; Bang, Cho Hee; Kim, Jong-Ho; Hong, Soon Jun

    2018-03-01

    While both sepsis-induced myocardial dysfunction (SIMD) and stress-induced cardiomyopathy (SICMP) are common in patients with sepsis, the pathogenesis of the 2 diseases is different, and they require different treatment strategies. Thus, we aimed to investigate risk factors and outcomes between the 2 diseases.This retrospective study enrolled patients diagnosed with sepsis or septic shock, admitted to intensive care unit via emergency department in Korea University Anam Hospital, and who underwent transthoracic echocardiography within the first 24 hours of admission.In all, 25 patients with SIMD and 27 patients with SICMP were enrolled. Chronic obstructive pulmonary disease and a history of heart failure (HF) were more prevalent in both the SIMD and SICMP groups than in the control group. In the SIMD and SICMP groups, levels of inflammatory cytokines were similar. Serum troponin level was significantly elevated in the SICMP and SIMD group compared to the control group. N-terminal pro-brain natriuretic peptide (NT pro-BNP) level was significantly elevated in the SIMD group compared to the SICMP group or control group. The in-hospital mortality rate in the SIMD and SICMP group was about 40%, showing increased trends compared with the control group. The in-hospital mortality rate was significantly increased in SIMD group with EF<30% than in SICMP group with EF<30%. In multiple logistic regression analysis, a past history of diabetes mellitus (DM) and HF was significantly associated with the incidence of SIMD. Younger age, elevated levels of NT pro-BNP, and positive result of blood culture also showed significant odds ratio regard to the occurrence of SIMD. However, only elevated lactate and troponin level were positively associated with the incidence of SICMP.The SIMD and SICMP had different risk factors. The risk factors of SIMD were younger age, history of DM, history of HF, elevated NT pro-BNP, and positive result of blood culture. The elevated levels of lactate and troponin were identified as risk factors of SICMP. More importantly, in-hospital mortality rate from SIMD and SICMP showed increased trend and worse outcome in SIMD group with reduced EF<30%. Thus, developing SIMD or SICMP reflected poor prognosis in sepsis or septic shock.

  11. Risk factors and outcomes of sepsis-induced myocardial dysfunction and stress-induced cardiomyopathy in sepsis or septic shock

    PubMed Central

    Jeong, Han Saem; Lee, Tae Hyub; Bang, Cho Hee; Kim, Jong-Ho; Hong, Soon Jun

    2018-01-01

    Abstract While both sepsis-induced myocardial dysfunction (SIMD) and stress-induced cardiomyopathy (SICMP) are common in patients with sepsis, the pathogenesis of the 2 diseases is different, and they require different treatment strategies. Thus, we aimed to investigate risk factors and outcomes between the 2 diseases. This retrospective study enrolled patients diagnosed with sepsis or septic shock, admitted to intensive care unit via emergency department in Korea University Anam Hospital, and who underwent transthoracic echocardiography within the first 24 hours of admission. In all, 25 patients with SIMD and 27 patients with SICMP were enrolled. Chronic obstructive pulmonary disease and a history of heart failure (HF) were more prevalent in both the SIMD and SICMP groups than in the control group. In the SIMD and SICMP groups, levels of inflammatory cytokines were similar. Serum troponin level was significantly elevated in the SICMP and SIMD group compared to the control group. N-terminal pro-brain natriuretic peptide (NT pro-BNP) level was significantly elevated in the SIMD group compared to the SICMP group or control group. The in-hospital mortality rate in the SIMD and SICMP group was about 40%, showing increased trends compared with the control group. The in-hospital mortality rate was significantly increased in SIMD group with EF<30% than in SICMP group with EF<30%. In multiple logistic regression analysis, a past history of diabetes mellitus (DM) and HF was significantly associated with the incidence of SIMD. Younger age, elevated levels of NT pro-BNP, and positive result of blood culture also showed significant odds ratio regard to the occurrence of SIMD. However, only elevated lactate and troponin level were positively associated with the incidence of SICMP. The SIMD and SICMP had different risk factors. The risk factors of SIMD were younger age, history of DM, history of HF, elevated NT pro-BNP, and positive result of blood culture. The elevated levels of lactate and troponin were identified as risk factors of SICMP. More importantly, in-hospital mortality rate from SIMD and SICMP showed increased trend and worse outcome in SIMD group with reduced EF<30%. Thus, developing SIMD or SICMP reflected poor prognosis in sepsis or septic shock. PMID:29595686

  12. Small heat shock protein message in etiolated Pea seedlings under altered gravity

    NASA Astrophysics Data System (ADS)

    Talalaiev, O.

    Plants are subjected to various environmental changes during their life cycle To protect themselves against unfavorable influences plant cells synthesize several classes of small heat shock proteins sHsp ranging in size from 15 to 30 kDa This proteins are able to enhance the refolding of chemically denatured proteins in an ATP-independent manner in other words they can function as molecular chaperones The potential contribution of effects of space flight at the plant cellular and gene regulation level has not been characterized yet The object of our study is sHsp gene expression in etiolated Pisum sativum seedlings exposed to altered gravity and environmental conditions We designed primers to detect message for two inducible forms of the cytosolic small heat shock proteins sHsp 17 7 and sHsp 18 1 Applying the RT- PCR we explore sHsps mRNA in pea seedling cells subjected to two types of altered gravity achieved by centrifugation from 3 to 8g by clinorotation 2 rpm and temperature elevation 42oC Temperature elevation as the positive control significantly increased PsHspl7 7 PsHspl8 1 expression We investigate the expression of actin it was constant and comparable for unstressed controls for all variants Results are under discussion

  13. Control of a Normal Shock Boundary Layer Interaction with Ramped Vanes of Various Sizes

    NASA Astrophysics Data System (ADS)

    Lee, Sang; Loth, Eric

    2017-11-01

    A novel vortex generator design positioned upstream of a normal shock and a subsequent diffuser was investigated using large eddy simulations. In particular, ``ramped-vane'' flow control devices with three difference heights relative to the incoming boundary layer thickness (0.34 δ 0.52 δ and 0.75 δ were placed in a supersonic boundary layer with a freestream Mach number of 1.3 and a Reynolds number of 2,400 based on momentum thickness. These devices are similar to subsonic vanes but are designed to be more mechanically robust while having low wave drag. The devices generated strong streamwise vortices that entrained high momentum fluid to the near-wall region and increased turbulent mixing. The devices also decreased shock-induced flow separation, which resulted in a higher downstream skin friction in the diffuser. In general, the largest ramped-vane (0.75 δ) produced the largest reductions in flow separation, shape factor and overall unsteadiness. However, the medium-sized ramped vane (0.52 δ) was able to also reduce both the separation area and the diffuser displacement thickness. The smallest device (0.34 δ) had a weak impact of the flow in the diffuser, though a 10% reduction in the shape factor was achieved.

  14. Asymmetric conditional volatility in international stock markets

    NASA Astrophysics Data System (ADS)

    Ferreira, Nuno B.; Menezes, Rui; Mendes, Diana A.

    2007-08-01

    Recent studies show that a negative shock in stock prices will generate more volatility than a positive shock of similar magnitude. The aim of this paper is to appraise the hypothesis under which the conditional mean and the conditional variance of stock returns are asymmetric functions of past information. We compare the results for the Portuguese Stock Market Index PSI 20 with six other Stock Market Indices, namely the SP 500, FTSE 100, DAX 30, CAC 40, ASE 20, and IBEX 35. In order to assess asymmetric volatility we use autoregressive conditional heteroskedasticity specifications known as TARCH and EGARCH. We also test for asymmetry after controlling for the effect of macroeconomic factors on stock market returns using TAR and M-TAR specifications within a VAR framework. Our results show that the conditional variance is an asymmetric function of past innovations raising proportionately more during market declines, a phenomenon known as the leverage effect. However, when we control for the effect of changes in macroeconomic variables, we find no significant evidence of asymmetric behaviour of the stock market returns. There are some signs that the Portuguese Stock Market tends to show somewhat less market efficiency than other markets since the effect of the shocks appear to take a longer time to dissipate.

  15. The impact of technology dependency on device acceptance and quality of life in persons with implantable cardioverter defibrillators.

    PubMed

    Udlis, Kimberly A

    2013-01-01

    The impact of implantable cardioverter defibrillator (ICD) technology on the quality of life (QOL) experienced by recipients has been a major focus of recent research. Numerous studies have found psychological distress to be important in determining QOL in persons receiving ICDs, yet the source of psychological distress is not well understood. The aim of this study was to determine the impact of technology dependency on psychological outcomes in ICD recipients. With the use of a cross-sectional design, 161 ICD recipients from 1 device clinic were mailed self-administered questionnaires, including the Dependency on Technology Scale, Brief Illness Perception Questionnaire, Florida Shock Anxiety Scale, Florida Patient Acceptance Survey, and Short Form-12 (SF-12). Hierarchical multiple regressions and analyses of variance were performed. The final sample size was 101 participants. Mean (SD) age was 68 (13) years; 72% of the participants were men, 99% were white, and 30% reported receiving a shock(s). A total of 80% reported positive attitudes toward technology dependency; 14%, neutral; and 6%, negative (Dependency on Technology Scale). Illness perceptions were positive (Brief Illness Perception Questionnaire; mean[SD], 34.5 [12.6]), shock anxiety was elevated (Florida Shock Anxiety Scale; mean [SD], 16.5 [6.7]), and device acceptance was good (Florida Patient Acceptance Survey; mean [SD], 74.9 [17.0]). Physical health QOL was low (SF-12; mean [SD], 38.6 [11.3]) and mental health QOL was moderate (SF-12; mean [SD], 50.6 [10.0]). Attitudes toward technology dependency significantly accounted for the variance seen in device acceptance and mental health QOL beyond age, gender, number of shocks, illness perceptions, and shock anxiety by 5.7% (P = .001) and 3.3% (P = .04), respectively. Significant differences were seen in device acceptance between those with negative and neutral attitudes (P = .001) and those with negative and positive attitudes (P < .001) and in shock anxiety and mental health QOL between those with negative and those with positive attitudes (P < .001). Attitudes toward technology dependency is significantly associated with psychological outcomes and may explain the psychological distress in some ICD recipients. Degree of positivity toward technology dependency influences these outcomes. Research evaluating attitudes toward technology dependency and testing of interventions focusing on these attitudes is warranted.

  16. Control groups in recent septic shock trials: a systematic review.

    PubMed

    Pettilä, Ville; Hjortrup, Peter Buhl; Jakob, Stephan M; Wilkman, Erika; Perner, Anders; Takala, Jukka

    2016-12-01

    The interpretation of septic shock trial data is profoundly affected by patients, control intervention, co-interventions and selected outcome measures. We evaluated the reporting of control groups in recent septic shock trials. We searched for original articles presenting randomized clinical trials (RCTs) in adult septic shock patients from 2006 to 2016. We included RCTs focusing on septic shock patients with at least two parallel groups and at least 50 patients in the control group. We selected and evaluated data items regarding patients, control group characteristics, and mortality outcomes, and calculated a data completeness score to provide an overall view of quality of reporting. A total of 24 RCTs were included (mean n = 287 patients and 71 % of eligible patients were randomized). Of the 24 studies, 14 (58 %) presented baseline data on vasopressors and 58 % the proportion of patients with elevated lactate values. Five studies (21 %) provided data to estimate the proportion of septic shock patients fulfilling the Sepsis-3 definition. The mean data completeness score was 19 out of 36 (range 8-32). Of 18 predefined control group characteristics, a mean of 8 (range 2-17) were reported. Only 2 (8 %) trials provided adequate data to confirm that their control group treatment represented usual care. Recent trials in septic shock provide inadequate data on the control group treatment and hemodynamic values. We propose a standardized trial dataset to be created and validated, comprising characteristics of patient population, interventions administered, hemodynamic values achieved, surrogate organ dysfunction, and mortality outcomes, to allow better analysis and interpretation of future trial results.

  17. Hypovolemic shock

    MedlinePlus

    ... the person's position unless they are in immediate danger. Do not give fluids by mouth. If person ... the patient with shock. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine . 25th ed. Philadelphia, PA: ...

  18. High-frequency counter-flow plasma synthetic jet actuator and its application in suppression of supersonic flow separation

    NASA Astrophysics Data System (ADS)

    Wang, Hongyu; Li, Jun; Jin, Di; Tang, Mengxiao; Wu, Yun; Xiao, Lianghua

    2018-01-01

    We come up with a control strategy for suppression of supersonic flow separation based on high-frequency Counter-flow Plasma Synthetic Jet Actuator (CPSJA). The main purpose of this investigation is to verify if its control authority can be enhanced by the jet/shock interaction. We use a blunt nose to generate a bow shock, a step on a flat plate to introduce a massive separation in a Mach 2 wind tunnel, and the CPSJA to generate Plasma Synthetic Jet (PSJ). In this study, pulsed capacitive discharge is provided for an array of CPSJAs, which makes the actuation (discharge) frequency f1 = 1 kHz, f2 = 2 kHz and f3 = 3 kHz. We use the high-speed schlieren imaging and fast response pressure transducers as well as a numerical simulation to investigate the quiescent PSJ properties, the interaction between the jet and bow shock, and its disturbance effect on the downstream separated region. The schlieren images show that PSJ is characterized by a succession of vortex rings; the jet strength weakens with the increase of frequency. A 4.5 mN jet thrust is found for all the frequencies. The simulation results show that jet/shock interaction produces vorticity in the vortex ring of the jet, enhancing turbulent mixing in PSJ so that a great deal of momentum is produced into the flow. We found the downstream flow is significantly disturbed by the enhanced actuation. Actuation with frequency of f2, f3 which is close to the natural frequency fn of the separation bubble suppresses the separation with the upstream laminar boundary layer being periodically attenuated, which has a better control effect than f1. The control effect is sensitive to the position where PSJ interacts with the shear layer, but the amount of energy deposited in one pulse is not crucial in a separation reduction in the experiment.

  19. The effects of micro-vortex generators on normal shock wave/boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Herges, Thomas G.

    Shock wave/boundary-layer interactions (SWBLIs) are complex flow phenomena that are important in the design and performance of internal supersonic and transonic flow fields such as engine inlets. This investigation was undertaken to study the effects of passive flow control devices on normal shock wave/boundary layer interactions in an effort to gain insight into the physics that govern these complex interactions. The work concentrates on analyzing the effects of vortex generators (VGs) as a flow control method by contributing a greater understanding of the flowfield generated by these devices and characterizing their effects on the SWBLI. The vortex generators are utilized with the goal of improving boundary layer health (i.e., reducing/increasing the boundary-layer incompressible shape factor/skin friction coefficient) through a SWBLI, increasing pressure recovery, and reducing flow distortion at the aerodynamic interface plane while adding minimal drag to the system. The investigation encompasses experiments in both small-scale and large-scale inlet testing, allowing multiple test beds for improving the characterization and understanding of vortex generators. Small-scale facility experiments implemented instantaneous schlieren photography, surface oil-flow visualization, pressure-sensitive paint, and particle image velocimetry to characterize the effects of an array of microramps on a normal shock wave/boundary-layer interaction. These diagnostics measured the time-averaged and instantaneous flow organization in the vicinity of the microramps and SWBLI. The results reveal that a microramp produces a complex vortex structure in its wake with two primary counter-rotating vortices surrounded by a train of Kelvin- Helmholtz (K-H) vortices. A streamwise velocity deficit is observed in the region of the primary vortices in addition to an induced upwash/downwash which persists through the normal shock with reduced strength. The microramp flow control also increased the spanwise-averaged skin-friction coefficient and reduced the spanwise-averaged incompressible shape factor, thereby improving the health of the boundary layer. The velocity in the near-wall region appears to be the best indicator of microramp effectiveness at controlling SWBLIs. Continued analysis of additional micro-vortex generator designs in the small-scale facility revealed reduced separation within a subsonic diffuser downstream of the normal shock wave/boundary layer interaction. The resulting attached flow within the diffuser from the micro-vortex generator control devices reduces shock wave position and pressure RMS fluctuations within the diffuser along with increased pressure recovery through the shock and at the entrance of the diffuser. The largest effect was observed by the micro-vortex generators that produce the strongest streamwise vortices. High-speed pressure measurements also indicated that the vortex generators shift the energy of the pressure fluctuations to higher frequencies. Implementation of micro-vortex generators into a large-scale, supersonic, axisymmetric, relaxed-compression inlet have been investigated with the use of a unique and novel flow-visualization measurement system designed and successfully used for the analysis of both upstream micro-VGs (MVGs) and downstream VGs utilizing surface oil-flow visualization and pressure-sensitive paint measurements. The inlet centerbody and downstream diffuser vortex-generator regions were imaged during wind-tunnel testing internally through the inlet cowl with the diagnostic system attached to the cowl. Surface-flow visualization revealed separated regions along the inlet centerbody for large mass-flow rates without vortex generators. Upstream vortex generators did reduce separation in the subsonic diffuser, and a unique perspective of the flowfield produced by the downstream vortex generators was obtained. In addition, pressure distributions on the inlet centerbody and vortex generators were measured with pressure-sensitive paint. At low mass-flow ratios the onset of buzz occurs in the large-scale low-boom inlet. Inlet buzz and how it is affected by vortex generators was characterized using shock tracking through high-speed schlieren imaging and pressure fluctuation measurements. The analysis revealed a dominant low frequency oscillation at 21.0 Hz for the single-stream inlet, corresponding with the duration of one buzz cycle. Pressure oscillations prior to the onset of buzz were not detected, leaving the location where the shock wave triggers large separation on the compression spike as the best indicator for the onset of buzz. The driving mechanism for a buzz cycle has been confirmed as the rate of depressurization and repressurization of the inlet as the buzz cycle fluctuates between an effectively unstarted (blocked) inlet and supercritical operation (choked flow), respectively. High-frequency shock position oscillations/pulsations (spike buzz) were also observed throughout portions of the inlet buzz cycle. The primary effect of the VGs was to trigger buzz at a higher mass-flow ratio.

  20. Geometrical shock dynamics, formation of singularities and topological bifurcations of converging shock fronts

    NASA Astrophysics Data System (ADS)

    Suramlishvili, Nugzar; Eggers, Jens; Fontelos, Marco

    2014-11-01

    We are concerned with singularities of the shock fronts of converging perturbed shock waves. Our considerations are based on Whitham's theory of geometrical shock dynamics. The recently developed method of local analysis is applied in order to determine generic singularities. In this case the solutions of partial differential equations describing the geometry of the shock fronts are presented as families of smooth maps with state variables and the set of control parameters dependent on Mach number, time and initial conditions. The space of control parameters of the singularities is analysed, the unfoldings describing the deformations of the canonical germs of shock front singularities are found and corresponding bifurcation diagrams are constructed. Research is supported by the Leverhulme Trust, Grant Number RPG-2012-568.

  1. Far UV Observations of Interstellar Shocks

    NASA Technical Reports Server (NTRS)

    Raymond, John C.

    1998-01-01

    This grant covered analysis of Hopkins Ultraviolet Telescope data from the Astro-2 mission. The proposed research was aimed primarily at SNR shock waves, but the ASTRO-2 GO program was intended to make the GOs part of the instrument teams. The grant therefore covered extensive travel to Marshall Space Flight Center for mission simulations and the mission itself. In keeping with the unique nature of the ASTRO-2 GO program, I participated actively in the instrument team's investigations of HH objects and cataclysmic variables. Over the course of the Astro-2 mission, we obtained good observations of the supernova remnants SN1006 (1 position), Vela (3 positions), the Cygnus Loop (7 positions) and 0519-69 in the LMC (1 position) as part of this GI program, along with Puppis A (1 position), Vela (1 position), the Cygnus Loop (7 positions) and the Schweizer- Middleditch star (HUT PI program on SNRS). We also observed the Herbig-Haro object HH2 and about a dozen cataclysmic variables, including magnetic systems and dwarf novae. This GI grant covered modest travel for data analysis. We anticipate submitting papers on the non-radiative shock in northern Cygnus Loop, on the LMC Balmer-dominated remnant LMC 0519-69, on the radiative shocks in the Eastern Cygnus Loop (the XA region), and on the cataclysmic variable YZ Cnc over the course of the coming year. We have obtained extensive supporting data from ground-based telescopes for the Cygnus Loop spectra.

  2. Comparing Pleasure and Pain: The Fundamental Mathematical Equivalence of Reward Gain and Shock Reduction under Variable Interval Schedules

    ERIC Educational Resources Information Center

    Mallpress, Dave E. W.; Fawcett, Tim W.; McNamara, John M.; Houston, Alasdair I.

    2012-01-01

    The relationship between positive and negative reinforcement and the symmetry of Thorndike's law of effect are unresolved issues in operant psychology. Here we show that, for a given pattern of responding on variable interval (VI) schedules with the same programmed rate of food rewards (positive reinforcement VI) or electric shocks (negative…

  3. Are Children Really Inferior Goods? Evidence from Displacement-Driven Income Shocks

    ERIC Educational Resources Information Center

    Lindo, Jason M.

    2010-01-01

    This paper explores the causal link between income and fertility by analyzing women's fertility response to the large and permanent income shock generated by a husband's job displacement. I find that the shock reduces total fertility, suggesting that the causal effect of income on fertility is positive. A model that incorporates the time cost of…

  4. Skill acquisition and retention in automated external defibrillator (AED) use and CPR by lay responders: a prospective study.

    PubMed

    Woollard, Malcolm; Whitfeild, Richard; Smith, Anna; Colquhoun, Michael; Newcombe, Robert G; Vetteer, Norman; Chamberlain, Douglas

    2004-01-01

    This prospective study evaluated the acquisition and retention of skills in cardio-pulmonary resuscitation (CPR) and the use of the automated external defibrillator (AED) by lay volunteers involved in the Department of Health, England National Defibrillator Programme. One hundred and twelve trainees were tested immediately before and after and initial 4-h class; 76 were similarly reassessed at refresher training 6 months later. A standardised test scenario that required assessment of the casualty, CPR and the use of on AED was evaluated using recording manikin data and video recordings. Before training only 44% of subjects delivered a shock. Afterwards, all did so and the average delay to first shock was reduced by 57 s. All trainees placed the defibrillator electrodes in an "acceptable" position after training, but very few did so in the recommended "ideal" position. After refresher training 80% of subjects used the correct sequence for CPR and shock delivery, yet a third failed to perform adequate safety checks before all shocks. The trainees self-assessed AED competence score was 86 (scale 0-100) after the initial class and their confidence that they would act in a real emergency was rated at a similar level. Initial training improved performance of all CPR skills, although all except compression rate had deteriorated after 6 months. The proportion of subjects able to correctly perform most CPR skill was higher following refresher training that after the initial class. Although this course was judged to be effective in teaching delivery of counter-shocks, the need was identified for more emphasis on positioning of electrodes, pre-shock safety checks, airway opening, ventilation volume, checking for signs of a circulation, hand positioning, and depth and rate of chest compressions.

  5. YF-12 propulsion research program and results

    NASA Technical Reports Server (NTRS)

    Albers, J. A.; Olinger, F. V.

    1976-01-01

    The objectives and status of the propulsion program, along with the results acquired in the various technology areas, are discussed. The instrumentation requirements for and experience with flight testing the propulsion systems at high supersonic cruise are reported. Propulsion system performance differences between wind tunnel and flight are given. The effects of high frequency flow fluctuations (transients) on the stability of the propulsion system are described, and shock position control is evaluated.

  6. Proximal forearm extensor muscle strain is reduced when driving nails using a shock-controlled hammer.

    PubMed

    Buchanan, Kimberly A; Maza, Maria; Pérez-Vázquez, Carlos E; Yen, Thomas Y; Kijowski, Richard; Liu, Fang; Radwin, Robert G

    2016-10-01

    Repetitive hammer use has been associated with strain and musculoskeletal injuries. This study investigated if using a shock-control hammer reduces forearm muscle strain by observing adverse physiological responses (i.e. inflammation and localized edema) after use. Three matched framing hammers were studied, including a wood-handle, steel-handle, and shock-control hammer. Fifty volunteers were randomly assigned to use one of these hammers at a fatiguing pace of one strike every second, to seat 20 nails in a wood beam. Magnetic resonance imaging was used to scan the forearm muscles for inflammation before the task, immediately after hammering, and one to two days after. Electromyogram signals were measured to estimate grip exertions and localized muscle fatigue. High-speed video was used to calculate the energy of nail strikes. While estimated grip force was similar across the three hammers, the shock-control hammer had 40% greater kinetic energy upon impact and markedly less proximal extensor muscle edema than the wood-handle and steel-handle hammers, immediately after use (p<.05). Less edema observed for the shock-control hammer suggests that isolating handle shock can mitigate strain in proximal forearm extensor muscles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Influence of Tanshinone IIa on heat shock protein 70, Bcl-2 and Bax expression in rats with spinal ischemia/reperfusion injury☆

    PubMed Central

    Zhang, Li; Gan, Weidong; An, Guoyao

    2012-01-01

    Tanshinone IIa is an effective monomer component of Danshen, which is a traditional Chinese medicine for activating blood circulation to dissipate blood stasis. Tanshinone IIa can effectively improve brain tissue ischemia/hypoxia injury. The present study established a rat model of spinal cord ischemia/reperfusion injury and intraperitoneally injected Tanshinone IIa, 0.5 hour prior to model establishment. Results showed that Tanshinone IIa promoted heat shock protein 70 and Bcl-2 protein expression, but inhibited Bax protein expression in the injured spinal cord after ischemia/reperfusion injury. Furthermore, Nissl staining indicated a reduction in nerve cell apoptosis and fewer pathological lesions in the presence of Tanshinone IIa, compared with positive control Danshen injection. PMID:25317140

  8. Passive control of rotorcraft high-speed impulsive noise

    NASA Astrophysics Data System (ADS)

    Szulc, O.; Doerffer, P.; Tejero, F.

    2016-10-01

    A strong, normal shock wave, terminating a local supersonic area located at the tip of a helicopter blade, not only limits the aerodynamic performance, but also constitutes an origin of the High-Speed Impulsive (HSI) noise. The application of a passive control device (a shallow cavity covered by a perforated plate) just beneath the interaction region weakens the compression level, thus reducing the main source of the HSI noise. The numerical investigation based on the URANS approach and Bohning/Doerffer (BD) transpiration law (SPARC code) confirms a large potential of the new method. Two exemplary implementations, adapted to model helicopter rotors tested at NASA Ames facility in transonic conditions: Caradonna-Tung (lifting, transonic hover) and Caradonna-Laub-Tung (non-lifting, high-speed forward flight), demonstrate the possible gains in terms of the reduction of acoustic pressure fluctuations in the near-field of the blade tip. The CFD results are validated against the experimental data obtained for the reference configurations (no control), while the analysis of the passive control arrangement is based on a purely numerical research. The normal shock wave is effectively eliminated by the wall ventilation exerting a positive impact on the generated level of the HSI noise.

  9. Effect of shock pressure on the structure and superconducting properties of Y-Ba-Cu-O in explosively fabricated bulk metal-matrix composites

    NASA Technical Reports Server (NTRS)

    Murr, L. E.; Niou, C. S.; Pradhan-Advani, M.

    1991-01-01

    While it is now well established that copper-oxide-based power, or virtually any other ceramic superconductor powder, can be consolidated and encapsulated within a metal matrix by explosive consolidation, the erratic superconductivity following fabrication has posed a major problem for bulk applications. The nature of this behavior was found to arise from microstructural damage created in the shock wave front, and the residual degradation in superconductivity was demonstrated to be directly related to the peak shock pressure. The explosively fabricated or shock loaded YBa2Cu3Ox examples exhibit drastically altered rho (or R) - T curves. The deterioration in superconductivity is even more noticeable in the measurement of ac magnetic susceptibility and flux exclusion or shielding fraction which is also reduced in proportion to increasing peak shock pressure. The high frequency surface resistance (in the GHz range) is also correspondingly compromised in explosively fabricated, bulk metal-matrix composites based on YBa2Cu3O7. Transmission electron microscopy (including lattice imaging techniques) is being applied in an effort to elucidate the fundamental (microstructural) nature of the shock-induced degradation of superconductivity and normal state conductivity. One focus of TEM observations has assumed that oxygen displaced from b-chains rather than oxygen-vacancy disorder in the basal plane of oxygen deficient YBa2Cu3Ox may be a prime mechanism. Shock-wave displaced oxygen may also be locked into new positions or interstitial clusters or chemically bound to displaced metal (possibly copper) atoms to form precipitates, or such displacements may cause the equivalent of local lattice cell changes as a result of stoichiometric changes. While the shock-induced suppression of T(sub c) is not desirable in the explosive fabrication of bulk metal-matrix superconductors, it may be turned into an advantage if the atomic-scale distortion can be understood and controlled as local flux pinning sites.

  10. Effect of shock pressure on the structure and superconducting properties of Y-Ba-Cu-O in explosively fabricated bulk metal-matrix composites

    NASA Technical Reports Server (NTRS)

    Murr, L. E.; Niou, C. S.; Pradhan, M.; Schoenlein, L. H.

    1990-01-01

    While it is now well established that copper-oxide-based powder, or virtually any other ceramic superconductor powder, can be consolidated and encapsulated within a metal matrix by explosive consolidation, the erratic superconductivity following fabrication has posed a major problem for bulk applications. The nature of this behavior was found to arise from microstructural damage created in the shock wave front, and the residual degradation in superconductivity was demonstrated to be directly related to the peak shock pressure. The explosively fabricated or shock loaded YBa2Cu3Ox examples exhibit drastically altered rho (or R) - T curves. The deterioration in superconductivity is even more noticeable in the measurement of ac magnetic susceptibility and flux exclusion or shielding fraction which is also reduced in proportion to increasing peak shock pressure. The high-frequency surface resistance (in the GHz range) is also correspondingly compromised in explosively fabricated, bulk metal-matrix composites based on YBa2Cu3O7. Transmission electron microscopy (including lattice imaging techniques) is being applied in an effort to elucidate the fundamental (microstructural) nature of the shock-induced degradation of superconductivity and normal state conductivity. One focus of TEM observations has assumed that oxygen displaced from b-chains rather than oxygen-vacancy disorder in the basal plane of oxygen deficient YBa2Cu3Ox may be a prime mechanism. Shock-wave displaced oxygen may also be locked into new positions or interstitial clusters or chemically bound to displaced metal (possibly copper) atoms to form precipitates, or such displacements may cause the equivalent of local lattice cell changes as a result of stoichiometric changes. While the shock-induced suppression of T(sub c) is not desirable in the explosive fabrication of bulk metal-matrix superconductors, it may be turned into an advantage if the atomic-scale distortion can be understood and controlled as local flux pinning sites.

  11. An entropy and viscosity corrected potential method for rotor performance prediction

    NASA Technical Reports Server (NTRS)

    Bridgeman, John O.; Strawn, Roger C.; Caradonna, Francis X.

    1988-01-01

    An unsteady Full-Potential Rotor code (FPR) has been enhanced with modifications directed at improving its drag prediction capability. The shock generated entropy has been included to provide solutions comparable to the Euler equations. A weakly interacted integral boundary layer has also been coupled to FPR in order to estimate skin-friction drag. Pressure distributions, shock positions, and drag comparisons are made with various data sets derived from two-dimensional airfoil, hovering, and advancing high speed rotor tests. In all these comparisons, the effect of the nonisentropic modification improves (i.e., weakens) the shock strength and wave drag. In addition, the boundary layer method yields reasonable estimates of skin-friction drag. Airfoil drag and hover torque data comparisons are excellent, as are predicted shock strength and positions for a high speed advancing rotor.

  12. Even the best laid plans sometimes go askew: career self-management processes, career shocks, and the decision to pursue graduate education.

    PubMed

    Seibert, Scott E; Kraimer, Maria L; Holtom, Brooks C; Pierotti, Abigail J

    2013-01-01

    Drawing on career self-management frameworks as well as image theory and the unfolding model of turnover, we developed a model predicting early career employees' decisions to pursue graduate education. Using a sample of 337 alumni from 2 universities, we found that early career individuals with intrinsic career goals, who engaged in career planning, who were less satisfied with their career, or who experienced impactful positive career shocks were more likely to intend to go to graduate school. In contrast, individuals with extrinsic career goals who were highly satisfied with their careers were less likely to intend to go to graduate school. Graduate education intentions, career planning, and the impact of having one's mentor leave the organization positively related to actual applications to graduate school. However, having extrinsic career goals, an impactful sooner than expected raise or promotion (a positive career shock), and a negative organizational change (a negative career shock) negatively related to the likelihood of applying. The career shocks' direct relationship to applications to graduate school, regardless of one's intentions, suggests that "the best laid plans" can sometimes be altered by unplanned events. This study contributes to the literatures on career self-management and graduate education and extends the application of the shock construct from the unfolding model of turnover to other career-related decisions. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  13. Acceleration from short-duration blast

    NASA Astrophysics Data System (ADS)

    Ritzel, D. V.; Van Albert, S.; Sajja, V.; Long, J.

    2018-01-01

    The blast-induced motion of spheres has been studied experimentally where the shock wave is rapidly decaying during the period that quasi-steady acceleration would be developed in the case of a step-function shock wave as considered in most shock-tube studies. The motion of sphere models ranging from 39 to 251 mm in diameter and having a range of densities was assessed using the "free-flight" method in a simulator specially designed to replicate the decaying shock wave profile of spherical blast including negative phase and positive entropy gradient. A standardized blast-wave simulation of 125 kPa and 6-ms positive-phase duration was applied for all experiments. In all cases, there are three phases to the motion: a relatively low "kickoff" velocity from the shock diffraction, acceleration or deceleration during the positive duration, then deceleration through the negative phase and subsequent quiescent air. The unexpected deceleration of larger spheres after their kickoff velocity during the decaying yet high-speed flow of the blast wave seems associated with the persistence of a ring vortex on the downstream side of the sphere. The flow is entirely unsteady with initial forces dominated by the shock diffraction; therefore, the early motion of spheres under such conditions is not governed by quasi-steady drag as in classical aerodynamics. The work will help establish scaling rules for model studies of blast-induced motion relevant to improvised explosive devices, and preliminary results are shown for motion imparted to a human skull surrogate.

  14. Stress-evoked opioid release inhibits pain in major depressive disorder.

    PubMed

    Frew, Ashley K; Drummond, Peter D

    2008-10-15

    To determine whether stress-evoked release of endogenous opioids might account for hypoalgesia in major depressive disorder (MDD), the mu-opioid antagonist naltrexone (50mg) or placebo was administered double-blind to 24 participants with MDD and to 31 non-depressed controls. Eighty minutes later participants completed a painful foot cold pressor test and, after a 5-min interval, began a 25-min arithmetic task interspersed with painful electric shocks. Ten minutes later participants completed a second cold pressor test. Negative affect was greater in participants with MDD than in non-depressed controls throughout the experiment, and increased significantly in both groups during mental arithmetic. Before the math task, naltrexone unmasked direct linear relationships between severity of depression, negative affect while resting quietly, and cold-induced pain in participants with MDD. In contrast, facilitatory effects of naltrexone on cold- and shock-induced pain were greatest in controls with the lowest depression scores. Naltrexone strengthened the relationship between negative affect and shock-induced pain during the math task, particularly in the depressed group, and heightened anxiety in both groups toward the end of the task. Thus, mu-opioid activity apparently masked a positive association between negative affect and pain in the most distressed participants. These findings suggest that psychological distress inhibits pain via stress-evoked release of opioid peptides in severe cases of MDD. In addition, tonic endogenous opioid neurotransmission could inhibit depressive symptoms and pain in people with low depression scores.

  15. Association of a Negative Wealth Shock With All-Cause Mortality in Middle-aged and Older Adults in the United States.

    PubMed

    Pool, Lindsay R; Burgard, Sarah A; Needham, Belinda L; Elliott, Michael R; Langa, Kenneth M; Mendes de Leon, Carlos F

    2018-04-03

    A sudden loss of wealth-a negative wealth shock-may lead to a significant mental health toll and also leave fewer monetary resources for health-related expenses. With limited years remaining to regain lost wealth in older age, the health consequences of these negative wealth shocks may be long-lasting. To determine whether a negative wealth shock was associated with all-cause mortality during 20 years of follow-up. The Health and Retirement Study, a nationally representative prospective cohort study of US adults aged 51 through 61 years at study entry. The study population included 8714 adults, first assessed for a negative wealth shock in 1994 and followed biennially through 2014 (the most recent year of available data). Experiencing a negative wealth shock, defined as a loss of 75% or more of total net worth over a 2-year period, or asset poverty, defined as 0 or negative total net worth at study entry. Mortality data were collected from the National Death Index and postmortem interviews with family members. Marginal structural survival methods were used to account for the potential bias due to changes in health status that may both trigger negative wealth shocks and act as the mechanism through which negative wealth shocks lead to increased mortality. There were 8714 participants in the study sample (mean [SD] age at study entry, 55 [3.2] years; 53% women), 2430 experienced a negative wealth shock during follow-up, 749 had asset poverty at baseline, and 5535 had continuously positive wealth without shock. A total of 2823 deaths occurred during 80 683 person-years of follow-up. There were 30.6 vs 64.9 deaths per 1000 person-years for those with continuously positive wealth vs negative wealth shock (adjusted hazard ratio [HR], 1.50; 95% CI, 1.36-1.67). There were 73.4 deaths per 1000 person-years for those with asset poverty at baseline (adjusted HR, 1.67; 95% CI, 1.44-1.94; compared with continuously positive wealth). Among US adults aged 51 years and older, loss of wealth over 2 years was associated with an increased risk of all-cause mortality. Further research is needed to better understand the possible mechanisms for this association and determine whether there is potential value for targeted interventions.

  16. TURBULENT COSMIC-RAY REACCELERATION AT RADIO RELICS AND HALOS IN CLUSTERS OF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, Yutaka; Takizawa, Motokazu; Yamazaki, Ryo

    Radio relics are synchrotron emission found on the periphery of galaxy clusters. From the position and the morphology, it is often believed that the relics are generated by cosmic-ray (CR) electrons accelerated at shocks through a diffusive shock acceleration (DSA) mechanism. However, some radio relics have harder spectra than the prediction of the standard DSA model. One example is observed in the cluster 1RXS J0603.3+4214, which is often called the “Toothbrush Cluster.” Interestingly, the position of the relic is shifted from that of a possible shock. In this study, we show that these discrepancies in the spectrum and the positionmore » can be solved if turbulent (re)acceleration is very effective behind the shock. This means that for some relics turbulent reacceleration may be the main mechanism to produce high-energy electrons, contrary to the common belief that it is the DSA. Moreover, we show that for efficient reacceleration, the effective mean free path of the electrons has to be much smaller than their Coulomb mean free path. We also study the merging cluster 1E 0657−56, or the “Bullet Cluster,” in which a radio relic has not been found at the position of the prominent shock ahead of the bullet. We indicate that a possible relic at the shock is obscured by the observed large radio halo that is generated by strong turbulence behind the shock. We propose a simple explanation of the morphological differences of radio emission among the Toothbrush, the Bullet, and the Sausage (CIZA J2242.8+5301) Clusters.« less

  17. Money Changes Everything: Funding Shocks and Optimal Admissions and Financial Aid Policies in Higher Education

    ERIC Educational Resources Information Center

    Nagler, Matthew G.

    2006-01-01

    The paper examines the effect of a shock to university funding on tuition net of financial aid, admissions selectivity, and enrollment levels chosen by an optimizing university. Whereas a positive shock, such as a major donation, results in lower net tuition and greater selectivity with respect to all students, its effect on enrollment may not be…

  18. Flowfield dynamics in blunt fin-induced shock wave/turbulent boundary layer interactions

    NASA Technical Reports Server (NTRS)

    Dolling, David S.; Brusniak, Leon

    1994-01-01

    Fluctuating wall pressure measurements have been made on centerline upstream of a blunt fin in a Mach 5 turbulent boundary layer. By examining the ensemble averaged wall pressure distributions for different separation shock foot positions, it has been shown that local fluctuating wall pressure measurements are due to a distinct pressure distribution, Rho(sub i), which undergoes a stretching and flattening effect as its upstream boundary translates aperiodically between the upstream influence and separation lines. The locations of the maxima and minima in the wall pressure standard deviation can be accurately predicted using this distribution, providing quantitative confirmation of the model. This model also explains the observed cross-correlations and ensemble average measurements within the interaction. Using the Rho(sub i) model, wall pressure signals from under the separated flow region were used to reproduce the position-time history of the separation shock foot. Further, the negative time delay peak in the cross-correlation between the predicted and actual shock foot histories suggests that the separated region fluctuations precede shock foot motion. The unsteady behavior of the primary horseshoe vortex and its relation to the unsteady separation shock are described.

  19. Using Tri-Axial Accelerometers to Assess the Dynamic Control of Head Posture During Gait

    NASA Technical Reports Server (NTRS)

    Lawrence, John H., III

    2003-01-01

    Long duration spaceflight is known to cause a variety of biomedical stressors to the astronaut. One of the more functionally destabilizing effects of spaceflight involves microgravity-induced changes in vestibular or balance control. Balance control requires the integration of the vestibular, visual, and proprioceptive systems. In the microgravity environment, the normal gravity vector present on Earth no longer serves as a reference for the balance control system. Therefore, adaptive changes occur to the vestibular system to affect control of body orientation with altered, or non-present, gravity and/or proprioceptive inputs. Upon return to a gravity environment, the vestibular system must re-incorporate the gravity vector and gravity-induced proprioceptive inputs into the balance control regime. The result is often a period of postural instability, which may also be associated with space motion sickness (oscillopsia, nausea, and vertigo). Previous studies by the JSC Neuroscience group have found that returning astronauts often employ alterations in gait mechanics to maintain postural control during gait. It is believed that these gait alterations are meant to decrease the transfer of heel strike shock energy to the head, thus limiting the contradictory head and eye movements that lead to gait instability and motion sickness symptoms. We analyzed pre- and post-spaceflight tri-axial accelerometer data from the NASA/MIR long duration spaceflight missions to assess the heel to head transfer of heel strike shock energy during locomotion. Up to seven gait sessions (three preflight, four postflight) of head and shank (lower leg) accelerometer data was previously collected from six astronauts who engaged in space flights of four to six months duration. In our analysis, the heel to head transmission of shock energy was compared using peak vertical acceleration (a), peak jerk (j) ratio, and relative kinetic energy (a). A host of generalized movement variables was produced in an effort to isolate those that best highlighted vestibular adaptation due to spaceflight. Data suggest that astronauts used either head or body centered control to reduce the effects of heel strike shock on head position during normal walking at self-selected speeds. Moreover, the form of that control appears to fall under one of two categories: homeostatic or adaptive. Homeostatic control refers to tight constraint (small error) over the value of a given variable before and after spaceflight with little or no adaptive changes. Adaptive control refers to lesser constraint over a given movement variable with clear adaptation to earth gravity upon return from spaceflight. Heel strike shock absorption (ratio of heel to head peak acceleration) best-discriminated head and body centered control strategies. Further, peak jerk data was useful for illustrating pre- and postflight differences in segmental (shank versus head) movement energy. Results from kinetic energy analysis show high consistency between subjects and across test dates. Whether this result highlights a control strategy or is an artifact of approximating body segments using anthropometric tables is, at this point, unclear.

  20. 86. Shock absorber, top of launch control center, southeast corner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    86. Shock absorber, top of launch control center, southeast corner - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  1. Legionella control in the water system of antiquated hospital buildings by shock and continuous hyperchlorination: 5 years experience

    PubMed Central

    2014-01-01

    Background To control the presence of Legionella in an old hospital water system, an integrated strategy of water disinfection-filtration was implemented in the university hospital Umberto I in Rome. Methods Due to antiquated buildings, hospital water system design and hospital extension (38 buildings), shock hyperchlorination (sodium hypochlorite, 20–50 ppm of free chlorine at distal points for 1–2 h) followed by continuous hyperchlorination (0.5-1.0 mg/L at distal points) were adopted, and microbiological and chemical monitoring of the water supply was carried out in the university hospital (December 2006-December 2011). Results Overall, 1308 samples of cold <20°C (44.5%), mixed ≥20°C ≤ 45°C (37.7%) and hot >45°C (17.8%) water were collected, determining residual free chlorine (0.43 ± 0.44 mg/L), pH (7.43 ± 0.29) and trihalomethanes (8.97 ± 18.56 μg/L). Legionella was isolated in 102 (9.8%) out of 1.041 water samples without filters (L. pneumophila sg 1 17.6%, L. pneumophila sg 2–14 28.4%, L. non pneumophila 53.9%), and in none of the 267 samples with filters. Legionella was recovered in 23 buildings out of 38 and 29 samples (28.4%) exceeded 103 cfu/L. When considering the disinfection treatment Legionella was isolated: before shock hyperchlorination (21.1%), 15 days after shock hyperchlorination (7.8%), 30 days after shock hyperchlorination (3.5%), during continuous hyperchlorination (5.5%) and without continuous hyperchlorination (27.3%). Continuous hyperchlorination following the shock treatment achieved >70% reduction of positive samples, whereas no continuous hyperchlorination after shock treatment was more frequently associated to Legionella isolation (OR 6.41; 95% CI 3.10–13.26; p <0.001). Independent risk factors for Legionella isolation were: residual free chlorine <0.5 mg/L (OR 13.0; 95% CI 1.37 – 123.2; p <0.03), water T° ≥20°C ≤ 45°C (OR 12.0; 95% CI 1.28 – 111.48; p <0.03) and no continuous hyperchlorination after shock treatment (OR 10.3; 95% CI 1.06 – 100.05; p <0.05). Conclusions Shock and continuous hyperchlorination achieved significant Legionella reduction, but effective chlorine levels (>0.5 < 1.0 mg/L) deteriorated water quality (organoleptic and chemical). However, shock and continuous hyperchlorination remains a valid-term option in old buildings with no water system rational design, managing problems due to hospital extension and absence of a proper hot water recirculation system. PMID:25027499

  2. Comparitive Study of High-Order Positivity-Preserving WENO Schemes

    NASA Technical Reports Server (NTRS)

    Kotov, D. V.; Yee, H. C.; Sjogreen, B.

    2014-01-01

    In gas dynamics and magnetohydrodynamics flows, physically, the density ? and the pressure p should both be positive. In a standard conservative numerical scheme, however, the computed internal energy is The ideas of Zhang & Shu (2012) and Hu et al. (2012) precisely address the aforementioned issue. Zhang & Shu constructed a new conservative positivity-preserving procedure to preserve positive density and pressure for high-order Weighted Essentially Non-Oscillatory (WENO) schemes by the Lax-Friedrichs flux (WENO/LLF). In general, WENO/LLF is obtained by subtracting the kinetic energy from the total energy, resulting in a computed p that may be negative. Examples are problems in which the dominant energy is kinetic. Negative ? may often emerge in computing blast waves. In such situations the computed eigenvalues of the Jacobian will become imaginary. Consequently, the initial value problem for the linearized system will be ill posed. This explains why failure of preserving positivity of density or pressure may cause blow-ups of the numerical algorithm. The adhoc methods in numerical strategy which modify the computed negative density and/or the computed negative pressure to be positive are neither a conservative cure nor a stable solution. Conservative positivity-preserving schemes are more appropriate for such flow problems. too dissipative for flows such as turbulence with strong shocks computed in direct numerical simulations (DNS) and large eddy simulations (LES). The new conservative positivity-preserving procedure proposed in Hu et al. (2012) can be used with any high-order shock-capturing scheme, including high-order WENO schemes using the Roe's flux (WENO/Roe). The goal of this study is to compare the results obtained by non-positivity-preserving methods with the recently developed positivity-preserving schemes for representative test cases. In particular the more di cult 3D Noh and Sedov problems are considered. These test cases are chosen because of the negative pressure/density most often exhibited by standard high-order shock-capturing schemes. The simulation of a hypersonic nonequilibrium viscous shock tube that is related to the NASA Electric Arc Shock Tube (EAST) is also included. EAST is a high-temperature and high Mach number viscous nonequilibrium ow consisting of 13 species. In addition, as most common shock-capturing schemes have been developed for problems without source terms, when applied to problems with nonlinear and/or sti source terms these methods can result in spurious solutions, even when solving a conservative system of equations with a conservative scheme. This kind of behavior can be observed even for a scalar case as well as for the case consisting of two species and one reaction.. This EAST example indicated that standard high-order shock-capturing methods exhibit instability of density/pressure in addition to grid-dependent discontinuity locations with insufficient grid points. The evaluation of these test cases is based on the stability of the numerical schemes together with the accuracy of the obtained solutions.

  3. Examining the safety of menstrual cups among rural primary school girls in western Kenya: observational studies nested in a randomised controlled feasibility study

    PubMed Central

    Juma, Jane; Nyothach, Elizabeth; Laserson, Kayla F; Oduor, Clifford; Arita, Lilian; Ouma, Caroline; Oruko, Kelvin; Omoto, Jackton; Mason, Linda; Alexander, Kelly T; Fields, Barry; Onyango, Clayton; Phillips-Howard, Penelope A

    2017-01-01

    Objective Examine the safety of menstrual cups against sanitary pads and usual practice in Kenyan schoolgirls. Design Observational studies nested in a cluster randomised controlled feasibility study. Setting 30 primary schools in a health and demographic surveillance system in rural western Kenya. Participants Menstruating primary schoolgirls aged 14–16 years participating in a menstrual feasibility study. Interventions Insertable menstrual cup, monthly sanitary pads or ‘usual practice’ (controls). Outcome measures Staphylococcus aureus vaginal colonization, Escherichia coli growth on sampled used cups, toxic shock syndrome or other adverse health outcomes. Results Among 604 eligible girls tested, no adverse event or TSS was detected over a median 10.9 months follow-up. S. aureusprevalence was 10.8%, with no significant difference over intervention time or between groups. Of 65 S.aureus positives at first test, 49 girls were retested and 10 (20.4%) remained positive. Of these, two (20%) sample isolates tested positive for toxic shock syndrome toxin-1; both girls were provided pads and were clinically healthy. Seven per cent of cups required replacements for loss, damage, dropping in a latrine or a poor fit. Of 30 used cups processed for E. coli growth, 13 (37.1%, 95% CI 21.1% to 53.1%) had growth. E. coli growth was greatest in newer compared with established users (53%vs22.2%, p=0.12). Conclusions Among this feasibility sample, no evidence emerged to indicate menstrual cups are hazardous or cause health harms among rural Kenyan schoolgirls, but large-scale trials and post-marketing surveillance should continue to evaluate cup safety. PMID:28473520

  4. Examining the safety of menstrual cups among rural primary school girls in western Kenya: observational studies nested in a randomised controlled feasibility study.

    PubMed

    Juma, Jane; Nyothach, Elizabeth; Laserson, Kayla F; Oduor, Clifford; Arita, Lilian; Ouma, Caroline; Oruko, Kelvin; Omoto, Jackton; Mason, Linda; Alexander, Kelly T; Fields, Barry; Onyango, Clayton; Phillips-Howard, Penelope A

    2017-05-04

    Examine the safety of menstrual cups against sanitary pads and usual practice in Kenyan schoolgirls. Observational studies nested in a cluster randomised controlled feasibility study. 30 primary schools in a health and demographic surveillance system in rural western Kenya. Menstruating primary schoolgirls aged 14-16 years participating in a menstrual feasibility study. Insertable menstrual cup, monthly sanitary pads or 'usual practice' (controls). Staphylococcus aureus vaginal colonization, Escherichia coli growth on sampled used cups, toxic shock syndrome or other adverse health outcomes. Among 604 eligible girls tested, no adverse event or TSS was detected over a median 10.9 months follow-up. S. aureus prevalence was 10.8%, with no significant difference over intervention time or between groups. Of 65  S.aureus positives at first test, 49 girls were retested and 10 (20.4%) remained positive. Of these, two (20%) sample isolates tested positive for toxic shock syndrome toxin-1; both girls were provided pads and were clinically healthy. Seven per cent of cups required replacements for loss, damage, dropping in a latrine or a poor fit. Of 30 used cups processed for E. coli growth, 13 (37.1%, 95% CI 21.1% to 53.1%) had growth. E. coli growth was greatest in newer compared with established users (53%vs22.2%, p=0.12). Among this feasibility sample, no evidence emerged to indicate menstrual cups are hazardous or cause health harms among rural Kenyan schoolgirls, but large-scale trials and post-marketing surveillance should continue to evaluate cup safety. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. The Acceleration of Charged Particles at a Spherical Shock Moving through an Irregular Magnetic Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giacalone, J.

    We investigate the physics of charged-particle acceleration at spherical shocks moving into a uniform plasma containing a turbulent magnetic field with a uniform mean. This has applications to particle acceleration at astrophysical shocks, most notably, to supernovae blast waves. We numerically integrate the equations of motion of a large number of test protons moving under the influence of electric and magnetic fields determined from a kinematically defined plasma flow associated with a radially propagating blast wave. Distribution functions are determined from the positions and velocities of the protons. The unshocked plasma contains a magnetic field with a uniform mean andmore » an irregular component having a Kolmogorov-like power spectrum. The field inside the blast wave is determined from Maxwell’s equations. The angle between the average magnetic field and unit normal to the shock varies with position along its surface. It is quasi-perpendicular to the unit normal near the sphere’s equator, and quasi-parallel to it near the poles. We find that the highest intensities of particles, accelerated by the shock, are at the poles of the blast wave. The particles “collect” at the poles as they approximately adhere to magnetic field lines that move poleward from their initial encounter with the shock at the equator, as the shock expands. The field lines at the poles have been connected to the shock the longest. We also find that the highest-energy protons are initially accelerated near the equator or near the quasi-perpendicular portion of the shock, where the acceleration is more rapid.« less

  6. Extracorporeal shock wave therapy in treatment of delayed bone-tendon healing.

    PubMed

    Wang, Lin; Qin, Ling; Lu, Hong-bin; Cheung, Wing-hoi; Yang, Hu; Wong, Wan-nar; Chan, Kai-ming; Leung, Kwok-sui

    2008-02-01

    Extracorporeal shock wave therapy is indicated for treatment of chronic injuries of soft tissues and delayed fracture healing and nonunion. No investigation has been conducted to study the effect of shock wave on delayed healing at the bone-tendon junction. Shock wave promotes osteogenesis, regeneration of fibrocartilage zone, and remodeling of healing tissue in delayed healing of bone-tendon junction surgical repair. Controlled laboratory study. Twenty-eight mature rabbits were used for establishing a delayed healing model at the patella-patellar tendon complex after partial patellectomy and then divided into control and shock wave groups. In the shock wave group, a single shock wave treatment was given at week 6 postoperatively to the patella-patellar tendon healing complex. Seven samples were harvested at week 8 and 7 samples at week 12 for radiologic, densitometric, histologic, and mechanical evaluations. Radiographic measurements showed 293.4% and 185.8% more new bone formation at the patella-patellar tendon healing junction in the shock wave group at weeks 8 and 12, respectively. Significantly better bone mineral status was found in the week 12 shock wave group. Histologically, the shock wave group showed more advanced remodeling in terms of better alignment of collagen fibers and thicker and more mature regenerated fibrocartilage zone at both weeks 8 and 12. Mechanical testing showed 167.7% and 145.1% higher tensile load and strength in the shock wave group at week 8 and week 12, respectively, compared with controls. Extracorporeal shock wave promotes osteogenesis, regeneration of fibrocartilage zone, and remodeling in the delayed bone-to-tendon healing junction in rabbits. These results provide a foundation for future clinical studies toward establishment of clinical indication for treatment of delayed bone-to-tendon junction healing.

  7. Underwater electrical wire explosion: Shock wave from melting being overtaken by shock wave from vaporization

    NASA Astrophysics Data System (ADS)

    Li, Liuxia; Qian, Dun; Zou, Xiaobing; Wang, Xinxin

    2018-05-01

    The shock waves generated by an underwater electrical wire explosion were investigated. A microsecond time-scale pulsed current source was used to trigger the electrical explosion of copper wires with a length of 5 cm and a diameter of 200 μm. The energy-storage capacitor was charged to a relatively low energy so that the energy deposited onto the wire was not large enough to fully vaporize the whole wire. Two shock waves were recorded with a piezoelectric gauge that was located at a position of 100 mm from the exploding wire. The first and weak shock wave was confirmed to be the contribution from wire melting, while the second and stronger shock wave was the contribution from wire vaporization. The phenomenon whereby the first shock wave generated by melting being overtaken by the shock wave due to vaporization was observed.

  8. Emetic and Electric Shock Alcohol Aversion Therapy: Six- and Twelve-Month Follow-Up.

    ERIC Educational Resources Information Center

    Cannon, Dale S.; Baker, Timothy B.

    1981-01-01

    Follow-up data are presented for 6- and 12-months on male alcoholics (N=20) who received either a multifaceted inpatient alcoholism treatment program alone (controls) or emetic or shock aversion therapy in addition to that program. Both emetic and control subjects compiled more days of abstinence than shock subjects. (Author)

  9. Effects of AED device features on performance by untrained laypersons.

    PubMed

    Mosesso, Vincent N; Shapiro, Alan H; Stein, Karen; Burkett, Kelly; Wang, Henry

    2009-11-01

    Our study evaluates the impact of features of automated external defibrillators (AEDs) on the performance and speed of untrained laypersons to deliver a shock and initiate CPR after a shock. This was a randomized trial of volunteer laypersons without AED or advanced medical training. Subjects were assigned to use one of six different models of AEDs on a manikin in simulated cardiac arrest. No instructions on AED operation were provided. Primary endpoints were shock delivery and elapsed time from start to shock. Secondary endpoints included time to power-on, initiation of CPR, adequacy of pad placement and subjects' ratings of ease of use (1=very easy, 5=very difficult). Most subjects (109/120; 91%) were able to deliver a shock. Median time from start of scenario to shock delivery was 79 s (IQR: 67-99). Of the 11 participants who did not deliver shock, eight never powered on the device. Time to power-on was shorter in devices with open lid (median 12s, IQR 8-27 s) and pull handle (17s, IQR 9-20s) mechanisms than with a push button (37s, IQR 18-69 s; p=0.000). Pad position on the manikin was judged adequate for 86 (77%) of the 111 subjects who placed pads. Devices which gave more detailed voice instruction for pad placement had higher rates of adequate pad position [38/39 (97%) versus 50/73 (68%), p=0.001]. With AEDs that provided step-by-step CPR instruction, 49/58 (84%) subjects began CPR compared to 26/51 (51%) with AEDs that only prompted to start CPR (p=0.01). Participants rated all the models easy to use (overall mean 1.48; individual device means 1.28-1.71). Most untrained laypersons were successful in delivering a shock. Device features had the most impact on these functions: ability and time to power-on device, adequacy of pad position and initiation of CPR.

  10. Quantitative Phosphoproteomics Reveals the Role of Protein Arginine Phosphorylation in the Bacterial Stress Response*

    PubMed Central

    Schmidt, Andreas; Trentini, Débora Broch; Spiess, Silvia; Fuhrmann, Jakob; Ammerer, Gustav; Mechtler, Karl; Clausen, Tim

    2014-01-01

    Arginine phosphorylation is an emerging protein modification implicated in the general stress response of Gram-positive bacteria. The modification is mediated by the arginine kinase McsB, which phosphorylates and inactivates the heat shock repressor CtsR. In this study, we developed a mass spectrometric approach accounting for the peculiar chemical properties of phosphoarginine. The improved methodology was used to analyze the dynamic changes in the Bacillus subtilis arginine phosphoproteome in response to different stress situations. Quantitative analysis showed that a B. subtilis mutant lacking the YwlE arginine phosphatase accumulated a strikingly large number of arginine phosphorylations (217 sites in 134 proteins), however only a minor fraction of these sites was increasingly modified during heat shock or oxidative stress. The main targets of McsB-mediated arginine phosphorylation comprise central factors of the stress response system including the CtsR and HrcA heat shock repressors, as well as major components of the protein quality control system such as the ClpCP protease and the GroEL chaperonine. These findings highlight the impact of arginine phosphorylation in orchestrating the bacterial stress response. PMID:24263382

  11. Quantitative phosphoproteomics reveals the role of protein arginine phosphorylation in the bacterial stress response.

    PubMed

    Schmidt, Andreas; Trentini, Débora Broch; Spiess, Silvia; Fuhrmann, Jakob; Ammerer, Gustav; Mechtler, Karl; Clausen, Tim

    2014-02-01

    Arginine phosphorylation is an emerging protein modification implicated in the general stress response of Gram-positive bacteria. The modification is mediated by the arginine kinase McsB, which phosphorylates and inactivates the heat shock repressor CtsR. In this study, we developed a mass spectrometric approach accounting for the peculiar chemical properties of phosphoarginine. The improved methodology was used to analyze the dynamic changes in the Bacillus subtilis arginine phosphoproteome in response to different stress situations. Quantitative analysis showed that a B. subtilis mutant lacking the YwlE arginine phosphatase accumulated a strikingly large number of arginine phosphorylations (217 sites in 134 proteins), however only a minor fraction of these sites was increasingly modified during heat shock or oxidative stress. The main targets of McsB-mediated arginine phosphorylation comprise central factors of the stress response system including the CtsR and HrcA heat shock repressors, as well as major components of the protein quality control system such as the ClpCP protease and the GroEL chaperonine. These findings highlight the impact of arginine phosphorylation in orchestrating the bacterial stress response.

  12. Pseudo-shock waves and their interactions in high-speed intakes

    NASA Astrophysics Data System (ADS)

    Gnani, F.; Zare-Behtash, H.; Kontis, K.

    2016-04-01

    In an air-breathing engine the flow deceleration from supersonic to subsonic conditions takes places inside the isolator through a gradual compression consisting of a series of shock waves. The wave system, referred to as a pseudo-shock wave or shock train, establishes the combustion chamber entrance conditions, and therefore influences the performance of the entire propulsion system. The characteristics of the pseudo-shock depend on a number of variables which make this flow phenomenon particularly challenging to be analysed. Difficulties in experimentally obtaining accurate flow quantities at high speeds and discrepancies of numerical approaches with measured data have been readily reported. Understanding the flow physics in the presence of the interaction of numerous shock waves with the boundary layer in internal flows is essential to developing methods and control strategies. To counteract the negative effects of shock wave/boundary layer interactions, which are responsible for the engine unstart process, multiple flow control methodologies have been proposed. Improved analytical models, advanced experimental methodologies and numerical simulations have allowed a more in-depth analysis of the flow physics. The present paper aims to bring together the main results, on the shock train structure and its associated phenomena inside isolators, studied using the aforementioned tools. Several promising flow control techniques that have more recently been applied to manipulate the shock wave/boundary layer interaction are also examined in this review.

  13. 83. Shock absorber attaching "egg" to the launch control center, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    83. Shock absorber attaching "egg" to the launch control center, southwest corner - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  14. [Treatment of kidney stones using shock-wave lithotripsy with sonographic control].

    PubMed

    Benes, J; Chmel, J; Simon, V; Stuka, C; Flejsar, P

    1991-10-01

    Lithotripsy by means of an extracorporeal shock-wave was performed in 128 patients with urolithiasis. In this group for the first time in Czechoslovakia ultrasound control of kidney stones was used in 44 patients; in the remainder X-ray control was used. The authors used equipment designed and manufactured locally. The ultrasonic probe is laterally connected with the shock-wave applicator. Disappearance of the fragments after lithotripsy was achieved in 39 patients where ultrasonic control was used. The paper presents the results, discusses the advantages and limitations of ultrasonic control in extracorporeal lithotripsy of urolithiasis.

  15. Predicting and controlling risks from human exposures to vibration and mechanical shock: flag waving and flag weaving.

    PubMed

    Griffin, Michael J

    2015-01-01

    At work or in leisure activities, many people are exposed to vibration or mechanical shocks associated with risks of injury or disease. This paper identifies information that can be used to decide whether there may be a risk from exposure to hand-transmitted vibration or whole-body vibration and shock, and suggests actions that can control the risks. The complex and time-varying nature of human exposures to vibration and shock, the complexity of the different disorders and uncertainty as to the mechanisms of injury and the factors influencing injury have prevented the definition of dose-response relationships well proven by scientific study. It is necessary to wave a flag indicating when there is a need to control risks from exposure to vibration and shock while scientific enquiry provides understanding needed to weave a better flag. It is concluded that quantifying exposure severity is often neither necessary nor sufficient to either identify risks or implement measures that control the risks. The identification of risks associated with exposure to vibration and mechanical shock cannot, and need not, rely solely on the quantification of exposure severity. Qualitative methods can provide a sufficient indication of the need for control measures, which should not be restricted to reducing standardised measures of exposure severity.

  16. Unconditioned stimulus pathways to the amygdala: effects of lesions of the posterior intralaminar thalamus on foot-shock-induced c-Fos expression in the subdivisions of the lateral amygdala.

    PubMed

    Lanuza, E; Moncho-Bogani, J; Ledoux, J E

    2008-08-26

    The lateral nucleus of the amygdala (LA) is a site of convergence for auditory (conditioned stimulus) and foot-shock (unconditioned stimulus) inputs during fear conditioning. The auditory pathways to LA are well characterized, but less is known about the pathways through which foot shock is transmitted. Anatomical tracing and physiological recording studies suggest that the posterior intralaminar thalamic nucleus, which projects to LA, receives both auditory and somatosensory inputs. In the present study we examined the expression of the immediate-early gene c-fos in the LA in rats in response to foot-shock stimulation. We then determined the effects of posterior intralaminar thalamic lesions on foot-shock-induced c-Fos expression in the LA. Foot-shock stimulation led to an increase in the density of c-Fos-positive cells in all LA subnuclei in comparison to controls exposed to the conditioning box but not shocked. However, some differences among the dorsolateral, ventrolateral and ventromedial subnuclei were observed. The ventrolateral subnucleus showed a homogeneous activation throughout its antero-posterior extension. In contrast, only the rostral aspect of the ventromedial subnucleus and the central aspect of the dorsolateral subnucleus showed a significant increment in c-Fos expression. The density of c-Fos-labeled cells in all LA subnuclei was also increased in animals placed in the box in comparison to untreated animals. Unilateral electrolytic lesions of the posterior intralaminar thalamic nucleus and the medial division of the medial geniculate body reduced foot-shock-induced c-Fos activation in the LA ipsilateral to the lesion. The number of c-Fos labeled cells on the lesioned side was reduced to the levels observed in the animals exposed only to the box. These results indicate that the LA is involved in processing information about the foot-shock unconditioned stimulus and receives this kind of somatosensory information from the posterior intralaminar thalamic nucleus and the medial division of the medial geniculate body.

  17. [The expression and significance of IgE in anaphylactic shock guinea-pigs].

    PubMed

    Gong, Zhi-qiang; Xiao, Feng; Feng, Qiong; Xu, Xiao-ming; Zheng, Jian

    2006-02-01

    To seek the pathomorphological targets for forensic expertise in anaphylactic shock. The expression of IgE in hearts, lungs, livers, spleens, kidneys, gastrics, intestinals, tracheas and tonsils of anaphylactic shock guinea-pigs was observed at 0, 6, 12 h and 24 h respectively by tissue chip S-P immuno-histochemical method. Positive expression of IgE presented in lungs and tracheas in the test group with the peak at 0 hour and it declined as time advanced, and also there were significant differences at different times (P<0.05). The immuno-histochemical method of detecting the expression of IgE in lungs, tracheas and spleens can be supposed to be the pathomorphological targets for forensic expertise in anaphylactic shock. The weakening of the positive expression of IgE in lungs and tracheas as the time advanced suggested that in this kind of case the autopsy should be arried out as early as possible.

  18. High-speed micro-scale laser shock peening using a fiber laser (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Chenfei; Deng, Leimin; Sun, Shiding; Lu, Yongfeng

    2017-03-01

    Laser shock peening using low-energy nanosecond (ns) fiber lasers was investigated in this study to realize high-speed micro-scale laser shock peening on selected positions without causing surface damage. Due to the employment of a fiber laser with high-frequency and prominent environmental adaptability, the laser peening system is able to work with a much higher speed compared to traditional peening systems using Nd:YAG lasers and is promising for in-situ applications in harsh environments. Detailed surface morphology investigations both on sacrificial coatings and Al alloy surfaces after the fiber laser peening revealed the effects of focal position, pulse duration, peak power density, and impact times. Micro-dent arrays were also obtained with different spot-to-spot distances. Obvious micro-hardness improvement was observed inside the laser-peening-induced microdents after the fiber laser shock peening.

  19. Considerations for Explosively Driven Conical Shock Tube Design: Computations and Experiments

    DTIC Science & Technology

    2017-02-16

    ARL-TR-7953 ● FEB 2017 US Army Research Laboratory Considerations for Explosively Driven Conical Shock Tube Design : Computations...The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized...Considerations for Explosively Driven Conical Shock Tube Designs : Computations and Experiments by Joel B Stewart Weapons and Materials Research Directorate

  20. Prognostic implications of fluid balance in ST elevation myocardial infarction complicated by cardiogenic shock.

    PubMed

    Arbel, Yaron; Mass, Ronen; Ziv-Baran, Tomer; Khoury, Shafik; Margolis, Gilad; Sadeh, Ben; Flint, Nir; Ben-Shoshan, Jeremy; Finn, Talya; Keren, Gad; Shacham, Yacov

    2017-08-01

    Positive fluid balance has been associated with adverse outcomes in patients admitted to general intensive care units. We analysed the relationship between a positive fluid balance and its persistence over time in terms of in-hospital outcomes among ST elevation myocardial infarction (STEMI) patients complicated by cardiogenic shock. We retrospectively studied fluid intake and output for 96 hours following hospital admission in 48 consecutive adult patients with STEMI complicated by cardiogenic shock, all undergoing primary angioplasty. Daily and accumulated fluid balance was registered at up to 96 hours following admission. The cohort was stratified into two groups based on the presence or absence of positive fluid balance on day 4. Patients' records were assessed for in-hospital adverse outcomes, as well as 30-day all-cause mortality. A positive fluid balance was present in 19/48 patients (40%). Patients with positive fluid balance were older and more likely to be treated by intra-aortic balloon counter-pulsation and antibiotics. These patients were more likely to develop acute kidney injury and to need new intubation and were less likely to have renal function recovery as well as successful weaning from mechanical ventilation ( p < 0.05 for all). Patients with positive fluid balance had higher 30-day mortality (68% vs. 10%; p < 0.001). In a multivariate Cox regression model, for every 1-L increase in positive fluid balance, the adjusted risk for 30-day mortality increased by 24% (hazard ratio: 1.24, 95% confidence interval: 1.07-1.42; p = 0.003). A positive fluid balance was strongly associated with higher 30-day mortality in STEMI complicated by cardiogenic shock.

  1. Mild neurotrauma indicates a range-specific pressure response to low level shock wave exposure.

    PubMed

    Vandevord, Pamela J; Bolander, Richard; Sajja, Venkata Siva Sai Sujith; Hay, Kathryn; Bir, Cynthia A

    2012-01-01

    Identifying the level of overpressure required to create physiological deficits is vital to advance prevention, diagnostic, and treatment strategies for individuals exposed to blasts. In this study, a rodent model of primary blast neurotrauma was employed to determine the pressure at which acute neurological alterations occurred. Rats were exposed to a single low intensity shock wave at a pressure of 0, 97, 117, or 153 kPa. Following exposure, rats were assessed for acute cognitive alterations using the Morris water maze and motor dysfunction using the horizontal ladder test. Subsequently, histological analyses of three brain regions (primary motor cortex, the hippocampal dentate gyrus region, and the posteromedial cortical amygdala) were conducted. Histological parameters included measuring the levels of glial fibrillary acidic protein (GFAP) to identify astrocyte activation, cleaved caspase-3 for early apoptosis identification and Fluoro-Jade B (FJB) which labels degenerating neurons within the brain tissue. The results demonstrated that an exposure to a single 117 kPa shock wave revealed a significant change in overall neurological deficits when compared to controls and the other pressures. The animals showed significant alterations in water maze parameters and a histological increase in the number of GFAP, caspase-3, and FJB-positive cells. It is suggested that when exposed to a low level shock wave, there may be a biomechanical response elicited by a specific pressure range which can cause low level neurological deficits within the rat. These data indicate that neurotrauma induced from a shock wave may lead to cognitive deficits in short-term learning and memory of rats. Additional histological evidence supports significant and diffuse glial activation and cellular damage. Further investigation into the biomechanical aspects of shock wave exposure is required to elucidate this pressure range-specific phenomenon.

  2. Sensitivity and specificity of the subcutaneous implantable cardioverter defibrillator pre-implant screening tool.

    PubMed

    Zeb, Mehmood; Curzen, Nick; Allavatam, Venugopal; Wilson, David; Yue, Arthur; Roberts, Paul; Morgan, John

    2015-09-15

    The sensitivity and specificity of the subcutaneous implantable cardioverter defibrillator (S-ICD) pre-implant screening tool required clinical evaluation. Bipolar vectors were derived from electrodes positioned at locations similar to those employed for S-ICD sensing and pre-implant screening electrodes, and recordings collected through 80-electrode PRIME®-ECGs, in six different postures, from 40 subjects (10 healthy controls, and 30 patients with complex congenital heart disease (CCHD); 10 with Tetralogy of Fallot (TOF), 10 with single ventricle physiology (SVP), and 10 with transposition of great arteries (TGA)). The resulting vectors were analysed using the S-ICD pre-implant screening tool (Boston Scientific) and processed through the sensing algorithm of S-ICD (Boston Scientific). The data were then evaluated using 2 × 2 contingency tables. Fisher exact and McNemar tests were used for a comparison of the different categories of CCHD, and p < 0.05 vs. controls considered to be statistically significant. 57% of patients were male, mean age of 36.3 years. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the S-ICD screening tool were 95%, 79%, 59% and 98%, respectively, for controls, and 84%, 79%, 76% and 86%, respectively, in patients with CCHD (p = 0.0001). The S-ICD screening tool was comparatively more sensitive in normal controls but less specific in both CCHD patients and controls; a possible explanation for the reported high incidence of inappropriate S-ICD shocks. Thus, we propose a pre-implant screening device using the S-ICD sensing algorithm to minimise false exclusion and selection, and hence minimise potentially inappropriate shocks. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Shock wave treatment shows dose-dependent enhancement of bone mass and bone strength after fracture of the femur.

    PubMed

    Wang, Ching-Jen; Yang, Kuender D; Wang, Feng-Sheng; Hsu, Chia-Chen; Chen, Hsiang-Ho

    2004-01-01

    Shock wave treatment is believed to improve bone healing after fracture. The purpose of this study was to evaluate the effect of shock wave treatment on bone mass and bone strength after fracture of the femur in a rabbit model. A standardized closed fracture of the right femur was created with a three-point bending method in 24 New Zealand white rabbits. Animals were randomly divided into three groups: (1) control (no shock wave treatment), (2) low-energy (shock wave treatment at 0.18 mJ/mm2 energy flux density with 2000 impulses), and (3) high-energy (shock wave treatment at 0.47 mJ/mm2 energy flux density with 4000 impulses). Bone mass (bone mineral density (BMD), callus formation, ash and calcium contents) and bone strength (peak load, peak stress and modulus of elasticity) were assessed at 12 and 24 weeks after shock wave treatment. While the BMD values of the high-energy group were significantly higher than the control group (P = 0.021), the BMD values between the low-energy and control groups were not statistically significant (P = 0.358). The high-energy group showed significantly more callus formation (P < 0.001), higher ash content (P < 0.001) and calcium content (P = 0.003) than the control and low-energy groups. With regard to bone strength, the high-energy group showed significantly higher peak load (P = 0.012), peak stress (P = 0.015) and modulus of elasticity (P = 0.011) than the low-energy and control groups. Overall, the effect of shock wave treatment on bone mass and bone strength appears to be dose dependent in acute fracture healing in rabbits.

  4. The role of heat shock protein 70 (Hsp 70) in male infertility: is it a line of defense against sperm DNA fragmentation?

    PubMed

    Erata, Gül Ozdemirler; Koçak Toker, Necla; Durlanik, Ozgür; Kadioğlu, Ateş; Aktan, Gülşen; Aykaç Toker, Gülçin

    2008-08-01

    To clarify the role of heat shock protein 70 (Hsp 70) and its relation with DNA damage in male infertility. Prospective study. Andrology laboratory of Istanbul Medical Faculty. Semen samples from 37 infertile men and 13 fertile men (as controls). The percentage of DNA fragmentation was assayed with the use of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL). Sperm Hsp 70 expression was determined by using Western blot analysis. Both the percentages of sperm DNA fragmentation and Hsp 70 expression were correlated with semen analysis parameters. TUNEL-positive spermatozoa in the infertile group (18.7% for asthenospermics and 13.0% for oligoasthenospermics) were higher than the fertile group (4.9%). Significant inverse correlations were detected between percentage of TUNEL-positive cells and both concentration (r = -0.487) and motility (r = -0.377) of spermatozoa. No expression of Hsp 70 was observed in azospermic group, whereas Hsp 70 levels were found increased significantly in infertile group (U = 62 for asthenospermics and U = 38 for oligoasthenospermics) compared to fertile group as analyzed by using Mann-Whitney U Wilcoxon rank sum test. Furthermore, significant positive correlation was found between percentage of TUNEL-positive cells and Hsp 70 expression (r = 0.357). Hsp 70 expression may have been increased as a protective mechanism against apoptosis in spermatozoa of infertile men.

  5. Optimal Control of Shock Wave Turbulent Boundary Layer Interactions Using Micro-Array Actuation

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Tinapple, Jon; Surber, Lewis

    2006-01-01

    The intent of this study on micro-array flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to determine optimal designs of micro-array actuation for controlling the shock wave turbulent boundary layer interactions within supersonic inlets and compare these concepts to conventional bleed performance. The term micro-array refers to micro-actuator arrays which have heights of 25 to 40 percent of the undisturbed supersonic boundary layer thickness. This study covers optimal control of shock wave turbulent boundary layer interactions using standard micro-vane, tapered micro-vane, and standard micro-ramp arrays at a free stream Mach number of 2.0. The effectiveness of the three micro-array devices was tested using a shock pressure rise induced by the 10 shock generator, which was sufficiently strong as to separate the turbulent supersonic boundary layer. The overall design purpose of the micro-arrays was to alter the properties of the supersonic boundary layer by introducing a cascade of counter-rotating micro-vortices in the near wall region. In this manner, the impact of the shock wave boundary layer (SWBL) interaction on the main flow field was minimized without boundary bleed.

  6. Machine learning to analyze images of shocked materials for precise and accurate measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dresselhaus-Cooper, Leora; Howard, Marylesa; Hock, Margaret C.

    A supervised machine learning algorithm, called locally adaptive discriminant analysis (LADA), has been developed to locate boundaries between identifiable image features that have varying intensities. LADA is an adaptation of image segmentation, which includes techniques that find the positions of image features (classes) using statistical intensity distributions for each class in the image. In order to place a pixel in the proper class, LADA considers the intensity at that pixel and the distribution of intensities in local (nearby) pixels. This paper presents the use of LADA to provide, with statistical uncertainties, the positions and shapes of features within ultrafast imagesmore » of shock waves. We demonstrate the ability to locate image features including crystals, density changes associated with shock waves, and material jetting caused by shock waves. This algorithm can analyze images that exhibit a wide range of physical phenomena because it does not rely on comparison to a model. LADA enables analysis of images from shock physics with statistical rigor independent of underlying models or simulations.« less

  7. The Prediction of Scattered Broadband Shock-Associated Noise

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2015-01-01

    A mathematical model is developed for the prediction of scattered broadband shock-associated noise. Model arguments are dependent on the vector Green's function of the linearized Euler equations, steady Reynolds-averaged Navier-Stokes solutions, and the two-point cross-correlation of the equivalent source. The equivalent source is dependent on steady Reynolds-averaged Navier-Stokes solutions of the jet flow, that capture the nozzle geometry and airframe surface. Contours of the time-averaged streamwise velocity component and turbulent kinetic energy are examined with varying airframe position relative to the nozzle exit. Propagation effects are incorporated by approximating the vector Green's function of the linearized Euler equations. This approximation involves the use of ray theory and an assumption that broadband shock-associated noise is relatively unaffected by the refraction of the jet shear layer. A non-dimensional parameter is proposed that quantifies the changes of the broadband shock-associated noise source with varying jet operating condition and airframe position. Scattered broadband shock-associated noise possesses a second set of broadband lobes that are due to the effect of scattering. Presented predictions demonstrate relatively good agreement compared to a wide variety of measurements.

  8. Autoshaping of key pecking in pigeons with negative reinforcement.

    PubMed

    Rachlin, H

    1969-07-01

    Pigeons exposed to gradually increasing intensities of pulsing electric shock pecked a key and thereby reduced the intensity of shock to zero for 2 min. Acquisition of key pecking was brought about through an autoshaping process in which periodic brief keylight presentations immediately preceded automatic reduction of the shock. On the occasions of such automatic reduction of shock preceding the first measured key peck, little or no orientation to the key was observed. Observations of pigeons with autoshaping of positive reinforcement also revealed little evidence of orientation toward the key.

  9. Control of pseudo-shock oscillation in scramjet inlet-isolator using periodical excitation

    NASA Astrophysics Data System (ADS)

    Su, Wei-Yi; Chen, Yun; Zhang, Feng-Rui; Tang, Piao-Ping

    2018-02-01

    To suppress the pressure oscillation, stabilize the shock train in the scramjet isolator and delay the hypersonic inlet unstart, flow control using periodic excitation was investigated with unsteady Reynolds averaged Navier-Stokes simulations. The results showed that by injecting air to manipulate the cowl reflected shock wave, the separation bubble induced by it was diminished and the pressure oscillations of the shock train were markedly suppressed. The power spectral density and standard deviation of wall pressure were significantly reduced. The simulations revealed that this active control method can raise the critical back pressure by 17.5% compared with the baseline, which would successfully delay the hypersonic inlet unstarts. The results demonstrated that this active control method is effective in suppressing pressure oscillation and delaying hypersonic inlet unstarts.

  10. Urgent care in gynaecology: resuscitation and management of sepsis and acute blood loss.

    PubMed

    Fischerova, Daniela

    2009-10-01

    Sepsis and/or acute blood loss can be encoutered as an emergency condition in gynaecology, especially in women with ectopic pregnancy/miscarriage, acute pelvic inflammatory disease (PID)/tuboovarian abscesses, post-puerperal sepsis/haemorrhage and even in postoperative scenarios. If underestimated or suboptimally treated, both can lead to an inadequate tissue perfusion (defined as shock) and the development of multi-organ failure. Morbidity and mortality after development of one of the shock syndromes (septic or haemorrhagic) correlates directly with the duration and severity of the malperfusion. The patient's prognosis depends on a prompt diagnosis of the presence of shock and immediate resuscitation to predefined physiological end-points, often before the cause of the shock has been identified. In septic shock, hypotension is primarily treated with fluid administration and eventually vasopressors, if required, in order to improve the circulation. Timely administration of antibiotics, control of infectious foci, appropriate use of corticoids and recombinant human activated protein C, tight glucose control, prophylaxis of deep vein thrombosis and stress ulcer prevention complete the therapy of septic shock. In haemorrhagic shock, the treatment primarily involves controlling haemorrhage, reversal of possible coagulopathy and administration of sufficient volumes of fluids and blood products to restore normal tissue perfusion.

  11. Korteweg-deVries-Burgers (KdVB) equation in a five component cometary plasma with kappa described electrons and ions

    NASA Astrophysics Data System (ADS)

    Michael, Manesh; Willington, Neethu T.; Jayakumar, Neethu; Sebastian, Sijo; Sreekala, G.; Venugopal, Chandu

    2016-12-01

    We investigate the existence of ion-acoustic shock waves in a five component cometary plasma consisting of positively and negatively charged oxygen ions, kappa described hydrogen ions, hot solar electrons, and slightly colder cometary electrons. The KdVB equation has been derived for the system, and its solution plotted for different kappa values, oxygen ion densities, as well as the temperature ratios for the ions. It is found that the amplitude of the shock wave decreases with increasing kappa values. The strength of the shock profile decreases with increasing temperatures of the positively charged oxygen ions and densities of negatively charged oxygen ions.

  12. The Effects of Calcitonin on the Development of and Ca2+ Levels in Heat-shocked Bovine Preimplantation Embryos In Vitro

    PubMed Central

    KAMANO, Shumpei; IKEDA, Shuntaro; SUGIMOTO, Miki; KUME, Shinichi

    2014-01-01

    Intracellular calcium homeostasis is essential for proper cell function. We investigated the effects of heat shock on the development of and the intracellular Ca2+ levels in bovine preimplantation embryos in vitro and the effects of calcitonin (CT), a receptor-mediated Ca2+ regulator, on heat shock-induced events. Heat shock (40.5 C for 10 h between 20 and 30 h postinsemination) of in vitro-produced bovine embryos did not affect the cleavage rate; however, it significantly decreased the rates of development to the 5- to 8-cell and blastocyst stages as compared with those of the control cultured for the entire period at 38.5 C (P < 0.05). The relative intracellular Ca2+ levels at the 1-cell stage (5 h after the start of heat shock), as assessed by Fluo-8 AM, a fluorescent probe for Ca2+, indicated that heat shock significantly lowered the Ca2+ level as compared with the control level. Semiquantitative reverse transcription PCR and western blot analyses revealed the expression of CT receptor in bovine preimplantation embryos. The addition of CT (10 nM) to the culture medium ameliorated the heat shock-induced impairment of embryonic development beyond the 5- to 8-cell stage. The Ca2+ level in the heat-shocked embryos cultured with CT was similar to that of the control embryos, suggesting that heat shock lowers the Ca2+ level in fertilized embryos in vitro and that a lower Ca2+ level is implicated in heat shock-induced impairment of embryonic development. Intracellular Ca2+-mobilizing agents, e.g., CT, may effectively circumvent the detrimental effects of heat shock on early embryonic development. PMID:24899099

  13. 24. LAUNCH CONTROL CAPSULE. ENTRANCE TO ACOUSTICAL ENCLOSURE. SHOCK ISOLATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. LAUNCH CONTROL CAPSULE. ENTRANCE TO ACOUSTICAL ENCLOSURE. SHOCK ISOLATOR AT FAR LEFT. VIEW TO NORTH. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO

  14. Androgen receptor (AR) inhibitor ErbB3-binding protein-1 (Ebp1) is not targeted by the newly identified AR controlling signaling axis heat-shock protein HSP27 and microRNA miR-1 in prostate cancer cells.

    PubMed

    Stope, Matthias B; Peters, Stefanie; Großebrummel, Hannah; Zimmermann, Uwe; Walther, Reinhard; Burchardt, Martin

    2015-03-01

    Androgen receptor (AR) networks are predominantly involved in prostate cancer (PCa) progression; consequently, factors of AR regulation represent promising targets for PCa therapy. The ErbB3-binding protein 1 (Ebp1) is linked to AR suppression and chemoresistance by so far unknown mechanisms. In this study, an assumed regulation of Ebp1 by the newly identified AR controlling signaling axis heat-shock protein 27 (HSP27)-microRNA-1 (miR-1) was examined. Transfection experiments were carried out overexpressing and knockdown HSP27 and miR-1, respectively, in LNCaP and PC-3 cells. Afterward, HSP27- and miR-1-triggered Ebp1 protein expression was monitored by Western blotting. AR-positive LNCaP cells and AR-negative PC-3 cells possessed diverse basal expression levels of Ebp1. However, subsequent studies revealed no differences in cellular Ebp1 concentrations after modulation of HSP27 and miR-1. Furthermore, docetaxel incubation experiments exhibited no effects on Ebp1 protein synthesis. In PCa, Ebp1 has been described as a regulator of AR functionality and as an effector of PCa therapy resistance. Our data suggest that Ebp1 functionality is independent from heat-shock-protein-regulated progression networks in PCa.

  15. mRNA quality control is bypassed for immediate export of stress-responsive transcripts.

    PubMed

    Zander, Gesa; Hackmann, Alexandra; Bender, Lysann; Becker, Daniel; Lingner, Thomas; Salinas, Gabriela; Krebber, Heike

    2016-12-12

    Cells grow well only in a narrow range of physiological conditions. Surviving extreme conditions requires the instantaneous expression of chaperones that help to overcome stressful situations. To ensure the preferential synthesis of these heat-shock proteins, cells inhibit transcription, pre-mRNA processing and nuclear export of non-heat-shock transcripts, while stress-specific mRNAs are exclusively exported and translated. How cells manage the selective retention of regular transcripts and the simultaneous rapid export of heat-shock mRNAs is largely unknown. In Saccharomyces cerevisiae, the shuttling RNA adaptor proteins Npl3, Gbp2, Hrb1 and Nab2 are loaded co-transcriptionally onto growing pre-mRNAs. For nuclear export, they recruit the export-receptor heterodimer Mex67-Mtr2 (TAP-p15 in humans). Here we show that cellular stress induces the dissociation of Mex67 and its adaptor proteins from regular mRNAs to prevent general mRNA export. At the same time, heat-shock mRNAs are rapidly exported in association with Mex67, without the need for adapters. The immediate co-transcriptional loading of Mex67 onto heat-shock mRNAs involves Hsf1, a heat-shock transcription factor that binds to heat-shock-promoter elements in stress-responsive genes. An important difference between the export modes is that adaptor-protein-bound mRNAs undergo quality control, whereas stress-specific transcripts do not. In fact, regular mRNAs are converted into uncontrolled stress-responsive transcripts if expressed under the control of a heat-shock promoter, suggesting that whether an mRNA undergoes quality control is encrypted therein. Under normal conditions, Mex67 adaptor proteins are recruited for RNA surveillance, with only quality-controlled mRNAs allowed to associate with Mex67 and leave the nucleus. Thus, at the cost of error-free mRNA formation, heat-shock mRNAs are exported and translated without delay, allowing cells to survive extreme situations.

  16. Effects of heat shock protein 90 expression on pectoralis major oxidation in broilers exposed to acute heat stress.

    PubMed

    Hao, Y; Gu, X H

    2014-11-01

    This study was conducted to determine the effects of heat shock protein 90 (HSP90) expression on pH, lipid peroxidation, heat shock protein 70 (HSP70), and glucocorticoid receptor (GR) expression of pectoralis major in broilers exposed to acute heat stress. In total, 90 male broilers were randomly allocated to 3 groups: control (CON), heat stress (HS), or geldanamycin treatment (GA). On d 41, the broilers in the GA group were injected intraperitoneally with GA (5 μg/kg of BW), and the broilers in the CON and HS groups were injected intraperitoneally with saline. Twenty-four hours later, the broilers in the CON group were moved to environmental chambers controlled at 22°C for 2 h, and the broilers in the HS and GA groups were moved to environmental chambers controlled at 40°C for 2 h. The pH values of the pectoralis major after 30 min and 24 h of chilling after slaughter of HS and GA broilers were significantly lower (P < 0.01) than those of the CON broilers. Heat stress caused significant increases in sera corticosterone and lactic dehydrogenase, the activity of malondialdehyde and superoxide dismutase, the expression of HSP90 and HSP70, and nuclear expression of GR protein in the pectoralis major (P < 0.05). Heat stress induced a significant decrease in GR protein expression in the cytoplasm and GR mRNA expression. Furthermore, the low expression of HSP90 significantly increased levels of lactic dehydrogenase and malondialdehyde and GR protein expression in the cytoplasm under heat stress (P < 0.01), and significantly decreased nuclear GR protein expression (P < 0.01). Heat shock protein 90 was positively correlated with corticosterone and superoxide dismutase activities (P < 0.01), and HSP90 mRNA was negatively correlated with pH after chilling for 24 h. The results demonstrated that HSP90 plays a pivotal role in protecting cells from oxidation. ©2014 Poultry Science Association Inc.

  17. RNAi screen in Drosophila larvae identifies histone deacetylase 3 as a positive regulator of the hsp70 heat shock gene expression during heat shock.

    PubMed

    Achary, Bhavana G; Campbell, Katie M; Co, Ivy S; Gilmour, David S

    2014-05-01

    The transcription regulation of the Drosophila hsp70 gene is a complex process that involves the regulation of multiple steps, including the establishment of paused Pol II and release of Pol II into elongation upon heat shock activation. While the major players involved in the regulation of gene expression have been studied in detail, additional factors involved in this process continue to be discovered. To identify factors involved in hsp70 expression, we developed a screen that capitalizes on a visual assessment of heat shock activation using a hsp70-beta galactosidase reporter and publicly available RNAi fly lines to deplete candidate proteins. We validated the screen by showing that the depletion of HSF, CycT, Cdk9, Nurf 301, or ELL prevented the full induction of hsp70 by heat shock. Our screen also identified the histone deacetylase HDAC3 and its associated protein SMRTER as positive regulators of hsp70 activation. Additionally, we show that HDAC3 and SMRTER contribute to hsp70 gene expression at a step subsequent to HSF-mediated activation and release of the paused Pol II that resides at the promoter prior to heat shock induction. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Evaluation of acute cardiac and chest wall damage after shocks with a subcutaneous implantable cardioverter-defibrillator in swine

    PubMed Central

    KILLINGSWORTH, CHERYL R.; MELNICK, SHARON B.; LITOVSKY, SILVIO H.; IDEKER, RAYMOND E.; WALCOTT, GREGORY P.

    2013-01-01

    Background A subcutaneous implantable cardioverter defibrillator (S-ICD) could ease placement and reduce complications of transvenous ICDs, but requires more energy than transvenous ICDs. Therefore we assessed cardiac and chest wall damage caused by the maximum energy shocks delivered by both types of clinical devices. Methods During sinus rhythm, anesthetized pigs (38±6 kg) received an S-ICD (n = 4) and five 80-Joule (J) shocks, or a transvenous ICD (control, n = 4) and five 35-J shocks. An inactive S-ICD electrode was implanted into the same control pigs to study implant trauma. All animals survived 24-hours. Troponin I and creatine kinase muscle isoenzyme (CK-MM) were measured as indicators of myocardial and skeletal muscle injury. Histopathological injury of heart, lungs, and chest wall was assessed using semi-quantitative scoring. Results Troponin I was significantly elevated at 4- and 24-hours (22.6±16.3 and 3.1±1.3 ng/ml; baseline 0.07±0.09 ng/ml) in control pigs but not in S-ICD pigs (0.12±0.11 and 0.13±0.13 ng/ml; baseline 0.06±0.03 ng/ml). CK-MM was significantly elevated in S-ICD pigs after shocks (6544±1496 and 9705±6240 U/L; baseline 704±398 U/L) but not in controls. ECG changes occurred post-shock in controls but not in S-ICD pigs. The myocardium and lungs were histologically normal in both groups. Subcutaneous injury was greater in S-ICD compared to controls. Conclusion Although CK-MM suggested more skeletal muscle injury in S-ICD pigs, significant cardiac, lung, and chest wall histopathological changes were not detected in either group. Troponin I data indicate significantly less cardiac injury from 80-J S-ICD shocks than 35-J transvenous shocks. PMID:23713608

  19. Culture shock and social support: a survey in Greek migrant students.

    PubMed

    Pantelidou, Stella; Craig, Tom K J

    2006-10-01

    Culture shock is a form of psychological distress associated with migration. Social support has been identified as significantly related to the onset, course and outcome of many psychological disorders. The aim of this study was to examine the relationship between culture shock and social support, in terms of size, diversity of the social network and quality of support received, in Greek students, in the UK. A total of 133 students completed 3 self-administered questionnaires: Culture Shock Questionnaire, Social Support Questionnaire and General Health Questionnaire (GHQ-12). Gender and the quality of support received were found to be strongly associated with culture shock. Furthermore, culture shock was significantly positively related to the level of current dysphoria and diminished with time. Social support is an important factor associated with the degree of culture shock and should be taken into consideration in order to protect against or help to overcome this kind of psychological distress experienced by migrants.

  20. Shock initiation of 2,4-dinitroimidazole (2,4-DNI)

    NASA Astrophysics Data System (ADS)

    Urtiew, P. A.; Tarver, C. M.; Simpson, R. L.

    1996-05-01

    The shock sensitivity of the pressed solid explosive 2,4-dinitroimidazole (2,4-DNI) was determined using the embedded manganin pressure gauge technique. At an initial shock pressure of 2 GPa, several microseconds were required before any exothermic reaction was observed. At 4 GPa, 2,4-DNI reacted more rapidly but did not transition to detonation at the 12 mm deep gauge position. At 6 GPa, detonation occurred in less than 6 mm of shock propagation. Thus, 2,4-DNI is more shock sensitive than TATB-based explosives but is considerably less shock sensitive than HMX-based explosives. An Ignition and Growth reactive flow model for 2,4-DNI based on these gauge records showed that 2,4-DNI exhibits shock initiation characteristics similar to TATB but reacts faster. The chemical structure of 2,4-DNI suggests that it may exhibit thermal decomposition reactions similar to nitroguanine and explosives with similar ring structures, such as ANTA and NTO.

  1. Comparative Study on High-Order Positivity-preserving WENO Schemes

    NASA Technical Reports Server (NTRS)

    Kotov, D. V.; Yee, H. C.; Sjogreen, B.

    2013-01-01

    In gas dynamics and magnetohydrodynamics flows, physically, the density and the pressure p should both be positive. In a standard conservative numerical scheme, however, the computed internal energy is obtained by subtracting the kinetic energy from the total energy, resulting in a computed p that may be negative. Examples are problems in which the dominant energy is kinetic. Negative may often emerge in computing blast waves. In such situations the computed eigenvalues of the Jacobian will become imaginary. Consequently, the initial value problem for the linearized system will be ill posed. This explains why failure of preserving positivity of density or pressure may cause blow-ups of the numerical algorithm. The adhoc methods in numerical strategy which modify the computed negative density and/or the computed negative pressure to be positive are neither a conservative cure nor a stable solution. Conservative positivity-preserving schemes are more appropriate for such flow problems. The ideas of Zhang & Shu (2012) and Hu et al. (2012) precisely address the aforementioned issue. Zhang & Shu constructed a new conservative positivity-preserving procedure to preserve positive density and pressure for high-order WENO schemes by the Lax-Friedrichs flux (WENO/LLF). In general, WENO/LLF is too dissipative for flows such as turbulence with strong shocks computed in direct numerical simulations (DNS) and large eddy simulations (LES). The new conservative positivity-preserving procedure proposed in Hu et al. (2012) can be used with any high-order shock-capturing scheme, including high-order WENO schemes using the Roe's flux (WENO/Roe). The goal of this study is to compare the results obtained by non-positivity-preserving methods with the recently developed positivity-preserving schemes for representative test cases. In particular the more difficult 3D Noh and Sedov problems are considered. These test cases are chosen because of the negative pressure/density most often exhibited by standard high-order shock-capturing schemes. The simulation of a hypersonic nonequilibrium viscous shock tube that is related to the NASA Electric Arc Shock Tube (EAST) is also included. EAST is a high-temperature and high Mach number viscous nonequilibrium flow consisting of 13 species. In addition, as most common shock-capturing schemes have been developed for problems without source terms, when applied to problems with nonlinear and/or sti source terms these methods can result in spurious solutions, even when solving a conservative system of equations with a conservative scheme. This kind of behavior can be observed even for a scalar case (LeVeque & Yee 1990) as well as for the case consisting of two species and one reaction (Wang et al. 2012). For further information concerning this issue see (LeVeque & Yee 1990; Griffiths et al. 1992; Lafon & Yee 1996; Yee et al. 2012). This EAST example indicated that standard high-order shock-capturing methods exhibit instability of density/pressure in addition to grid-dependent discontinuity locations with insufficient grid points. The evaluation of these test cases is based on the stability of the numerical schemes together with the accuracy of the obtained solutions.

  2. [Treatment of kidney calculi using shock-wave lithotripsy with ultrasonic guidance].

    PubMed

    Benes, J; Chmel, J; Simon, V; Stuka, C; Flejsar, P

    1991-01-01

    Lithotripsy by means of an extracorporeal shock-wave was performed in 128 patients with urolithiasis. In this group for the first time in Czechoslovakia ultrasound control of kidney stones was used in 44 patients; in the remainder X-ray control was used. The authors used equipment designed and manufactured locally. The ultrasonic probe is laterally connected with the shock-wave applicator. Disappearance of the fragments after lithotripsy was achieved in 39 patients where ultrasonic control was used. The paper presents the results, discusses the advantages and limitations of ultrasonic control in extracorporeal lithotripsy of urolithiasis.

  3. H-alpha images of the Cygnus Loop - A new look at shock-wave dynamics in an old supernova remnant

    NASA Technical Reports Server (NTRS)

    Fesen, Robert A.; Kwitter, Karen B.; Downes, Ronald A.

    1992-01-01

    Attention is given to deep H-alpha images of portions of the east, west, and southwest limbs of the Cygnus Loop which illustrate several aspects of shock dynamics in a multiphase interstellar medium. An H-alpha image of the isolated eastern shocked cloud reveals cloud deformation and gas stripping along the cloud's edges, shock front diffraction and reflection around the rear of the cloud, and interior remnant emission due to upstream shock reflection. A faint Balmer-dominated filament is identified 30 arcmin further west of the remnant's bright line of western radiative filaments. This detection indicates a far more westerly intercloud shock front position than previously realized, and resolves the nature of the weak X-ray, optical, and nonthermal radio emission observed west of NGC 6960. Strongly curved Balmer-dominated filaments along the remnant's west and southwest edge may indicate shock diffraction caused by shock wave passage in between clouds.

  4. Free radicals mediate postshock contractile impairment in cardiomyocytes.

    PubMed

    Tsai, Min-Shan; Sun, Shijie; Tang, Wanchun; Ristagno, Giuseppe; Chen, Wen-Jone; Weil, Max Harry

    2008-12-01

    Previous studies demonstrated myocardial dysfunction after electrical shock and indicated it may be related to free radicals. Whether the free radicals are generated after electrical shock has not been documented at the cellular level. This study was to investigate whether electrical shock generates intracellular free radicals inside cardiomyocytes and to evaluate whether reducing intracellular free radicals by pretreatment of ascorbic acid would reduce the contractile dysfunction after electrical shock. Randomized prospective animal study. University affiliated research laboratory. Sprague-Dawley rats. Cardiomyocytes isolated from adult male rats were divided into four groups: (1) electrical shock alone; (2) electrical shock pretreated with ascorbic acid; (3) pretreated with ascorbic acid alone; and (4) control. Ascorbic acid (0.2 mM) was administrated in the perfusate of the ascorbic acid + electrical shock and ascorbic acid groups. A 2-J electrical shock was delivered to the electrical shock and ascorbic acid + electrical shock groups. DCFH-DA-loaded cardiomyocytes showed increased intracellular free radicals after electrical shock. The contractions and Ca2+ transients were recorded optically with fura-2 loading. Within 4 mins after electrical shock in the electrical shock group, the length shortening decreased from 8.4% +/- 2.5% to 5.6% +/- 3.4% (p = 0.000) and the Ca2+ transient decreased from 1.15 +/- 0.13 au to 1.08 +/- 0.1 au (p = 0.038). Compared with control, a significant difference in length shortening (p = 0.001) but not Ca2+ transient (p = 0.052) was noted. In the presence of ascorbic acid, electrical shock did not affect length shortening and Ca2+ transient. Electrical shock generates free radicals inside the cardiomyocyte, and causes contractile impairment and associated decrease of Ca transient. Administering ascorbic acid may improve such damage by eliminating free radicals.

  5. Schedules of electric shock presentation in the behavioral control of imprinted ducklings.

    PubMed

    Barrett, J E

    1972-09-01

    The behavioral effects of various schedules of electric shock presentation were investigated during and after the imprinting of Peking ducklings to moving stimuli. The behavior of following a moving imprinted stimulus was differentially controlled by a multiple schedule of punishment and avoidance that respectively suppressed and maintained following behavior. Pole-pecking, reinforced by presentations of the imprinted stimulus, was suppressed by response-produced shock (punishment); various schedules of response-independent shock and delayed punishment had an overall minimal effect. The delivery of response-independent shock in the presence of one of two stimuli, both during and after imprinting, resulted in a marked reduction in choice of the stimulus paired with shock. The experiments provide no support for a differentiation of imprinting from learning on the basis of the behavioral effects of aversive stimuli. Instead, as is the case with other organisms, the schedule under which shock is delivered to imprinted ducklings appears to be an important determinant of the temporal patterning of subsequent behavior.

  6. Visualization by discharge illumination technique and modification by plasma actuator of rarefied Mach 2 airflow around a cylinder

    NASA Astrophysics Data System (ADS)

    Leger, L.; Sellam, M.; Barbosa, E.; Depussay, E.

    2013-06-01

    The use of plasma actuators for flow control has received considerable attention in recent years. This kind of device seems to be an appropriate means of raising abilities in flow control thanks to total electric control, no moving parts and a fast response time. The experimental work presented here shows, firstly, the non-intrusive character of the visualization of the density field of an airflow around a cylinder obtained using a plasma luminescence technique. Experiments are made in a continuous supersonic wind tunnel. The static pressure in the flow is 8 Pa, the mean free path is about 0.3 mm and the airflow velocity is 510 m s-1. Pressure measurements obtained by means of glass Pitot tube without the visualization discharge are proposed. Measured and simulated pressure profiles are in good agreement in the region near the cylinder. There is good correlation between numerical simulations of the supersonic flow field, analytical model predictions and experimental flow visualizations obtained by a plasma luminescence technique. Consequently, we show that the plasma luminescence technique is non-intrusive. Secondly, the effect of a dc discharge on a supersonic rarefied air flow around a cylinder is studied. An electrode is flush mounted on the cylinder. Stagnation pressure profiles are examined for different electrode positions on the cylinder. A shock wave modification depending on the electrode location is observed. The discharge placed at the upstream stagnation point induces an upstream shift of the bow shock, whereas a modification of the shock wave shape is observed when it is placed at 45° or 90°.

  7. On the role of vasopressin and angiotensin in the development of irreversible haemorrhagic shock

    PubMed Central

    Errington, M. L.; e Silva, M. Rocha

    1974-01-01

    1. Long-lasting haemorrhagic hypotension (4·5 hr at 35 mmHg) leading to irreversible haemorrhagic shock, has been studied in normal dogs, in dogs treated with a bradykinin potentiating nonapeptide (BPP9a), which blocks the conversion of angiotensin I to angiotensin II, and in dogs with experimental chronic diabetes insipidus (DI dogs). BPP9a was given by I.V. injection before the start of bleeding (BPP pre-treated group), 45 min after blood pressure had reached 35 mmHg (BPP early treated group) or 2 hr after blood pressure had reached 35 mmHg (BPP late-treated group). After retransfusion of blood all dogs were allowed to recover and observed for a further period of 3 days. 2. Untreated control dogs developed haemorrhagic shock with tachycardia, low cardiac output, low total peripheral conductance and low stroke volume. All died within 24 hr of retransfusion, with pathological lesions typical of irreversible haemorrhagic shock. 3. BPP pre-treated dogs developed haemorrhagic shock with bradycardia (during early shock), high cardiac output, high peripheral vascular conductance and high stroke volume when compared with the untreated controls. All pre-treated animals survived the 3 day observation period. They were then killed and on post-mortem showed no signs of irreversible haemorrhagic shock. 4. BPP early-treated animals behaved like controls before BPP, but like pre-treated animals after the drug. Only one out of eight died within the 3 day observation period. 5. BPP late-treated dogs behaved like controls before BPP. They responded to the drug with a rise in cardiac output, peripheral vascular conductance and stroke volume, and with a fall in heart rate. These responses were, however, short-lived. Four out of these eight animals died within the 3 day observation period, with lesions of irreversible haemorrhagic shock. 6. DI dogs developed haemorrhagic shock with tachycardia (like controls), but with high cardiac output and peripheral vascular conductance (like BPP pre-treated dogs). The stroke volume of DI dogs was intermediate between those of controls and pre-treated groups. All six dogs survived the 3 day observation period. 7. BPP9a had no measurable effect on the course of endotoxic shock. 8. It is suggested that the normally severe vasoconstriction of the mesenteric vascular bed, which is thought to be responsible for irreversible haemorrhagic shock, is absent or attenuated in the absence of vasopressin or angiotensin. The consequences of this on the development of irreversibility are discussed. PMID:4373570

  8. Extracellular vesicles from mice with alcoholic liver disease carry a distinct protein cargo and induce macrophage activation through heat shock protein 90.

    PubMed

    Saha, Banishree; Momen-Heravi, Fatemeh; Furi, Istvan; Kodys, Karen; Catalano, Donna; Gangopadhyay, Anwesha; Haraszti, Reka; Satishchandran, Abhishek; Iracheta-Vellve, Arvin; Adejumo, Adeyinka; Shaffer, Scott A; Szabo, Gyongyi

    2018-05-01

    A salient feature of alcoholic liver disease (ALD) is Kupffer cell (KC) activation and recruitment of inflammatory monocytes and macrophages (MØs). These key cellular events of ALD pathogenesis may be mediated by extracellular vesicles (EVs). EVs transfer biomaterials, including proteins and microRNAs, and have recently emerged as important effectors of intercellular communication. We hypothesized that circulating EVs from mice with ALD have a protein cargo characteristic of the disease and mediate biological effects by activating immune cells. The total number of circulating EVs was increased in mice with ALD compared to pair-fed controls. Mass spectrometric analysis of circulating EVs revealed a distinct signature for proteins involved in inflammatory responses, cellular development, and cellular movement between ALD EVs and control EVs. We also identified uniquely important proteins in ALD EVs that were not present in control EVs. When ALD EVs were injected intravenously into alcohol-naive mice, we found evidence of uptake of ALD EVs in recipient livers in hepatocytes and MØs. Hepatocytes isolated from mice after transfer of ALD EVs, but not control EVs, showed increased monocyte chemoattractant protein 1 mRNA and protein expression, suggesting a biological effect of ALD EVs. Compared to control EV recipient mice, ALD EV recipient mice had increased numbers of F4/80 hi cluster of differentiation 11b (CD11b) lo KCs and increased percentages of tumor necrosis factor alpha-positive/interleukin 12/23-positive (inflammatory/M1) KCs and infiltrating monocytes (F4/80 int CD11b hi ), while the percentage of CD206 + CD163 + (anti-inflammatory/M2) KCs was decreased. In vitro, ALD EVs increased tumor necrosis factor alpha and interleukin-1β production in MØs and reduced CD163 and CD206 expression. We identified heat shock protein 90 in ALD EVs as the mediator of ALD-EV-induced MØ activation. Our study indicates a specific protein signature of ALD EVs and demonstrates a functional role of circulating EVs containing heat shock protein 90 in mediating KC/MØ activation in the liver. (Hepatology 2018;67:1986-2000). © 2017 by the American Association for the Study of Liver Diseases.

  9. Effects of heat shock on neuroblastoma (N1E 115) cell proliferation and differentiation.

    PubMed

    Stoklosinski, A; Kruse, H; Richter-Landsberg, C; Rensing, L

    1992-05-01

    Heat shock (44 degrees C) applied for only 15 min induced the development of neurites in neuroblastoma cells 3-6 days later. During the first day after heat shock a transient increase in the rate of cytokinesis together with a synchronizing effect was observed, which led to waves of cytokinesis 14.5 h apart. Individual cell cycles were determined and showed a lengthening in the minimal cell cycle duration and a decrease in the cell cycle variance after shock. Two to 3 days after heat shock the proliferation rate decreased and then recovered. During the 6 days after heat shock, total protein synthesis was lower compared to the untreated cultures. The synthesis of heat shock proteins (100, 90, 84, 70, 68 kDa and some of lower MW) reached a maximum 6 h after heat shock. Parallel changes in the phosphorylation state of proteins were observed in an in vitro assay. Four proteins (100, 89, 67, and 15 kDa) increased and two proteins (97, 73 kDa) decreased their phosphorylation state significantly. Six days after heat shock two proteins (89, 55 kDa) increased their phosphorylation state; the 55-kDa phosphoprotein was identified as tubulin. The effect of heat shock on the intracellular calcium level was determined by measuring Fura 2 fluorescence. Six hours after shock, the Ca2+ level increased to a maximum (about three times the control value) and then dropped during the following days below the control values. We conclude from these results that a decrease in the calcium level may be causally involved in the differentiation process. The calcium effect is probably mediated by changes in the activity of different kinases. This assumption is compatible with the results of experiments with cyclic nucleotides when 10(-5) M cAMP and cGMP were added to in vitro assays of protein phosphorylation. They had different stimulating effects in heat-shocked, differentiating, and growing (control) cells.

  10. Effects of n-acetylcysteine in a rat model of ischemia and reperfusion injury.

    PubMed

    Cuzzocrea, S; Mazzon, E; Costantino, G; Serraino, I; De Sarro, A; Caputi, A P

    2000-08-18

    Splanchnic artery occlusion shock (SAO) causes an enhanced formation of reactive oxygen species (ROS), which contribute to the pathophysiology of shock. Here we have investigated the effects of n-acetylcysteine (NAC), a free radical scavenger, in rats subjected to SAO shock. Treatment of rats with NAC (applied at 20 mg/kg, 5 min prior to reperfusion, followed by an infusion of 20 mg/kg/h) attenuated the mean arterial blood and the migration of polymorphonuclear cells (PMNs) caused by SAO-shock. NAC also attenuated the ileum injury (histology) as well as the increase in the tissue levels of myeloperoxidase (MPO) and malondialdehyde (MDA) caused by SAO shock in the ileum. There was a marked increase in the oxidation of dihydrorhodamine 123 to rhodamine in the plasma of the SAO-shocked rats after reperfusion. Immunohistochemical analysis for nitrotyrosine and for poly(ADP-ribose) synthetase (PARS) revealed a positive staining in ileum from SAO-shocked rats. The degree of staining for nitrotyrosine and PARS were markedly reduced in tissue sections obtained from SAO-shocked rats which had received NAC. Reperfused ileum tissue sections from SAO-shocked rats showed positive staining for P-selectin, which was mainly localised in the vascular endothelial cells. Ileum tissue section obtained from SAO-shocked rats with anti-intercellular adhesion molecule (ICAM-1) antibody showed a diffuse staining. NAC treatment markedly reduced the intensity and degree of P-selectin and ICAM-1 in tissue section from SAO-shocked rats. In addition, in ex vivo studies in aortic rings from shocked rats, we found reduced contractions to noradrenaline and reduced responsiveness to a relaxant effect to acetylcholine (vascular hyporeactivity and endothelial dysfunction, respectively). NAC treatment improved contractile responsiveness to noradrenaline, enhanced the endothelium-dependent relaxations and significantly improved survival. Taken together, our results clearly demonstrate that NAC treatment exert a protective effect and part of this effect may be due to inhibition of the expression of adhesion molecule and peroxynitrite-related pathways and subsequent reduction of neutrophil-mediated cellular injury.

  11. Buck-boost converter for simultaneous semi-active vibration control and energy harvesting for electromagnetic regenerative shock absorber

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zhang, Chongxiao; Kim, Junyoung; Yu, Liangyao; Zuo, Lei

    2014-04-01

    Regenerative semi-active suspensions can capture the previously dissipated vibration energy and convert it to usable electrical energy for powering on-board electronic devices, while achieve both the better ride comfort and improved road handling performance at the same time when certain control is applied. To achieve this objective, the power electronics interface circuit connecting the energy harvester and the electrical loads, which can perform simultaneous vibration control and energy harvesting function is in need. This paper utilized a buck-boost converter for simultaneous semi-active vibration control and energy harvesting with electromagnetic regenerative shock absorber, which utilizes a rotational generator to converter the vibration energy to electricity. It has been found that when the circuit works in discontinuous current mode (DCM), the ratio between the input voltage and current is only related to the duty cycle of the switch pulse width modulation signal. Using this property, the buck-boost converter can be used to perform semi-active vibration control by controlling the load connected between the terminals of the generator in the electromagnetic shock absorber. While performing the vibration control, the circuit always draw current from the shock absorber and the suspension remain dissipative, and the shock absorber takes no additional energy to perform the vibration control. The working principle and dynamics of the circuit has been analyzed and simulations were performed to validate the concept.

  12. Experiments on a Miniature Hypervelocity Shock Tube

    NASA Astrophysics Data System (ADS)

    Tasker, Douglas; Johnson, Carl; Murphy, Michael; Lieber, Mark; MIMS Team

    2013-06-01

    A miniature explosively-driven shock tube, based on the Voitenko compressor design, has been designed to produce shock speeds in light gases in excess of 80 km/s. Voitenko compressors over 1 meter in diameter have been reported but here experiments on miniature shock tubes with ~1-mm bore diameters are described. In this design a 12-mm diameter explosive pellet drives a metal plate into a hemispherical gas compression chamber. Downstream from the piston a mica diaphragm separates the gas from an evacuated shock tube which is confined by a massive polymethylmethacrylate (PMMA) block. The diaphragm eventually ruptures under the applied pressure loading and the compressed gases escape into the evacuated shock tube at hyper velocities. The progress of gas shocks in the tube and bow shocks in the PMMA are monitored with an ultra-high-speed imaging system, the Shock Wave Image Framing Technique (SWIFT). The resulting time-resolved images yield two-dimensional visualizations of shock geometry and progression. By measuring both the gas and bow shocks, accurate and unequivocal measurements of shock position history are obtained. The experimental results were compared with those of hydrocode modeling to optimize the design. The first experiments were suboptimum in that the velocities were ~16 km/s. Progress with these experiments will be reported.

  13. Positive Effects of Extracorporeal Shock Wave Therapy on Spasticity in Poststroke Patients: A Meta-Analysis.

    PubMed

    Guo, Peipei; Gao, Fuqiang; Zhao, Tingting; Sun, Wei; Wang, Bailiang; Li, Zirong

    2017-11-01

    Spasticity is a common and serious complication following a stroke, and many clinical research have been conducted to evaluate the effect of extracorporeal shock wave therapy (ESWT) on muscle spasticity in poststroke patients. This meta-analysis aimed to evaluate the therapeutic effect on decreasing spasticity caused by a stroke immediately and 4 weeks after the application of shock wave therapy. We searched PubMed, Embase, Web of Science, and Cochrane Library databases for relevant studies through November 2016 using the following item: (Hypertonia OR Spasticity) and (Shock Wave or ESWT) and (Stroke). The outcomes were evaluated by Modified Ashworth Scale (MAS) grades and pooled by Stata 12.0 (Stata Corp, College Station, TX, USA). Six studies consisting of 9 groups were included in this meta-analysis. The MAS grades immediately after ESWT were significantly improved compared with the baseline values (standardized mean difference [SMD], -1.57; 95% confidence intervals [CIs], -2.20, -.94). Similarly, the MAS grades judged at 4 weeks after ESWT were also showed to be significantly lower than the baseline values (SMD, -1.93; 95% CIs, -2.71, -1.15). ESWT for the spasticity of patients after a stroke is effective, as measured by MAS grades. Moreover, no serious side effects were observed in any patients after shock wave therapy. Nevertheless, our current study with some limitations such as the limited sample size only provided limited quality of evidence; confirmation from a further systematic review or meta-analysis with large-scale, well-designed randomized control trials is required. Copyright © 2017. Published by Elsevier Inc.

  14. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock–induced oxidation

    PubMed Central

    Borowiec, Anne-Sophie; Sion, Benoit; Chalmel, Frédéric; D. Rolland, Antoine; Lemonnier, Loïc; De Clerck, Tatiana; Bokhobza, Alexandre; Derouiche, Sandra; Dewailly, Etienne; Slomianny, Christian; Mauduit, Claire; Benahmed, Mohamed; Roudbaraki, Morad; Jégou, Bernard; Prevarskaya, Natalia; Bidaux, Gabriel

    2016-01-01

    Testes of most male mammals present the particularity of being externalized from the body and are consequently slightly cooler than core body temperature (4–8°C below). Although, hypothermia of the testis is known to increase germ cells apoptosis, little is known about the underlying molecular mechanisms, including cold sensors, transduction pathways, and apoptosis triggers. In this study, using a functional knockout mouse model of the cold and menthol receptors, dubbed transient receptor potential melastatine 8 (TRPM8) channels, we found that TRPM8 initiated the cold-shock response by differentially modulating cold- and heat-shock proteins. Besides, apoptosis of germ cells increased in proportion to the cooling level in control mice but was independent of temperature in knockout mice. We also observed that the rate of germ cell death correlated positively with the reactive oxygen species level and negatively with the expression of the detoxifying enzymes. This result suggests that the TRPM8 sensor is a key determinant of germ cell fate under hypothermic stimulation.—Borowiec, A.-S., Sion, B., Chalmel, F., Rolland, A. D., Lemonnier, L., De Clerck, T., Bokhobza, A., Derouiche, S., Dewailly, E., Slomianny, C., Mauduit, C., Benahmed, M., Roudbaraki, M., Jégou, B., Prevarskaya, N., Bidaux, G. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock–induced oxidation. PMID:27317670

  15. The effect of shock wave therapy on gene expression in human osteoblasts isolated from hypertrophic fracture non-unions

    NASA Astrophysics Data System (ADS)

    Hofmann, A.; Ritz, U.; Rompe, J.-D.; Tresch, A.; Rommens, P. M.

    2015-01-01

    Shock wave therapy has been increasingly evaluated as a non-invasive alternative for the treatment of delayed fracture healing and non-unions. Although several clinical studies showed a beneficial effect especially for the hypertrophic type of non-union, little is known about the biological mechanism of its osteogenic effect. To identify the molecular background for the positive effect of shock waves on healing of fracture non-unions, we have analyzed the changes of the global gene expression in human osteoblasts after exposure to shock waves of different energy flux densities. Human osteoblasts were isolated from five patients at non-union sites, treated with 500 impulses of energy flux densities of 0.06 and , and cultured for 96 h. HG-U133A microarrays were used for the analysis of the shock wave-regulated mRNA-transcripts. Differential gene expression was verified by reverse transcriptase polymerase chain reactions. We identified 47 transcripts that showed differential expression after and 45 transcripts after energy treatment. Most intriguing was the up-regulation of neprilysin, calmegin, osteoglycin, asporin, and interleukin-13 receptor-. Eighteen identified genes were previously described to fulfill an important function in bone growth and metabolism. Our study provides the first molecular profile of shock wave-induced gene expression changes in human osteoblasts from patients with hypertrophic fracture non-unions, and it offers a possible molecular explanation for the positive effects of shock waves in patients ridden with this disease.

  16. Experimental investigation on aero-optical aberration of shock wave/boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Ding, Haolin; Yi, Shihe; Fu, Jia; He, Lin

    2016-10-01

    After streaming through the flow field which including the expansion, shock wave, boundary, etc., the optical wave would be distorted by fluctuations in the density field. Interactions between laminar/turbulent boundary layer and shock wave contain large number complex flow structures, which offer a condition for studying the influences that different flow structures of the complex flow field have on the aero-optical aberrations. Interactions between laminar/turbulent boundary layer and shock wave are investigated in a Mach 3.0 supersonic wind tunnel, based on nanoparticle-tracer planar laser scattering (NPLS) system. Boundary layer separation/attachment, induced suppression waves, induced shock wave, expansion fan and boundary layer are presented by NPLS images. Its spatial resolution is 44.15 μm/pixel. Time resolution is 6ns. Based on the NPLS images, the density fields with high spatial-temporal resolution are obtained by the flow image calibration, and then the optical path difference (OPD) fluctuations of the original 532nm planar wavefront are calculated using Ray-tracing theory. According to the different flow structures in the flow field, four parts are selected, (1) Y=692 600pixel; (2) Y=600 400pixel; (3) Y=400 268pixel; (4) Y=268 0pixel. The aerooptical effects of different flow structures are quantitatively analyzed, the results indicate that: the compressive waves such as incident shock wave, induced shock wave, etc. rise the density, and then uplift the OPD curve, but this kind of shock are fixed in space position and intensity, the aero-optics induced by it can be regarded as constant; The induced shock waves are induced by the coherent structure of large size vortex in the interaction between turbulent boundary layer, its unsteady characteristic decides the induced waves unsteady characteristic; The space position and intensity of the induced shock wave are fixed in the interaction between turbulent boundary layer; The boundary layer aero-optics are induced by the coherent structure of large size vortex, which result in the fluctuation of OPD.

  17. Observation and Control of Shock Waves in Individual Nanoplasmas

    DTIC Science & Technology

    2014-03-18

    Observation and Control of Shock Waves in Individual Nanoplasmas Daniel D. Hickstein,1 Franklin Dollar,1 Jim A. Gaffney,2 Mark E. Foord,2 George M...distribution of individual, isolated 100-nm-scale plasmas, we make the first experimental observation of shock waves in nanoplasmas . We demonstrate that...i Nanoscale plasmas ( nanoplasmas ) offer enhanced laser absorption compared to solid or gas targets [1], enabling high-energy physics with tabletop

  18. Simulations of the Richtmyer-Meshkov Instability in a two-shock vertical shock tube

    NASA Astrophysics Data System (ADS)

    Ferguson, Kevin; Olson, Britton; Jacobs, Jeffrey

    2017-11-01

    Simulations of the Richtmyer-Meshkov Instability (RMI) in a new two-shock vertical shock tube configuration are presented. The simulations are performed using the ARES code at Lawrence-Livermore National Laboratory (LLNL). Two M=1.2 shock waves travel in opposing directions and impact an initially stationary interface formed by sulfur hexaflouride (SF6) and air. The delay between the two shocks is controlled to achieve a prescribed temporal separation in shock wave arrival time. Initial interface perturbations and diffusion profiles are generated in keeping with previously gathered experimental data. The effect of varying the inter-shock delay and initial perturbation structure on instability growth and mixing parameters is examined. Information on the design, construction, and testing of a new two-shock vertical shock tube are also presented.

  19. Design of a magnetorheological automotive shock absorber

    NASA Astrophysics Data System (ADS)

    Lindler, Jason E.; Dimock, Glen A.; Wereley, Norman M.

    2000-06-01

    Double adjustable shock absorbers allow for independent adjustment of the yield force and post-yield damping in the force versus velocity response. To emulate the performance of a conventional double adjustable shock absorber, a magnetorheological (MR) automotive shock absorber was designed and fabricated at the University of Maryland. Located in the piston head, an applied magnetic field between the core and flux return increases the force required for a given piston rod velocity. Between the core and flux return, two different shaped gaps meet the controllable performance requirements of a double adjustable shock. A uniform gap between the core and the flux return primarily adjusts the yield force of the shock absorber, while a non-uniform gap allows for control of the post-yield damping. Force measurements from sinusoidal displacement cycles, recorded on a mechanical damper dynamometer, validate the performance of uniform and non- uniform gaps for adjustment of the yield force and post-yield damping, respectively.

  20. Autoshaping of key pecking in pigeons with negative reinforcement1

    PubMed Central

    Rachlin, Howard

    1969-01-01

    Pigeons exposed to gradually increasing intensities of pulsing electric shock pecked a key and thereby reduced the intensity of shock to zero for 2 min. Acquisition of key pecking was brought about through an autoshaping process in which periodic brief keylight presentations immediately preceded automatic reduction of the shock. On the occasions of such automatic reduction of shock preceding the first measured key peck, little or no orientation to the key was observed. Observations of pigeons with autoshaping of positive reinforcement also revealed little evidence of orientation toward the key. ImagesFig. 3.Fig. 4. PMID:16811371

  1. [A patient with toxic shock syndrome following correction of the nasal septum].

    PubMed

    Schweitzer, D H; Moffie, B G; van der Mey, A G; Thompson, J

    1990-11-03

    A male aged 30 suffered from toxic shock syndrome after septorhinoplasty with positioning of a tampon. Initial treatment consisted of removing the tampon and supportive care, as a result of which the patient recovered. The patient was a carrier of Staphylococcus aureus which produced toxic shock syndrome toxin-I (TSST-I). Anti-TSST-I antibodies were already found in the serum in the initial phase of the disease.

  2. 60. Shock isolator at center, pneumatic control group panel at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    60. Shock isolator at center, pneumatic control group panel at left, power distribution box at right, all at right of entrance to lcc. - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  3. Effectiveness of anisodamine for the treatment of critically ill patients with septic shock (ACIdoSIS study): study protocol for randomized controlled trial

    PubMed Central

    Zhou, Jiancang; Shang, You; Wang, Xin’an; Yin, Rui; Zhu, Zhenhua; Chen, Wensen; Tian, Xin; Yu, Yuetian; Zuo, Xiangrong; Chen, Kun; Ji, Xuqing; Ni, Hongying

    2015-01-01

    Background Septic shock is an important contributor of mortality in the intensive care unit (ICU). Although strenuous effort has been made to improve its outcome, the mortality rate is only marginally decreased. The present study aimed to investigate the effectiveness of anisodamine in the treatment of septic shock, in the hope that the drug will provide alternatives to the treatment of septic shock. Methods The study is a multi-center randomized controlled clinical trial. Study population will include critically ill patients with septic shock requiring vasopressor use. Blocked randomization was performed where anisodamine and control treatments were allocated at random in a ratio of 1:1 in blocks of sizes 2, 4, 6, 8, and 10 to 354 subjects. Interim analysis will be performed. The primary study end point is the hospital mortality, and other secondary study endpoints include ICU mortality, length of stay in ICU and hospital, organ failure free days. Adverse events including new onset psychosis, urinary retention, significant hypotension and tachycardia will be reported. Discussion The study will provide new insight into the treatment of septic shock and can help to reduce mortality rate of septic shock. Trial registration NCT02442440 (https://register.clinicaltrials.gov/). PMID:26605292

  4. Multiple independent regulatory pathways control UBI4 expression after heat shock in Saccharomyces cerevisiae.

    PubMed

    Simon, J R; Treger, J M; McEntee, K

    1999-02-01

    Transcription of the polyubiquitin gene UBI4 of Saccharomyces cerevisiae is strongly induced by a variety of environmental stresses, such as heat shock, nutrient depletion and exposure to DNA-damaging agents. This transcriptional response of UBI4 is likely to be the primary mechanism for increasing the pool of ubiquitin for degradation of stress-damaged proteins. Deletion and promoter fusion studies of the 5' regulatory sequences indicated that two different elements, heat shock elements (HSEs) and stress response element (STREs), contributed independently to heat shock regulation of the UBI4 gene. In the absence of HSEs, STRE sequences localized to the intervals -264 to -238 and -215 to -183 were needed for stress control of transcription after heat shock. Site-directed mutagenesis of the STRE (AG4) at -252 to -248 abolished heat shock induction of UBI4 transcription. Northern analysis demonstrated that cells containing either a temperature-sensitive HSF or non-functional Msn2p/Msn4p transcription factors induced high levels of UBI4 transcripts after heat shock. In cells deficient in both heat stress pathways, heat-induced UBI4 transcript levels were considerably lower but not abolished, suggesting a role for another factor(s) in stress control of its expression.

  5. [Changes of prostaglandin D2,carboxypeptidase A3 and platelet activating factor in guinea pig in anaphylactic shock].

    PubMed

    Yang, Kai; Guo, Xiang-jie; Yan, Xue-bin; Gao, Cai-rong

    2012-06-01

    To detect the changes of leukotriene E4(LTE4), prostaglandin D2(PGD2), carboxypeptidase A3(CPA3) and platelet activating factor (PAF) in guinea pigs died from anaphylactic shock. Guinea pigs were used for establishing anaphylactic shock models. The levels of LTE4, PGD2 and CPA3, and PAF were detected in urine, plasma, and brain tissues with ELISA kit, respectively. The significant biomarkers were selected comparing with control group. The changes of PGD2, CPA3 and PAF in the guinea pigs at time zero, 12 and 24 hours after death were observed and compared respectively. The effect of platelet activating factor acetylhydrolase (PAF-AH) to PAF in guinea pig brain was examined and compared. There were no statistically differences of LTE4 levels in urine observed between experimental group and control group. The levels of CPA3, PGD2 and PAF in the experimental group were significantly higher than that in the control group at 0 h. The levels of PAF at 12 and 24 hours after anaphylactic shock were significantly higher than that in the control group. The levels of PAF decreased significantly after pretreatment with PAF-AH. LTE4 in urine cannot be selected as a biomarker to determine the anaphylactic shock. PGD2 and CPA3 in plasma, and PAF in brain tissue may be used as biomarkers to determine the anaphylactic shock. PAF-AH may be potentially useful for clinical treatment of anaphylactic shock.

  6. Experimental Investigation of the Application of Microramp Flow Control to an Oblique Shock Interaction

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie M.; Anderson, Bernhard H.

    2009-01-01

    The effectiveness of microramp flow control devices in controlling an oblique shock interaction was tested in the 15- by 15-Centimeter Supersonic Wind Tunnel at NASA Glenn Research Center. Fifteen microramp geometries were tested varying the height, chord length, and spacing between ramps. Measurements of the boundary layer properties downstream of the shock reflection were analyzed using design of experiments methods. Results from main effects, D-optimal, full factorial, and central composite designs were compared. The designs provided consistent results for a single variable optimization.

  7. Interactive navigation system for shock wave applications.

    PubMed

    Hagelauer, U; Russo, S; Gigliotti, S; de Durante, C; Corrado, E M

    2001-01-01

    The latest generation of shock wave lithotripters, with therapy heads mounted on articulated arms, have found widespread application in the treatment of orthopedic diseases. Currently, integration of an ultrasound probe in the therapy head is the dominant modality for positioning the shock wave focus on the treatment area. For orthopedic applications, however, X-ray imaging is often preferred. This article describes a new method to locate the therapy head of a lithotripter. In the first step, the surgeon positions the tissue to be treated at the isocenter of a C-arc. This is achieved using AP and 30-degree lateral projections, with corresponding horizontal and vertical movements of the patient under fluoroscopic guidance. These movements register the anatomic location in the coordinate system of the C-arc. In the second step, the therapy head is navigated to align the shock wave focus with the isocenter. Position data are reported from an optical tracker mounted on the X-ray system, which tracks an array of infrared LEDs on the therapy head. The accuracy of the tracking system was determined on a test bench, and was calculated to be 1.55 mm (RMS) for an angular movement of +/-15 degrees around a calibrated position. Free-hand navigation and precise alignment are performed with a single virtual reality display. The display is calculated by a computer system in real time, and uses graphical symbols to represent the shock wave path and isocenter. In an interactive process, the physician observes the display while navigating the therapy head towards the isocenter. Precise alignment is achieved by displaying an enlarged view of the intersecting graphical symbols. Results from the first tests on 100 patients demonstrate the feasibility of this approach in a clinical environment. Copyright 2001 Wiley-Liss, Inc.

  8. Hydrodynamic growth and decay of planar shock waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piriz, A. R., E-mail: roberto.piriz@uclm.es; Sun, Y. B.; Tahir, N. A.

    2016-03-15

    A model for the hydrodynamic attenuation (growth and decay) of planar shocks is presented. The model is based on the approximate integration of the fluid conservation equations, and it does not require the heuristic assumptions used in some previous works. A key issue of the model is that the boundary condition on the piston surface is given by the retarded pressure, which takes into account the transit time of the sound waves between the piston and any position at the bulk of the shocked fluid. The model yields the shock pressure evolution for any given pressure pulse on the piston,more » as well as the evolution of the trajectories, velocities, and accelerations on the shock and piston surfaces. An asymptotic analytical solution is also found for the decay of the shock wave.« less

  9. Proper Heat Shock Pretreatment Reduces Acute Liver Injury Induced by Carbon Tetrachloride and Accelerates Liver Repair in Mice

    PubMed Central

    Li, San-Qiang; Wang, Dong-Mei; Shu, You-Ju; Wan, Xue-Dong; Xu, Zheng-Shun; Li, En-Zhong

    2013-01-01

    Whether proper heat shock preconditioning can reduce liver injury and accelerate liver repair after acute liver injury is worth study. So mice received heat shock preconditioning at 40°C for 10 minutes (min), 20 min or 30 min and recovered at room temperature for 8 hours (h) under normal feeding conditions. Then acute liver injury was induced in the heat shock-pretreated mice and unheated control mice by intraperitoneal (i.p.) injection of carbon tetrachloride (CCl4). Hematoxylin and eosin (H&E) staining, serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels and the expression levels of heat shock protein 70 (HSP70), cytochrome P450 1A2 (CYP1A2) and proliferating cell nuclear antigen (PCNA) were detected in the unheated control mice and heat shock-pretreated mice after CCl4 administration. Our results showed that heat shock preconditioning at 40°C for 20 min remarkably improved the mice’s survival rate (P<0.05), lowered the levels of serum AST and ALT (P<0.05), induced HSP70 (P<0.01), CYP1A2 (P<0.01) and PCNA (P<0.05) expression, effectively reduced liver injury (P<0.05) and accelerated the liver repair (P<0.05) compared with heat shock preconditioning at 40°C for 10 min or 30 min in the mice after acute liver injury induced by CCl4 when compared with the control mice. Our results may be helpful in further investigation of heat shock pretreatment as a potential clinical approach to target liver injury PMID:24526809

  10. Streptococcal Toxic Shock syndrome.

    PubMed

    Krishna, Vidya; Sankaranarayan, Shuba; Sivaraman, Rajakumar Padur; Prabaharan, Krithika

    2014-09-01

    Streptococcal Toxic Shock syndrome (STSS) is a serious complication caused by exotoxins of Group A Streptococcus (GAS). It presents with fulminant shock and rash, is rapidly progressive with Multi-Organ Dysfunction Syndrome (MODS) and requires aggressive therapy with fluids, antibiotics and source control.

  11. Dust ion-acoustic shock waves in magnetized pair-ion plasma with kappa distributed electrons

    NASA Astrophysics Data System (ADS)

    Kaur, B.; Singh, M.; Saini, N. S.

    2018-01-01

    We have performed a theoretical and numerical analysis of the three dimensional dynamics of nonlinear dust ion-acoustic shock waves (DIASWs) in a magnetized plasma, consisting of positive and negative ion fluids, kappa distributed electrons, immobile dust particulates along with positive and negative ion kinematic viscosity. By employing the reductive perturbation technique, we have derived the nonlinear Zakharov-Kuznetsov-Burgers (ZKB) equation, in which the nonlinear forces are balanced by dissipative forces (associated with kinematic viscosity). It is observed that the characteristics of DIASWs are significantly affected by superthermality of electrons, magnetic field strength, direction cosines, dust concentration, positive to negative ions mass ratio and viscosity of positive and negative ions.

  12. Shock structures in a strongly coupled self-gravitating opposite-polarity dust plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamun, A. A.; Schlickeiser, R.

    2016-03-15

    A strongly coupled, self-gravitating, opposite-polarity dust plasma (containing strongly coupled inertial positive and negative dust fluids, and inertialess weakly coupled ions) is considered. The generalized hydrodynamic model and the reductive perturbation method are employed to examine the possibility for the formation of the dust-acoustic (DA) shock structures in such an opposite-polarity dust plasma. It has been shown that the strong correlation among charged dust is a source of dissipation and is responsible for the formation of the DA shock structures in such the opposite-polarity dust plasma medium. The parametric regimes for the existence of the DA shock structures (associated withmore » electrostatic and gravitational potentials) and their basic properties (viz., polarity, amplitude, width, and speed) are found to be significantly modified by the combined effects of positively charged dust component, self-gravitational field, and strong correlation among charged dust. The implications of our results in different space plasma environments and laboratory plasma devices are briefly discussed.« less

  13. Can shock waves on helicopter rotors generate noise? - A study of the quadrupole source

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Tadghighi, H.

    1990-01-01

    An analysis has previously established that local shock surfaces attached to helicopter rotor blades moving at high subsonic speeds are potent noise generators; in pursuit of this insight, a novel formulation is presented for the prediction of the noise of a deformable shock, whose area changes as a function of the azimuthal position of the blade. The derivation of this formulation has its basis in a mapping of the moving shock to a time-independent region. In virtue of this mapping, the implementation of the main result on a computer becomes straightforward enough for incorporation into the available rotor-noise prediction code. A problem illustrating the importance of rotor shocks in the generation of high-intensity noise is presented.

  14. Heterogeneous effects of oil shocks on exchange rates: evidence from a quantile regression approach.

    PubMed

    Su, Xianfang; Zhu, Huiming; You, Wanhai; Ren, Yinghua

    2016-01-01

    The determinants of exchange rates have attracted considerable attention among researchers over the past several decades. Most studies, however, ignore the possibility that the impact of oil shocks on exchange rates could vary across the exchange rate returns distribution. We employ a quantile regression approach to address this issue. Our results indicate that the effect of oil shocks on exchange rates is heterogeneous across quantiles. A large US depreciation or appreciation tends to heighten the effects of oil shocks on exchange rate returns. Positive oil demand shocks lead to appreciation pressures in oil-exporting countries and this result is robust across lower and upper return distributions. These results offer rich and useful information for investors and decision-makers.

  15. Comparative Study on High-Order Positivity-preserving WENO Schemes

    NASA Technical Reports Server (NTRS)

    Kotov, Dmitry V.; Yee, Helen M.; Sjogreen, Bjorn Axel

    2013-01-01

    The goal of this study is to compare the results obtained by non-positivity-preserving methods with the recently developed positivity-preserving schemes for representative test cases. In particular the more di cult 3D Noh and Sedov problems are considered. These test cases are chosen because of the negative pressure/density most often exhibited by standard high-order shock-capturing schemes. The simulation of a hypersonic nonequilibrium viscous shock tube that is related to the NASA Electric Arc Shock Tube (EAST) is also included. EAST is a high-temperature and high Mach number viscous nonequilibrium ow consisting of 13 species. In addition, as most common shock-capturing schemes have been developed for problems without source terms, when applied to problems with nonlinear and/or sti source terms these methods can result in spurious solutions, even when solving a conservative system of equations with a conservative scheme. This kind of behavior can be observed even for a scalar case (LeVeque & Yee 1990) as well as for the case consisting of two species and one reaction (Wang et al. 2012). For further information concerning this issue see (LeVeque & Yee 1990; Griffiths et al. 1992; Lafon & Yee 1996; Yee et al. 2012). This EAST example indicated that standard high-order shock-capturing methods exhibit instability of density/pressure in addition to grid-dependent discontinuity locations with insufficient grid points. The evaluation of these test cases is based on the stability of the numerical schemes together with the accuracy of the obtained solutions.

  16. State Anxiety Carried Over From Prior Threat Increases Late Positive Potential Amplitude During an Instructed Emotion Regulation Task

    PubMed Central

    Pedersen, Walker S.; Larson, Christine L.

    2018-01-01

    Emotion regulation has important consequences for emotional and mental health (Saxena, Dubey & Pandey, 2011) and is dependent on executive function (Eisenberg, Smith & Spinrad, 2011). Because state anxiety disrupts executive function (Robinson, Vytal, Cornwell & Grillon, 2013), we tested whether state anxiety disrupts emotion regulation by having participants complete an instructed emotion regulation task, while under threat of unpredictable shock and while safe from shock. We used the late positive potential (LPP) component of the event related potential to measure emotion regulation success. We predicted that LPP responses to negatively valenced images would be modulated by participants’ attempts to increase and decrease their emotions when safe from shock, but not while under threat of shock. Our manipulation check revealed an order effect such that for participants who completed the threat of shock condition first self-reported state anxiety carried over into the subsequent safe condition. Additionally, we found that although instructions to regulate affected participants’ ratings of how unpleasant the images made them feel, instructions to regulate had no effect on LPP amplitude regardless of threat condition. Instead we found that participants who received the threat condition prior to safe had greater LPP responses to all images in the safe condition. We posit that the carryover of anxiety resulted in misattribution of arousal and potentiation of neural responses to the images in the safe condition. Thus, our results imply that physiological arousal and cognition combine to influence the basic neural response to emotional stimuli. PMID:27055095

  17. Watching from a distance: A robotically controlled laser and real-time subject tracking software for the study of conditioned predator/prey-like interactions.

    PubMed

    Wilson, James C; Kesler, Mitch; Pelegrin, Sara-Lynn E; Kalvi, LeAnna; Gruber, Aaron; Steenland, Hendrik W

    2015-09-30

    The physical distance between predator and prey is a primary determinant of behavior, yet few paradigms exist to study this reliably in rodents. The utility of a robotically controlled laser for use in a predator-prey-like (PPL) paradigm was explored for use in rats. This involved the construction of a robotic two-dimensional gimbal to dynamically position a laser beam in a behavioral test chamber. Custom software was used to control the trajectory and final laser position in response to user input on a console. The software also detected the location of the laser beam and the rodent continuously so that the dynamics of the distance between them could be analyzed. When the animal or laser beam came within a fixed distance the animal would either be rewarded with electrical brain stimulation or shocked subcutaneously. Animals that received rewarding electrical brain stimulation could learn to chase the laser beam, while animals that received aversive subcutaneous shock learned to actively avoid the laser beam in the PPL paradigm. Mathematical computations are presented which describe the dynamic interaction of the laser and rodent. The robotic laser offers a neutral stimulus to train rodents in an open field and is the first device to be versatile enough to assess distance between predator and prey in real time. With ongoing behavioral testing this tool will permit the neurobiological investigation of predator/prey-like relationships in rodents, and may have future implications for prosthetic limb development through brain-machine interfaces. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Motivational state controls the prediction error in Pavlovian appetitive-aversive interactions.

    PubMed

    Laurent, Vincent; Balleine, Bernard W; Westbrook, R Frederick

    2018-01-01

    Contemporary theories of learning emphasize the role of a prediction error signal in driving learning, but the nature of this signal remains hotly debated. Here, we used Pavlovian conditioning in rats to investigate whether primary motivational and emotional states interact to control prediction error. We initially generated cues that positively or negatively predicted an appetitive food outcome. We then assessed how these cues modulated aversive conditioning when a novel cue was paired with a foot shock. We found that a positive predictor of food enhances, whereas a negative predictor of that same food impairs, aversive conditioning. Critically, we also showed that the enhancement produced by the positive predictor is removed by reducing the value of its associated food. In contrast, the impairment triggered by the negative predictor remains insensitive to devaluation of its associated food. These findings provide compelling evidence that the motivational value attributed to a predicted food outcome can directly control appetitive-aversive interactions and, therefore, that motivational processes can modulate emotional processes to generate the final error term on which subsequent learning is based. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. [Beta-blockers in septic shock: a review].

    PubMed

    Vela-Vásquez, R S; Grigorov-Tzenkov, I; Aguilar, J L

    2015-02-01

    In septic shock, high adrenergic stress is associated with cardiovascular and systemic adverse effects, which can negatively affect the results. Beta-adrenergic receptor block has been shown to be effective in controlling the disproportionate increase in heart rate, maintaining a favorable hemodynamic profile and apparently improving the efficiency of the cardiovascular system in order to maintain tissue perfusion. They have also been shown to modulate favorably catecholamine-induced immunosuppression and to decrease insulin resistance, protein catabolism, and proinflammatory cytokine expression associated with cardiovascular dysfunction. Selective beta-1 blockers appear to provide better results than non-selective blockers, even suggesting a positive impact on mortality. Future clinical trials are still needed to confirm these findings and define the scope of their benefits. Copyright © 2014 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Shock position sensor for supersonic inlets. [measuring pressure in the throat of a supersonic inlet

    NASA Technical Reports Server (NTRS)

    Dustin, M. O. (Inventor)

    1975-01-01

    Static pressure taps or ports are provided in the throat of a supersonic inlet, and signals indicative of the pressure at each of the ports is fed to respective comparators. Means are also provided for directing a signal indicative of the total throat pressure to the comparators. A periodic signal is superimposed on the total throat pressure so that the signal from the static pressure tabs is compared to a varying scan signal rather than to total throat pressure only. This type of comparison causes each comparator to provide a pulse width modulated output which may vary from 0% 'time on' to 100% 'time on'. The pulse width modulated outputs of the comparators are summed, filtered, and directed to a controller which operates a bypass valve such as a door whereby air is dumped from the inlet to prevent the shock wave from being expelled out the front.

  1. Anxiolytic effect of BPC-157, a gastric pentadecapeptide: shock probe/burying test and light/dark test.

    PubMed

    Sikiric, P; Jelovac, N; Jelovac-Gjeldum, A; Dodig, G; Staresinic, M; Anic, T; Zoricic, I; Ferovic, D; Aralica, G; Buljat, G; Prkacin, I; Lovric-Bencic, M; Separovic, J; Seiwerth, S; Rucman, R; Petek, M; Turkovic, B; Ziger, T

    2001-03-01

    To study anxiolytic effect of a gastric pentadecapeptide, BPC-157. In shock probe/burying test, pentadecapeptide BPC-157 (10 microg/kg, 10 ng/kg, ip), diazepam (0.075, 0.0375 mg/kg, ip), and an equivolume of saline (5 mL/kg, ip) were given at 30 min prior test. In light/dark test, the same dosage of diazepam, BPC-157, and saline were given at 45 min prior procedure. Shock probe/burying test: rats treated with either diazepam or pentadecapeptide BPC-157 were much less afraid after the shock: almost not burying and the total time spent in burying was clearly less than in controls. However, while in the diazepam treated rats the number of shocks received increased over control values, in pentadecapeptide BPC-157 treated groups the number of shocks remained not modified compared with the control values. Light/dark test: after exposure to the intense light, diazepam treated mice had longer latencies of crossing to the dark compartment, a greater number of crossing and a greater number of exploratory rearing, and spent longer time in the light compartment, as compared to the control mice, while BPC-157 mice had a similar behavior to that of the control mice. In contrast with the effect in light area, in dark zone diazepam produced no change with respect to controls, while BPC-157 (10 microg/kg) mice had a greater number of crossing and a greater number of exploratory rearing. Both diazepam and BPC-157 displayed a bidirectional effect, but the activity of pentadecapeptide BPC-157 was particular, and different from diazepam.

  2. Hydrogen gas inhalation inhibits progression to the "irreversible" stage of shock after severe hemorrhage in rats.

    PubMed

    Matsuoka, Tadashi; Suzuki, Masaru; Sano, Motoaki; Hayashida, Kei; Tamura, Tomoyoshi; Homma, Koichiro; Fukuda, Keiichi; Sasaki, Junichi

    2017-09-01

    Mortality of hemorrhagic shock primarily depends on whether or not the patients can endure the loss of circulating volume until radical treatment is applied. We investigated whether hydrogen (H2) gas inhalation would influence the tolerance to hemorrhagic shock and improve survival. Hemorrhagic shock was achieved by withdrawing blood until the mean arterial blood pressure reached 30-35 mm Hg. After 60 minutes of shock, the rats were resuscitated with a volume of normal saline equal to four times the volume of shed blood. The rats were assigned to either the H2 gas (1.3% H2, 26% O2, 72.7% N2)-treated group or the control gas (26% O2, 74% N2)-treated group. Inhalation of the specified gas mixture began at the initiation of blood withdrawal and continued for 2 hours after fluid resuscitation. The survival rate at 6 hours after fluid resuscitation was 80% in H2 gas-treated rats and 30% in control gas-treated rats (p < 0.05). The volume of blood that was removed through a catheter to induce shock was significantly larger in the H2 gas-treated rats than in the control rats. Despite losing more blood, the increase in serum potassium levels was suppressed in the H2 gas-treated rats after 60 minutes of shock. Fluid resuscitation completely restored blood pressure in the H2 gas-treated rats, whereas it failed to fully restore the blood pressure in the control gas-treated rats. At 2 hours after fluid resuscitation, blood pressure remained in the normal range and metabolic acidosis was well compensated in the H2 gas-treated rats, whereas we observed decreased blood pressure and uncompensated metabolic acidosis and hyperkalemia in the surviving control gas-treated rats. H2 gas inhalation delays the progression to irreversible shock. Clinically, H2 gas inhalation is expected to stabilize the subject until curative treatment can be performed, thereby increasing the probability of survival after hemorrhagic shock.

  3. Influence of custom-made and prefabricated insoles before and after an intense run

    PubMed Central

    2017-01-01

    Each time the foot contacts the ground during running there is a rapid deceleration that results in a shock wave that is transmitted from the foot to the head. The fatigue of the musculoskeletal system during running may decrease the ability of the body to absorb those shock waves and increase the risk of injury. Insoles are commonly prescribed to prevent injuries, and both custom-made and prefabricated insoles have been observed to reduce shock accelerations during running. However, no study to date has included a direct comparison of their behaviour measured over the same group of athletes, and therefore great controversy still exists regarding their effectiveness in reducing impact loading during running. The aim of the study was to analyse the acute differences in stride and shock parameters while running on a treadmill with custom-made and prefabricated insoles. Stride parameters (stride length, stride rate) and shock acceleration parameters (head and tibial peak acceleration, shock magnitude, acceleration rate, and shock attenuation) were measured using two triaxial accelerometers in 38 runners at 3.33 m/s before and after a 15-min intense run while using the sock liner of the shoe (control condition), prefabricated insoles and custom-made insoles. No differences in shock accelerations were found between the custom-made and the control insoles. The prefabricated insoles increased the head acceleration rate (post-fatigue, p = 0.029) compared to the control condition. The custom-made reduced tibial (pre-fatigue, p = 0.041) and head acceleration rates (pre-fatigue and post-fatigue, p = 0.01 and p = 0.046) compared to the prefabricated insoles. Neither the stride nor the acceleration parameters were modified as a result of the intense run. In the present study, the acute use of insoles (custom-made, prefabricated) did not reduce shock accelerations compared to the control insoles. Therefore, their effectiveness at protecting against injuries associated with elevated accelerations is not supported and remains unclear. PMID:28245273

  4. Lack of insula reactivity to aversive stimuli in schizophrenia.

    PubMed

    Linnman, Clas; Coombs, Garth; Goff, Donald C; Holt, Daphne J

    2013-01-01

    Patients with schizophrenia may have altered pain perception, as suggested by clinical reports of pain insensitivity, and recent neuroimaging findings. Here, we examined neural responses to an aversive electrical stimulus and the immediate anticipation of such a stimulus using fMRI and a classical conditioning paradigm, which involved pairing an electrical shock with a neutral photograph. Fifteen men with schizophrenia and 13 healthy men, matched for demographic characteristics, electrical stimulation level and scan movement, were studied. The shock induced robust responses in midbrain, thalamus, cingulate gyrus, insula and somatosensory cortex in both groups. However, compared to controls, the schizophrenic patients displayed significantly lower activation of the middle insula (p(FWE)=0.002, T=5.72, cluster size=24 voxels). Moreover, the lack of insula reactivity in the schizophrenia group was predicted by the magnitude of positive symptoms (r=-0.46, p=0.04). In contrast, there were no significant differences between the two groups in the magnitude of neural responses during anticipation of the shock. These findings provide support for the existence of a basic deficit in interoceptive perception in schizophrenia, which could play a role in the generation and/or maintenance of psychotic states. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. A Novel Heat Shock Element (HSE) in Entamoeba histolytica that Regulates the Transcriptional Activation of the EhPgp5 Gene in the Presence of Emetine Drug.

    PubMed

    Nieto, Alma; Pérez Ishiwara, David G; Orozco, Esther; Sánchez Monroy, Virginia; Gómez García, Consuelo

    2017-01-01

    Transcriptional regulation of the multidrug resistance EhPgp5 gene in Entamoeba histolytica is induced by emetine stress. EhPgp5 overexpression alters the chloride-dependent currents that cause trophozoite swelling, diminishing induced programmed cell death (PCD) susceptibility. In contrast, antisense inhibition of P-glycoprotein (PGP) expression produces synchronous death of trophozoites and the enhancement of the biochemical and morphological characteristics of PCD induced by G418. Transcriptional gene regulation analysis identified a 59 bp region at position -170 to -111 bp promoter as putative emetine response elements (EREs). However, insights into transcription factors controlling EhPgp5 gene transcription are missing; to fill this knowledge gap, we used deletion studies and transient CAT activity assays. Our findings suggested an activating motif (-151 to -136 bp) that corresponds to a heat shock element (HSE). Gel-shift assays, UV-crosslinking, binding protein purification, and western blotting assays revealed proteins of 94, 66, 62, and 51 kDa binding to the EhPgp5 HSE that could be heat shock-like transcription factors that regulate the transcriptional activation of the EhPgp5 gene in the presence of emetine drug.

  6. Evidence for Decay of Turbulence by MHD Shocks in the ISM via CO Emission

    NASA Astrophysics Data System (ADS)

    Larson, Rebecca L.; Evans, Neal J., II; Green, Joel D.; Yang, Yao-Lun

    2015-06-01

    We utilize observations of sub-millimeter rotational transitions of CO from a Herschel Cycle 2 open time program (“COPS”, PI: J. Green) to identify previously predicted turbulent dissipation by magnetohydrodynamic (MHD) shocks in molecular clouds. We find evidence of the shocks expected for dissipation of MHD turbulence in material not associated with any protostar. Two models fit about equally well: model 1 has a density of 103 cm-3, a shock velocity of 3 km s-1, and a magnetic field strength of 4 μG model 2 has a density of 103.5 cm-3, a shock velocity of 2 km s-1, and a magnetic field strength of 8 μG. Timescales for decay of turbulence in this region are comparable to crossing times. Transitions of CO up to J of 8, observed close to active sites of star formation, but not within outflows, can trace turbulent dissipation of shocks stirred by formation processes. Although the transitions are difficult to detect at individual positions, our Herschel-SPIRE survey of protostars provides a grid of spatially distributed spectra within molecular clouds. We averaged all spatial positions away from known outflows near seven protostars. We find significant agreement with predictions of models of turbulent dissipation in slightly denser (103.5 cm-3) material with a stronger magnetic field (24 μG) than in the general molecular cloud.

  7. Scaling craters in carbonates: Electron paramagnetic resonance analysis of shock damage

    NASA Technical Reports Server (NTRS)

    Polanskey, Carol A.; Ahrens, Thomas J.

    1994-01-01

    Carbonate samples from the 8.9-Mt nuclear (near-surface explosion) crater, OAK, and a terrestrial impact crater, Meteor Crater, were analyzed for shock damage using electron paramagnetic resonance (EPR). Samples from below the OAK apparent crater floor were obtained from six boreholes, as well as ejecta recovered from the crater floor. The degree of shock damage in the carbonate material was assessed by comparing the sample spectra to the spectra of Solenhofen and Kaibab limestone, which had been skocked to known pressures. Analysis of the OAK Crater borehole samples has identified a thin zone of allocthonous highly shocked (10-13 GPa) carbonate material underneath the apparent crater floor. This approx. 5- to 15-m-thick zone occurs at a maximum depth of approx. 125 m below current seafloor at the borehole, sited at the initial position of the OAK explosive, and decreases in depth towards the apparent crater edge. Because this zone of allocthonous shocked rock delineates deformed rock below, and a breccia of mobilized sand and collapse debris above, it appears to outline the transient crater. The transient crater volume inferred in this way is found to by 3.2 +/- 0.2 times 10(exp 6)cu m, which is in good agreement with a volume of 5.3 times 10(exp 6)cu m inferred from gravity scaling of laboratory experiments. A layer of highly shocked material is also found near the surface outside the crater. The latter material could represent a fallout ejecta layer. The ejecta boulders recovered from the present crater floor experienced a range of shock pressures from approx. 0 to 15 GPa with the more heavily shocked samples all occurring between radii of 360 and approx. 600 m. Moreover, the fossil content, lithology and Sr isotopic composition all demonstrate that the initial position of the bulk of the heavily shocked rock ejecta sampled was originally near surface rock at initial depths in the 32 to 45-m depth (below sea level) range. The EPR technique is also sensitive to prehistoric shock damage. This is demonstrated by our study of shocked Kaibab limestone from the 49,000-year-old Meteor (Barringer) Crater Arizona.

  8. Shock Magnetization and Demagnetization of Rocks: What we Have Learnt From Experimental Studies

    NASA Astrophysics Data System (ADS)

    Gattacceca, J.; Rochette, P.; Boustie, M.; Berthe, L.; Natalia, B.; de Resseguier, T.

    2008-12-01

    We will present new results of simultaneous shock magnetization and shock demagnetization experiments performed on titanomagnetite-bearing basalt samples with a pulsed laser in controlled magnetic field. These new results provide the opportunity to discuss the main properties of the these two phenomena. What is the efficiency of the acquisition of shock remanent magnetization (SRM) acquisition with respect to thermoremanent magnetization? Is shock demagnetization equivalent to shock magnetization in zero field? Do we observe scattered SRM direction in shocked samples? Can we predict the shock demagnetization/remagnetization behavior of a rock knowing its rock magnetic properties? Eventually we will discuss the implications of these results for the understanding of the paleomagnetic signal of shocked rocks (meteorites in paticular) and of the magnetic anomalies above impact basins.

  9. Reorganization of pathological control functions of memory-A neural model for tissue healing by shock waves

    NASA Astrophysics Data System (ADS)

    Wess, Othmar

    2005-04-01

    Since 1980 shock waves have proven effective in the field of extracorporeal lithotripsy. More than 10 years ago shock waves were successfully applied for various indications such as chronic pain, non-unions and, recently, for angina pectoris. These fields do not profit from the disintegration power but from stimulating and healing effects of shock waves. Increased metabolism and neo-vascularization are reported after shock wave application. According to C. J. Wang, a biological cascade is initiated, starting with a stimulating effect of physical energy resulting in increased circulation and metabolism. Pathological memory of neural control patterns is considered the reason for different pathologies characterized by insufficient metabolism. This paper presents a neural model for reorganization of pathological reflex patterns. The model acts on associative memory functions of the brain based on modification of synaptic junctions. Accordingly, pathological memory effects of the autonomous nervous system are reorganized by repeated application of shock waves followed by development of normal reflex patterns. Physiologic control of muscle and vascular tone is followed by increased metabolism and tissue repair. The memory model may explain hyper-stimulation effects in pain therapy.

  10. Effects of Atwood number on shock focusing in shock-cylinder interaction

    NASA Astrophysics Data System (ADS)

    Ou, Junfeng; Ding, Juchun; Luo, Xisheng; Zhai, Zhigang

    2018-02-01

    The evolution of shock-accelerated heavy-gas cylinder surrounded by the air with different Atwood numbers (A_t=0.28, 0.50, 0.63) is investigated, concentrating on shock focusing and jet formation. Experimentally, a soap film technique is used to generate an ideal two-dimensional discontinuous gas cylinder with a clear surface, which can guarantee the observation of shock wave movements inside the cylinder. Different Atwood numbers are realized by different mixing ratios of SF_6 and air inside the cylinder. A high-speed schlieren system is adopted to capture the shock motions and jet morphology. Numerical simulations are also performed to provide more information. The results indicate that an inward jet is formed for low Atwood numbers, while an outward jet is generated for high Atwood numbers. Different Atwood numbers will lead to the differences in the relative velocities between the incident shock and the refraction shock, which ultimately results in the differences in shock competition near the downstream pole. The morphology and feature of the jet are closely associated with the position and intensity of shock focusing. The pressure and vorticity contours indicate that the jet formation should be attributed to the pressure pulsation caused by shock focusing, and the jet development is ascribed to the vorticity induction. Finally, a time ratio proposed in the previous work for determining the shock-focusing type is verified by experiments.

  11. In vivo effect of shock-waves on the healing of fractured bone.

    PubMed

    Augat, P; Claes, L; Suger, G

    1995-10-01

    In a controlled animal experiment we attempted to clarify the question of whether there is a stimulating effect of extracorporeal shock-waves on the repair process of fractured long bones. As a fracture model we used an osteotomy in the diaphysis of the ovine tibia and an external fixation device. Shock-wave treatment at two levels of intensity and with four different numbers of applied shocks was performed with an electromagnetic acoustic source. Healing of the osteotomized bone was evaluated by biomechanical and radiological investigations on the whole bone as well as on bone sections from areas of the fracture gap and the periosteal fracture callus. We found a non-significant tendency to deterioration of the fracture healing with increasing shock-wave intensities. The study of treatment parameters led neither to significantly different biomechanical outcomes nor to altered radiological results in comparison to the untreated control group. RELEVANCE:--While we cannot comment upon the effectiveness of extracorporeal shock-waves in the delayed treatment of fractures or pseudarthrosis, our results suggest that shock-waves have no beneficial effect in acute fracture repair.

  12. Optimal sensor placement for control of a supersonic mixed-compression inlet with variable geometry

    NASA Astrophysics Data System (ADS)

    Moore, Kenneth Thomas

    A method of using fluid dynamics models for the generation of models that are useable for control design and analysis is investigated. The problem considered is the control of the normal shock location in the VDC inlet, which is a mixed-compression, supersonic, variable-geometry inlet of a jet engine. A quasi-one-dimensional set of fluid equations incorporating bleed and moving walls is developed. An object-oriented environment is developed for simulation of flow systems under closed-loop control. A public interface between the controller and fluid classes is defined. A linear model representing the dynamics of the VDC inlet is developed from the finite difference equations, and its eigenstructure is analyzed. The order of this model is reduced using the square root balanced model reduction method to produce a reduced-order linear model that is suitable for control design and analysis tasks. A modification to this method that improves the accuracy of the reduced-order linear model for the purpose of sensor placement is presented and analyzed. The reduced-order linear model is used to develop a sensor placement method that quantifies as a function of the sensor location the ability of a sensor to provide information on the variable of interest for control. This method is used to develop a sensor placement metric for the VDC inlet. The reduced-order linear model is also used to design a closed loop control system to control the shock position in the VDC inlet. The object-oriented simulation code is used to simulate the nonlinear fluid equations under closed-loop control.

  13. Absolute Hugoniot measurements from a spherically convergent shock using x-ray radiography

    NASA Astrophysics Data System (ADS)

    Swift, Damian C.; Kritcher, Andrea L.; Hawreliak, James A.; Lazicki, Amy; MacPhee, Andrew; Bachmann, Benjamin; Döppner, Tilo; Nilsen, Joseph; Collins, Gilbert W.; Glenzer, Siegfried; Rothman, Stephen D.; Kraus, Dominik; Falcone, Roger W.

    2018-05-01

    The canonical high pressure equation of state measurement is to induce a shock wave in the sample material and measure two mechanical properties of the shocked material or shock wave. For accurate measurements, the experiment is normally designed to generate a planar shock which is as steady as possible in space and time, and a single state is measured. A converging shock strengthens as it propagates, so a range of shock pressures is induced in a single experiment. However, equation of state measurements must then account for spatial and temporal gradients. We have used x-ray radiography of spherically converging shocks to determine states along the shock Hugoniot. The radius-time history of the shock, and thus its speed, was measured by radiographing the position of the shock front as a function of time using an x-ray streak camera. The density profile of the shock was then inferred from the x-ray transmission at each instant of time. Simultaneous measurement of the density at the shock front and the shock speed determines an absolute mechanical Hugoniot state. The density profile was reconstructed using the known, unshocked density which strongly constrains the density jump at the shock front. The radiographic configuration and streak camera behavior were treated in detail to reduce systematic errors. Measurements were performed on the Omega and National Ignition Facility lasers, using a hohlraum to induce a spatially uniform drive over the outside of a solid, spherical sample and a laser-heated thermal plasma as an x-ray source for radiography. Absolute shock Hugoniot measurements were demonstrated for carbon-containing samples of different composition and initial density, up to temperatures at which K-shell ionization reduced the opacity behind the shock. Here we present the experimental method using measurements of polystyrene as an example.

  14. The Influence of IMF By on the Bow Shock: Observation Result

    NASA Astrophysics Data System (ADS)

    Wang, M.; Lu, J. Y.; Kabin, K.; Yuan, H. Z.; Liu, Z.-Q.; Zhao, J. S.; Li, G.

    2018-03-01

    In this study we use the bow shock crossings contained in the Space Physics Data Facility database, collected by four spacecraft (IMP 8, Geotail, Magion-4, and Cluster1) to analyze the effect of the interplanetary magnetic field (IMF) By component on the bow shock position and shape. Although the IMF Bz component is usually considered much more geoeffective than By, we find that the dayside bow shock is more responsive to the eastward component of the IMF than the north-south one. We believe that the explanation lies in the changes that the Bz component induces on the magnetopause location and shape, which largely compensate the corresponding changes in the dayside bow shock location. In the tail, we find that the bow shock cross section is elongated roughly in the direction perpendicular to the IMF direction, which agrees with earlier modeling studies.

  15. Hippocampal awake replay in fear memory retrieval

    PubMed Central

    Wu, Chun-Ting; Haggerty, Daniel; Kemere, Caleb; Ji, Daoyun

    2017-01-01

    Hippocampal place cells are key to episodic memories. How these cells participate in memory retrieval remains unclear. Here, after rats acquired a fear memory by receiving mild foot-shocks at a shock zone of a track, we analyzed place cells when the animals were placed back to the track and displayed an apparent memory retrieval behavior: avoidance of the shock zone. We found that place cells representing the shock zone were reactivated, despite the fact that the animals did not enter the shock zone. This reactivation occurred in ripple-associated awake replay of place cell sequences encoding the paths from the animal’s current positions to the shock zone, but not in place cell sequences within individual cycles of theta oscillation. The result reveals a specific place cell pattern underlying the inhibitory avoidance behavior and provides strong evidence for the involvement of awake replay in fear memory retrieval. PMID:28218916

  16. Electric shocks are ineffective in treatment of lethal effects of rattlesnake envenomation in mice.

    PubMed

    Johnson, E K; Kardong, K V; Mackessy, S P

    1987-01-01

    Electrical shocks, even crudely delivered from 'stun guns' and gasoline engine spark plugs, have been reported to be effective in the treatment of snake bite. We thus applied similar electric shocks to mice artificially injected with reconstituted rattlesnake venom at various LD50 multiples. Those envenomated mice treated with electric shock survived no better than the controls. We thus found no evidence that electric shocks crudely administered had any life saving effect in mice.

  17. Validating a pragmatic definition of shock in adult patients presenting to the ED.

    PubMed

    Li, Yan-ling; Chan, Cangel Pui-yee; Sin, King-keung; Chan, Stewart S W; Lin, Pei-yi; Chen, Xiao-hui; Smith, Brendan E; Joynt, Gavin M; Graham, Colin A; Rainer, Timothy H

    2014-11-01

    The importance of the early recognition of shock in patients presenting to emergency departments is well recognized, but at present, there is no agreed practical definition for undifferentiated shock. The main aim of this study was to validate an a priori clinical definition of shock against 28-day mortality. This prospective, observational, cross-sectional, single-center study was conducted in Hong Kong, China. Data were collected between July 1, 2012, and January 31, 2013. An a priori definition of shock was designed, whereby patients admitted to the resuscitation room or high dependency area of the emergency department were divided into 1 of 3 groups-no shock, possible shock, and shock. The primary outcome was 28-day mortality. Secondary outcomes were in-hospital mortality or admission to the intensive or coronary care unit. A total of 111 patients (mean age, 67.2 ± 17.1 years; male = 69 [62%]) were recruited, of which 22 were classified as no shock, 54 as possible shock, and 35 as shock. Systolic blood pressure, mean arterial pressure, lactate, and base deficit correlated well with shock classifications (P < .05). Patients who had 3 or more positively defined shock variables had a 100% poor composite outcome rate (5 of 5). Patients with 2 shock variables had a 66.7% (4 of 6) poor composite outcome rate. A simple, practical definition of undifferentiated shock has been proposed and validated in a group of patients presenting to an emergency department in Hong Kong. This definition needs further validation in a larger population and other settings. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. The Saturnian Environment as a Unique Laboratory for Collisionless Shock Waves

    NASA Astrophysics Data System (ADS)

    Sulaiman, Ali; Masters, Adam; Dougherty, Michele; Burgess, David; Fujimoto, Masaki; Hospodarsky, George

    2016-04-01

    Collisionless shock waves are ubiquitous in the universe and fundamental to understanding the nature of collisionless plasmas. The interplay between particles (ions and electrons) and fields (electromagnetic) introduces a variety of both physical and geometrical parameters such as Mach numbers (e.g. MA, Mf), β, and θBn. These vary drastically from terrestrial to astrophysical regimes resulting in radically different characteristics of shocks. This poses two complexities. Firstly, separating the influences of these parameters on physical mechanisms such as energy dissipation. Secondly, correlating observations of shock waves over a wide range of each parameter, enough to span across different regimes. Investigating the latter has been restricted since the majority of studies on shocks at exotic regimes (such as supernova remnants) have been achieved either remotely or via simulations, but rarely by means of in-situ observations. It is not clear what happens in the higher MA regime. Here we show the parameter space of MA for all bow shock crossings from 2004-2012 as measured by the Cassini spacecraft. We found that the Saturnian bow shock exhibits characteristics akin to both terrestrial and astrophysical regimes (MA of order 100), which is principally controlled by the upstream magnetic field strength. Moreover, we estimated the θbn of each crossing and were able to further constrain the sample into categories of similar features. Our results demonstrate how MA plays a central role in controlling the onset of physical mechanisms in collisionless shocks, particularly reformation. While ongoing studies have investigated this process extensively both theoretically and via simulations, their observations remain few and far between. We show conclusive evidence for cyclic reformation controlled by specular ion reflection occurring at the predicted timescale of ˜0.3 τc, where τc is the ion gyroperiod. In addition, we experimentally underpin the relationship between reformation and MA and focus on the magnetic structure of such shocks to further show that for the same MA, a reforming shock exhibits stronger magnetic field amplification than a shock that is not reforming. We anticipate our comprehensive assessment to give deeper insight to high MA collisionless shocks and provide a broader scope for understanding the structures and mechanisms of collisionless shocks. This can potentially bridge the gap between more modest MA observed in near-Earth space and more exotic astrophysical regimes where shock processes play central roles.

  19. Positions of type II fundamental and harmonic sources in the 30-100 MHZ range

    NASA Technical Reports Server (NTRS)

    Sawant, H. S.; Gergely, T. E.; Kundu, M. R.

    1982-01-01

    An excellent example of a type III-V burst followed by a type II burst with fundamental and harmonic bands was observed on June 18, 1979 at the Clark Lake Radio Observatory. The observations are described in detail and their implications are discussed with regard to the problem of directionality with respect to the magnetic field lines of the collisionless MHD shock wave generated at the start of the flash phase. It is found that the positions of type III and type II (F) bursts at a number of frequencies are essentially the same, which implies that the shock responsible for the type II radiation follows the path of the type III exciter, that is, the shock propagates along the open field lines.

  20. Optodynamic characterization of shock waves after laser-induced breakdown in water.

    PubMed

    Petkovsek, Rok; Mozina, Janez; Mocnik, Grisa

    2005-05-30

    Plasma and a cavitation bubble develop at the site of laser-induced breakdown in water. Their formation and the propagation of the shock wave were monitored by a beam-deflection probe and an arm-compensated interferometer. The interferometer part of the setup was used to determine the relative position of the laser-induced breakdown. The time-of-flight data from the breakdown site to the probe beam yielded the velocity, and from the velocity the shock-wave pressure amplitudes were calculated. Two regions were found where the pressure decays with different exponents, pointing to a strong attenuation mechanism in the initial phase of the shock-wave propagation.

  1. Shock absorber servicing tool

    NASA Technical Reports Server (NTRS)

    Koepler, Jack L. (Inventor); Hill, Robert L. (Inventor)

    1981-01-01

    A tool to assist in the servicing of a shock absorber wherein the shock absorber is constructed of a pair of aligned gas and liquid filled chambers. Each of the chambers is separated by a movable separator member. Maximum efficiency of the shock absorber is achieved in the locating of a precise volume of gas within the gas chamber and a precise volume of liquid within the liquid chamber. The servicing tool of this invention employs a rod which is to connect with the separator and by observation of the position of the rod with respect to the gauge body, the location of the separator is ascertained even though it is not directly observable.

  2. Some new results on shock chemistry in IC 443

    NASA Technical Reports Server (NTRS)

    Denoyer, L. K.; Frerking, M. A.

    1981-01-01

    New observations have been made of CO, CO-13, SiO, SO, H2CO, HCO(+), N2H(+), CS, OCS, HCN, and OH in the shocked clouds of IC 443. It is found that at position IC 443 B, (1) the shocked CO is optically thin; (2) the HCO(+)/CO abundance ratio is 4-9 x 10 to the -4 th, representing a tenfold enhancement over that of normal interstellar clouds; (3) there is no enhancement of SO or SIO, as occurs in Orion KL; and (4) there is optically thin preshock OH, confirming a hundredfold enhancement of the OH/CO ratio in the shock.

  3. Evaluating the Mechanism of Oil Price Shocks and Fiscal Policy Responses in the Malaysian Economy

    NASA Astrophysics Data System (ADS)

    Bekhet, Hussain A.; Yusoff, Nora Yusma Mohamed

    2013-06-01

    The paper aims to explore the symmetric impact of oil price shock on economy, to understand its mechanism channel and how fiscal policy response towards it. The Generalized Impulse Response Function and Variance Decomposition under the VAR methodology were employed. The empirical findings suggest that symmetric oil price shock has a positive and direct impact on oil revenue and government expenditure. However, the real GDP is vulnerable in a short-term but not in the long term period. These results would confirm that fiscal policy is the main mechanism channel that mitigates the adverse effects oil price shocks to the economy.

  4. False context fear memory in rats.

    PubMed

    Bae, Sarah E; Holmes, Nathan M; Westbrook, R Frederick

    2015-10-01

    Four experiments used rats to study false context fear memories. In Experiment 1, rats were pre-exposed to a distinctive chamber (context A) or to a control environment (context C), shocked after a delay in a second chamber (context B) and tested either in B or A. Rats pre-exposed to A froze just as much as control rats in B but more than control rats in A. In Experiment 2, rats were pre-exposed to A or C, subjected to an immediate shock in B and tested in B or A. Rats pre-exposed to A froze when tested in A but did not freeze when tested in B and control rats did not freeze in either A or B. The false fear memory to the pre-exposed A was contingent on its similarity with the shocked B. In Experiment 3, rats pre-exposed to A and subjected to immediate shock in B froze when tested in A but did not freeze when tested in C and rats pre-exposed to C did not freeze when tested either in A or C. In Experiment 4, rats pre-exposed to A and subjected to immediate shock in B froze more when tested in A than rats whose pre-exposure to A began with an immediate shock. The results were discussed in terms of a dual systems explanation of context fear conditioning: a hippocampal-dependent process that forms a unitary representation of context and an amygdala-based process which associates this representation with shock. © 2015 Bae et al.; Published by Cold Spring Harbor Laboratory Press.

  5. Initial experience with a microprocessor controlled current based defibrillator.

    PubMed Central

    Dalzell, G W; Cunningham, S R; Anderson, J; Adgey, A A

    1989-01-01

    Intramyocardial current flow is a critical factor in successful ventricular defibrillation. The main determinants of intramyocardial current flow during transthoracic countershock are the selected energy and the transthoracic impedance of the patient. To optimise the success of the first shock and to titrate energy dosage according to each patient's transthoracic impedance, a microprocessor controlled current based defibrillator was developed. It was compared with a conventional energy based protocol of 200 J (delivered energy), 200 J, then 360 J if required in 42 consecutive episodes of ventricular fibrillation in 33 men and seven women. The mean (SD) predicted transthoracic impedance was 69.9 (14.0) omega. First shock success with the standard protocol was 80.9%, and first or second shock success was 95.2%. The microprocessor controlled current based defibrillator automatically measured transthoracic impedance and calculated the energy required to develop a selected current in each patient. A current protocol of 30 A, 30 A, then 40 A, if required, was used in 29 men and 12 women with 41 episodes of ventricular fibrillation. Transthoracic impedance (mean 65.1 (15.9) omega) was similar to that in the energy protocol group and success rates for first shock (82.9%) and first or second shocks (97.5%) were also similar. The mean delivered energy per shock with the current based defibrillator for first or second shock success was significantly less (144.8 J) with the energy protocol (200 J). The mean peak current of successful shocks was also significantly reduced (29.0 v 31.9 A). A current based defibrillator titrates energy according to transthoracic impedance; it has a success rate comparable to conventional defibrillators but it delivers significantly less energy and current per shock. Images Fig 1 PMID:2757862

  6. Changes in the lipid composition of Bradyrhizobium cell envelope reveal a rapid response to water deficit involving lysophosphatidylethanolamine synthesis from phosphatidylethanolamine in outer membrane.

    PubMed

    Cesari, Adriana B; Paulucci, Natalia S; Biasutti, María A; Morales, Gustavo M; Dardanelli, Marta S

    2018-06-02

    We evaluate the behavior of the membrane of Bradyrhizobium sp. SEMIA6144 during adaptation to polyethylene glycol (PEG). A dehydrating effect on the morphology of the cell surface, as well as a fluidizing effect on the membrane was observed 10 min after PEG shock; however, the bacteria were able to restore optimal membrane fluidity. Shock for 1 h caused an increase of lysophosphatidylethanolamine in the outer membrane at the expense of phosphatidylcholine and phosphatidylethanolamine (PE), through an increase in phospholipase activity. The amount of lysophosphatidylethanolamine did not remain constant during PEG shock, but after 24 h the outer membrane was composed of large amounts of phosphatidylcholine and less amount of lysophosphatidylethanolamine similar to the control. The inner membrane composition was also modified after 1 h of shock, observing an increase of phosphatidylcholine at the expense of PE, the proportions of these phospholipids were then modified to reach 24 h of shock values similar to the control. Vesicles prepared with the lipids of cells exposed to 1 h shock presented higher rigidity compared to the control, indicating that changes in the composition of phospholipids after 1 h of shock restoring fluidity after the PEG effect and would allow cells to maintain surface morphology. Copyright © 2018 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  7. Optical distortion in the field of a lithotripter shock wave

    NASA Astrophysics Data System (ADS)

    Carnell, M. T.; Emmony, D. C.

    1995-10-01

    The schlieren observation of cavitation phenomena produced in the tail of a lithotripter shock wave has indicated the presence of some interesting features. The images produced appear to indicate that cavitation transients in the field of a shock wave propagate nonsymmetrically; this is not the case. The apparent lack of symmetry exhibited by the primary cavitation transients is due to a complex optical lensing effect, which is brought about by the change in refractive index associated with the pressure profile of the shock wave. Objects seen through or immersed in the shock-wave field of an electromagnetic acoustic transducer, such as cavitation, appear highly distorted because of the strong positive and negative lensing effects of the compression and rarefaction cycles of the shock wave. A modification of the schlieren technique called the scale method has been used to model the distortion introduced by the shock wave and consequently explain the cavitation distortion. The technique has also been used to quantitatively analyze and partially reconstruct the lithotripter shock wave. The combination of schlieren and scale imaging gives more information about the refractive index field and therefore the shock-wave structure itself.

  8. Systematic search for very-high-energy gamma-ray emission from bow shocks of runaway stars

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2018-04-01

    Context. Runaway stars form bow shocks by ploughing through the interstellar medium at supersonic speeds and are promising sources of non-thermal emission of photons. One of these objects has been found to emit non-thermal radiation in the radio band. This triggered the development of theoretical models predicting non-thermal photons from radio up to very-high-energy (VHE, E ≥ 0.1 TeV) gamma rays. Subsequently, one bow shock was also detected in X-ray observations. However, the data did not allow discrimination between a hot thermal and a non-thermal origin. Further observations of different candidates at X-ray energies showed no evidence for emission at the position of the bow shocks either. A systematic search in the Fermi-LAT energy regime resulted in flux upper limits for 27 candidates listed in the E-BOSS catalogue. Aim. Here we perform the first systematic search for VHE gamma-ray emission from bow shocks of runaway stars. Methods: Using all available archival H.E.S.S. data we search for very-high-energy gamma-ray emission at the positions of bow shock candidates listed in the second E-BOSS catalogue release. Out of the 73 bow shock candidates in this catalogue, 32 have been observed with H.E.S.S. Results: None of the observed 32 bow shock candidates in this population study show significant emission in the H.E.S.S. energy range. Therefore, flux upper limits are calculated in five energy bins and the fraction of the kinetic wind power that is converted into VHE gamma rays is constrained. Conclusions: Emission from stellar bow shocks is not detected in the energy range between 0.14 and 18 TeV.The resulting upper limits constrain the level of VHE gamma-ray emission from these objects down to 0.1-1% of the kinetic wind energy.

  9. Using a gel/plastic surrogate to study the biomechanical response of the head under air shock loading: a combined experimental and numerical investigation.

    PubMed

    Zhu, Feng; Wagner, Christina; Dal Cengio Leonardi, Alessandra; Jin, Xin; Vandevord, Pamela; Chou, Clifford; Yang, King H; King, Albert I

    2012-03-01

    A combined experimental and numerical study was conducted to determine a method to elucidate the biomechanical response of a head surrogate physical model under air shock loading. In the physical experiments, a gel-filled egg-shaped skull/brain surrogate was exposed to blast overpressure in a shock tube environment, and static pressures within the shock tube and the surrogate were recorded throughout the event. A numerical model of the shock tube was developed using the Eulerian approach and validated against experimental data. An arbitrary Lagrangian-Eulerian (ALE) fluid-structure coupling algorithm was then utilized to simulate the interaction of the shock wave and the head surrogate. After model validation, a comprehensive series of parametric studies was carried out on the egg-shaped surrogate FE model to assess the effect of several key factors, such as the elastic modulus of the shell, bulk modulus of the core, head orientation, and internal sensor location, on pressure and strain responses. Results indicate that increasing the elastic modulus of the shell within the range simulated in this study led to considerable rise of the overpressures. Varying the bulk modulus of the core from 0.5 to 2.0 GPa, the overpressure had an increase of 7.2%. The curvature of the surface facing the shock wave significantly affected both the peak positive and negative pressures. Simulations of the head surrogate with the blunt end facing the advancing shock front had a higher pressure compared to the simulations with the pointed end facing the shock front. The influence of an opening (possibly mimicking anatomical apertures) on the peak pressures was evaluated using a surrogate head with a hole on the shell of the blunt end. It was revealed that the presence of the opening had little influence on the positive pressures but could affect the negative pressure evidently.

  10. Spectral properties of Langmuir and beam-mode waves observed inside terrestrial foreshock by Cluster spacecraf

    NASA Astrophysics Data System (ADS)

    Pisa, D.; Soucek, J.; Santolik, O.

    2016-12-01

    Electrostatic plasma waves are commonly observed in the upstream regions of planetary shocks. Solar wind electrons accelerated at the shock front are reflected back into the solar wind and form electron beams. The electron distribution becomes unstable and electrostatic waves are generated inside the foreshock region. The processes of generation and evolution of electrostatic waves significantly depend on the solar wind plasma conditions and generally exhibit complex behavior. Langmuir waves can be identified as intense narrowband emission at the local plasma frequency and weaker broadband beam-mode waves below and above the plasma frequency deeper in the downstream region. We present a long-term survey of Langmuir and beam-mode waves in the vicinity of the plasma frequency observed upstream of the terrestrial bow shock by the Cluster spacecraft. Using solar wind data and bow shock positions from OMNI, as well as in-situ measurements of interplanetary magnetic field, we have mapped all available spacecraft positions into foreshock coordinates. For a study of plasma waves, we have used spectra and local plasma frequencies obtained from a passive and active mode of the WHISPER instrument. We show a spatial distribution of wave frequencies and spectral widths as a function of foreshock positions and solar wind conditions.

  11. Income Shocks and Adolescent Mental Health

    ERIC Educational Resources Information Center

    Baird, Sarah; de Hoop, Jacobus; Ozler, Berk

    2013-01-01

    We investigate the effects of a positive income shock on mental health among adolescent girls using evidence from a cash transfer experiment in Malawi. Offers of cash transfers strongly reduced psychological distress among baseline schoolgirls. However, these large beneficial effects declined with increases in the transfer amount offered to the…

  12. Role of transfused red blood cells for shock and coagulopathy within remote damage control resuscitation.

    PubMed

    Spinella, Philip C; Doctor, Allan

    2014-05-01

    The philosophy of damage control resuscitation (DCR) and remote damage control resuscitation (RDCR) can be summarized by stating that the goal is to prevent death from hemorrhagic shock by "staying out of trouble instead of getting out of trouble." In other words, it is preferred to arrest the progression of shock, rather than also having to reverse this condition after significant tissue damage and organ injury cascades are established. Moreover, to prevent death from exsanguination, a balanced approach to the treatment of both shock and coagulopathy is required. This was military doctrine during World War II, but seemed to be forgotten during the last half of the 20th century. Damage control resuscitation and RDCR have revitalized the approach, but there is still more to learn about the most effective and safe resuscitative strategies to simultaneously treat shock and hemorrhage. Current data suggest that our preconceived notions regarding the efficacy of standard issue red blood cells (RBCs) during the hours after transfusion may be false. Standard issue RBCs may not increase oxygen delivery and may in fact decrease it by disturbing control of regional blood flow distribution (impaired nitric oxide processing) and failing to release oxygen, even when perfusing hypoxic tissue (abnormal oxygen affinity). Standard issue RBCs may assist with hemostasis but appear to have competing effects on thrombin generation and platelet function. If standard issue or RBCs of increased storage age are not optimal, then are there alternatives that will allow for an efficacious and safe treatment of shock while also supporting hemostasis? Studies are required to determine if fresh RBCs less than 7 to 10 days provide an outcome advantage. A resurgence in the study of whole blood stored at 4°C for up to 10 days also holds promise. Two randomized controlled trials in humans have indicated that following transfusion with either whole blood stored at 4°C or platelets stored at 4°C there was less clinical bleeding than when blood was reconstituted with components or when platelets were stored at 22°C. Early reversal of shock is essential to prevent exacerbation of coagulopathy and progression of cell death cascades in patients with severe traumatic injuries. Red blood cell storage solutions have evolved to accommodate the needs of non-critically ill patients yet may not be optimal for patients in hemorrhagic shock. Continued focus on the recognition and treatment of shock is essential for continued improvement in outcomes for patients who require damage control resuscitation and RDCR.

  13. Designing and testing computer based screening engine for severe sepsis/septic shock.

    PubMed

    Herasevich, V; Afessa, B; Chute, C G; Gajic, O

    2008-11-06

    This study addresses the role of a sepsis "sniffer", an automatic screening tool for the timely identification of patients with severe sepsis/septic shock, based electronic medical records. During the two months prospective implementation in a medical intensive care unit, 37 of 320 consecutive patients developed severe sepsis/septic shock. The sniffer demonstrated a sensitivity of 48% and specificity of 86%, and positive predictive value 32%. Further improvements are needed prior to the implementation of sepsis sniffer in clinical practice and research.

  14. Shock Waves for Possible Application in Regenerative Medicine

    NASA Astrophysics Data System (ADS)

    Hosseini, S. H. R.; Nejad, S. Moosavi; Akiyama, H.

    The paper reports experimental study of underwater shock waves effects in modification and possible control of embryonic stem cell differentiation and proliferation. The study is motivated by its application in regenerativemedicine. Underwater shock waves have been of interest for various scientific, industrial, and medical applications.

  15. IGF-I slightly improves nuclear maturation and cleavage rate of bovine oocytes exposed to acute heat shock in vitro.

    PubMed

    Meiyu, Qi; Liu, Di; Roth, Zvi

    2015-08-01

    An in vitro model of embryo production was used to examine the effects of insulin-like growth factor (IGF)-I on maturation and developmental competence of oocytes exposed to heat shock. Cumulus-oocyte complexes were matured at 38.5°C or exposed to acute heat shock (HS; 41.5°C), with or without 100 ng/ml IGF-I, for 22 h through in vitro maturation. The experimental groups were control (C), C + IGF-I, HS, and HS + IGF-I. Oocytes were fertilized at the end of maturation, and the proportion of cleaved embryos was recorded 44 h later. HS during maturation increased the proportion of TUNEL-positive oocytes (P < 0.05). HS did not have any effect on cortical granule translocation but impaired resumption of meiosis, expressed as a decreased proportion of oocytes with nuclei in metaphase I (P < 0.05) and metaphase II (MII; P < 0.05). HS decreased the proportion of oocytes that cleaved (P < 0.05), in particular those oocytes that further developed to 4-cell-stage embryos (P < 0.05). IGF-I alleviated, to some extent, the deleterious effects of HS on the oocytes as reflected by a reduced proportion of TUNEL-positive oocytes (P < 0.03). While not significant, IGF-I tended to increase the proportion of MII-stage oocytes (P < 0.08) and 4-cell-stage cleaved embryos (P < 0.06). Further examination is required to explore whether IGF-I also affects the developmental competence of oocytes exposed to HS.

  16. Monetary policy and the effects of oil price shocks on the Japanese economy

    NASA Astrophysics Data System (ADS)

    Lee, Byung Rhae

    1998-12-01

    The evidence of output decreases and price level increases following oil price shocks in the Japanese economy is presented in this paper. These negative effects of oil shocks are better explained by Hamilton's (1996) net oil price increase measure (NOPI) than by other oil measures. The fact that an oil shock has a statistically significant effect on the call money rate and real output and that the call money rate also has a statistically significant effect on real output appears to explain that the effects of oil price shocks on economic activity are partially attributed to contractionary monetary policy responses. The asymmetric effects of positive and negative oil shocks are also found in the Japanese economy and this asymmetry can also be partially explained by monetary policy responses. To assess the relative contribution of oil shocks and endogenous monetary policy responses to the economic downturns, I shut off the responses of the call money rate to oil shocks utilizing the impulse response results from the VAR model. Then, I re-run the VAR with the adjusted call money rate series. The empirical results show that around 30--40% of the negative effects of oil price shocks on the Japanese economy can be accounted for by oil shock induced monetary tightening.

  17. On beyond the standard model for high explosives: challenges & obstacles to surmount

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph Ds

    2009-01-01

    Plastic-bonded explosives (PBX) are heterogeneous materials. Nevertheless, current explosive models treat them as homogeneous materials. To compensate, an empirically determined effective burn rate is used in place of a chemical reaction rate. A significant limitation of these models is that different burn parameters are needed for applications in different regimes; for example, shock initiation of a PBX at different initial temperatures or different initial densities. This is due to temperature fluctuations generated when a heterogeneous material is shock compressed. Localized regions of high temperatures are called hot spots. They dominate the reaction for shock initiation. The understanding of hot spotmore » generation and their subsequent evolution has been limited by the inability to measure transients on small spatial ({approx} 1 {micro}m) and small temporal ({approx} 1 ns) scales in the harsh environment of a detonation. With the advances in computing power, it is natural to try and gain an understanding of hot-spot initiation with numerical experiments based on meso-scale simulations that resolve material heterogeneities and utilize realistic chemical reaction rates. However, to capture the underlying physics correctly, such high resolution simulations will require more than fast computers with a large amount of memory. Here we discuss some of the issues that need to be addressed. These include dissipative mechanisms that generate hot spots, accurate thermal propceties for the equations of state of the reactants and products, and controlling numerical entropy error from shock impedance mismatches at material interfaces. The later can generate artificial hot spots and lead to premature reaction. Eliminating numerical hot spots is critical for shock initiation simulations due to the positive feedback between the energy release from reaction and the hydrodynamic flow.« less

  18. Plasma interferon-gamma and interleukin-10 concentrations in systemic meningococcal disease compared with severe systemic Gram-positive septic shock.

    PubMed

    Bjerre, Anna; Brusletto, Berit; Høiby, Ernst Arne; Kierulf, Peter; Brandtzaeg, Petter

    2004-02-01

    To analyze plasma interferon-gamma and interleukin-10 concentrations in patients with systemic meningococcal disease and patients with severe Gram-positive septic shock caused by Streptococcus pneumoniae or Staphylococcus aureus. To study the in vitro cytokine (interferon-gamma and interleukin-10) responses in a whole blood model boosted with heat-killed Neisseria meningitidis, S. pneumoniae, and S. aureus before and after treatment with recombinant interleukin-10 or recombinant interferon-gamma. Experimental study. Laboratory. Plasma samples were collected from patients with systemic meningococcal disease (n = 66) and patients with severe Gram-positive septic shock caused by S. pneumoniae (n = 4) or S. aureus (n = 3). Whole blood was boosted with heat-killed N. meningitidis, S. pneumoniae, and S. aureus (1 x 106 colony forming units/mL), and plasmas were analyzed for interleukin-10 or interferon-gamma at 0, 5, 12, and 24 hrs. Furthermore, recombinant interleukin-10 or recombinant interferon-gamma was added before bacteria, and the effect on the secretion of interferon-gamma and interleukin-10, respectively, was analyzed after 24 hrs. The median concentration of interferon-gamma was 15 pg/mL and of interleukin-10 was 10,269 pg/mL in patients with meningococcal septic shock (n = 24) compared with median interferon-gamma concentration of 3400 pg/mL and interleukin-10 concentration of 465 pg/mL in patients with severe Gram-positive shock (p =.001). Increased interferon-gamma concentrations were associated with case fatality (p =.011). In a whole blood model we demonstrated that 1 x 106 colony forming units/mL of N. meningitidis induced more interleukin-10 but less interferon-gamma than S. pneumoniae. S. aureus induced minimal secretion of both cytokines. Recombinant interleukin-10 efficiently down-regulated the secretion of interferon-gamma, and vice versa, as shown in a whole blood model. We speculate whether high concentrations of interleukin-10 contribute to the low concentrations of interferon-gamma in fulminant meningococcal septicemia. In addition, it appears as if interferon-gamma plays a minor role in the pathophysiology of meningococcal septic shock.

  19. Synthesis of the low molecular weight heat shock proteins in plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mansfield, M.A.; Key, J.L.

    1987-08-01

    Heat shock of living tissue induces the synthesis of a unique group of proteins, the heat shock proteins. In plants, the major group of heat shock proteins has a molecular mass of 15 to 25 kilodaltons. Accumulation to these proteins to stainable levels has been reported in only a few species. To examine accumulation of the low molecular weight heat shock proteins in a broader range of species, two-dimensional electrophoresis was used to resolve total protein from the following species: soybean (Glycine max L. Merr., var Wayne), pea (Pisum sativum L., var Early Alaska), sunflower (Helianthus annuus L.), wheat (Triticummore » asetivum L.), rice (Oryza sativa L., cv IR-36), maize (Zea mays L.), pearl millet (Pennisetum americanum L. Leeke, line 23DB), and Panicum miliaceum L. When identified by both silver staining and incorporation of radiolabel, a diverse array of low molecular weight heat shock proteins was synthesized in each of these species. These proteins accumulated to significant levels after three hours of heat shock but exhibited considerable heterogeneity in isoelectric point, molecular weight, stainability, and radiolabel incorporation. Although most appeared to be synthesized only during heat shock, some were detectable at low levels in control tissue. Compared to the monocots, a higher proportion of low molecular weight heat shock proteins was detectable in control tissues from dicots.« less

  20. Effect of prior heat shock on heat resistance of Listeria monocytogenes in meat.

    PubMed Central

    Farber, J M; Brown, B E

    1990-01-01

    The effect of prior heat shock on the thermal resistance of Listeria monocytogenes in meat was investigated. A sausage mix inoculated with approximately 10(7) L. monocytogenes per g was initially subjected to a heat shock temperature of 48 degrees C before being heated at a final test temperature of 62 or 64 degrees C. Although cells heat shocked at 48 degrees C for 30 or 60 min did not show a significant increase in thermotolerance as compared with control cells (non-heat shocked), bacteria heat shocked for 120 min did, showing an average 2.4-fold increase in the D64 degrees C value. Heat-shocked cells shifted to 4 degrees C appeared to maintain their thermotolerance for at least 24 h after heat shock. PMID:2116757

  1. Does low intensity extracorporeal shock wave therapy have a physiological effect on erectile function? Short-term results of a randomized, double-blind, sham controlled study.

    PubMed

    Vardi, Yoram; Appel, Boaz; Kilchevsky, Amichai; Gruenwald, Ilan

    2012-05-01

    We investigated the clinical and physiological effect of low intensity extracorporeal shock wave therapy on men with organic erectile dysfunction who are phosphodiesterase type 5 inhibitor responders. After a 1-month phosphodiesterase type 5 inhibitor washout period, 67 men were randomized in a 2:1 ratio to receive 12 sessions of low intensity extracorporeal shock wave therapy or sham therapy. Erectile function and penile hemodynamics were assessed before the first treatment (visit 1) and 1 month after the final treatment (followup 1) using validated sexual function questionnaires and venoocclusive strain gauge plethysmography. Clinically we found a significantly greater increase in the International Index of Erectile Function-Erectile Function domain score from visit 1 to followup 1 in the treated group than in the sham treated group (mean ± SEM 6.7 ± 0.9 vs 3.0 ± 1.4, p = 0.0322). There were 19 men in the treated group who were initially unable to achieve erections hard enough for penetration (Erection Hardness Score 2 or less) who were able to achieve erections sufficiently firm for penetration (Erection Hardness Score 3 or greater) after low intensity extracorporeal shock wave therapy, compared to none in the sham group. Physiologically penile hemodynamics significantly improved in the treated group but not in the sham group (maximal post-ischemic penile blood flow 8.2 vs 0.1 ml per minute per dl, p <0.0001). None of the men experienced discomfort or reported any adverse effects from the treatment. This is the first randomized, double-blind, sham controlled study to our knowledge that shows that low intensity extracorporeal shock wave therapy has a positive short-term clinical and physiological effect on the erectile function of men who respond to oral phosphodiesterase type 5 inhibitor therapy. The feasibility and tolerability of this treatment, coupled with its potential rehabilitative characteristics, make it an attractive new therapeutic option for men with erectile dysfunction. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  2. In vitro studies of toxic shock toxin-1-secreting Staphylococcus aureus and implications for burn care in children.

    PubMed

    Laabei, Maisem; Young, Amber; Jenkins, Toby A

    2012-05-01

    The main etiologic agent of toxic shock syndrome is the toxic shock syndrome toxin-1 (TSST-1) protein secreted by Staphylococcus aureus. Diagnosis of toxic shock syndrome is difficult and is significantly underdiagnosed in young children with burns due to the nonspecific presentation coupled with a rapid deterioration in patient condition. The lytic and cytolytic activity of a number of clinical and laboratory TSST-1-positive strains of methicillin-susceptible S. aureus (101, 253, 279 and RN4282, respectively) and Pseudomonas aeruginosa PAO1 strain were tested in vitro using an assay designed to assess the relative exotoxin activity of bacteria using phospholipid vesicles and a T cell toxicity assay. In addition, the activity of lytic exotoxins such as δ -toxin and the secretion of nonlytic TSST-1 toxin from S. aureus was measured using the vesicle assay and Western blotting over the 20-hour growth of TSST-1-positive S. aureus culture. Both the vesicle and T cell assays suggest a lytic exotoxin-mediated mechanism of vesicle rupture and T cell death, with high levels of vesicle lysis and T cell toxicity. It is important to note that the clinical TSST-1-positive methicillin-susceptible S. aureus strains exhibited lytic exotoxin production as well as TSST-1 expression as confirmed by Western blot. We suggest that there is no correlation between the expression of TSST-1 and lack of exotoxin production. We also suggest that apurulence in an S. aureus-infected burn wound in a child should not be used to rule out toxic shock syndrome.

  3. Expressed sequence tags from heat-shocked seagrass Zostera noltii (Hornemann) from its southern distribution range.

    PubMed

    Massa, Sónia I; Pearson, Gareth A; Aires, Tânia; Kube, Michael; Olsen, Jeanine L; Reinhardt, Richard; Serrão, Ester A; Arnaud-Haond, Sophie

    2011-09-01

    Predicted global climate change threatens the distributional ranges of species worldwide. We identified genes expressed in the intertidal seagrass Zostera noltii during recovery from a simulated low tide heat-shock exposure. Five Expressed Sequence Tag (EST) libraries were compared, corresponding to four recovery times following sub-lethal temperature stress, and a non-stressed control. We sequenced and analyzed 7009 sequence reads from 30min, 2h, 4h and 24h after the beginning of the heat-shock (AHS), and 1585 from the control library, for a total of 8594 sequence reads. Among 51 Tentative UniGenes (TUGs) exhibiting significantly different expression between libraries, 19 (37.3%) were identified as 'molecular chaperones' and were over-expressed following heat-shock, while 12 (23.5%) were 'photosynthesis TUGs' generally under-expressed in heat-shocked plants. A time course analysis of expression showed a rapid increase in expression of the molecular chaperone class, most of which were heat-shock proteins; which increased from 2 sequence reads in the control library to almost 230 in the 30min AHS library, followed by a slow decrease during further recovery. In contrast, 'photosynthesis TUGs' were under-expressed 30min AHS compared with the control library, and declined progressively with recovery time in the stress libraries, with a total of 29 sequence reads 24h AHS, compared with 125 in the control. A total of 4734 TUGs were screened for EST-Single Sequence Repeats (EST-SSRs) and 86 microsatellites were identified. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Vasopressin synthesis by the magnocellular neurons is different in the supraoptic nucleus and in the paraventricular nucleus in human and experimental septic shock.

    PubMed

    Sonneville, Romain; Guidoux, Céline; Barrett, Lucinda; Viltart, Odile; Mattot, Virginie; Polito, Andrea; Siami, Shidasp; de la Grandmaison, Geoffroy Lorin; Blanchard, Anne; Singer, Mervyn; Annane, Djillali; Gray, Françoise; Brouland, Jean-Philippe; Sharshar, Tarek

    2010-05-01

    Impaired arginine vasopressin (AVP) synthesis and release by the neurohypophyseal system, which includes the neurohypophysis and magnocellular neurons of the paraventricular and supraoptic nuclei, have been postulated in septic shock, but changes in this system have never been assessed in human septic shock, and only partially experimentally. We investigated AVP synthesis and release by the neurohypophyseal system in 9 patients who died from septic shock and 10 controls, and in 20 rats with fecal peritonitis-induced sepsis and 8 sham-operation controls. Ten rats died spontaneously from septic shock, and the others were sacrificed. In patients with septic shock, as in rats that died spontaneously following sepsis induction, AVP immunohistochemical expression was decreased in the neurohypophysis and supraoptic magnocellular neurons, whereas it was increased in the paraventricular magnocellular neurons. No significant change was observed in AVP messenger RiboNucleic Acid (mRNA) expression assessed by in situ hybridization in either paraventricular or supraoptic magnocellular cells. This study shows that both in human and experimental septic shock, AVP posttranscriptional synthesis and transport are differently modified in the magnocellular neurons of the supraoptic and paraventricular nuclei. This may account for the inappropriate AVP release in septic shock and suggests that distinct pathogenic mechanisms operate in these nuclei.

  5. Reduction of high-energy shock-wave-induced renal tubular injury by selenium.

    PubMed

    Strohmaier, W L; Lahme, S; Weidenbach, P M; Bichler, K H

    1999-10-01

    In shock-wave-induced renal injury cavitation-generated free radicals play an important role. Using an in vitro model with Madin-Darby canine kidney (MDCK) cells, we investigated the influence of selenium, a free radical scavenger, in shock-wave-induced tubular cell injury. Suspensions of MDCK cells (33 x 10(6) cells/ml) were placed in small containers (volume 1.1 ml) for shock wave exposure. Two groups of 12 containers each were examined: (1) control (no medication), (2) selenium (0.4 microg/ml nutrient medium). Six containers in each group were exposed to shock waves (impulse rate 256, frequency 60 Hz, generator voltage 18 kV), while the other six containers in each group served as a control. After shock wave exposure, the concentration of cellular enzymes such as lactate dehydrogenase (LDH), N-acetyl-beta-glucosaminidase (NAG), glutamate oxaloacetate transaminase (GOT) and glutamate lactate dehydrogenase (GLDH) in the nutrient medium was examined. Following shock wave exposure there was a significant rise in LDH, NAG, GOT and GLDH concentrations. Selenium reduced this enzyme leakage significantly. Thus we conclude that selenium protects renal tubular cells against shock-wave-induced injury. Since selenium is an essential part of glutathione peroxidase, this effect seems to be mediated by a reduction in reactive oxygen species.

  6. Partial reinforcement of avoidance and resistance to extinction in humans.

    PubMed

    Xia, Weike; Dymond, Simon; Lloyd, Keith; Vervliet, Bram

    2017-09-01

    In anxiety, maladaptive avoidance behavior provides for near-perfect controllability of potential threat. There has been little laboratory-based treatment research conducted on controllability as a contributing factor in the transition from adaptive to maladaptive avoidance. Here, we investigated for the first time whether partial reinforcement rate, or the reliability of avoidance at controlling or preventing contact with an aversive event, influences subsequent extinction of avoidance in humans. Five groups of participants were exposed to different partial reinforcement rates where avoidance cancelled upcoming shock on 100%, 75%, 50%, 25% or 0% of trials. During extinction, all shocks were withheld. Avoidance behavior, online shock expectancy ratings and skin conductance responses (SCRs) were measured throughout. We found that avoidance was a function of relative controllability: higher reinforcement rate groups engaged in significantly more extinction-resistant avoidance than lower reinforcement groups, and shock expectancy was inversely related with reinforcement rate during avoidance acquisition. Partial reinforcement effects were not evident in SCRs. Overall, the current study highlights the clinical relevance of laboratory-based treatment research on partial reinforcement or controllability effects on extinction of avoidance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. [Lethal anaphylactic shock model induced by human mixed serum in guinea pigs].

    PubMed

    Ren, Guang-Mu; Bai, Ji-Wei; Gao, Cai-Rong

    2005-08-01

    To establish an anaphylactic shock model induced by human mixed serum in guinea pigs. Eighteen guinea pigs were divided into two groups: sensitized and control, The sensitized group were immunized intracutaneously with human mixed serum and then induced by endocardiac injection after 3 weeks. Symptoms of anaphylactic shock appeared in the sensitized group. The level of serum IgE were increased in the sensitized group significantly. An animal model of anaphylactic shock wer established successfully. It provide a tool for both forensic study and anaphylactic shock therapy.

  8. High dynamic range spectroscopic studies of shocked nitromethane

    NASA Astrophysics Data System (ADS)

    Bhowmick, Mithun; Nissen, Erin J.; Dlott, Dana D.

    In this talk we describe a tabletop apparatus that can reproducibly drive shocks through tiny cells containing liquid arranged in an array for high-throughput shock compression studies. This talk will focus on nitromethane, a liquid reactive to shocks and capable of detonation. In our studies, a laser-driven flyer plate was used to shock nitromethane, and a spectrometer with high dynamic range was employed to measure emission spectra from nanosecond to millisecond time scales. Typically, 50 single-shock experiments were performed per day with precisely controllable shock speeds below, above, or equal to the detonation shock speed. The emission spectra provide temperature histories using the graybody approximation. The ability to conveniently shock nitromethane on a benchtop will be used with isotopically substituted and amine-sensitized nitromethane and in future will be combined with other spectroscopies such as infrared absorption. Multidisciplinary University Research Initiative (MURI), Office of Naval Research.

  9. Studies in shocked nitromethane through High dynamic range spectroscopy

    NASA Astrophysics Data System (ADS)

    Bhowmick, Mithun; Nissen, Erin; Matveev, Sergey; Dlott, Dana

    2017-06-01

    In this talk we describe a tabletop apparatus that can reproducibly drive shocks through tiny cells containing liquid arranged in an array for high-throughput shock compression studies. This talk will focus on nitromethane, a liquid reactive to shocks and capable of detonation. In our studies, a laser-driven ?yer plate was used to shock nitromethane, and a spectrometer with high dynamic range was employed to measure emission spectra from nanosecond to millisecond time scales. Typically, 50 single-shock experiments were performed per day with precisely controllable shock speeds below, above, or equal to the detonation shock speed. The emission spectra provide temperature histories using the grey body approximation. The ability to conveniently shock nitromethane on a benchtop was used with isotopically substituted and amine-sensitized nitromethane and in future will be combined with other spectroscopies such as infrared absorption. Multidisciplinary University Research Initiative (MURI), Office of Naval Research.

  10. Near real time determination of the magnetopause and bow shock shape and position

    NASA Astrophysics Data System (ADS)

    Kartalev, M. D.; Keremidarska, V. I.; Grigorov, K. G.; Romanov, D. K.

    2002-03-01

    We present a web based near real time (once in 90 minutes) automated running of our 3D magnetosheath gasdynamic numerical model. (http://geospace.nat.bg). The determination of the shape and position of the bow shock and the magnetopause is a part of the solution. This approach of the model is utilizing the realistic semi-empirical Tsyganenko magnetosphere model T96-01 for ensuring the pressure balance at the magnetopause. In this realization, we use a real time ACE data, averaged over a 6 minutes time interval.

  11. Numerical simulation of the transonic flow past the blunted wedge in the diverging channel

    NASA Astrophysics Data System (ADS)

    Ryabinin, Anatoly

    2018-05-01

    Positions of shock waves in the 2D channel with a blunted wedge are studied numerically. Solutions of the Euler equations are obtained with finite-volume solver SU2 for 15 variants of channel geometry. Numerical simulations reveal a considerable hysteresis in the shock wave position versus the supersonic Mach number given at the inlet. In the certain range of inlet Mach number, there are asymmetrical solutions of the equations. Small change in the geometry of the channel leads to shift of boundaries of the hysteresis range.

  12. Similar Intracellular Location and Stimulus Reactivity, but Differential Mobility of Tailless (Vicia faba) and Tailed Forisomes (Phaseolus vulgaris) in Intact Sieve Tubes.

    PubMed

    Furch, Alexandra C U; Buxa, Stefanie V; van Bel, Aart J E

    2015-01-01

    Sieve elements of legumes contain forisomes-fusiform protein bodies that are responsible for sieve-tube occlusion in response to damage or wound signals. Earlier work described the existence of tailless and tailed forisomes. This study intended to quantify and compare location and position of tailless (in Vicia faba) and tailed (in Phaseolus vulgaris) forisomes inside sieve elements and to assess their reactivity and potential mobility in response to a remote stimulus. Location (distribution within sieve elements) and position (forisome tip contacts) of more than altogether 2000 forisomes were screened in 500 intact plants by laser scanning confocal microscopy in the transmission mode. Furthermore, we studied the dispersion of forisomes at different locations in different positions and their positional behaviour in response to distant heat shocks. Forisome distribution turned out to be species-specific, whereas forisome positions at various locations were largely similar in bushbean (Phaseolus) and broadbean (Vicia). In general, the tailless forisomes had higher dispersion rates in response to heat shocks than the tailed forisomes and forisomes at the downstream (basal) end dispersed more frequently than those at the upstream end (apical). In contrast to the tailless forisomes that only oscillate in response to heat shocks, downstream-located tailed forisomes can cover considerable distances within sieve elements. This displacement was prevented by gentle rubbing of the leaf (priming) before the heat shock. Movement of these forisomes was also prohibited by Latrunculin A, an inhibitor of actin polymerization. The apparently active mobility of tailed forisomes gives credence to the idea that at least the latter forisomes are not free-floating, but connected to other sieve-element structures.

  13. Similar Intracellular Location and Stimulus Reactivity, but Differential Mobility of Tailless (Vicia faba) and Tailed Forisomes (Phaseolus vulgaris) in Intact Sieve Tubes

    PubMed Central

    van Bel, Aart J. E.

    2015-01-01

    Sieve elements of legumes contain forisomes—fusiform protein bodies that are responsible for sieve-tube occlusion in response to damage or wound signals. Earlier work described the existence of tailless and tailed forisomes. This study intended to quantify and compare location and position of tailless (in Vicia faba) and tailed (in Phaseolus vulgaris) forisomes inside sieve elements and to assess their reactivity and potential mobility in response to a remote stimulus. Location (distribution within sieve elements) and position (forisome tip contacts) of more than altogether 2000 forisomes were screened in 500 intact plants by laser scanning confocal microscopy in the transmission mode. Furthermore, we studied the dispersion of forisomes at different locations in different positions and their positional behaviour in response to distant heat shocks. Forisome distribution turned out to be species-specific, whereas forisome positions at various locations were largely similar in bushbean (Phaseolus) and broadbean (Vicia). In general, the tailless forisomes had higher dispersion rates in response to heat shocks than the tailed forisomes and forisomes at the downstream (basal) end dispersed more frequently than those at the upstream end (apical). In contrast to the tailless forisomes that only oscillate in response to heat shocks, downstream-located tailed forisomes can cover considerable distances within sieve elements. This displacement was prevented by gentle rubbing of the leaf (priming) before the heat shock. Movement of these forisomes was also prohibited by Latrunculin A, an inhibitor of actin polymerization. The apparently active mobility of tailed forisomes gives credence to the idea that at least the latter forisomes are not free-floating, but connected to other sieve-element structures. PMID:26624625

  14. New tip design and shock wave pattern of electrohydraulic probes for endoureteral lithotripsy.

    PubMed

    Vorreuther, R

    1993-02-01

    A new tip design of a 3.3F electrohydraulic probe for endoureteral lithotripsy was evaluated in comparison to a regular probe. The peak pressure, as well as the slope of the shock front, depend solely on the voltage. Increasing the capacity leads merely to broader pulses. A laser-like short high-pressure pulse has a greater impact on stone disintegration than a corresponding broader low-pressure pulse of the same energy. Using the regular probe, only positive pressures were obtained. Pressure distribution around the regular tip was approximately spherical, whereas the modified probe tip "beamed" the shock wave to a great extent. In addition, a negative-pressure half-cycle was added to the initial positive peak pressure, which resulted in a higher maximal pressure amplitude. The directed shock wave had a greater depth of penetration into a model stone. Thus, the ability of the new probe to destroy harder stones especially should be greater. The trauma to the ureter was reduced when touching the wall tangentially. No difference in the effect of the two probes was seen when placing the probe directly on the mucosa.

  15. MHD simulation of the shock wave event on October 24, 2003

    NASA Astrophysics Data System (ADS)

    Ogino, T.; Kajiwara, Y.; Nakao, M.; Park, K. S.; Fukazawa, K.; Yi, Y.

    2007-11-01

    A three-dimensional global MHD simulation of the interaction between the solar wind and the Earth's magnetosphere has been executed to study the shock wave event on space weather problem on October 24, 2003, when an abnormal operation happened in a satellite for Environment Observation Technology, ADEOS-II (Midori-II). Characteristic features of the event are the long duration of southward IMF, arrival of a strong shock wave, then large variation of IMF By from negative to positive for about 15 min duration. In the simulation, the shock wave compresses the magnetosphere for southward IMF and a hot plasma was injected around the geosynchronous orbit from plasma sheet. During the interval when IMF By changes from negative to positive, the magnitude of IMF extremely decreases to bring attenuation of magnetic reconnection. The open-closed boundary shrinks in the polar cap and the transient expansion of the magnetic field lines occurs to imply enhancement of particle precipitation. The reconnection site moves from dawn to dusk in the dayside magnetopause and a narrow cockscomb closed field region is formed in the high latitude tail.

  16. Shock Hugoniot and equations of states of water, castor oil, and aqueous solutions of sodium chloride, sucrose and gelatin

    NASA Astrophysics Data System (ADS)

    Gojani, A. B.; Ohtani, K.; Takayama, K.; Hosseini, S. H. R.

    2016-01-01

    This paper reports a result of experiments for the determination of reliable shock Hugoniot curves of liquids, in particular, at relatively low pressure region, which are needed to perform precise numerical simulations of shock wave/tissue interaction prior to the development of shock wave related therapeutic devices. Underwater shock waves were generated by explosions of laser ignited 10 mg silver azide pellets, which were temporally and spatially well controlled. Measuring temporal variation of shock velocities and over-pressures in caster oil, aqueous solutions of sodium chloride, sucrose and gelatin with various concentrations, we succeeded to determine shock Hugoniot curves of these liquids and hence parameters describing Tait type equations of state.

  17. Micro-Ramp Flow Control for Oblique Shock Interactions: Comparisons of Computational and Experimental Data

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie M.; Reich, David B.; O'Connor, Michael B.

    2010-01-01

    Computational fluid dynamics was used to study the effectiveness of micro-ramp vortex generators to control oblique shock boundary layer interactions. Simulations were based on experiments previously conducted in the 15 x 15 cm supersonic wind tunnel at NASA Glenn Research Center. Four micro-ramp geometries were tested at Mach 2.0 varying the height, chord length, and spanwise spacing between micro-ramps. The overall flow field was examined. Additionally, key parameters such as boundary-layer displacement thickness, momentum thickness and incompressible shape factor were also examined. The computational results predicted the effects of the micro-ramps well, including the trends for the impact that the devices had on the shock boundary layer interaction. However, computing the shock boundary layer interaction itself proved to be problematic since the calculations predicted more pronounced adverse effects on the boundary layer due to the shock than were seen in the experiment.

  18. Micro-Ramp Flow Control for Oblique Shock Interactions: Comparisons of Computational and Experimental Data

    NASA Technical Reports Server (NTRS)

    Hirt, Stephanie M.; Reich, David B.; O'Connor, Michael B.

    2012-01-01

    Computational fluid dynamics was used to study the effectiveness of micro-ramp vortex generators to control oblique shock boundary layer interactions. Simulations were based on experiments previously conducted in the 15- by 15-cm supersonic wind tunnel at the NASA Glenn Research Center. Four micro-ramp geometries were tested at Mach 2.0 varying the height, chord length, and spanwise spacing between micro-ramps. The overall flow field was examined. Additionally, key parameters such as boundary-layer displacement thickness, momentum thickness and incompressible shape factor were also examined. The computational results predicted the effects of the microramps well, including the trends for the impact that the devices had on the shock boundary layer interaction. However, computing the shock boundary layer interaction itself proved to be problematic since the calculations predicted more pronounced adverse effects on the boundary layer due to the shock than were seen in the experiment.

  19. Magneto-rheological fluid shock absorbers for HMMWV

    NASA Astrophysics Data System (ADS)

    Gordaninejad, Faramarz; Kelso, Shawn P.

    2000-04-01

    This paper presents the development and evaluation of a controllable, semi-active magneto-rheological fluid (MRF) shock absorber for a High Mobility Multi-purpose Wheeled Vehicle (HMMWV). The University of Nevada, Reno (UNR) MRF damper is tailored for structures and ground vehicles that undergo a wide range of dynamic loading. It also has the capability for unique rebound and compression characteristics. The new MRF shock absorber emulates the original equipment manufacturer (OEM) shock absorber behavior in passive mode, and provides a wide controllable damping force range. A theoretical study is performed to evaluate the UNR MRF shock absorber. The Bingham plastic theory is employed to model the nonlinear behavior of the MR fluid. A fluid-mechanics-based theoretical model along with a three-dimensional finite element electromagnetic analysis is utilized to predict the MRF damper performance. The theoretical results are compared with experimental data and are demonstrated to be in excellent agreement.

  20. Tactical Damage Control Resuscitation.

    PubMed

    Fisher, Andrew D; Miles, Ethan A; Cap, Andrew P; Strandenes, Geir; Kane, Shawn F

    2015-08-01

    Recently the Committee on Tactical Combat Casualty Care changed the guidelines on fluid use in hemorrhagic shock. The current strategy for treating hemorrhagic shock is based on early use of components: Packed Red Blood Cells (PRBCs), Fresh Frozen Plasma (FFP) and platelets in a 1:1:1 ratio. We suggest that lack of components to mimic whole blood functionality favors the use of Fresh Whole Blood in managing hemorrhagic shock on the battlefield. We present a safe and practical approach for its use at the point of injury in the combat environment called Tactical Damage Control Resuscitation. We describe pre-deployment preparation, assessment of hemorrhagic shock, and collection and transfusion of fresh whole blood at the point of injury. By approaching shock with goal-directed therapy, it is possible to extend the period of survivability in combat casualties. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  1. Experimental Investigation of Normal Shock Boundary-Layer Interaction with Hybrid Flow Control

    NASA Technical Reports Server (NTRS)

    Vyas, Manan A.; Hirt, Stefanie M.; Anderson, Bernhard H.

    2012-01-01

    Hybrid flow control, a combination of micro-ramps and micro-jets, was experimentally investigated in the 15x15 cm Supersonic Wind Tunnel (SWT) at the NASA Glenn Research Center. Full factorial, a design of experiments (DOE) method, was used to develop a test matrix with variables such as inter-ramp spacing, ramp height and chord length, and micro-jet injection flow ratio. A total of 17 configurations were tested with various parameters to meet the DOE criteria. In addition to boundary-layer measurements, oil flow visualization was used to qualitatively understand shock induced flow separation characteristics. The flow visualization showed the normal shock location, size of the separation, path of the downstream moving counter-rotating vortices, and corner flow effects. The results show that hybrid flow control demonstrates promise in reducing the size of shock boundary-layer interactions and resulting flow separation by means of energizing the boundary layer.

  2. Fringe localization requirements for three-dimensional flow visualization of shock waves in diffuse-illumination double-pulse holographic interferometry

    NASA Technical Reports Server (NTRS)

    Decker, A. J.

    1982-01-01

    A theory of fringe localization in rapid-double-exposure, diffuse-illumination holographic interferometry was developed. The theory was then applied to compare holographic measurements with laser anemometer measurements of shock locations in a transonic axial-flow compressor rotor. The computed fringe localization error was found to agree well with the measured localization error. It is shown how the view orientation and the curvature and positional variation of the strength of a shock wave are used to determine the localization error and to minimize it. In particular, it is suggested that the view direction not deviate from tangency at the shock surface by more than 30 degrees.

  3. Time-dependent diffusive acceleration of test particles at shocks

    NASA Astrophysics Data System (ADS)

    Drury, L. O'C.

    1991-07-01

    A theoretical description is developed for the acceleration of test particles at a steady plane nonrelativistic shock. The mean and the variance of the acceleration-time distribution are expressed analytically for the condition under which the diffusion coefficient is arbitrarily dependent on position and momentum. The formula for an acceleration rate with arbitrary spatial variation in the diffusion coefficient developed by Drury (1987) is supplemented by a general theory of time dependence. An approximation scheme is developed by means of the analysis which permits the description of the spectral cutoff resulting from the finite shock age. The formulas developed in the analysis are also of interest for analyzing the observations of heliospheric shocks made from spacecraft.

  4. Energetic particle diffusion coefficients upstream of quasi-parallel interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Tan, L. C.; Mason, G. M.; Gloeckler, G.; Ipavich, F. M.

    1989-01-01

    The properties of about 30 to 130-keV/e protons and alpha particles upstream of six quasi-parallel interplanetary shocks that passed by the ISEE 3 spacecraft during 1978-1979 were analyzed, and the values for the upstream energegic particle diffusion coefficient, kappa, in these six events were deduced for a number of energies and upstream positions. These observations were compared with predictions of Lee's (1983) theory of shock acceleration. It was found that the observations verified the prediction of the A/Q dependence (where A and Q are the particle atomic mass and ionization state, respectively) of kappa for alpha and proton particles upstream of the quasi-parallel shocks.

  5. Predictors of septic shock in obstructive acute pyelonephritis.

    PubMed

    Tambo, Mitsuhiro; Okegawa, Takatsugu; Shishido, Toshihide; Higashihara, Eiji; Nutahara, Kikuo

    2014-06-01

    Acute pyelonephritis (APN) with obstructive uropathy is not uncommon and often causes serious conditions including sepsis and septic shock. We assessed the risk factors for septic shock in patients with obstructive APN associated with upper urinary tract calculi. We retrospectively studied 69 patients with obstructive APN associated with upper urinary tract calculi who were admitted to our hospital. Emergency drainage for decompression of the renal collecting system was performed for empirical treatment in cases of failure of initial treatment and for severe cases. We assessed the risk factors for septic shock by multivariate logistic regression analysis. Overall, 45 patients (65.2 %) underwent emergency drainage and 23 (33.3 %) patients showed septic shock. Poor performance status and the presence of diabetes mellitus (DM) in the septic shock group were more common than in the non-septic shock group (p = 0.012 and p = 0.011, respectively). The platelet count and serum albumin level in the septic shock group were significantly lower than in the non-septic shock group (p = 0.002 and p = 0.003, respectively). Positive rates of midstream urine culture and blood culture in the septic shock group were significantly higher than in the non-septic shock group (p = 0.022 and p = 0.001, respectively). Multivariate analysis showed that decreases in the platelet count (OR 5.43, p = 0.014) and serum albumin level (OR 5.88, p = 0.023) were independent risk factors for septic shock. Patients with obstructive APN associated with upper urinary tract calculi who have decreases in platelet count and serum albumin level should be treated with caution against the development of septic shock.

  6. Effect of mode of hydrocortisone administration on glycemic control in patients with septic shock: a prospective randomized trial.

    PubMed

    Loisa, Pekka; Parviainen, Ilkka; Tenhunen, Jyrki; Hovilehto, Seppo; Ruokonen, Esko

    2007-01-01

    Low-dose hydrocortisone treatment is widely accepted therapy for the treatment of vasopressor-dependent septic shock. The question of whether corticosteroids should be given to septic shock patients by continuous or by bolus infusion is still unanswered. Hydrocortisone induces hyperglycemia and it is possible that continuous hydrocortisone infusion would reduce the fluctuations in blood glucose levels and that tight blood glucose control could be better achieved with this approach. In this prospective randomized study, we compared the blood glucose profiles, insulin requirements, amount of nursing workload needed, and shock reversal in 48 septic shock patients who received hydrocortisone treatment either by bolus or by continuous infusion with equivalent dose (200 mg/day). Duration of hydrocortisone treatment was five days. The mean blood glucose levels were similar in the two groups, but the number of hyperglycemic episodes was significantly higher in those patients who received bolus therapy (15.7 +/- 8.5 versus 10.5 +/- 8.6 episodes per patient, p = 0.039). Also, more changes in insulin infusion rate were needed to maintain strict normoglycemia in the bolus group (4.7 +/- 2.2 versus 3.4 +/- 1.9 adjustments per patient per day, p = 0.038). Hypoglycemic episodes were rare in both groups. No difference was seen in shock reversal. Strict normoglycemia is more easily achieved if the hydrocortisone therapy is given to septic shock patients by continuous infusion. This approach also reduces nursing workload needed to maintain tight blood glucose control.

  7. Estimates of Tibial Shock Magnitude in Men and Women at the Start and End of a Military Drill Training Program.

    PubMed

    Rice, Hannah M; Saunders, Samantha C; McGuire, Stephen J; O'Leary, Thomas J; Izard, Rachel M

    2018-03-26

    Foot drill is a key component of military training and is characterized by frequent heel stamping, likely resulting in high tibial shock magnitudes. Higher tibial shock during running has previously been associated with risk of lower limb stress fractures, which are prevalent among military populations. Quantification of tibial shock during drill training is, therefore, warranted. This study aimed to provide estimates of tibial shock during military drill in British Army Basic training. The study also aimed to compare values between men and women, and to identify any differences between the first and final sessions of training. Tibial accelerometers were secured on the right medial, distal shank of 10 British Army recruits (n = 5 men; n = 5 women) throughout a scheduled drill training session in week 1 and week 12 of basic military training. Peak positive accelerations, the average magnitude above given thresholds, and the rate at which each threshold was exceeded were quantified. Mean (SD) peak positive acceleration was 20.8 (2.2) g across all sessions, which is considerably higher than values typically observed during high impact physical activity. Magnitudes of tibial shock were higher in men than women, and higher in week 12 compared with week 1 of training. This study provides the first estimates of tibial shock magnitude during military drill training in the field. The high values suggest that military drill is a demanding activity and this should be considered when developing and evaluating military training programs. Further exploration is required to understand the response of the lower limb to military drill training and the etiology of these responses in the development of lower limb stress fractures.

  8. The Shock and Vibration Bulletin. Part 3. Invited Papers, Pyrotechnic Shock, Pyrotechnic Shock Workshop

    DTIC Science & Technology

    1986-08-01

    Technology Laboratory, Watertown, MA AIR FORCE BASIC RESEARCH IN DYNAMICS AND CONTROL OF LARGE SPACE STRUCTURES Anthony K. Amos, Boiling Air Force Base...Engineering, Watchun$, NJ TEMPERATURE SHIFT CONSIDERATIONS FOR DAMPING MATERIALS L. Rogers, Air Force Wright Aeronautictl Laboratories, Wright...INDUCED CAVITY ACOUSTICS L.L. Shaw,. Air Force Wr4ht Aeroaauical Laborawrics, Wri•ht-Paucswon AFB. OH i 4i SESSION CHAIRMEN AND COCHAIRMEN 56th Shock and

  9. The properties and causes of rippling in quasi-perpendicular collisionless shock fronts

    NASA Astrophysics Data System (ADS)

    Lowe, R. E.; Burgess, D.

    2003-03-01

    The overall structure of quasi-perpendicular, high Mach number collisionless shocks is controlled to a large extent by ion reflection at the shock ramp. Departure from a strictly one-dimensional structure is indicated by simulation results showing that the surface of such shocks is rippled, with variations in the density and all field components. We present a detailed analysis of these shock ripples, using results from a two-dimensional hybrid (particle ions, electron fluid) simulation. The process that generates the ripples is poorly understood, because the large gradients at the shock ramp make it difficult to identify instabilities. Our analysis reveals new features of the shock ripples, which suggest the presence of a surface wave mode dominating the shock normal magnetic field component of the ripples, as well as whistler waves excited by reflected ions.

  10. Shock waves and shock tubes; Proceedings of the Fifteenth International Symposium, Berkeley, CA, July 28-August 2, 1985

    NASA Technical Reports Server (NTRS)

    Bershader, D. (Editor); Hanson, R. (Editor)

    1986-01-01

    A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles.

  11. Shock waves and shock tubes; Proceedings of the Fifteenth International Symposium, Berkeley, CA, July 28-August 2, 1985

    NASA Astrophysics Data System (ADS)

    Bershader, D.; Hanson, R.

    A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles.

  12. Essays on the behavior of the oil market and OPEC

    NASA Astrophysics Data System (ADS)

    Algudhea, Salim

    This dissertation consists of three essays. The first essay is mainly concerned with investigating the risk-responsive behavior of OPEC members. Economic theory suggests that producers respond to the risk of volatile price by lowering production level. In the case of OPEC, the risk of the volatility in the price of crude oil does not seem to be a key determinant in the production decision-making process. Engineering constraints, data frequency, and political consideration may be the main causes of such a result. In the second essay, we tested the presence of the asymmetric adjustment in the cheating behavior as a result of crude oil price shocks. We utilize a set of cointegration and error correction methods that do not assume a linear adjustment to test whether cheaters within OPEC respond more to positive or negative crude oil price shocks. We conclude that cheaters respond more to negative shocks than positive shocks in oil price. The inelastic nature of demand for oil seems to play a crucial role in such asymmetric behavior. When there is a negative price shock, OPEC producers compensate for the loss in revenue by overproducing (i.e. cheat). Yet, if there is a positive shock in the price of crude oil, OPEC producers have less incentive to overproduce because of the inelastic demand for oil. The third essay is concerned with testing for the asymmetric adjustment in gasoline prices in the U.S. We consider a Momentum Threshold Autoregressive (MTAR) process to test for the asymmetric adjustment in all of the possible stages that a gallon of gasoline goes through in order to find the source of asymmetry. Then, we examine the dynamics of gasoline prices using asymmetric error correction models based on the MTAR specifications. We find the asymmetric adjustment present in all stages. The asymmetry in the retail stage seems to be the result of insufficient demand faced by retailers.

  13. The solar wind interaction with Mars - Mariner 4, Mars 2, Mars 3, Mars 5, and Phobos 2 observations of bow shock position and shape

    NASA Technical Reports Server (NTRS)

    Slavin, J. A.; Schwingenschuh, K.; Riedler, W.; Eroshenko, E.

    1991-01-01

    An aggregate Mars bow shock data set using Mariner 4, Mars 2, Mars 3, Mars 5, and Phobos 2 observations has been analyzed. The results support the earlier conclusion that the mean distance to the subsolar shock at Mars is nearly 1.5 planetary radii, from which gas dynamic models predict an obstacle altitude of 500 km. The Martian bow shock does not appear to vary significantly in shape or altitude with the phase of the solar cycle. The unusually distant dayside bow shock crossings reported by Mars 2 and 3 also appear in the Phobos 3 observations, suggesting that the dayside obstacle can on rare occasions reach altitudes over 1000 km. The Martian bow shock differs from that of Venus in that its mean altitude is greater, it lacks a strong solar cycle variation, and its location is far more variable, including the occurrence of strong bow shocks over the dayside hemisphere at distances at least as great as the orbit of Phobos 2, i.e., 2.8 Mars radii.

  14. Gamma-Ray Burst Spectral Indices: Evidence for Deceleration of Synchrotron Shocks

    NASA Technical Reports Server (NTRS)

    Preece, R. D.; Briggs, M. S.; Giblin, T.; Mallozzi, R. S.; Pendleton, G. N.; Paciesas, W. S.; Band, D. L.

    2000-01-01

    The current scenario for gamma-ray bursts (GRBs) involves internal shocks for the prompt GRB emission phase and external shocks for the afterglow phase. Assuming synchrotron emission from energetic shocked electrons. GRB spectra observed with a low-energy power-law spectral index greater than -2/3 (for positive photon number indices E(sup alpha) indicate a problem with this model. The remaining spectra can test the synchrotron shock model prediction that the emission from a single distribution of electrons, cooling rapidly, is responsible for both the low-energy and high-energy power-low portions of the spectra. We find that the inferred relationship between the two spectral indices of observed GRB spectra is inconsistent with the constraints from the model, posing another problem for the synchrotron shock emission model. To overcome this problem, we describe a model where the average of -1, rather than the value of -3/2 predicted for cooling electrons. Situations where this might arise have been discussed in other contexts, and involve deceleration of the internal shocks during the GRB phase.

  15. Vasopressin compared with norepinephrine augments the decline of plasma cytokine levels in septic shock.

    PubMed

    Russell, James A; Fjell, Chris; Hsu, Joseph L; Lee, Terry; Boyd, John; Thair, Simone; Singer, Joel; Patterson, Andrew J; Walley, Keith R

    2013-08-01

    Changes in plasma cytokine levels may predict mortality, and therapies (vasopressin versus norepinephrine) could change plasma cytokine levels in early septic shock. Our hypotheses were that changes in plasma cytokine levels over 24 hours differ between survivors and nonsurvivors, and that there are different effects of vasopressin and norepinephrine on plasma cytokine levels in septic shock. We studied 394 patients in a randomized, controlled trial of vasopressin versus norepinephrine in septic shock. We used hierarchical clustering and principal components analysis of the baseline cytokine concentrations to subgroup cytokines; we then compared survivors to nonsurvivors (28 d) and compared vasopressin- versus norepinephrine-induced changes in cytokine levels over 24 hours. A total of 39 plasma cytokines were measured at baseline and at 24 hours. Hierarchical clustering and principal components analysis grouped cytokines similarly. Survivors (versus nonsurvivors) had greater decreases of overall cytokine levels (P < 0.001). Vasopressin decreased overall 24-hour cytokine concentration compared with norepinephrine (P = 0.037). In less severe septic shock, the difference in plasma cytokine reduction over 24 hours between survivors and nonsurvivors was less pronounced than that seen in more severe septic shock. Furthermore, vasopressin decreased interferon-inducible protein 10 and granulocyte colony-stimulating factor more than did norepinephrine in less severe septic shock, whereas vasopressin decreased granulocyte-macrophage colony-stimulating factor in patients who had more severe shock. Survivors of septic shock had greater decreases of cytokines, chemokines and growth factors in early septic shock. Vasopressin decreased 24-hour plasma cytokine levels more than did norepinephrine. The vasopressin-associated decrease of cytokines differed according to severity of shock. Clinical trial registered with www.controlled-trials.com (ISRCTN94845869).

  16. Septic shock sera containing circulating histones induce dendritic cell-regulated necrosis in fatal septic shock patients.

    PubMed

    Raffray, Loic; Douchet, Isabelle; Augusto, Jean-Francois; Youssef, Jihad; Contin-Bordes, Cecile; Richez, Christophe; Duffau, Pierre; Truchetet, Marie-Elise; Moreau, Jean-Francois; Cazanave, Charles; Leroux, Lionel; Mourrissoux, Gaelle; Camou, Fabrice; Clouzeau, Benjamin; Jeannin, Pascale; Delneste, Yves; Gabinski, Claude; Guisset, Olivier; Lazaro, Estibaliz; Blanco, Patrick

    2015-04-01

    Innate immune system alterations, including dendritic cell loss, have been reproducibly observed in patients with septic shock and correlated to adverse outcomes or nosocomial infections. The goal of this study is to better understand the mechanisms behind this observation in order to better assess septic shock pathogenesis. Prospective, controlled experimental study. Research laboratory at an academic medical center. The study enrolled 71 patients, 49 with septic shock and 22 with cardiogenic shock. Seventeen healthy controls served as reference. In vitro monocyte-derived dendritic cells were generated from healthy volunteers. Sera were assessed for their ability to promote in vitro dendritic cell death through flow cytometry detection in each group of patients. The percentage of apoptotic or necrotic dendritic cells was evaluated by annexin-V and propidium iodide staining. We observed that only patients with septic shock and not patients with pure cardiogenic shock were characterized by a rapid and profound loss of circulating dendritic cells. In vitro analysis revealed that sera from patients with septic shock induced higher dendritic cell death compared to normal sera or cardiogenic shock (p<0.005). Sera from surviving patients induced dendritic cell death through a caspase-dependent apoptotic pathway, whereas sera from nonsurviving patients induced dendritic cell-regulated necrosis. Dendritic cell necrosis was not due to necroptosis but was dependent of the presence of circulating histone. The toxicity of histones toward dendritic cell could be prevented by recombinant human activated protein C. Finally, we observed a direct correlation between the levels of circulating histones in patients and the ability of the sera to promote dendritic cell-regulated necrosis. The study demonstrates a differential mechanism of dendritic cell death in patients with septic shock that is dependent on the severity of the disease.

  17. Molecular dynamics simulations of ejecta production from sinusoidal tin surfaces under supported and unsupported shocks

    NASA Astrophysics Data System (ADS)

    Wu, Bao; Wu, FengChao; Zhu, YinBo; Wang, Pei; He, AnMin; Wu, HengAn

    2018-04-01

    Micro-ejecta, an instability growth process, occurs at metal/vacuum or metal/gas interface when compressed shock wave releases from the free surface that contains surface defects. We present molecular dynamics (MD) simulations to investigate the ejecta production from tin surface shocked by supported and unsupported waves with pressures ranging from 8.5 to 60.8 GPa. It is found that the loading waveforms have little effect on spike velocity while remarkably affect the bubble velocity. The bubble velocity of unsupported shock loading remains nonzero constant value at late time as observed in experiments. Besides, the time evolution of ejected mass in the simulations is compared with the recently developed ejecta source model, indicating the suppressed ejection of unmelted or partial melted materials. Moreover, different reference positions are chosen to characterize the amount of ejecta under different loading waveforms. Compared with supported shock case, the ejected mass of unsupported shock case saturates at lower pressure. Through the analysis on unloading path, we find that the temperature of tin sample increases quickly from tensile stress state to zero pressure state, resulting in the melting of bulk tin under decaying shock. Thus, the unsupported wave loading exhibits a lower threshold pressure causing the solid-liquid phase transition on shock release than the supported shock loading.

  18. Diffusive Cosmic-Ray Acceleration at Shock Waves of Arbitrary Speed with Magnetostatic Turbulence. I. General Theory and Correct Nonrelativistic Speed Limit

    NASA Astrophysics Data System (ADS)

    Schlickeiser, R.; Oppotsch, J.

    2017-12-01

    The analytical theory of diffusive acceleration of cosmic rays at parallel stationary shock waves of arbitrary speed with magnetostatic turbulence is developed from first principles. The theory is based on the diffusion approximation to the gyrotropic cosmic-ray particle phase-space distribution functions in the respective rest frames of the up- and downstream medium. We derive the correct cosmic-ray jump conditions for the cosmic-ray current and density, and match the up- and downstream distribution functions at the position of the shock. It is essential to account for the different particle momentum coordinates in the up- and downstream media. Analytical expressions for the momentum spectra of shock-accelerated cosmic rays are calculated. These are valid for arbitrary shock speeds including relativistic shocks. The correctly taken limit for nonrelativistic shock speeds leads to a universal broken power-law momentum spectrum of accelerated particles with velocities well above the injection velocity threshold, where the universal power-law spectral index q≃ 2-{γ }1-4 is independent of the flow compression ratio r. For nonrelativistic shock speeds, we calculate for the first time the injection velocity threshold, settling the long-standing injection problem for nonrelativistic shock acceleration.

  19. Note: A contraction channel design for planar shock wave enhancement

    NASA Astrophysics Data System (ADS)

    Zhan, Dongwen; Li, Zhufei; Yang, Jianting; Zhu, Yujian; Yang, Jiming

    2018-05-01

    A two-dimensional contraction channel with a theoretically designed concave-oblique-convex wall profile is proposed to obtain a smooth planar-to-planar shock transition with shock intensity amplification that can easily overcome the limitations of a conventional shock tube. The concave segment of the wall profile, which is carefully determined based on shock dynamics theory, transforms the shock shape from an initial plane into a cylindrical arc. Then the level of shock enhancement is mainly contributed by the cylindrical shock convergence within the following oblique segment, after which the cylindrical shock is again "bent" back into a planar shape through the third section of the shock dynamically designed convex segment. A typical example is presented with a combination of experimental and numerical methods, where the shape of transmitted shock is almost planar and the post-shock flow has no obvious reflected waves. A quantitative investigation shows that the difference between the designed and experimental transmitted shock intensities is merely 1.4%. Thanks to its advantage that the wall profile design is insensitive to initial shock strength variations and high-temperature gas effects, this method exhibits attractive potential as an efficient approach to a certain, controllable, extreme condition of a strong shock wave with relatively uniform flow behind.

  20. First simultaneous measurements of waves generated at the bow shock in the solar wind, the magnetosphere and on the ground

    NASA Astrophysics Data System (ADS)

    Clausen, L. B. N.; Yeoman, T. K.; Fear, R. C.; Behlke, R.; Lucek, E. A.; Engebretson, M. J.

    2009-01-01

    On 5 September 2002 the Geotail satellite observed the cone angle of the Interplanetary Magnetic Field (IMF) change to values below 30° during a 56 min interval between 18:14 and 19:10 UT. This triggered the generation of upstream waves at the bow shock, 13 RE downstream of the position of Geotail. Upstream generated waves were subsequently observed by Geotail between 18:30 and 18:48 UT, during times the IMF cone angle dropped below values of 10°. At 18:24 UT all four Cluster satellites simultaneously observed a sudden increase in wave power in all three magnetic field components, independent of their position in the dayside magnetosphere. We show that the 10 min delay between the change in IMF direction as observed by Geotail and the increase in wave power observed by Cluster is consistent with the propagation of the IMF change from the Geotail position to the bow shock and the propagation of the generated waves through the bow shock, magnetosheath and magnetosphere towards the position of the Cluster satellites. We go on to show that the wave power recorded by the Cluster satellites in the component containing the poloidal and compressional pulsations was broadband and unstructured; the power in the component containing toroidal oscillations was structured and shows the existence of multi-harmonic Alfvénic continuum waves on field lines. Model predictions of these frequencies fit well with the observations. An increase in wave power associated with the change in IMF direction was also registered by ground based magnetometers which were magnetically conjunct with the Cluster satellites during the event. To the best of our knowledge we present the first simultaneous observations of waves created by backstreaming ions at the bow shock in the solar wind, the dayside magnetosphere and on the ground.

  1. Superthermal (0.5- 100 keV) Electrons near the ICME-driven shocks

    NASA Astrophysics Data System (ADS)

    Yang, L.; Wang, L.; Li, G.; Tao, J.; He, J.; Tu, C.

    2016-12-01

    We present a survey of the 0.5 - 100 keV electrons associated with ICME-driven shocks at 1 AU, using the WIND/3DP electron measurements from 1995 to 2014. We select 66 good ICME-driven shocks, and use the "Rankine-Hugoniot" shock fitting technique to obtain the shock normal, shock velocity Vs, shock compression ratio r and magnetosonic Mach number Ms. We average the electron data in the 1-hour interval immediately after the shock front to obtain the sheath electron fluxes and in the 4-hour quiet-time interval before the shock to obtain the pre-event electron fluxes. Then we subtract the pre-event electron fluxes from the sheath electron fluxes to obtain the enhanced electron fluxes at the shock. We find that the enhanced electron fluxes are positively correlated with Vs and Ms, and generally fit well to a double power-law spectrum, J E-β. At 0.5 - 2 keV, the fitted spectral index β1 ranges from 2.1 to 5.9, negatively correlated with r and Ms. At 2 - 100 keV, the fitted index β2 is smaller than β1, with values ( 1.9 to 3.4) similar to the spectral indexes of quiet-time superhalo electrons in the solar wind. β2 shows no obvious correlation with r and Ms. Neither of β1 or β2 is in agreement with the diffusive shock theoretical predication. These results suggest that electron acceleration by interplanetary shocks may be more significant at a few keVs and the interplanetary shock acceleration can contribute to the production of solar wind superhalo electrons. However, a revision of the diffusive shock acceleration theory would be needed for the electron acceleration.

  2. Shock wave-enhanced neovascularization at the tendon-bone junction: an experiment in dogs.

    PubMed

    Wang, Ching-Jen; Huang, Hsuan-Ying; Pai, Chun-Hwan

    2002-01-01

    The purpose of the research was to study the phenomenon of neovascularization at the Achilles tendon-bone junction after low-energy shock wave application. The study was performed on eight mongrel dogs. The control specimens were obtained from the medial one-third of the right Achilles tendon-bone unit before shock wave application. Low-energy shock waves of 1000 impulses at 14 kV (equivalent to 0.18 mJ/mm2 energy flux density) were applied to the right Achilles bone-tendon junction. Biopsies were taken from the middle one-third of the Achilles tendon-bone junction at 4 weeks and from the lateral one-third at 8 weeks, respectively, after shock wave application. The features of microscopic examination included the number of new capillaries and muscularized vessels, the presence and arrangements of myofibroblasts, and the changes in bone. New capillary and muscularized vessels were seen in the study specimens which were obtained in 4 weeks and in 8 weeks after shock wave application, but none were seen in the control specimens before shock wave application. There was a considerable geographic variation in the number of new vessels within the same specimen. Myofibroblasts were not seen in the control specimens. Myofibroblasts with haphazard appearance and intermediate orientation fibers were seen in all study specimens obtained at 4 weeks and predominantly intermediate orientation myofibroblast fibers at 8 weeks. There were no changes in bone matrix, osteocyte activity, and vascularization within the bone. Two pathologists reviewed each specimen and concurrence was achieved in all cases. The results of the study suggested that low-energy shock wave enhanced the phenomenon of neovascularization at the bone-tendon junction in dogs.

  3. [The "Würzburg T". A concept for optimization of early multiple trauma care in the emergency department].

    PubMed

    Kuhnigk, H; Steinhübel, B; Keil, T; Roewer, N

    2004-07-01

    Anaesthesia management, radiological diagnostic and the concept of damage control surgery should be combined in the resuscitation room. Defined clinical targets and their realisation are a CT-scan and complete damage control surgery in the shock room. Furthermore minimised patient transfer and positioning with continuous access to the head, upper parts of the body and anaesthesia machine should be realised during diagnostic procedures. Based on a carbon-slide fixed on a turntable and innovative alignment of diagnostic devices, a three phase treatment algorithm has been established. Phase A includes primary survey, anaesthetic management and ultrasound examination. Following a turn of the table conventional x-ray diagnostic is assessed in phase B. Tracks for the slide enable immediate transfer to a spiral CT-scan without additional patient positioning (phase C). Following complete CT-scan rearrangement of the table to phase A facilitates immediate damage control surgery. To accelerate device operation and treatment the integrated anaesthesia workstation is ceiling-mounted and manoeuvres close to the patient. This concept realizes complete diagnostic procedures and damage control surgery without time consuming patient transfer or rearrangement.

  4. System for determining position of normal shock in supersonic flow

    NASA Technical Reports Server (NTRS)

    Iverson, Jr., Donald G. (Inventor); Daiber, Troy D. (Inventor)

    1991-01-01

    Light from a plurality of light emitting diodes is transmitted through optical cables (12) to a lens system. The lenses (56, 58) expand and collimate the light and project it in a sheet (16) across the supersonic inlet of an aircraft power plant perpendicular to incoming airflow. A normal shock bends a portion of the sheet of light (16). A linear array of a multiplicity of optical fiber ends collects discrete samples of light. The samples are processed and compared to a predetermined profile to determine the shock location.

  5. The constancy of the ratio of the molecular hydrogen lines at 3.8 microns in Orion

    NASA Technical Reports Server (NTRS)

    Brand, P. W. J. L.; Toner, M. P.; Geballe, T. R.; Webster, A. S.; Williams, P. M.; Burton, M. G.

    1989-01-01

    The 1-0 O(7) and 0-0 S(13) lines of H2, at 3.807 and 3.846 microns, have been mapped over the region of the Orion molecular outflow. The intensity ratio of these lines is found to be independent of position in the outflow. From this it is inferred that the structure of the shocks and their cooling flows in Orion may be more akin to hydrodynamic shocks than the low-temperature C-shocks that are currently favored.

  6. Crack propagation in functionally graded strip under thermal shock

    NASA Astrophysics Data System (ADS)

    Ivanov, I. V.; Sadowski, T.; Pietras, D.

    2013-09-01

    The thermal shock problem in a strip made of functionally graded composite with an interpenetrating network micro-structure of Al2O3 and Al is analysed numerically. The material considered here could be used in brake disks or cylinder liners. In both applications it is subjected to thermal shock. The description of the position-dependent properties of the considered functionally graded material are based on experimental data. Continuous functions were constructed for the Young's modulus, thermal expansion coefficient, thermal conductivity and thermal diffusivity and implemented as user-defined material properties in user-defined subroutines of the commercial finite element software ABAQUS™. The thermal stress and the residual stress of the manufacturing process distributions inside the strip are considered. The solution of the transient heat conduction problem for thermal shock is used for crack propagation simulation using the XFEM method. The crack length developed during the thermal shock is the criterion for crack resistance of the different graduation profiles as a step towards optimization of the composition gradient with respect to thermal shock sensitivity.

  7. The interplanetary shock of September 24, 1998: Arrival at Earth

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Wang, Y. L.; Raeder, J.; Tokar, R. L.; Smith, C. W.; Ogilvie, K. W.; Lazarus, A. J.; Lepping, R. P.; Szabo, A.; Kawano, H.; Mukai, T.; Savin, S.; Yermolaev, Y. I.; Zhou, X.-Y.; Tsurutani, B. T.

    2000-11-01

    At close to 2345 UT on September 24, 1998, the magnetosphere was suddenly compressed by the passage of an interplanetary shock. In order to properly interpret the magnetospheric events triggered by the arrival of this shock, we calculate the orientation of the shock, its velocity, and its estimated time of arrival at the nose of the magnetosphere. Our best fit shock normal has an orientation of (-0.981 -0.157 -0.112) in solar ecliptic coordinates, a speed of 769 km/s, and an arrival time of 2344:19 at the magnetopause at 10 RE. Since measurements of the solar wind and interplanetary magnetic field are available from multiple spacecraft, we can compare several different techniques of shock-normal determination. Of the single spacecraft techniques the magnetic coplanarity solution is most accurate and the mixed mode solution is of lesser accuracy. Uncertainty in the timing and location of the IMP 8 spacecraft limits the accuracy of solutions using the time of arrival at the position of IMP 8.

  8. Energetic storm particle events in coronal mass ejection-driven shocks

    NASA Astrophysics Data System (ADS)

    Mäkelä, P.; Gopalswamy, N.; Akiyama, S.; Xie, H.; Yashiro, S.

    2011-08-01

    We investigate the variability in the occurrence of energetic storm particle (ESP) events associated with shocks driven by coronal mass ejections (CMEs). The interplanetary shocks were detected during the period from 1996 to 2006. First, we analyze the CME properties near the Sun. The CMEs with an ESP-producing shock are faster ($\\langle$VCME$\\rangle$ = 1088 km/s) than those driving shocks without an ESP event ($\\langle$VCME$\\rangle$ = 771 km/s) and have a larger fraction of halo CMEs (67% versus 38%). The Alfvénic Mach numbers of shocks with an ESP event are on average 1.6 times higher than those of shocks without. We also contrast the ESP event properties and frequency in shocks with and without a type II radio burst by dividing the shocks into radio-loud (RL) and radio-quiet (RQ) shocks, respectively. The shocks seem to be organized into a decreasing sequence by the energy content of the CMEs: RL shocks with an ESP event are driven by the most energetic CMEs, followed by RL shocks without an ESP event, then RQ shocks with and without an ESP event. The ESP events occur more often in RL shocks than in RQ shocks: 52% of RL shocks and only ˜33% of RQ shocks produced an ESP event at proton energies above 1.8 MeV; in the keV energy range the ESP frequencies are 80% and 65%, respectively. Electron ESP events were detected in 19% of RQ shocks and 39% of RL shocks. In addition, we find that (1) ESP events in RQ shocks are less intense than those in RL shocks; (2) RQ shocks with ESP events are predominately quasi-perpendicular shocks; (3) their solar sources are located slightly to the east of the central meridian; and (4) ESP event sizes show a modest positive correlation with the CME and shock speeds. The observation that RL shocks tend to produce more frequently ESP events with larger particle flux increases than RQ shocks emphasizes the importance of type II bursts in identifying solar events prone to producing high particle fluxes in the near-Earth space. However, the trend is not definitive. If there is no type II emission, an ESP event is less likely but not absent. The variability in the probability and size of ESP events most likely reflects differences in the shock formation in the low corona and changes in the properties of the shocks as they propagate through interplanetary space and the escape efficiency of accelerated particles from the shock front.

  9. Scramjet Isolator Modeling and Control

    DTIC Science & Technology

    2011-12-01

    12 γ Ratio of specific heats . . . . . . . . . . . . . . . . . . . . 12 p1 Static pressure entering shock . . . . . . . . . . . . . . . . 12 M1 Mach...138 MAve Average stream Mach number . . . . . . . . . . . . . . . . 138 γ Ratio of specific heats ... heats , p1 is the static pressure entering the shock, and M1 is the Mach number of the flow entering the shock. Subsequent researchers [9] took a

  10. Explicit and implicit compact high-resolution shock-capturing methods for multidimensional Euler equations 1: Formulation

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    1995-01-01

    Two classes of explicit compact high-resolution shock-capturing methods for the multidimensional compressible Euler equations for fluid dynamics are constructed. Some of these schemes can be fourth-order accurate away from discontinuities. For the semi-discrete case their shock-capturing properties are of the total variation diminishing (TVD), total variation bounded (TVB), total variation diminishing in the mean (TVDM), essentially nonoscillatory (ENO), or positive type of scheme for 1-D scalar hyperbolic conservation laws and are positive schemes in more than one dimension. These fourth-order schemes require the same grid stencil as their second-order non-compact cousins. One class does not require the standard matrix inversion or a special numerical boundary condition treatment associated with typical compact schemes. Due to the construction, these schemes can be viewed as approximations to genuinely multidimensional schemes in the sense that they might produce less distortion in spherical type shocks and are more accurate in vortex type flows than schemes based purely on one-dimensional extensions. However, one class has a more desirable high-resolution shock-capturing property and a smaller operation count in 3-D than the other class. The extension of these schemes to coupled nonlinear systems can be accomplished using the Roe approximate Riemann solver, the generalized Steger and Warming flux-vector splitting or the van Leer type flux-vector splitting. Modification to existing high-resolution second- or third-order non-compact shock-capturing computer codes is minimal. High-resolution shock-capturing properties can also be achieved via a variant of the second-order Lax-Friedrichs numerical flux without the use of Riemann solvers for coupled nonlinear systems with comparable operations count to their classical shock-capturing counterparts. The simplest extension to viscous flows can be achieved by using the standard fourth-order compact or non-compact formula for the viscous terms.

  11. Effects of Stomach Inflation on Cardiopulmonary Function and Survival During Hemorrhagic Shock: A Randomized, Controlled, Porcine Study.

    PubMed

    Braun, Patrick; Putzer, Gabriel; Strapazzon, Giacomo; Wimmer, Angela; Schnell, Hermann; Arnold, Henrik; Neururer, Sabrina; Brugger, Hermann; Wenzel, Volker; Paal, Peter

    2016-07-01

    Ventilation of an unprotected airway may result in stomach inflation. The purpose of this study was to evaluate the effect of clinically realistic stomach inflation on cardiopulmonary function during hemorrhagic shock in a porcine model. Pigs were randomized to a sham control group (n = 9), hemorrhagic shock (35 mL kg over 15 min [n = 9]), and hemorrhagic shock combined with stomach inflation (35 mL kg over 15 min and 5 L stomach inflation [n = 10]). When compared with the control group, hemorrhagic shock (n = 9) increased heart rate (103 ± 11 vs. 146 ± 37 beats min; P = 0.002) and lactate (1.4 ± 0.5 vs. 4.0 ± 1.9 mmol L; P < 0.001), and decreased mean arterial blood pressure (81.3 ± 12.8 vs. 35.4 ± 8.1 mmHg; P < 0.001) and stroke-volume index (38.1 ± 6.4 vs. 13.6 ± 4.8 mL min m; P < 0.001). Hemorrhagic shock combined with stomach inflation (n = 10) versus hemorrhagic shock only (n = 9) increased intra-abdominal pressure (27.0 ± 9.3 vs. 1.1 ± 1.0 mmHg; P < 0.001), and decreased stroke-volume index (9.9 ± 6.0 vs. 20.8 ± 8.5 mL min m; P = 0.007), and dynamic respiratory system compliance (10.8 ± 4.5 vs. 38.1 ± 6.1 mL cmH2O; P < 0.001). Before versus after stomach evacuation during hemorrhagic shock, intra-abdominal pressure decreased (27.0 ± 9.3 vs. 9.8 ± 5.4 mmHg; P = 0.042). Survival in the sham control and hemorrhagic shock group was 9 of 9, respectively, and 3 of 10 after hemorrhagic shock and stomach inflation (P < 0.001). During hemorrhagic shock stomach inflation caused an abdominal compartment syndrome and thereby impaired cardiopulmonary function and aerobic metabolism, and increased mortality. Subsequent stomach evacuation partly reversed adverse stomach-inflation triggered effects.

  12. Heat shock treatment improves Trametes versicolor laccase production.

    PubMed

    Wang, Feng; Guo, Chen; Wei, Tao; Zhang, Tian; Liu, Chun-Zhao

    2012-09-01

    An efficient heat shock strategy has been developed to improve laccase production in submerged Trametes versicolor cultures. The optimized heat shock strategy consists of subjecting T. versicolor mycelial pellets to three heat shock treatments at 45 °C for 45 min, starting at culture day 0, with a 24-h interval between treatments. Laccase production increased by more than 1.6-fold relative to the control in both flasks and a 5-L bioreactor because the expression of the laccase gene was enhanced by heat shock induction. The present work demonstrates that heat shock induction is a promising method because it both improves fungal laccase production and has a good potential in industrial application.

  13. Relationship between the effects of stress induced by human bile juice and acid treatment in Vibrio cholerae.

    PubMed

    Alvarez, Genoveva; Heredia, Norma; García, Santos

    2003-12-01

    The effects of low pH and human bile juice on Vibrio cholerae were investigated. A mild stress condition (exposure to acid shock at pH 5.5 or exposure to 3 mg of bile per ml for 20 min) slightly decreased (by < or = 1 log unit) V. cholerae cell viability. However, these treatments induced tolerance to subsequent exposures to more severe stress. In the O1 strain, four proteins were induced in response to acid shock (ca. 101, 94, 90, and 75 kDa), whereas only one protein (ca. 101 kDa) was induced in response to acid shock in the O139 strain. Eleven proteins were induced in response to bile shock in the O1 strain (ca. 106, 103, 101, 96, 88, 86, 84, 80, 66, 56, and 46 kDa), whereas only one protein was induced in response to bile shock in the O139 strain (ca. 88 kDa). V. cholerae O1 and O139 cells that had been preexposed to mild acid shock were twofold more resistant to pH 4.5 (with times required to inactivate 90% of the cell population [D-values] of 59 to 73 min) than were control cells (with D-values of 24 to 27 min). Likewise, cells that were preexposed to mild bile shock (3 mg/ml) were almost twofold more tolerant of severe bile shock (30 mg/ml; D-values, 68 to 87 min) than were control cells (with D-values of 37 to 43 min). These protective effects persisted for at least 1 h after the initial shock but were abolished when chloramphenicol was added to the culture during the shock. Cells preexposed to acid shock exhibited cross-protection against subsequent bile shock. However, cells preexposed to bile shock exhibited no changes in acid tolerance. Bile shock induced a modest reduction (0 to 20%) in enterotoxin production in V. cholerae, whereas acid shock had no effect on enterotoxin levels. Adaptation to acid and bile juice and protection against bile shock in response to preexposure to acid shock would be predicted to enhance the survival of V. cholerae in hosts and in foods. Thus, these adaptations may play an important role in the development of cholera disease.

  14. Fatal toxic shock syndrome from an intrauterine device.

    PubMed

    Klug, Cameron D; Keay, C Ryan; Ginde, Adit A

    2009-11-01

    Toxic shock syndrome is a rare toxin-mediated condition that can rapidly produce multiorgan failure and severe shock. Toxic shock syndrome has been previously recognized in various clinical situations relating to surgery, nasal packing, abscesses, burns, and most notably menstrual-related cases. This case report describes a previously healthy 33-year-old woman presenting to the emergency department with complaints of nausea, vomiting, and diarrhea; vital signs at triage were normal. Within hours, she developed shock and cardiopulmonary arrest. The patient met all 6 of the Centers for Disease Control and Prevention diagnostic criteria for toxic shock syndrome, and her intrauterine device grew out Staphylococcus aureus. To our knowledge, this is the first reported case in the medical literature of fatal toxic shock syndrome related to an intrauterine device.

  15. Evaluation of acute cardiac and chest wall damage after shocks with a subcutaneous implantable cardioverter defibrillator in Swine.

    PubMed

    Killingsworth, Cheryl R; Melnick, Sharon B; Litovsky, Silvio H; Ideker, Raymond E; Walcott, Gregory P

    2013-10-01

    A subcutaneous implantable cardioverter defibrillator (S-ICD) could ease placement and reduce complications of transvenous ICDs, but requires more energy than transvenous ICDs. Therefore we assessed cardiac and chest wall damage caused by the maximum energy shocks delivered by both types of clinical devices. During sinus rhythm, anesthetized pigs (38 ± 6 kg) received an S-ICD (n = 4) and five 80-Joule (J) shocks, or a transvenous ICD (control, n = 4) and five 35-J shocks. An inactive S-ICD electrode was implanted into the same control pigs to study implant trauma. All animals survived 24 hours. Troponin I and creatine kinase muscle isoenzyme (CK-MM) were measured as indicators of myocardial and skeletal muscle injury. Histopathological injury of heart, lungs, and chest wall was assessed using semiquantitative scoring. Troponin I was significantly elevated at 4 hours and 24 hours (22.6 ± 16.3 ng/mL and 3.1 ± 1.3 ng/mL; baseline 0.07 ± 0.09 ng/mL) in control pigs but not in S-ICD pigs (0.12 ± 0.11 ng/mL and 0.13 ± 0.13 ng/mL; baseline 0.06 ± 0.03 ng/mL). CK-MM was significantly elevated in S-ICD pigs after shocks (6,544 ± 1,496 U/L and 9,705 ± 6,240 U/L; baseline 704 ± 398 U/L) but not in controls. Electrocardiogram changes occurred postshock in controls but not in S-ICD pigs. The myocardium and lungs were histologically normal in both groups. Subcutaneous injury was greater in S-ICD compared to controls. Although CK-MM suggested more skeletal muscle injury in S-ICD pigs, significant cardiac, lung, and chest wall histopathological changes were not detected in either group. Troponin I data indicate significantly less cardiac injury from 80-J S-ICD shocks than 35-J transvenous shocks. ©2013, The Authors. Journal compilation ©2013 Wiley Periodicals, Inc.

  16. Reversible increase in maximal cortisol secretion rate in septic shock.

    PubMed

    Dorin, Richard I; Qualls, Clifford R; Torpy, David J; Schrader, Ronald M; Urban, Frank K

    2015-03-01

    Cortisol clearance is reduced in sepsis and may contribute to the development of impaired adrenocortical function that is thought to contribute to the pathophysiology of critical illness-related corticosteroid insufficiency. We sought to assess adrenocortical function using computer-assisted numerical modeling methodology to characterize and compare maximal cortisol secretion rate and free cortisol half-life in septic shock, sepsis, and healthy control subjects. Post hoc analysis of previously published total cortisol, free cortisol, corticosteroid-binding globulin, and albumin concentration data. Single academic medical center. Subjects included septic shock (n = 45), sepsis (n = 25), and healthy controls (n = 10). I.v. cosyntropin (250 μg). Solutions for maximal cortisol secretion rate and free cortisol half-life were obtained by least squares solution of simultaneous, nonlinear differential equations that account for free cortisol appearance and elimination as well as reversible binding to corticosteroid-binding globulin and albumin. Maximal cortisol secretion rate was significantly greater in septic shock (0.83 nM/s [0.44, 1.58 nM/s] reported as median [lower quartile, upper quartile]) compared with sepsis (0.51 nM/s [0.36, 0.62 nM/s]; p = 0.007) and controls (0.49 nM/s [0.42, 0.62 nM/s]; p = 0.04). The variance of maximal cortisol secretion rate in septic shock was also greater than that of sepsis or control groups (F test, p < 0.001). Free cortisol half-life was significantly increased in septic shock (4.6 min [2.2, 6.3 min]) and sepsis (3.0 min [2.3, 4.8 min] when compared with controls (2.0 min [1.2, 2.6 min]) (both p < 0.004). Results obtained by numerical modeling are consistent with comparable measures obtained by the gold standard stable isotope dilution method. Septic shock is associated with generally not only higher levels but also greater variance of maximal cortisol secretion rate when compared with control and sepsis groups. Additional studies would be needed to determine whether assessment of cortisol kinetic parameters such as maximal cortisol secretion rate and free cortisol half-life is useful in the diagnosis or management of critical illness-related corticosteroid insufficiency.

  17. Comparison of acoustic fields produced by the original and upgraded HM-3 lithotripter

    NASA Astrophysics Data System (ADS)

    Zhou, Yufeng; Zhu, Songlin; Dreyer, Thomas; Liebler, Marko; Zhong, Pei

    2003-10-01

    To reduce tissue injury in shock wave lithotripsy (SWL) while maintaining satisfactory stone comminution, an original HM-3 lithotripter was upgraded by a reflector insert to suppress large intraluminal bubble expansion, which is a primary mechanism of vascular injury in SWL. The pressure waveforms produced by the original and upgraded HM-3 lithotripter were measured by using a fiber optical probe hydrophone (FOPH), which was scanned both along and transverse to the lithotripter axis at 1-mm step using a computer-controlled 3-D positioning system. At F2, the pressure waveform produced by the upgraded HM-3 lithotripter at 22 kV has a distinct dual-pulse structure, with a leading shock wave of ~45 MPa from the reflector insert and a 4-μs delayed second pulse of ~15 MPa reflected from the uncovered bottom surface of the original HM-3 reflector. The beam sizes of the original and upgraded HM-3 lithotripter are comparable in both axial and lateral directions. The pressure waveforms measured at the reflector aperture will be used as input to the KZK equation to predict the lithotripter shock wave at F2. Furthermore, bubble dynamics predicted by the Gilmore model will be compared with experimental observation by high-speed imaging. [Work supported by NIH.

  18. Increased prevalence of group A streptococcus isolates in streptococcal toxic shock syndrome cases in Japan from 2010 to 2012.

    PubMed

    Ikebe, T; Tominaga, K; Shima, T; Okuno, R; Kubota, H; Ogata, K; Chiba, K; Katsukawa, C; Ohya, H; Tada, Y; Okabe, N; Watanabe, H; Ogawa, M; Ohnishi, M

    2015-03-01

    Streptococcal toxic shock syndrome (STSS) is a severe invasive infection characterized by the sudden onset of shock, multi-organ failure, and high mortality. In Japan, appropriate notification measures based on the Infectious Disease Control law are mandatory for cases of STSS caused by β-haemolytic streptococcus. STSS is mainly caused by group A streptococcus (GAS). Although an average of 60-70 cases of GAS-induced STSS are reported annually, 143 cases were recorded in 2011. To determine the reason behind this marked increase, we characterized the emm genotype of 249 GAS isolates from STSS patients in Japan from 2010 to 2012 and performed antimicrobial susceptibility testing. The predominant genotype was found to be emm1, followed by emm89, emm12, emm28, emm3, and emm90. These six genotypes constituted more than 90% of the STSS isolates. The number of emm1, emm89, emm12, and emm28 isolates increased concomitantly with the increase in the total number of STSS cases. In particular, the number of mefA-positive emm1 isolates has escalated since 2011. Thus, the increase in the incidence of STSS can be attributed to an increase in the number of cases associated with specific genotypes.

  19. A Novel Heat Shock Element (HSE) in Entamoeba histolytica that Regulates the Transcriptional Activation of the EhPgp5 Gene in the Presence of Emetine Drug

    PubMed Central

    Nieto, Alma; Pérez Ishiwara, David G.; Orozco, Esther; Sánchez Monroy, Virginia; Gómez García, Consuelo

    2017-01-01

    Transcriptional regulation of the multidrug resistance EhPgp5 gene in Entamoeba histolytica is induced by emetine stress. EhPgp5 overexpression alters the chloride-dependent currents that cause trophozoite swelling, diminishing induced programmed cell death (PCD) susceptibility. In contrast, antisense inhibition of P-glycoprotein (PGP) expression produces synchronous death of trophozoites and the enhancement of the biochemical and morphological characteristics of PCD induced by G418. Transcriptional gene regulation analysis identified a 59 bp region at position −170 to −111 bp promoter as putative emetine response elements (EREs). However, insights into transcription factors controlling EhPgp5 gene transcription are missing; to fill this knowledge gap, we used deletion studies and transient CAT activity assays. Our findings suggested an activating motif (−151 to −136 bp) that corresponds to a heat shock element (HSE). Gel-shift assays, UV-crosslinking, binding protein purification, and western blotting assays revealed proteins of 94, 66, 62, and 51 kDa binding to the EhPgp5 HSE that could be heat shock-like transcription factors that regulate the transcriptional activation of the EhPgp5 gene in the presence of emetine drug. PMID:29238701

  20. Response of Al-Based Micro- and Nanocomposites to Rapid Fluctuations in Thermal Environments

    NASA Astrophysics Data System (ADS)

    Dash, K.; Ray, B. C.

    2018-05-01

    The focus of this work is to highlight the relative response of Al-based micro- and nanocomposites in the form of enhancement in flexural strength via induced thermal stresses at high and cryogenic temperatures in ex situ and in situ atmospheres. In this investigation, we have tried to explore the reliability, matrix-reinforcement interaction and microstructural integrity of these materials in their service period by designing appropriate heat treatment regimes. Al-Al2O3 micro- and nanocomposites had been fabricated by powder processing method. The micro- and nanocomposites were subjected to down-thermal shock (from positive to negative temperature) and up-thermal shock (from negative to positive temperature) with varying thermal gradients. For isothermal conditioning, the composites were exposed to + 80 and - 80 °C for 1 h separately. High-temperature three-point flexural tests were performed at 100 and 250 °C on the composites. All the composites subjected to thermal shock and isothermal conditioning was tested in three-point flexural mode post-treatments. Al-1 vol.% Al2O3 nanocomposite's flexural strength improved to 118 MPa post-thermal shock treatment of gradient of 160 °C. The Al-5 and 10 vol.% Al2O3 microcomposites possessed flexural strength of 200 and 99.8 MPa after thermal shock treatment of gradient of 160 and 80 °C, respectively. The observed improvement in flexural strength of micro- and nanocomposites post-thermal excursions were compared and have been discussed with the support of fractography. The microcomposites showed a higher positive scale of response to the thermal excursions as compared to that of the nanocomposites.

  1. Effect of particle momentum transfer on an oblique-shock-wave/laminar-boundary-layer interaction

    NASA Astrophysics Data System (ADS)

    Teh, E.-J.; Johansen, C. T.

    2016-11-01

    Numerical simulations of solid particles seeded into a supersonic flow containing an oblique shock wave reflection were performed. The momentum transfer mechanism between solid and gas phases in the shock-wave/boundary-layer interaction was studied by varying the particle size and mass loading. It was discovered that solid particles were capable of significant modulation of the flow field, including suppression of flow separation. The particle size controlled the rate of momentum transfer while the particle mass loading controlled the magnitude of momentum transfer. The seeding of micro- and nano-sized particles upstream of a supersonic/hypersonic air-breathing propulsion system is proposed as a flow control concept.

  2. The redox status of experimental hemorrhagic shock as measured by cyclic voltammetry.

    PubMed

    Mittal, Anubhav; Göke, Friederike; Flint, Richard; Loveday, Benjamin P T; Thompson, Nichola; Delahunt, Brett; Kilmartin, Paul A; Cooper, Garth J S; MacDonald, Julia; Hickey, Anthony; Windsor, John A; Phillips, Anthony R J

    2010-05-01

    Hemorrhagic shock (HS) leads to reactive oxygen species production. However, clinicians do not have access to bedside measurements of the redox status during HS. Cyclic voltammetry (CyV) is a simple electrochemical method of measuring redox status. The aims of this study were to 1) report the first application of cyclic voltammetry to measure the acute changes in serum redox status after HS, 2) to contrast it with another severe systemic disease with a different redox pathology (acute pancreatitis [AP]), and 3) to describe the response of CyV over time in a resolving model of AP. In the acute study, 24 male Wistar rats were randomized into three groups: groups 1 (control), 2 (AP), and 3 (HS). In the time-course study, 28 rats were randomized to a sham-control as well as 6 and 24 h post-AP cohorts, respectively.Cyclic voltammetry was performed using a three-electrode system. In the acute study, the first and second voltammetric peaks increased significantly in HS. In contrast, within the AP group, only the first voltammetric peak showed a significant increase. The first voltammetric peak correlated with plasma protein carbonyls (PCs) and with thiobarbituric acid-reactive substances, whereas the second voltammetric peak correlated positively with plasma protein carbonyls. In the second study, the first voltammetric peak correlated with physiological improvements. Here, we showed that serum CyV could respond to the serum redox change in HS and AP. Cyclic voltammetry warrants evaluation as a potential real-time beside measure of a patient's redox status during shock.

  3. The Structure of Shocks in the Very Local Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Mostafavi, P.; Zank, G. P.

    2018-02-01

    The Voyager 1 magnetometer has detected several shock waves in the very local interstellar medium (VLISM). Interplanetary shock waves can be transmitted across the heliopause (HP) into the VLISM. The first in situ shock observed by Voyager 1 inside the VLISM was remarkably broad and had properties different than those of shocks inside the heliosphere. We present a model of the 2012 VLISM shock, which was observed to be a weak, quasi-perpendicular, low magnetosonic Mach number, low beta, and subcritical shock. Although the heliosphere is a collisionless environment, we show that the VLISM is collisional with respect to the thermal plasma, and that the thermal collisions introduce dissipative terms such as heat conduction and viscosity. The structure of the VLISM shock is determined by thermal proton–proton collisions. VLISM pickup ions (PUIs) do not introduce a significant pressure or dissipation through the shock transition, meaning that the VLISM shock is not mediated by PUIs but only by the thermal gas and magnetic field. Therefore, VLISM shocks are controlled by particle collisions and not by wave–particle interactions. We find that the weak VLISM shock is very broad with a thickness of about 0.12 au, corresponding to the characteristic thermal heat conduction scale length.

  4. Experimental studies of shock-wave/wall-jet interaction in hypersonic flow

    NASA Technical Reports Server (NTRS)

    Holden, Michael S.; Rodriguez, Kathleen

    1994-01-01

    Experimental studies have been conducted to examine slot film cooling effectiveness and the interaction between the cooling film and an incident planar shock wave in turbulent hypersonic flow. The experimental studies were conducted in the 48-inch shock tunnel at Calspan at a freestream Mach number of close to 6.4 and at a Reynolds number of 35 x 10(exp 6) based on the length of the model at the injection point. The Mach 2.3 planar wall jet was generated from 40 transverse nozzles (with heights of both 0.080 inch and 0.120 inch), producing a film that extended the full width of the model. The nozzles were operated at pressures and velocities close to matching the freestream, as well as at conditions where the nozzle flows were over- and under-expanded. A two-dimensional shock generator was used to generate oblique shocks that deflected the flow through total turnings of 11, 16, and 21 degrees; the flows impinged downstream of the nozzle exits. Detailed measurements of heat transfer and pressure were made both ahead and downstream of the injection station, with the greatest concentration of measurements in the regions of shock-wave/boundary layer interaction. The major objectives of these experimental studies were to explore the effectiveness of film cooling in the presence of regions of shock-wave/boundary layer interaction and, more specifically, to determine how boundary layer separation and the large recompression heating rates were modified by film cooling. Detailed distributions of heat transfer and pressure were obtained in the incident shock/wall-jet interaction region for a series of shock strengths and impingement positions for each of the two nozzle heights. Measurements were also made to examine the effects of nozzle lip thickness on cooling effectiveness. The major conclusion from these studies was that the effect of the cooling film could be readily dispersed by relatively weak incident shocks, so the peak heating in the recompression region was not significantly reduced by even the largest levels of film cooling. For the case studies in the absence of film cooling, the interaction regions were unseparated. However, adding film cooling resulted in regions of boundary layer separation induced in the film cooling layer -- the size of which regions first increased and then decreased with increased film cooling. Surprisingly, the size of the separated regions and the magnitude of the recompression heating were not strongly influenced by the thickness of the cooling film, nor by the point of shock impingement relative to the exit plane of the nozzles. The lip thickness was found to have little effect on cooling effectiveness. Measurements with and in the absence of shock interaction were compared with the results of earlier experimental studies and correlated in terms of the major parameters controlling these flows.

  5. Experimental studies of shock-wave/wall-jet interaction in hypersonic flow, part A

    NASA Technical Reports Server (NTRS)

    Holden, Michael S.; Rodriguez, Kathleen

    1994-01-01

    Experimental studies have been conducted to examine slot film cooling effectiveness and the interaction between the cooling film and an incident planar shock wave in turbulent hypersonic flow. The experimental studies were conducted in the 48-inch shock tunnel at Calspan at a freestream Mach number of close to 6.4 and at a Reynolds number of 35 x 10(exp 6) based on the length of the model at the injection point. The Mach 2.3 planar wall jet was generated from 40 transverse nozzles (with heights of both 0.080 inch and 0.120 inch), producing a film that extended the full width of the model. The nozzles were operated at pressures and velocities close to matching the freestream, as well as at conditions where the nozzle flows were over- and under-expanded. A two-dimensional shock generator was used to generate oblique shocks that deflected the flow through total turnings of 11, 16, and 21 degrees; the flows impinged downstream of the nozzle exits. Detailed measurements of heat transfer and pressure were made both ahead and downstream of the injection station, with the greatest concentration of measurements in the regions of shock-wave/boundary layer interaction. The major objectives of these experimental studies were to explore the effectiveness of film cooling in the presence of regions of shock-wave/boundary layer interaction and, more specifically, to determine how boundary layer separation and the large recompression heating rates were modified by film cooling. Detailed distributions of heat transfer and pressure were obtained in the incident-shock/wall-jet interaction region for a series of shock strengths and impingement positions for each of the two nozzle heights. Measurements were also made to examine the effects of nozzle lip thickness on cooling effectiveness. The major conclusion from these studies was that the effect of the cooling film could be readily dispersed by relatively weak incident shocks, so the peak heating in the recompression region was not significantly reduced by even the largest levels of film cooling. For the case studies in the absence of film cooling, the interaction regions were unseparated. However, adding film cooling resulted in regions of boundary layer separation induced in the film cooling layer, the size of which regions first increased and then decreased with increased film cooling. Surprisingly, the size of the separated regions and the magnitude of the recompression heating were not strongly influenced by the thickness of the cooling film, nor by the point of shock impingement relative to the exit plane of the nozzles. The lip thickness was found to have little effect on cooling effectiveness. Measurements with and in the absence of shock interaction were compared with the results of earlier experimental studies and correlated in terms of the major parameters controlling these flows.

  6. Standing shocks in a two-fluid solar wind

    NASA Technical Reports Server (NTRS)

    Habbal, Shadia R.; Hu, You Qiu; Esser, Ruth

    1994-01-01

    We present a numerical study of the formation of standing shocks in the solar wind using a two-fluid time-dependent model in the presence of Alfven waves. Included in this model is the adiabatic cooling and thermal conduction of both electrons and protons. In this study, standing shocks develop in the flow when additional critical points form as a result of either localized momentum addition or rapid expansion of the flow tube below the existing sonic point. While the flow speed and density exhibit the same characteristics as found in earlier studies of the formation of standing shocks, the inclusion of electron and proton heat conduction produces different signatures in the electron and proton temperature profiles across the shock layer. Owing to the strong heat conduction, the electron temperature is nearly continuous across the shock, but its gradient has a negative jump across it, thus producing a net heat flux out of the shock layer. The proton temperature exhibits the same characteristics for shocks produced by momentum addition but behaves differently when the shock is formed by the rapid divergence of the flow tube. The adiabatic cooling in a rapidly diverging flow tube reduces the proton temperature so substantially that the proton heat conduction becomes negligible in the vicinity of the shock. As a result, protons experience a positive jump in temperature across the shock. While Alfven waves do not affect the formation of standing shocks, they contribute to the change of the mmomentum and energy balance across them. We also find that for this solar wind model the inclusion of thermal conduction and adiabatic cooling for the elctrons and protons increases significantly the range of parameters characterizing the formation of standing shocks over those previously found for isothermal and polytropic models.

  7. Shock wave propagation within a confined multi-chamber system

    NASA Astrophysics Data System (ADS)

    Julien, B.; Sochet, I.; Tadini, P.; Vaillant, T.

    2018-07-01

    The influence of a variation of the opening ratios of rooms and side walls on the propagation of a shock wave within a confined multi-chamber system is analyzed through the evolution of some of the shock parameters (maximum overpressure and positive impulse). The shock wave is generated by the detonation of a hemispherical gaseous charge in one of the rooms. Several small-scale experiments have been carried out using an adjustable model representative of a pyrotechnic workshop. Using the same approach as for a previous article dealing with the impact of the volume of the rooms, we were able to link the evolution of the arrival time of the shock wave within the building with the reference obtained in the free field. Moreover, using a new parameter taking into account the opening ratios of the rooms and side walls, a predictive law was developed to model the maximal overpressure in the rooms.

  8. The Septic Shock 3.0 Definition and Trials: A Vasopressin and Septic Shock Trial Experience.

    PubMed

    Russell, James A; Lee, Terry; Singer, Joel; Boyd, John H; Walley, Keith R

    2017-06-01

    The Septic Shock 3.0 definition could alter treatment comparisons in randomized controlled trials in septic shock. Our first hypothesis was that the vasopressin versus norepinephrine comparison and 28-day mortality of patients with Septic Shock 3.0 definition (lactate > 2 mmol/L) differ from vasopressin versus norepinephrine and mortality in Vasopressin and Septic Shock Trial. Our second hypothesis was that there are differences in plasma cytokine levels in Vasopressin and Septic Shock Trial for lactate less than or equal to 2 versus greater than 2 mmol/L. Retrospective analysis of randomized controlled trial. Multicenter ICUs. We compared vasopressin-to-norepinephrine group 28- and 90-day mortality in Vasopressin and Septic Shock Trial in lactate subgroups. We measured 39 cytokines to compare patients with lactate less than or equal to 2 versus greater than 2 mmol/L. Patients with septic shock with lactate greater than 2 mmol/L or less than or equal to 2 mmol/L, randomized to vasopressin or norepinephrine. Concealed vasopressin (0.03 U/min.) or norepinephrine infusions. The Septic Shock 3.0 definition would have decreased sample size by about half. The 28- and 90-day mortality rates were 10-12 % higher than the original Vasopressin and Septic Shock Trial mortality. There was a significantly (p = 0.028) lower mortality with vasopressin versus norepinephrine in lactate less than or equal to 2 mmol/L but no difference between treatment groups in lactate greater than 2 mmol/L. Nearly all cytokine levels were significantly higher in patients with lactate greater than 2 versus less than or equal to 2 mmol/L. The Septic Shock 3.0 definition decreased sample size by half and increased 28-day mortality rates by about 10%. Vasopressin lowered mortality versus norepinephrine if lactate was less than or equal to 2 mmol/L. Patients had higher plasma cytokines in lactate greater than 2 versus less than or equal to 2 mmol/L, a brisker cytokine response to infection. The Septic Shock 3.0 definition and our findings have important implications for trial design in septic shock.

  9. Pharmacological modulation of aversive responsiveness in honey bees

    PubMed Central

    Tedjakumala, Stevanus R.; Aimable, Margaux; Giurfa, Martin

    2014-01-01

    Within a honey bee colony, individuals performing different tasks exhibit different sensitivities to noxious stimuli. Noxious-stimulus sensitivity can be quantified in harnessed bees by measuring the sting extension response (SER) to a series of increasing voltages. Biogenic amines play a crucial role in the control of insect responsiveness. Whether or not these neurotransmitters affect the central control of aversive responsiveness, and more specifically of electric-shock responsiveness, remains unknown. Here we studied the involvement of the biogenic amines octopamine, dopamine and serotonin, and of the ecdysteroid 20-hydroxyecdisone in the central control of sting responsiveness to electric shocks. We injected pharmacological antagonists of these signaling pathways into the brain of harnessed bees and determined the effect of blocking these different forms of neurotransmission on shock responsiveness. We found that both octopamine and 20-hydroxyecdisone are dispensable for shock responsiveness while dopamine and serotonin act as down-regulators of sting responsiveness. As a consequence, antagonists of these two biogenic amines induce an increase in shock responsiveness to shocks of intermediate voltage; serotonin, can also increase non-specific responsiveness. We suggest that different classes of dopaminergic neurons exist in the bee brain and we define at least two categories: an instructive class mediating aversive labeling of conditioned stimuli in associative learning, and a global gain-control class which down-regulates responsiveness upon perception of noxious stimuli. Serotonergic signaling together with down-regulating dopaminergic signaling may play an essential role in attentional processes by suppressing responses to irrelevant, non-predictive stimuli, thereby allowing efficient behavioral performances. PMID:24431993

  10. Early outcome of early-goal directed therapy for patients with sepsis or septic shock: a systematic review and meta-analysis of randomized controlled trials.

    PubMed

    Chen, Xiaofan; Zhu, Weifeng; Tan, Jing; Nie, Heyun; Liu, Liangming; Yan, Dongmei; Zhou, Xu; Sun, Xin

    2017-04-18

    Various trials and meta-analyses have reported conflicting results concerning the application of early goal-directed therapy (EGDT) for sepsis and septic shock. The aim of this study was to update the evidence by performing a systematic review and meta-analysis. Multiple databases were searched from initial through August, 2016 for randomized controlled trials (RCTs) which investigated the associations between the use of EGDT and mortality in patients with sepsis or septic shock. Meta-analysis was performed using random-effects model and heterogeneity was examined through subgroup analyses. The primary outcome of interest was patient all-cause mortality including hospital or ICU mortality. Seventeen RCTs including 6207 participants with 3234 in the EGDT group and 2973 in the control group were eligible for this study. Meta-analysis showed that EGDT did not significantly reduce hospital or intensive care unit (ICU) mortality (relative risk [RR] 0.89, 95% CI 0.78 to 1.02) compared with control group for patients with sepsis or septic shock. The findings of subgroup analyses stratified by study region, number of research center, year of enrollment, clinical setting, sample size, timing of EGDT almost remained constant with that of the primary analysis. Our findings provide evidence that EGDT offers neutral survival effects for patients with sepsis or septic shock. Further meta-analyses based on larger well-designed RCTs or individual patient data meta-analysis are required to explore the survival benefits of EDGT in patients with sepsis or septic shock.

  11. The solar cycle dependence of the location and shape of the Venus bow shock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, T.L.; Luhmann, J.G.; Russell, C.T.

    1990-09-01

    From initial Pioneer Venus observations during the maximum of solar cycle 21 it was evident that the position of the Venus bow shock varies with solar activity. The bow shock radius in the terminator plane changed from 2.4 R{sub v} to 2.1 R{sub v} as solar activity went from maximum to minimum and, as activity has increased in cycle 22, it has increased again. The recent studies of the subsolar region show that the altitude of the nose of the bow shock varies from 1,600 km at solar minimum to 2,200 km at intermediate solar activity in concert with themore » terminator altitude so that the shape remains constant and only the size varies during the solar cycle. Using a gas dynamic model and the observed bow shock location, the authors infer the variation in the size of the effective obstacle during the solar cycle. At solar maximum, the effective obstacle is larger than the ionopause as if a magnetic barrier exists in the inner magnetosheath. This magnetic barrier acts as the effective obstacle deflecting the magnetosheath plasma about 500 km above the surface of Venus. However, at solar minimum the effective obstacle is well below the subsolar ionopause, and some absorption of the solar wind plasma by the Venus neutral atmosphere is suggested by these observations. The dependence of the solar cycle variation of the shock position on the orientation of the interplanetary magnetic field reinforces the idea that planetary ion pickup is important in the interaction of the solar wind with Venus.« less

  12. EVIDENCE FOR DECAY OF TURBULENCE BY MHD SHOCKS IN THE ISM VIA CO EMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, Rebecca L.; Evans II, Neal J.; Green, Joel D.

    2015-06-10

    We utilize observations of sub-millimeter rotational transitions of CO from a Herschel Cycle 2 open time program (“COPS”, PI: J. Green) to identify previously predicted turbulent dissipation by magnetohydrodynamic (MHD) shocks in molecular clouds. We find evidence of the shocks expected for dissipation of MHD turbulence in material not associated with any protostar. Two models fit about equally well: model 1 has a density of 10{sup 3} cm{sup −3}, a shock velocity of 3 km s{sup −1}, and a magnetic field strength of 4 μG; model 2 has a density of 10{sup 3.5} cm{sup −3}, a shock velocity of 2more » km s{sup −1}, and a magnetic field strength of 8 μG. Timescales for decay of turbulence in this region are comparable to crossing times. Transitions of CO up to J of 8, observed close to active sites of star formation, but not within outflows, can trace turbulent dissipation of shocks stirred by formation processes. Although the transitions are difficult to detect at individual positions, our Herschel-SPIRE survey of protostars provides a grid of spatially distributed spectra within molecular clouds. We averaged all spatial positions away from known outflows near seven protostars. We find significant agreement with predictions of models of turbulent dissipation in slightly denser (10{sup 3.5} cm{sup −3}) material with a stronger magnetic field (24 μG) than in the general molecular cloud.« less

  13. Radiation hydrodynamic effects in two beryllium plates with an idealized aluminum joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belkov, S.A.; Mkhitarian, L.S.; Vinokurov, O.A.

    A beryllium capsule formed from two hemispherical shells with a thin bond is one possible ignition target for the National Ignition Facility [J. A. Paisner {ital et al.}, Laser Focus World {bold 30}, 75 (1994)] Nonuniformities in density, opacity, and interface position at the joint between these hemishells will initiate two-dimensional (2-D) perturbations of the shock wave and material behind the shock as the shock passes through the shell perpendicular to the joint width. Rarefaction of material flow behind the shock front can cause the interface between the shell and joint material to oscillate in position. The amplitude of thesemore » oscillations may be comparable to the joint width. The evolution of these perturbations is studied by numerically simulating shock passage through flat beryllium plates containing aluminum joints. Using the MIMOSA-ND code [D. Sofronov {ital et al.}, Vopr. At. Nauki Tekh., Ser: Mat. modelirovanie fizicheskih processov {bold 2}, 3 (1990)] two different cases are calculated{emdash}a wide (10 {mu}m) and a narrow (1 {mu}m) joint of aluminum between two 150 {mu}m long semiinfinite beryllium plates. Both cases showed good agreement with an analytic representation of the oscillation behavior. For the narrow joint, a special technique allows the calculation of mixing between the joint and surrounding material caused by the Kelvin{endash}Helmholtz instability. {copyright} {ital 1999 American Institute of Physics.}« less

  14. Penile Low Intensity Shock Wave Treatment is Able to Shift PDE5i Nonresponders to Responders: A Double-Blind, Sham Controlled Study.

    PubMed

    Kitrey, Noam D; Gruenwald, Ilan; Appel, Boaz; Shechter, Arik; Massarwa, Omar; Vardi, Yoram

    2016-05-01

    We performed sham controlled evaluation of penile low intensity shock wave treatment effect in patients unable to achieve sexual intercourse using PDE5i (phosphodiesterase type 5 inhibitor). This prospective, randomized, double-blind, sham controlled study was done in patients with vasculogenic erectile dysfunction who stopped using PDE5i due to no efficacy. All patients had an erection hardness score of 2 or less with PDE5i. A total of 58 patients were randomized, including 37 treated with low intensity shock waves (12 sessions of 1,500 pulses of 0.09 mJ/mm(2) at 120 shock waves per minute) and 18 treated with a sham probe. In the sham group 16 patients underwent low intensity shock wave treatment 1 month after sham treatment. All patients were evaluated at baseline and 1 month after the end of treatment using validated erectile dysfunction questionnaires and the flow mediated dilatation technique for penile endothelial function. Erectile function was evaluated while patients were receiving PDE5i. In the low intensity shock wave treatment group and the sham group 54.1% and 0% of patients, respectively, achieved erection hard enough for vaginal penetration, that is an EHS (Erection Hardness Score) of 3 (p <0.0001). According to changes in the IIEF-EF (International Index of Erectile Function-Erectile Function) score treatment was effective in 40.5% of men who received low intensity shock wave treatment but in none in the sham group (p = 0.001). Of patients treated with shock waves after sham treatment 56.3% achieved erection hard enough for penetration (p <0.005). Low intensity shock wave treatment is effective even in patients with severe erectile dysfunction who are PDE5i nonresponders. After treatment about half of them were able to achieve erection hard enough for penetration with PDE5i. Longer followup is needed to establish the place of low intensity shock wave treatment in these challenging cases. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  15. Diagnostic value of Pentraxin-3 in patients with sepsis and septic shock in accordance with latest sepsis-3 definitions.

    PubMed

    Hamed, Sonja; Behnes, Michael; Pauly, Dominic; Lepiorz, Dominic; Barre, Max; Becher, Tobias; Lang, Siegfried; Akin, Ibrahim; Borggrefe, Martin; Bertsch, Thomas; Hoffmann, Ursula

    2017-08-09

    Pentraxin-3 (PTX-3) is an acute-phase protein involved in inflammatory and infectious processes. This study assesses its diagnostic and prognostic value in patients with sepsis or septic shock in a medical intensive care unit (ICU). The study includes 213 ICU patients with clinical criteria of sepsis and septic shock. 77 donors served as controls. Plasma levels of PTX-3, procalcitonin (PCT) and interleukin-6 were measured on day 1, 3 and 8. PTX-3 correlated with higher lactate levels as well as with APACHE II and SOFA scores (p = 0.0001). PTX-3 levels of patients with sepsis or septic shock were consistently significantly higher than in the control group (p ≤ 0.001). Plasma levels were able to discriminate sepsis and septic shock significantly on day 1, 3 and 8 (range of AUC 0.73-0.92, p = 0.0001). Uniform cut-off levels were defined at ≥5 ng/ml for at least sepsis, ≥9 ng/ml for septic shock (p = 0.0001). PTX-3 reveals diagnostic value for sepsis and septic shock during the first week of intensive care treatment, comparable to interleukin-6 according to latest Sepsis-3 definitions. NCT01535534 . Registered 14.02.2012.

  16. Predictive Analytical Model for Isolator Shock-Train Location in a Mach 2.2 Direct-Connect Supersonic Combustion Tunnel

    NASA Astrophysics Data System (ADS)

    Lingren, Joe; Vanstone, Leon; Hashemi, Kelley; Gogineni, Sivaram; Donbar, Jeffrey; Akella, Maruthi; Clemens, Noel

    2016-11-01

    This study develops an analytical model for predicting the leading shock of a shock-train in the constant area isolator section in a Mach 2.2 direct-connect scramjet simulation tunnel. The effective geometry of the isolator is assumed to be a weakly converging duct owing to boundary-layer growth. For some given pressure rise across the isolator, quasi-1D equations relating to isentropic or normal shock flows can be used to predict the normal shock location in the isolator. The surface pressure distribution through the isolator was measured during experiments and both the actual and predicted locations can be calculated. Three methods of finding the shock-train location are examined, one based on the measured pressure rise, one using a non-physics-based control model, and one using the physics-based analytical model. It is shown that the analytical model performs better than the non-physics-based model in all cases. The analytic model is less accurate than the pressure threshold method but requires significantly less information to compute. In contrast to other methods for predicting shock-train location, this method is relatively accurate and requires as little as a single pressure measurement. This makes this method potentially useful for unstart control applications.

  17. Heat shock instructs hESCs to exit from the self-renewal program through negative regulation of OCT4 by SAPK/JNK and HSF1 pathway.

    PubMed

    Byun, Kyunghee; Kim, Taek-Kyun; Oh, Jeehyun; Bayarsaikhan, Enkhjargal; Kim, Daesik; Lee, Min Young; Pack, Chan-Gi; Hwang, Daehee; Lee, Bonghee

    2013-11-01

    Environmental factors affect self-renewal of stem cells by modulating the components of self-renewal networks. Heat shock, an environmental factor, induces heat shock factors (HSFs), which up-regulate stress response-related genes. However, the link of heat shock to self-renewal of stem cells has not been elucidated yet. Here, we present the direct link of heat shock to a core stem cell regulator, OCT4, in the self-renewal network through SAPK/JNK and HSF1 pathway. We first showed that heat shock initiated differentiation of human embryonic stem cells (hESCs). Gene expression analysis revealed that heat shock increased the expression of many genes involved in cellular processes related to differentiation of stem cells. We then examined the effects of HSFs induced by heat shock on core self-renewal factors. Among HSFs, heat shock induced mainly HSF1 in hESCs. The HSF1 repressed the expression of OCT4, leading to the differentiation of hESCs and the above differentiation-related gene expression change. We further examined the effects of the upstream MAP (mitogen-activated protein) kinases of HSF1 on the repression of OCT4 expression by HSF1. Among the MAP kinases, SAPK/JNK controlled predominantly the repression of the OCT4 expression by HSF1. The direct link of heat shock to the core self-renewal regulator through SAPK/JNK and HSF1 provides a fundamental basis for understanding the effect of heat and other stresses involving activation of HSF1 on the self-renewal program and further controlling differentiation of hESCs in a broad spectrum of stem cell applications using these stresses. © 2013.

  18. Post-Transcriptional Regulation of the Trypanosome Heat Shock Response by a Zinc Finger Protein

    PubMed Central

    Droll, Dorothea; Minia, Igor; Fadda, Abeer; Singh, Aditi; Stewart, Mhairi; Queiroz, Rafael; Clayton, Christine

    2013-01-01

    In most organisms, the heat-shock response involves increased heat-shock gene transcription. In Kinetoplastid protists, however, virtually all control of gene expression is post-transcriptional. Correspondingly, Trypanosoma brucei heat-shock protein 70 (HSP70) synthesis after heat shock depends on regulation of HSP70 mRNA turnover. We here show that the T. brucei CCCH zinc finger protein ZC3H11 is a post-transcriptional regulator of trypanosome chaperone mRNAs. ZC3H11 is essential in bloodstream-form trypanosomes and for recovery of insect-form trypanosomes from heat shock. ZC3H11 binds to mRNAs encoding heat-shock protein homologues, with clear specificity for the subset of trypanosome chaperones that is required for protein refolding. In procyclic forms, ZC3H11 was required for stabilisation of target chaperone-encoding mRNAs after heat shock, and the HSP70 mRNA was also decreased upon ZC3H11 depletion in bloodstream forms. Many mRNAs bound to ZC3H11 have a consensus AUU repeat motif in the 3′-untranslated region. ZC3H11 bound preferentially to AUU repeats in vitro, and ZC3H11 regulation of HSP70 mRNA in bloodstream forms depended on its AUU repeat region. Tethering of ZC3H11 to a reporter mRNA increased reporter expression, showing that it is capable of actively stabilizing an mRNA. These results show that expression of trypanosome heat-shock genes is controlled by a specific RNA-protein interaction. They also show that heat-shock-induced chaperone expression in procyclic trypanosome enhances parasite survival at elevated temperatures. PMID:23592996

  19. Carbothermal shock synthesis of high-entropy-alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Yao, Yonggang; Huang, Zhennan; Xie, Pengfei; Lacey, Steven D.; Jacob, Rohit Jiji; Xie, Hua; Chen, Fengjuan; Nie, Anmin; Pu, Tiancheng; Rehwoldt, Miles; Yu, Daiwei; Zachariah, Michael R.; Wang, Chao; Shahbazian-Yassar, Reza; Li, Ju; Hu, Liangbing

    2018-03-01

    The controllable incorporation of multiple immiscible elements into a single nanoparticle merits untold scientific and technological potential, yet remains a challenge using conventional synthetic techniques. We present a general route for alloying up to eight dissimilar elements into single-phase solid-solution nanoparticles, referred to as high-entropy-alloy nanoparticles (HEA-NPs), by thermally shocking precursor metal salt mixtures loaded onto carbon supports [temperature ~2000 kelvin (K), 55-millisecond duration, rate of ~105 K per second]. We synthesized a wide range of multicomponent nanoparticles with a desired chemistry (composition), size, and phase (solid solution, phase-separated) by controlling the carbothermal shock (CTS) parameters (substrate, temperature, shock duration, and heating/cooling rate). To prove utility, we synthesized quinary HEA-NPs as ammonia oxidation catalysts with ~100% conversion and >99% nitrogen oxide selectivity over prolonged operations.

  20. Focal gene misexpression in zebrafish embryos induced by local heat shock using a modified soldering iron.

    PubMed

    Hardy, Melissa E; Ross, Louis V; Chien, Chi-Bin

    2007-11-01

    Misexpression of genes in a temporally and spatially controlled fashion is an important tool for assessing gene function during development. Because few tissue-specific promoters have been identified in zebrafish, inducible systems such as the Cre/LoxP and Tet repressor systems are of limited utility. Here we describe a new method of misexpression: local heat shock using a modified soldering iron. Zebrafish carrying transgenes under the control of a heat shock promoter (hsp70) are focally heated with the soldering iron to induce gene expression in a small area of the embryo. We have validated this method in three stable transgenic lines and at three developmental timepoints. Local heat shock is a fast, easy, and inexpensive method for gene misexpression. Copyright 2007 Wiley-Liss, Inc.

  1. Non-lethal Clostridium sordellii bacteraemia in an immunocompromised patient with pleomorphic sarcoma.

    PubMed

    Bonnecaze, Alex K; Stephens, Sarah Ellen Elza; Miller, Peter John

    2016-08-03

    Clostridium sordellii is a spore-forming anaerobic Gram-positive rod that has rarely been reported to cause disease in humans. Resultant mortality from infection is estimated at nearly 70% and is most often correlated with gynaecological procedures, intravenous drug abuse or trauma. C. sordellii infection often presents similarly to toxic shock syndrome (TSS); notable features of infection include refractory hypotension, haemoconcentration and marked leucocytosis. Although clinically similar to TSS, a notable difference is C. sordellii infections rarely involve fever. The organism's major toxins include haemorrhagic (TcsH) and lethal factor (TcsL), which function to disrupt cytoskeletal integrity. Current literature suggests treating C. sordelli infection with a broad-spectrum penicillin, metronidazole and clindamycin. We present a case of C. sordellii bacteraemia and septic shock in an immunocompromised patient who was recently diagnosed with pleomorphic gluteal sarcoma. Despite presenting in critical condition, the patient improved after aggressive hemodynamic resuscitation, source control and intravenous antibiotic therapy. 2016 BMJ Publishing Group Ltd.

  2. Conditions for shock revival by neutrino heating in core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Janka, H.-Th.

    2001-03-01

    Energy deposition by neutrinos can rejuvenate the stalled bounce shock and can provide the energy for the supernova explosion of a massive star. This neutrino-heating mechanism, though investigated by numerical simulations and analytic studies, is not finally accepted or proven as the trigger of the explosion. Part of the problem is that different groups have obtained seemingly discrepant results, and the complexity of the hydrodynamic models often hampers a clear and simple interpretation of the results. This demands a deeper theoretical understanding of the requirements of a successful shock revival. A toy model is developed here for discussing the neutrino heating phase analytically. The neutron star atmosphere between the neutrinosphere and the supernova shock can well be considered to be in hydrostatic equilibrium, with a layer of net neutrino cooling below the gain radius and a layer of net neutrino heating above. Since the mass infall rate to the shock is in general different from the rate at which gas is advected into the neutron star, the mass in the gain layer varies with time. Moreover, the gain layer receives additional energy input by neutrinos emitted from the neutrinosphere and the cooling layer. Therefore the determination of the shock evolution requires a time-dependent treatment. To this end the hydrodynamical equations of continuity and energy are integrated over the volume of the gain layer to obtain conservation laws for the total mass and energy in this layer. The radius and velocity of the supernova shock can then be calculated from global properties of the gain layer as solutions of an initial value problem, which expresses the fact that the behavior of the shock is controlled by the cumulative effects of neutrino heating and mass accumulation in the gain layer. The described toy model produces steady-state accretion and mass outflow from the nascent neutron star as special cases. The approach is useful to illuminate the conditions that can lead to delayed explosions and in this sense supplements detailed numerical simulations. On grounds of the model developed here, a criterion is derived for the requirements of shock revival. It confirms the existence of a minimum neutrino luminosity that is needed for shock expansion, but also demonstrates the importance of a sufficiently large mass infall rate to the shock. If the neutrinospheric luminosity or accretion rate by the shock are too low, the shock is weakened because the gain layer loses more mass than is resupplied by inflow. On the other hand, very high infall rates damp the shock expansion and above some threshold, the development of positive total energy in the neutrino-heating layer is prevented. Time-dependent solutions for the evolution of the gain layer show that the total specific energy transferred to nucleons by neutrinos is limited by about 1052 erg Msun-1 ( ~ 5 MeV per nucleon). This excludes the possibility of very energetic explosions by the neutrino-heating mechanism, because the typical mass in the gain layer is about 0.1 Msun and does not exceed a few tenths of a solar mass. The toy model also allows for a crude discussion of the global effects of convective energy transport in the neutrino-heating layer. Transfer of energy from the region of maximum heating to radii closer behind the shock mainly reduces the loss of energy by the inward flow of neutrino-heated matter through the gain radius.

  3. Research on Formation Mechanism of Dynamic Response and Residual Stress of Sheet Metal Induced by Laser Shock Wave

    NASA Astrophysics Data System (ADS)

    Feng, Aixin; Cao, Yupeng; Wang, Heng; Zhang, Zhengang

    2018-01-01

    In order to reveal the quantitative control of the residual stress on the surface of metal materials, the relevant theoretical and experimental studies were carried out to investigate the dynamic response of metal thin plates and the formation mechanism of residual stress induced by laser shock wave. In this paper, the latest research trends on the surface residual stress of laser shock processing technology were elaborated. The main progress of laser shock wave propagation mechanism and dynamic response, laser shock, and surface residual stress were discussed. It is pointed out that the multi-scale characterization of laser and material, surface residual stress and microstructure change is a new hotspot in laser shock strengthening technology.

  4. Differential expression of the Nrf2-linked genes in pediatric septic shock.

    PubMed

    Grunwell, Jocelyn R; Weiss, Scott L; Cvijanovich, Natalie Z; Allen, Geoffrey L; Thomas, Neal J; Freishtat, Robert J; Anas, Nick; Meyer, Keith; Checchia, Paul A; Shanley, Thomas P; Bigham, Michael T; Fitzgerald, Julie; Howard, Kelli; Frank, Erin; Harmon, Kelli; Wong, Hector R

    2015-09-17

    Experimental data from animal models of sepsis support a role for a transcription factor, nuclear erythroid-related factor 2 p45-related factor 2 (Nrf2), as a master regulator of antioxidant and detoxifying genes and intermediary metabolism during stress. Prior analysis of a pediatric septic shock transcriptomic database showed that the Nrf2 response is a top 5 upregulated signaling pathway in early pediatric septic shock. We conducted a focused analysis of 267 Nrf2-linked genes using a multicenter, genome-wide expression database of 180 children with septic shock 10 years of age or younger and 53 healthy controls. The analysis involved RNA isolated from whole blood within 24 h of pediatric intensive care unit admission for septic shock and a false discovery rate of 5 %. We compared differentially expressed genes from (1) patients with septic shock and healthy controls and (2) across validated gene expression-based subclasses of pediatric septic shock (endotypes A and B) using several bioinformatic methods. We found upregulation of 123 Nrf2-linked genes in children with septic shock. The top gene network represented by these genes contained primarily enzymes with oxidoreductase activity involved in cellular lipid metabolism that were highly connected to the peroxisome proliferator activated receptor and the retinoic acid receptor families. Endotype A, which had higher organ failure burden and mortality, exhibited a greater downregulation of Nrf2-linked genes than endotype B, with 92 genes differentially regulated between endotypes. Our findings indicate that Nrf2-linked genes may contribute to alterations in oxidative signaling and intermediary metabolism in pediatric septic shock.

  5. A randomized control hands-on defibrillation study-Barrier use evaluation.

    PubMed

    Wampler, David; Kharod, Chetan; Bolleter, Scotty; Burkett, Alison; Gabehart, Caitlin; Manifold, Craig

    2016-06-01

    Chest compressions and defibrillation are the only therapies proven to increase survival in cardiac arrest. Historically, rescuers must remove hands to shock, thereby interrupting chest compressions. This hands-off time results in a zero blood flow state. Pauses have been associated with poorer neurological recovery. This was a blinded randomized control cadaver study evaluating the detection of defibrillation during manual chest compressions. An active defibrillator was connected to the cadaver in the sternum-apex configuration. The sham defibrillator was not connected to the cadaver. Subjects performed chest compressions using 6 barrier types: barehand, single and double layer nitrile gloves, firefighter gloves, neoprene pad, and a manual chest compression/decompression device. Randomized defibrillations (10 per barrier type) were delivered at 30 joules (J) for bare hand and 360J for all other barriers. After each shock, the subject indicated degree of sensation on a VAS scale. Ten subjects participated. All subjects detected 30j shocks during barehand compressions, with only 1 undetected real shock. All barriers combined totaled 500 shocks delivered. Five (1%) active shocks were detected, 1(0.2%) single layer of Nitrile, 3(0.6%) with double layer nitrile, and 1(0.2%) with the neoprene barrier. One sham shock was reported with the single layer nitrile glove. No shocks were detected with fire gloves or compression decompression device. All shocks detected barely perceptible (0.25(±0.05)cm on 10cm VAS scale). Nitrile gloves and neoprene pad prevent (99%) responder's detection of defibrillation of a cadaver. Fire gloves and compression decompression device prevented detection. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Effects of signaling inescapable shock on subsequent escape learning: implications for theories of coping and "learned helplessness".

    PubMed

    Jackson, R L; Minor, T R

    1988-10-01

    The present experiments reveal that shuttle-escape performance deficits are eliminated when exteroceptive cues are paired with inescapable shock. Experiment 1 indicated that, as in instrumental control, a signal following inescapable shock eliminated later escape performance deficits. Subsequent experiments revealed that both forward and backward pairings between signals and inescapable shock attenuated performance deficits. However, the data also suggest that the impact of these temporal relations may be modulated by qualitative aspects of the cues because the effects of these relations depended upon whether an increase or decrease in illumination (Experiment 2) or a compound auditory cue (Experiment 4) was used. Preliminary evidence suggests that the ability of illumination cues to block escape learning deficits may be related to their to reduce contextual fear (Experiment 3). The implications of these data for conceptions of instrumental control and the role of fear in the etiology of effects of inescapable shock exposure are discussed.

  7. The solar wind interaction with Mars: Mariner 4, Mars 2, Mars 3, Mars 5, and Phobos 2 observations of bow shock position and shape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slavin, J.A.; Schwingenschuh, K.; Riedler, W.

    1991-07-01

    Observations taken by Mariner 4, Mars 2, Mars 3, Mars 5, and Phobos 2 are used to model the shape, position, and variability of the Martian bow shock for the purpose of better understanding the interaction of this planet with the solar wind. Emphasis is placed upon comparisons with the results of similar analyses at Venus, the only planet known to have no significant intrinsic magnetic field. Excellent agreement is found between Mars bow shock models derived from the earlier Mariner-Mars data set (24 crossings in 1964-1974) and the far more extensive observations recently returned by Phobos 2 (94 crossingsmore » in 1989). The best fit model to the aggregate data set locates the subsolar bow shock at a planetocentric distance of 1.56 {plus minus} 0.04 R{sub M}. Mapped into the terminator plane, the average distance to the Martian bow shock is 2.66 {plus minus} 0.05 R{sub M}. Compared with Venus, the bow wave at Mars is significantly more distant in the terminator plane, 2.7 R{sub M} versus 2.4 R{sub V}, and over twice as variable in location with a standard deviation of 0.49 R{sub M} versus 0.21 R{sub V} at Venus. The Mars 2, 3, and 5 and Phobos 2 data also contain a small number of very distant dayside shock crossings with inferred subsolar obstacle radii derived from gasdynamic modeling of 2,000 to 4,000 km. Such distant bow shock occurrences do not appear to take place at Venus and may be associated with the expansion of a small Martian magnetosphere under the influence of unusually low wind pressure. Finally, the altitude of the Venus bow shock has a strong solar cycle dependence believed to be due to the effect of solar EUV on the neutral atmosphere and mass loading. Comparison of the Phobos 2 shock observations near solar maximum (R{sub z} = 141) with the Mariner-Mars measurements taken much farther from solar maximum (R{sub z} = 59) indicates that the Martian bow shock location is independent of solar cycle phase and, hence, solar EUV flux.« less

  8. Dust acoustic shock waves in magnetized dusty plasma

    NASA Astrophysics Data System (ADS)

    Yashika, GHAI; Nimardeep, KAUR; Kuldeep, SINGH; N, S. SAINI

    2018-07-01

    We have presented a theoretical study of the dust acoustic (DA) shock structures in a magnetized, electron depleted dusty plasma in the presence of two temperature superthermal ions. By deriving a Korteweg–de Vries–Burgers equation and studying its shock solution, we aim to highlight the effects of magnetic field and obliqueness on various properties of the DA shock structures in the presence of kappa-distributed two temperature ion population. The present model is motivated by the observations of Geotail spacecraft in the Earth's magnetotail and it is seen that the different physical parameters such as superthermality of the cold and hot ions, the cold to hot ion temperature ratio, the magnetic field strength, obliqueness and the dust kinematic viscosity greatly influence the dynamics of the shock structures so formed. The results suggest that the variation of superthermalities of the cold and hot ions have contrasting effects on both positive and negative polarity shock structures. Moreover, it is noted that the presence of the ambient magnetic field affects the dispersive properties of the medium and tends to make the shock structures less wide and more abrupt. The findings of present investigation may be useful in understanding the dynamics of shock waves in dusty plasma environments containing two temperature ions where the electrons are significantly depleted.

  9. Is the acceleration of anomalous cosmic rays affected by the geometry of the termination shock?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senanayake, U. K.; Florinski, V., E-mail: uks0001@uah.edu, E-mail: vaf0001@uah.edu

    2013-12-01

    Historically, anomalous cosmic rays (ACRs) were thought to be accelerated at the solar-wind termination shock (TS) by the diffusive shock acceleration process. When Voyager 1 crossed the TS in 2004, the measured ACR spectra did not match the theoretical prediction of a continuous power law, and the source of the high-energy ACRs was not observed. When the Voyager 2 crossed the TS in 2007, it produced similar results. Several possible explanations have since appeared in the literature, but we follow the suggestion that ACRs are still accelerated at the shock, only away from the Voyager crossing points. To investigate thismore » hypothesis closer, we study ACR acceleration using a three-dimensional, non-spherical model of the heliosphere that is axisymmetric with respect to the interstellar flow direction. We then compare the results with those obtained for a spherical TS. A semi-analytic model of the plasma and magnetic field backgrounds is developed to permit an investigation over a wide range of parameters under controlled conditions. The model is applied to helium ACRs, whose phase-space trajectories are stochastically integrated backward in time until a pre-specified, low-energy boundary, taken to be 0.5 MeV n{sup –1} (the so-called injection energy), is reached. Our results show that ACR acceleration is quite efficient on the heliotail-facing part of the TS. For small values of the perpendicular diffusion coefficient, our model yields a positive intensity gradient between the TS and about midway through the heliosheath, in agreement with the Voyager observations.« less

  10. Western blot immunoassay for HSP-70 antibodies in idiopathic tinnitus: a preliminary report.

    PubMed

    Savastano, Marina; Celadin, Marilena; Pittoni, Marina; Plebani, Mario; Marioni, Gino

    2006-03-01

    Our preliminary study investigated the role of nonspecific immunologic tests and immunoassay for heat shock protein 70 (HSP-70) in supporting the possibility of an autoimmune inner ear process determining idiopathic tinnitus. Thirty-six consecutive patients with idiopathic tinnitus without other otologic or autoimmune diseases and 20 healthy blood donor subjects underwent determinations of circulating immune complexes (CICs) and other nonspecific immunologic factors and immunoassay for HSP-70. The mean CIC values were 4.2 microg/mL in the tinnitus patients and 0.9 microg/mL in the control group (p = .012). Thirteen of the 36 tinnitus patients and none of the control group were HSP-70-positive. Ten of the 13 HSP-70-positive patients had CIC values higher than normal. In the tinnitus group, the mean CIC values were 6.9 microg/mL and 2.6 microg/mL in the HSP-70-positive and -negative subgroups, respectively (p = .024). It may be hypothesized that in a significant number of cases, idiopathic tinnitus could be induced by immune response to inner ear-specific HSP-70.

  11. Bench-to-bedside review: Vasopressin in the management of septic shock

    PubMed Central

    2011-01-01

    This review of vasopressin in septic shock differs from previous reviews by providing more information on the physiology and pathophysiology of vasopressin and vasopressin receptors, particularly because of recent interest in more specific AVPR1a agonists and new information from the Vasopressin and Septic Shock Trial (VASST), a randomized trial of vasopressin versus norepinephrine in septic shock. Relevant literature regarding vasopressin and other AVPR1a agonists was reviewed and synthesized. Vasopressin, a key stress hormone in response to hypotension, stimulates a family of receptors: AVPR1a, AVPR1b, AVPR2, oxytocin receptors and purinergic receptors. Rationales for use of vasopressin in septic shock are as follows: first, a deficiency of vasopressin in septic shock; second, low-dose vasopressin infusion improves blood pressure, decreases requirements for norepinephrine and improves renal function; and third, a recent randomized, controlled, concealed trial of vasopressin versus norepinephrine (VASST) suggests low-dose vasopressin may decrease mortality of less severe septic shock. Previous clinical studies of vasopressin in septic shock were small or not controlled. There was no difference in 28-day mortality between vasopressin-treated versus norepinephrine-treated patients (35% versus 39%, respectively) in VASST. There was potential benefit in the prospectively defined stratum of patients with less severe septic shock (5 to 14 μg/minute norepinephrine at randomization): vasopressin may have lowered mortality compared with norepinephrine (26% versus 36%, respectively, P = 0.04 within stratum). The result was robust: vasopressin also decreased mortality (compared with norepinephrine) if less severe septic shock was defined by the lowest quartile of arterial lactate or by use of one (versus more than one) vasopressor at baseline. Other investigators found greater hemodynamic effects of higher dose of vasopressin (0.06 units/minute) but also unique adverse effects (elevated liver enzymes and serum bilirubin). Use of higher dose vasopressin requires further evaluation of efficacy and safety. There are very few studies of interactions of therapies in critical care - or septic shock - and effects on mortality. Therefore, the interaction of vasopressin infusion, corticosteroid treatment and mortality of septic shock was evaluated in VASST. Low-dose vasopressin infusion plus corticosteroids significantly decreased 28-day mortality compared with corticosteroids plus norepinephrine (44% versus 35%, respectively, P = 0.03; P = 0.008 interaction statistic). Prospective randomized controlled trials would be necessary to confirm this interesting interaction. In conclusion, low-dose vasopressin may be effective in patients who have less severe septic shock already receiving norepinephrine (such as patients with modest norepinephrine infusion (5 to 15 μg/minute) or low serum lactate levels). The interaction of vasopressin infusion and corticosteroid treatment in septic shock requires further study. PMID:21892977

  12. Asymmetric Shock Wave Generation in a Microwave Rocket Using a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Takahashi, Masayuki

    2017-10-01

    A plasma pattern is reproduced by coupling simulations between a particle-in- cell with Monte Carlo collisions model and a finite-difference time-domain simulation for an electromagnetic wave propagation when an external magnetic field is applied to the breakdown volume inside a microwave-rocket nozzle. The propagation speed and energy-absorption rate of the plasma are estimated based on the breakdown simulation, and these are utilized to reproduce shock wave propagation, which provides impulsive thrust for the microwave rocket. The shock wave propagation is numerically reproduced by solving the compressible Euler equation with an energy source of the microwave heating. The shock wave is asymmetrically generated inside the nozzle when the electron cyclotron resonance region has a lateral offset, which generates lateral and angular impulses for postural control of the vehicle. It is possible to develop an integrated device to maintain beaming ight of the microwave rocket, achieving both axial thrust improvement and postural control, by controlling the spatial distribution of the external magnetic field.

  13. Control of tunable, monoenergetic laser-plasma-accelerated electron beams using a shock-induced density downramp injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, K. K.; Tsai, H. -E.; Barber, S. K.

    Control of the properties of laser-plasma-accelerated electron beams that were injected along a shock-induced density downramp through precision tailoring of the density profile was demonstrated using a 1.8 J, 45 fs laser interacting with a mm-scale gas jet. The effects on the beam spatial profile, steering, and absolute energy spread of the density region before the shock and tilt of the shock were investigated experimentally and with particle-in-cell simulations. By adjusting these density parameters, the electron beam quality was controlled and improved while the energy (30-180 MeV) and energy spread (2-11 MeV) were independently tuned. Simple models that are inmore » good agreement with the experimental results are proposed to explain these relationships, advancing the understanding of downramp injection. In conclusion, this technique allows for high-quality electron beams with percent-level energy spread to be tailored based on the application.« less

  14. Control of tunable, monoenergetic laser-plasma-accelerated electron beams using a shock-induced density downramp injector

    DOE PAGES

    Swanson, K. K.; Tsai, H. -E.; Barber, S. K.; ...

    2017-05-30

    Control of the properties of laser-plasma-accelerated electron beams that were injected along a shock-induced density downramp through precision tailoring of the density profile was demonstrated using a 1.8 J, 45 fs laser interacting with a mm-scale gas jet. The effects on the beam spatial profile, steering, and absolute energy spread of the density region before the shock and tilt of the shock were investigated experimentally and with particle-in-cell simulations. By adjusting these density parameters, the electron beam quality was controlled and improved while the energy (30-180 MeV) and energy spread (2-11 MeV) were independently tuned. Simple models that are inmore » good agreement with the experimental results are proposed to explain these relationships, advancing the understanding of downramp injection. In conclusion, this technique allows for high-quality electron beams with percent-level energy spread to be tailored based on the application.« less

  15. Oceanography and Mine Warfare

    DTIC Science & Technology

    2000-03-13

    of breaking waves , the position and strength of surface currents, and the propagation of the tide into very shallow waters. In the surf zone...6) sediment properties determine shock wave propagation , a method for mine neutralization in the surf zone. 48 OCEANOGRAPHY AND MINE WARFARE...mines will be buried in the sediments, sedimentary explosive shock wave propagation is critical for determining operational performance. Presently, we

  16. Multiple Factors in the Long-Term Effectiveness of Contingent Electric Shock Treatment for Self-Injurious Behavior: A Case Example.

    ERIC Educational Resources Information Center

    Linscheid, Thomas R.; Reichenbach, Heidi

    2002-01-01

    Data are presented to document the initial dramatic reduction in self-injurious behavior and the ongoing effectiveness of contingent electric shock treatment of an adolescent. Positive effects of the intervention are documented, as is information on the interaction of a medical condition, psychoactive mediation status, and staff changes. (Contains…

  17. Shock-operated valve would automatically protect fluid systems

    NASA Technical Reports Server (NTRS)

    Branum, L. W.; Wells, G. H.

    1966-01-01

    Glandless valve shuts down high-pressure fluid systems when severe shock from an explosion or earthquake occurs. The valve uses a pendulum to support the valve closure plug in the open position. When jarred, the valve body is moved relative to the pendulum and the plug support is displaced, allowing the plug to seat and be held by spring pressure.

  18. The framing effect and skin conductance responses.

    PubMed

    Ring, Patrick

    2015-01-01

    Individuals often rely on simple heuristics when they face complex choice situations under uncertainty. Traditionally, it has been proposed that cognitive processes are the main driver to evaluate different choice options and to finally reach a decision. Growing evidence, however, highlights a strong interrelation between judgment and decision-making (JDM) on the one hand, and emotional processes on the other hand. This also seems to apply to judgmental heuristics, i.e., decision processes that are typically considered to be fast and intuitive. In this study, participants are exposed to different probabilities of receiving an unpleasant electric shock. Information about electric shock probabilities is either positively or negatively framed. Integrated skin conductance responses (ISCRs) while waiting for electric shock realization are used as an indicator for participants' emotional arousal. This measure is compared to objective probabilities. I find evidence for a relation between emotional body reactions measured by ISCRs and the framing effect. Under negative frames, participants show significantly higher ISCRs while waiting for an electric shock to be delivered than under positive frames. This result might contribute to a better understanding of the psychological processes underlying JDM. Further studies are necessary to reveal the causality underlying this finding, i.e., whether emotional processes influence JDM or vice versa.

  19. Quality of mango nectar processed by high-pressure homogenization with optimized heat treatment.

    PubMed

    Tribst, Alline Artigiani Lima; Franchi, Mark Alexandrow; de Massaguer, Pilar Rodriguez; Cristianini, Marcelo

    2011-03-01

    This work aimed to evaluate the effect of high-pressure homogenization (HPH) with heat shock on Aspergillus niger, vitamin C, and color of mango nectar. The nectar was processed at 200 MPa followed by heat shock, which was optimized by response surface methodology by using mango nectar ratio (45 to 70), heat time (10 to 20), and temperature (60 to 85 °C) as variables. The color of mango nectar and vitamin C retention were evaluated at the optimized treatments, that is, 200 MPa + 61.5 °C/20 min or 73.5 °C/10 min. The mathematical model indicates that heat shock time and temperature showed a positive effect in the mould inactivation, whereas increasing ratio resulted in a protective effect on A. niger. The optimized treatments did not increase the retention of vitamin C, but had positive effect for the nectar color, in particular for samples treated at 200 MPa + 61.5 °C/20 min. The results obtained in this study show that the conidia can be inactivated by applying HPH with heat shock, particularly to apply HPH as an option to pasteurize fruit nectar for industries.

  20. The 'modified prone position': a new approach for treating pre-vesical stones with extracorporeal shock wave lithotripsy.

    PubMed

    Köse, A C; Demirbas, M

    2004-02-01

    To investigate the utility of a new 'modified-prone' position for treating pre-vesical stones with extracorporeal shock wave lithotripsy (ESWL), usually considered an acceptable and effective treatment for such stones, but for which many different body positions have been used in an attempt to increase its efficacy. The study included 268 consecutive patients with a solitary pre-vesical stone who underwent ESWL either prone (69) or in the modified-prone position (199) between May 1999 and August 2001. Only those with one stone between the ureteric orifice and 1 cm proximal to the vesico-ureteric junction were included. In each case the stone diameter, days to stone clearance, number of shock waves applied per treatment, and number of sessions required to become stone-free were recorded. If the treatment failed this was also noted. Success rates in the prone and modified-prone groups were compared and analysed to assess which of the variables influenced success with ESWL. After ESWL, 95.5% of the 268 patients were stone-free; the rates in the prone and modified-prone groups were 89.9% and 97.5%, respectively (P = 0.015). The probability of success with ESWL therapy for pre-vesical calculi in modified-prone position was about five times (odds ratio 4.56, 95% confidence interval 1.2-17.7) greater than that expected with when prone. The modified-prone position was an independent factor most significantly influencing success with ESWL in these patients. The modified-prone position for ESWL is a new and very effective way to treat patients with pre-vesical stones.

  1. Focusing of Shear Shock Waves

    NASA Astrophysics Data System (ADS)

    Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco

    2018-01-01

    Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.

  2. Technique for Forming Solid D2 and D-T Layers for Shock Timing Experiments at the National Ignition Facility

    DOE PAGES

    Sater, J. D.; Espinosa-Loza, F.; Kozioziemski, B.; ...

    2016-07-11

    Capsule implosion experiments on the National Ignition Facility (NIF) are driven with a carefully tailored laser pulse that delivers a sequence of shocks to the ablator and fuel. In order to ensure the shocks converge at the desired position, the shock strength and velocity are measured in experimental platforms referred to as keyhole targets. We made shock measurements on capsules completely filled with liquid deuterium for the solid deuterium tritide (D-T) layer campaigns. Modeling has been used to extend these results to form an estimate of the shock properties in solid D-T layers. Furthermore, to verify and improve the surrogacymore » of the liquid-filled keyhole measurements, we have developed a technique to form a solid layer inside the keyhole capsule. The layer is typically uniform over a 400-μm-diameter area. This is sufficient to allow direct measurement of the shock velocity. This layering technique has been successfully applied to 13 experiments on the NIF. The technique may also be applicable to fast-igniter experiments since some proposed designs resemble keyhole targets. We discuss our method in detail and give representative results.« less

  3. Heat shock protein 70-2 and tumor necrosis factor-α gene polymorphisms in Chinese children with Henoch-Schönlein purpura.

    PubMed

    Ding, Gui-Xia; Wang, Chen-Hu; Che, Ruo-Chen; Guan, Wan-Zhen; Yuan, Yang-Gang; Su, Min; Zhang, Ai-Hua; Huang, Song-Ming

    2016-02-01

    Henoch-Schönlein purpura (HSP) or IgA-associated vasculitis is related to immune disturbances. Polymorphisms of the heat shock protein 70-2 gene (HSP70-2) and the tumor necrosis factor-a gene (TNF-α) are known to be associated with immune diseases. The purpose of this study was to investigate the likely association of HSP70-2 (+1267A/G) and TNF-α (+308A/G) gene polymorphisms with HSP in children. The polymerase chain reaction restriction fragment length polymorphism method was used to detect the HSP70-2 and TNF-α polymorphisms in 205 cases of children with HSP and 53 controls; and the association of these polymorphisms with HSP and HSP nephritis (HSPN) was analyzed. The G/G genotypic frequencies at the +1267A/G position of HSP70-2 in the HSP group (22.9%) were significantly higher than those in the healthy control group (9.4%) (χ(2)=4.764, P<0.05). The frequencies of the A/A, A/G and G/G genotypes of HSP70-2 in patients in the nephritis-free group and the HSPN group showed no statistically significant difference. The A/A genotype frequency at the +308G/A position of TNF-α in the HSP group was 8.3%, which was higher than that in the control group (χ(2)=6.447, P<0.05). The A allele frequency of TNF-α in the HSP group was higher than that in the control group, with a statistically significant difference (χ(2)=7.241, P<0.05). The HSP70-2 (+1267A/G) and TNF-α (+308G/A) gene polymorphisms were associated with HSP in children. The G/G homozygosity of HSP70-2 and the A/A homozygosity of TNF-α may be genetic predisposing factors for HSP.

  4. Preliminary study of the interactions caused by crossing shock waves and a turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Ketchum, A. C.; Bogdonoff, S. M.; Fernando, E. M.; Batcho, P. F.

    1989-01-01

    The subject research, the first phase of an extended study of the interaction of crossing shock waves with a turbulent boundary layer, has revealed the complexity of the resulting flow. Detailed surface visualization and mean wall static pressure distributions show little resemblance to the inviscid flow approximation, and the exploratory high frequency measurements show that the flow downstream of the theoretical inviscid shock crossing position has a significant unsteady characteristic. Further developments of the (unsteady) high frequency measurements are required to fully characterize the unsteadiness and the requirements to include this component in flowfield modeling.

  5. Management of Acute Respiratory Failure in the Patient with Sepsis or Septic Shock.

    PubMed

    Moore, Sarah; Weiss, Brian; Pascual, Jose L; Kaplan, Lewis J

    Sepsis and septic shock are each commonly accompanied by acute respiratory failure and the need for invasive as well as non-invasive ventilation throughout a patient's intensive care unit course. We explore the underpinnings of acute respiratory failure of pulmonary as well as non-pulmonary origin in the context of invasive and non-invasive management approaches. Both pharmacologic and non-pharmacologic adjuncts to ventilatory and oxygenation support are highlighted as well. Finally, rescue modalities are positioned within the intensivist's armamentarium for global care of support of the critically ill or injured patient with sepsis or septic shock.

  6. Similar Metabolic, Innate Immunity, and Adipokine Profiles in Adult and Pediatric Sepsis Versus Systemic Inflammatory Response Syndrome-A Pilot Study.

    PubMed

    Tavladaki, Theonymfi; Spanaki, Anna Maria; Dimitriou, Helen; Kondili, Efmorfia; Choulaki, Christianna; Georgopoulos, Dimitris; Briassoulis, George

    2017-11-01

    To examine whether the septic profiles of heat shock protein 72, heat shock protein 90α, resistin, adiponectin, oxygen consumption, CO2 production, energy expenditure, and metabolic pattern, along with illness severity, nutritional, and inflammatory indices, differ between adult and pediatric patients compared with systemic inflammatory response syndrome and healthy controls. To evaluate whether these biomolecules may discriminate sepsis from systemic inflammatory response syndrome in adult and pediatric patients. Prospective cohort study. University ICU and PICU. Seventy-eight adults (sepsis/23; systemic inflammatory response syndrome/23; healthy controls/33), 67 children (sepsis/18; systemic inflammatory response syndrome/23; controls/27), mechanically ventilated. None. Flow cytometry determined mean fluorescence intensity for monocyte or neutrophil heat shock protein expression. Resistin, adiponectin, and extracellular heat shock proteins were measured using enzyme-linked immunosorbent assay; energy expenditure by E-COVX (GE Healthcare). Genomic DNA was extracted with PureLink Genomic DNA kit (Invitrogen, Carlsbad, CA) to detect heat shock protein 72 single nucleotide polymorphisms. Similarly, in adult and pediatric patients, Acute Physiology and Chronic Evaluation-II/Acute Physiology and Pediatric Risk of Mortality-III, Simplified Acute Physiology Score-III, C-reactive protein, lactate, and resistin were higher and myocardial contractility, monocyte heat shock protein 72, oxygen consumption, CO2 production, energy expenditure, metabolic pattern, glucose, and albumin lower in sepsis compared with systemic inflammatory response syndrome or controls (p < 0.05). For discriminating sepsis from systemic inflammatory response syndrome, resistin, extracellular heat shock protein 90α, and lactate achieved a receiver operating characteristic curve greater than 0.80 in children and greater than 0.75 in adults (p < 0.05). In both, adults and children, genotype heat shock protein 72 analysis did not disclose any diagnosis or mortality group differences regarding either rs6457452 or rs1061581 haplotypes. Sepsis presents with similar profiles in adult and pediatric patients, characterized by enhanced inflammatory hormonal response and by repressed innate immunity, metabolism, and myocardial contractility. These features early distinguish sepsis from systemic inflammatory response syndrome across all age groups.

  7. Mach 5 bow shock control by a nanosecond pulse surface dielectric barrier discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishihara, M.; Takashima, K.; Rich, J. W.

    2011-06-15

    Bow shock perturbations in a Mach 5 air flow, produced by low-temperature, nanosecond pulse, and surface dielectric barrier discharge (DBD), are detected by phase-locked schlieren imaging. A diffuse nanosecond pulse discharge is generated in a DBD plasma actuator on a surface of a cylinder model placed in air flow in a small scale blow-down supersonic wind tunnel. Discharge energy coupled to the actuator is 7.3-7.8 mJ/pulse. Plasma temperature inferred from nitrogen emission spectra is a few tens of degrees higher than flow stagnation temperature, T = 340 {+-} 30 K. Phase-locked Schlieren images are used to detect compression waves generatedmore » by individual nanosecond discharge pulses near the actuator surface. The compression wave propagates upstream toward the baseline bow shock standing in front of the cylinder model. Interaction of the compression wave and the bow shock causes its displacement in the upstream direction, increasing shock stand-off distance by up to 25%. The compression wave speed behind the bow shock and the perturbed bow shock velocity are inferred from the Schlieren images. The effect of compression waves generated by nanosecond discharge pulses on shock stand-off distance is demonstrated in a single-pulse regime (at pulse repetition rates of a few hundred Hz) and in a quasi-continuous mode (using a two-pulse sequence at a pulse repetition rate of 100 kHz). The results demonstrate feasibility of hypersonic flow control by low-temperature, repetitive nanosecond pulse discharges.« less

  8. "Smart" Electromechanical Shock Absorber

    NASA Technical Reports Server (NTRS)

    Stokes, Lebarian; Glenn, Dean C.; Carroll, Monty B.

    1989-01-01

    Shock-absorbing apparatus includes electromechanical actuator and digital feedback control circuitry rather than springs and hydraulic damping as in conventional shock absorbers. Device not subject to leakage and requires little or no maintenance. Attenuator parameters adjusted in response to sensory feedback and predictive algorithms to obtain desired damping characteristic. Device programmed to decelerate slowly approaching vehicle or other large object according to prescribed damping characteristic.

  9. Identification of pulmonary edema in forensic autopsy cases of fatal anaphylactic shock using Fourier transform infrared microspectroscopy.

    PubMed

    Lin, Hancheng; Luo, Yiwen; Wang, Lei; Deng, Kaifei; Sun, Qiran; Fang, Ruoxi; Wei, Xin; Zha, Shuai; Wang, Zhenyuan; Huang, Ping

    2018-03-01

    Anaphylaxis is a rapid allergic reaction that may cause sudden death. Currently, postmortem diagnosis of anaphylactic shock is sometimes difficult and often achieved through exclusion. The aim of our study was to investigate whether Fourier transform infrared (FTIR) microspectroscopy combined with pattern recognition methods would be complementary to traditional methods and provide a more accurate postmortem diagnosis of fatal anaphylactic shock. First, the results of spectral peak area analysis showed that the pulmonary edema fluid of the fatal anaphylactic shock group was richer in protein components than the control group, which included mechanical asphyxia, brain injury, and acute cardiac death. Subsequently, principle component analysis (PCA) was performed and showed that the anaphylactic shock group contained more turn and α-helix protein structures as well as less tyrosine-rich proteins than the control group. Ultimately, a partial least-square discriminant analysis (PLS-DA) model combined with a variables selection method called the genetic algorithm (GA) was built and demonstrated good separation between these two groups. This pilot study demonstrates that FTIR microspectroscopy has the potential to be an effective aid for postmortem diagnosis of fatal anaphylactic shock.

  10. Complex Organic Molecules tracing shocks along the outflow cavity in the high-mass protostar IRAS 20126+4104.

    PubMed

    Palau, Aina; Walsh, Catherine; Sánchez-Monge, Álvaro; Girart, Josep M; Cesaroni, Riccardo; Jiménez-Serra, Izaskun; Fuente, Asunción; Zapata, Luis A; Neri, Roberto

    2017-06-01

    We report on subarcsecond observations of complex organic molecules (COMs) in the high-mass protostar IRAS 20126+4104 with the Plateau de Bure Interferometer in its most extended configurations. In addition to the simple molecules SO, HNCO and H 2 13 CO, we detect emission from CH 3 CN, CH 3 OH, HCOOH, HCOOCH 3 , CH 3 OCH 3 , CH 3 CH 2 CN, CH 3 COCH 3 , NH 2 CN, and (CH 2 OH) 2 . SO and HNCO present a X-shaped morphology consistent with tracing the outflow cavity walls. Most of the COMs have their peak emission at the putative position of the protostar, but also show an extension towards the south(east), coinciding with an H 2 knot from the jet at about 800-1000 au from the protostar. This is especially clear in the case of H 2 13 CO and CH 3 OCH 3 . We fitted the spectra at representative positions for the disc and the outflow, and found that the abundances of most COMs are comparable at both positions, suggesting that COMs are enhanced in shocks as a result of the passage of the outflow. By coupling a parametric shock model to a large gas-grain chemical network including COMs, we find that the observed COMs should survive in the gas phase for ∼ 2000 yr, comparable to the shock lifetime estimated from the water masers at the outflow position. Overall, our data indicate that COMs in IRAS 20126+4104 may arise not only from the disc, but also from dense and hot regions associated with the outflow.

  11. Complex Organic Molecules tracing shocks along the outflow cavity in the high-mass protostar IRAS 20126+4104

    PubMed Central

    Palau, Aina; Walsh, Catherine; Sánchez-Monge, Álvaro; Girart, Josep M.; Cesaroni, Riccardo; Jiménez-Serra, Izaskun; Fuente, Asunción; Zapata, Luis A.; Neri, Roberto

    2017-01-01

    We report on subarcsecond observations of complex organic molecules (COMs) in the high-mass protostar IRAS 20126+4104 with the Plateau de Bure Interferometer in its most extended configurations. In addition to the simple molecules SO, HNCO and H213CO, we detect emission from CH3CN, CH3OH, HCOOH, HCOOCH3, CH3OCH3, CH3CH2CN, CH3COCH3, NH2CN, and (CH2OH)2. SO and HNCO present a X-shaped morphology consistent with tracing the outflow cavity walls. Most of the COMs have their peak emission at the putative position of the protostar, but also show an extension towards the south(east), coinciding with an H2 knot from the jet at about 800–1000 au from the protostar. This is especially clear in the case of H213CO and CH3OCH3. We fitted the spectra at representative positions for the disc and the outflow, and found that the abundances of most COMs are comparable at both positions, suggesting that COMs are enhanced in shocks as a result of the passage of the outflow. By coupling a parametric shock model to a large gas-grain chemical network including COMs, we find that the observed COMs should survive in the gas phase for ∼ 2000 yr, comparable to the shock lifetime estimated from the water masers at the outflow position. Overall, our data indicate that COMs in IRAS 20126+4104 may arise not only from the disc, but also from dense and hot regions associated with the outflow. PMID:28579644

  12. Design of a New Integrated Structure of the Active Suspension System and Emergency Lane Change Test

    NASA Astrophysics Data System (ADS)

    Zhao, Jing-bo; Liu, Hai-mei; Zhang, Lan-chun; Bei, Shao-yi

    2017-09-01

    An integrated structure of the active suspension system was proposed in order to solve the problem of the individual control of the height of the body or the adjustable damping of the active suspension system of the electric vehicle, which improve the vibration reduction performance of the vehicle. The air bag was used to replace the traditional spiral spring, and the traditional shock absorber was replaced by the damping adjustable shock absorber, and the control module received the body acceleration sensor and the horizontal height sensor signal. The system controlled adjustable damping coefficient of shock absorber through the height of the car body the output of the air pump relay and the height control valve and the output of the electromagnetic valve of the adjustable damping shock absorber, and the emergency lane change test was carried out under different modes of speed of 60km/h. The experimental results indicated that the damping value was greater, average roll angle, yaw angle and average vehicle lateral acceleration were small when vehicle body was in the state of emergency lane change, which verified the feasibility of the integrated control strategy and structure design of the active suspension system. The research has important theoretical research value and engineering application prospect for designing and controlling strategy of vehicle chassis integrated control system.

  13. Protein Kinase A Regulates Molecular Chaperone Transcription and Protein Aggregation

    PubMed Central

    Prince, Thomas; Calderwood, Stuart K.

    2011-01-01

    Heat shock factor 1 (HSF1) regulates one of the major pathways of protein quality control and is essential for deterrence of protein-folding disorders, particularly in neuronal cells. However, HSF1 activity declines with age, a change that may open the door to progression of neurodegenerative disorders such as Huntington's disease. We have investigated mechanisms of HSF1 regulation that may become compromised with age. HSF1 binds stably to the catalytic domain of protein kinase A (PKAcα) and becomes phosphorylated on at least one regulatory serine residue (S320). We show here that PKA is essential for effective transcription of HSP genes by HSF1. PKA triggers a cascade involving HSF1 binding to the histone acetylase p300 and positive translation elongation factor 1 (p-TEFb) and phosphorylation of the c-terminal domain of RNA polymerase II, a key mechanism in the downstream steps of HSF1-mediated transcription. This cascade appears to play a key role in protein quality control in neuronal cells expressing aggregation-prone proteins with long poly-glutamine (poly-Q) tracts. Such proteins formed inclusion bodies that could be resolved by HSF1 activation during heat shock. Resolution of the inclusions was inhibited by knockdown of HSF1, PKAcα, or the pTEFb component CDK9, indicating a key role for the HSF1-PKA cascade in protein quality control. PMID:22216146

  14. Dual optical mechanical position tracker

    NASA Astrophysics Data System (ADS)

    Everett, S. L., Jr.

    1985-06-01

    This patent application describes an apparatus for retaining control of moving carriage impact dot matrix print heads when subjected to strong external forces such as shock and/or vibration. Position and direction of carriage movement is provided by a photo emitter-sensor assembly and a slotted timing wheel or disc having a plurality of equally spaced slots whose slot width is equal to the slot separation. The slot width is sufficient to frame a pair of side-by-side emitters which operate in conjunction with a pair of side-by-side sensors on the other side of the timing wheel. The order or sequence in which the sensors receive photo energy from their respective emitters indicates the direction of rotation of the timing wheel while simultaneous reception of photo energy by the side-by-side sensors provides an indication of valid rest position of the carriage drive motor.

  15. An analysis of shock coalescence including three-dimensional effects with application to sonic boom extrapolation. Ph.D. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Darden, C. M.

    1984-01-01

    A method for analyzing shock coalescence which includes three dimensional effects was developed. The method is based on an extension of the axisymmetric solution, with asymmetric effects introduced through an additional set of governing equations, derived by taking the second circumferential derivative of the standard shock equations in the plane of symmetry. The coalescence method is consistent with and has been combined with a nonlinear sonic boom extrapolation program which is based on the method of characteristics. The extrapolation program, is able to extrapolate pressure signatures which include embedded shocks from an initial data line in the plane of symmetry at approximately one body length from the axis of the aircraft to the ground. The axisymmetric shock coalescence solution, the asymmetric shock coalescence solution, the method of incorporating these solutions into the extrapolation program, and the methods used to determine spatial derivatives needed in the coalescence solution are described. Results of the method are shown for a body of revolution at a small, positive angle of attack.

  16. An IRAS/ISSA Survey of Bow Shocks Around Runaway Stars

    NASA Technical Reports Server (NTRS)

    Buren, David Van

    1995-01-01

    We searched for bow shock-like objects like those known around Oph and a Cam near the positions of 183 runaway stars. Based primarily on the presence and morphology of excess 60 micron emission we identify 56 new candidate bow shocks, for which we determine photometric and morphological parameters. Previously only a dozen or so were known. Well resolved structures are present around 25 stars. A comparison of the distribution of symmetry axes of the infrared nebulae with that of their proper motion vectors indicates that these two directions are very significantly aligned. The observed alignment strongly suggests that the structures we see arise from the interaction of stellar winds with the interstellar medium, justifying the identification of these far-infrared objects as stellar wind bow shocks.

  17. Life Shocks and Homelessness

    PubMed Central

    Corman, Hope; Noonan, Kelly; Reichman, Nancy E.

    2014-01-01

    We exploited an exogenous health shock—namely, the birth of a child with a severe health condition—to investigate the effect of a life shock on homelessness in large cities in the United States as well as the interactive effects of the shock with housing market characteristics. We considered a traditional measure of homelessness, two measures of housing instability thought to be precursors to homelessness, and a combined measure that approximates the broadened conceptualization of homelessness under the 2009 Homeless Emergency Assistance and Rapid Transition to Housing Act (2010). We found that the shock substantially increases the likelihood of family homelessness, particularly in cities with high housing costs. The findings are consistent with the economic theory of homelessness, which posits that homelessness results from a conjunction of adverse circumstances in which housing markets and individual characteristics collide. PMID:23868747

  18. Application of Micro-ramp Flow Control Devices to an Oblique Shock Interaction

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie; Anderson, Bernhard

    2007-01-01

    Tests are planned in the 15cm x 15cm supersonic wind tunnel at NASA Glenn to demonstrate the applicability of micro-ramp flow control to the management of shock wave boundary layer interactions. These tests will be used as a database for computational fluid dynamics (CFD) validation and Design of Experiments (DoE) design information. Micro-ramps show potential for mechanically simple and fail-safe boundary layer control.

  19. Distribution of escaping ions produced by non-specular reflection at the stationary quasi-perpendicular shock front

    NASA Astrophysics Data System (ADS)

    Gedalin, M.; Liverts, M.; Balikhin, M. A.

    2008-05-01

    Field-aligned and gyrophase bunched ion beams are observed in the foreshock of the Earth bow shock. One of the mechanisms proposed for their production is non-specular reflection at the shock front. We study the distributions which are formed at the stationary quasi-perpendicular shock front within the same process which is responsible for the generation of reflected ions and transmitted gyrating ions. The test particle motion analysis in a model shock allows one to identify the parameters which control the efficiency of the process and the features of the escaping ion distribution. These parameters are: the angle between the shock normal and the upstream magnetic field, the ratio of the ion thermal velocity to the flow velocity upstream, and the cross-shock potential. A typical distribution of escaping ions exhibits a bimodal pitch angle distribution (in the plasma rest frame).

  20. Geoeffectiveness of interplanetary shocks controlled by impact angles: A review

    NASA Astrophysics Data System (ADS)

    Oliveira, D. M.; Samsonov, A. A.

    2018-01-01

    The high variability of the Sun's magnetic field is responsible for the generation of perturbations that propagate throughout the heliosphere. Such disturbances often drive interplanetary shocks in front of their leading regions. Strong shocks transfer momentum and energy into the solar wind ahead of them which in turn enhance the solar wind interaction with magnetic fields in its way. Shocks then eventually strike the Earth's magnetosphere and trigger a myriad of geomagnetic effects observed not only by spacecraft in space, but also by magnetometers on the ground. Recently, it has been revealed that shocks can show different geoeffectiveness depending closely on the angle of impact. Generally, frontal shocks are more geoeffective than inclined shocks, even if the former are comparatively weaker than the latter. This review is focused on results obtained from modeling and experimental efforts in the last 15 years. Some theoretical and observational background are also provided.

  1. Extracorporeal shock waves in the treatment of nonunions.

    PubMed

    Biedermann, Rainer; Martin, Arho; Handle, Gerhart; Auckenthaler, Thomas; Bach, Christian; Krismer, Martin

    2003-05-01

    Nonunion remains a major complication after skeletal trauma. In the last decade, extracorporeal shock wave therapy has become a common tool for the treatment of nonunions. To date, no prospective, randomized trial has been conducted to show the efficacy of this form of treatment. This study was performed to determine the value of extracorporeal shock wave therapy for nonunions. Previous published results in the literature and our own clinical results were analyzed and related to the natural history of bony union. No study has proven that extracorporeal shock wave therapy improves bone healing. Clinical studies reporting the acceleration of union after application of shock waves instead seem to misinterpret the natural history of bony union. No evidence supports the treatment of pseudarthroses with extracorporeal shock waves. A randomized, prospective, clinical trial with a control group has to be performed before a final decision can be made regarding this indication for extracorporeal shock wave therapy.

  2. Electron heating and the potential jump across fast mode shocks. [in interplanetary space

    NASA Technical Reports Server (NTRS)

    Schwartz, Steven J.; Thomsen, Michelle F.; Bame, S. J.; Stansberry, John

    1988-01-01

    Two different methods were applied to determine the cross-shock potential jump in the de Hoffmann-Teller reference frame, using a data set that represented 66 crossings of the terrestrial bow shock and 14 interplanetary shocks observed by various ISEE spacecraft, and one crossing each of the Jovian bow shock and the Uranian bow shock made by the Voyager spacecraft. Results for estimates of the electrostatic potential based on an estimate of the jump in electron enthalpy correlated well with estimates based on Liouville's theorem, although the Liouville-determined values were systematically the higher of the two, suggesting that significant irreversible processes contribute to the shape of the downstream distribution. The potential jump corresponds to approximately 12-15 percent of the incident ion ram kinetic energy, and was found not to be controlled by the Mach number, plasma beta, shock geometry, or electron to ion temperature ratios.

  3. Optical Radiation from Shock-Compressed Materials. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Svendsen, Robert F., Jr.

    1987-01-01

    Recent observations of shock-induced radiation from oxides, silicates, and metals of geophysical interest constrain the shock-compressed temperature of these materials. The relationships between the temperature inferred from the observed radiation and the temperature of the shock-compressed film or foil and/or window were investigated. Changes of the temperature field in each target component away from that of their respective shock-compressed states occur because of: shock-impedance mismatch between target components; thermal mismatch between target components; surface roughness at target interfaces; and conduction within and between target components. In particular, conduction may affect the temperature of the film/foil window interface on the time scale of the experiments, and so control the intensity and history of the dominant thermal radiation sources in the target. This type of model was used to interpret the radiation emitted by a variety of shock-compressed materials and interfaces.

  4. Incident Shock-Transverse Jet Interactions at Mach 1.9: Effect of Shock Impingement Location

    NASA Astrophysics Data System (ADS)

    Zare-Behtash, H.; Lo, K. H.; Erdem, E.; Kontis, K.; Lin, J.; Ukai, T.; Obayashi, S.

    The scramjet engine is an efficient design for high-speed propulsion, requiring injection of fuel into a supersonic flow in a short amount of time. Due to the nature of the flow numerous shock waves exist within the combustor of a scramjet, significantly altering the flow characteristics and performance of the engine as the flow Mach number or attitude is changed. According to Mai et al. [1] the location of impingement of the incident shock, relative to the fuel injection location, has significant impact on the mixing and flame-holding properties. This emphasises the importance of understanding and hence the need for controlling the dynamic interactions that are created. Of course another fertile area where transverse jet injections are studied for their application is the creation of forces and moments for pitch and attitude control [2, 3].

  5. Design, Simulation and Fabrication of Triaxial MEMS High Shock Accelerometer.

    PubMed

    Zhang, Zhenhai; Shi, Zhiguo; Yang, Zhan; Xie, Zhihong; Zhang, Donghong; Cai, De; Li, Kejie; Shen, Yajing

    2015-04-01

    On the basis of analyzing the disadvantage of other structural accelerometer, three-axis high g MEMS piezoresistive accelerometer was put forward in order to apply to the high-shock test field. The accelerometer's structure and working principle were discussed in details. The simulation results show that three-axis high shock MEMS accelerometer can bear high shock. After bearing high shock impact in high-shock shooting test, three-axis high shock MEMS accelerometer can obtain the intact metrical information of the penetration process and still guarantee the accurate precision of measurement in high shock load range, so we can not only analyze the law of stress wave spreading and the penetration rule of the penetration process of the body of the missile, but also furnish the testing technology of the burst point controlling. The accelerometer has far-ranging application in recording the typical data that projectile penetrating hard target and furnish both technology guarantees for penetration rule and defend engineering.

  6. Differential expression of the nuclear-encoded mitochondrial transcriptome in pediatric septic shock.

    PubMed

    Weiss, Scott L; Cvijanovich, Natalie Z; Allen, Geoffrey L; Thomas, Neal J; Freishtat, Robert J; Anas, Nick; Meyer, Keith; Checchia, Paul A; Shanley, Thomas P; Bigham, Michael T; Fitzgerald, Julie; Banschbach, Sharon; Beckman, Eileen; Howard, Kelli; Frank, Erin; Harmon, Kelli; Wong, Hector R

    2014-11-19

    Increasing evidence supports a role for mitochondrial dysfunction in organ injury and immune dysregulation in sepsis. Although differential expression of mitochondrial genes in blood cells has been reported for several diseases in which bioenergetic failure is a postulated mechanism, there are no data about the blood cell mitochondrial transcriptome in pediatric sepsis. We conducted a focused analysis using a multicenter genome-wide expression database of 180 children ≤ 10 years of age with septic shock and 53 healthy controls. Using total RNA isolated from whole blood within 24 hours of PICU admission for septic shock, we evaluated 296 nuclear-encoded mitochondrial genes using a false discovery rate of 1%. A series of bioinformatic approaches were applied to compare differentially expressed genes across previously validated gene expression-based subclasses (groups A, B, and C) of pediatric septic shock. In total, 118 genes were differentially regulated in subjects with septic shock compared to healthy controls, including 48 genes that were upregulated and 70 that were downregulated. The top scoring canonical pathway was oxidative phosphorylation, with general downregulation of the 51 genes corresponding to the electron transport system (ETS). The top two gene networks were composed primarily of mitochondrial ribosomal proteins highly connected to ETS complex I, and genes encoding for ETS complexes I, II, and IV that were highly connected to the peroxisome proliferator activated receptor (PPAR) family. There were 162 mitochondrial genes differentially regulated between groups A, B, and C. Group A, which had the highest maximum number of organ failures and mortality, exhibited a greater downregulation of mitochondrial genes compared to groups B and C. Based on a focused analysis of a pediatric septic shock transcriptomic database, nuclear-encoded mitochondrial genes were differentially regulated early in pediatric septic shock compared to healthy controls, as well as across genotypic and phenotypic distinct pediatric septic shock subclasses. The nuclear genome may be an important mechanism contributing to alterations in mitochondrial bioenergetic function and outcomes in pediatric sepsis.

  7. Shock Boundary Layer Interaction Flow Control with Micro Vortex Generators

    DTIC Science & Technology

    2011-05-01

    Pitot rake ( p̄02p01 ) u = time-averaged streamwise velocity ufs = time-averaged freestream streamwise velocity u∗ = √ τw ρw = wall-shear velocity w...upstream of the normal shock-wave 2 = station 2, at the Pitot rake location I. Introduction With the exception of the scramjet, all current air-breathing...to this.7 1 shock holder near-normal shock μVGs 123 143 14 hole Pitot rake 6o x vg variable φ cylinder mounted on the centre-line 380 M ∞ =1.4

  8. Postconditioning with sevoflurane ameliorates spatial learning and memory deficit via attenuating endoplasmic reticulum stress induced neuron apoptosis in a rat model of hemorrhage shock and resuscitation.

    PubMed

    Hu, Xianwen; Wang, Jingxian; Zhang, Li; Zhang, Qiquan; Duan, Xiaowen; Zhang, Ye

    2018-06-02

    Hemorrhage shock could initiate endoplasmic reticulum stress (ERS) and then induce neuronal apoptosis. The aim of this study was to investigate whether sevoflurane postconditioning could attenuate brain injury via suppressing apoptosis induced by ERS. Seventy male rats were randomized into five groups: sham, shock, low concentration (sevo1, 1.2%), middle concentration (sevo2, 2.4%) and high concentration (sevo3, 3.6%) of sevoflurane postconditioning. Hemorrhage shock was induced by removing 40% of the total blood volume during an interval of 30 min. 1h after the completion of bleeding, the animals were reinfused with shed blood during the ensuing 30 min. The spatial learning and memory ability of rats were measured by Morris water maze (MWM) test three days after the operation. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) positive cells in the hippocampus CA1 region were assessed after the MWM test. The expression of C/EBP-homologousprotein (CHOP) and glucose-regulated protein 78 (GRP78) in the hippocampus were measured at 24h after reperfusion. We found that sevoflurane postconditioning with the concentrations of 2.4% and 3.6% significantly ameliorated the spatial learning and memory ability, decreased the TUNEL-positive cells, and reduced the GRP78 and CHOP expression compared with the shock group. These results suggested that sevoflurane postconditioning with the concentrations of 2.4% and 3.6% could ameliorate spatial learning and memory deficit after hemorrhage shock and resuscitation injury via suppressing apoptosis induced by ERS. Copyright © 2018. Published by Elsevier B.V.

  9. Evidence for Decay of Turbulence by MHD Shocks in the ISM via CO Emission

    NASA Astrophysics Data System (ADS)

    Larson, Rebecca; Evans, Neal J.; Green, Joel; Yang, Yao-Lun

    2015-08-01

    Star formation rates in molecular clouds are about 100 times slower than simple estimates based on Jeans mass and free-fall time arguments. A leading candidate to explain the slowness of star formation is MHD turbulence. Such turbulence should decay via low-velocity shocks. Until recently, these shocks have resisted detection because of confusion with emission excited by PDRs. We present evidence for shocks at levels predicted from simulations (Pon et al. 2012), and distinguished from PDR emission by the pattern of emission in rotational levels of CO up to J = 8. The data come from observations of sub-millimeter rotational transitions of CO in molecular clouds. We find evidence of the shocks expected for dissipation of MHD turbulence in material not associated with any protostar, at a density of about 103 cm-3 to 103.5 cm-3, a shock velocity of 2 to 3 km s-1, and a magnetic field strength of 4 to 8 μG. We calculate the dissipation timescale to be around 1.5 million years which is about 3 times less than the flow crossing timescale and agrees with predictions by Pon et al. 2012. Transitions of CO observed close to active sites of star formation, but not within outflows, can trace turbulent dissipation of shocks stirred by formation processes. Although the transitions are difficult to detect at individual positions, our Herschel-SPIRE survey of protostars provides a grid of spatially-distributed spectra within molecular clouds. We averaged all spatial positions away from known outflows near seven protostars from a Herschel Cycle 2 open time program ("COPS'', PI: J. Green). We find significant agreement with predictions of models of turbulent dissipation in slightly denser (103.5 cm-3) material and stronger magnetic field (24 μG) than in the general molecular cloud.

  10. Serum heat shock protein 70 level as a biomarker of exceptional longevity.

    PubMed

    Terry, Dellara F; Wyszynski, Diego F; Nolan, Vikki G; Atzmon, Gil; Schoenhofen, Emily A; Pennington, JaeMi Y; Andersen, Stacy L; Wilcox, Marsha A; Farrer, Lindsay A; Barzilai, Nir; Baldwin, Clinton T; Asea, Alexzander

    2006-11-01

    Heat shock proteins are highly conserved proteins that, when produced intracellularly, protect stress exposed cells. In contrast, extracellular heat shock protein 70 (Hsp70) has been shown to have both protective and deleterious effects. In this study, we assessed heat shock protein 70 for its potential role in human longevity. Because of the importance of HSP to disease processes, cellular protection, and inflammation, we hypothesized that: (1) Hsp70 levels in centenarians and centenarian offspring are different from controls and (2) alleles in genes associated with Hsp70 explain these differences. In this cross-sectional study, we assessed serum Hsp70 levels from participants enrolled in either the New England Centenarian Study (NECS) or the Longevity Genes Project (LGP): 87 centenarians (from LGP), 93 centenarian offspring (from NECS), and 126 controls (43 from NECS, 83 from LGP). We also examined genotypic and allelic frequencies of polymorphisms in HSP70-A1A and HSP70-A1B in 347 centenarians (266 from the NECS, 81 from the LGP), 260 NECS centenarian offspring, and 238 controls (NECS: 53 spousal controls and 106 septuagenarian offspring controls; LGP: 79 spousal controls). The adjusted mean serum Hsp70 levels (ng/mL) for the NECS centenarian offspring, LGP centenarians, LGP spousal controls, and NECS controls were 1.05, 1.13, 3.07, 6.93, respectively, suggesting that a low serum Hsp70 level is associated with longevity; however, no genetic associations were found with two SNPs within two hsp70 genes.

  11. Quasiperpendicular High Mach Number Shocks

    NASA Astrophysics Data System (ADS)

    Sulaiman, A. H.; Masters, A.; Dougherty, M. K.; Burgess, D.; Fujimoto, M.; Hospodarsky, G. B.

    2015-09-01

    Shock waves exist throughout the Universe and are fundamental to understanding the nature of collisionless plasmas. Reformation is a process, driven by microphysics, which typically occurs at high Mach number supercritical shocks. While ongoing studies have investigated this process extensively both theoretically and via simulations, their observations remain few and far between. In this Letter we present a study of very high Mach number shocks in a parameter space that has been poorly explored and we identify reformation using in situ magnetic field observations from the Cassini spacecraft at 10 AU. This has given us an insight into quasiperpendicular shocks across 2 orders of magnitude in Alfvén Mach number (MA ) which could potentially bridge the gap between modest terrestrial shocks and more exotic astrophysical shocks. For the first time, we show evidence for cyclic reformation controlled by specular ion reflection occurring at the predicted time scale of ˜0.3 τc , where τc is the ion gyroperiod. In addition, we experimentally reveal the relationship between reformation and MA and focus on the magnetic structure of such shocks to further show that for the same MA , a reforming shock exhibits stronger magnetic field amplification than a shock that is not reforming.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panait, A.; Serban, V.

    The paper presents SERB -- SITON method to control, limit and damp the shocks, vibration, impact load and seismic movements with applications in buildings, equipment and pipe networks (herein called: 'components'). The elimination or reduction of shocks, vibration, impact load and seismic movements is a difficult problem, still improperly handled theoretically and practically because many times the phenomena are random in character and the behavior of components is non-linear with variations of the properties in time, variations that lead to the increase or decrease of the energy and impulse transfer from the dynamic excitation to the components. Moreover, the existingmore » supports and dampers applied today, are not efficient enough in the reduction of the dynamic movement for all the frequency ranges met with in the technical application field. The stiffness and damping of classic supports do not allow a good isolation of components against shocks and vibrations so to eliminate their propagation to the environment and neither do they provide a satisfactory protection of the components sensitive to shocks and vibrations and seismic movements coming from the environment. In order to reduce the effects of shocks, vibrations impact and seismic movements on the components, this paper presents the results obtained by SITON on the concept, design, construction, experimental testing and application of new types of supports, devices and thin lattice structure, called 'SERB', capable to overtake large static loads, to allow displacements from impact, thermal expansions or yielding of supports and which, in any work position, can elastically overtake large dynamic loads or impact loads which they damp. The new supports and devices and thin lattice structure allow their adjustment without the occurrence of over-stressing in the components due to their non -- linear geometric behavior, and the contact pressure among the elements is limited to pre-set values to avoid blocking phenomena that generates great stresses induced by thermal expansion for example. Due to their characteristics of adjustment to the actual position and level of stress, SERB supports, devices and thin lattice structure show minimal effects on the components stress condition whenever the installation and computation errors. Herein below it is a presentation of the actual results obtained by SITON in the isolation of heavy equipment and pipe networks and others in process of application for buildings. Due to the very good results obtained in the isolation against shocks, vibrations and seismic movements at components in the conventional industry, there is the proposal to implement SERB-SITON method to the increase of the safety level at new or existing Nuclear Power Plants or to protect nuclear building against missiles and airplane crush impact. (authors)« less

  13. Muscle oxygenation as an early predictor of shock severity in trauma patients

    PubMed Central

    Arakaki, Lorilee S. L.; Bulger, Eileen M.; Ciesielski, Wayne A.; Carlbom, David J.; Fisk, Dana M.; Sheehan, Kellie L.; Asplund, Karin M.; Schenkman, Kenneth A.

    2016-01-01

    Introduction We evaluated the potential utility of a new prototype noninvasive muscle oxygenation (MOx) measurement for the identification of shock severity in a population of patients admitted to the trauma resuscitation rooms of a Level I regional trauma center. The goal of this project was to correlate MOx with shock severity as defined by standard measures of shock: systolic blood pressure, heart rate, and lactate. Methods Optical spectra were collected from subjects by placement of a custom-designed optical probe over the first dorsal interosseous muscles on the back of the hand. Spectra were acquired from trauma patients as soon as possible upon admission to the trauma resuscitation room. Patients with any injury were eligible for study. MOx was determined from the collected optical spectra with a multi-wavelength analysis that used both visible and near-infrared regions of light. Shock severity was determined in each patient by a scoring system based on combined degrees of hypotension, tachycardia, and lactate. MOx values of patients in each shock severity group (mild, moderate, and severe) were compared using two-sample t-tests. Results In 17 healthy control patients, the mean MOx value was 91.0 ± 5.5%. A total of 69 trauma patients were studied. Patients classified as having mild shock had a mean MOx of 62.5 ± 26.2% (n = 33), those classified as in moderate shock had a mean MOx of 56.9 ± 26.9% (n = 25) and those classified as in severe shock had a MOx of 31.0 ± 17.1% (n = 11). Mean MOx for each of these groups was statistically different from the healthy control group (p<0.05). Receiver operating characteristic (ROC) analyses show that MOx and shock index (heart rate/systolic blood pressure) identified shock similarly well (area under the curves (AUC) = 0.857 and 0.828, respectively). However, MOx identified mild shock better than shock index in the same group of patients (AUC = 0.782 and 0.671, respectively). Conclusions The results obtained from this pilot study indicate that MOx correlates with shock severity in a population of trauma patients. Noninvasive and continuous MOx holds promise to aid in patient triage and to evaluate patient condition throughout the course of resuscitation. PMID:27820776

  14. Corrigendum to ;Numerical dissipation control in high order shock-capturing schemes for LES of low speed flows; [J. Comput. Phys. 307 (2016) 189-202

    NASA Astrophysics Data System (ADS)

    Kotov, D. V.; Yee, H. C.; Wray, A. A.; Sjögreen, Björn; Kritsuk, A. G.

    2018-01-01

    The authors regret for the typographic errors that were made in equation (4) and missing phrase after equation (4) in the article "Numerical dissipation control in high order shock-capturing schemes for LES of low speed flows" [J. Comput. Phys. 307 (2016) 189-202].

  15. Control and reduction of unsteady pressure loads in separated shock wave turbulent boundary layer interaction

    NASA Technical Reports Server (NTRS)

    Dolling, David S.; Barter, John W.

    1995-01-01

    The focus was on developing means of controlling and reducing unsteady pressure loads in separated shock wave turbulent boundary layer interactions. Section 1 describes how vortex generators can be used to effectively reduce loads in compression ramp interaction, while Section 2 focuses on the effects of 'boundary-layer separators' on the same interaction.

  16. Impact of Shock Front Rippling and Self-reformation on the Electron Dynamics at Low-Mach-number Shocks

    NASA Astrophysics Data System (ADS)

    Yang, Zhongwei; Lu, Quanming; Liu, Ying D.; Wang, Rui

    2018-04-01

    Electron dynamics at low-Mach-number collisionless shocks are investigated by using two-dimensional electromagnetic particle-in-cell simulations with various shock normal angles. We found: (1) The reflected ions and incident electrons at the shock front provide an effective mechanism for the quasi-electrostatic wave generation due to the charge-separation. A fraction of incident electrons can be effectively trapped and accelerated at the leading edge of the shock foot. (2) At quasi-perpendicular shocks, the electron trapping and reflection is nonuniform due to the shock rippling along the shock surface and is more likely to take place at some locations accompanied by intense reflected ion-beams. The electron trapping process has a periodical evolution over time due to the shock front self-reformation, which is controlled by ion dynamics. Thus, this is a cross-scale coupling phenomenon. (3) At quasi-parallel shocks, reflected ions can travel far back upstream. Consequently, quasi-electrostatic waves can be excited in the shock transition and the foreshock region. The electron trajectory analysis shows these waves can trap electrons at the foot region and reflect a fraction of them far back upstream. Simulation runs in this paper indicate that the micro-turbulence at the shock foot can provide a possible scenario for producing the reflected electron beam, which is a basic condition for the type II radio burst emission at low-Mach-number interplanetary shocks driven by Coronal Mass Ejections (CMEs).

  17. Static Performance of a Fixed-Geometry Exhaust Nozzle Incorporating Porous Cavities for Shock-Boundary Layer Interaction Control

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Hunter, Craig A.

    1999-01-01

    An investigation was conducted in the model preparation area of the Langley 16-Foot Transonic Tunnel to determine the internal performance of a fixed-geometry exhaust nozzle incorporating porous cavities for shock-boundary layer interaction control. Testing was conducted at static conditions using a sub-scale nozzle model with one baseline and 27 porous configurations. For the porous configurations, the effects of percent open porosity, hole diameter, and cavity depth were determined. All tests were conducted with no external flow at nozzle pressure ratios from 1.25 to approximately 9.50. Results indicate that baseline nozzle performance was dominated by unstable, shock-induced, boundary-layer separation at over-expanded conditions. Porous configurations were capable of controlling off-design separation in the nozzle by either alleviating separation or encouraging stable separation of the exhaust flow. The ability of the porous nozzle concept to alternately alleviate separation or encourage stable separation of exhaust flow through shock-boundary layer interaction control offers tremendous off-design performance benefits for fixed-geometry nozzle installations. In addition, the ability to encourage separation on one divergent flap while alleviating it on the other makes it possible to generate thrust vectoring using a fixed-geometry nozzle.

  18. Essays in the Application of Linear and Non-linear Bayesian VAR Models to the Macroeconomic Impacts of Energy Price Shocks

    NASA Astrophysics Data System (ADS)

    Nguyen, Bao H.

    This thesis is a collection of five self contained empirical macroeconomic papers on the asymmetric effects of energy price shocks on various economies. Chapter 1 formally determines the number of regime changes in the US natural gas market by employing a MS-VAR model. Estimated using Bayesian methods, three regimes are identified for the period 1980 - 2016, namely, before the Decontrol Act, after the Decontrol Act and the Recession. The results show that the natural gas market tends to be much more sensitive to market fundamental shocks occurring in a Recession regime than in the other regimes. Augmenting the model by incorporating the price of crude oil, the results reveal that the impacts of oil price shocks on natural gas prices are relatively small. Chapter 2 provides new empirical evidence on the asymmetric reactions of the U.S. natural gas market and the U.S. economy to its market fundamental shocks in different phases of the business cycle. To this end, we employ a ST-VAR model to capture the asymmetric responses depending on economic conditions. Our results indicate that in contrast to the prediction made by a linear VAR model, the STVAR model provides a plausible explanation to the behavior of the U.S. natural gas market, which asymmetrically reacts in bad times and good times. Chapter 3 examines the relationship between China's economic growth and global oil market fluctuations between 1992Q1 and 2015Q3. We find that: (1) the time varying parameter VAR with stochastic volatility provides a better fit as compared to it's constant counterparts; (2) the impacts of intertemporal global oil price shocks on China's output are often small and temporary in nature; (3) oil supply and specific oil demand shocks generally produce negative movements in China's GDP growth whilst oil demand shocks tend to have positive effects; (4) domestic output shocks have no significant impact on price or quantity movements within the global oil market. Chapter 4 examines the effects of world energy price shocks on China's macroeconomy. We propose a new index of primary commodity energy prices which accurately reflects both the structure of China's energy expenditure shares, as well as intertemporal fluctuations in international energy prices. The index is then in employed a sufficiently rich set of time varying BVARs, identified by a new set of agnostic sign restrictions. Uniformly sized positive energy price shocks are shown to consistently generate economic stagflation over the past two decades. Chapter 5 compares the macroeconomic effects of global oil and iron ore price shocks on the Australian economy. The main results suggest that, over the period 1990Q1 to 2014Q4, the oil shock has a relative larger impact than that of the iron ore shock on output and inflation while the iron ore shock is the dominant source of interest and exchange rate movements. The effects crucially depend on the underlying sources of oil or iron ore price shifts.

  19. Systematic search for high-energy gamma-ray emission from bow shocks of runaway stars

    DOE PAGES

    Schulz, A.; Ackermann, M.; Buehler, R.; ...

    2014-05-01

    Context. It has been suggested that the bow shocks of runaway stars are sources of high-energy gamma rays (E > 100 MeV). Theoretical models predicting high-energy gamma-ray emission from these sources were followed by the first detection of non-thermal radio emission from the bow shock of BD+43°3654 and non-thermal X-ray emission from the bow shock of AE Aurigae. Aims. We perform the first systematic search for MeV and GeV emission from 27 bow shocks of runaway stars using data collected by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope (Fermi). Methods. We analysed 57 months of Fermi-LATmore » data at the positions of 27 bow shocks of runaway stars extracted from the Extensive stellar BOw Shock Survey catalogue (E-BOSS). A likelihood analysis was performed to search for gamma-ray emission that is not compatible with diffuse background or emission from neighbouring sources and that could be associated with the bow shocks. Results. None of the bow shock candidates is detected significantly in the Fermi-LAT energy range. We therefore present upper limits on the high-energy emission in the energy range from 100MeV to 300 GeV for 27 bow shocks of runaway stars in four energy bands. For the three cases where models of the high-energy emission are published we compare our upper limits to the modelled spectra. Our limits exclude the model predictions for ζ Ophiuchi by a factor ≈ 5.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verigin, M.I.; Gringauz, K.I.; Gombosi, T.

    Preliminary results of ion and electron plasma measurements near Venus are presented and discussed. The data were obtained with wide-angle plasma analyzers carried on the Venera 9 and 10 spacecraft. On the basis of 33 bow shock crossings the position of the shock is quite stable and agrees well with theoretical predictions of Spreiter et al. with H/r/sub 0/=0.01 and a stagnation point altitude of approx.500 km. This observation lends strong support to the assumption that the solar wind interacts with the upper ionosphere of Venus and not with a planetary magnetic field. These spacecraft are the first to exploremore » the optical umbra of Venus. Close to the planet a stable population of electrons and an ill-defined population of positive ions were found; this region is called the corpuscular umbra. The corpuscular umbra and the transition region are separated by a zone which contains both positive ions and electrons and is characterized by a flow velocity reduced in comparison with that of the transition region. This zone is called the corpuscular penumbra. The distribution of plasma density behind the bow shock (including the optical umbra of the planet) is given, and the existence of a Venusian plasma magnetic til is revealed.« less

  1. Individual Differences in Anticipatory Somatosensory Cortex Activity for Shock is Positively Related with Trait Anxiety and Multisensory Integration

    PubMed Central

    Greening, Steven G.; Lee, Tae-Ho; Mather, Mara

    2016-01-01

    Anxiety is associated with an exaggerated expectancy of harm, including overestimation of how likely a conditioned stimulus (CS+) predicts a harmful unconditioned stimulus (US). In the current study we tested whether anxiety-associated expectancy of harm increases primary sensory cortex (S1) activity on non-reinforced (i.e., no shock) CS+ trials. Twenty healthy volunteers completed a differential-tone trace conditioning task while undergoing fMRI, with shock delivered to the left hand. We found a positive correlation between trait anxiety and activity in right, but not left, S1 during CS+ versus CS− conditions. Right S1 activity also correlated with individual differences in both primary auditory cortices (A1) and amygdala activity. Lastly, a seed-based functional connectivity analysis demonstrated that trial-wise S1 activity was positively correlated with regions of dorsolateral prefrontal cortex (dlPFC), suggesting that higher-order cognitive processes contribute to the anticipatory sensory reactivity. Our findings indicate that individual differences in trait anxiety relate to anticipatory reactivity for the US during associative learning. This anticipatory reactivity is also integrated along with emotion-related sensory signals into a brain network implicated in fear-conditioned responding. PMID:26751483

  2. Individual Differences in Anticipatory Somatosensory Cortex Activity for Shock is Positively Related with Trait Anxiety and Multisensory Integration.

    PubMed

    Greening, Steven G; Lee, Tae-Ho; Mather, Mara

    2016-01-06

    Anxiety is associated with an exaggerated expectancy of harm, including overestimation of how likely a conditioned stimulus (CS+) predicts a harmful unconditioned stimulus (US). In the current study we tested whether anxiety-associated expectancy of harm increases primary sensory cortex (S1) activity on non-reinforced (i.e., no shock) CS+ trials. Twenty healthy volunteers completed a differential-tone trace conditioning task while undergoing fMRI, with shock delivered to the left hand. We found a positive correlation between trait anxiety and activity in right, but not left, S1 during CS+ versus CS- conditions. Right S1 activity also correlated with individual differences in both primary auditory cortices (A1) and amygdala activity. Lastly, a seed-based functional connectivity analysis demonstrated that trial-wise S1 activity was positively correlated with regions of dorsolateral prefrontal cortex (dlPFC), suggesting that higher-order cognitive processes contribute to the anticipatory sensory reactivity. Our findings indicate that individual differences in trait anxiety relate to anticipatory reactivity for the US during associative learning. This anticipatory reactivity is also integrated along with emotion-related sensory signals into a brain network implicated in fear-conditioned responding.

  3. The First Reported Infrared Emission from the SN1006 Remnant

    NASA Technical Reports Server (NTRS)

    Winkler, P. Frank; Williams, Brian J.; Blair, William P.; Borkowski, Kazimierz J.; Ghavamian, Parviz; Long, Knox S.; Raymond, John C.; Reynolds, Stephen P.

    2012-01-01

    We report results of infrared imaging and spectroscopic observations of the SN 1006 remnant, carried out with the Spitzer Space Telescope. The 24 m image from MIPS clearly shows faint filamentary emission along the northwest rim of the remnant shell, nearly coincident with the Balmer filaments that delineate the present position of the expanding shock. The 24 m emission traces the Balmer filaments almost perfectly, but lies a few arcsec within, indicating an origin in interstellar dust heated by the shock. Subsequent decline in the IR behind the shock is presumably due largely to grain destruction through sputtering. The emission drops far more rapidly than current models predict, however, even for a higher proportion of small grains than would be found closer to the Galactic plane. The rapid drop may result in part from a grain density that has always been lowera relic effect from an earlier epoch when the shock was encountering a lower densitybut higher grain destruction rates still seem to be required. Spectra from three positions along the NW filament from the IRS instrument all show only a featureless continuum, consistent with thermal emission from warm dust. The dust-to-gas mass ratio in the pre-shock interstellar medium is lower than that expected for the Galactic ISM-as has also been observed in the analysis of IR emission from other SNRs but whose cause remains unclear. As with other SNIa remnants, SN1006 shows no evidence for dust grain formation in the supernova ejecta.

  4. Automated Detection and Analysis of Interplanetary Shocks with Real-Time Application

    NASA Astrophysics Data System (ADS)

    Vorotnikov, V.; Smith, C. W.; Hu, Q.; Szabo, A.; Skoug, R. M.; Cohen, C. M.

    2006-12-01

    The ACE real-time data stream provides web-based now-casting capabilities for solar wind conditions upstream of Earth. Our goal is to provide an automated code that finds and analyzes interplanetary shocks as they occur for possible real-time application to space weather nowcasting. Shock analysis algorithms based on the Rankine-Hugoniot jump conditions exist and are in wide-spread use today for the interactive analysis of interplanetary shocks yielding parameters such as shock speed and propagation direction and shock strength in the form of compression ratios. Although these codes can be automated in a reasonable manner to yield solutions not far from those obtained by user-directed interactive analysis, event detection presents an added obstacle and the first step in a fully automated analysis. We present a fully automated Rankine-Hugoniot analysis code that can scan the ACE science data, find shock candidates, analyze the events, obtain solutions in good agreement with those derived from interactive applications, and dismiss false positive shock candidates on the basis of the conservation equations. The intent is to make this code available to NOAA for use in real-time space weather applications. The code has the added advantage of being able to scan spacecraft data sets to provide shock solutions for use outside real-time applications and can easily be applied to science-quality data sets from other missions. Use of the code for this purpose will also be explored.

  5. Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: Methodology and in vitro experiments

    NASA Astrophysics Data System (ADS)

    Zhong, Pei; Zhou, Yufeng

    2001-12-01

    To reduce the potential of vascular injury without compromising the stone comminution capability of a Dornier HM-3 lithotripter, we have devised a method to suppress intraluminal bubble expansion via in situ pulse superposition. A thin shell ellipsoidal reflector insert was designed and fabricated to fit snugly into the original reflector of an HM-3 lithotripter. The inner surface of the reflector insert shares the same first focus with the original HM-3 reflector, but has its second focus located 5 mm proximal to the generator than that of the HM-3 reflector. With this modification, the original lithotripter shock wave is partitioned into a leading lithotripter pulse (peak positive pressure of 46 MPa and positive pulse duration of 1 μs at 24 kV) and an ensuing second compressive wave of 10 MPa peak pressure and 2 μs pulse duration, separated from each other by about 4 μs. Superposition of the two waves leads to a selective truncation of the trailing tensile component of the lithotripter shock wave, and consequently, a reduction in the maximum bubble expansion up to 41% compared to that produced by the original reflector. The pulse amplitude and -6 dB beam width of the leading lithotripter shock wave from the upgraded reflector at 24 kV are comparable to that produced by the original HM-3 reflector at 20 kV. At the lithotripter focus, while only about 30 shocks are needed to cause a rupture of a blood vessel phantom made of cellulose hollow fiber (i.d.=0.2 mm) using the original HM-3 reflector at 20 kV, no rupture could be produced after 200 shocks using the upgraded reflector at 24 kV. On the other hand, after 100 shocks the upgraded reflector at 24 kV can achieve a stone comminution efficiency of 22%, which is better than the 18% efficiency produced by the original reflector at 20 kV (p=0.043). All together, it has been shown in vitro that the upgraded reflector can produce satisfactory stone comminution while significantly reducing the potential for vessel rupture in shock wave lithotripsy.

  6. Impact of Source Control in Patients With Severe Sepsis and Septic Shock.

    PubMed

    Martínez, María Luisa; Ferrer, Ricard; Torrents, Eva; Guillamat-Prats, Raquel; Gomà, Gemma; Suárez, David; Álvarez-Rocha, Luis; Pozo Laderas, Juan Carlos; Martín-Loeches, Ignacio; Levy, Mitchell M; Artigas, Antonio

    2017-01-01

    Time to clearance of pathogens is probably critical to outcome in septic shock. Current guidelines recommend intervention for source control within 12 hours after diagnosis. We aimed to determine the epidemiology of source control in the management of sepsis and to analyze the impact of timing to source control on mortality. Prospective observational analysis of the Antibiotic Intervention in Severe Sepsis study, a Spanish national multicenter educational intervention to improve antibiotherapy in sepsis. Ninety-nine medical-surgical ICUs in Spain. We enrolled 3,663 patients with severe sepsis or septic shock during three 4-month periods between 2011 and 2013. Source control and hospital mortality. A total of 1,173 patients (32%) underwent source control, predominantly for abdominal, urinary, and soft-tissue infections. Compared with patients who did not require source control, patients who underwent source control were older, with a greater prevalence of shock, major organ dysfunction, bacteremia, inflammatory markers, and lactic acidemia. In addition, compliance with the resuscitation bundle was worse in those undergoing source control. In patients who underwent source control, crude ICU mortality was lower (21.2% vs 25.1%; p = 0.010); after adjustment for confounding factors, hospital mortality was also lower (odds ratio, 0.809 [95% CI, 0.658-0.994]; p = 0.044). In this observational database analysis, source control after 12 hours was not associated with higher mortality (27.6% vs 26.8%; p = 0.789). Despite greater severity and worse compliance with resuscitation bundles, mortality was lower in septic patients who underwent source control than in those who did not. The time to source control could not be linked to survival in this observational database.

  7. Plasma Radiation and Acceleration Effectiveness of CME-driven Shocks

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.; Schmidt, J. M.

    2008-05-01

    CME-driven shocks are effective radio radiation generators and accelerators for Solar Energetic Particles (SEPs). We present simulated 3 D time-dependent radio maps of second order plasma radiation generated by CME- driven shocks. The CME with its shock is simulated with the 3 D BATS-R-US CME model developed at the University of Michigan. The radiation is simulated using a kinetic plasma model that includes shock drift acceleration of electrons and stochastic growth theory of Langmuir waves. We find that in a realistic 3 D environment of magnetic field and solar wind outflow of the Sun the CME-driven shock shows a detailed spatial structure of the density, which is responsible for the fine structure of type II radio bursts. We also show realistic 3 D reconstructions of the magnetic cloud field of the CME, which is accelerated outward by magnetic buoyancy forces in the diverging magnetic field of the Sun. The CME-driven shock is reconstructed by tomography using the maximum jump in the gradient of the entropy. In the vicinity of the shock we determine the Alfven speed of the plasma. This speed profile controls how steep the shock can grow and how stable the shock remains while propagating away from the Sun. Only a steep shock can provide for an effective particle acceleration.

  8. Plasma radiation and acceleration effectiveness of CME-driven shocks

    NASA Astrophysics Data System (ADS)

    Schmidt, Joachim

    CME-driven shocks are effective radio radiation generators and accelerators for Solar Energetic Particles (SEPs). We present simulated 3 D time-dependent radio maps of second order plasma radiation generated by CME-driven shocks. The CME with its shock is simulated with the 3 D BATS-R-US CME model developed at the University of Michigan. The radiation is simulated using a kinetic plasma model that includes shock drift acceleration of electrons and stochastic growth theory of Langmuir waves. We find that in a realistic 3 D environment of magnetic field and solar wind outflow of the Sun the CME-driven shock shows a detailed spatial structure of the density, which is responsible for the fine structure of type II radio bursts. We also show realistic 3 D reconstructions of the magnetic cloud field of the CME, which is accelerated outward by magnetic buoyancy forces in the diverging magnetic field of the Sun. The CME-driven shock is reconstructed by tomography using the maximum jump in the gradient of the entropy. In the vicinity of the shock we determine the Alfven speed of the plasma. This speed profile controls how steep the shock can grow and how stable the shock remains while propagating away from the Sun. Only a steep shock can provide for an effective particle acceleration.

  9. Development and Resuscitation of a Sedated, Mature Male Miniature Swine Severe Hemorrhage Model

    DTIC Science & Technology

    2011-07-01

    control. Results: Hemorrhage resulted in a characteristic hypotension and metabolic acidosis . Survival time for the control swine was 64 minutes...domestic swine4 and was characteristic of a hemorrhage- induced metabolic acidosis , with a decrease in blood HCO3, and BE and an increase in blood...Hammett M, Asher L, et al. Effects of bovine polymerized hemoglobin on coagulation in controlled hemorrhagic shock in swine. Shock. 2005;24:145–152

  10. Consideration of Optimal Input on Semi-Active Shock Control System

    NASA Astrophysics Data System (ADS)

    Kawashima, Takeshi

    In press working, unidirectional transmission of mechanical energy is expected in order to maximize the life of the dies. To realize this transmission, the author has developed a shock control system based on the sliding mode control technique. The controller makes a collision-receiving object effectively deform plastically by adjusting the force of the actuator inserted between the colliding objects, while the deformation of the colliding object is held at the necessity minimum. However, the actuator has to generate a large force corresponding to the impulsive force. Therefore, development of such an actuator is a formidable challenge. The author has proposed a semi-active shock control system in which the impulsive force is adjusted by a brake mechanism, although the system exhibits inferior performance. Thus, the author has also designed an actuator using a friction device for semi-active shock control, and proposed an active seatbelt system as an application. The effectiveness has been confirmed by a numerical simulation and model experiment. In this study, the optimal deformation change of the colliding object is theoretically examined in the case that the collision-receiving object has perfect plasticity and the colliding object has perfect elasticity. As a result, the optimal input condition is obtained so that the ratio of the maximum deformation of the collision-receiving object to the maximum deformation of the colliding object becomes the maximum. Additionally, the energy balance is examined.

  11. Nonlinear Dynamic Modeling and Controls Development for Supersonic Propulsion System Research

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Kopasakis, George; Paxson, Daniel E.; Stuber, Eric; Woolwine, Kyle

    2012-01-01

    This paper covers the propulsion system component modeling and controls development of an integrated nonlinear dynamic simulation for an inlet and engine that can be used for an overall vehicle (APSE) model. The focus here is on developing a methodology for the propulsion model integration, which allows for controls design that prevents inlet instabilities and minimizes the thrust oscillation experienced by the vehicle. Limiting thrust oscillations will be critical to avoid exciting vehicle aeroelastic modes. Model development includes both inlet normal shock position control and engine rotor speed control for a potential supersonic commercial transport. A loop shaping control design process is used that has previously been developed for the engine and verified on linear models, while a simpler approach is used for the inlet control design. Verification of the modeling approach is conducted by simulating a two-dimensional bifurcated inlet and a representative J-85 jet engine previously used in a NASA supersonics project. Preliminary results are presented for the current supersonics project concept variable cycle turbofan engine design.

  12. Solar wind conditions in the outer heliosphere and the distance to the termination shock

    NASA Technical Reports Server (NTRS)

    Belcher, John W.; Lazarus, Alan J.; Mcnutt, Ralph L., Jr.; Gordon, George S., Jr.

    1993-01-01

    The Plasma Science experiment on the Voyager 2 spacecraft has measured the properties of solar wind protons from 1 to 40.4 AU. We use these observations to discuss the probable location and motion of the termination shock of the solar wind. Assuming that the interstellar pressure is due to a 5 micro-G magnetic field draped over the upstream face of the heliopause, the radial variation of ram pressure implies that the termination shock will be located at an average distance near 89 AU. This distance scales inversely as the assumed field strength. There are also large variations in ram pressure on time scales of tens of days, due primarily to large variations in solar wind density at a given radius. Such rapid changes in the solar wind ram pressure can cause large perturbations in the location of the termination shock. We study the nonequilibrium location of the termination shock as it responds to these ram pressure changes. The results of this study suggest that the position of the termination shock can vary by as much as 10 AU in a single year, depending on the nature of variations in the ram pressure, and that multiple crossings of the termination shock by a given outer heliosphere spacecraft are likely. After the first crossing, such models of shock motion will be useful for predicting the timing of subsequent crossings.

  13. Multiple film plane diagnostic for shocked lattice measurements (invited)

    NASA Astrophysics Data System (ADS)

    Kalantar, Daniel H.; Bringa, E.; Caturla, M.; Colvin, J.; Lorenz, K. T.; Kumar, M.; Stölken, J.; Allen, A. M.; Rosolankova, K.; Wark, J. S.; Meyers, M. A.; Schneider, M.; Boehly, T. R.

    2003-03-01

    Laser-based shock experiments have been conducted in thin Si and Cu crystals at pressures above the Hugoniot elastic limit. In these experiments, static film and x-ray streak cameras recorded x rays diffracted from lattice planes both parallel and perpendicular to the shock direction. These data showed uniaxial compression of Si(100) along the shock direction and three-dimensional compression of Cu(100). In the case of the Si diffraction, there was a multiple wave structure observed, which may be due to a one-dimensional phase transition or a time variation in the shock pressure. A new film-based detector has been developed for these in situ dynamic diffraction experiments. This large-angle detector consists of three film cassettes that are positioned to record x rays diffracted from a shocked crystal anywhere within a full π steradian. It records x rays that are diffracted from multiple lattice planes both parallel and at oblique angles with respect to the shock direction. It is a time-integrating measurement, but time-resolved data may be recorded using a short duration laser pulse to create the diffraction source x rays. This new instrument has been fielded at the OMEGA and Janus lasers to study single-crystal materials shock compressed by direct laser irradiation. In these experiments, a multiple wave structure was observed on many different lattice planes in Si. These data provide information on the structure under compression.

  14. Nonlinear Monte Carlo model of superdiffusive shock acceleration with magnetic field amplification

    NASA Astrophysics Data System (ADS)

    Bykov, Andrei M.; Ellison, Donald C.; Osipov, Sergei M.

    2017-03-01

    Fast collisionless shocks in cosmic plasmas convert their kinetic energy flow into the hot downstream thermal plasma with a substantial fraction of energy going into a broad spectrum of superthermal charged particles and magnetic fluctuations. The superthermal particles can penetrate into the shock upstream region producing an extended shock precursor. The cold upstream plasma flow is decelerated by the force provided by the superthermal particle pressure gradient. In high Mach number collisionless shocks, efficient particle acceleration is likely coupled with turbulent magnetic field amplification (MFA) generated by the anisotropic distribution of accelerated particles. This anisotropy is determined by fast particle transport, making the problem strongly nonlinear and multiscale. Here, we present a nonlinear Monte Carlo model of collisionless shock structure with superdiffusive propagation of high-energy Fermi accelerated particles coupled to particle acceleration and MFA, which affords a consistent description of strong shocks. A distinctive feature of the Monte Carlo technique is that it includes the full angular anisotropy of the particle distribution at all precursor positions. The model reveals that the superdiffusive transport of energetic particles (i.e., Lévy-walk propagation) generates a strong quadruple anisotropy in the precursor particle distribution. The resultant pressure anisotropy of the high-energy particles produces a nonresonant mirror-type instability that amplifies compressible wave modes with wavelengths longer than the gyroradii of the highest-energy protons produced by the shock.

  15. The effect of health shocks on smoking and obesity.

    PubMed

    Sundmacher, Leonie

    2012-08-01

    To investigate whether negative changes in their own health (i.e. health shocks) or in that of a smoking or obese household member, lead smokers to quit smoking and obese individuals to lose weight. The study is informed by economic models ('rational addiction' and 'demand for health' models) which offer hypotheses on the relationship between health shocks and health-related behaviour. Each hypothesis was tested applying a discrete-time hazard model with random effects using up to ten waves of the German Socioeconomic Panel (GSOEP) and statistics on cigarette, food and beverage prices provided by the Federal Statistical Office. Health shocks had a significant positive impact on the probability that smokers quit during the same year in which they experienced the health shock. Health shocks of a smoking household member between year t-2 and t-1 also motivated smoking cessation, although statistical evidence for this was weaker. Health shocks experienced by obese individuals or their household members had, on the other hand, no significant effect on weight loss, as measured by changes in Body Mass Index (BMI). The results of the study suggest that smokers are aware of the risks associated with tobacco consumption, know about effective strategies to quit smoking, and are willing to quit for health-related reasons. In contrast, there was no evidence for changes in health-related behaviour among obese individuals after a health shock.

  16. Terminal-shock and restart control of a Mach 2.5, axisymmetric, mixed compression inlet with 40 percent internal contraction. [wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1974-01-01

    Results of experimental tests conducted on a supersonic, mixed-compression, axisymmetric inlet are presented. The inlet is designed for operation at Mach 2.5 with a turbofan engine (TF-30). The inlet was coupled to either a choked orifice plate or a long duct which had a variable-area choked exit plug. Closed-loop frequency responses of selected diffuser static pressures used in the terminal-shock control system are presented. Results are shown for Mach 2.5 conditions with the inlet coupled to either the choked orifice plate or the long duct. Inlet unstart-restart traces are also presented. High-response inlet bypass doors were used to generate an internal disturbance and also to achieve terminal-shock control.

  17. Shocks in the relativistic transonic accretion with low angular momentum

    NASA Astrophysics Data System (ADS)

    Suková, P.; Charzyński, S.; Janiuk, A.

    2017-12-01

    We perform 1D/2D/3D relativistic hydrodynamical simulations of accretion flows with low angular momentum, filling the gap between spherically symmetric Bondi accretion and disc-like accretion flows. Scenarios with different directional distributions of angular momentum of falling matter and varying values of key parameters such as spin of central black hole, energy and angular momentum of matter are considered. In some of the scenarios the shock front is formed. We identify ranges of parameters for which the shock after formation moves towards or outwards the central black hole or the long-lasting oscillating shock is observed. The frequencies of oscillations of shock positions which can cause flaring in mass accretion rate are extracted. The results are scalable with mass of central black hole and can be compared to the quasi-periodic oscillations of selected microquasars (such as GRS 1915+105, XTE J1550-564 or IGR J17091-3624), as well as to the supermassive black holes in the centres of weakly active galaxies, such as Sgr A*.

  18. Monetary effects on fear conditioning.

    PubMed

    Qu, Chen; Zhang, Aiyi; Chen, Qishan

    2013-04-01

    Previous research has found that the loss of money as a negative secondary reinforcer was as effective as a primary reinforcer during fear conditioning. The purpose of the present study was to explore the effect of monetary gain as a positive secondary reinforcer in fear conditioning. Participants were assigned to a high-reward group or low-reward group. Three kinds of squares prompting non-compensation shock, compensation shock, and no shock were presented. Skin conductance responses (SCRs) and self-ratings were recorded. The results revealed that (a) both SCRs and self-ratings in the compensation shock condition were lower than in the non-compensation shock condition, suggesting that money might block the learning stage of fear conditioning; and (b) a higher ratio of fear reduction was present in self-rating when compared to SCRs, suggesting that people might overstate the utility of money, subjectively. Monetary effects, the effects of different amounts of money, and the differences between subjective and physiological levels are discussed.

  19. Interference heating from interactions of shock waves with turbulent boundary layers at Mach 6

    NASA Technical Reports Server (NTRS)

    Johnson, C. B.; Kaufman, L. G., II

    1974-01-01

    An experimental investigation of interference heating resulting from interactions of shock waves and turbulent boundary layers was conducted. Pressure and heat-transfer distributions were measured on a flat plate in the free stream and on the wall of the test section of the Langley Mach 6 high Reynolds number tunnel for Reynolds numbers ranging from 2 million to 400 million. Various incident shock strengths were obtained by varying a wedge-shock generator angle (from 10 deg to 15 deg) and by placing a spherical-shock generator at different vertical positions above the instrumented flat plate and tunnel wall. The largest heating-rate amplification factors obtained for completely turbulent boundary layers were 22.1 for the flat plate and 11.6 for the tunnel wall experiments. Maximum heating correlated with peak pressures using a power law with a 0.85 exponent. Measured pressure distributions were compared with those calculated using turbulent free-interaction pressure rise theories, and separation lengths were compared with values calculated by using different methods.

  20. The Ca(2+) status of the endoplasmic reticulum is altered by induction of calreticulin expression in transgenic plants

    NASA Technical Reports Server (NTRS)

    Persson, S.; Wyatt, S. E.; Love, J.; Thompson, W. F.; Robertson, D.; Boss, W. F.; Brown, C. S. (Principal Investigator)

    2001-01-01

    To investigate the endoplasmic reticulum (ER) Ca(2+) stores in plant cells, we generated tobacco (Nicotiana tabacum; NT1) suspension cells and Arabidopsis plants with altered levels of calreticulin (CRT), an ER-localized Ca(2+)-binding protein. NT1 cells and Arabidopsis plants were transformed with a maize (Zea mays) CRT gene in both sense and antisense orientations under the control of an Arabidopsis heat shock promoter. ER-enriched membrane fractions from NT1 cells were used to examine how altered expression of CRT affects Ca(2+) uptake and release. We found that a 2.5-fold increase in CRT led to a 2-fold increase in ATP-dependent (45)Ca(2+) accumulation in the ER-enriched fraction compared with heat-shocked wild-type controls. Furthermore, after treatment with the Ca(2+) ionophore ionomycin, ER microsomes from NT1 cells overproducing CRT showed a 2-fold increase in the amount of (45)Ca(2+) released, and a 2- to 3-fold increase in the amount of (45)Ca(2+) retained compared with wild type. These data indicate that altering the production of CRT affects the ER Ca(2+) pool. In addition, CRT transgenic Arabidopsis plants were used to determine if altered CRT levels had any physiological effects. We found that the level of CRT in heat shock-induced CRT transgenic plants correlated positively with the retention of chlorophyll when the plants were transferred from Ca(2+)-containing medium to Ca(2+)-depleted medium. Together these data are consistent with the hypothesis that increasing CRT in the ER increases the ER Ca(2+) stores and thereby enhances the survival of plants grown in low Ca(2+) medium.

  1. Heat and osmotic stress responses of probiotic Lactobacillus rhamnosus HN001 (DR20) in relation to viability after drying.

    PubMed

    Prasad, Jaya; McJarrow, Paul; Gopal, Pramod

    2003-02-01

    The viability of lactic acid bacteria in frozen, freeze-dried, and air-dried forms is of significant commercial interest to both the dairy and food industries. In this study we observed that when prestressed with either heat (50 degrees C) or salt (0.6 M NaCl), Lactobacillus rhamnosus HN001 (also known as DR20) showed significant (P < 0.05) improvement in viability compared with the nonstressed control culture after storage at 30 degrees C in the dried form. To investigate the mechanisms underlying this stress-related viability improvement in L. rhamnosus HN001, we analyzed protein synthesis in cultures subjected to different growth stages and stress conditions, using two-dimensional gel electrophoresis and N-terminal sequencing. Several proteins were up- or down-regulated after either heat or osmotic shock treatments. Eleven proteins were positively identified, including the classical heat shock proteins GroEL and DnaK and the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase, enolase, phosphoglycerate kinase, and triose phosphate isomerase, as well as tagatose 1,6-diphosphate aldolase of the tagatose pathway. The phosphocarrier protein HPr (histidine-containing proteins) was up-regulated in cultures after the log phase irrespective of the stress treatments used. The relative synthesis of an ABC transport-related protein was also up-regulated after shock treatments. Carbohydrate analysis of cytoplasmic contents showed higher levels (20 +/- 3 microg/mg of protein) in cell extracts (CFEs) derived from osmotically stressed cells than in the unstressed control (15 +/- 3 microg/mg of protein). Liquid chromatography of these crude carbohydrate extracts showed significantly different profiles. Electrospray mass spectrometry analysis of CFEs revealed, in addition to normal mono-, di-, tri-, and tetrasaccharides, the presence of saccharides modified with glycerol.

  2. The Ca(2+) status of the endoplasmic reticulum is altered by induction of calreticulin expression in transgenic plants.

    PubMed

    Persson, S; Wyatt, S E; Love, J; Thompson, W F; Robertson, D; Boss, W F

    2001-07-01

    To investigate the endoplasmic reticulum (ER) Ca(2+) stores in plant cells, we generated tobacco (Nicotiana tabacum; NT1) suspension cells and Arabidopsis plants with altered levels of calreticulin (CRT), an ER-localized Ca(2+)-binding protein. NT1 cells and Arabidopsis plants were transformed with a maize (Zea mays) CRT gene in both sense and antisense orientations under the control of an Arabidopsis heat shock promoter. ER-enriched membrane fractions from NT1 cells were used to examine how altered expression of CRT affects Ca(2+) uptake and release. We found that a 2.5-fold increase in CRT led to a 2-fold increase in ATP-dependent (45)Ca(2+) accumulation in the ER-enriched fraction compared with heat-shocked wild-type controls. Furthermore, after treatment with the Ca(2+) ionophore ionomycin, ER microsomes from NT1 cells overproducing CRT showed a 2-fold increase in the amount of (45)Ca(2+) released, and a 2- to 3-fold increase in the amount of (45)Ca(2+) retained compared with wild type. These data indicate that altering the production of CRT affects the ER Ca(2+) pool. In addition, CRT transgenic Arabidopsis plants were used to determine if altered CRT levels had any physiological effects. We found that the level of CRT in heat shock-induced CRT transgenic plants correlated positively with the retention of chlorophyll when the plants were transferred from Ca(2+)-containing medium to Ca(2+)-depleted medium. Together these data are consistent with the hypothesis that increasing CRT in the ER increases the ER Ca(2+) stores and thereby enhances the survival of plants grown in low Ca(2+) medium.

  3. The Ca2+ Status of the Endoplasmic Reticulum Is Altered by Induction of Calreticulin Expression in Transgenic Plants1

    PubMed Central

    Persson, Staffan; Wyatt, Sarah E.; Love, John; Thompson, William F.; Robertson, Dominique; Boss, Wendy F.

    2001-01-01

    To investigate the endoplasmic reticulum (ER) Ca2+ stores in plant cells, we generated tobacco (Nicotiana tabacum; NT1) suspension cells and Arabidopsis plants with altered levels of calreticulin (CRT), an ER-localized Ca2+-binding protein. NT1 cells and Arabidopsis plants were transformed with a maize (Zea mays) CRT gene in both sense and antisense orientations under the control of an Arabidopsis heat shock promoter. ER-enriched membrane fractions from NT1 cells were used to examine how altered expression of CRT affects Ca2+ uptake and release. We found that a 2.5-fold increase in CRT led to a 2-fold increase in ATP-dependent 45Ca2+ accumulation in the ER-enriched fraction compared with heat-shocked wild-type controls. Furthermore, after treatment with the Ca2+ ionophore ionomycin, ER microsomes from NT1 cells overproducing CRT showed a 2-fold increase in the amount of 45Ca2+ released, and a 2- to 3-fold increase in the amount of 45Ca2+ retained compared with wild type. These data indicate that altering the production of CRT affects the ER Ca2+ pool. In addition, CRT transgenic Arabidopsis plants were used to determine if altered CRT levels had any physiological effects. We found that the level of CRT in heat shock-induced CRT transgenic plants correlated positively with the retention of chlorophyll when the plants were transferred from Ca2+-containing medium to Ca2+-depleted medium. Together these data are consistent with the hypothesis that increasing CRT in the ER increases the ER Ca2+ stores and thereby enhances the survival of plants grown in low Ca2+ medium. PMID:11457960

  4. Interaction between shock coils increased the incidence of inappropriate therapies and lead failure in implantable cardioverter defibrillator.

    PubMed

    El Garhy, Mohammad; Ohlow, Marc-Alexander; Lauer, Bernward

    Shock coil interaction in patients with multiple implantable cardioverter defibrillator (ICD) leads is occasionally observed. We aimed to evaluate the incidence of shock coil interaction and its clinical relevance. All ICD patients (646 patients) who came to follow up control in our ICD ambulance between January 1, 2011, and December 31, 2011 in the department of cardiology in Bad Berka hospital were retrospectively evaluated in this study. All baseline demographic, clinical, and procedural characteristics and postoperative chest x ray in postero-anterior and lateral view as well as clinical and ICD follow up data were evaluated. Among 646 patients 42 had multiple ICD leads (6.5%) of whom 36 patients (5.5% of total cohort patients and 85.7% of patients with multiple ICD leads) had shock coil interaction and presented the study group (Group I). The control group (Group II) consisted of 610 patients without coil-coil interaction including patients with single shock lead (604 patients) or patients with multiple leads but without interaction between shock coils (6 patients). Inappropriate anti-tachycardia therapies and RV lead revisions were more frequent in patients with interaction between shock coils (Group I vs Group II: 27.7% and 5.7%; p = 0.049 and 30.6% vs 6.4; p = 0.0001, respectively). Interaction between shock coils may be one of possible causes of lead failure and resulted in inappropriate therapies and subsequent lead revision. Copyright © 2018 Indian Heart Rhythm Society. Production and hosting by Elsevier B.V. All rights reserved.

  5. Clinical impact of stress dose steroids in patients with septic shock: insights from the PROWESS-Shock trial.

    PubMed

    Póvoa, Pedro; Salluh, Jorge I F; Martinez, Maria L; Guillamat-Prats, Raquel; Gallup, Dianne; Al-Khalidi, Hussein R; Thompson, B Taylor; Ranieri, V Marco; Artigas, Antonio

    2015-04-28

    The aim of our study was to evaluate the clinical impact of the administration of intravenous steroids, alone or in conjunction with drotrecogin-alfa (activated) (DrotAA), on the outcomes in septic shock patients. We performed a sub-study of the PROWESS-Shock trial (septic shock patients who received fluids and vasopressors above a predefined threshold for at least 4 hours were randomized to receive either DrotAA or placebo for 96 hours). A propensity score for the administration of intravenous steroids for septic shock at baseline was constructed using multivariable logistic regression. Cox proportional hazards model using inverse probability of treatment weighting of the propensity score was used to estimate the effect of intravenous steroids, alone or in conjunction with DrotAA, on 28-day and 90-day all-cause mortality. A total of 1695 patients were enrolled of which 49.5% received intravenous steroids for treatment of septic shock at baseline (DrotAA + steroids N = 436; DrotAA + no steroids N = 414; placebo + steroids N = 403; placebo + no steroids N = 442). The propensity weighted risk of 28-day as well as 90-day mortality in those treated vs. those not treated with steroids did not differ among those randomized to DrotAA vs. placebo (interaction p-value = 0.38 and p = 0.27, respectively) nor was a difference detected within each randomized treatment. Similarly, the course of vasopressor use and cardiovascular SOFA did not appear to be influenced by steroid therapy. In patients with lung infection (N = 744), abdominal infection (N = 510), Gram-positive sepsis (N = 420) and Gram-negative sepsis (N = 461), the propensity weighted risk of 28-day as well as 90-day mortality in those treated vs. those not treated with steroids did not differ among those randomized to DrotAA vs. placebo nor was a difference detected within each randomized treatment. In the present study of septic shock patients, after adjustment for treatment selection bias, we were unable to find noticeable positive impact from intravenous steroids for treatment of septic shock at baseline either in patients randomized for DrotAA or placebo. Clinicaltrials.gov NCT00604214 . Registered 24 January 2008.

  6. Synthesis of 19-substituted geldanamycins with altered conformations and their binding to heat shock protein Hsp90

    PubMed Central

    Kitson, Russell R. A.; Chang, Chuan-Hsin; Xiong, Rui; Williams, Huw E. L.; Davis, Adrienne L.; Lewis, William; Dehn, Donna L.; Siegel, David; Roe, S. Mark; Prodromou, Chrisostomos; Ross, David; Moody, Christopher J.

    2013-01-01

    The benzoquinone ansamycin geldanamycin and its derivatives are inhibitors of heat shock protein Hsp90, an emerging target for novel therapeutic agents both in cancer and in neurodegeneration. However, toxicity of these compounds to normal cells has been ascribed to reaction with thiol nucleophiles at the quinone 19-position. We reasoned that blocking this position would ameliorate toxicity, and that it might also enforce a favourable conformational switch of the trans-amide group into the cis-form required for protein binding. We report here an efficient synthesis of such 19-substituted compounds and realization of our hypotheses. Protein crystallography established that the new compounds bind to Hsp90 with, as expected, a cis-amide conformation. Studies on Hsp90 inhibition in cells demonstrated the molecular signature of Hsp90 inhibitors: decreases in client proteins with compensatory increases in other heat shock proteins in both human breast cancer and dopaminergic neural cells, demonstrating their potential for use in the therapy of cancer or neurodegenerative diseases. PMID:23511419

  7. On the origin of the Orion and Monoceros molecular cloud complexes

    NASA Technical Reports Server (NTRS)

    Franco, J.; Tenorio-Tagle, G.; Bodenheimer, P.; Rozyczka, M.; Mirabel, I. F.

    1988-01-01

    A detailed model for the origin of the Orion and Monoceros cloud complexes is presented, showing that a single high-velocity H I cloud-galaxy collision can explain their main observed features. The collision generates massive shocked layers, and self-gravity can then provide the conditions for the transformation of these layers into molecular clouds. The clouds formed by the collision maintain the motion of their parental shocked gas and reach positions located far away from the plane. According to this model, both the Orion and Monoceros complexes were formed some 60 million yr ago, when the original shocked layer was fragmented by Galactic tidal forces.

  8. Refined numerical solution of the transonic flow past a wedge

    NASA Technical Reports Server (NTRS)

    Liang, S.-M.; Fung, K.-Y.

    1985-01-01

    A numerical procedure combining the ideas of solving a modified difference equation and of adaptive mesh refinement is introduced. The numerical solution on a fixed grid is improved by using better approximations of the truncation error computed from local subdomain grid refinements. This technique is used to obtain refined solutions of steady, inviscid, transonic flow past a wedge. The effects of truncation error on the pressure distribution, wave drag, sonic line, and shock position are investigated. By comparing the pressure drag on the wedge and wave drag due to the shocks, a supersonic-to-supersonic shock originating from the wedge shoulder is confirmed.

  9. Novel approaches for the management of tendinopathy.

    PubMed

    Maffulli, Nicola; Longo, Umile Giuseppe; Denaro, Vincenzo

    2010-11-03

    Tendinopathy is a failed healing response of the tendon. Despite an abundance of therapeutic options, very few randomized prospective, placebo-controlled trials have been carried out to assist physicians in choosing the best evidence-based management. Eccentric exercises have been proposed to promote collagen fiber cross-link formation within the tendon, thereby facilitating tendon remodeling. Overall results suggest a trend for a positive effect of eccentric exercises, with no reported adverse effects. Combining eccentric training and shock wave therapy produces higher success rates compared with eccentric loading alone or shock wave therapy alone. The use of injectable substances such as platelet-rich plasma, autologous blood, polidocanol, corticosteroids, and aprotinin in and around tendons is popular, but there is minimal clinical evidence to support their use. The aim of operative treatment is to excise fibrotic adhesions, remove areas of failed healing, and make multiple longitudinal incisions in the tendon to detect intratendinous lesions and to restore vascularity and possibly stimulate the remaining viable cells to initiate cell matrix response and healing. New operative procedures include endoscopy, electrocoagulation, and minimally invasive stripping. The aim of these techniques is to disrupt the abnormal neoinnervation to interfere with the pain sensation caused by tendinopathy. Randomized controlled trials are necessary to better clarify the best therapeutic options for the management of tendinopathy.

  10. 46. Communication equipment room, shock isolator air compressor at right, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. Communication equipment room, shock isolator air compressor at right, looking northeast - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kay, Jeffrey J.; Park, Samuel; Kohl, Ian Thomas

    In this work, shock-induced reactions in high explosives and their chemical mechanisms were investigated using state-of-the-art experimental and theoretical techniques. Experimentally, ultrafast shock interrogation (USI, an ultrafast interferometry technique) and ultrafast absorption spectroscopy were used to interrogate shock compression and initiation of reaction on the picosecond timescale. The experiments yielded important new data that appear to indicate reaction of high explosives on the timescale of tens of picoseconds in response to shock compression, potentially setting new upper limits on the timescale of reaction. Theoretically, chemical mechanisms of shock-induced reactions were investigated using density functional theory. The calculations generated important insightsmore » regarding the ability of several hypothesized mechanisms to account for shock-induced reactions in explosive materials. The results of this work constitute significant advances in our understanding of the fundamental chemical reaction mechanisms that control explosive sensitivity and initiation of detonation.« less

  12. Wave and particle evolution downstream of quasi-perpendicular shocks

    NASA Technical Reports Server (NTRS)

    Mckean, M. E.; Omidi, N.; Krauss-Varban, D.; Karimabadi, H.

    1995-01-01

    Distributions of ions heated in quasi-perpendicular bow shocks have large perpendicular temperature anisotropies that provide free energy for the growth of Alfven ion cyclotron (AIC) and mirror waves. These modes are often obsreved in the Earth's magnetosheath. Using two-dimensional hybrid simulations, we show that these waves are produced near the shock front and convected downstream rather than being produced locally downstream. The wave activity reduces the proton anisotropy to magnetosheath levels within a few tens of gyroradii of the shock but takes significantly longer to reduce the anisotropy of He(++) ions. The waves are primarily driven by proton anisotropy and the dynamics of the helium ions is controlled by the proton waves. Downstream of high Mach number shocks, mirror waves compete effectively with AIC waves. Downstream of low Mach number shocks, AIC waves dominate.

  13. Septic shock: desperately seeking treatment.

    PubMed

    Huet, Olivier; Chin-Dusting, Jaye P F

    2014-01-01

    Septic shock results from the dysregulation of the innate immune response following infection. Despite major advances in fundamental and clinical research, patients diagnosed with septic shock still have a poor prognostic outcome, with a mortality rate of up to 50%. Indeed, the reasons leading to septic shock are still poorly understood. First postulated 30 years ago, the general view of septic shock as an acute and overwhelming inflammatory response still prevails today. Recently, the fact that numerous clinical trials have failed to demonstrate any positive medical outcomes has caused us to question our fundamental understanding of this condition. New and sophisticated technologies now allow us to accurately profile the various stages and contributory components of the inflammatory response defining septic shock, and many studies now report a more complex inflammatory response, particularly during the early phase of sepsis. In addition, novel experimental approaches, using more clinically relevant animal models, to standardize and stratify research outcomes are now being argued for. In the present review, we discuss the most recent findings in relation to our understanding of the underlying mechanisms involved in septic shock, and highlight the attempts made to improve animal experimental models. We also review recent studies reporting promising results with two vastly different therapeutic approaches influencing the renin-angiotensin system and applying mesenchymal stem cells for clinical intervention.

  14. Shock Heating of the Merging Galaxy Cluster A521

    NASA Technical Reports Server (NTRS)

    Bourdin, H.; Mazzotta, P.; Markevitch, M.; Giacintucci, S.; Brunetti, G.

    2013-01-01

    A521 is an interacting galaxy cluster located at z = 0.247, hosting a low-frequency radio halo connected to an eastern radio relic. Previous Chandra observations hinted at the presence of an X-ray brightness edge at the position of the relic, which may be a shock front. We analyze a deep observation of A521 recently performed with XMM-Newton in order to probe the cluster structure up to the outermost regions covered by the radio emission. The cluster atmosphere exhibits various brightness and temperature anisotropies. In particular, two cluster cores appear to be separated by two cold fronts. We find two shock fronts, one that was suggested by Chandra and that is propagating to the east, and another to the southwestern cluster outskirt. The two main interacting clusters appear to be separated by a shock-heated region, which exhibits a spatial correlation with the radio halo. The outer edge of the radio relic coincides spatially with a shock front, suggesting that this shock is responsible for the generation of cosmic-ray electrons in the relic. The propagation direction and Mach number of the shock front derived from the gas density jump, M = 2.4 +/- 0.2, are consistent with expectations from the radio spectral index, under the assumption of Fermi I acceleration mechanism.

  15. A program for calculating expansion-tube flow quantities for real-gas mixtures and comparison with experimental results

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III

    1972-01-01

    A computer program written in FORTRAN 4 language is presented which determines expansion-tube flow quantities for real test gases CO2 N2, O2, Ar, He, and H2, or mixtures of these gases, in thermochemical equilibrium. The effects of dissociation and first and second ionization are included. Flow quantities behind the incident shock into the quiescent test gas are determined from the pressure and temperature of the quiescent test gas in conjunction with: (1) incident-shock velocity, (2) static pressure immediately behind the incident shock, or (3) pressure and temperature of the driver gas (imperfect hydrogen or helium). The effect of the possible existence of a shock reflection at the secondary diaphragm of the expansion tube is included. Expansion-tube test-section flow conditions are obtained by performing an isentropic unsteady expansion from the conditions behind the incident shock or reflected shock to either the test-region velocity or the static pressure. Both a thermochemical-equilibrium expansion and a frozen expansion are included. Flow conditions immediately behind the bow shock of a model positioned at the test section are also determined. Results from the program are compared with preliminary experimental data obtained in the Langley 6-inch expansion tube.

  16. Prediction system of the 1-AU arrival times of CME-associated interplanetary shocks using three-dimensional simulations

    NASA Astrophysics Data System (ADS)

    den, Mitsue; Amo, Hiroyoshi; Sugihara, Kohta; Takei, Toshifumi; Ogawa, Tomoya; Tanaka, Takashi; Watari, Shinichi

    We describe prediction system of the 1-AU arrival times of interplanetary shock waves associated with coromal mass ejections (CMEs). The system is based on modeling of the shock propagation using a three-dimensional adaptive mesh refinement (AMR) code. Once a CME is observed by LASCO/SOHO, firstly ambient solar wind is obtained by numerical simulation, which reproduces the solar wind parameters at that time observed by ACE spacecraft. Then we input the expansion speed and occurrence position data of that CME as initial condtions for an CME model, and 3D simulation of the CME and the shock propagation is perfomed until the shock wave passes the 1-AU. Input the parameters, execution of simulation and output of the result are available on Web, so a person who is not familiar with operation of computer or simulations or is not a researcher can use this system to predict the shock passage time. Simulated CME and shock evolution is visuallized at the same time with simulation and snap shots appear on the web automatically, so that user can follow the propagation. This system is expected to be useful for forecasters of space weather. We will describe the system and simulation model in detail.

  17. Electrostatic shock structures in dissipative multi-ion dusty plasmas

    NASA Astrophysics Data System (ADS)

    Elkamash, I. S.; Kourakis, I.

    2018-06-01

    A comprehensive analytical model is introduced for shock excitations in dusty bi-ion plasma mixtures, taking into account collisionality and kinematic (fluid) viscosity. A multicomponent plasma configuration is considered, consisting of positive ions, negative ions, electrons, and a massive charged component in the background (dust). The ionic dynamical scale is focused upon; thus, electrons are assumed to be thermalized, while the dust is stationary. A dissipative hybrid Korteweg-de Vries/Burgers equation is derived. An analytical solution is obtained, in the form of a shock structure (a step-shaped function for the electrostatic potential, or an electric field pulse) whose maximum amplitude in the far downstream region decays in time. The effect of relevant plasma configuration parameters, in addition to dissipation, is investigated. Our work extends earlier studies of ion-acoustic type shock waves in pure (two-component) bi-ion plasma mixtures.

  18. Shock Location Dominated Transonic Flight Loads on the Active Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Lokos, William A.; Lizotte, Andrew; Lindsley, Ned J.; Stauf, Rick

    2005-01-01

    During several Active Aeroelastic Wing research flights, the shadow of the over-wing shock could be observed because of natural lighting conditions. As the plane accelerated, the shock location moved aft, and as the shadow passed the aileron and trailing-edge flap hinge lines, their associated hinge moments were substantially affected. The observation of the dominant effect of shock location on aft control surface hinge moments led to this investigation. This report investigates the effect of over-wing shock location on wing loads through flight-measured data and analytical predictions. Wing-root and wing-fold bending moment and torque and leading- and trailing-edge hinge moments have been measured in flight using calibrated strain gages. These same loads have been predicted using a computational fluid dynamics code called the Euler Navier-Stokes Three Dimensional Aeroelastic Code. The computational fluid dynamics study was based on the elastically deformed shape estimated by a twist model, which in turn was derived from in-flight-measured wing deflections provided by a flight deflection measurement system. During level transonic flight, the shock location dominated the wing trailing-edge control surface hinge moments. The computational fluid dynamics analysis based on the shape provided by the flight deflection measurement system produced very similar results and substantially correlated with the measured loads data.

  19. Involvement of the Sieve Element Cytoskeleton in Electrical Responses to Cold Shocks1[W

    PubMed Central

    Hafke, Jens B.; Ehlers, Katrin; Föller, Jens; Höll, Sabina-Roxana; Becker, Stefanie; van Bel, Aart J.E.

    2013-01-01

    This study dealt with the visualization of the sieve element (SE) cytoskeleton and its involvement in electrical responses to local cold shocks, exemplifying the role of the cytoskeleton in Ca2+-triggered signal cascades in SEs. High-affinity fluorescent phalloidin as well as immunocytochemistry using anti-actin antibodies demonstrated a fully developed parietal actin meshwork in SEs. The involvement of the cytoskeleton in electrical responses and forisome conformation changes as indicators of Ca2+ influx was investigated by the application of cold shocks in the presence of diverse actin disruptors (latrunculin A and cytochalasin D). Under control conditions, cold shocks elicited a graded initial voltage transient, ΔV1, reduced by external La3+ in keeping with the involvement of Ca2+ channels, and a second voltage transient, ΔV2. Cytochalasin D had no effect on ΔV1, while ΔV1 was significantly reduced with 500 nm latrunculin A. Forisome dispersion was triggered by cold shocks of 4°C or greater, which was indicative of an all-or-none behavior. Forisome dispersion was suppressed by incubation with latrunculin A. In conclusion, the cytoskeleton controls cold shock-induced Ca2+ influx into SEs, leading to forisome dispersion and sieve plate occlusion in fava bean (Vicia faba). PMID:23624858

  20. Involvement of the sieve element cytoskeleton in electrical responses to cold shocks.

    PubMed

    Hafke, Jens B; Ehlers, Katrin; Föller, Jens; Höll, Sabina-Roxana; Becker, Stefanie; van Bel, Aart J E

    2013-06-01

    This study dealt with the visualization of the sieve element (SE) cytoskeleton and its involvement in electrical responses to local cold shocks, exemplifying the role of the cytoskeleton in Ca(2+)-triggered signal cascades in SEs. High-affinity fluorescent phalloidin as well as immunocytochemistry using anti-actin antibodies demonstrated a fully developed parietal actin meshwork in SEs. The involvement of the cytoskeleton in electrical responses and forisome conformation changes as indicators of Ca(2+) influx was investigated by the application of cold shocks in the presence of diverse actin disruptors (latrunculin A and cytochalasin D). Under control conditions, cold shocks elicited a graded initial voltage transient, ΔV1, reduced by external La(3+) in keeping with the involvement of Ca(2+) channels, and a second voltage transient, ΔV2. Cytochalasin D had no effect on ΔV1, while ΔV1 was significantly reduced with 500 nm latrunculin A. Forisome dispersion was triggered by cold shocks of 4°C or greater, which was indicative of an all-or-none behavior. Forisome dispersion was suppressed by incubation with latrunculin A. In conclusion, the cytoskeleton controls cold shock-induced Ca(2+) influx into SEs, leading to forisome dispersion and sieve plate occlusion in fava bean (Vicia faba).

  1. Emergency Victim Care. A Training Manual for Emergency Medical Technicians. Module 6. Bleeding Control, Wounds and Bandaging, Shock. Revised.

    ERIC Educational Resources Information Center

    Ohio State Dept. of Education, Columbus. Div. of Vocational Education.

    This student manual, the sixth in a set of 14 modules, is designed to train emergency medical technicians (EMTs) in Ohio. The module contains three sections covering the following course content: control of bleeding, caring for wounds and bandaging various body parts, and caring for shock victims. Each section contains objectives, an introduction,…

  2. Design Concepts for Hardened Communications Structures

    DTIC Science & Technology

    1990-03-01

    air . Based on this background, a family of structures was designed that can protect whip and directional antennae from the blast and shock effects from...Ground Surface Air Overpressure with Range, 1-MT Weapon, HOB - 0 and 500 ft ........................................... 25 5 Positive Phase Duration...design included the crater size, the e*eca field, airblast, and ground shock for ground surface air overpressure levels ranging from :5,000 to 500 psi. As

  3. Unusual staphylococcal toxic shock syndrome presenting as a scarlet-like fever.

    PubMed

    Andrey, D O; Ferry, T; Siegenthaler, N; Fletcher, C; Calmy, A; Lina, G; Emonet, S

    2015-11-01

    Diagnosis of nonmenstrual staphylococcal toxic shock syndrome (TSS) is often challenging. A female medical colleague had a rare entity, a staphylococcal pharyngitis complicated by TSS. The diagnosis was confirmed by isolation of tst-positive Staphylococcus aureus in throat culture and by identification of a specific Vβ2 expansion pattern of her T lymphocytes. Recent improvements in microbiology can be of great help for the diagnosis of nonmenstrual TSS.

  4. Localization of small arms fire using acoustic measurements of muzzle blast and/or ballistic shock wave arrivals.

    PubMed

    Lo, Kam W; Ferguson, Brian G

    2012-11-01

    The accurate localization of small arms fire using fixed acoustic sensors is considered. First, the conventional wavefront-curvature passive ranging method, which requires only differential time-of-arrival (DTOA) measurements of the muzzle blast wave to estimate the source position, is modified to account for sensor positions that are not strictly collinear (bowed array). Second, an existing single-sensor-node ballistic model-based localization method, which requires both DTOA and differential angle-of-arrival (DAOA) measurements of the muzzle blast wave and ballistic shock wave, is improved by replacing the basic external ballistics model (which describes the bullet's deceleration along its trajectory) with a more rigorous model and replacing the look-up table ranging procedure with a nonlinear (or polynomial) equation-based ranging procedure. Third, a new multiple-sensor-node ballistic model-based localization method, which requires only DTOA measurements of the ballistic shock wave to localize the point of fire, is formulated. The first method is applicable to situations when only the muzzle blast wave is received, whereas the third method applies when only the ballistic shock wave is received. The effectiveness of each of these methods is verified using an extensive set of real data recorded during a 7 day field experiment.

  5. The framing effect and skin conductance responses

    PubMed Central

    Ring, Patrick

    2015-01-01

    Individuals often rely on simple heuristics when they face complex choice situations under uncertainty. Traditionally, it has been proposed that cognitive processes are the main driver to evaluate different choice options and to finally reach a decision. Growing evidence, however, highlights a strong interrelation between judgment and decision-making (JDM) on the one hand, and emotional processes on the other hand. This also seems to apply to judgmental heuristics, i.e., decision processes that are typically considered to be fast and intuitive. In this study, participants are exposed to different probabilities of receiving an unpleasant electric shock. Information about electric shock probabilities is either positively or negatively framed. Integrated skin conductance responses (ISCRs) while waiting for electric shock realization are used as an indicator for participants' emotional arousal. This measure is compared to objective probabilities. I find evidence for a relation between emotional body reactions measured by ISCRs and the framing effect. Under negative frames, participants show significantly higher ISCRs while waiting for an electric shock to be delivered than under positive frames. This result might contribute to a better understanding of the psychological processes underlying JDM. Further studies are necessary to reveal the causality underlying this finding, i.e., whether emotional processes influence JDM or vice versa. PMID:26300747

  6. Acoustic and Cavitation Fields of Shock Wave Therapy Devices

    NASA Astrophysics Data System (ADS)

    Chitnis, Parag V.; Cleveland, Robin O.

    2006-05-01

    Extracorporeal shock wave therapy (ESWT) is considered a viable treatment modality for orthopedic ailments. Despite increasing clinical use, the mechanisms by which ESWT devices generate a therapeutic effect are not yet understood. The mechanistic differences in various devices and their efficacies might be dependent on their acoustic and cavitation outputs. We report acoustic and cavitation measurements of a number of different shock wave therapy devices. Two devices were electrohydraulic: one had a large reflector (HMT Ossatron) and the other was a hand-held source (HMT Evotron); the other device was a pneumatically driven device (EMS Swiss DolorClast Vet). Acoustic measurements were made using a fiber-optic probe hydrophone and a PVDF hydrophone. A dual passive cavitation detection system was used to monitor cavitation activity. Qualitative differences between these devices were also highlighted using a high-speed camera. We found that the Ossatron generated focused shock waves with a peak positive pressure around 40 MPa. The Evotron produced peak positive pressure around 20 MPa, however, its acoustic output appeared to be independent of the power setting of the device. The peak positive pressure from the DolorClast was about 5 MPa without a clear shock front. The DolorClast did not generate a focused acoustic field. Shadowgraph images show that the wave propagating from the DolorClast is planar and not focused in the vicinity of the hand-piece. All three devices produced measurable cavitation with a characteristic time (cavitation inception to bubble collapse) that varied between 95 and 209 μs for the Ossatron, between 59 and 283 μs for the Evotron, and between 195 and 431 μs for the DolorClast. The high-speed camera images show that the cavitation activity for the DolorClast is primarily restricted to the contact surface of the hand-piece. These data indicate that the devices studied here vary in acoustic and cavitation output, which may imply that the mechanisms by which they generate therapeutic effects are different.

  7. Association of day 4 cumulative fluid balance with mortality in critically ill patients with influenza: A multicenter retrospective cohort study in Taiwan.

    PubMed

    Chao, Wen-Cheng; Tseng, Chien-Hua; Chien, Ying-Chun; Sheu, Chau-Chyun; Tsai, Ming-Ju; Fang, Wen-Feng; Chen, Yu-Mu; Kao, Kuo-Chin; Hu, Han-Chung; Perng, Wann-Cherng; Yang, Kuang-Yao; Chen, Wei-Chih; Liang, Shinn-Jye; Wu, Chieh-Liang; Wang, Hao-Chien; Chan, Ming-Cheng

    2018-01-01

    Fluid balance is a fundamental management of patients with sepsis, and this study aimed to investigate the impact of cumulative fluid balance on critically ill patients with influenza admitted to an intensive care unit (ICU). This multicenter retrospective cohort study was conducted by the Taiwan Severe Influenza Research Consortium (TSIRC) which includes eight medical centers. Patients with virology-proven influenza infection admitted to ICUs between October 2015 and March 2016 were included for analysis. A total of 296 patients were enrolled (mean age: 61.4±15.6 years; 62.8% men), and 92.2% (273/296) of them required mechanical ventilation. In the survivors, the daily fluid balance was positive from day 1 to day 3, and then gradually became negative from day 4 to day 7, whereas daily fluid balance was continuously positive in the non-survivors. Using the cumulative fluid balance from day 1-4 as a cut-off point, we found that a negative cumulative day 1-4 fluid balance was associated with a lower 30-day mortality rate (log-rank test, P = 0.003). To evaluate the impact of shock on this association, we divided the patients into shock and non-shock groups. The positive correlation between negative day 1-4 fluid balance and mortality was significant in the non-shock group (log-rank test, P = 0.008), but not in the shock group (log-rank test, P = 0.396). In a multivariate Cox proportional hazard regression model adjusted for age, sex, cerebrovascular disease, and PaO2/FiO2, day 1-4 fluid balance was independently associated with a higher 30-day mortality rate (aHR 1.088, 95% CI: 1.007-1.174). A negative day 1-4 cumulative fluid balance was associated with a lower mortality rate in critically ill patients with influenza. Our findings indicate the critical role of conservative fluid strategy in the management of patients with complicated influenza.

  8. Tolerance to high temperature extremes in an invasive lace bug, Corythucha ciliata (Hemiptera: Tingidae), in subtropical China.

    PubMed

    Ju, Rui-Ting; Gao, Lei; Zhou, Xu-Hui; Li, Bo

    2013-01-01

    Biological invasions are predicted to be more frequent as climate change is increasing its positive impact on the prevalence of invasive exotic species. Success of insect invaders in different temperature zones is closely related to their tolerance to temperature extremes. In this study, we used an exotic lace bug (Corythucha ciliata) as the study organism to address the hypotheses that an insect species invading a subtropical zone from temperate regions has a high capacity to survive and adapt to high temperatures, and that its thermal tolerance plays an important role in determining its seasonal abundance and geographic distribution. To test these hypotheses, the effects of heat shock on the survival and reproduction of C. ciliata adults were assessed in the laboratory. Adults were exposed to 26 (control), 35, 37, 39, 41, 43, and 45°C for 2 h, and then were transferred to 26°C. Heat-shock temperatures ranging from 35 to 41°C did not significantly affect survival pattern, longevity, and fecundity of adults, but heat shock at 43 and 45°C significantly reduced these traits. Exposing parent females to heat-shock treatments from 35 to 41°C did not significantly affect the hatching rate of their eggs, survival of the nymphs, and the proportion of female F(1) progeny, while no progeny were produced with treatments of 43 and 45°C. The results indicate that C. ciliata can tolerate high temperatures less than 41°C, which may contribute to its expansion into the lower latitudes in China where its hosts (Platanus trees) are widely planted. Our findings have important implications for predicting seasonal abundance and understanding invasion mechanisms of this important urban invader under climate change.

  9. Cardiac ischemia in patients with septic shock randomized to vasopressin or norepinephrine

    PubMed Central

    2013-01-01

    Introduction Cardiac troponins are sensitive and specific biomarkers of myocardial necrosis. We evaluated troponin, CK, and ECG abnormalities in patients with septic shock and compared the effect of vasopressin (VP) versus norepinephrine (NE) on troponin, CK, and ECGs. Methods This was a prospective substudy of a randomized trial. Adults with septic shock randomly received, blinded, a low-dose infusion of VP (0.01 to 0.03 U/min) or NE (5 to 15 μg/min) in addition to open-label vasopressors, titrated to maintain a mean blood pressure of 65 to 75 mm Hg. Troponin I/T, CK, and CK-MB were measured, and 12-lead ECGs were recorded before study drug, and 6 hours, 2 days, and 4 days after study-drug initiation. Two physician readers, blinded to patient data and drug, independently interpreted ECGs. Results We enrolled 121 patients (median age, 63.9 years (interquartile range (IQR), 51.1 to 75.3), mean APACHE II 28.6 (SD 7.7)): 65 in the VP group and 56 in the NE group. At the four time points, 26%, 36%, 32%, and 21% of patients had troponin elevations, respectively. Baseline characteristics and outcomes were similar between patients with positive versus negative troponin levels. Troponin and CK levels and rates of ischemic ECG changes were similar in the VP and the NE groups. In multivariable analysis, only APACHE II was associated with 28-day mortality (OR, 1.07; 95% CI, 1.01 to 1.14; P = 0.033). Conclusions Troponin elevation is common in adults with septic shock. We observed no significant differences in troponin, CK, and ECGs in patients treated with vasopressin and norepinephrine. Troponin elevation was not an independent predictor of mortality. Trial registration Controlled-trials.com ISRCTN94845869 PMID:23786655

  10. Diagnostic potential of endotoxin scattering photometry for sepsis and septic shock.

    PubMed

    Shimizu, Tomoharu; Obata, Toru; Sonoda, Hiromichi; Akabori, Hiroya; Miyake, Tohru; Yamamoto, Hiroshi; Tabata, Takahisa; Eguchi, Yutaka; Tani, Tohru

    2013-12-01

    Endotoxin scattering photometry (ESP) is a novel Limulus amebocyte lysate (LAL) assay that uses a laser light-scattering particle-counting method. In the present study, we compared ESP, standard turbidimetric LAL assay, and procalcitonin assay for the evaluation of sepsis after emergency gastrointestinal surgery. A total of 174 samples were collected from 40 adult patients undergoing emergency gastrointestinal surgery and 10 patients with colorectal cancer undergoing elective surgery as nonseptic controls. Plasma endotoxin levels were measured with ESP and turbidimetric LAL assay, and plasma procalcitonin levels were assessed with a standard procalcitonin assay. Plasma endotoxin and procalcitonin levels increased corresponding to the degree of sepsis. Endotoxin scattering photometry significantly discriminated between patients with or without septic shock: sensitivity, 81.1%; specificity, 76.6%; positive predictive value, 48.4%; negative predictive value, 93.8%; and accuracy, 77.6%. The area under the receiver operating characteristic curve for septic shock with the ESP assay (endotoxin cutoff value, 23.8 pg/mL) was 0.8532 ± 0.0301 (95% confidence interval, 0.7841-0.9030; P < 0.0001). The predictive power of ESP was superior to that of turbidimetric assay (difference, 0.1965 ± 0.0588; 95% confidence interval, 0.0812-0.3117; P = 0.0008). There was no significant difference in predictive power between ESP and procalcitonin assay. Endotoxin scattering photometry also discriminated between patients with and without sepsis. Area under the receiver operating characteristic curve analysis showed that ESP had the best predictive power for diagnosing sepsis. In conclusion, compared with turbidimetric LAL assay, ESP more sensitively detected plasma endotoxin and significantly discriminated between sepsis and septic shock in patients undergoing gastrointestinal emergency surgery.

  11. Tolerance to High Temperature Extremes in an Invasive Lace Bug, Corythucha ciliata (Hemiptera: Tingidae), in Subtropical China

    PubMed Central

    Ju, Rui-Ting; Gao, Lei; Zhou, Xu-Hui; Li, Bo

    2013-01-01

    Biological invasions are predicted to be more frequent as climate change is increasing its positive impact on the prevalence of invasive exotic species. Success of insect invaders in different temperature zones is closely related to their tolerance to temperature extremes. In this study, we used an exotic lace bug (Corythucha ciliata) as the study organism to address the hypotheses that an insect species invading a subtropical zone from temperate regions has a high capacity to survive and adapt to high temperatures, and that its thermal tolerance plays an important role in determining its seasonal abundance and geographic distribution. To test these hypotheses, the effects of heat shock on the survival and reproduction of C. ciliata adults were assessed in the laboratory. Adults were exposed to 26 (control), 35, 37, 39, 41, 43, and 45°C for 2 h, and then were transferred to 26°C. Heat-shock temperatures ranging from 35 to 41°C did not significantly affect survival pattern, longevity, and fecundity of adults, but heat shock at 43 and 45°C significantly reduced these traits. Exposing parent females to heat-shock treatments from 35 to 41°C did not significantly affect the hatching rate of their eggs, survival of the nymphs, and the proportion of female F 1 progeny, while no progeny were produced with treatments of 43 and 45°C. The results indicate that C. ciliata can tolerate high temperatures less than 41°C, which may contribute to its expansion into the lower latitudes in China where its hosts (Platanus trees) are widely planted. Our findings have important implications for predicting seasonal abundance and understanding invasion mechanisms of this important urban invader under climate change. PMID:23365664

  12. Control of shock-wave boundary-layer interactions by bleed in supersonic mixed compression inlets

    NASA Technical Reports Server (NTRS)

    Fukuda, M. K.; Reshotko, E.; Hingst, W. R.

    1975-01-01

    An experimental investigation has been conducted to determine the effect of bleed region geometry and bleed rate on shock wave-boundary layer interactions in an axisymmetric, mixed-compression inlet at a Mach number of 2.5. The full realizable reduction in transformed form factor is obtained by bleeding off about half the incident boundary layer mass flow. Bleeding upstream or downstream of the shock-induced pressure rise is preferable to bleeding across the shock-induced pressure rise. Slanted holes are more effective than normal holes. Two different bleed hole sizes were tested without detectable difference in performance.

  13. Studies of shock/shock interaction on smooth and transpiration-cooled hemispherical nosetips in hypersonic flow

    NASA Technical Reports Server (NTRS)

    Holden, Michael S.; Rodriguez, Kathleen M.

    1992-01-01

    A program of experimental research and analysis was conducted to examine the heat transfer and pressure distributions in regions of shock/shock interaction over smooth and transpiration-cooled hemispherical noseshapes. The objective of this investigation was to determine whether the large heat transfer generated in regions of shock/shock interaction can be reduced by transpiration cooling. The experimental program was conducted at Mach numbers of 12 to 16 in the Calspan 48-Inch Shock Tunnel. Type 3 and type 4 interaction regions were generated for a range of freestream unit Reynolds numbers to provide shear layer Reynolds numbers from 10 exp 4 to 10 exp 6 to enable laminar and turbulent interaction regions to be studied. Shock/shock interactions were investigated on a smooth hemispherical nosetip and a similar transpiration-cooled nosetip, with the latter configuration being examined for a range of surface blowing rates up to one-third of the freestream mass flux. While the heat transfer measurements on the smooth hemisphere without shock/shock interaction were in good agreement with Fay-Riddell predictions, those on the transpiration-cooled nosetip indicated that its intrinsic roughness caused heating-enhancement factors of over 1.5. In the shock/shock interaction studies on the smooth nosetip, detailed heat transfer and pressure measurements were obtained to map the variation of the distributions with shock-impingement position for a range of type 3 and type 4 interactions. Such sets of measurements were obtained for a range of unit Reynolds numbers and Mach numbers to obtain both laminar and turbulent interactions. The measurements indicated that shear layer transition has a significant influence on the heating rates for the type 4 interaction as well as the anticipated large effects on type 3 interaction heating. In the absence of blowing, the peak heating in the type 3 and type 4 interaction regions, over the transpiration-cooled model, did not appear to be influenced by the model's rough surface characteristics. The studies of the effects of the transpiration cooling on type 3 and type 4 shock/shock interaction regions demonstrated that large surface blowing rates had significant effect on the structure of the flowfield, enlarging the shock layer and moving the region of peak-heating interaction around the body.

  14. F-16XL Wing Pressure Distributions and Shock Fence Results from Mach 1.4 to Mach 2.0

    NASA Technical Reports Server (NTRS)

    Landers, Stephen F.; Saltzman, John A.; Bjarke, Lisa J.

    1997-01-01

    Chordwise pressure distributions were obtained in-flight on the upper and lower surfaces of the F-16XL ship 2 aircraft wing between Mach 1.4 and Mach 2.0. This experiment was conducted to determine the location of shock waves which could compromise or invalidate a follow-on test of a large chord laminar flow control suction panel. On the upper surface, the canopy closure shock crossed an area which would be covered by a proposed laminar flow suction panel. At the laminar flow experiment design Mach number of 1.9, 91 percent of the suction panel area would be forward of the shock. At Mach 1.4, that value reduces to 65 percent. On the lower surface, a shock from the inlet diverter would impinge on the proposed suction panel leading edge. A chordwise plate mounted vertically to deflect shock waves, called a shock fence, was installed between the inlet diverter and the leading edge. This plate was effective in reducing the pressure gradients caused by the inlet shock system.

  15. Design and Construction of a Shock Tube Experiment for Multiphase Instability Experiments

    NASA Astrophysics Data System (ADS)

    Middlebrooks, John; Black, Wolfgang; Avgoustopoulos, Constantine; Allen, Roy; Kathakapa, Raj; Guo, Qiwen; McFarland, Jacob

    2016-11-01

    Hydrodynamic instabilities are important phenomena that have a wide range of practical applications in engineering and physics. One such instability, the shock driven multiphase instability (SDMI), arises when a shockwave accelerates an interface between two particle-gas mixtures with differing multiphase properties. The SDMI is present in high energy explosives, scramjets, and supernovae. A practical way of studying shock wave driven instabilities is through experimentation in a shock tube laboratory. This poster presentation will cover the design and data acquisition process of the University of Missouri's Fluid Mixing Shock Tube Laboratory. In the shock tube, a pressure generated shockwave is passed through a multiphase interface, creating the SDMI instability. This can be photographed for observation using high speed cameras, lasers, and advance imaging techniques. Important experimental parameters such as internal pressure and temperature, and mass flow rates of gases can be set and recorded by remotely controlled devices. The experimental facility provides the University of Missouri's Fluid Mixing Shock Tube Laboratory with the ability to validate simulated experiments and to conduct further inquiry into the field of shock driven multiphase hydrodynamic instabilities. Advisor.

  16. An analysis of combustion studies in shock expansion tunnels and reflected shock tunnels

    NASA Technical Reports Server (NTRS)

    Jachimowski, Casimir J.

    1992-01-01

    The effect of initial nonequilibrium dissociated air constituents on the combustion of hydrogen in high-speed flows for a simulated Mach 17 flight condition was investigated by analyzing the results of comparative combustion experiments performed in a reflected shock tunnel test gas and in a shock expansion tunnel test gas. The results were analyzed and interpreted with a one-dimensional quasi-three-stream combustor code that includes finite rate combustion chemistry. The results of this study indicate that the combustion process is kinetically controlled in the experiments in both tunnels and the presence of the nonequilibrium partially dissociated oxygen in the reflected shock tunnel enhances the combustion. Methods of compensating for the effect of dissociated oxygen are discussed.

  17. Evaluation of hemodynamic effects of xenon in dogs undergoing hemorrhagic shock

    PubMed Central

    Franceschi, Ruben C.; Malbouisson, Luiz; Yoshinaga, Eduardo; Auler, José Otavio Costa; de Figueiredo (in memoriam), Luiz Francisco Poli; Carmona, Maria José C.

    2013-01-01

    OBJECTIVES: The anesthetic gas xenon is reported to preserve hemodynamic stability during general anesthesia. However, the effects of the gas during shock are unclear. The objective of this study was to evaluate the effect of Xe on hemodynamic stability and tissue perfusion in a canine model of hemorrhagic shock. METHOD: Twenty-six dogs, mechanically ventilated with a fraction of inspired oxygen of 21% and anesthetized with etomidate and vecuronium, were randomized into Xenon (Xe; n = 13) or Control (C; n = 13) groups. Following hemodynamic monitoring, a pressure-driven shock was induced to reach an arterial pressure of 40 mmHg. Hemodynamic data and blood samples were collected prior to bleeding, immediately after bleeding and 5, 20 and 40 minutes following shock. The Xe group was treated with 79% Xe diluted in ambient air, inhaled for 20 minutes after shock. RESULT: The mean bleeding volume was 44 mL.kg−1 in the C group and 40 mL.kg−1 in the Xe group. Hemorrhage promoted a decrease in both the cardiac index (p<0.001) and mean arterial pressure (p<0.001). These changes were associated with an increase in lactate levels and worsening of oxygen transport variables in both groups (p<0.05). Inhalation of xenon did not cause further worsening of hemodynamics or tissue perfusion markers. CONCLUSIONS: Xenon did not alter hemodynamic stability or tissue perfusion in an experimentally controlled hemorrhagic shock model. However, further studies are necessary to validate this drug in other contexts. PMID:23525321

  18. Wind tunnel experiments on flow separation control of an Unmanned Air Vehicle by nanosecond discharge plasma aerodynamic actuation

    NASA Astrophysics Data System (ADS)

    Kang, Chen; Hua, Liang

    2016-02-01

    Plasma flow control (PFC) is a new kind of active flow control technology, which can improve the aerodynamic performances of aircrafts remarkably. The flow separation control of an unmanned air vehicle (UAV) by nanosecond discharge plasma aerodynamic actuation (NDPAA) is investigated experimentally in this paper. Experimental results show that the applied voltages for both the nanosecond discharge and the millisecond discharge are nearly the same, but the current for nanosecond discharge (30 A) is much bigger than that for millisecond discharge (0.1 A). The flow field induced by the NDPAA is similar to a shock wave upward, and has a maximal velocity of less than 0.5 m/s. Fast heating effect for nanosecond discharge induces shock waves in the quiescent air. The lasting time of the shock waves is about 80 μs and its spread velocity is nearly 380 m/s. By using the NDPAA, the flow separation on the suction side of the UAV can be totally suppressed and the critical stall angle of attack increases from 20° to 27° with a maximal lift coefficient increment of 11.24%. The flow separation can be suppressed when the discharge voltage is larger than the threshold value, and the optimum operation frequency for the NDPAA is the one which makes the Strouhal number equal one. The NDPAA is more effective than the millisecond discharge plasma aerodynamic actuation (MDPAA) in boundary layer flow control. The main mechanism for nanosecond discharge is shock effect. Shock effect is more effective in flow control than momentum effect in high speed flow control. Project supported by the National Natural Science Foundation of China (Grant Nos. 61503302, 51207169, and 51276197), the China Postdoctoral Science Foundation (Grant No. 2014M562446), and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2015JM1001).

  19. WIRGO in TIC's? [What (on Earth) is Really Going On in Terrestrial Impact Craters?

    NASA Astrophysics Data System (ADS)

    Dence, Michael R.

    2003-02-01

    Canada is well endowed with impact craters formed in crystalline rocks with relatively homogeneous physical properties. They exhibit all the main morphological-structural variations with crater size seen in craters on other rocky planets, from small simple bowl to large peak and ring forms. Lacking stratigraphy, analysis is based on the imprint of shock melting and metamorphism, the position of the GPL (limit of initial Grady-Kipp fracturing due to shock wave reverberations) relative to shock level, the geometry of late stage shears and breccias and the volume of shocked material beyond the GPL. Simple craters, exemplified by Brent (D = 3.7 km) allow direct comparison with models and experimental data. Results of interest include: 1. The central pool of impact melt and underlying breccia at the base of the crater fill is interpreted as the remnant of the transient crater lining; 2. The overlying main mass of breccias filling the final apparent crater results from latestage slumping of large slabs bounded by a primary shear surface that conforms to a sphere segment of radius, rs approx. = 2dtc, where dtc is the transient crater depth; 3. The foot of the primary shear intersects above the GPL at the centre of the melt pool and the rapid emplacement of slumped slabs produces further brecciation while suppressing any tendency for the centre to rise. In the autochthonous breccias below the melt and in the underlying para-allochthone below the GPL, shock metamorphism weakens with depth. The apparent attenuation of the shock pulse can be compared with experimentally derived rates of attenuation to give a measure of displacements down axis and estimates of the size of a nominal bolide of given velocity, the volume of impact melt and the energy released on impact. In larger complex craters (e.g. Charlevoix, D = 52 km) apparent shock attenuation is low near the centre but is higher towards the margin. The inflection point marks the change from uplift of deep material in the centre to subsidence of near-surface material at the margins. From the observed general relationship PGPL = 3.5 D0.5, where PGPL (in GPa) is the estimated level of shock metamorphism at the Grady-Kipp fracture limit, it is apparent that the differential stress due to shock wave reflections weakens at about twice the attenuation rate of the initial shock pulse. Thus, with increasing size, compression of the para-authochthone below the GPL plays an increasingly larger role in controlling the depth of the transient crater and hence the radius of the primary shear. It follows that, where the rate of relaxation of the para-authochthone is more rapid than the propagation of the primary shear from the rim towards the centre, the shear surface intersects below the GPL and central uplift occurs.

  20. Severe hepatic trauma: nonoperative management, definitive repair, or damage control surgery?

    PubMed

    Leppäniemi, Ari K; Mentula, Panu J; Streng, Mari H; Koivikko, Mika P; Handolin, Lauri E

    2011-12-01

    Management of severe liver injuries has evolved to include the options for nonoperative management and damage control surgery. The present study analyzes the criteria for choosing between nonoperative management and early surgery, and definitive repair versus damage control strategy during early surgery. In a retrospective analysis of 144 patients with severe (AAST grade III-V) liver injuries (94% blunt trauma), early laparotomy was performed in 50 patients. Initial management was nonoperative in 94 blunt trauma patients with 8 failures. Uni- and multivariate analyses were used to calculate predictor odds ratios (OR) with 95% confidence intervals (CI). Factors associated with early laparotomy in blunt trauma included shock on admission, associated grade IV-V splenic injury, grade IV-V head injury, and grade V liver injury. Only shock was an independent predictor (OR, 26.1; 95% CI, 8.9-77.1; P < 0.001). The presence of a grade IV-V splenic injury predicted damage control strategy (OR infinite; P = 0.021). Failed nonoperative management was associated with grade IV-V splenic injury (OR, 14.00; 95% CI, 1.67-117.55), and shock (OR, 6.82; 95% CI, 1.49-31.29). The hospital mortality rate was 15%; 8 of 21 deaths were liver-related. Shock (OR, 9.3; 95% CI, 2.4-35.8; P = 0.001) and severe head injury (OR, 9.25; 95% CI, 3.0-28.9; P = 0.000) were independent predictors for mortality. In patients with severe liver injury, associated severe splenic injury favors early laparotomy and damage control strategy. Patients who arrive in shock or have an associated severe splenic injury should not be managed nonoperatively. In addition to severe head injury, uncontrollable bleeding from the liver injury is still a major cause of early death.

Top