Effect of laser shock processing on fatigue life of 2205 duplex stainless steel notched specimens
NASA Astrophysics Data System (ADS)
Vázquez Jiménez, César A.; Gómez Rosas, Gilberto; Rubio González, Carlos; Granados Alejo, Vignaud; Hereñú, Silvina
2017-12-01
The effect laser shock processing (LSP) on high cycle fatigue behavior of 2205 duplex stainless steel (DSS) notched samples was investigated. The swept direction parallel (LSP 1) and perpendicular (LSP 2) to rolling were used in order to examine the sensitivity of LSP to manufacturing process since this steel present significantly anisotropy. The Nd:YAG pulsed laser operating at 10 Hz frequency and 1064 nm wavelength was utilized. The LSP configuration was the water jet mode without protective coating. Notched specimens 4 mm thick were treated on both sides, and then fatigue loading was applied with R = 0.1. The results showed that the LSP 2 condition induces higher compressive residual stresses as well as a higher fatigue life than the LSP 1 condition. By applying LSP 2 condition, an enhancement of fatigue life up to 402% is reported. In addition, the microhardness profiles showed different depths of hardening layer for each direction, according to the anisotropy observed.
Gujba, Abdullahi K.; Medraj, Mamoun
2014-01-01
The laser shock peening (LSP) process using a Q-switched pulsed laser beam for surface modification has been reviewed. The development of the LSP technique and its numerous advantages over the conventional shot peening (SP) such as better surface finish, higher depths of residual stress and uniform distribution of intensity were discussed. Similar comparison with ultrasonic impact peening (UIP)/ultrasonic shot peening (USP) was incorporated, when possible. The generation of shock waves, processing parameters, and characterization of LSP treated specimens were described. Special attention was given to the influence of LSP process parameters on residual stress profiles, material properties and structures. Based on the studies so far, more fundamental understanding is still needed when selecting optimized LSP processing parameters and substrate conditions. A summary of the parametric studies of LSP on different materials has been presented. Furthermore, enhancements in the surface micro and nanohardness, elastic modulus, tensile yield strength and refinement of microstructure which translates to increased fatigue life, fretting fatigue life, stress corrosion cracking (SCC) and corrosion resistance were addressed. However, research gaps related to the inconsistencies in the literature were identified. Current status, developments and challenges of the LSP technique were discussed. PMID:28788284
NASA Astrophysics Data System (ADS)
Zhang, Zhongyang; Nian, Qiong; Doumanidis, Charalabos C.; Liao, Yiliang
2018-02-01
Nanosecond pulsed laser shock processing (LSP) techniques, including laser shock peening, laser peen forming, and laser shock imprinting, have been employed for widespread industrial applications. In these processes, the main beneficial characteristic is the laser-induced shockwave with a high pressure (in the order of GPa), which leads to the plastic deformation with an ultrahigh strain rate (105-106/s) on the surface of target materials. Although LSP processes have been extensively studied by experiments, few efforts have been put on elucidating underlying process mechanisms through developing a physics-based process model. In particular, development of a first-principles model is critical for process optimization and novel process design. This work aims at introducing such a theoretical model for a fundamental understanding of process mechanisms in LSP. Emphasis is placed on the laser-matter interaction and plasma dynamics. This model is found to offer capabilities in predicting key parameters including electron and ion temperatures, plasma state variables (temperature, density, and pressure), and the propagation of the laser shockwave. The modeling results were validated by experimental data.
Laser shock processing effects on isothermal oxidation resistance of GH586 superalloy
NASA Astrophysics Data System (ADS)
Hua, Yinqun; Rong, Zhen; Ye, Yunxia; Chen, Kangmin; Chen, Ruifang; Xue, Qing; Liu, Haixia
2015-03-01
The oxidation is one of the main failure mode of Ni-based alloy at high temperature, laser shock processing not only can improve the mechanical properties but also the oxidation resistance. So the study on laser shock processing effects on oxidation resistance of this alloy is necessary. The aim of this paper is to investigate the effects of laser shock processing on microstructure, micro-hardness and isothermal oxidation resistance of GH586 superalloy. Scanning electron microscopy, energy-dispersive spectrum, transmission electron microscope, and X-ray diffraction technique were used to analyze the microstructure changes and the surface morphologies of the oxide scales. In addition, micro-hardness of LSP-treated samples was measured. The results show that the average grains size on the surfaces of LSP specimen was found to be significantly finer compared to the untreated one (33.3 μm vs. 18.5 μm). Highly tangled and dense dislocation arrangements and a high amount of twins have been observed. After the oxidation, the defects density (dislocations and twins) in the specimen decreased. The oxidation kinetics approximately followed a parabolic oxidation law at 800 °C and 900 °C. The oxidation layer was composed of Cr2O3, NiCr2O4, TiO2, and Al2O3, which generated more quickly on the surface treated by LSP during initial oxidation. The average oxidation rate was lower after LSP due to the dense, tiny and homogeneous oxidation layer. The results show that the specimens treated by LSP have a better high temperature oxidation resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Jiangdong
The effects of laser shock processing on microstructure, the residual stress, and hot corrosion behavior of the Ni-based superalloy GH202 were investigated. The microstructures of GH202 before and after laser shock processing (LSP) were characterized by electron backscattered diffraction (EBSD) and transmission electron microscope (TEM). A large number of crystal defects (twins, dislocation arrays, and high dense tangles) were generated on the surface of GH202 treated with LSP. The cross-sectional compressive residual stress and micro-hardness of specimens treated by LSP were improved significantly. The corrosion kinetics of GH202 with or without LSP treatment at 800 °C and 900 °C weremore » investigated. Analysis by X-ray diffraction (XRD) revealed that the corrosion products mainly consist of Cr{sub 2}O{sub 3}, TiO{sub 2}, Al{sub 2}O{sub 3}, NiO, CrS, Ni{sub 3}S{sub 2}, and Na{sub 2}CrO{sub 4}. The surface and cross-section morphologies were observed by scanning electron microscope (SEM) combined with energy dispersive spectroscopy (EDS). The results confirmed that the crystal defects induced by LSP promotes the creation of diffusion paths for elements (Cr, Al, and Ti), allowing the formation of tiny homogeneous oxidation films in a very short time. Additionally, the spallation of oxidation film on the treated specimens was alleviated significantly. Overall, the hot corrosion resistance of Ni-based GH202 induced by LSP was improved in Na{sub 2}SO{sub 4} and NaCl molten salt from 800 °C to 900 °C. - Highlights: • Microstructure changes of GH202 before and after LSP were observed by EBSD and TEM. • The hardness and residual compressive stress after LSP were significantly increased. • The increased diffusion paths for elements helped to form oxidation films quickly. • Hot corrosion resistance of GH202 after LSP was significantly improved.« less
Zhang, Lei; Lu, Jin-Zhong; Zhang, Yong-Kang; Ma, Hai-Le; Luo, Kai-Yu; Dai, Feng-Ze
2017-01-01
Effects of laser shock processing (LSP) on the cavitation erosion resistance of laser weldments were investigated by optical microscope (OM), scanning electron microscope (SEM) observations, roughness tester, micro hardness tester, and X-ray diffraction (XRD) technology. The morphological microstructures were characterized. Cumulative mass loss, incubation period, erosion rate, and damaged surface areas were monitored during cavitation erosion. Surface roughness, micro-hardness, and residual stress were measured in different zones. Results showed that LSP could improve the damage of morphological microstructures and mechanical properties after cavitation erosion. The compressive residual stresses were generated during the process of LSP, which was an effective guarantee for the improvement of the above mentioned properties. PMID:28772652
Kadhim, Abdulhadi; Salim, Evan T; Fayadh, Saeed M; Al-Amiery, Ahmed A; Kadhum, Abdul Amir H; Mohamad, Abu Bakar
2014-01-01
Laser shock processing (LSP) is an innovative surface treatment technique with high peak power, short pulse, and cold hardening for strengthening metal materials. LSP is based on the application of a high intensity pulsed laser beam (I > 1 GW/cm(2); t < 50 ns) at the interface between the metallic target and the surrounding medium (a transparent confining material, normally water) forcing a sudden vaporization of the metallic surface into a high temperature and density plasma that immediately develops inducing a shock wave propagating into the material. The shock wave induces plastic deformation and a residual stress distribution in the target material. In this paper we study the increase of microhardness and surface roughness with the increase of laser pulse energy in 2024-T3 Al alloy. The influence of the thickness of the confining layer (water) on microhardness and surface roughness is also studied. In addition, the effect of LSP treatment with best conditions on wear behaviors of the alloy was investigated.
NASA Astrophysics Data System (ADS)
Chu, J. P.; Rigsbee, J. M.; Banaś, G.; Lawrence, F. V.; Elsayed-Ali, H. E.
1995-06-01
The effects of laser-shock processing (LSP) on the microstructure, hardness, and residual stress of Hadfield manganese (1 pct C and 14 pct Mn) steels were studied. Laser-shock processing was performed using a Nd: glass phosphate laser with 600 ps pulse width and up to 120 J/pulse energy at power density above 1012 W/cm2. The effects of cold rolling and shot peening were also studied for comparison. Laser-shock processing caused extensive formation of ɛ hexagonal close-packed (hep) martensite (35 vol pct), producing up to a 130 pct increase of surface hardness. The surface hardness increase was 40 to 60 pct for the shot-peened specimen and about 60 pct for the cold-rolled specimen. The LSP strengthening effect on Hadfield steel was attributed to the combined effects of the partial dislocation/stacking fault arrays and the grain refinement due to the presence of the ɛ-hcp martensite. For the cold-rolled and shot-peened specimens, the strengthening was a result of ɛ-hcp martensite and twins with dislocation effects, respectively. Shot peening resulted in a relatively higher compressive residual stress throughout the specimen than LSP.
Zhang, Lei; Liu, Yue-Hua; Luo, Kai-Yu; Zhang, Yong-Kang; Zhao, Yong; Huang, Jian-Yun; Wu, Xu-Dong; Zhou, Chuang
2018-05-16
Tensile property was one important index of mechanical properties of ANSI 304 stainless steel laser weldments subjected to cavitation erosion (CE). Laser shock processing (LSP) was utilized to strengthen the CE resistance, and the tensile property and fracture morphology were analyzed through three replicated experiment times. Results showed tensile process of treated weldments was composed of elastic deformation, plastic deformation, and fracture. The elastic limit, elastic modulus, elongation, area reduction, and ultimate tensile strength of tensile sample after CE were higher in view of LSP. In the fracture surface, the fiber zone, radiation zone and shear lip zone were generated, and those were more obvious through LSP. The number and size of pores in the fracture surface were smaller, and the fracture surface was smoother and more uniform. The dimples were elongated along the unified direction due to effects of LSP, and the elongated direction was in agreement with the crack propagation direction. Their distribution and shape were uniform with deeper depth. It could be reflected that the tensile property was improved by LSP and the CE resistance was also enhanced.
Zhang, Lei; Liu, Yue-Hua; Luo, Kai-Yu; Zhang, Yong-Kang; Zhao, Yong; Huang, Jian-Yun; Wu, Xu-Dong; Zhou, Chuang
2018-01-01
Tensile property was one important index of mechanical properties of ANSI 304 stainless steel laser weldments subjected to cavitation erosion (CE). Laser shock processing (LSP) was utilized to strengthen the CE resistance, and the tensile property and fracture morphology were analyzed through three replicated experiment times. Results showed tensile process of treated weldments was composed of elastic deformation, plastic deformation, and fracture. The elastic limit, elastic modulus, elongation, area reduction, and ultimate tensile strength of tensile sample after CE were higher in view of LSP. In the fracture surface, the fiber zone, radiation zone and shear lip zone were generated, and those were more obvious through LSP. The number and size of pores in the fracture surface were smaller, and the fracture surface was smoother and more uniform. The dimples were elongated along the unified direction due to effects of LSP, and the elongated direction was in agreement with the crack propagation direction. Their distribution and shape were uniform with deeper depth. It could be reflected that the tensile property was improved by LSP and the CE resistance was also enhanced. PMID:29772661
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Liang; Wang, Lu; Nie, Zhihua
Laser shock peening (LSP) with different cycles was performed on the Ti-based bulk metallic glasses (BMGs). The sub-surface residual stress of the LSPed specimens was measured by high-energy X-ray diffraction (HEXRD) and the near-surface residual stress was measured by scanning electron microscope/focused ion beam (SEM/FIB) instrument. The sub-surface residual stress in the LSP impact direction (about-170MPa) is much lower than that perpendicular to the impact direction (about -350 MPa), exhibiting anisotropy. The depth of the compressive stress zone increases from 400 mu m to 500 mu m with increasing LSP cycles. The highest near-surface residual stress is about -750 MPa.more » LSP caused the free volume to increase and the maximum increase appeared after the first LSP process. Compared with the hardness (567 +/- 7 HV) of the as-cast BMG, the hardness (590 +/- 9 HV) on the shocked surface shows a hardening effect due to the hardening mechanism of compressive residual stress; and the hardness (420 +/- 9 HV) on the longitudinal section shows a softening effect due to the softening mechanism of free volume.« less
Kadhim, Abdulhadi; Salim, Evan T.; Fayadh, Saeed M.; Al-Amiery, Ahmed A.; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar
2014-01-01
Laser shock processing (LSP) is an innovative surface treatment technique with high peak power, short pulse, and cold hardening for strengthening metal materials. LSP is based on the application of a high intensity pulsed laser beam (I > 1 GW/cm2; t < 50 ns) at the interface between the metallic target and the surrounding medium (a transparent confining material, normally water) forcing a sudden vaporization of the metallic surface into a high temperature and density plasma that immediately develops inducing a shock wave propagating into the material. The shock wave induces plastic deformation and a residual stress distribution in the target material. In this paper we study the increase of microhardness and surface roughness with the increase of laser pulse energy in 2024-T3 Al alloy. The influence of the thickness of the confining layer (water) on microhardness and surface roughness is also studied. In addition, the effect of LSP treatment with best conditions on wear behaviors of the alloy was investigated. PMID:24737973
Li, Yinghong; Zhou, Liucheng; He, Weifeng; He, Guangyu; Wang, Xuede; Nie, Xiangfan; Wang, Bo; Luo, Sihai; Li, Yuqin
2013-01-01
We investigated the strengthening mechanism of laser shock processing (LSP) at high temperatures in the K417 nickel-based alloy. Using a laser-induced shock wave, residual compressive stresses and nanocrystals with a length of 30–200 nm and a thickness of 1 μm are produced on the surface of the nickel-based alloy K417. When the K417 alloy is subjected to heat treatment at 900 °C after LSP, most of the residual compressive stress relaxes while the microhardness retains good thermal stability; the nanocrystalline surface has not obviously grown after the 900 °C per 10 h heat treatment, which shows a comparatively good thermal stability. There are several reasons for the good thermal stability of the nanocrystalline surface, such as the low value of cold hardening of LSP, extreme high-density defects and the grain boundary pinning of an impure element. The results of the vibration fatigue experiments show that the fatigue strength of K417 alloy is enhanced and improved from 110 to 285 MPa after LSP. After the 900 °C per 10 h heat treatment, the fatigue strength is 225 MPa; the heat treatment has not significantly reduced the reinforcement effect. The feature of the LSP strengthening mechanism of nickel-based alloy at a high temperature is the co-working effect of the nanocrystalline surface and the residual compressive stress after thermal relaxation. PMID:27877617
NASA Astrophysics Data System (ADS)
Zhu, Yunhu; Fu, Jie; Zheng, Chao; Ji, Zhong
2016-12-01
In this study, surface modification of a Zr41.2Ti13.8Cu12.5Ni10Be22.5 (vit1) bulk metallic glass (BMG) has been studied in an effort to improve the mechanical properties by laser shock peening (LSP) treatment. The phase structure, mechanical properties, and microstructural evolution of the as-cast and LSP treated specimens were systematically investigated. It was found that the vit1 BMG still consisted of fully amorphous structure after LSP treatment. Measurements of the heat relaxation indicate that a large amount of free volume is introduced into vit1 BMG during LSP process. LSP treatment causes a decrease of hardness attributable to generation of free volume. The plastic deformation ability of vit1 BMG was investigated under three-point bending conditions. The results demonstrate that the plastic strain of LSP treated specimen is 1.83 times as large as that of the as-cast specimen. The effect of LSP technology on the hardness and plastic deformation ability of vit1 BMG is discussed on the basis of free volume theory. The high dense shear bands on the side surface, the increase of striations and critical shear displacement on the tensile fracture region, and more uniform dimples structure on the compressive fracture region also demonstrate that the plasticity of vit1 BMG can be enhanced by LSP.
NASA Astrophysics Data System (ADS)
Ocaña, J. L.; Morales, M.; Porro, J. A.; Iordachescu, D.; Díaz, M.; Ruiz de Lara, L.; Correa, C.
2011-05-01
Profiting by the increasing availability of laser sources delivering intensities above 109 W/cm2 with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is being consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals and is being developed as a practical process amenable to production engineering. The main acknowledged advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Following a short description of the theoretical/computational and experimental methods developed by the authors for the predictive assessment and experimental implementation of LSP treatments, experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (specifically Al and Ti alloys) under different LSP irradiation conditions are presented. In particular, the analysis of the residual stress profiles obtained under different irradiation parameters and the evaluation of the corresponding induced surface properties as roughness and wear resistance are presented.
Material model validation for laser shock peening process simulation
NASA Astrophysics Data System (ADS)
Amarchinta, H. K.; Grandhi, R. V.; Langer, K.; Stargel, D. S.
2009-01-01
Advanced mechanical surface enhancement techniques have been used successfully to increase the fatigue life of metallic components. These techniques impart deep compressive residual stresses into the component to counter potentially damage-inducing tensile stresses generated under service loading. Laser shock peening (LSP) is an advanced mechanical surface enhancement technique used predominantly in the aircraft industry. To reduce costs and make the technique available on a large-scale basis for industrial applications, simulation of the LSP process is required. Accurate simulation of the LSP process is a challenging task, because the process has many parameters such as laser spot size, pressure profile and material model that must be precisely determined. This work focuses on investigating the appropriate material model that could be used in simulation and design. In the LSP process material is subjected to strain rates of 106 s-1, which is very high compared with conventional strain rates. The importance of an accurate material model increases because the material behaves significantly different at such high strain rates. This work investigates the effect of multiple nonlinear material models for representing the elastic-plastic behavior of materials. Elastic perfectly plastic, Johnson-Cook and Zerilli-Armstrong models are used, and the performance of each model is compared with available experimental results.
New trends in laser shock wave physics and applications
NASA Astrophysics Data System (ADS)
Peyre, Patrice; Carboni, Christelle; Sollier, Arnault; Berthe, Laurent; Richard, Caroline; de Los Rios, E.; Fabbro, Remy
2002-09-01
Recent applications for laser-induced shock waves have been demonstrated in the aeronautical and nuclear industries, due to the development of new generations of lasers that enable high cadency rates with rather small designs. In this paper, we first aim at making an overview on basic physical processes involved in Laser Shock Processing, and a presentation of pressure loadings generated by different laser conditions. In a second part, a specific focus is given to new ranges of applications like wear resistance, uniform and localized corrosion or modeling of fatigue behaviour after LSP. For instance it is demonstrated that the pitting corrosion behaviour of 316L steel in saline medium can be improved by laser-induced pure mechanical effects surrounding inclusions. It is also shown that wear rates of a 100Cr6 tool steel can be reduced after LSP provided applied pressures are kept below a material deposit threshold. Last but not least, the fatigue cracking behaviour of 2024-T351 aluminum alloy after LSP was improved and calculated through a computed program taking into account work hardening together with residual stress effects.
Su, Chun; Zhou, Jianzhong; Meng, Xiankai; Huang, Shu
2016-09-26
As a new treatment process after welding, the process parameters of laser shock peening (LSP) in dynamic strain aging (DSA) temperature regimes can be precisely controlled, and the process is a non-contact one. The effects of LSP at elevated temperatures on the distribution of the surface residual stress of AA6061-T6 welded joints were investigated by using X-ray diffraction technology with the sin² ϕ method and Abaqus software. The fatigue life of the welded joints was estimated by performing tensile fatigue tests. The microstructural evolution in surface and fatigue fractures of the welded joints was presented by means of surface integrity and fracture surface testing. In the DSA temperature regime of AA6061-T6 welded joints, the residual compressive stress was distributed more stably than that of LSP at room temperature. The thermal corrosion resistance and fatigue properties of the welded joints were also improved. The experimental results and numerical analysis were in mutual agreement.
Su, Chun; Zhou, Jianzhong; Meng, Xiankai; Huang, Shu
2016-01-01
As a new treatment process after welding, the process parameters of laser shock peening (LSP) in dynamic strain aging (DSA) temperature regimes can be precisely controlled, and the process is a non-contact one. The effects of LSP at elevated temperatures on the distribution of the surface residual stress of AA6061-T6 welded joints were investigated by using X-ray diffraction technology with the sin2ϕ method and Abaqus software. The fatigue life of the welded joints was estimated by performing tensile fatigue tests. The microstructural evolution in surface and fatigue fractures of the welded joints was presented by means of surface integrity and fracture surface testing. In the DSA temperature regime of AA6061-T6 welded joints, the residual compressive stress was distributed more stably than that of LSP at room temperature. The thermal corrosion resistance and fatigue properties of the welded joints were also improved. The experimental results and numerical analysis were in mutual agreement. PMID:28773920
NASA Astrophysics Data System (ADS)
Su, R.; Li, L.; Wang, Y. D.; Nie, Z. H.; Ren, Y.; Zhou, X.; Wang, J.
2018-05-01
The distribution of residual lattice strain as a function of depth were carefully investigated by synchrotron-based high energy X-ray diffraction (HEXRD) in TC11 titanium alloy after laser shock peening (LSP). The results presented big compressive residual lattice strains at surface and subsurface, then tensile residual lattice strains in deeper region, and finally close to zero lattice strains in further deep interior with no plastic deformation thereafter. These evolutions in residual lattice strains were attributed to the balance of direct load effect from laser shock wave and the derivative restriction force effect from surrounding material. Significant intergranular stress was evidenced in the processed sample. The intergranular stress exhibited the largest value at surface, and rapidly decreased with depth increase. The magnitude of intergranular stress was proportional to the severity of the plastic deformation caused by LSP. Two shocks generated larger intergranular stress than one shock.
NASA Astrophysics Data System (ADS)
Ye, Y. X.; Xuan, T.; Lian, Z. C.; Feng, Y. Y.; Hua, X. J.
2015-06-01
This paper reports that 3D crater-like microdefects form on the metal surface when laser shock processing (LSP) is applied. LSP was conducted on pure copper block using the aluminum foil as the absorbent material and water as the confining layer. There existed the bonding material to attach the aluminum foil on the metal target closely. The surface morphologies and metallographs of copper surfaces were characterized with 3D profiler, the optical microscopy (OM) or the scanning electron microscopy (SEM). Temperature increases of metal surface due to LSP were evaluated theoretically. It was found that, when aluminum foil was used as the absorbent material, and if there existed air bubbles in the bonding material, the air temperatures within the bubbles rose rapidly because of the adiabatic compression. So at the locations of the air bubbles, the metal materials melted and micromelting pool formed. Then under the subsequent expanding of the air bubbles, a secondary shock wave was launched against the micromelting pool and produced the crater-like microdefects on the metal surface. The temperature increases due to shock heat and high-speed deformation were not enough to melt the metal target. The temperature increase induced by the adiabatic compression of the air bubbles may also cause the gasification of the metal target. This will also help form the crater-like microdefects. The results of this paper can help to improve the surface quality of a metal target during the application of LSP. In addition, the results provide another method to fabricate 3D crater-like dents on metal surface. This has a potential application in mechanical engineering.
NASA Astrophysics Data System (ADS)
Ocaña, J. L.; Porro, J. A.; Díaz, M.; Ruiz de Lara, L.; Correa, C.; Gil-Santos, A.; Peral, D.
2013-02-01
Laser shock processing (LSP) is being increasingly applied as an effective technology for the improvement of metallic materials mechanical and surface properties in different types of components as a means of enhancement of their corrosion and fatigue life behavior. As reported in previous contributions by the authors, a main effect resulting from the application of the LSP technique consists on the generation of relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Additional results accomplished by the authors in the line of practical development of the LSP technique at an experimental level (aiming its integral assessment from an interrelated theoretical and experimental point of view) are presented in this paper. Concretely, follow-on experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (especially Al and Ti alloys characteristic of high reliability components in the aerospace, nuclear and biomedical sectors) under different LSP irradiation conditions are presented along with a practical correlated analysis on the protective character of the residual stress profiles obtained under different irradiation strategies. Additional remarks on the improved character of the LSP technique over the traditional "shot peening" technique in what concerns depth of induced compressive residual stresses fields are also made through the paper.
NASA Astrophysics Data System (ADS)
Granados-Alejo, V.; Rubio-González, C.; Vázquez-Jiménez, C. A.; Banderas, J. A.; Gómez-Rosas, G.
2018-05-01
The influence of specimen thickness on the fatigue crack initiation of 2205 duplex stainless steel notched specimens subjected to laser shock peening (LSP) was investigated. The purpose was to examine the effectiveness of LSP on flat components with different thicknesses. For the LSP treatment a Nd:YAG pulsed laser operating at 10 Hz with 1064 nm of wavelength was used; pulse density was 2500 pulses/cm2. The LSP setup was the waterjet arrangement without sample coating. Residual stress distribution as a function of depth was determined by the hole drilling method. Notched specimens 2, 3 and 4 mm thick were LSP treated on both faces and then fatigue loading was applied with R = 0.1. Experimental fatigue lives were compared with life predictions from finite element simulation. A good comparison of the predicted and experimental fatigue lives was observed. LSP finite element simulation helps in explaining the influence of thickness on fatigue lives in terms of equivalent plastic strain distribution variations associated with the change in thickness. It is demonstrated that specimen size effect is an important issue in applying LSP on real components. Reducing the specimen thickness, the fatigue life improvement induced by LSP is significantly increased. Fatigue life extension up to 300% is observed on thin specimens with LSP.
NASA Astrophysics Data System (ADS)
Sun, Rujian; Li, Liuhe; Zhu, Ying; Zhang, Lixin; Guo, Wei; Peng, Peng; Li, Bo; Guo, Chao; Liu, Lei; Che, Zhigang; Li, Weidong; Sun, Jianfei; Qiao, Hongchao
2017-09-01
Laser shock peening (LSP), an innovative surface treatment technique, generates compressive residual stress on the surface of metallic components to improve their fatigue performance, wear resistance and corrosion resistance. To illustrate the dynamic response during LSP and residual stress fields after LSP, this study conducted FEM simulations of LSP in a Ti6Al4V alloy. Results showed that when power density was 7 GW cm-2, a plastic deformation occurred at 10 ns during LSP and increased until the shock pressure decayed below the dynamic yield strength of Ti6Al4V after 60 ns. A maximum tensile region appeared beneath the surface at around 240 ns, forming a compressive-tensile-compressive stress sandwich structure with a thickness of 98, 1020 and 606 μm for each layer. After the model became stabilized, the value of the surface residual compressive stress was 564 MPa at the laser spot center. Higher value of residual stress across the surface and thicker compressive residual stress layers were achieved by increasing laser power density, impact times and spot sizes during LSP. A ‘Residual stress hole’ occurred with a high laser power density of 9 GW cm-2 when laser pulse duration was 10 ns, or with a long laser pulse duration of 20 ns when laser power density was 7 GW cm-2 for Ti6Al4V. This phenomenon occurred because of the permanent reverse plastic deformation generated at laser spot center.
NASA Astrophysics Data System (ADS)
Lu, J. Z.; Han, B.; Cui, C. Y.; Li, C. J.; Luo, K. Y.
2017-02-01
The effects of massive laser shock peening (LSP) treatment with different coverage layers on residual stress, pitting morphologies in a standard corrosive solution and electrochemical corrosion resistance of AISI 4145 steel were investigated by pitting corrosion test, potentiodynamic polarisation test, and SEM observations. Results showed massive LSP treatment can effectively cause an obvious improvement of pitting corrosion resistance of AISI 4145 steel, and increased coverage layer can also gradually improve its corrosion resistance. Massive LSP treatment with multiple layers was shown to influence pitting corrosion behaviour in a standard corrosive solution.
NASA Astrophysics Data System (ADS)
Chaswal, Vibhor
Laser shock peening (LSP) for improving fatigue life of IN718Plus superalloy is investigated. Fatigue geometry and LSP parameters were optimized using finite element method (FEM). Residual stress distributions estimated by FEM were validated using Synchrotron XRD and line focus lab XRD, and correlated with microhardness. An eigenstrain analysis of LSP induced edge deflections (measured with optical interferometry) was also conducted. Transmission electron microscopy (TEM) of single-spot LSP coupons shows sudden increase in dislocation density under LSP treated region. Total life fatigue was conducted at R=0.1 at 298K and 923K, with and without LSP. S-N curve endurance limit increases at both temperatures with FEM optimized LSP samples. Based on TEM of fatigue microstructure and LSP coupons, a mechanistic description of observed fatigue improvement is attempted. Often need arises to weld components, and weld heat-affected-zone reaches near-solvus temperatures. To simulate this treatment, sub-solvus hot-rolled IN718Plus is aged at 923K. We observe precipitation of thin eta-Ni3(Al, Ti) plates after 1000 hours, making the material susceptible to cracks, and lowering fatigue life. Effect of LSP on fatigue crack growth (FCG) is studied following ASTM guidelines on M(T) geometry at R=0.1. Acceleration in FCG rate with LSP is observed for this geometry and LSP condition. Prior FEM optimization was not conducted for FCG tests, and may account for lower FCG resistance after LSP. FCG results were corroborated with COD compliance based analysis. Crack measurements were done using potential drop method, and crack closure was analyzed. Effect of LSP on overload FCG was investigated by single-cycle 100% overload followed by single-spot LSP on the crack-tip plastic zone. Crack retardation occurs after application of overload+LSP. Effective contribution of overload+LSP to crack retardation is estimated. Fractographic analysis of LSP treated fatigue samples suggests sub-surface crack nucleation, and is analyzed based on stress concentration behavior of small cracks.
NASA Astrophysics Data System (ADS)
Luo, Sihai; Nie, Xiangfan; Zhou, Liucheng; Li, Yiming; He, Weifeng
2018-03-01
During their service, titanium alloys are likely to suffer from the foreign object damage (FOD), resulting in a decrease in their fatigue strength. Laser shock peening (LSP) has been proved to effectively increase the damage tolerance of military engine components by introducing a magnitude compressive residual stress in the near-surface layer of alloys. In this paper, smooth specimens of a TC4 titanium alloy were used and treated by LSP and subsequently exposed to FOD, which was simulated by firing a steel sphere with a nominal velocity of 300 m/s, at 90° with the leading edge of the LSP-treated region using a light gas gun. All impacted specimens were then subjected to fatigue loading. The results showed that LSP could effectively improve the fatigue strength of the damaged specimens. The effect of LSP on the fatigue strength was assessed through fracture observations, microhardness tests and residual stress analyses. The residual stresses due to the plastic deformation caused by LSP and the FOD impact, which were found to play a crucial role on the fatigue strength, were determined using the commercial software ABAQUS.
Experimental study of micro dimple fabrication based on laser shock processing
NASA Astrophysics Data System (ADS)
Li, Kangmei; Hu, Yongxiang; Yao, Zhenqiang
2013-06-01
Micro-dimple array has been generally considered as a valuable texture for sliding surfaces. It can improve lubrication and reduce wear by acting as reservoirs of lubricants and grinding debris. Laser shock processing (LSP) is an innovative process which can not only improve fatigue, corrosion and wearing resistance but also shape metallic parts accurately. In this study, a new process for the fabrication of micro dimples based on LSP was proposed, which was named as laser peen texturing (LPT). Experiments were performed on 2024 aluminum alloy, Oxygen-Free High Conductivity (OFHC) copper and SUS304 stainless steel to study the effects of processing parameters of LPT on surface integrity of the specimen. Surface morphology, micro hardness and microstructure of the micro dimples were investigated under various laser power densities, laser spot diameters and repeated shock numbers. It was found that the depth of the micro dimples induced by LPT is strongly dependent on material properties. The diameter, depth as well as aspect ratio of micro dimples were increased with the laser power density and the repeated shock number under the conditions in this study. But when the laser spot diameter changed, the variation laws of the diameter, depth and aspect ratio of the dimple were different from each other. The results of micro hardness measurements suggested that LPT is beneficial for the improvement of the micro hardness beneath the dimple. Grain refinement was found significantly on 2024 aluminum alloy and OFHC copper but not clearly on SUS304 stainless steel. Both the hardening effect and the grain refinement have close relationship with the depth of the micro dimple.
Process and application of shock compression by nanosecond pulses of frequency-doubled Nd:YAG laser
NASA Astrophysics Data System (ADS)
Sano, Yuji; Kimura, Motohiko; Mukai, Naruhiko; Yoda, Masaki; Obata, Minoru; Ogisu, Tatsuki
2000-02-01
The authors have developed a new process of laser-induced shock compression to introduce a residual compressive stress on material surface, which is effective for prevention of stress corrosion cracking (SCC) and enhancement of fatigue strength of metal materials. The process developed is unique and beneficial. It requires no pre-conditioning for the surface, whereas the conventional process requires that the so-called sacrificial layer is made to protect the surface from damage. The new process can be freely applied to water- immersed components, since it uses water-penetrable green light of a frequency-doubled Nd:YAG laser. The process developed has the potential to open up new high-power laser applications in manufacturing and maintenance technologies. The laser-induced shock compression process (LSP) can be used to improve a residual stress field from tensile to compressive. In order to understand the physics and optimize the process, the propagation of a shock wave generated by the impulse of laser irradiation and the dynamic response of the material were analyzed by time-dependent elasto-plastic calculations with a finite element program using laser-induced plasma pressure as an external load. The analysis shows that a permanent strain and a residual compressive stress remain after the passage of the shock wave with amplitude exceeding the yield strength of the material. A practical system materializing the LSP was designed, manufactured, and tested to confirm the applicability to core components of light water reactors (LWRs). The system accesses the target component and remotely irradiates laser pulses to the heat affected zone (HAZ) along weld lines. Various functional tests were conducted using a full-scale mockup facility, in which remote maintenance work in a reactor vessel could be simulated. The results showed that the system remotely accessed the target weld lines and successfully introduced a residual compressive stress. After sufficient training for operational personnel, the system was applied to the core shroud of an existing nuclear power plant.
Finite element analysis of residual stress field induced by laser shock peening
NASA Astrophysics Data System (ADS)
Nam, Taeksun
The finite element method is applied to analyze the laser shock peening process (LSP) for thick parts (considered as a semi-infinite half space) and thin parts (finite thickness domain). The technology of LSP is used to enhance mechanical properties such as fatigue life, fretting fatigue life, resistance to stress corrosion cracking and surface hardness. These enhanced material properties are directly related to the magnitude and distribution of the plastic strain and associated residual stresses due to shockwaves induced by LSP. To reduce the process development cost and time, the prediction of residual stress field is very useful to provide a base design guideline for selecting appropriate LSP conditions for evaluation. An axisymmetric Finite Element Analysis (FEA) code, named SHOCKWAVE, is developed in order to complement shortcomings of applying commercial FEA codes at extremely high strain rates (as high as 104 -106/sec). The rate dependent plasticity theory is applied along with the small strain assumption. The solution process consists of an explicit dynamic loading analysis for shock loading stage and a static unloading analysis (implicit) to determine the equilibrium state for the residual stress and plastic strain fields. Some of the highlights explored in this investigation entail: (i) overstress power law models for the rate dependence, (ii) various hardening models, (iii) a second-order accurate implicit algorithm for the plastic consistency condition, (iv) an adaptively expanding domain scheme to trace the stress-free boundary condition in a simple way, (v) a special uniform meshing scheme to avoid the usual assembly process and repeated calculations for the stiffness matrix, (vi) mesh sensitivity study, (vii) comparisons with measured data provided and supported by the LSP Technologies, Inc. The dynamic behavior of Ti-6Al-4V at high strain rates can be investigated by using the split torsional Hopkinson bar experiment and by a longitudinal shock loading simulation in uniaxial strain to obtain material parameters representing rate dependent plasticity. In case of the double-sided laser peening for a thin part, reversal in loading plays a significant role. The stress waves repeatedly recompose the pre-accumulated plastic strains because of the interaction of the primary and reflected stress waves. In an attempt to better represent the material behavior under repeated reversals and collapses in loading, a sequence of bend-reverse bend tests is performed to identify the material parameters of TI-6Al-4V needed for a nonlinear kinematic hardening model (Chaboche model). For a thick part (a semi-infinite domain), single shot as well as multiple shots (at the same location) cases are simulated and compared with measured data for two different loading magnitudes and three different hardening models. Some of the simulation results agree well with the measured data, depending on the choice of hardening model and the treatment of rate dependent material behavior at high strain rates. Only a single shot (on both sides) case is investigated for a thin part (a finite thickness domain) in terms of residual stress distribution. The disagreement between the computed results and the measured data is more pronounced in this case, needing further investigations on both sides of the fields.
LSP/MAO composite bio-coating on AZ80 magnesium alloy for biomedical application.
Xiong, Ying; Hu, Qiang; Song, Renguo; Hu, Xiaxia
2017-06-01
A composite bio-coating was fabricated on AZ80 magnesium (Mg) alloy by using micro-arc oxidation (MAO) under the pretreatment of laser shock peening (LSP) in order to improve the bio-corrosion resistance and the mechanical integrity. LSP treatment could induce grain refinement and compressive residual stress field on the surface of material. MAO bio-coating was grown in alkaline electrolyte with hydroxyapatite (HA, Ca 10 (PO4) 6 (OH) 2 ) to improve the biological properties of the material. The microstructure, element and phase composition for untreated based material (BM) and treated samples (LSP layer, MAO bio-coating and LSP/MAO composite bio-coating) were investigated by transmission electron microscopy (TEM), scanning electron microscope (SEM), energy dispersion spectroscopy (EDS) and X-ray diffraction (XRD). Electrochemical tests and slow strain rate tensile (SSRT) tests were used to evaluate the corrosion resistance and the stress corrosion susceptibility in simulated body fluid (SBF). The results indicated that LSP/MAO composite bio-coating can not only improve the corrosion resistance of Mg alloy substrate evidently but also increase the mechanical properties in SBF compared to LSP layer and MAO bio-coating. Mg alloy treated by LSP/MAO composite technique should be better suited as biodegradable orthopedic implants. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Telang, A.; Gnäupel-Herold, T.; Gill, A.; Vasudevan, V. K.
2018-04-01
In this study, the effects of applied tensile stress and temperature on laser shock peening (LSP) and cavitation shotless peening (CSP)-induced compressive residual stresses were investigated using neutron and x-ray diffraction. Residual stresses on the surface, measured in situ, were lower than the applied stress in LSP- and CSP-treated Alloy 600 samples (2 mm thick). The residual stress averaged over the volume was similar to the applied stress. Compressive residual stresses on the surface and balancing tensile stresses in the interior relax differently due to hardening induced by LSP. Ex situ residual stress measurements, using XRD, show that residual stresses relaxed as the applied stress exceeded the yield strength of the LSP- and CSP-treated Alloy 600. Compressive residual stresses induced by CSP and LSP decreased by 15-25% in magnitude, respectively, on exposure to 250-450 °C for more than 500 h with 10-11% of relaxation occurring in the first few hours. Further, 80% of the compressive residual stresses induced by LSP and CSP treatments in Alloy 600 were retained even after long-term aging at 350 °C for 2400 h.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasudevan, Vijay K.; Jackson, John; Teysseyre, Sebastien
The objective of this project, which includes close collaboration with scientists from INL and ANL, is to investigate and demonstrate the use of advanced mechanical surface treatments like laser shock peening (LSP) and ultrasonic nanocrystal surface modification (UNSM) and establish baseline parameters for enhancing the fatigue properties and SCC resistance of nuclear materials like nickel-based alloy 600 and 304 stainless steel. The research program includes the following key elements/tasks: 1) Procurement of Alloy 600 and 304 SS, heat treatment studies; 2) LSP and UNSM processing of base metal and welds/HAZ of alloys 600 and 304; (3) measurement and mapping ofmore » surface and sub-surface residual strains/stresses and microstructural changes as a function of process parameters using novel methods; (4) determination of thermal relaxation of residual stresses (macro and micro) and microstructure evolution with time at high temperatures typical of service conditions and modeling of the kinetics of relaxation; (5) evaluation of the effects of residual stress, near surface microstructure and temperature on SCC and fatigue resistance and associated microstructural mechanisms; and (6) studies of the effects of bulk and surface grain boundary engineering on improvements in the SCC resistance and associated microstructural and cracking mechanisms« less
Improving friction performance of cast iron by laser shock peening
NASA Astrophysics Data System (ADS)
Feng, Xu; Zhou, Jianzhong; Huang, Shu; Sheng, Jie; Mei, Yufen; Zhou, Hongda
2015-05-01
According to different purpose, some high or low friction coefficient of the material surface is required. In this study, micro-dent texture was fabricated on cast iron specimens by a set of laser shock peening (LSP) experiments under different laser energy, with different patterns of micro dimples in terms of the depth over diameter. The mechanism of LSP was discussed and surface morphology of the micro dimples were investigated by utilizing a Keyence KS-1100 3D optical surface profilometer. The tests under the conditions of dry and lubricating sliding friction were accomplished on the UMT-2 apparatus. The performance of treated samples during friction and wear tests were characterized and analyzed. Based on theoretical analysis and experimental study, friction performance of textured and untextured samples were studied and compared. Morphological characteristics were observed by scanning electron microscope (SEM) and compared after friction tests under dry condition. The results showed that friction coefficient of textured samples were obvious changed than smooth samples. It can be seen that LSP is an effective way to improve the friction performance of cast iron by fabricating high quality micro dimples on its surface, no matter what kind of engineering application mentioned in this paper.
A new methodology for predictive tool wear
NASA Astrophysics Data System (ADS)
Kim, Won-Sik
An empirical approach to tool wear, which requires a series of machining tests for each combination of insert and work material, has been a standard practice for industries since early part of the twentieth century. With many varieties of inserts and work materials available for machining, the empirical approach is too experiment-intensive that the demand for the development of a model-based approach is increasing. With a model-based approach, the developed wear equation can be extended without additional machining experiments. The main idea is that the temperatures on the primary wear areas are increasing such that the physical properties of the tool material degrade substantially and consequently tool wear increases. Dissolution and abrasion are identified to be the main mechanisms for tool wear. Flank wear is predominantly a phenomenon of abrasion as evident by the presence of a scoring mark on the flank surface. Based on this statement, it is reasonable to expect that the flank-wear rate would increase with the content of hard inclusions. However, experimental flank wear results did not necessary correspond to the content of cementite phase present in the steels. Hence, other phenomena are believed to significantly affect wear behavior under certain conditions. When the cutting temperature in the flank interface is subjected to high enough temperatures, pearlitic structure austenizes. During the formation of a new austenitic phase, the existing carbon is dissolved into the ferrite matrix, which will reduce the abrasive action. To verify the austenitic transformation, turning tests were conducted with plain carbon steels. The machined surface areas are imaged using X-ray diffraction the Scanning Electron Microscope (SEM) and the Transmission Electron Microscope (TEM). On the other hand, crater wear occurs as a result of dissolution wear and abrasive wear. To verify the wear mechanisms of crater wear, various coating inserts as well as uncoated inserts were turned with various cutting conditions and the results were compared with the proposed analytical wear models. The crater surfaces after machining have been carefully studied to shed light on the physics behind the crater wear. In addition, the abrasive wear mechanism plays a major role in the development of crater wear. Laser shock processing (LSP) has been applied to locally relieve the deleterious tensile residual stresses on the crater surface of a coated tool, thus to improve the hardness of the coating. This thesis shows that LSP has indeed improve wear resistance of CVD coated alumina tool inserts, which has residual stress due to high processing temperature. LSP utilizes a very short laser pulse with high energy density, which induces high-pressure stress wave propagation. The residual stresses are relieved by incident shock waves on the coating surface. Residual stress levels of LSP CVD alumina-coated carbide insert were evaluated by the X-ray diffractometer. Based on these results, LSP parameters such as number of laser pulses and laser energy density can be controlled to reduce residual stress. Crater wear shows that the wear resistance increase with LSP treated tool inserts. Because the hardness data are used to predict the wear, the improvement in hardness and wear resistance shows that the mechanism of crater wear also involves abrasive wear.
Luo, Sihai; Zhou, Liucheng; Wang, Xuede; Cao, Xin; Nie, Xiangfan
2018-01-01
As an innovative surface technology for ultrahigh strain-rate plastic deformation, laser shock peening (LSP) was applied to the dual-phase TC11 titanium alloy to fabricate an amorphous and nanocrystalline surface layer at room temperature. X-ray diffraction, transmission electron microscopy, and high-resolution transmission electron microscopy (HRTEM) were used to investigate the microstructural evolution, and the deformation mechanism was discussed. The results showed that a surface nanostructured surface layer was synthesized after LSP treatment with adequate laser parameters. Simultaneously, the behavior of dislocations was also studied for different laser parameters. The rapid slipping, accumulation, annihilation, and rearrangement of dislocations under the laser-induced shock waves contributed greatly to the surface nanocrystallization. In addition, a 10 nm-thick amorphous structure layer was found through HRTEM in the top surface and the formation mechanism was attributed to the local temperature rising to the melting point, followed by its subsequent fast cooling. PMID:29642379
Luo, Sihai; Zhou, Liucheng; Wang, Xuede; Cao, Xin; Nie, Xiangfan; He, Weifeng
2018-04-06
As an innovative surface technology for ultrahigh strain-rate plastic deformation, laser shock peening (LSP) was applied to the dual-phase TC11 titanium alloy to fabricate an amorphous and nanocrystalline surface layer at room temperature. X-ray diffraction, transmission electron microscopy, and high-resolution transmission electron microscopy (HRTEM) were used to investigate the microstructural evolution, and the deformation mechanism was discussed. The results showed that a surface nanostructured surface layer was synthesized after LSP treatment with adequate laser parameters. Simultaneously, the behavior of dislocations was also studied for different laser parameters. The rapid slipping, accumulation, annihilation, and rearrangement of dislocations under the laser-induced shock waves contributed greatly to the surface nanocrystallization. In addition, a 10 nm-thick amorphous structure layer was found through HRTEM in the top surface and the formation mechanism was attributed to the local temperature rising to the melting point, followed by its subsequent fast cooling.
Victoria-Campos, Claudia I; Ornelas-Paz, José de Jesús; Yahia, Elhadi M; Jiménez-Castro, Jorge A; Cervantes-Paz, Braulio; Ibarra-Junquera, Vrani; Pérez-Martínez, Jaime David; Zamudio-Flores, Paul B; Escalante-Minakata, Pilar
2013-10-16
Raw and heat-processed (boiled and grilled) jalapeño peppers at three intermediate ripening stages (brown, 50% red, and 75% red) were digested in vitro without fat and in the presence of soybean oil (SO) or beef tallow (BT), and the micellarization of their lipid soluble pigments (LSP) was measured. The micelles from digestions with brown, 50% red, and 75% red peppers contained up to 27, 35, and 29 different LSP, respectively. Boiling and grilling decreased the micellarization of LSP from brown peppers, whereas the opposite was observed with 75% red peppers. Heat processing did not clearly affect the micellarization of LSP from 50% red fruits. The impact of fat on LSP micellarization was ripening-dependent, but the micellarization of the less polar carotenoids was always increased by SO or BT. This positive effect of fat was higher with SO than with BT.
Lipoprotein Processing Is Essential for Resistance of Mycobacterium tuberculosis to Malachite Green▿
Banaei, Niaz; Kincaid, Eleanor Z.; Lin, S.-Y. Grace; Desmond, Edward; Jacobs, William R.; Ernst, Joel D.
2009-01-01
Malachite green, a synthetic antimicrobial dye, has been used for over 50 years in mycobacterial culture medium to inhibit the growth of contaminants. The molecular basis of mycobacterial resistance to malachite green is unknown, although the presence of malachite green-reducing enzymes in the cell envelope has been suggested. The objective of this study was to investigate the role of lipoproteins in resistance of Mycobacterium tuberculosis to malachite green. The replication of an M. tuberculosis lipoprotein signal peptidase II (lspA) mutant (ΔlspA::lspAmut) on Middlebrook agar with and without 1 mg/liter malachite green was investigated. The lspA mutant was also compared with wild-type M. tuberculosis in the decolorization rate of malachite green and sensitivity to sodium dodecyl sulfate (SDS) detergent and first-line antituberculosis drugs. The lspA mutant has a 104-fold reduction in CFU-forming efficiency on Middlebrook agar with malachite green. Malachite green is decolorized faster in the presence of the lspA mutant than wild-type bacteria. The lspA mutant is hypersensitive to SDS detergent and shows increased sensitivity to first-line antituberculosis drugs. In summary, lipoprotein processing by LspA is essential for resistance of M. tuberculosis to malachite green. A cell wall permeability defect is likely responsible for the hypersensitivity of lspA mutant to malachite green. PMID:19596883
Lipoprotein processing is essential for resistance of Mycobacterium tuberculosis to malachite green.
Banaei, Niaz; Kincaid, Eleanor Z; Lin, S-Y Grace; Desmond, Edward; Jacobs, William R; Ernst, Joel D
2009-09-01
Malachite green, a synthetic antimicrobial dye, has been used for over 50 years in mycobacterial culture medium to inhibit the growth of contaminants. The molecular basis of mycobacterial resistance to malachite green is unknown, although the presence of malachite green-reducing enzymes in the cell envelope has been suggested. The objective of this study was to investigate the role of lipoproteins in resistance of Mycobacterium tuberculosis to malachite green. The replication of an M. tuberculosis lipoprotein signal peptidase II (lspA) mutant (DeltalspA::lspAmut) on Middlebrook agar with and without 1 mg/liter malachite green was investigated. The lspA mutant was also compared with wild-type M. tuberculosis in the decolorization rate of malachite green and sensitivity to sodium dodecyl sulfate (SDS) detergent and first-line antituberculosis drugs. The lspA mutant has a 10(4)-fold reduction in CFU-forming efficiency on Middlebrook agar with malachite green. Malachite green is decolorized faster in the presence of the lspA mutant than wild-type bacteria. The lspA mutant is hypersensitive to SDS detergent and shows increased sensitivity to first-line antituberculosis drugs. In summary, lipoprotein processing by LspA is essential for resistance of M. tuberculosis to malachite green. A cell wall permeability defect is likely responsible for the hypersensitivity of lspA mutant to malachite green.
NASA Technical Reports Server (NTRS)
2001-01-01
The Laminar Soot Processes (LSP) experiment under way during the Microgravity Sciences Lab-1 mission in 1997. LSP-2 will fly in the STS-107 Research 1 mission in 2001. The principal investigator is Dr. Gerard Faeth of the University of Michigan. LSP uses a small jet burner, similar to a classroom butane lighter, that produces flames up to 60 mm (2.3 in) long. Measurements include color TV cameras and a temperature sensor, and laser images whose darkness indicates the quantity of soot produced in the flame. Glenn Research in Cleveland, OH, manages the project.
Laminar Soot Processes Experiment Shedding Light on Flame Radiation
NASA Technical Reports Server (NTRS)
Urban, David L.
1998-01-01
The Laminar Soot Processes (LSP) experiment investigated soot processes in nonturbulent, round gas jet diffusion flames in still air. The soot processes within these flames are relevant to practical combustion in aircraft propulsion systems, diesel engines, and furnaces. However, for the LSP experiment, the flames were slowed and spread out to allow measurements that are not tractable for practical, Earth-bound flames.
NASA Technical Reports Server (NTRS)
2001-01-01
Interior of the Equipment Module for the Laminar Soot Processes (LSP-2) experiment that fly in the STS-107 Research 1 mission in 2002 (LSP-1 flew on Microgravity Sciences Lab-1 mission in 1997). The principal investigator is Dr. Gerard Faeth of the University of Michigan. LSP uses a small jet burner (yellow ellipse), similar to a classroom butane lighter, that produces flames up to 60 mm (2.3 in) long. Measurements include color TV cameras and a radiometer or heat sensor (blue circle), and laser images whose darkness indicates the quantity of soot produced in the flame. Glenn Research in Cleveland, OH, manages the project.
NASA Technical Reports Server (NTRS)
2001-01-01
Image of soot (smoke) plume made for the Laminar Soot Processes (LSP) experiment during the Microgravity Sciences Lab-1 mission in 1997. LSP-2 will fly in the STS-107 Research 1 mission in 2002. The principal investigator is Dr. Gerard Faeth of the University of Michigan. LSP uses a small jet burner, similar to a classroom butane lighter, that produces flames up to 60 mm (2.3 in) long. Measurements include color TV cameras and a temperature sensor, and laser images whose darkness indicates the quantity of soot produced in the flame. Glenn Research in Cleveland, OH, manages the project.
A Tailored Concept of Operations for NASA LSP Integrated Operations
NASA Technical Reports Server (NTRS)
Owens, Clark V.
2016-01-01
An integral part of the Systems Engineering process is the creation of a Concept of Operations (ConOps) for a given system, with the ConOps initially established early in the system design process and evolved as the system definition and design matures. As Integration Engineers in NASA's Launch Services Program (LSP) at Kennedy Space Center (KSC), our job is to manage the interface requirements for all the robotic space missions that come to our Program for a Launch Service. LSP procures and manages a launch service from one of our many commercial Launch Vehicle Contractors (LVCs) and these commercial companies are then responsible for developing the Interface Control Document (ICD), the verification of the requirements in that document, and all the services pertaining to integrating the spacecraft and launching it into orbit. However, one of the systems engineering tools that have not been employed within LSP to date is a Concept of Operations. The goal of this project is to research the format and content that goes into these various aerospace industry ConOps and tailor the format and content into template form, so the template may be used as an engineering tool for spacecraft integration with future LSP procured launch services.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacFarlane, Joseph J.; Golovkin, I. E.; Woodruff, P. R.
2009-08-07
This Final Report summarizes work performed under DOE STTR Phase II Grant No. DE-FG02-05ER86258 during the project period from August 2006 to August 2009. The project, “Development of Spectral and Atomic Models for Diagnosing Energetic Particle Characteristics in Fast Ignition Experiments,” was led by Prism Computational Sciences (Madison, WI), and involved collaboration with subcontractors University of Nevada-Reno and Voss Scientific (Albuquerque, NM). In this project, we have: Developed and implemented a multi-dimensional, multi-frequency radiation transport model in the LSP hybrid fluid-PIC (particle-in-cell) code [1,2]. Updated the LSP code to support the use of accurate equation-of-state (EOS) tables generated by Prism’smore » PROPACEOS [3] code to compute more accurate temperatures in high energy density physics (HEDP) plasmas. Updated LSP to support the use of Prism’s multi-frequency opacity tables. Generated equation of state and opacity data for LSP simulations for several materials being used in plasma jet experimental studies. Developed and implemented parallel processing techniques for the radiation physics algorithms in LSP. Benchmarked the new radiation transport and radiation physics algorithms in LSP and compared simulation results with analytic solutions and results from numerical radiation-hydrodynamics calculations. Performed simulations using Prism radiation physics codes to address issues related to radiative cooling and ionization dynamics in plasma jet experiments. Performed simulations to study the effects of radiation transport and radiation losses due to electrode contaminants in plasma jet experiments. Updated the LSP code to generate output using NetCDF to provide a better, more flexible interface to SPECT3D [4] in order to post-process LSP output. Updated the SPECT3D code to better support the post-processing of large-scale 2-D and 3-D datasets generated by simulation codes such as LSP. Updated atomic physics modeling to provide for more comprehensive and accurate atomic databases that feed into the radiation physics modeling (spectral simulations and opacity tables). Developed polarization spectroscopy modeling techniques suitable for diagnosing energetic particle characteristics in HEDP experiments. A description of these items is provided in this report. The above efforts lay the groundwork for utilizing the LSP and SPECT3D codes in providing simulation support for DOE-sponsored HEDP experiments, such as plasma jet and fast ignition physics experiments. We believe that taken together, the LSP and SPECT3D codes have unique capabilities for advancing our understanding of the physics of these HEDP plasmas. Based on conversations early in this project with our DOE program manager, Dr. Francis Thio, our efforts emphasized developing radiation physics and atomic modeling capabilities that can be utilized in the LSP PIC code, and performing radiation physics studies for plasma jets. A relatively minor component focused on the development of methods to diagnose energetic particle characteristics in short-pulse laser experiments related to fast ignition physics. The period of performance for the grant was extended by one year to August 2009 with a one-year no-cost extension, at the request of subcontractor University of Nevada-Reno.« less
NASA Astrophysics Data System (ADS)
Lin, Dong; Zhang, Martin Yi; Ye, Chang; Liu, Zhikun; Liu, C. Richard; Cheng, Gary J.
2012-03-01
A new method to generate large scale and highly dense nanoholes is presented in this paper. By the pulsed laser irradiation under water, the hydrogen etching is introduced to form high density nanoholes on the surfaces of AISI 4140 steel and Ti. In order to achieve higher nanohole density, laser shock peening (LSP) followed by recrystallization is used for grain refinement. It is found that the nanohole density does not increase until recrystallization of the substructures after laser shock peening. The mechanism of nanohole generation is studied in detail. This method can be also applied to generate nanoholes on other materials with hydrogen etching effect.
Learning Style Profile: Examiner's Manual.
ERIC Educational Resources Information Center
Keefe, James W.; Monk, John S.
This examiner's manual accompanies the Learning Style Profile (LSP), which measures cognitive skills as well as affective and environmental preferences. Charles Letteri's General Operations Model was accepted as the prototype for relating learning styles to cognitive information processing. The LSP was developed from 1983 to 1986; several versions…
2001-01-24
The Laminar Soot Processes (LSP) experiment under way during the Microgravity Sciences Lab-1 mission in 1997. LSP-2 will fly in the STS-107 Research 1 mission in 2001. The principal investigator is Dr. Gerard Faeth of the University of Michigan. LSP uses a small jet burner, similar to a classroom butane lighter, that produces flames up to 60 mm (2.3 in) long. Measurements include color TV cameras and a temperature sensor, and laser images whose darkness indicates the quantity of soot produced in the flame. Glenn Research in Cleveland, OH, manages the project.
2001-01-24
Image of soot (smoke) plume made for the Laminar Soot Processes (LSP) experiment during the Microgravity Sciences Lab-1 mission in 1997. LSP-2 will fly in the STS-107 Research 1 mission in 2002. The principal investigator is Dr. Gerard Faeth of the University of Michigan. LSP uses a small jet burner, similar to a classroom butane lighter, that produces flames up to 60 mm (2.3 in) long. Measurements include color TV cameras and a temperature sensor, and laser images whose darkness indicates the quantity of soot produced in the flame. Glenn Research in Cleveland, OH, manages the project.
2001-01-24
Interior of the Equipment Module for the Laminar Soot Processes (LSP-2) experiment that fly in the STS-107 Research 1 mission in 2002 (LSP-1 flew on Microgravity Sciences Lab-1 mission in 1997). The principal investigator is Dr. Gerard Faeth of the University of Michigan. LSP uses a small jet burner (yellow ellipse), similar to a classroom butane lighter, that produces flames up to 60 mm (2.3 in) long. Measurements include color TV cameras and a radiometer or heat sensor (blue circle), and laser images whose darkness indicates the quantity of soot produced in the flame. Glenn Research in Cleveland, OH, manages the project.
Karna, Sanjay; Mahat, Meg; Choi, Tae-Youl; Shimada, Ryoko; Wang, Zhiming; Neogi, Arup
2016-11-22
The light emission from reduced graphene oxide quantum dots (rGO-QDs) exhibit a significant enhancement in photoluminescence (PL) due to localized surface plasmon (LSP) interactions. Silver and gold nanoparticles (NPs) coupled to rGO nanoparticles exhibit the effect of resonant LSP coupling on the emission processes. Enhancement of the radiative recombination rate in the presence of Ag-NPs induced LSP tuned to the emission energy results in a four-fold increase in PL intensity. The localized field due to the resonantly coupled LSP modes induces n-π* transitions that are not observed in the absence of the resonant interaction of the plasmons with the excitons. An increase in the density of the Ag-NPs result in a detuning of the LSP energy from the emission energy of the nanoparticles. The detuning is due to the cumulative effect of the red-shift in the LSP energy and the electrostatic field induced blue shift in the PL energy of the rGO-QDs. The detuning quenches the PL emission from rGO-QDs at higher concentration of Ag NPs due to non-dissipative effects unlike plasmon induced Joule heating that occurs under resonance conditions. An increase in Au nanoparticles concentration results in an enhancement of PL emission due to electrostatic image charge effect.
Analysis of Surface Roughness at Overlapping Laser Shock Peening
NASA Astrophysics Data System (ADS)
Dai, F. Z.; Zhang, Z. D.; Zhou, J. Z.; Lu, J. Z.; Zhang, Y. K.
2016-02-01
The overlapping effects on surface roughness are studied when samples are treated by laser shock peening (LSP). Surface roughness of overlapped circular laser spot is calculated by ISO 25178 height parameters. The usually used overlapping styles namely isosceles-right-triangle-style (AAP) and equilateral-triangle-style (AAA) are carefully investigated when the overlapping degree in x-axis (ηx) is below 50%. Surface roughness of isosceles-right-triangle-style attains its minimum value at ηx of 29.3%, and attains its maximum value at ηx of 43.6%. Surface roughness of equilateral-triangle-style attains its minimum value at ηx of 42.3%, and attains its maximum value at ηx of 32%. Experimental results are well consistent with theoretical analysis.
Tailoring a ConOps for NASA LSP Integrated Operations
NASA Technical Reports Server (NTRS)
Owens, Skip Clark V., III
2017-01-01
An integral part of the Systems Engineering process is the creation of a Concept of Operations (ConOps) for a given system, with the ConOps initially established early in the system design process and evolved as the system definition and design matures. As Integration Engineers in NASA's Launch Services Program (LSP) at Kennedy Space Center (KSC), our job is to manage the interface requirements for all the robotic space missions that come to our Program for a Launch Service. LSP procures and manages a launch service from one of our many commercial Launch Vehicle Contractors (LVCs) and these commercial companies are then responsible for developing the Interface Control Document (ICD), the verification of the requirements in that document, and all the services pertaining to integrating the spacecraft and launching it into orbit. However, one of the systems engineering tools that have not been employed within LSP to date is a Concept of Operations. The goal of this paper is to research the format and content that goes into these various aerospace industry ConOps and tailor the format and content into template form, so the template may be used as an engineering tool for spacecraft integration with future LSP procured launch services. This tailoring effort was performed as the authors final Masters Project in the Spring of 2016 for the Stevens Institute of Technology and modified for publication with INCOSE (Owens, 2016).
Laser shock peening studies on SS316LN plate with various sacrificial layers
NASA Astrophysics Data System (ADS)
Yella, Pardhu; Venkateswarlu, P.; Buddu, Ramesh K.; Vidyasagar, D. V.; Sankara Rao, K. Bhanu; Kiran, P. Prem; Rajulapati, Koteswararao V.
2018-03-01
Laser shock peening (LSP) has been utilized to modify the surface characteristics of SS316LN plates of 6 mm thickness. Laser pulse widths employed are 30 ps and 7 ns and the laser energy was varied in the range 5-90 mJ. Peening was performed in direct ablation mode as well as with various sacrificial layers such as black paint, transparent adhesive tape and absorbing adhesive tape. The surface characteristics were greatly influenced by the type of sacrificial layer employed. The average surface roughness values are about 0.4 μm when the black paint and transparent adhesive tape were used as sacrificial layers. In contrast to this, using absorbent adhesive tape as a sacrificial layer has resulted in an average surface roughness of about 0.04 μm. Irrespective of pulse durations (30 ps or 7 ns), absorbent adhesive tape has always resulted in compressive residual stresses whereas other layers appear to be not that effective. In case of 30 ps pulse, as the laser energy was increased from 5 mJ to 25 mJ, there was a texture observed in (111) reflection of X-ray diffractograms and the center of the peak has also gradually shifted to left. X-ray line profile analysis suggests that with the increase in laser energy, lattice microstrain also has increased. This lattice microstrain appears to be resulting from the increased dislocation density in the peened sample as evidenced during transmission electron microscopic investigations. Cross-sectional scanning electron microscopy performed on peened samples suggests that absorbing adhesive tape brings no surface damage to the samples whereas other sacrificial layers have resulted in some surface damage. Based on all these structural and microstructural details, it is recommended that absorbent tape could be used as a sacrificial layer during LSP process which induces surface residual stresses with no damage to the sample surface.
Liang, Liang; Schwartz, Mark D.; Zhuosen Wang,; Gao, Feng; Schaaf, Crystal B.; Bin Tan,; Morisette, Jeffrey T.; Zhang, Xiaoyang
2014-01-01
Cross comparison of satellite-derived land surface phenology (LSP) and ground measurements is useful to ensure the relevance of detected seasonal vegetation change to the underlying biophysical processes. While standard 16-day and 250-m Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation index (VI)-based springtime LSP has been evaluated in previous studies, it remains unclear whether LSP with enhanced temporal and spatial resolutions can capture additional details of ground phenology. In this paper, we compared LSP derived from 500-m daily MODIS and 30-m MODIS-Landsat fused VI data with landscape phenology (LP) in a northern U.S. mixed forest. LP was previously developed from intensively observed deciduous and coniferous tree phenology using an upscaling approach. Results showed that daily MODIS-based LSP consistently estimated greenup onset dates at the study area (625 m × 625 m) level with 4.48 days of mean absolute error (MAE), slightly better than that of using 16-day standard VI (4.63 days MAE). For the observed study areas, the time series with increased number of observations confirmed that post-bud burst deciduous tree phenology contributes the most to vegetation reflectance change. Moreover, fused VI time series demonstrated closer correspondences with LP at the community level (0.1-20 ha) than using MODIS alone at the study area level (390 ha). The fused LSP captured greenup onset dates for respective forest communities of varied sizes and compositions with four days of the overall MAE. This study supports further use of spatiotemporally enhanced LSP for more precise phenological monitoring.
LSP Composite Susbtrate Destructive Evaluation Test Assessment Manual
NASA Technical Reports Server (NTRS)
Kovach, Daniel J.; Erickson, Grant J.
2013-01-01
This document specifies the processes to perform post-strike destructive damage evaluation of tested CFRP panels.It is recognized that many factors besides lightning damage protection are involved in the selection of an appropriate Lightning Strike Protection (LSP) for a particular system (e.g., cost, weight, corrosion resistance, shielding effectiveness, etc.). This document strives primarily to address the standardized generation of damage protection performance data.
NASA Astrophysics Data System (ADS)
Dai, F. Z.; Geng, J.; Tan, W. S.; Ren, X. D.; Lu, J. Z.; Huang, Shu
2018-07-01
The Ti6Al4V micro-dimple surfaces fabricated by a masked laser surface texturing (MLST) technique within water were subjected to soft contact laser shock peening (SCLSP) and hard contact laser shock peening (HCLSP). The effects of these two LSP methods on topography, micro-hardness and residual stress distribution were studied. The friction and wear performance under dry friction and oil lubrication were also studied. The enclosure of micro cracks in the micro-dimple bottom was observed when treated by SCLSP and HCLSP. The dry friction and wear test showed that the MLST+HCLSP surfaces had the best wear resistance performance. In the oil lubricated friction test, the occurrence of the hydrodynamic lubrication effect occurred on the micro-dimple surfaces. The MLST+HCLSP exhibited the best friction and wear resistance performance. These were due to the micro-hardness increase, the producing of compressive residual stress and the surface roughness reduction of as treated surfaces.
Isolation and characterization of a mucosal triacylglycerol pool undergoing hydrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tipton AD IV; Frase, S.; Mansbach, C.M. II
1989-12-01
Absorbed and processed mucosal neutral lipid has been shown to be composed of at least two pools of triacylglycerol. One is likely to subserve chylomicron formation, and the other appears to be transported from the intestine via a nonlymphatic route. In the present study, 50 +/- 5% of the mucosal lipid pellets was centrifuged at 75,000 g.min (low-speed pellet (LSP)). Discontinuous sucrose density gradient centrifugation of LSP showed that 61 +/- 7% of the lipid banded at the 0.25-0.86 M sucrose interface. Neutral lipid analysis showed that this subfraction was only 58% triacylglycerol, suggesting it was undergoing hydrolysis. Active lipolyticmore » activity in vitro was found on incubation. The lipase had an alkaline pH optimum (pH 8.5) and persisted despite pancreatic ductular diversion. Lipolysis in vivo in a LSP fraction was shown by infusing (14C)glyceryltrioleate for 3.5 h followed by (3H)glyceryltrioleate for 30 min. Discontinuous sucrose density centrifugation of the LSP followed by an analysis of the lipids at the 0.25-0.86 M sucrose interface showed that 14C-neutral lipids were only 70 +/- 6% triacylglycerol, whereas 3H-neutral lipids were 88 +/- 2% triacylglycerol. 3H entered LSP slowly compared with the floating lipid in the same centrifuge tube. These studies suggest both in vivo and in vitro mucosal lipolysis by a specific, alkaline-active lipase. The turnover rate of LSP is likely to be slow by comparison with neutral lipid floating to the top of the centrifuge tube.« less
Mars 2020 Model Based Systems Engineering Pilot
NASA Technical Reports Server (NTRS)
Dukes, Alexandra Marie
2017-01-01
The pilot study is led by the Integration Engineering group in NASA's Launch Services Program (LSP). The Integration Engineering (IE) group is responsible for managing the interfaces between the spacecraft and launch vehicle. This pilot investigates the utility of Model-Based Systems Engineering (MBSE) with respect to managing and verifying interface requirements. The main objectives of the pilot are to model several key aspects of the Mars 2020 integrated operations and interface requirements based on the design and verification artifacts from Mars Science Laboratory (MSL) and to demonstrate how MBSE could be used by LSP to gain further insight on the interface between the spacecraft and launch vehicle as well as to enhance how LSP manages the launch service. The method used to accomplish this pilot started through familiarization of SysML, MagicDraw, and the Mars 2020 and MSL systems through books, tutorials, and NASA documentation. MSL was chosen as the focus of the model since its processes and verifications translate easily to the Mars 2020 mission. The study was further focused by modeling specialized systems and processes within MSL in order to demonstrate the utility of MBSE for the rest of the mission. The systems chosen were the In-Flight Disconnect (IFD) system and the Mass Properties process. The IFD was chosen as a system of focus since it is an interface between the spacecraft and launch vehicle which can demonstrate the usefulness of MBSE from a system perspective. The Mass Properties process was chosen as a process of focus since the verifications for mass properties occur throughout the lifecycle and can demonstrate the usefulness of MBSE from a multi-discipline perspective. Several iterations of both perspectives have been modeled and evaluated. While the pilot study will continue for another 2 weeks, pros and cons of using MBSE for LSP IE have been identified. A pro of using MBSE includes an integrated view of the disciplines, requirements, and verifications leading up to launch. The model allows IE to understand the relationships between disciplines throughout test activities and verifications. Additionally, the relationships between disciplines and integration tasks are generally consistent. The model allows for the generic relationships and tasks to be captured and used throughout multiple mission models should LSP further pursue MBSE. A con of MBSE is the amount of time it takes upfront to understand MBSE and create a useful model. The upfront time it takes to create a useful model is heavily discussed in MBSE literature and is a consistent con throughout the known applications of MBSE. The need to understand SysML and the software chosen also poses the possibility of a "bottleneck" or one person being the sole MBSE user for the working group. The utility of MBSE will continue to be evaluated through the remainder of the study. In conclusion, the original objectives of the pilot study were to use artifacts from MSL to model key aspects of Mars 2020 and demonstrate how MBSE could be used by LSP to gain insight into the spacecraft and launch vehicle interfaces. Progress has been made in modeling and identifying the utility of MBSE to LSP IE and will continue to be made until the pilot study's conclusion in mid-August. The results of this study will produce initial models, modeling instructions and examples, and a summary of MBSE's utility for future use by LSP.
Tewari, Nitesh; Mathur, Vijay Prakash; Singh, Neerja; Singh, Subash; Pandey, Ramesh Kumar
2018-04-01
Traumatic dental injuries of the primary dentition (TDI-p) have a global prevalence of approximately 11%-47%. They have immediate and long-term effects. Original research analysing the long-term sequelae of TDI-p on permanent dentition (LSP) are few in number. The aim of this study was to explore the correlation between age of TDI-p, type of TDI-p and LSP. Retrospective analysis of patient data from 2008-2017, reporting with LSP due to TDI-p, was performed. Uniform protocols and complete radiographic-photographic records were analysed. There were 638 LSP reported with 596 teeth having complete records. There were 286 children with 153 males (53.5%) and 133 females (46.5%). Mean age of TDI-p causing LSP was 36.57 ± 11.51 months, with severity increasing in the younger age group. The highest number of LSP was associated with avulsion injuries (218, 36.58%), and the odds ratio of the type of TDI-p affect the severity of LSP was 2.0163. Mean age of reporting was 8.54 ± 2.19 years and was lowest for enamel discolorations. Most LSP were not associated with any associated feature (AF), although impaction was highest among all AF (63, 10.57%). Age and type of TDI-p affect LSP, with the former being the stronger determinant of its severity. Mean age of reporting of LSP is dependent upon both type of LSP and AF. LSP due to TDI-p can further be graded in terms of severity. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Guo, Jianping; Su, Tianning; Li, Zhanqing; Miao, Yucong; Li, Jing; Liu, Huan; Xu, Hui; Cribb, Maureen; Zhai, Panmao
2017-06-01
Summer precipitation plays critical roles in the energy balance and the availability of fresh water over eastern China. However, little is known regarding the trend in local-scale precipitation (LSP). Here we developed a novel method to determine LSP events in the summer afternoon throughout eastern China from 1970 to 2010 based on hourly gauge measurements. The LSP occurrence hours decrease at an annual rate of 0.25%, which varies considerably by region, ranging from 0.14% over the Yangtze River Delta to 0.56% over the Pearl River Delta. This declining frequency of LSP is generally accompanied by an increase in rain rate of LSP but a decrease in visibility, whose linkage to LSP events was investigated. In particular, more LSP events tended to form when the atmosphere was slightly polluted. Afterward, LSP was suppressed. These findings have important implications for improving our understanding of the climatology of daytime precipitation at local scales.
Building a base map with AutoCAD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flarity, S.J.
1989-12-01
The fundamental step in the exploration process is building a base map. Consequently, any serious computer exploration program should be capable of providing base maps. Data used in constructing base maps are available from commercial sources such as Tobin. and Petroleum Information. These data sets include line and well data, the line data being latitude longitude vectors, and the ell data any identifying text information for well and their locations. AutoCAD is a commercial program useful in building base maps. Its features include infinite zoom and pan capability, layering, block definition, text dialog boxes, and a command language, AutoLisp. AutoLispmore » provides more power by allowing the geologist to modify the way the program works. Three AutoLisp routines presented here allow geologists to construct a geologic base map from raw Tobin data. The first program, WELLS.LSP, sets up the map environment for the subsequent programs, WELLADD.LSP and LINEADD.LSP. Welladd.lisp reads the Tobin data and spots the well symbols and the identifying information. Lineadd.lsp performs the same task on line and textural information contained within the data set.« less
Leukocyte-specific protein 1 regulates T-cell migration in rheumatoid arthritis
Hwang, Seong-Hye; Jung, Seung-Hyun; Lee, Saseong; Choi, Susanna; Yoo, Seung-Ah; Park, Ji-Hwan; Hwang, Daehee; Shim, Seung Cheol; Sabbagh, Laurent; Kim, Ki-Jo; Park, Sung Hwan; Cho, Chul-Soo; Kim, Bong-Sung; Leng, Lin; Montgomery, Ruth R.; Bucala, Richard; Chung, Yeun-Jun; Kim, Wan-Uk
2015-01-01
Copy number variations (CNVs) have been implicated in human diseases. However, it remains unclear how they affect immune dysfunction and autoimmune diseases, including rheumatoid arthritis (RA). Here, we identified a novel leukocyte-specific protein 1 (LSP1) deletion variant for RA susceptibility located in 11p15.5. We replicated that the copy number of LSP1 gene is significantly lower in patients with RA, which correlates positively with LSP1 protein expression levels. Differentially expressed genes in Lsp1-deficient primary T cells represent cell motility and immune and cytokine responses. Functional assays demonstrated that LSP1, induced by T-cell receptor activation, negatively regulates T-cell migration by reducing ERK activation in vitro. In mice with T-cell–dependent chronic inflammation, loss of Lsp1 promotes migration of T cells into the target tissues as well as draining lymph nodes, exacerbating disease severity. Moreover, patients with RA show diminished expression of LSP1 in peripheral T cells with increased migratory capacity, suggesting that the defect in LSP1 signaling lowers the threshold for T-cell activation. To our knowledge, our work is the first to demonstrate how CNVs result in immune dysfunction and a disease phenotype. Particularly, our data highlight the importance of LSP1 CNVs and LSP1 insufficiency in the pathogenesis of RA and provide previously unidentified insights into the mechanisms underlying T-cell migration toward the inflamed synovium in RA. PMID:26554018
Series of Laminar Soot Processes Experiment
NASA Technical Reports Server (NTRS)
2003-01-01
Study of the downlink data from the Laminar Soot Processes (LSP) experiment quickly resulted in discovery of a new mechanism of flame extinction caused by radiation of soot. Scientists found that the flames emit soot sooner than expected. These findings have direct impact on spacecraft fire safety, as well as the theories predicting the formation of soot -- which is a major factor as a pollutant and in the spread of unwanted fires. This sequence was taken July 15, 1997, MET:14/10:34 (approximate) and shows the ignition and extinction of this flame. LSP investigated fundamental questions regarding soot, a solid byproduct of the combustion of hydrocarbon fuels. The experiment was performed using a laminar jet diffusion flame, which is created by simply flowing fuel -- like ethylene or propane -- through a nozzle and igniting it, much like a butane cigarette lighter. The LSP principal investigator was Gerard Faeth, University of Michigan, Arn Arbor. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). LSP results led to a reflight for extended investigations on the STS-107 research mission in January 2003. Advanced combustion experiments will be a part of investigations planned for the International Space Station. (189KB JPEG, 1350 x 1517 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300183.html.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thoma, C.; Welch, D. R.; Hsu, S. C.
2013-08-15
We describe numerical simulations, using the particle-in-cell (PIC) and hybrid-PIC code lsp[T. P. Hughes et al., Phys. Rev. ST Accel. Beams 2, 110401 (1999)], of the head-on merging of two laboratory supersonic plasma jets. The goals of these experiments are to form and study astrophysically relevant collisionless shocks in the laboratory. Using the plasma jet initial conditions (density ∼10{sup 14}–10{sup 16} cm{sup −3}, temperature ∼ few eV, and propagation speed ∼20–150 km/s), large-scale simulations of jet propagation demonstrate that interactions between the two jets are essentially collisionless at the merge region. In highly resolved one- and two-dimensional simulations, we showmore » that collisionless shocks are generated by the merging jets when immersed in applied magnetic fields (B∼0.1–1 T). At expected plasma jet speeds of up to 150 km/s, our simulations do not give rise to unmagnetized collisionless shocks, which require much higher velocities. The orientation of the magnetic field and the axial and transverse density gradients of the jets have a strong effect on the nature of the interaction. We compare some of our simulation results with those of previously published PIC simulation studies of collisionless shock formation.« less
Surface plasmon-enhanced fluorescence on Au nanohole array for prostate-specific antigen detection
Zhang, Qingwen; Wu, Lin; Wong, Ten It; Zhang, Jinling; Liu, Xiaohu; Zhou, Xiaodong; Bai, Ping; Liedberg, Bo; Wang, Yi
2017-01-01
Localized surface plasmon (LSP) has been widely applied for the enhancement of fluorescence emission for biosensing owing to its potential for strong field enhancement. However, due to its small penetration depth, LSP offers limited fluorescence enhancement over a whole sensor chip and, therefore, insufficient sensitivity for the detection of biomolecules, especially large molecules. We demonstrate the simultaneous excitation of LSP and propagating surface plasmon (PSP) on an Au nanohole array under Kretschmann configuration for the detection of prostate-specific antigen with a sandwich immunoassay. The proposed method combines the advantages of high field enhancement by LSP and large surface area probed by PSP field. The simulated results indicated that a maximum enhancement of electric field intensity up to 1,600 times can be achieved under the simultaneous excitation of LSP and PSP modes. The sandwich assay of PSA carried out on gold nanohole array substrate showed a limit of detection of 140 fM supporting coexcitation of LSP and PSP modes. The limit of detection was approximately sevenfold lower than that when only LSP was resonantly excited on the same substrate. The results of this study demonstrate high fluorescence enhancement through the coexcitation of LSP and PSP modes and pave a way for its implementation as a highly sensitive bioassay. PMID:28392689
NASA Astrophysics Data System (ADS)
He, Yulu; Yu, Jian-He; Hsiao, Jen-Hung; Tu, Yi-Chou; Low, Meng Chun; Hua, Wei-Hsiang; Hsieh, Cheng-Che; Kiang, Yean-Woei; Yang, Chih-Chung; Zhang, Zhenxi
2017-02-01
In combining the photothermal and photodynamic effects for killing cancer cells through the localized surface plasmon resonance (LSP) of photosensitizer-linked Au nanorings (NRIs), which are up-taken by the cells, the cells can be killed via different processes, including necrosis and apoptosis. In particular, the dominating effect, either photothermal or photodynamic effect, for cancer cell killing leading to either necrosis or apoptosis process is an important issue to be understood for improving the therapy efficiency. In this paper, we demonstrate the study results in differentiating the necrosis and apoptosis processes of cell death under different laser illumination conditions. With the LSP resonance wavelength of the Au NRIs around 1064 nm, the illumination of a 1064-nm cw laser can mainly produce the photothermal effect. The illumination of a 1064-nm fs laser can lead to LSP resonance-assisted two-photon absorption of the photosensitizer (AlPcS) for generating singlet oxygen and hence the photodynamic effect, besides the photothermal effect. Also, the illumination of a 660-nm cw laser can result in single-photon absorption of the photosensitizer for generating singlet oxygen and the photodynamic effect. By comparing the necrosis and apoptosis distributions in dead cells between the cases of different laser illumination conditions, we can differentiate the cancer cell killing processes between the photothermal effect, photodynamic effect, and the mixed effect.
Scaling Issues Between Plot and Satellite Radiobrightness Observations of Arctic Tundra
NASA Technical Reports Server (NTRS)
Kim, Edward J.; England, Anthony W.; Judge, Jasmeet; Zukor, Dorothy J. (Technical Monitor)
2000-01-01
Data from generation of satellite microwave radiometer will allow the detection of seasonal to decadal changes in the arctic hydrology cycle as expressed in temporal and spatial patterns of moisture stored in soil and snow This nw capability will require calibrated Land Surface Process/Radiobrightness (LSP/R) model for the principal terrains found in the circumpolar Arctic. These LSP/R models can than be used in weak constraint. Dimensional Data Assimilation (DDA)of the daily satellite observation to estimate temperature and moisture profiles within the permafrost in active layer.
Mashyal, Prakash; Bhargav, Hemant; Raghuram, Nagarathna
2014-01-01
Background: Yoga and Ayurveda texts emphasize the role of cleansing the bowel as an important component of management of hypertension (HTN). Observations during our clinical experience and pilot studies on Laghu shankha prakshalana kriya (LSP), a yogic bowel cleansing technique, appeared to be safe and complimentary. Objective: To test the safety and effectiveness of LSP in patients with essential hypertension. Materials and Methods: This self control study recruited 32 patients with mild to moderate essential HTN admitted for a week long residential integrated yoga therapy program at the integrative health home in Bengaluru. Patients had a daily routine of 6 hours of integrated approach of yoga therapy (IAYT) module for HTN that included physical postures, relaxation sessions, pranayama and meditations. LSP, an additional practice, that involved drinking of luke-warm water (with or without a herbal combination, triphala) followed by a set of specific yoga postures that activates defecation reflex, was administered on 2nd (LSP without triphala) and 5th day (LSP with triphala). Assessments (sitting blood pressure and pulse rate) were done just before and after both the sessions of LSP. Secondary outcome measures such as body mass index (BMI), symptom scores, medication scores, fatigue, state and trait anxiety, general health and quality of life were assessed on 1st and 6th day of IAYT intervention. Results: There was significant (P < 0.001, paired t test) reduction in blood pressure (systolic and diastolic) and pulse rate immediately after both the sessions (LSP with and without triphala). There were no adverse effects reported during or after LSP. There was no significant difference between the two techniques (P < 0.505, independent samples t test), although the percentage change appeared to be higher after triphala LSP session. The number of visits to clear the bowel during the procedure was significantly (P < 0.001, independent samples t test) higher after LSP with triphala than LSP without triphalā. After weeklong IAYT, there were significant reductions in blood pressure (P < 0.001), BMI (P < 0.004), medication score (P < 0.001), symptoms score (P < 0.001), fatigue (P < 0.001), state and trait anxiety (STAI, P < 0.001), scores of general ill health (GHQ, P < 0.001), and increase in comfort level (P < 0.001) and quality of sleep (P < 0.001). Conclusion: LSP (a part of IAYT) is a safe and useful procedure for patients with essential hypertension. LSP with triphala is more useful. PMID:25624697
Aad, G.
2014-11-21
The results of a search for top squark (stop) pair production in final states with one isolated lepton, jets, and missing transverse momentum are reported. The analysis is performed with proton-proton collision data at √s = 8 TeV collected with the ATLAS detector at the LHC in 2012 corresponding to an integrated luminosity of 20 fb –1. The lightest supersymmetric particle (LSP) is taken to be the lightest neutralino which only interacts weakly and is assumed to be stable. The stop decay modes considered are those to a top quark and the LSP as well as to a bottom quarkmore » and the lightest chargino, where the chargino decays to the LSP by emitting a W boson. A wide range of scenarios with different mass splittings between the stop, the lightest neutralino and the lightest chargino are considered, including cases where the W bosons or the top quarks are off-shell. Decay modes involving the heavier charginos and neutralinos are addressed using a set of phenomenological models of supersymmetry. No significant excess over the Standard Model prediction is observed. A stop with a mass between 210 and 640 GeV decaying directly to a top quark and a massless LSP is excluded at 95% confidence level, and in models where the mass of the lightest chargino is twice that of the LSP, stops are excluded at 95% confidence level up to a mass of 500 GeV for an LSP mass in the range of 100 to 150 GeV. As a result, stringent exclusion limits are derived for all other stop decay modes considered, and model-independent upper limits are set on the visible cross-section for processes beyond the Standard Model.« less
Development and Benchmarking of a Hybrid PIC Code For Dense Plasmas and Fast Ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witherspoon, F. Douglas; Welch, Dale R.; Thompson, John R.
Radiation processes play an important role in the study of both fast ignition and other inertial confinement schemes, such as plasma jet driven magneto-inertial fusion, both in their effect on energy balance, and in generating diagnostic signals. In the latter case, warm and hot dense matter may be produced by the convergence of a plasma shell formed by the merging of an assembly of high Mach number plasma jets. This innovative approach has the potential advantage of creating matter of high energy densities in voluminous amount compared with high power lasers or particle beams. An important application of this technologymore » is as a plasma liner for the flux compression of magnetized plasma to create ultra-high magnetic fields and burning plasmas. HyperV Technologies Corp. has been developing plasma jet accelerator technology in both coaxial and linear railgun geometries to produce plasma jets of sufficient mass, density, and velocity to create such imploding plasma liners. An enabling tool for the development of this technology is the ability to model the plasma dynamics, not only in the accelerators themselves, but also in the resulting magnetized target plasma and within the merging/interacting plasma jets during transport to the target. Welch pioneered numerical modeling of such plasmas (including for fast ignition) using the LSP simulation code. Lsp is an electromagnetic, parallelized, plasma simulation code under development since 1995. It has a number of innovative features making it uniquely suitable for modeling high energy density plasmas including a hybrid fluid model for electrons that allows electrons in dense plasmas to be modeled with a kinetic or fluid treatment as appropriate. In addition to in-house use at Voss Scientific, several groups carrying out research in Fast Ignition (LLNL, SNL, UCSD, AWE (UK), and Imperial College (UK)) also use LSP. A collaborative team consisting of HyperV Technologies Corp., Voss Scientific LLC, FAR-TECH, Inc., Prism Computational Sciences, Inc. and Advanced Energy Systems Inc. joined efforts to develop new physics and numerical models for LSP in several key areas to enhance the ability of LSP to model high energy density plasmas (HEDP). This final report details those efforts. Areas addressed in this research effort include: adding radiation transport to LSP, first in 2D and then fully 3D, extending the EMHD model to 3D, implementing more advanced radiation and electrode plasma boundary conditions, and installing more efficient implicit numerical algorithms to speed complex 2-D and 3-D computations. The new capabilities allow modeling of the dominant processes in high energy density plasmas, and further assist the development and optimization of plasma jet accelerators, with particular attention to MHD instabilities and plasma/wall interaction (based on physical models for ion drag friction and ablation/erosion of the electrodes). In the first funding cycle we implemented a solver for the radiation diffusion equation. To solve this equation in 2-D, we used finite-differencing and applied the parallelized sparse-matrix solvers in the PETSc library (Argonne National Laboratory) to the resulting system of equations. A database of the necessary coefficients for materials of interest was assembled using the PROPACEOS and ATBASE codes from Prism. The model was benchmarked against Prism's 1-D radiation hydrodynamics code HELIOS, and against experimental data obtained from HyperV's separately funded plasma jet accelerator development program. Work in the second funding cycle focused on extending the radiation diffusion model to full 3-D, continued development of the EMHD model, optimizing the direct-implicit model to speed up calculations, add in multiply ionized atoms, and improved the way boundary conditions are handled in LSP. These new LSP capabilities were then used, along with analytic calculations and Mach2 runs, to investigate plasma jet merging, plasma detachment and transport, restrike and advanced jet accelerator design. In addition, a strong linkage to diagnostic measurements was made by modeling plasma jet experiments on PLX to support benchmarking of the code. A large number of upgrades and improvements advancing hybrid PIC algorithms were implemented in LSP during the second funding cycle. These include development of fully 3D radiation transport algorithms, new boundary conditions for plasma-electrode interactions, and a charge conserving equation of state that permits multiply ionized high-Z ions. The final funding cycle focused on 1) mitigating the effects of a slow-growing grid instability which is most pronounced in plasma jet frame expansion problems using the two-fluid Eulerian remap algorithm, 2) extension of the Eulerian Smoothing Algorithm to allow EOS/Radiation modeling, 3) simulations of collisionless shocks formed by jet merging, 4) simulations of merging jets using high-Z gases, 5) generation of PROPACEOS EOS/Opacity databases, 6) simulations of plasma jet transport experiments, 7) simulations of plasma jet penetration through transverse magnetic fields, and 8) GPU PIC code development The tools developed during this project are applicable not only to the study of plasma jets, but also to a wide variety of HEDP plasmas of interest to DOE, including plasmas created in short-pulse laser experiments performed to study fast ignition concepts for inertial confinement fusion.« less
Impact of LSP character on Slepton reach at the LHC
NASA Astrophysics Data System (ADS)
Eckel, Jonathan; Ramsey-Musolf, Michael J.; Shepherd, William; Su, Shufang
2014-11-01
Searches for supersymmetry at the Large Hadron Collider (LHC) have significantly constrained the parameter space associated with colored superpartners, whereas the constraints on color-singlet superpartners are considerably less severe. In this study, we investigate the dependence of slepton decay branching fractions on the nature of the lightest supersymmetric particle (LSP). In particular, in the Higgsino-like LSP scenarios, both decay branching fractions of and depend strongly on the sign and value of M 1 /M 2, which has strong implications for the reach of dilepton plus [InlineMediaObject not available: see fulltext.] searches for slepton pair production. We extend the experimental results for same flavor, opposite sign dilepton plus [InlineMediaObject not available: see fulltext.] searches at the 8TeV LHC to various LSP scenarios. We find that the LHC bounds on sleptons are strongly enhanced for a non-Bino-like LSP: the 95% C.L. limit for extends from 300 GeV for a Bino-like LSP to about 370 GeV for a Wino-like LSP. The bound for with a Higgsino-like LSP is the strongest (˜ 490 GeV) for M 1 /M 2 ˜ - tan2 θ W and is the weakest (˜ 220 GeV) for M 1 /M 2 ˜ tan2 θ W . We also calculate prospective slepton search reaches at the 14 TeV LHC. With 100 fb-1 integrated luminosity, the projected 95% C.L. mass reach for the left-handed slepton varies from 550 (670) GeV for a Bino-like (Winolike) LSP to 900 (390) GeV for a Higgsino-like LSP under the most optimistic (pessimistic) scenario. The reach for the right-handed slepton is about 440 GeV. The corresponding 5 σ discovery sensitivity is about 100 GeV smaller. For 300 fb-1 integrated luminosity, the reach is about 50 - 100 GeV higher.
Myxobacterium-Produced Antibiotic TA (Myxovirescin) Inhibits Type II Signal Peptidase
Xiao, Yao; Gerth, Klaus; Müller, Rolf
2012-01-01
Antibiotic TA is a macrocyclic secondary metabolite produced by myxobacteria that has broad-spectrum bactericidal activity. The structure of TA is unique, and its molecular target is unknown. Here, we sought to elucidate TA's mode of action (MOA) through two parallel genetic approaches. First, chromosomal Escherichia coli TA-resistant mutants were isolated. One mutant that showed specific resistance toward TA was mapped and resulted from an IS4 insertion in the lpp gene, which encodes an abundant outer membrane (Braun's) lipoprotein. In a second approach, the comprehensive E. coli ASKA plasmid library was screened for overexpressing clones that conferred TAr. This effort resulted in the isolation of the lspA gene, which encodes the type II signal peptidase that cleaves signal sequences from prolipoproteins. In whole cells, TA was shown to inhibit Lpp prolipoprotein processing, similar to the known LspA inhibitor globomycin. Based on genetic evidence and prior globomycin studies, a block in Lpp expression or prevention of Lpp covalent cell wall attachment confers TAr by alleviating a toxic buildup of mislocalized pro-Lpp. Taken together, these data argue that LspA is the molecular target of TA. Strikingly, the giant ta biosynthetic gene cluster encodes two lspA paralogs that we hypothesize play a role in producer strain resistance. PMID:22232277
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Sun K., E-mail: sun.yi@ucdmc.ucdavis.edu; Mak, Walter; Yang, Claus C.
Purpose: To generate a reproducible step-wise guideline for the delineation of the lumbosacral plexus (LSP) on axial computed tomography (CT) planning images and to provide a preliminary dosimetric analysis on 15 representative patients with rectal or anal cancers treated with an intensity-modulated radiotherapy (IMRT) technique. Methods and Materials: A standardized method for contouring the LSP on axial CT images was devised. The LSP was referenced to identifiable anatomic structures from the L4-5 interspace to the level of the sciatic nerve. It was then contoured retrospectively on 15 patients treated with IMRT for rectal or anal cancer. No dose limitations weremore » placed on this organ at risk during initial treatment planning. Dosimetric parameters were evaluated. The incidence of radiation-induced lumbosacral plexopathy (RILSP) was calculated. Results: Total prescribed dose to 95% of the planned target volume ranged from 50.4 to 59.4 Gy (median 54 Gy). The mean ({+-}standard deviation [SD]) LSP volume for the 15 patients was 100 {+-} 22 cm{sup 3} (range, 71-138 cm{sup 3}). The mean maximal dose to the LSP was 52.6 {+-} 3.9 Gy (range, 44.5-58.6 Gy). The mean irradiated volumes of the LSP were V40Gy = 58% {+-} 19%, V50Gy = 22% {+-} 23%, and V55Gy = 0.5% {+-} 0.9%. One patient (7%) was found to have developed RILSP at 13 months after treatment. Conclusions: The true incidence of RILSP in the literature is likely underreported and is not a toxicity commonly assessed by radiation oncologists. In our analysis the LSP commonly received doses approaching the prescribed target dose, and 1 patient developed RILSP. Identification of the LSP during IMRT planning may reduce RILSP. We have provided a reproducible method for delineation of the LSP on CT images and a preliminary dosimetric analysis for potential future dose constraints.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badziak, Marcin; Olechowski, Marek; Szczerbiak, Paweł
The LUX experiment has recently set very strong constraints on spin-independent interactions of WIMP with nuclei. These null results can be accommodated in NMSSM provided that the effective spin-independent coupling of the LSP to nucleons is suppressed. Here, we investigate thermal relic abundance of singlino-higgsino LSP in these so-called spin-independent blind spots and derive current constraints and prospects for direct detection of spin-dependent interactions of the LSP with nuclei providing strong constraints on parameter space. We show that if the Higgs boson is the only light scalar the new LUX constraints set a lower bound on the LSP mass of about 300 GeV except for a small range around the half of Z 0 boson masses where resonant annihilation via Z 0 exchange dominates. XENON1T will probe entire range of LSP masses except for a tiny Z 0-resonant region that may be tested by the LZ experiment. These conclusions apply to general singlet-doublet dark matter annihilating dominantly tomore » $$t\\bar{t}$$. Presence of light singlet (pseudo)scalars generically relaxes the constraints because new LSP (resonant and non-resonant) annihilation channels become important. Even away from resonant regions, the lower limit on the LSP mass from LUX is relaxed to about 250 GeV while XENON1T may not be sensitive to the LSP masses above about 400 GeV.« less
Badziak, Marcin; Olechowski, Marek; Szczerbiak, Paweł
2017-07-11
The LUX experiment has recently set very strong constraints on spin-independent interactions of WIMP with nuclei. These null results can be accommodated in NMSSM provided that the effective spin-independent coupling of the LSP to nucleons is suppressed. Here, we investigate thermal relic abundance of singlino-higgsino LSP in these so-called spin-independent blind spots and derive current constraints and prospects for direct detection of spin-dependent interactions of the LSP with nuclei providing strong constraints on parameter space. We show that if the Higgs boson is the only light scalar the new LUX constraints set a lower bound on the LSP mass of about 300 GeV except for a small range around the half of Z 0 boson masses where resonant annihilation via Z 0 exchange dominates. XENON1T will probe entire range of LSP masses except for a tiny Z 0-resonant region that may be tested by the LZ experiment. These conclusions apply to general singlet-doublet dark matter annihilating dominantly tomore » $$t\\bar{t}$$. Presence of light singlet (pseudo)scalars generically relaxes the constraints because new LSP (resonant and non-resonant) annihilation channels become important. Even away from resonant regions, the lower limit on the LSP mass from LUX is relaxed to about 250 GeV while XENON1T may not be sensitive to the LSP masses above about 400 GeV.« less
NASA Astrophysics Data System (ADS)
Yan, D.; Scott, R. L.; Moore, D. J.; Biederman, J. A.; Smith, W. K.
2017-12-01
Land surface phenology (LSP) - defined as remotely sensed seasonal variations in vegetation greenness - is intrinsically linked to seasonal carbon uptake, and is thus commonly used as a proxy for vegetation productivity (gross primary productivity; GPP). Yet, the relationship between LSP and GPP remains uncertain, particularly for understudied dryland ecosystems characterized by relatively large spatial and temporal variability. Here, we explored the relationship between LSP and the phenology of GPP for three dominant dryland ecosystem types, and we evaluated how these relationships change as a function of spatial and temporal scale. We focused on three long-term dryland eddy covariance flux tower sites: Walnut Gulch Lucky Hills Shrubland (WHS), Walnut Gulch Kendall Grassland (WKG), and Santa Rita Mesquite (SRM). We analyzed daily canopy-level, 16-day 30m, and 8-day 500m time series of greenness indices from PhenoCam, Landsat 7 ETM+/Landsat 8 OLI, and MODIS, respectively. We first quantified the impact of spatial scale by temporally resampling canopy-level PhenoCam, 30m Landsat, and 500m MODIS to 16-day intervals and then comparing against flux tower GPP estimates. We next quantified the impact of temporal scale by spatially resampling daily PhenoCam, 16-day Landsat, and 8-day MODIS to 500m time series and then comparing against flux tower GPP estimates. We find evidence of critical periods of decoupling between LSP and the phenology of GPP that vary according to the spatial and temporal scale, and as a function of ecosystem type. Our results provide key insight into dryland LSP and GPP dynamics that can be used in future efforts to improve ecosystem process models and satellite-based vegetation productivity algorithms.
Studies of the Long Secondary Periods in Pulsating Red Giants. II. Lower-Luminosity Stars
NASA Astrophysics Data System (ADS)
Percy, J. R.; Leung, H. W.
2017-06-01
We have used AAVSO visual and photoelectric V data, and the AAVSO time-series package VSTAR and the Lomb-Scargle time-series algorithm to determine improved pulsation periods, "long secondary periods" (LSPs), and their amplitudes in 51 shorter-period pulsating red giants in the AAVSO photoelectric photometry program, and in the AAVSO long-period variable (LPV) binocular program. As is well known, radial pulsation becomes detectable in red giants at about spectral type M0, with periods of about 20 days. We find that the LSP phenomenon is also first detectable at about M0. Pulsation and LSP amplitudes increase from near zero to about 0.1 at pulsation periods of 100 days. At longer periods, the pulsation amplitudes continue to increase, but the LSP amplitudes are generally between 0.1 and 0.2 on average. The ratios of LSP to pulsation period cluster around 5 and 10, presumably depending on whether the pulsation period is the fundamental or first overtone. The pulsation and LSP phase curves are generally close to sinusoidal, except when the amplitude is small, in which case they may be distorted by observational scatter or, in the case of the LSP amplitude, by the pulsational variability. As with longer-period stars, the LSP amplitude i ncreases and decreases by a factor of two or more, for unknown reasons, on a time scale of about 20 LSPs. The LSP phenomenon is thus present and similar in radially pulsating red giants of all periods. Its cause remains unknown.
"Check Your Smile", Prototype of a Collaborative LSP Website for Technical Vocabulary
ERIC Educational Resources Information Center
Yassine-Diab, Nadia; Alazard-Guiu, Charlotte; Loiseau, Mathieu; Sorin, Laurent; Orliac, Charlotte
2016-01-01
In a design-based research approach (Barab & Squire, 2004), we are currently developing the first prototype of a collaborative Language for Specific Purposes (LSP) website. It focuses on technical vocabulary to help students master any field of LSP better. "Check Your Smile" is a platform aggregating various types of gameplays for…
Application of LSP Texts in Translator Training
ERIC Educational Resources Information Center
Ilynska, Larisa; Smirnova, Tatjana; Platonova, Marina
2017-01-01
The paper presents discussion of the results of extensive empirical research into efficient methods of educating and training translators of LSP (language for special purposes) texts. The methodology is based on using popular LSP texts in the respective fields as one of the main media for translator training. The aim of the paper is to investigate…
Maternal health literacy progression among rural perinatal women.
Mobley, Sandra C; Thomas, Suzanne Dixson; Sutherland, Donald E; Hudgins, Jodi; Ange, Brittany L; Johnson, Maribeth H
2014-10-01
This research examined changes in maternal health literacy progression among 106 low income, high risk, rural perinatal African American and White women who received home visits by Registered Nurse Case Managers through the Enterprise Community Healthy Start Program. Maternal health literacy progression would enable women to better address intermediate factors in their lives that impacted birth outcomes, and ultimately infant mortality (Lu and Halfon in Mater Child Health J 7(1):13-30, 2003; Sharma et al. in J Natl Med Assoc 86(11):857-860, 1994). The Life Skills Progression Instrument (LSP) (Wollesen and Peifer, in Life skills progression. An outcome and intervention planning instrument for use with families at risk. Paul H. Brookes Publishing Co., Baltimore, 2006) measured changes in behaviors that represented intermediate factors in birth outcomes. Maternal Health Care Literacy (LSP/M-HCL) was a woman's use of information, critical thinking and health care services; Maternal Self Care Literacy (LSP/M-SCL) was a woman's management of personal and child health at home (Smith and Moore in Health literacy and depression in the context of home visitation. Mater Child Health J, 2011). Adequacy was set at a score of (≥4). Among 106 women in the study initial scores were inadequate (<4) on LSP/M-HCL (83 %), and on LSP/M-SCL (30 %). Significant positive changes were noted in maternal health literacy progression from the initial prenatal assessment to the first (p < .01) postpartum assessment and to the final (p < .01) postpartum assessment using McNemar's test of gain scores. Numeric comparison of first and last gain scores indicated women's scores progressed (LSP/M-HCL; p < .0001) and (LSP/M-SCL; p < .0001). Elevated depression scores were most frequent among women with <4 LSP/M-HCL and/or <4 LSP/M-SCL. Visit notes indicated lack or loss of relationship with the father of the baby and intimate partner discord contributed to higher depression scores.
Das, Sankar; Kanamoto, Taisei; Ge, Xiuchun; Xu, Ping; Unoki, Takeshi; Munro, Cindy L; Kitten, Todd
2009-07-01
Streptococcus sanguinis is an important cause of infective endocarditis. Previous studies have identified lipoproteins as virulence determinants in other streptococcal species. Using a bioinformatic approach, we identified 52 putative lipoprotein genes in S. sanguinis strain SK36 as well as genes encoding the lipoprotein-processing enzymes prolipoprotein diacylglyceryl transferase (lgt) and signal peptidase II (lspA). We employed a directed signature-tagged mutagenesis approach to systematically disrupt these genes and screen each mutant for the loss of virulence in an animal model of endocarditis. All mutants were viable. In competitive index assays, mutation of a putative phosphate transporter reduced in vivo competitiveness by 14-fold but also reduced in vitro viability by more than 20-fold. Mutations in lgt, lspA, or an uncharacterized lipoprotein gene reduced competitiveness by two- to threefold in the animal model and in broth culture. Mutation of ssaB, encoding a putative metal transporter, produced a similar effect in culture but reduced in vivo competiveness by >1,000-fold. [(3)H]palmitate labeling and Western blot analysis confirmed that the lgt mutant failed to acylate lipoproteins, that the lspA mutant had a general defect in lipoprotein cleavage, and that SsaB was processed differently in both mutants. These results indicate that the loss of a single lipoprotein, SsaB, dramatically reduces endocarditis virulence, whereas the loss of most other lipoproteins or of normal lipoprotein processing has no more than a minor effect on virulence.
Das, Sankar; Kanamoto, Taisei; Ge, Xiuchun; Xu, Ping; Unoki, Takeshi; Munro, Cindy L.; Kitten, Todd
2009-01-01
Streptococcus sanguinis is an important cause of infective endocarditis. Previous studies have identified lipoproteins as virulence determinants in other streptococcal species. Using a bioinformatic approach, we identified 52 putative lipoprotein genes in S. sanguinis strain SK36 as well as genes encoding the lipoprotein-processing enzymes prolipoprotein diacylglyceryl transferase (lgt) and signal peptidase II (lspA). We employed a directed signature-tagged mutagenesis approach to systematically disrupt these genes and screen each mutant for the loss of virulence in an animal model of endocarditis. All mutants were viable. In competitive index assays, mutation of a putative phosphate transporter reduced in vivo competitiveness by 14-fold but also reduced in vitro viability by more than 20-fold. Mutations in lgt, lspA, or an uncharacterized lipoprotein gene reduced competitiveness by two- to threefold in the animal model and in broth culture. Mutation of ssaB, encoding a putative metal transporter, produced a similar effect in culture but reduced in vivo competiveness by >1,000-fold. [3H]palmitate labeling and Western blot analysis confirmed that the lgt mutant failed to acylate lipoproteins, that the lspA mutant had a general defect in lipoprotein cleavage, and that SsaB was processed differently in both mutants. These results indicate that the loss of a single lipoprotein, SsaB, dramatically reduces endocarditis virulence, whereas the loss of most other lipoproteins or of normal lipoprotein processing has no more than a minor effect on virulence. PMID:19395487
Scenarios for gluino coannihilation
Ellis, John; Evans, Jason L.; Luo, Feng; ...
2016-02-11
In this article, we study supersymmetric scenarios in which the gluino is the next-to-lightest supersymmetric particle (NLSP), with a mass sufficiently close to that of the lightest supersymmetric particle (LSP) that gluino coannihilation becomes important. One of these scenarios is the MSSM with soft supersymmetry-breaking squark and slepton masses that are universal at an input GUT renormalization scale, but with non-universal gaugino masses. The other scenario is an extension of the MSSM to include vector-like supermultiplets. In both scenarios, we identify the regions of parameter space where gluino coannihilation is important, and discuss their relations to other regions of parametermore » space where other mechanisms bring the dark matter density into the range allowed by cosmology. In the case of the non-universal MSSM scenario, we find that the allowed range of parameter space is constrained by the requirement of electroweak symmetry breaking, the avoidance of a charged LSP and the measured mass of the Higgs boson, in particular, as well as the appearance of other dark matter (co)annihilation processes. Nevertheless, LSP masses m X ≲ 8TeV with the correct dark matter density are quite possible. In the case of pure gravity mediation with additional vector-like supermultiplets, changes to the anomaly-mediated gluino mass and the threshold effects associated with these states can make the gluino almost degenerate with the LSP, and we find a similar upper bound.« less
Laminar Jet Diffusion Flame Burning
NASA Technical Reports Server (NTRS)
2003-01-01
Study of the downlink data from the Laminar Soot Processes (LSP) experiment quickly resulted in discovery of a new mechanism of flame extinction caused by radiation of soot. Scientists found that the flames emit soot sooner than expected. These findings have direct impact on spacecraft fire safety, as well as the theories predicting the formation of soot -- which is a major factor as a pollutant and in the spread of unwanted fires. This sequence, using propane fuel, was taken STS-94, July 4 1997, MET:2/05:30 (approximate). LSP investigated fundamental questions regarding soot, a solid byproduct of the combustion of hydrocarbon fuels. The experiment was performed using a laminar jet diffusion flame, which is created by simply flowing fuel-like ethylene or propane -- through a nozzle and igniting it, much like a butane cigarette lighter. The LSP principal investigator was Gerard Faeth, University of Michigan, Arn Arbor. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). LSP results led to a reflight for extended investigations on the STS-107 research mission in January 2003. Advanced combustion experiments will be a part of investigations planned for the International Space Station. (983KB, 9-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300184.html.
NASA Technical Reports Server (NTRS)
2003-01-01
Study of the downlink data from the Laminar Soot Processes (LSP) experiment quickly resulted in discovery of a new mechanism of flame extinction caused by radiation of soot. Scientists found that the flames emit soot sooner than expected. These findings have direct impact on spacecraft fire safety, as well as the theories predicting the formation of soot -- which is a major factor as a pollutant and in the spread of unwanted fires. This sequence, using propane fuel, was taken STS-94, July 4 1997, MET:2/05:30 (approximate). LSP investigated fundamental questions regarding soot, a solid byproduct of the combustion of hydrocarbon fuels. The experiment was performed using a laminar jet diffusion flame, which is created by simply flowing fuel-like ethylene or propane -- through a nozzle and igniting it, much like a butane cigarette lighter. The LSP principal investigator was Gerard Faeth, University of Michigan, Arn Arbor. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). LSP results led to a reflight for extended investigations on the STS-107 research mission in January 2003. Advanced combustion experiments will be a part of investigations planned for the International Space Station. (249KB JPEG, 1350 x 1524 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300185.html.
Hanes, Jonathan M.; Liang, Liang; Morisette, Jeffrey T.
2013-01-01
Certain vegetation types (e.g., deciduous shrubs, deciduous trees, grasslands) have distinct life cycles marked by the growth and senescence of leaves and periods of enhanced photosynthetic activity. Where these types exist, recurring changes in foliage alter the reflectance of electromagnetic radiation from the land surface, which can be measured using remote sensors. The timing of these recurring changes in reflectance is called land surface phenology (LSP). During recent decades, a variety of methods have been used to derive LSP metrics from time series of reflectance measurements acquired by satellite-borne sensors. In contrast to conventional phenology observations, LSP metrics represent the timing of reflectance changes that are driven by the aggregate activity of vegetation within the areal unit measured by the satellite sensor and do not directly provide information about the phenology of individual plants, species, or their phenophases. Despite the generalized nature of satellite sensor-derived measurements, they have proven useful for studying changes in LSP associated with various phenomena. This chapter provides a detailed overview of the use of satellite remote sensing to monitor LSP. First, the theoretical basis for the application of satellite remote sensing to the study of vegetation phenology is presented. After establishing a theoretical foundation for LSP, methods of deriving and validating LSP metrics are discussed. This chapter concludes with a discussion of major research findings and current and future research directions.
NASA Astrophysics Data System (ADS)
Zhang, Lu; Zhao, Xin; Zhang, Zhenxi; Zhao, Hong; Chen, Wei; Yuan, Li
2016-07-01
A single living cell's light scattering pattern (LSP) in the horizontal plane, which has been denoted as the cell's "2D fingerprint," may provide a powerful label-free detection tool in clinical applications. We have recently studied the LSP in spatial scattering planes, denoted as the cell's "3D fingerprint," for mature and immature lymphocyte cells in human peripheral blood. The effects of membrane size, morphology, and the existence of the nucleus on the spatial LSP are discussed. In order to distinguish clinical label-free mature and immature lymphocytes, the special features of the spatial LSP are studied by statistical method in both the spatial and frequency domains. Spatial LSP provides rich information on the cell's morphology and contents, which can distinguish mature from immature lymphocyte cells and hence ultimately it may be a useful label-free technique for clinical leukemia diagnosis.
2011-09-08
CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station in Florida, members of NASA's Gravity Recovery and Interior Laboratory (GRAIL) launch team monitor GRAIL's launch countdown from the Mission Directors Center in Hangar AE. From left are Dana Grieco, launch operations manager, Analex, NASA's Launch Services Program (LSP); Bruce Reid, GRAIL mission manager, LSP; Al Sierra, manager of the Flight Project Office, LSP; Omar Baez, GRAIL assistant launch director, LSP; and Tim Dunn, GRAIL launch director, LSP. Launch is scheduled for 8:37:06 a.m. EDT Sept. 8 from Space Launch Complex 17B on Cape Canaveral Air Force Station. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett
Life science payloads planning study integration facility survey results
NASA Technical Reports Server (NTRS)
Wells, G. W.; Brown, N. E.; Nelson, W. G.
1976-01-01
The integration facility survey effort described is structured to examine the facility resources needed to conduct life science payload (LSP) integration checkout activities at NASA-JSC. The LSP integration facility operations and functions are defined along with the LSP requirements for facility design. A description of available JSC life science facilities is presented and a comparison of accommodations versus requirements is reported.
Evolution of Languages for Specific Purposes Programs in the United States: 1990-2011
ERIC Educational Resources Information Center
Long, Mary K.; Uscinski, Izabela
2012-01-01
This article reports the results of a national survey of LSP offerings in U.S. higher education conducted during 2011. The survey updates one carried out by Christine Uber-Grosse and Geoffrey M. Voght in 1990. The data provide: (a) a profile of institutions that offer LSP; (b) an overview of the number, type, level, and enrollment in LSP courses;…
NASA Astrophysics Data System (ADS)
Misra, Gourav; Buras, Allan; Asam, Sarah; Menzel, Annette
2017-04-01
Past work in remote sensing of land surface phenology have mapped vegetation cycles at multiple scales. Much has been discussed and debated about the uncertainties associated with the selection of data, data processing and the eventual conclusions drawn. Several studies do however provide evidence of strong links between different land surface phenology (LSP) metrics with specific ground phenology (GP) (Fisher and Mustard, 2007; Misra et al., 2016). Most importantly the use of high temporal and spatial resolution remote sensing data and ground truth information is critical for such studies. In this study, we use a higher temporal resolution 4 day MODIS NDVI product developed by EURAC (Asam et al., in prep) for the Bavarian Forest National Park during 2002-2015 period and extract various phenological metrics covering different phenophases of vegetation (start of season / sos and end of season / eos). We found the LSP-sos to be more strongly linked to the elevation of the area than LSP-eos which has been cited to be harder to detect (Stöckli et al., 2008). The LSP metrics were also correlated to GP information at 4 different stations covering elevations ranging from approx. 500 to 1500 metres. Results show that among the five dominant species in the area i.e. European ash, Norway spruce, European beech, Norway maple and orchard grass, only particular GP observations for some species show stronger correlations with LSP than others. Spatial variations in the LSP-GP correlations were also observed, with certain areas of the National Park showing positive correlations and others negative. An analysis of temporal trends of LSP also indicates the possibility to detect those areas in the National Park that were affected by extreme events. Further investigations are planned to explain the heterogeneity in the derived LSP metrics using high resolution ground truth data and multivariate statistical analyses. Acknowledgement: This research received funding from the Bavarian State Ministry of the Environment and Consumer Protection. References: 1. Fisher, J.I.; Mustard, J.F. Cross-scalar satellite phenology from ground, Landsat, and MODIS data. Remote Sens. Environ. 2007, 109, 261-273. 2. Misra, G.; Buras, A.; Menzel, A. Effects of Different Methods on the Comparison be-tween Land Surface and Ground Phenology—A Methodological Case Study from South-Western Germany. Remote Sens. 2016, 8, 753. 3. Asam, S.; Callegari, M.; Fiore, G.; Matiu, M.; De Gregorio, L.; Jacob, A.; Staab, J.; Men-zel, A.; Notarnicola, C. Analysis of spatiotemporal variations of climate, snow cover and plant phenology over the Alps. 2017 (in preparation). 4. Stöckli, R.; Rutishauser, T.; Dragoni, D.; O'Keefe, J.; Thornton, P. E.; Jolly, M.; Lu, L.; Denning, A. S. Remote sensing data assimilation for a prognostic phenology model. Journal of Geophysical Research: Biogeosciences. 2008, 113.
Burning Laminar Jet Diffusion Flame
NASA Technical Reports Server (NTRS)
2003-01-01
Study of the downlink data from the Laminar Soot Processes (LSP) experiment quickly resulted in discovery of a new mechanism of flame extinction caused by radiation of soot. Scientists found that the flames emit soot sooner than expected. These findings have direct impact on spacecraft fire safety, as well as the theories predicting the formation of soot -- which is a major factor as a pollutant and in the spread of unwanted fires. This sequence was taken July 15, 1997, MET:14/10:34 (approximate) and shows the ignition and extinction of this flame. LSP investigated fundamental questions regarding soot, a solid byproduct of the combustion of hydrocarbon fuels. The experiment was performed using a laminar jet diffusion flame, which is created by simply flowing fuel -- like ethylene or propane -- through a nozzle and igniting it, much like a butane cigarette lighter. The LSP principal investigator was Gerard Faeth, University of Michigan, Arn Arbor. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). LSP results led to a reflight for extended investigations on the STS-107 research mission in January 2003. Advanced combustion experiments will be a part of investigations planned for the International Space Station. (518KB, 20-second MPEG, screen 160 x 120 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300182.html.
2011-09-08
CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station in Florida, members of NASA's Gravity Recovery and Interior Laboratory (GRAIL) launch team monitor GRAIL's launch countdown from the Mission Directors Center in Hangar AE. From left are Dana Grieco, launch operations manager, Analex, NASA's Launch Services Program (LSP); Bruce Reid, GRAIL mission manager, LSP; Al Sierra, manager of the Flight Project Office, LSP; Omar Baez, GRAIL assistant launch director, LSP; and Tim Dunn, GRAIL launch director, LSP; David Lehman, spacecraft mission director and GRAIL project manager, NASA's Jet Propulsion Laboratory (JPL); and John Henk, GRAIL program manager, Lockheed Martin Space Systems. Launch is scheduled for 8:37:06 a.m. EDT Sept. 8 from Space Launch Complex 17B on Cape Canaveral Air Force Station. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett
Eisosomes Are Dynamic Plasma Membrane Domains Showing Pil1-Lsp1 Heteroligomer Binding Equilibrium
Olivera-Couto, Agustina; Salzman, Valentina; Mailhos, Milagros; Digman, Michelle A.; Gratton, Enrico; Aguilar, Pablo S.
2015-01-01
Eisosomes are plasma membrane domains concentrating lipids, transporters, and signaling molecules. In the budding yeast Saccharomyces cerevisiae, these domains are structured by scaffolds composed mainly by two cytoplasmic proteins Pil1 and Lsp1. Eisosomes are immobile domains, have relatively uniform size, and encompass thousands of units of the core proteins Pil1 and Lsp1. In this work we used fluorescence fluctuation analytical methods to determine the dynamics of eisosome core proteins at different subcellular locations. Using a combination of scanning techniques with autocorrelation analysis, we show that Pil1 and Lsp1 cytoplasmic pools freely diffuse whereas an eisosome-associated fraction of these proteins exhibits slow dynamics that fit with a binding-unbinding equilibrium. Number and brightness analysis shows that the eisosome-associated fraction is oligomeric, while cytoplasmic pools have lower aggregation states. Fluorescence lifetime imaging results indicate that Pil1 and Lsp1 directly interact in the cytoplasm and within the eisosomes. These results support a model where Pil1-Lsp1 heterodimers are the minimal eisosomes building blocks. Moreover, individual-eisosome fluorescence fluctuation analysis shows that eisosomes in the same cell are not equal domains: while roughly half of them are mostly static, the other half is actively exchanging core protein subunits. PMID:25863055
Zeilig, Gabi; Weingarden, Harold; Shemesh, Yeheskel; Herman, Amir; Heim, Michael; Zeweker, Manual; Dudkiewicz, Israel
2012-01-01
Remunerative employment is a major concern of individuals with chronic disabilities, among them, those with longstanding poliomyelitis (LSP). Although LSP is not rare there are almost no data related to work participation. The aims of the current study were to determine the effects of a number of social and functional variables as barriers or facilitators to work participation in persons with LSP. Charts of 123 LSP patients of working age that were seen in the post-polio outpatient clinic, between the years 2000 and 2005 were reviewed for the study. Data on age, gender, family status, level of function in activities of daily living, basic, and extended (B-ADL and E-ADL), and mobility were then analyzed for correlation to the vocational status. Seventy-two people (58.5%) were employed at the time of the survey. Gender and marital status were not found to significantly differ as regard to employment. Using assistive devices for mobility or being dependent for basic ADL were associated with lower levels of employment. Driving was positively associated with the employment status of the LSP individuals. Persons with LSP encounter important barriers to work participation, particularly on the International Classification of Functioning, Disability, and Health (ICF) components of activity and environment.
Rainfall Controls on Land Surface Phenology over "Never-green" and "Ever-green" Lands in Africa
NASA Astrophysics Data System (ADS)
Yan, D.; Zhang, X.; Yu, Y.; Guo, W.
2015-12-01
The characteristics of land surface phenology (LSP) in the "Never-green" Sahara desert and the "Ever-green" equatorial Congo Basin were rarely discussed due to the extremely low seasonal greenness variations across the Sahara desert and the prolonged cloud cover over the Congo Basin. Based on 30-minute observations acquired by the Spinning Enhanced Visible and Infrared Imager onboard the METEOSAT geostationary satellites, we generated a three-day angularly corrected Two-band Enhanced Vegetation Index (EVI2) time series for each year between 2006 and 2013. We further reconstructed EVI2 temporal trajectories and retrieved LSP transitions using the Hybrid Piecewise Logistic Model. We associated the LSP transitions with the rainy season transitions derived from the Tropical Rainfall Measurement Mission Product 3B42. Results show that LSP within both the Sahara Desert and the Congo Basin was strongly controlled by the rainfall seasonality. Specially, although there is no vegetation growth in most part of the Sahara Desert, recurring LSP was spatially detected in irrigation agriculture and the geomorphological regions of wadis, dayas, chotts/sebkhas and rocky hills. These geomorphological features are able to store moisture in soil to keep plants growing during the long dry seasons after vegetation greenup is triggered by rainfall events. The spatial shift of phenological timing is controlled by the Mediterranean rainfall regime in the north and the rainfalls brought by the Intertropical Convergence Zone (ITCZ) in the south. Across the equatorial Congo Basin, EVI2 time series reveals that canopy greenness cycles (CGC) of the seasonal leaf variation occur in tropical rainforests, which differs from the commonly termed "growing season" with complete leafless canopies. The seasonal EVI2 amplitude is very small and represents the gradual "leaf-exchange" processes. Two annual CGC are found and their spatial shifts closely follow the seasonal migration of ITCZ precipitation.
NASA Astrophysics Data System (ADS)
Zijuan, Zhou; Peixi, Su; Rui, Shi; Tingting, Xie
2017-04-01
Increasing temperature and carbon dioxide concentration are the important aspects of global climate change. Alpine ecosystem response to global change was more sensitive and rapid than other ecosystems. Increases in temperature and atmospheric CO2concentrations have strong impacts on plant physiology. Photosynthesis is the basis for plant growth and the decisive factor for the level of productivity, and also is a very sensitive physiological process to climate change. In this study, we examined the interactive effects of elevated temperature and atmospheric CO2 concentration on the light response of photosynthesis in two alpine plants Elymus nutans and Potentilla anserine, which were widely distributed in alpine meadow in the Zoige Plateau, China. We set up as follows: the control (Ta 20˚ C, CO2 380μmolṡmol-1), elevated temperature (Ta 25˚ C, CO2 380 μmolṡmol-1), elevated CO2 concentration (Ta 20˚ C, CO2 700μmolṡmol-1), elevated temperature and CO2 concentration (Ta 25˚ C, CO2 700μmolṡmol-1). The results showed that compared to P. anserine, E. nutans had a higher maximum net photosynthetic rate (Pnmax), light saturation point (LSP) and apparent quantum yield (AQY) in the control. Elevated temperature increased the Pnmaxand LSP values in P. anserine, while Pnmaxand LSP were decreased in E. nutans. Elevated CO2 increased the Pnmaxand LSP values in E. nutans and P. anserine, while the light compensation point (LCP) decreased; Elevated both temperature and CO2, the Pnmaxand LSP were all increased for E. nutans and P. anserine, but did not significantly affect AQY. We concluded that although elevated temperature had a photoinhibition for E. nutans, the interaction of short-term elevated CO2 concentration and temperature can improve the photosynthetic capacity of alpine plants. Key Words: elevated temperature; CO2 concentration; light response; alpine plants
Comparing land surface phenology derived from satellite and GPS network microwave remote sensing.
Jones, Matthew O; Kimball, John S; Small, Eric E; Larson, Kristine M
2014-08-01
The land surface phenology (LSP) start of season (SOS) metric signals the seasonal onset of vegetation activity, including canopy growth and associated increases in land-atmosphere water, energy and carbon (CO2) exchanges influencing weather and climate variability. The vegetation optical depth (VOD) parameter determined from satellite passive microwave remote sensing provides for global LSP monitoring that is sensitive to changes in vegetation canopy water content and biomass, and insensitive to atmosphere and solar illumination constraints. Direct field measures of canopy water content and biomass changes desired for LSP validation are generally lacking due to the prohibitive costs of maintaining regional monitoring networks. Alternatively, a normalized microwave reflectance index (NMRI) derived from GPS base station measurements is sensitive to daily vegetation water content changes and may provide for effective microwave LSP validation. We compared multiyear (2007-2011) NMRI and satellite VOD records at over 300 GPS sites in North America, and their derived SOS metrics for a subset of 24 homogenous land cover sites to investigate VOD and NMRI correspondence, and potential NMRI utility for LSP validation. Significant correlations (P<0.05) were found at 276 of 305 sites (90.5 %), with generally favorable correspondence in the resulting SOS metrics (r (2)=0.73, P<0.001, RMSE=36.8 days). This study is the first attempt to compare satellite microwave LSP metrics to a GPS network derived reflectance index and highlights both the utility and limitations of the NMRI data for LSP validation, including spatial scale discrepancies between local NMRI measurements and relatively coarse satellite VOD retrievals.
NASA Astrophysics Data System (ADS)
Zhang, X.; Jayavelu, S.; Wang, J.; Henebry, G. M.; Gray, J. M.; Friedl, M. A.; Liu, Y.; Schaaf, C.; Shuai, A.
2016-12-01
A large number of land surface phenology (LSP) products have been produced from various detection algorithms applied to coarse resolution satellite datasets across regional to global scales. However, validation of the resulting LSP products is very challenging because in-situ observations at comparable spatiotemporal scales are generally not available. This research focuses on efforts to evaluate and validate the global 500m LSP product produced from Visible Infrared Imaging Radiometer Suite (VIIRS) NBAR time series for 2013 and 2014. Specifically, we used three different datasets to evaluate six VIIRS LSP metrics of greenup onset, mid-point of greenup phase, maturity onset, senescence onset, mid-point of senescence phase, and dormancy onset. First, we obtained the field observations from the USA National Phenology Network that has gathered extensive phenological data on individual species. Although it is inappropriate to compare these data directly with the LSP footprints, this large and spatially distributed dataset allows us to evaluate the overall quality of VIIRS LSP results. Second, we gathered PhenoCam imagery from 164 sites, which was used to extract the daily green chromatic coordinate (GCC) and vegetation contrast index (VCI)values. Utilizing these PhenoCam time series, the phenological events were quantified using a hybrid piecewise logistic models for each site. Third, we detected the phenological timing at the landscape scale (30m) from surface reflectance simulated by fusing MODIS data and Landsat 8 OLI observations in an agricultural area (in the central USA) and from overlap zones of OLI scenes in semiarid areas (California and Tibetan Plateau). The phenological timing from these three datasets was used to compare with VIIRS LSP data. Preliminary results show that the VIIRS LSP are generally comparable with phenological data from the USA-NPN, PhenoCam, and Landsat data, with differences arising in specific phenological events and land cover types.
The lightest supersymmetric particle and the extragalactic gamma-ray background
NASA Technical Reports Server (NTRS)
Gao, Yi-Tian; Stecker, Floyd W.; Cline, David B.
1991-01-01
The possibility that cosmological photino annihilation is caused by the extragalactic gamma-ray background (EGB) is examined with particular attention given to the lightest supersymmetric particle (LSP). The LSP is considered a general type of the best-motivated candidates for cosmic dark matter (CDM). The theoretical analysis employs a corrected assumption for the annihilation cross section, and cosmological integrations are performed through the early phases of the universe. Romberg's method is used for numerical integration, and the total optical depth is developed for the gamma-ray region. The computed LSP-type annihilation fluxes are found to be negligible when compared to the total EGB observed, suggesting that the LSP candidates for CDM are not significant contributors to the EGB.
Faruki, Hawazin; Mayhew, Gregory M; Fan, Cheng; Wilkerson, Matthew D; Parker, Scott; Kam-Morgan, Lauren; Eisenberg, Marcia; Horten, Bruce; Hayes, D Neil; Perou, Charles M; Lai-Goldman, Myla
2016-06-01
Context .- A histologic classification of lung cancer subtypes is essential in guiding therapeutic management. Objective .- To complement morphology-based classification of lung tumors, a previously developed lung subtyping panel (LSP) of 57 genes was tested using multiple public fresh-frozen gene-expression data sets and a prospectively collected set of formalin-fixed, paraffin-embedded lung tumor samples. Design .- The LSP gene-expression signature was evaluated in multiple lung cancer gene-expression data sets totaling 2177 patients collected from 4 platforms: Illumina RNAseq (San Diego, California), Agilent (Santa Clara, California) and Affymetrix (Santa Clara) microarrays, and quantitative reverse transcription-polymerase chain reaction. Gene centroids were calculated for each of 3 genomic-defined subtypes: adenocarcinoma, squamous cell carcinoma, and neuroendocrine, the latter of which encompassed both small cell carcinoma and carcinoid. Classification by LSP into 3 subtypes was evaluated in both fresh-frozen and formalin-fixed, paraffin-embedded tumor samples, and agreement with the original morphology-based diagnosis was determined. Results .- The LSP-based classifications demonstrated overall agreement with the original clinical diagnosis ranging from 78% (251 of 322) to 91% (492 of 538 and 869 of 951) in the fresh-frozen public data sets and 84% (65 of 77) in the formalin-fixed, paraffin-embedded data set. The LSP performance was independent of tissue-preservation method and gene-expression platform. Secondary, blinded pathology review of formalin-fixed, paraffin-embedded samples demonstrated concordance of 82% (63 of 77) with the original morphology diagnosis. Conclusions .- The LSP gene-expression signature is a reproducible and objective method for classifying lung tumors and demonstrates good concordance with morphology-based classification across multiple data sets. The LSP panel can supplement morphologic assessment of lung cancers, particularly when classification by standard methods is challenging.
Gravitino LSP and leptogenesis after the first LHC results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heisig, Jan, E-mail: heisig@physik.rwth-aachen.de
2014-04-01
Supersymmetric scenarios where the lightest superparticle (LSP) is the gravitino are an attractive alternative to the widely studied case of a neutralino LSP. A strong motivation for a gravitino LSP arises from the possibility of achieving higher reheating temperatures and thus potentially allow for thermal leptogenesis. The predictions for the primordial abundances of light elements in the presence of a late decaying next-to-LSP (NSLP) as well as the currently measured dark matter abundance allow us to probe the cosmological viability of such a scenario. Here we consider a gravitino-stau scenario. Utilizing a pMSSM scan we work out the implications ofmore » the 7 and 8 TeV LHC results as well as other experimental and theoretical constraints on the highest reheating temperatures that are cosmologically allowed. Our analysis shows that points with T{sub R}∼>10{sup 9} GeV survive only in a very particular corner of the SUSY parameter space. Those spectra feature a distinct signature at colliders that could be looked at in the upcoming LHC run.« less
NASA Astrophysics Data System (ADS)
Chen, Shih-Yang; He, Yulu; Hsieh, Cheng-Che; Hua, Wei-Hsiang; Low, Meng Chun; Tsai, Meng-Tsan; Kiang, Yean-Woei; Yang, Chih-Chung
2017-02-01
The use of a high-resolution optical coherence tomography (OCT) system with the operation wavelength around 800 nm to scan SCC4 cancer cells under different laser illumination conditions is demonstrated. The cancer cells are incubated with Au nanorings (NRIs), which are linked with photosensitizer, AlPcS, for them to be up-taken by the cells. Two Au NRI samples of different geometries for inducing localized surface plasmon (LSP) resonance around 1310 and 1064 nm are used. Four different lasers are utilized for illuminating the cells under OCT scanning, including 1310-nm continuous (cw) laser, 1064-nm cw laser, 1064-nm femtosecond (fs) laser, and 660-nm cw laser. The 1310- and 1064-nm cw lasers mainly produce the photothermal effect through the LSP resonance of Au NRIs for damaging the observed cells. Besides the photothermal effect, the 1064-nm fs laser can produce strong two-photon absorption through the assistance of the LSP resonance of Au NRI for exciting AlPcS to effectively generate singlet oxygen and damage the observed cells. The 660-nm laser can excite AlPcS through single-photon absorption for generating singlet oxygen and damaging the observed cells. With the photothermal effect, the observed cells can be killed through the process of necrosis. Through the generation of singlet oxygen, the cell membrane can be preserved and the interior substances are solidified to become a hard body of strong scattering. In this situation, the cells are killed through the apoptosis process. Illuminated by the 660-nm cw laser, a process of interior substance escape is observed through high-speed OCT scanning.
Localized-surface-plasmon enhanced emission from porous silicon by gold nanoparticles.
Wang, Hui; An, Zhenghua; Ren, Qijun; Wang, Hengliang; Mao, Feilong; Chen, Zhanghai; Shen, Xuechu
2011-12-01
The porous silicon (PS) samples, decorated by Au nanoparticles (NPs) possessing localized-surface-plasmon (LSP) resonance, are prepared by the conventional anodization method. Photoluminescence (PL) is studied systematically, in particular, its dependence on the excitation power. It is found that undecorated PS samples exhibit a saturation behavior in PL intensity with increasing the pumping laser power, while the luminescence of Au-decorated PS hybrid samples have a purely linear dependence on the excitation power. In the linear response region of PS samples, addition of metal NPs layer moderately suppresses the emission while, in the saturation region, the net emission is enhanced by approximately up to 4-fold. Several possible mechanisms are discussed. We believe that the observed PL enhancement in saturation region is dominantly due to the resonant coupling between the LSP of Au NPs and the electronic excitation of PS, which inhibits the nonradiative Auger recombination process at high excitation power. These results indicate that the plasmon effect could be useful for designing even more efficient optoelectronic devices such as super bright light emitting devices and solar cells with high efficiencies. Despite many challenges, Au NPs can potentially be applied to introduce LSP resonance for the future silicon-based optoelectronics or photonics.
Building a Unified Information Network.
ERIC Educational Resources Information Center
Avram, Henriette D.
1988-01-01
Discusses cooperative efforts between research organizations and libraries to create a national information network. Topics discussed include the Linked System Project (LSP); technical processing versus reference and research functions; Open Systems Interconnection (OSI) Reference Model; the National Science Foundation Network (NSFNET); and…
Pegasus XL CYGNSS Second Launch Attempt
2016-12-15
In the Mission Director's Center at Cape Canaveral Air Force Station, Amanda Mitskevich, facing the camera, is program manager for NASA's Launch Services Program (LSP) at the agency's Kennedy Space Center in Florida. Seated next to her is Chuck Dovale, deputy LSP program manager. They are monitoring the progress of preparations to launch eight Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. The CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.
Effective bandwidth guaranteed routing schemes for MPLS traffic engineering
NASA Astrophysics Data System (ADS)
Wang, Bin; Jain, Nidhi
2001-07-01
In this work, we present online algorithms for dynamic routing bandwidth guaranteed label switched paths (LSPs) where LSP set-up requests (in terms of a pair of ingress and egress routers as well as its bandwidth requirement) arrive one by one and there is no a priori knowledge regarding future LSP set-up requests. In addition, we consider rerouting of LSPs in this work. Rerouting of LSPs has not been well studied in previous work on LSP routing. The need of LSP rerouting arises in a number of ways: occurrence of faults (link and/or node failures), re-optimization of existing LSPs' routes to accommodate traffic fluctuation, requests with higher priorities, and so on. We formulate the bandwidth guaranteed LSP routing with rerouting capability as a multi-commodity flow problem. The solution to this problem is used as the benchmark for comparing other computationally less costly algorithms studied in this paper. Furthermore, to more efficiently utilize the network resources, we propose online routing algorithms which route bandwidth demands over multiple paths at the ingress router to satisfy the customer requests while providing better service survivability. Traffic splitting and distribution over the multiple paths are carefully handled using table-based hashing schemes while the order of packets within a flow is preserved. Preliminary simulations are conducted to show the performance of different design choices and the effectiveness of the rerouting and multi-path routing algorithms in terms of LSP set-up request rejection probability and bandwidth blocking probability.
Han, Guifeng; Xu, Jianhua
2013-07-01
Using SPOT/VGT NDVI time series images (2002-2009) and MODIS/LST images (2002-2009) smoothed by a Savitzky-Golay filter, the land surface phenology (LSP) and land surface temperature (LST), respectively, are extracted for six cities in the Yangtze River Delta, China, including Shanghai, Hangzhou, Nanjing, Changzhou, Wuxi, and Suzhou. The trends of the averaged LSP and LST are analyzed, and the relationship between these values is revealed along the urban-rural gradient. The results show that urbanization advances the start of the growing season, postpones the end of the growing season, prolongs the growing season length (GSL), and reduces the difference between maximal NDVI and minimal NDVI in a year (NDVIamp). More obvious changes occur in surface vegetation phenology as the urbanized area is approached. The LST drops monotonously and logarithmically along the urban-rural gradient. Urbanization generally affects the LSP of the surrounding vegetation within 6 km to the urban edge. Except for GSL, the difference in the LSP between urban and rural areas has a significant logarithmic relationship with the distance to the urban edge. In addition, there is a very strong linear relationship between the LSP and the LST along the urban-rural gradient, especially within 6 km to the urban edge. The correlations between LSP and gross domestic product and population density reveal that human activities have considerable influence on the land surface vegetation growth.
Fatehi, Zahra; Baradaran, Hamid Reza; Asadpour, Mohamad; Rezaeian, Mohsen
2017-01-01
Background: Individuals' listening styles differs based on their characters, professions and situations. This study aimed to assess the validity and reliability of Listening Styles Profile- Revised (LSP- R) in Iranian students. Methods: After translating into Persian, LSP-R was employed in a sample of 240 medical and nursing Persian speaking students in Iran. Statistical analysis was performed to test the reliability and validity of the LSP-R. Results: The study revealed high internal consistency and good test-retest reliability for the Persian version of the questionnaire. The Cronbach's alpha coefficient was 0.72 and intra-class correlation coefficient 0.87. The means for the content validity index and the content validity ratio (CVR) were 0.90 and 0.83, respectively. Exploratory factor analysis (EFA) yielded a four-factor solution accounted for 60.8% of the observed variance. Majority of medical students (73%) as well as majority of nursing students (70%) stated that their listening styles were task-oriented. Conclusion: In general, the study finding suggests that the Persian version of LSP-R is a valid and reliable instrument for assessing listening styles profile in the studied sample.
Beam-dynamics codes used at DARHT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, Jr., Carl August
Several beam simulation codes are used to help gain a better understanding of beam dynamics in the DARHT LIAs. The most notable of these fall into the following categories: for beam production – Tricomp Trak orbit tracking code, LSP Particle in cell (PIC) code, for beam transport and acceleration – XTR static envelope and centroid code, LAMDA time-resolved envelope and centroid code, LSP-Slice PIC code, for coasting-beam transport to target – LAMDA time-resolved envelope code, LSP-Slice PIC code. These codes are also being used to inform the design of Scorpius.
REMOTE SENSING TECHNOLOGIES APPLICATIONS RESEARCH
Remote sensing technologies applications research supports the ORD Landscape Sciences Program (LSP) in two separate areas: operational remote sensing, and remote sensing research and development. Operational remote sensing is provided to the LSP through the use of current and t...
NASA Technical Reports Server (NTRS)
Day, Arthur C.; Griess, Kenneth H.
2013-01-01
This document provides standalone information for the Lightning Strike Protection (LSP) Composite Substrate Test Bed Design. A six-sheet drawing set is reproduced for reference, as is some additional descriptive information on suitable sensors and use of the test bed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Chun-Han; Su, Chia-Ying; Chen, Chung-Hui
Further reduction of the efficiency droop effect and further enhancements of internal quantum efficiency (IQE) and output intensity of a surface plasmon coupled, blue-emitting light-emitting diode (LED) by inserting a dielectric interlayer (DI) of a lower refractive index between p-GaN and surface Ag nanoparticles are demonstrated. The insertion of a DI leads to a blue shift of the localized surface plasmon (LSP) resonance spectrum and increases the LSP coupling strength at the quantum well emitting wavelength in the blue range. With SiO{sub 2} as the DI, a thinner DI leads to a stronger LSP coupling effect, when compared with themore » case of a thicker DI. By using GaZnO, which is a dielectric in the optical range and a good conductor under direct-current operation, as the DI, the LSP coupling results in the highest IQE, highest LED output intensity, and weakest droop effect.« less
Feng, Yulong; Chen, Zhizhong; Jiang, Shuang; Li, Chengcheng; Chen, Yifan; Zhan, Jinglin; Chen, Yiyong; Nie, Jingxin; Jiao, Fei; Kang, Xiangning; Li, Shunfeng; Yu, Tongjun; Zhang, Guoyi; Shen, Bo
2018-04-16
We analyzed the coupling behavior between the localized surface plasmon (LSP) and quantum wells (QWs) using cathodoluminescence (CL) in a green light-emitting diodes (LED) with Ag nanoparticles (NPs) filled in photonic crystal (PhC) holes. Photoluminescence (PL) suppression and CL enhancement were obtained for the same green LED sample with the Ag NP array. Time-resolved PL (TRPL) results indicate strong coupling between the LSP and the QWs. Three-dimensional (3D) finite difference time domain (FDTD) simulation was performed using a three-body model consisting of two orthogonal dipoles and a single Ag NP. The LSP–QWs coupling effect was separated from the electron-beam (e-beam)–LSP–QW system by linear approximation. The energy dissipation was significantly reduced by the z-dipole introduction under the e-beam excitation. In this paper, the coupling mechanism is discussed and a novel emission structure is proposed.
Mineralocorticoid receptor antagonism treats obesity-associated cardiac diastolic dysfunction.
Bender, Shawn B; DeMarco, Vincent G; Padilla, Jaume; Jenkins, Nathan T; Habibi, Javad; Garro, Mona; Pulakat, Lakshmi; Aroor, Annayya R; Jaffe, Iris Z; Sowers, James R
2015-05-01
Patients with obesity and diabetes mellitus exhibit a high prevalence of cardiac diastolic dysfunction (DD), an independent predictor of cardiovascular events for which no evidence-based treatment exists. In light of renin-angiotensin-aldosterone system activation in obesity and the cardioprotective action of mineralocorticoid receptor (MR) antagonists in systolic heart failure, we examined the hypothesis that MR blockade with a blood pressure-independent low-dose spironolactone (LSp) would treat obesity-associated DD in the Zucker obese (ZO) rat. Treatment of ZO rats exhibiting established DD with LSp normalized cardiac diastolic function, assessed by echocardiography. This was associated with reduced cardiac fibrosis, but not reduced hypertrophy, and restoration of endothelium-dependent vasodilation of isolated coronary arterioles via a nitric oxide-independent mechanism. Further mechanistic studies revealed that LSp reduced cardiac oxidative stress and improved endothelial insulin signaling, with no change in arteriolar stiffness. Infusion of Sprague-Dawley rats with the MR agonist aldosterone reproduced the DD noted in ZO rats. In addition, improved cardiac function in ZO-LSp rats was associated with attenuated systemic and adipose inflammation and an anti-inflammatory shift in cardiac immune cell mRNAs. Specifically, LSp increased cardiac markers of alternatively activated macrophages and regulatory T cells. ZO-LSp rats had unchanged blood pressure, serum potassium, systemic insulin sensitivity, or obesity-associated kidney injury, assessed by proteinuria. Taken together, these data demonstrate that MR antagonism effectively treats established obesity-related DD via blood pressure-independent mechanisms. These findings help identify a particular population with DD that might benefit from MR antagonist therapy, specifically patients with obesity and insulin resistance. © 2015 American Heart Association, Inc.
NASA Astrophysics Data System (ADS)
Zhang, X.; Liu, L.; Yan, D.; Moon, M.; Liu, Y.; Henebry, G. M.; Friedl, M. A.; Schaaf, C.
2017-12-01
Land surface phenology (LSP) datasets have been produced from a variety of coarse spatial resolution satellite observations at both regional and global scales and spanning different time periods since 1982. However, the LSP product generated from NASA's MODerate Resolution Imaging Spectroradiometer (MODIS) data at a spatial resolution of 500m, which is termed Land Cover Dynamics (MCD12Q2), is the only global product operationally produced and freely accessible at annual time steps from 2001. Because MODIS instrument is aging and will be replaced by the Visible Infrared Imaging Radiometer Suite (VIIRS), this research focuses on the generation and evaluation of a global LSP product from Suomi-NPP VIIRS time series observations that provide continuity with the MCD12Q2 product. Specifically, we generate 500m VIIRS global LSP data using daily VIIRS Nadir BRDF (bidirectional reflectance distribution function)-Adjusted reflectances (NBAR) in combination with land surface temperature, snow cover, and land cover type as inputs. The product provides twelve phenological metrics (seven phenological dates and five phenological greenness magnitudes), along with six quality metrics characterizing the confidence and quality associated with phenology retrievals at each pixel. In this paper, we describe the input data and algorithms used to produce this new product, and investigate the impact of VIIRS data time series quality on phenology detections across various climate regimes and ecosystems. As part of our analysis, the VIIRS LSP is evaluated using PhenoCam imagery in North America and Asia, and using higher spatial resolution satellite observations from Landsat 8 over an agricultural area in the central USA. We also explore the impact of high frequency cloud cover on the VIIRS LSP product by comparing with phenology detected from the Advanced Himawari Imager (AHI) onboard Himawari-8. AHI is a new geostationary sensor that observes land surface every 10 minutes, which increases the ability to capture cloud-free observations relative to data collected from polar-orbiting satellites such as Suomi-NPP, thereby improving the quality of daily time series data in regions with heavy cloud cover. Finally, the VIIRS LSP is compared with MCD12Q2 data to investigate the continuity of long-term global LSP data records.
Membrane-Sculpting BAR Domains Generate Stable Lipid Microdomains
Zhao, Hongxia; Michelot, Alphée; Koskela, Essi V.; Tkach, Vadym; Stamou, Dimitrios; Drubin, David G.; Lappalainen, Pekka
2014-01-01
SUMMARY Bin-Amphiphysin-Rvs (BAR) domain proteins are central regulators of many cellular processes involving membrane dynamics. BAR domains sculpt phosphoinositide-rich membranes to generate membrane protrusions or invaginations. Here, we report that, in addition to regulating membrane geometry, BAR domains can generate extremely stable lipid microdomains by “freezing” phosphoinositide dynamics. This is a general feature of BAR domains, because the yeast endocytic BAR and Fes/CIP4 homology BAR (F-BAR) domains, the inverse BAR domain of Pinkbar, and the eisosomal BAR protein Lsp1 induced phosphoinositide clustering and halted lipid diffusion, despite differences in mechanisms of membrane interactions. Lsp1 displays comparable low diffusion rates in vitro and in vivo, suggesting that BAR domain proteins also generate stable phosphoinositide microdomains in cells. These results uncover a conserved role for BAR superfamily proteins in regulating lipid dynamics within membranes. Stable microdomains induced by BAR domain scaffolds and specific lipids can generate phase boundaries and diffusion barriers, which may have profound impacts on diverse cellular processes. PMID:24055060
Pombinho, Rita; Camejo, Ana; Vieira, Ana; Reis, Olga; Carvalho, Filipe; Almeida, Maria Teresa; Pinheiro, Jorge Campos; Sousa, Sandra; Cabanes, Didier
2017-05-01
Listeria monocytogenes is a major intracellular human foodborne bacterial pathogen. We previously revealed L. monocytogenes cadC as highly expressed during mouse infection. Here we show that L. monocytogenes CadC is a sequence-specific, DNA-binding and cadmium-dependent regulator of CadA, an efflux pump conferring cadmium resistance. CadC but not CadA is required for L. monocytogenes infection in vivo. Interestingly, CadC also directly represses lspB, a gene encoding a lipoprotein signal peptidase whose expression appears detrimental for infection. lspB overexpression promotes the release of the LpeA lipoprotein to the extracellular medium, inducing tumor necrosis factor α and interleukin 6 expression, thus impairing L. monocytogenes survival in macrophages. We propose that L. monocytogenes uses CadC to repress lspB expression during infection to avoid LpeA exposure to the host immune system, diminishing inflammatory cytokine expression and promoting intramacrophagic survival and virulence. CadC appears as the first metal efflux pump regulator repurposed during infection to fine-tune lipoprotein processing and host responses. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Dunn, Michael R.
2014-01-01
Over the course of my internship in the Flight Projects Office of NASA's Launch Services Program (LSP), I worked on two major projects, both of which dealt with updating current systems to make them more accurate and to allow them to operate more efficiently. The first project dealt with the Mission Integration Reporting System (MIRS), a web-accessible database application used to manage and provide mission status reporting for the LSP portfolio of awarded missions. MIRS had not gone through any major updates since its implementation in 2005, and it was my job to formulate a recommendation for the improvement of the system. The second project I worked on dealt with the Mission Plan, a document that contains an overview of the general life cycle that is followed by every LSP mission. My job on this project was to update the information currently in the mission plan and to add certain features in order to increase the accuracy and thoroughness of the document. The outcomes of these projects have implications in the orderly and efficient operation of the Flight Projects Office, and the process of Mission Management in the Launch Services Program as a whole.
Exploration of scaling effects on coarse resolution land surface phenology
USDA-ARS?s Scientific Manuscript database
A great number of land surface phenoloy (LSP) data have been produced from various coarse resolution satellite datasets and detection algorithms across regional and global scales. Unlike field- measured phenological events which are quantitatively defined with clear biophysical meaning, current LSP ...
Haemophilus ducreyi Partially Activates Human Myeloid Dendritic Cells▿
Banks, Keith E.; Humphreys, Tricia L.; Li, Wei; Katz, Barry P.; Wilkes, David S.; Spinola, Stanley M.
2007-01-01
Dendritic cells (DC) orchestrate innate and adaptive immune responses to bacteria. How Haemophilus ducreyi, which causes genital ulcers and regional lymphadenitis, interacts with DC is unknown. H. ducreyi evades uptake by polymorphonuclear leukocyte and macrophage-like cell lines by secreting LspA1 and LspA2. Many H. ducreyi strains express cytolethal distending toxin (CDT), and recombinant CDT causes apoptosis of DC in vitro. Here, we examined interactions between DC and H. ducreyi 35000HP, which produces LspA1, LspA2, and CDT. In human volunteers infected with 35000HP, the ratio of myeloid DC to plasmacytoid DC was 2.8:1 in lesions, compared to a ratio of 1:1 in peripheral blood. Using myeloid DC derived from monocytes as surrogates for lesional DC, we found that DC infected with 35000HP remained as viable as uninfected DC for up to 48 h. Gentamicin protection and confocal microscopy assays demonstrated that DC ingested and killed 35000HP, but killing was incomplete at 48 h. The expression of LspA1 and LspA2 did not inhibit the uptake of H. ducreyi, despite inactivating Src kinases. Infection of DC with live 35000HP caused less cell surface marker activation than infection with heat-killed 35000HP and lipopolysaccharide (LPS) and inhibited maturation by LPS. However, infection of DC with live bacteria caused the secretion of significantly higher levels of interleukin-6 and tumor necrosis factor alpha than infection with heat-killed bacteria and LPS. The survival of H. ducreyi in DC may provide a mechanism by which the organism traffics to lymph nodes. Partial activation of DC may abrogate the establishment of a full Th1 response and an environment that promotes phagocytosis. PMID:17923525
Gannu, Ramesh; Yamsani, Vamshi Vishnu; Palem, Chinna Reddy; Yamsani, Shravan Kumar; Yamsani, Madhusudan Rao
2010-01-01
The objective of the investigation was to optimize the iontophoresis process parameters of lisinopril (LSP) by 3 x 3 factorial design, Box-Behnken statistical design. LSP is an ideal candidate for iontophoretic delivery to avoid the incomplete absorption problem associated after its oral administration. Independent variables selected were current (X(1)), salt (sodium chloride) concentration (X(2)) and medium/pH (X(3)). The dependent variables studied were amount of LSP permeated in 4 h (Y(1): Q(4)), 24 h (Y(2): Q(24)) and lag time (Y(3)). Mathematical equations and response surface plots were used to relate the dependent and independent variables. The regression equation generated for the iontophoretic permeation was Y(1) = 1.98 + 1.23X(1) - 0.49X(2) + 0.025X(3) - 0.49X(1)X(2) + 0.040X(1)X(3) - 0.010X(2)X(3) + 0.58X(1)(2) - 0.17X(2)(2) - 0.18X(3)(2); Y(2) = 7.28 + 3.32X(1) - 1.52X(2) + 0.22X(3) - 1.30X(1)X(2) + 0.49X(1)X(3) - 0.090X(2)X(3) + 0.79X(1)(2) - 0.62X(2)(2) - 0.33X(3)(2) and Y(3) = 0.60 + 0.0038X(1) + 0.12X(2) - 0.011X(3) + 0.005X(1)X(2) - 0.018X(1)X(3) - 0.015X(2)X(3) - 0.00075X(1)(2) + 0.017X(2)(2) - 0.11X(3)(2). The statistical validity of the polynomials was established and optimized process parameters were selected by feasibility and grid search. Validation of the optimization study with 8 confirmatory runs indicated high degree of prognostic ability of response surface methodology. The use of Box-Behnken design approach helped in identifying the critical process parameters in the iontophoretic delivery of lisinopril.
NASA Astrophysics Data System (ADS)
Li, Chuang; Zhu, Bin; Li, Tianjun
2018-02-01
We study the naturalness, dark matter, and muon anomalous magnetic moment in the Supersymmetric Standard Models (SSMs) with a pseudo-Dirac gluino (PDGSSMs) from hybrid F- and D-term supersymmetry (SUSY) breakings. To obtain the observed dark matter relic density and explain the muon anomalous magnetic moment, we find that the low energy fine-tuning measures are larger than about 30 due to strong constraints from the LUX and PANDAX experiments. Thus, to study the natural PDGSSMs, we consider multi-component dark matter and then the relic density of the lightest supersymmetric particle (LSP) neutralino is smaller than the correct value. We classify our models into six kinds: (i) Case A is a general case, which has small low energy fine-tuning measure and can explain the anomalous magnetic moment of the muon; (ii) Case B with the LSP neutralino and light stau coannihilation; (iii) Case C with Higgs funnel; (iv) Case D with Higgsino LSP; (v) Case E with light stau coannihilation and Higgsino LSP; (vi) Case F with Higgs funnel and Higgsino LSP. We study these Cases in details, and show that our models can be natural and consistent with the LUX and PANDAX experiments, as well as explain the muon anomalous magnetic moment. In particular, all these cases except the stau coannihilation can even have low energy fine-tuning measures around 10.
Eggert, J V; Worth, E R; Van Gils, C C
2016-01-01
We obtained costs and mortality data in two retrospective cohorts totaling 159 patients who have diabetes mellitus and onset of a diabetic foot ulcer (DFU). Data were collected from 2005 to 2013, with a follow-up period through September 30, 2014. A total of 106 patients entered an evidence-based limb salvage protocol (LSP) for Wagner Grade 3 or 4 (WG3/4) DFU and intention-to-treat adjunctive hyperbaric oxygen (HBO₂) therapy. A second cohort of 53 patients had a primary lower extremity amputation (LEA), either below the knee (BKA) or above the knee (AKA) and were not part of the LSP. Ninety-six of 106 patients completed the LSP/HBO₂with an average cost of USD $33,100. Eighty-eight of 96 patients (91.7%) who completed the LSP/HBO₂had intact lower extremities at one year. Thirty-four of the 96 patients (35.4%) died during the follow-up period. Costs for a historical cohort of 53 patients having a primary major LEA range from USD $66,300 to USD $73,000. Twenty-five of the 53 patients (47.2%) died. The difference in cost of care and mortality between an LSP with adjunctive HBO₂therapy vs. primary LEA is staggering. We conclude that an aggressive limb salvage program that includes HBO₂ therapy is cost-effective.
Gong, Yajun; Zhang, Jie; Gao, Fei; Zhou, Jiewen; Xiang, Zhinan; Zhou, Chenggao; Wan, Luosheng; Chen, Jiachun
2017-10-01
Structures and in vitro hypoglycemic activities of polysaccharides from different species of Maidong were studied. The primary structures of polysaccharides were elucidated on the basis of GC, GC-MS, infrared, NMR and periodate oxidation-Smith degradation. Liriope spicata polysaccharide (LSP), Ophiopogon japonicus polysaccharide (OJP) and Liriope muscari polysaccharide (LMP) were composed of β-fructose and α-glucose. The average molecular weights of LSP, OJP and LMP were 4742, 4925 and 4138Da with polydispersity indexes of 1.1, 1.2 and 1.1, respectively. The backbones of polysaccharides were formed by Fruf-(2→, →2)-Fruf-(6→, →6)-Glcp-(1→ and →1, 2)-Fruf-(6→ with a molar ratio of 5.0:18.2:1.0:5.3 (LSP), 6.8:15.8:1.0:5.8 (OJP), 8.3:12.3:1.0:3.9 (LMP), respectively. The RT-PCR and western blot analysis indicated that LSP, LMP and OJP increased the expression of PI3K, AKT, InsR, PPARγ and decreased the expression of PTP1B in mRNA level and protein level in IR HepG2 cells. Furthermore, glucose consumption was increased after treated with polysaccharides. These results revealed that LSP, OJP and LMP had potential anti-diabetic effects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Implementing Information Assurance - Beyond Process
2009-01-01
disabled or properly configured. Tools and scripts are available to expedite the configuration process on some platforms, For example, approved Windows...in the System Security Plan (SSP) or Information Security Plan (lSP). Any PPSs not required for operation by the system must be disabled , This...Services must be disabled , Implementing an 1M capability within the boundary carries many policy and documentation requirements. Usemame and passwords
LSP Composite Susbtrate Manufacturing Processing Guide
NASA Technical Reports Server (NTRS)
Kovach, Daniel J.; Griess, Kenneth H.
2013-01-01
This document is intended to define Carbon Fiber Reinforced Plastic (CFRP) test panel configurations that can be employed for the purposes of evaluating the protection capabilities of Lightning Strike Protection (LSP) materials developed by the Aerospace Industry. The configurations are intended to provide consistent behavior in their response to simulated lightning strikes at pre-defined levels when tested by a capable vendor according to a test procedure written to enable consistent results (ref section 2.1.2). In response to an attachment of a simulated lightning strike on a CFRP panel, one can expect to see various levels of ablation and delamination, both through the thickness of the panel and with respect to the amount of panel surface area that exhibits damage. Panel configurations defined in this document include: An "unprotected" configuration 128694-1 (ref section 4.1), consisting of a cured CFRP laminate stackup of tape and fabric prepregs, coated with a typical aerospace primer and paint finishing scheme, attached to aluminum grounding bars intended to draw electrical current from the lightning attachment point to the panel edges and thus to ground. A "protected" configuration 128694-2 (ref section 4.1), wherein a layer of an LSP material form often used in the Aerospace Industry is included in the laminate stackup prior to cure. The CFRP materials, finishes and grounding arrangement for ths configuration are the same as for the "unprotected" configuration.
A novel speech watermarking algorithm by line spectrum pair modification
NASA Astrophysics Data System (ADS)
Zhang, Qian; Yang, Senbin; Chen, Guang; Zhou, Jun
2011-10-01
To explore digital watermarking specifically suitable for the speech domain, this paper experimentally investigates the properties of line spectrum pair (LSP) parameters firstly. The results show that the differences between contiguous LSPs are robust against common signal processing operations and small modifications of LSPs are imperceptible to the human auditory system (HAS). According to these conclusions, three contiguous LSPs of a speech frame are selected to embed a watermark bit. The middle LSP is slightly altered to modify the differences of these LSPs when embedding watermark. Correspondingly, the watermark is extracted by comparing these differences. The proposed algorithm's transparency is adjustable to meet the needs of different applications. The algorithm has good robustness against additive noise, quantization, amplitude scale and MP3 compression attacks, for the bit error rate (BER) is less than 5%. In addition, the algorithm allows a relatively low capacity, which approximates to 50 bps.
NASA Astrophysics Data System (ADS)
Agustin, I. W.; Sumantri, Y.
2017-03-01
Malang as the National Activity Centre (PKN) led to increased economic growth and increased the demand for goods both primary and tertiary goods. Demand of goods which is increasing and also diversing will certainly have an impact on the process of transportation of goods involving a freight forwarder. Shipping of goods is part of the supply chain, which handles the flow of goods, distribution and delivery service or commonly called the courier. Fulfilling the request of goods would require Logistics Service Provider (LSP) that distribute goods from point of origin to destination. Delays in the distribution of goods will slow(DOWN) economic growth in Malang, therefore focused studies on the movement of goods which includes the election of the delivery route is needed. The purpose of this study is to get the delivery route for LSP by identifying its patterns of freight transport movement and to analyze the network performance of the road that is passed by freight transportation. Data collection techniques in this research are interviews, questionnaires and observations of moving-car and traffic counting to get the volume of traffic. The study used road’s performance analysis to get the level of service (LOS) of roads which are used by the freight transportation of LSP and Dijkstra’s algorithm analysis to determine the delivery routes. The results showed that the Level of Service of the roads (LOS) is at the level of D to F which indicates that the chosen roads experience instability of traffic flow even reach a critical condition. Therefore by considering delivery routes selection both of existing condition and analysis result as well as the condition of the road network in Malang, then given alternative is by deliverying goods on the chosen routes but not at peak hour.
Possibilities for Research into LSP: An Exercise at Unitech.
ERIC Educational Resources Information Center
Moody, James
A discussion of the teaching of languages for special purposes (LSP) argues for giving greater attention to the learner's actual language needs. It suggests that conventional English for special purposes (ESP) is inadequate for the unique linguistic context of Papua New Guinea, and that further research be undertaken into implications of such an…
ERIC Educational Resources Information Center
Lim, Victoria
2008-01-01
This article describes how the benefactors of University of South Florida (USF) Latino Scholarship Program (LSP) support students in more ways than one. LSP, now in its 17th year, was started by the Latin Community Advisory Committee to the USF president to attract Hispanic students to the school. The committee didn't want to just provide…
Cultivating Early Trajectories of Participation: A Blended Learning Environment for Business German
ERIC Educational Resources Information Center
Neville, David O.
2016-01-01
The essay forwards suggestions for developing a blended learning environment to insert genre-based language for specific purposes (LSP) subject matter into the undergraduate second language development curriculum. Specifically, the essay will highlight: (1) the development of an overarching narrative for structuring the LSP subject matter; (2) the…
Learning Style Profile Handbook: I. Developing Cognitive Skills.
ERIC Educational Resources Information Center
Jenkins, John M.; And Others
The National Association of Secondary School Principals (NASSP) published a new learning style instrument in 1986--the NASSP Learning Style Profile (LSP). The LSP yields independent scores on 24 discrete elements of learning style. Its purpose is to provide educators with a well-validated and easy to use instrument for diagnosing cognitive styles,…
Developments in LSP Testing 30 Years On? The Case of Aviation English
ERIC Educational Resources Information Center
Emery, Henry John
2014-01-01
The proceedings of the first Language Testing Forum in 1980 were published in "ELT Documents 111: Issues in Language Testing" (Alderson & Hughes, 1981). Discussants at the 1980 Forum raised a number questions on Language for Specific Purposes (LSP) testing relating, notably, to test specificity, test content, the relationship between…
Membrane-sculpting BAR domains generate stable lipid microdomains.
Zhao, Hongxia; Michelot, Alphée; Koskela, Essi V; Tkach, Vadym; Stamou, Dimitrios; Drubin, David G; Lappalainen, Pekka
2013-09-26
Bin-Amphiphysin-Rvs (BAR) domain proteins are central regulators of many cellular processes involving membrane dynamics. BAR domains sculpt phosphoinositide-rich membranes to generate membrane protrusions or invaginations. Here, we report that, in addition to regulating membrane geometry, BAR domains can generate extremely stable lipid microdomains by "freezing" phosphoinositide dynamics. This is a general feature of BAR domains, because the yeast endocytic BAR and Fes/CIP4 homology BAR (F-BAR) domains, the inverse BAR domain of Pinkbar, and the eisosomal BAR protein Lsp1 induced phosphoinositide clustering and halted lipid diffusion, despite differences in mechanisms of membrane interactions. Lsp1 displays comparable low diffusion rates in vitro and in vivo, suggesting that BAR domain proteins also generate stable phosphoinositide microdomains in cells. These results uncover a conserved role for BAR superfamily proteins in regulating lipid dynamics within membranes. Stable microdomains induced by BAR domain scaffolds and specific lipids can generate phase boundaries and diffusion barriers, which may have profound impacts on diverse cellular processes. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Studies of the Long Secondary Periods in Pulsating Red Giants
NASA Astrophysics Data System (ADS)
Percy, J. R.; Deibert, E.
2016-12-01
We have used systematic, sustained visual observations from the AAVSO International Database and the AAVSO time-series analysis package VSTAR to study the unexplained "long secondary periods" (LSPs) in 27 pulsating red giants. In our sample, the LSPs range from 479 to 2967 days, and are on average 8.1 +/- 1.3 times the excited pulsation period. There is no evidence for more than one LSP in each star. In stars with both the fundamental and first overtone radial period present, the LSP is more often about 10 times the latter. The visual amplitudes of the LSPs are typically 0.1 magnitude and do not correlate with the LSP. The phase curves tend to be sinusoidal, but at least two are sawtooth. The LSPs are stable, within their errors, over the timespan of our data, which is typically 25,000 days. The amplitudes, however, vary by up to a factor of two or more on a time scale of roughly 20-30 LSPs. There is no obvious difference between the carbon (C) stars and the normal oxygen (M) stars. Previous multicolor observations showed that the LSP color variations are similar to those of the pulsation period, and of the LSPs in the Magellanic Clouds, and not like those of eclipsing stars. We note that the LSPs are similar to the estimated rotation periods of the stars, though the latter have large uncertainties. This suggests that the LSP phenomenon may be a form of modulated rotational variability.
NASA Astrophysics Data System (ADS)
Frank, Mariana; Özdal, Özer
2018-01-01
We study the low scale predictions of the supersymmetric standard model extended by U (1 )B -L×U (1 )R symmetry, obtained from S O (10 ) breaking via a left-right supersymmetric model, imposing universal boundary conditions. Two singlet Higgs fields are responsible for the radiative U (1 )B -L×U (1 )R symmetry breaking, and a singlet fermion S is introduced to generate neutrino masses through an inverse seesaw mechanism. The lightest neutralino or sneutrino emerge as dark matter candidates, with different low scale implications. We find that the composition of the neutralino lightest supersymmetric particle (LSP) changes considerably depending on the neutralino LSP mass, from roughly half U (1 )R bino, half minimal supersymmetric model (MSSM) bino, to a singlet higgsino, or completely dominated by the MSSM higgsino. The sneutrino LSP is statistically much less likely, and when it occurs it is a 50-50 mixture of right-handed sneutrino and the scalar S ˜. Most of the solutions consistent with the relic density constraint survive the XENON 1T exclusion curve for both LSP cases. We compare the two scenarios and investigate parameter space points and find consistency with the muon anomalous magnetic moment only at the edge of a 2 σ deviation from the measured value. However, we find that the sneutrino LSP solutions could be ruled out completely by the strict reinforcement of the recent Z' mass bounds. We finally discuss collider prospects for testing the model.
Low-temperature plasma simulations with the LSP PIC code
NASA Astrophysics Data System (ADS)
Carlsson, Johan; Khrabrov, Alex; Kaganovich, Igor; Keating, David; Selezneva, Svetlana; Sommerer, Timothy
2014-10-01
The LSP (Large-Scale Plasma) PIC-MCC code has been used to simulate several low-temperature plasma configurations, including a gas switch for high-power AC/DC conversion, a glow discharge and a Hall thruster. Simulation results will be presented with an emphasis on code comparison and validation against experiment. High-voltage, direct-current (HVDC) power transmission is becoming more common as it can reduce construction costs and power losses. Solid-state power-electronics devices are presently used, but it has been proposed that gas switches could become a compact, less costly, alternative. A gas-switch conversion device would be based on a glow discharge, with a magnetically insulated cold cathode. Its operation is similar to that of a sputtering magnetron, but with much higher pressure (0.1 to 0.3 Torr) in order to achieve high current density. We have performed 1D (axial) and 2D (axial/radial) simulations of such a gas switch using LSP. The 1D results were compared with results from the EDIPIC code. To test and compare the collision models used by the LSP and EDIPIC codes in more detail, a validation exercise was performed for the cathode fall of a glow discharge. We will also present some 2D (radial/azimuthal) LSP simulations of a Hall thruster. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.
NASA Astrophysics Data System (ADS)
Soszynski, I.; Udalski, A.; Kubiak, M.; Szymanski, M. K.; Pietrzynski, G.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.; Dziembowski, W. A.
2004-12-01
We used the OGLE-II and OGLE-III photometry of red giants in the Large Magellanic Cloud to select and study objects revealing ellipsoidal variability. We detected 1546 candidates for long period ellipsoidal variables and 121 eclipsing binary systems with clear ellipsoidal modulation. The ellipsoidal red giants follow a period--luminosity (PL) relationship (sequence E), and the scatter of the relation is correlated with the amplitude of variability: the larger the amplitude, the smaller the scatter. We note that some of the ellipsoidal candidates exhibit simultaneously OGLE Small Amplitude Red Giants pulsations. Thus, in some cases the Long Secondary Period (LSP) phenomenon can be explained by the ellipsoidal modulation. We also select about 1600 red giants with distinct LSP, which are not ellipsoidal variables. We discover that besides the sequence D in the PL diagram known before, the LSP giants form additional less numerous sequence for longer periods. We notice that the PL sequence of the ellipsoidal candidates is a direct continuation of the LSP sequence toward fainter stars, what might suggest that the LSP phenomenon is related to binarity but there are strong arguments against such a possibility. About 10% of the presented light curves reveal clear deformation by the eccentricity of the system orbits. The largest estimated eccentricity in our sample is about 0.4. All presented data, including individual BVI observations and finding charts are available from the OGLE Internet archive.
Impacts of Wildfires on Long-term Land Surface Phenology
NASA Astrophysics Data System (ADS)
Wang, J.; Zhang, X.
2016-12-01
Land surface phenology (LSP) detected from satellite data characterizes seasonal dynamics of vegetation communities within a moderate or coarse resolution pixel. Its long-term variation has been widely used to indicate the biological responses to climate changes. However, few studies have focused on the influence of land disturbance on LSP variations. The wildfire is one of the most important drivers of land disturbances across the world, which shows an increasing trend during past decades. To explore the wildfire impacts on LSP, we analyzed post-fire and pre-fire LSP in two forest fire events that are Hayman Fire occurred in 2002 and Mason Fire occurred in 2005 in Colorado. Specifically, we first generated a two band enhanced vegetation index (EVI2) from MODIS daily surface reflectance product (MOD09GQ) at a spatial resolution of 250 m from 2001-2014. The time series of daily EVI2 was then used to detect the start of growing season (SOS) by applying the LSP detection algorithm based on a hybrid piecewise logistic model (HPLM-LSPD). The SOS was further separated for four levels of burn severity obtained from Monitoring Trends in Burn Severity (MTBS) maps for each fire event. The long-term SOS in the burn scars was finally deviated from surrounding areas based on land cover types. Results show that forests were mainly converted to shrubs in both fire events with some grasslands in Hayman. On average, SOS in Hayman burn scar area was advanced 11 days relative to surrounding region while it was delayed 9 days in Mason fire. The deviation also varied with the burn severity spatially. Moreover, the long-term SOS trend in the local area from 2001-2014 was significantly different with and without considerations of the fire influences. This study demonstrates that the long-term LSP SOS trend is significantly influenced by land disturbances in a local and regional scales.
Characterizing the Responses of Land Surface Phenology to the Rainy Season in the Congo Basin
NASA Astrophysics Data System (ADS)
Yan, D.; Zhang, X.; Yu, Y.; Guo, W.
2016-12-01
The most pronounced climate changes across the Congo Basin are predicted to be the changes in the timing and amount of rainfall in the coming decades. It is expected to alter a significant shift in land surface phenology (LSP), so that an understanding of its responses to the rainy season can benefit the predictions of changes in the Congolese ecosystem under future climate change scenarios. However, quantitative analyses has not been performed to investigate the relationship between LSP and the rainy season in the Congo Basin. Based on 30-minute observations acquired by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the METEOSAT Second Generation series of geostationary satellites, we generated a time series of three-day angularly corrected Two-band Enhanced Vegetation Index (EVI2) between 2006 and 2013. We then reconstructed EVI2 temporal trajectories and retrieved the timings and magnitudes of LSP using the hybrid piecewise logistic model. We further associated the phenological timings and magnitudes with those of the rainy seasons derived from the three-hourly rainfall rate measurements provided by the Tropical Rainfall Measurement Mission Product 3B42. Finally, we investigated the impacts of tree cover on the timing discrepancy between LSP and the rainy season. Results show that LSP was strongly associated with the rainy season. Specifically, the SEVIRI EVI2 time series reveals that two annual canopy greenness cycles (CGC) occur in the Congolese rainforests whereas a single annual CGC with strong seasonal amplitude was identified for other land cover types. The spatial shifts in CGC timings closely follow those of the rainy season controlled by the seasonal migration of the Intertropical Convergence Zone. However, the tree cover controls the timing discrepancy between LSP and the rainy season. The accumulated vegetation greenness during a CGC shows a strong dependence on the total rainfall received.
Eckelt, Elke; Jarek, Michael; Frömke, Cornelia; Meens, Jochen; Goethe, Ralph
2014-12-06
Maintenance of metal homeostasis is crucial in bacterial pathogenicity as metal starvation is the most important mechanism in the nutritional immunity strategy of host cells. Thus, pathogenic bacteria have evolved sensitive metal scavenging systems to overcome this particular host defence mechanism. The ruminant pathogen Mycobacterium avium ssp. paratuberculosis (MAP) displays a unique gut tropism and causes a chronic progressive intestinal inflammation. MAP possesses eight conserved lineage specific large sequence polymorphisms (LSP), which distinguish MAP from its ancestral M. avium ssp. hominissuis or other M. avium subspecies. LSP14 and LSP15 harbour many genes proposed to be involved in metal homeostasis and have been suggested to substitute for a MAP specific, impaired mycobactin synthesis. In the present study, we found that a LSP14 located putative IrtAB-like iron transporter encoded by mptABC was induced by zinc but not by iron starvation. Heterologous reporter gene assays with the lacZ gene under control of the mptABC promoter in M. smegmatis (MSMEG) and in a MSMEG∆furB deletion mutant revealed a zinc dependent, metalloregulator FurB mediated expression of mptABC via a conserved mycobacterial FurB recognition site. Deep sequencing of RNA from MAP cultures treated with the zinc chelator TPEN revealed that 70 genes responded to zinc limitation. Remarkably, 45 of these genes were located on a large genomic island of approximately 90 kb which harboured LSP14 and LSP15. Thirty-five of these genes were predicted to be controlled by FurB, due to the presence of putative binding sites. This clustering of zinc responsive genes was exclusively found in MAP and not in other mycobacteria. Our data revealed a particular genomic signature for MAP given by a unique zinc specific locus, thereby suggesting an exceptional relevance of zinc for the metabolism of MAP. MAP seems to be well adapted to maintain zinc homeostasis which might contribute to the peculiarity of MAP pathogenicity.
Silencing of Essential Genes within a Highly Coordinated Operon in Escherichia coli.
Goh, Shan; Hohmeier, Angela; Stone, Timothy C; Offord, Victoria; Sarabia, Francisco; Garcia-Ruiz, Cristina; Good, Liam
2015-08-15
Essential bacterial genes located within operons are particularly challenging to study independently because of coordinated gene expression and the nonviability of knockout mutants. Essentiality scores for many operon genes remain uncertain. Antisense RNA (asRNA) silencing or in-frame gene disruption of genes may help establish essentiality but can lead to polar effects on genes downstream or upstream of the target gene. Here, the Escherichia coli ribF-ileS-lspA-fkpB-ispH operon was used to evaluate the possibility of independently studying an essential gene using expressed asRNA and target gene overexpression to deregulate coupled expression. The gene requirement for growth in conditional silencing strains was determined by the relationship of target mRNA reduction with growth inhibition as the minimum transcript level required for 50% growth (MTL50). Mupirocin and globomycin, the protein inhibitors of IleS and LspA, respectively, were used in sensitization assays of strains containing both asRNA-expressing and open reading frame-expressing plasmids to examine deregulation of the overlapping ileS-lspA genes. We found upstream and downstream polar silencing effects when either ileS or lspA was silenced, indicating coupled expression. Weighted MTL50 values (means and standard deviations) of ribF, ileS, and lspA were 0.65 ± 0.18, 0.64 ± 0.06, and 0.76 ± 0.10, respectively. However, they were not significantly different (P = 0.71 by weighted one-way analysis of variance). The gene requirement for ispH could not be determined due to insufficient growth reduction. Mupirocin and globomycin sensitization experiments indicated that ileS-lspA expression could not be decoupled. The results highlight the inherent challenges associated with genetic analyses of operons; however, coupling of essential genes may provide opportunities to improve RNA-silencing antimicrobials. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Silencing of Essential Genes within a Highly Coordinated Operon in Escherichia coli
Hohmeier, Angela; Stone, Timothy C.; Offord, Victoria; Sarabia, Francisco; Garcia-Ruiz, Cristina; Good, Liam
2015-01-01
Essential bacterial genes located within operons are particularly challenging to study independently because of coordinated gene expression and the nonviability of knockout mutants. Essentiality scores for many operon genes remain uncertain. Antisense RNA (asRNA) silencing or in-frame gene disruption of genes may help establish essentiality but can lead to polar effects on genes downstream or upstream of the target gene. Here, the Escherichia coli ribF-ileS-lspA-fkpB-ispH operon was used to evaluate the possibility of independently studying an essential gene using expressed asRNA and target gene overexpression to deregulate coupled expression. The gene requirement for growth in conditional silencing strains was determined by the relationship of target mRNA reduction with growth inhibition as the minimum transcript level required for 50% growth (MTL50). Mupirocin and globomycin, the protein inhibitors of IleS and LspA, respectively, were used in sensitization assays of strains containing both asRNA-expressing and open reading frame-expressing plasmids to examine deregulation of the overlapping ileS-lspA genes. We found upstream and downstream polar silencing effects when either ileS or lspA was silenced, indicating coupled expression. Weighted MTL50 values (means and standard deviations) of ribF, ileS, and lspA were 0.65 ± 0.18, 0.64 ± 0.06, and 0.76 ± 0.10, respectively. However, they were not significantly different (P = 0.71 by weighted one-way analysis of variance). The gene requirement for ispH could not be determined due to insufficient growth reduction. Mupirocin and globomycin sensitization experiments indicated that ileS-lspA expression could not be decoupled. The results highlight the inherent challenges associated with genetic analyses of operons; however, coupling of essential genes may provide opportunities to improve RNA-silencing antimicrobials. PMID:26070674
NASA Launch Services Program Overview
NASA Technical Reports Server (NTRS)
Higginbotham, Scott
2016-01-01
The National Aeronautics and Space Administration (NASA) has need to procure a variety of launch vehicles and services for its unmanned spacecraft. The Launch Services Program (LSP) provides the Agency with a single focus for the acquisition and management of Expendable Launch Vehicle (ELV) launch services. This presentation will provide an overview of the LSP and its organization, approach, and activities.
ERIC Educational Resources Information Center
Peretz, Arna S.; Shoham, Miriam
A study investigated the hypothesis that topic familiarity and assessed difficulty of a second language text correlated positively with performance on reading comprehension tests in languages for special purposes (LSP). Subjects were 177 advanced students of English as a Foreign Language (EFL) at Ben Gurion University (Israel). Faculty from the…
The Continuing Evolution of Languages for Specific Purposes
ERIC Educational Resources Information Center
Grosse, Christine Uber; Voght, Geoffrey M.
2012-01-01
This overview to "The Modern Language Journal"'s Focus Issue on Languages for Specific Purposes (LSP) takes a fresh look at issues examined in a 1991 article by Grosse and Voght. Reflecting on change drivers and growth in LSP, the authors comment on current challenges to the field and future research needs. Their remarks are based on new insights…
LSP Testing: The Role of Linguistic and Real-World Criteria.
ERIC Educational Resources Information Center
Brown, Annie
Issues in testing proficiency in languages for special purposes (LSP) are examined in the context of the development of an advanced oral test in Japanese for tour guides. The test, designed at an Australian university for use in the Australian tourism industry, was to be designed to evaluate both language proficiency and skills in appropriate…
ERIC Educational Resources Information Center
Harper, Kelly A.; Kurtzworth-Keen, Kristin; Marable, Michele A.
2017-01-01
This research investigated the effectiveness of an assistive technology tool, the Livescribe Pen (LSP), with an elementary student identified with dyslexia. Using interview and focus group methodologies over the span of one academic year, the study probed the perceptions of teachers, parent, and child. While the LSP was primarily utilized for…
ERIC Educational Resources Information Center
Mills, Jonathan N.; Wolf, Patrick J.
2017-01-01
The Louisiana Scholarship Program (LSP) offers publicly funded vouchers to students in low-performing schools with family income no greater than 250% of the poverty line, allowing them to enroll in participating private schools. Initially established in 2008 as a pilot program in New Orleans, the LSP was expanded statewide in 2012. This article…
Search for supersymmetry with Higgs boson to diphoton decays using the razor variables at s = 13 TeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirunyan, A. M.; Tumasyan, A.; Adam, W.
An inclusive search for anomalous Higgs boson production in the diphoton decay channel and in association with at least one jet is presented, using LHC proton–proton collision data collected by the CMS experiment at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 35.9fb -1. The razor variables M R and R 2, as well as the momentum and mass resolution of the diphoton system, are used to categorize events into different search regions. The search result is interpreted in the context of strong and electroweak production of supersymmetric particles. We exclude bottom squark pair-production withmore » masses below 450 GeV for bottom squarks decaying to a bottom quark, a Higgs boson, and the lightest supersymmetric particle (LSP) for LSP masses below 250 GeV. For wino-like chargino–neutralino production, we exclude charginos with mass below 170 GeV for LSP masses below 25 GeV. In the GMSB scenario, we exclude charginos with mass below 205 GeV for neutralinos decaying to a Higgs boson and a goldstino LSP with 100% branching fraction.« less
NASA Astrophysics Data System (ADS)
Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rabady, D.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Strauss, J.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Stoykova, S.; Sultanov, G.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Abdelalim, A. A.; Mohammed, Y.; Salama, E.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Khvedelidze, A.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Verlage, T.; Albert, A.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Freund, B.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Evangelou, I.; Foudas, C.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Csanad, M.; Filipovic, N.; Pasztor, G.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Bhawandeep, U.; Chawla, R.; Dhingra, N.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Robutti, E.; Tosi, S.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Boletti, A.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Lujan, P.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Ventura, S.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Fallavollita, F.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Duran, C.; Heredia-De La Cruz, I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Rabadán Trejo, R. I.; Ramirez Sanchez, G.; Reyes-Almanza, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Calpas, B.; Di Francesco, A.; Faccioli, P.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chadeeva, M.; Parygin, P.; Philippov, D.; Polikarpov, S.; Popova, E.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Álvarez Fernández, A.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Karacheban, O.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Verweij, M.; Wardle, N.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Bachmair, F.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zagozdzinska, A.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; De Cosa, A.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Adiguzel, A.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Bainbridge, R.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Elwood, A.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Squires, M.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Macneill, I.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Royon, C.; Sanders, S.; Schmitz, E.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Benaglia, A.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Schulte, J. F.; Sun, J.; Wang, F.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Sturdy, J.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; CMS Collaboration
2018-04-01
An inclusive search for anomalous Higgs boson production in the diphoton decay channel and in association with at least one jet is presented, using LHC proton-proton collision data collected by the CMS experiment at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 35.9fb-1. The razor variables MR and R2, as well as the momentum and mass resolution of the diphoton system, are used to categorize events into different search regions. The search result is interpreted in the context of strong and electroweak production of supersymmetric particles. We exclude bottom squark pair-production with masses below 450 GeV for bottom squarks decaying to a bottom quark, a Higgs boson, and the lightest supersymmetric particle (LSP) for LSP masses below 250 GeV. For wino-like chargino-neutralino production, we exclude charginos with mass below 170 GeV for LSP masses below 25 GeV. In the GMSB scenario, we exclude charginos with mass below 205 GeV for neutralinos decaying to a Higgs boson and a goldstino LSP with 100% branching fraction.
Yao, Yung-Chi; Hwang, Jung-Min; Yang, Zu-Po; Haung, Jing-Yu; Lin, Chia-Ching; Shen, Wei-Chen; Chou, Chun-Yang; Wang, Mei-Tan; Huang, Chun-Ying; Chen, Ching-Yu; Tsai, Meng-Tsan; Lin, Tzu-Neng; Shen, Ji-Lin; Lee, Ya-Ju
2016-01-01
Enhancement of the external quantum efficiency of a GaN-based vertical-type light emitting diode (VLED) through the coupling of localized surface plasmon (LSP) resonance with the wave-guided mode light is studied. To achieve this experimentally, Ag nanoparticles (NPs), as the LSP resonant source, are drop-casted on the most top layer of waveguide channel, which is composed of hydrothermally synthesized ZnO nanorods capped on the top of GaN-based VLED. Enhanced light-output power and external quantum efficiency are observed, and the amount of enhancement remains steady with the increase of the injected currents. To understand the observations theoretically, the absorption spectra and the electric field distributions of the VLED with and without Ag NPs decorated on ZnO NRs are determined using the finite-difference time-domain (FDTD) method. The results prove that the observation of enhancement of the external quantum efficiency can be attributed to the creation of an extra escape channel for trapped light due to the coupling of the LSP with wave-guided mode light, by which the energy of wave-guided mode light can be transferred to the efficient light scattering center of the LSP. PMID:26935648
Search for supersymmetry with Higgs boson to diphoton decays using the razor variables at s = 13 TeV
Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...
2018-01-31
An inclusive search for anomalous Higgs boson production in the diphoton decay channel and in association with at least one jet is presented, using LHC proton–proton collision data collected by the CMS experiment at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 35.9fb -1. The razor variables M R and R 2, as well as the momentum and mass resolution of the diphoton system, are used to categorize events into different search regions. The search result is interpreted in the context of strong and electroweak production of supersymmetric particles. We exclude bottom squark pair-production withmore » masses below 450 GeV for bottom squarks decaying to a bottom quark, a Higgs boson, and the lightest supersymmetric particle (LSP) for LSP masses below 250 GeV. For wino-like chargino–neutralino production, we exclude charginos with mass below 170 GeV for LSP masses below 25 GeV. In the GMSB scenario, we exclude charginos with mass below 205 GeV for neutralinos decaying to a Higgs boson and a goldstino LSP with 100% branching fraction.« less
NASA Astrophysics Data System (ADS)
Huang, Shaowei; Baba, Ken-Ichi; Murata, Masayuki; Kitayama, Ken-Ichi
2006-12-01
In traditional lambda-based multigranularity optical networks, a lambda is always treated as the basic routing unit, resulting in low wavelength utilization. On the basis of optical code division multiplexing (OCDM) technology, a novel OCDM-based multigranularity optical cross-connect (MG-OXC) is proposed. Compared with the traditional lambda-based MG-OXC, its switching capability has been extended to support fiber switching, waveband switching, lambda switching, and OCDM switching. In a network composed of OCDM-based MG-OXCs, a single wavelength can be shared by distinct label switched paths (LSPs) called OCDM-LSPs, and OCDM-LSP switching can be implemented in the optical domain. To improve the network flexibility for an OCDM-LSP provisioning, two kinds of switches enabling hybrid optical code (OC)-wavelength conversion are designed. Simulation results indicate that a blocking probability reduction of 2 orders can be obtained by deploying only five OCs to a single wavelength. Furthermore, compared with time-division-multiplexing LSP (TDM-LSP), owing to the asynchronous accessibility and the OC conversion, OCDM-LSPs have been shown to permit a simpler switch architecture and achieve better blocking performance than TDM-LSPs.
On eco-efficient technologies to minimize industrial water consumption
NASA Astrophysics Data System (ADS)
Amiri, Mohammad C.; Mohammadifard, Hossein; Ghaffari, Ghasem
2016-07-01
Purpose - Water scarcity will further stress on available water systems and decrease the security of water in many areas. Therefore, innovative methods to minimize industrial water usage and waste production are of paramount importance in the process of extending fresh water resources and happen to be the main life support systems in many arid regions of the world. This paper demonstrates that there are good opportunities for many industries to save water and decrease waste water in softening process by substituting traditional with echo-friendly methods. The patented puffing method is an eco-efficient and viable technology for water saving and waste reduction in lime softening process. Design/methodology/approach - Lime softening process (LSP) is a very sensitive process to chemical reactions. In addition, optimal monitoring not only results in minimizing sludge that must be disposed of but also it reduces the operating costs of water conditioning. Weakness of the current (regular) control of LSP based on chemical analysis has been demonstrated experimentally and compared with the eco-efficient puffing method. Findings - This paper demonstrates that there is a good opportunity for many industries to save water and decrease waste water in softening process by substituting traditional method with puffing method, a patented eco-efficient technology. Originality/value - Details of the required innovative works to minimize industrial water usage and waste production are outlined in this paper. Employing the novel puffing method for monitoring of lime softening process results in saving a considerable amount of water while reducing chemical sludge.
2011-09-08
CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station in Florida, members of NASA's Gravity Recovery and Interior Laboratory (GRAIL) launch team monitor GRAIL's launch countdown from the Mission Directors Center in Hangar AE. From left are Joe Lackovich, NASA advisory manager, NASA's Launch Services Program (LSP); Amanda Mitskevich, manager, LSP; and Oscar Toledo, NASA Headquarters senior advisor, LSP. Launch is scheduled for 8:37:06 a.m. EDT Sept. 8 from Space Launch Complex 17B on Cape Canaveral Air Force Station. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett
ERIC Educational Resources Information Center
Cai, Yuyang; Kunnan, Antony John
2018-01-01
This study examined the separability of domain-general and domain-specific content knowledge from Language for Specific Purposes (LSP) reading ability. A pool of 1,491 nursing students in China participated by responding to a nursing English test and a nursing knowledge test. Primary data analysis involved four steps: (a) conducting a…
NASA Astrophysics Data System (ADS)
Tong, X.; Tian, F.; Brandt, M.; Zhang, W.; Liu, Y.; Fensholt, R.
2017-12-01
Changes in vegetation phenological events are among the most sensitive biological responses to climate change. In last decades, facilitating by satellite remote sensing techniques, land surface phenology (LSP) have been monitored at global scale using proxy approaches as tracking the temporal change of a satellite-derived vegetation index. However, the existing global assessments of changes in LSP are all established on the basis of leaf phenology using NDVI derived from optical sensors, being responsive to vegetation canopy cover and greenness. Instead, the vegetation optical depth (VOD) parameter from passive microwave sensors, which is sensitive to the aboveground vegetation water content by including as well the woody components in the observations, provides an alternative, independent and comprehensive means for global vegetation phenology monitoring. We used the unique long-term global VOD record available for the period 1992-2012 to monitoring the dynamics of LSP metrics (length of season, start of season and end of season) in comparison with the dynamics of LSP metrics derived from the latest GIMMS NDVI3G V1. We evaluated the differences in the linear trends of LSP metrics between two datasets. Currently, our results suggest that the level of seasonality variation of vegetation water content is less than the vegetation greenness. We found significant phenological changes in vegetation water content in African woodlands, where has been reported with little leaf phenological change regardless of the delays in rainfall onset. Therefore, VOD might allow us to detect temporal shifts in the timing difference of vegetation water storage vs. leaf emergence and to see if some ecophysiological thresholds seem to be reached, that could cause species turnover as climate change-driven alterations to the African monsoon proceed.
Lee, Seungyup; Sahadevan, Jayakumar; Khrestian, Celeen M; Cakulev, Ivan; Markowitz, Alan; Waldo, Albert L
2015-12-01
The mechanism(s) of persistent and long-standing persistent (LSP) atrial fibrillation (AF) is/are poorly understood. We performed high-density, simultaneous, biatrial, epicardial mapping of persistent and LSP AF in patients undergoing open heart surgery (1) to test the hypothesis that persistent and LSP AF are due to ≥ 1 drivers, either focal or reentrant, and (2) to characterize associated atrial activation. Twelve patients with persistent and LSP AF (1 month to 9 years duration) were studied at open heart surgery. During AF, electrograms were recorded from both atria simultaneously for 1 to 5 minutes from 510 to 512 epicardial electrodes with ECG lead II. Thirty-two consecutive seconds of activation sequence maps were produced per patient. During AF, multiple foci (QS unipolar atrial electrograms) of different cycle lengths (mean, 175 ± 18 ms) were present in both atria in 11 of 12 patients. Foci (2-4 per patient, duration 5-32 s) were either sustained or intermittent, were predominantly found in the lateral left atrial free wall, and likely acted as drivers. Random and nonrandom breakthrough activation sites (initial r or R in unipolar atrial electrograms) were also found. In 1 of 12 patients, only breakthrough sites were found. All wave fronts emanated from foci and breakthrough sites, and largely either collided or merged with each other at variable sites. Repetitive focal QS activation occasionally generated repetitive wannabe reentrant activation in 5 of 12 patients. No actual reentry was found. During persistent and LSP AF in 12 patients, wave fronts emanating from foci and breakthrough sites maintained AF. No reentry was demonstrated. © 2015 American Heart Association, Inc.
Auto-concealment of supersymmetry in extra dimensions
Dimopoulos, Savas; Howe, Kiel; March-Russell, John; ...
2015-06-05
In supersymmetric (SUSY) theories with extra dimensions the visible energy in sparticle decays can be significantly reduced and its energy distribution broadened, thus significantly weakening the present collider limits on SUSY. The mechanism applies when the lightest supersymmetric particle (LSP) is a bulk state — e.g. a bulk modulino, axino, or gravitino — the size of the extra dimensions ≳ 10 –14 cm, and for a broad variety of visible sparticle spectra. In such cases the lightest ordinary supersymmetric particle (LOSP), necessarily a brane-localised state, decays to the Kaluza-Klein (KK) discretuum of the LSP. This dynamically realises the compression mechanismmore » for hiding SUSY as decays into the more numerous heavier KK LSP states are favored. We find LHC limits on right-handed slepton LOSPs evaporate, while LHC limits on stop LOSPs weaken to ~350 ÷ 410 GeV compared to ~700 GeV for a stop decaying to a massless LSP. Similarly, for the searches we consider, present limits on direct production of degenerate first and second generation squarks drop to ~450 GeV compared to ~800 GeV for a squark decaying to a massless LSP. Auto-concealment typically works for a fundamental gravitational scale of M* ~10 ÷ 100 TeV, a scale sufficiently high that traditional searches for signatures of extra dimensions are mostly avoided. If superpartners are discovered, their prompt, displaced, or stopped decays can also provide new search opportunities for extra dimensions with the potential to reach M* ~10 9 GeV. As a result, this mechanism applies more generally than just SUSY theories, pertaining to any theory where there is a discrete quantum number shared by both brane and bulk sectors.« less
He, Yulu; Hua, Wei-Hsiang; Low, Meng-Chun; Tsai, Yu-Hsuan; Cai, Cheng-Jin; Chiang, Hsin-Chun; Yu, Jian-He; Hsiao, Jen-Hung; Tseng, Po-Hao; Kiang, Yean-Woei; Yang, C C; Zhang, Zhenxi
2018-06-08
We first illustrate the faster decrease of the photothermal (PT) effect with the delay time of laser treatment, in which the illumination of a 1064 nm laser effectively excites the localized surface plasmon (LSP) resonance of cell-up-taken gold nanoring (NRI) linked with a photosensitizer (PS), when compared with the photodynamic (PD) effect produced by the illumination of a 660 nm laser for effective PS excitation. The measurement results of the metal contents of Au NRI and PS based on inductively coupled plasma mass spectroscopy and the PS fluorescence intensity based on flow cytometry show that the linkage of NRI and PS is rapidly broken for releasing PS through the effect of glutathione in lysosome after cell uptake. Meanwhile, NRI escapes from a cell with a high rate such that the PT effect decays fast while the released PS can stay inside a cell longer for producing a prolonged PD effect. The effective delivery of PS through the linkage with Au NRI for cell uptake and the advantageous effect of LSP resonance at a PS absorption wavelength on the PD process are also demonstrated.
NASA Astrophysics Data System (ADS)
He, Yulu; Hua, Wei-Hsiang; Low, Meng-Chun; Tsai, Yu-Hsuan; Cai, Cheng-Jin; Chiang, Hsin-Chun; Yu, Jian-He; Hsiao, Jen-Hung; Tseng, Po-Hao; Kiang, Yean-Woei; Yang, C. C.; Zhang, Zhenxi
2018-06-01
We first illustrate the faster decrease of the photothermal (PT) effect with the delay time of laser treatment, in which the illumination of a 1064 nm laser effectively excites the localized surface plasmon (LSP) resonance of cell-up-taken gold nanoring (NRI) linked with a photosensitizer (PS), when compared with the photodynamic (PD) effect produced by the illumination of a 660 nm laser for effective PS excitation. The measurement results of the metal contents of Au NRI and PS based on inductively coupled plasma mass spectroscopy and the PS fluorescence intensity based on flow cytometry show that the linkage of NRI and PS is rapidly broken for releasing PS through the effect of glutathione in lysosome after cell uptake. Meanwhile, NRI escapes from a cell with a high rate such that the PT effect decays fast while the released PS can stay inside a cell longer for producing a prolonged PD effect. The effective delivery of PS through the linkage with Au NRI for cell uptake and the advantageous effect of LSP resonance at a PS absorption wavelength on the PD process are also demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiraishi, Hiroyuki
Numerical Analyses on Laser-Supported Plasma (LSP) have been performed for researching the mechanism of laser absorption occurring in the laser propulsion system. Above all, Laser-Supported Detonation (LSD), categorized as one type of LSP, is considered as one of the most important phenomena because it can generate high pressure and high temperature for performing highly effective propulsion. For simulating generation and propagation of LSD wave, I have performed thermal non-equilibrium analyses by Navier-stokes equations, using a CO{sub 2} gasdynamic laser into an inert gas, where the most important laser absorption mechanism for LSD propagation is Inverse Bremsstrahlung. As a numerical method,more » TVD scheme taken into account of real gas effects and thermal non-equilibrium effects by using a 2-temperature model, is applied. In this study, I analyze a LSD wave propagating through a conical nozzle, where an inner space of an actual laser propulsion system is simplified.« less
International Halley Watch: Discipline specialists for large scale phenomena
NASA Technical Reports Server (NTRS)
Brandt, J. C.; Niedner, M. B., Jr.
1986-01-01
The largest scale structures of comets, their tails, are extremely interesting from a physical point of view, and some of their properties are among the most spectacular displayed by comets. Because the tail(s) is an important component part of a comet, the Large-Scale Phenomena (L-SP) Discipline was created as one of eight different observational methods in which Halley data would be encouraged and collected from all around the world under the aspices of the International Halley Watch (IHW). The L-SP Discipline Specialist (DS) Team resides at NASA/Goddard Space Flight Center under the leadership of John C. Brandt, Malcolm B. Niedner, and their team of image-processing and computer specialists; Jurgan Rahe at NASA Headquarters completes the formal DS science staff. The team has adopted the study of disconnection events (DE) as its principal science target, and it is because of the rapid changes which occur in connection with DE's that such extensive global coverage was deemed necessary to assemble a complete record.
2009-01-01
The Pt nanoparticles (NPs), which posses the wider tunable localized-surface-plasmon (LSP) energy varying from deep ultraviolet to visible region depending on their morphology, were prepared by annealing Pt thin films with different initial mass-thicknesses. A sixfold enhancement of the 357 nm forward emission of ZnMgO was observed after capping with Pt NPs, which is due to the resonance coupling between the LSP of Pt NPs and the band-gap emission of ZnMgO. The other factors affecting the ultraviolet emission of ZnMgO, such as emission from Pt itself and light multi-scattering at the interface, were also discussed. These results indicate that Pt NPs can be used to enhance the ultraviolet emission through the LSP coupling for various wide band-gap semiconductors. PMID:20596433
Rebolledo, Boris; Gil, Antonia; Flotats, Xavier; Sánchez, José Ángel
2016-04-15
In the present study an overlay method to assess groundwater vulnerability is proposed. This new method based on multicriteria decision analysis (MCDA) was developed and validated using an appropriate case study in Aragon area (NE Spain). The Vulnerability Index to Nitrates from Agricultural Sources (VINAS) incorporates a novel Logic Scoring of Preferences (LSP) approach, and it has been developed using public geographic information from the European Union. VINAS-LSP identifies areas with five categories of vulnerability, taking into account the hydrogeological and environmental characteristics of the territory as a whole. The resulting LSP map is a regional screening tool that can provide guidance on the potential risk of nitrate pollution, as well as highlight areas where specific research and farming planning policies are required. Copyright © 2016 Elsevier Ltd. All rights reserved.
Geers, Ann E; Davidson, Lisa S; Uchanski, Rosalie M; Nicholas, Johanna G
2013-09-01
This study documented the ability of experienced pediatric cochlear implant (CI) users to perceive linguistic properties (what is said) and indexical attributes (emotional intent and talker identity) of speech, and examined the extent to which linguistic (LSP) and indexical (ISP) perception skills are related. Preimplant-aided hearing, age at implantation, speech processor technology, CI-aided thresholds, sequential bilateral cochlear implantation, and academic integration with hearing age-mates were examined for their possible relationships to both LSP and ISP skills. Sixty 9- to 12-year olds, first implanted at an early age (12 to 38 months), participated in a comprehensive test battery that included the following LSP skills: (1) recognition of monosyllabic words at loud and soft levels, (2) repetition of phonemes and suprasegmental features from nonwords, and (3) recognition of key words from sentences presented within a noise background, and the following ISP skills: (1) discrimination of across-gender and within-gender (female) talkers and (2) identification and discrimination of emotional content from spoken sentences. A group of 30 age-matched children without hearing loss completed the nonword repetition, and talker- and emotion-perception tasks for comparison. Word-recognition scores decreased with signal level from a mean of 77% correct at 70 dB SPL to 52% at 50 dB SPL. On average, CI users recognized 50% of key words presented in sentences that were 9.8 dB above background noise. Phonetic properties were repeated from nonword stimuli at about the same level of accuracy as suprasegmental attributes (70 and 75%, respectively). The majority of CI users identified emotional content and differentiated talkers significantly above chance levels. Scores on LSP and ISP measures were combined into separate principal component scores and these components were highly correlated (r = 0.76). Both LSP and ISP component scores were higher for children who received a CI at the youngest ages, upgraded to more recent CI technology and had lower CI-aided thresholds. Higher scores, for both LSP and ISP components, were also associated with higher language levels and mainstreaming at younger ages. Higher ISP scores were associated with better social skills. Results strongly support a link between indexical and linguistic properties in perceptual analysis of speech. These two channels of information appear to be processed together in parallel by the auditory system and are inseparable in perception. Better speech performance, for both linguistic and indexical perception, is associated with younger age at implantation and use of more recent speech processor technology. Children with better speech perception demonstrated better spoken language, earlier academic mainstreaming, and placement in more typically sized classrooms (i.e., >20 students). Well-developed social skills were more highly associated with the ability to discriminate the nuances of talker identity and emotion than with the ability to recognize words and sentences through listening. The extent to which early cochlear implantation enabled these early-implanted children to make use of both linguistic and indexical properties of speech influenced not only their development of spoken language, but also their ability to function successfully in a hearing world.
Geers, Ann; Davidson, Lisa; Uchanski, Rosalie; Nicholas, Johanna
2013-01-01
Objectives This study documented the ability of experienced pediatric cochlear implant (CI) users to perceive linguistic properties (what is said) and indexical attributes (emotional intent and talker identity) of speech, and examined the extent to which linguistic (LSP) and indexical (ISP) perception skills are related. Pre-implant aided hearing, age at implantation, speech processor technology, CI-aided thresholds, sequential bilateral cochlear implantation, and academic integration with hearing age-mates were examined for their possible relationships to both LSP and ISP skills. Design Sixty 9–12 year olds, first implanted at an early age (12–38 months), participated in a comprehensive test battery that included the following LSP skills: 1) recognition of monosyllabic words at loud and soft levels, 2) repetition of phonemes and suprasegmental features from non-words, and 3) recognition of keywords from sentences presented within a noise background, and the following ISP skills: 1) discrimination of male from female and female from female talkers and 2) identification and discrimination of emotional content from spoken sentences. A group of 30 age-matched children without hearing loss completed the non-word repetition, and talker- and emotion-perception tasks for comparison. Results Word recognition scores decreased with signal level from a mean of 77% correct at 70 dB SPL to 52% at 50 dB SPL. On average, CI users recognized 50% of keywords presented in sentences that were 9.8 dB above background noise. Phonetic properties were repeated from non-word stimuli at about the same level of accuracy as suprasegmental attributes (70% and 75%, respectively). The majority of CI users identified emotional content and differentiated talkers significantly above chance levels. Scores on LSP and ISP measures were combined into separate principal component scores and these components were highly correlated (r = .76). Both LSP and ISP component scores were higher for children who received a CI at the youngest ages, upgraded to more recent CI technology and had lower CI-aided thresholds. Higher scores, for both LSP and ISP components, were also associated with higher language levels and mainstreaming at younger ages. Higher ISP scores were associated with better social skills. Conclusions Results strongly support a link between indexical and linguistic properties in perceptual analysis of speech. These two channels of information appear to be processed together in parallel by the auditory system and are inseparable in perception. Better speech performance, for both linguistic and indexical perception, is associated with younger age at implantation and use of more recent speech processor technology. Children with better speech perception demonstrated better spoken language, earlier academic mainstreaming, and placement in more typically-sized classrooms (i.e., >20 students). Well-developed social skills were more highly associated with the ability to discriminate the nuances of talker identity and emotion than with the ability to recognize words and sentences through listening. The extent to which early cochlear implantation enabled these early-implanted children to make use of both linguistic and indexical properties of speech influenced not only their development of spoken language, but also their ability to function successfully in a hearing world. PMID:23652814
Poloni, Nicola; Zizolfi, Daniele; Ielmini, Marta; Pagani, Roberto; Caselli, Ivano; Diurni, Marcello; Milano, Anna; Callegari, Camilla
2018-01-01
Resilience is a multidimensional process of adaptation aimed to overcome stressful or traumatic life experiences; only in the last few years it has been considered as a personal resource in psychosis and schizophrenia. This study aimed to assess the relationship between intrapersonal and interpersonal resilience factors and schizophrenia, particularly whether and how resilience can improve the course of psychotic illness. In this observational study, all patients recruited had to fulfill the following inclusion criteria: diagnosis of schizophrenia spectrum disorder ( Diagnostic and Statistical Manual of Mental Disorders-5 ); aged between 18 and 65 years; provided written informed consent; to be clinically stable (Clinical Global Impression Scale <3); history of illness ≥5 years; to be compliant with antipsychotic therapy over the last year; and regular submission to periodic monthly psychiatric visits. Patients were evaluated through the following scales: Resilience Scale for Adults (RSA) for resilience; Brief Psychiatric Rating Scale-Anchored version (BPRS-A), Scale for the Assessment of Negative Symptoms (SANS), and Scale for the Assessment of Positive Symptoms (SAPS) for psychotic symptomatology; and Life Skills Profile (LSP) for psychosocial functioning. Statistical analysis was performed by SPSS. Partial correlations were evaluated to assess the relationship between RSA total scores and subscores and BPRS-A, SANS, SAPS, and LSP total scores, removing the common variance among variables. Then, a series of hierarchical multiple linear regression models were used to examine the association between resilience, psychopathology, and psychosocial functioning. A statistically significant negative correlation among intrapersonal resilience factors and BPRS-A total score emerged, predicting psychiatric symptoms severity and explaining approximately 31% of the BPRS-A variance; otherwise, only the interpersonal resilience factors associated with social support were statistically and positively correlated with LSP total score, predicting psychosocial functioning and explaining the 11% of LSP variance. The specific contribution that resilience factors may have in predicting the severity of symptoms and the extent of psychosocial functioning emphasizes the importance of personalizing treatment for patients affected by schizophrenia, promoting personal resources, and translating them into better outcomes.
ERIC Educational Resources Information Center
Brown, George H.; Faupel, Elizabeth M.
The National Assessment of Educational Progress (NAEP) and the Longitudinal Studies Program (LSP) are major survey projects on educational outcomes performed by the Center for Education Statistics. NAEP is a continuing cross-sectional survey of young Americans' skills, knowledge, and attitudes. The LSP studies follow a sample of students as they…
ERIC Educational Resources Information Center
Mills, Jonathan N.; Wolf, Patrick J.
2016-01-01
The Louisiana Scholarship Program (LSP) is a statewide initiative offering publicly-funded vouchers to enroll in local private schools to students in low-performing schools with family income no greater than 250 percent of the poverty line. Initially established in 2008 as a pilot program in New Orleans, the LSP was expanded statewide in 2012.…
ERIC Educational Resources Information Center
Phaiboonnugulkij, Malinee; Prapphal, Kanchana
2013-01-01
The purpose of this study was to compare the differences in strategies used in an online language for specific purposes (LSP) speaking test in tourism with two proficiency groups of students, and to investigate the strategies that should be used for low-proficiency students to improve their LSP speaking ability. The Web-based Speaking Test in…
Modelling short pulse, high intensity laser plasma interactions
NASA Astrophysics Data System (ADS)
Evans, R. G.
2006-06-01
Modelling the interaction of ultra-intense laser pulses with solid targets is made difficult through the large range of length and time scales involved in the transport of relativistic electrons. An implicit hybrid PIC-fluid model using the commercial code LSP (LSP is marketed by MRC (Albuquerque), New Mexico, USA) reveals a variety of complex phenomena which seem to be borne out in experiments and some existing theories.
NASA Astrophysics Data System (ADS)
Larsen, Kristin
The thesis describes a search for new physics in form of supersymmetry in hadronic final states and missing transverse energy using a dataset of 35.9/fb collected during the 2016 proton-proton runs by the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC). The search uses robust kinematic variables to suppress backgrounds while maintaining good acceptance to a broad range of signal models and employs data-driven techniques to accurately determine backgrounds and systematic uncertainties. No evidence for Beyond Standard Model (BSM) physics is observed and simplified models are used to interpret the results. For gluino mediated models, the gluino mass up to 1850 GeV and the lightest symmetric particle (LSP) up to 1100 GeV are excluded. For light squark mediated models, the light squark mass up to 1350 GeV (700 GeV) and the LSP up to 650 GeV (400 GeV), assuming no degeneracy in the light squark masses (a degeneracy in light squark masses). For sbottom mediated models, the sbottom mass is excluded to 1075 GeV and the LSP mass up to 550 GeV. For stop mediated models, the stop mass is excluded up to 1075 GeV with the LSP mass up to 400 GeV.
Imaging Mass Spectrometry for Characterization of Atrial Fibrillation Subtypes.
Klein, Oliver; Hanke, Thorsten; Nerbrich, Grit; Yan, Junfeng; Schubert, Benedikt; Giavalisco, Patrick; Noack, Frank; Thiele, Herbert; Mohamed, Salah A
2018-05-13
Atrial fibrillation (AF) is a cardiac arrhythmia characterized by a rapid and irregular heart rhythm. AF types, paroxysmal (PX), persistent (PE) and long-lasting persistent (LSP), requires differences in clinical management. Unfortunately, a significant proportion of AF patients are clinical misclassified. Therefore, our study aim that MALDI-Imaging (IMS) is valuable as a diagnostic aid in AF subtypes assessment. Patients were clinically classified according guidelines of the European Society of Cardiology. FFPE tissue specimens from PE, PX and LSP subtype were analysed by MALDI-IMS and evaluated by multi-statistical testing. Proteins were subsequent identified using LC-MS/MS and findings were confirmed by immunohistochemistry and through the determination of potential fibrosis via histopathology RESULT: : Determined characteristic peptide signatures and peptide values facilitate to distinguish between PE, PE and LSP arterial fibrillation subtypes. In particular, peptide values from alpha 1 type I collagen were identified that were significantly higher in LSP and PE tissue but not in PX myocardial AF tissue. These findings were confirmed by immunohistochemistry and through the determination of potential fibrosis via histopathology. Our results represent an improvement in AF risk stratification by using MALDI-IMS as a promising approach for AF tissue assessment. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Criswell, D. R.
2002-01-01
The people of Earth require, by the middle of the 21st century, a new source of commercial power that is sustainable, clean, reliable, low in cost (< 1 cent per kilowatt electric hour), not disruptive of the biosphere, and at least 4 to 5 times more abundant (> 2 kWe/person or > 20 TWe) than now (1, 2). The Lunar Solar Power (LSP) System appears to be the only reasonable option (2, 3). The Moon dependably receives 13,000 TWs of solar power. The LSP System consists of pairs of power bases located on opposite limbs of the Moon as seen from Earth. The power bases collect the solar energy and convert it to beams of microwaves. The microwaves are delivered directly to moonward-facing receivers on Earth or indirectly through relay satellites in orbit about Earth. To achieve low cost, the power bases are made primarily of local lunar materials by machines, facilities, and people deployed from Earth. Hundreds to thousands of people will be required on the Moon, in cis-lunar space, and operating tele-robotically from Earth to construct the full scale LSP System. Models indicate that power sales on Earth can easily support the required people, their regular transport between the Earth and Moon, and provide the required return on investment to develop the LSP System (4, 5). Construction of the LSP System, even at an early stage, creates fundamentally new wealth and capabilities supportive of rapid growth of human activities within the inner solar system. A factor of ten increase in global Earth-to-orbit transport will be required in the demonstration phase. Launch cost of 5,000 /kg is acceptable. Lower cost transport decreases the upfront cost of the LSP System but is not critical to the cost of energy from the mature LSP. Logistic and assembly facilities in orbit about the Earth and Moon will be required that are at least a factor of ten large than planned for the full scale International Space Station. Transport must be provided between the Earth and the Moon of hundreds, possibly thousands, of workers. Production machinery will be available that can build fundamentally new infrastructure from the common silicate materials of asteroids and the moons of Mars. Commercial power can be beamed from the Moon to ion-propelled rockets and to industrial facilities throughout the inner solar systems (6, 7). The LSP System can establish the Earth and the Moon as a two-planet economy. Lunar and cis-lunar industry will grow through profitable activities. Exploration of the inner solar system can stage, at marginal cost, from the Moon and cis-lunar space rather than the surface of Earth. 1. World Energy Council (2000) Energy for Tomorrow's World - Acting Now!, 175pp., Atalink Projects Ltd, London. 2. Criswell, David R. (2001) Lunar Solar Power System: Industrial Research, Development, and Demonstration, Session 1.2.2: Hydroelectricity, Nuclear Energy and New Renewables, 18th World Energy Congress. [http://www.wec.co.uk] 3. Strong, Marice (2001) Where on Earth are We Going?, (See p. 351-352), 419pp., Random House (forward by Kofi Annan) 4. Criswell, D. R. And R. D. Waldron (1993), "International lunar base and the lunar-based power system to supply Earth with electric power," Acta Astronautica, 29, No. 6: 469-480. 5. Criswell, D. R. (1998), Lunar Solar Power: Lunar unit processes, scales, and challenges, 6 p.p. (ms), ExploSpace: Workshop on Space Exploration and Resources Exploitation, European Space Agency, Cagliari, Sardinia, (October 20 - 22). 6. Criswell, D. R. (1999), Commercial lunar solar power and sustainable growth of the two-planet economy, Proc. Third International Working Group on Lunar Exploration and Exploitation, Solar System Research, Vol. 33, #5, 356-362, Moscow, (October 11-14). 7. Criswell, D.R. 2000 (October) Commercial power for Earth and lunar industrial development, 7pp., 51st Congress of the International Astronautical Federation (IAF). (Rio de Janeiro, Brazil). Paper #IAA-00-IAA.13.2.06.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khachatryan, Vardan
Results are presented from a search for supersymmetric particles in scenarios with a compressed mass spectrum. The data sample corresponds to 19.7 inverse femtobarns of proton-proton collisions recorded by the CMS experiment at √s = 8 TeV. The search targets top squark (more » $$\\tilde{t}$$ pair production in scenarios with mass differences Δm = m($$\\tilde{t}$$ – m($$\\tilde{\\chi}$$ 1 0) below the W-boson mass and with top-squark decays in the four-body mode ($$\\tilde{t}$$ → blv$$\\tilde{\\chi}$$ 1 0), where the ($$\\tilde{\\chi}$$ 1 0) is assumed to be the lightest supersymmetric particle (LSP). The signature includes a high transverse momentum (p T) jet associated with initial-state radiation, one or two low-p T leptons, and significant missing transverse energy. The event yields observed in data are consistent with the expected background contributions from standard model processes. Limits are set on the cross section for top squark pair production as a function of the $$\\tilde{t}$$ and LSP masses. Assuming a 100% branching fraction for the four-body decay mode, top-squark masses below 316 GeV are excluded for Δm = 25 GeV at 95% CL. Furthermore, the dilepton data are also interpreted under the assumption of chargino-neutralino production, with subsequent decays to sleptons or sneutrinos. Assuming a difference between the common $$\\tilde{\\chi}$$ 1 +/$$\\tilde{\\chi}$$ 2 + mass and the LSP mass of 20 GeV and a τ-enriched decay scenario, masses in the range m( $$\\tilde{\\chi}$$ 1 +) <307 GeVare excluded at 95% CL.« less
Long-lived particle searches in R-parity violating MSSM
NASA Astrophysics Data System (ADS)
Zwane, Nosiphiwo
2017-10-01
In this paper we study the constraints on MSSM R-Parity violating decays when the lightest superpartner (LSP) is moderately long lived. In this scenario the LSP vertex displacement may be observed at the LHC. We compute limits on the RPV Yukawa couplings for which the vertex displacement signature maybe used. We then use ATLAS and CMS displaced vertex, meta-stable and prompt decay searches to rule out a region of sparticle masses.
NASA Technical Reports Server (NTRS)
Szatkowski, George N.; Dudley, Kenneth L.; Koppen, Sandra V.; Ely, Jay J.; Nguyen, Truong X.; Ticatch, Larry A.; Mielnik, John J.; Mcneill, Patrick A.
2013-01-01
To support FAA certification airworthiness standards, composite substrates are subjected to lightning direct-effect electrical waveforms to determine performance characteristics of the lightning strike protection (LSP) conductive layers used to protect composite substrates. Test results collected from independent LSP studies are often incomparable due to variability in test procedures & applied practices at different organizations, which impairs performance correlations between different LSP data sets. Under a NASA supported contract, The Boeing Company developed technical procedures and documentation as guidance in order to facilitate a test method for conducting universal common practice lightning strike protection test procedures. The procedures obtain conformity in future lightning strike protection evaluations to allow meaningful performance correlations across data sets. This universal common practice guidance provides the manufacturing specifications to fabricate carbon fiber reinforced plastic (CFRP) test panels, including finish, grounding configuration, and acceptable methods for pretest nondestructive inspection (NDI) and posttest destructive inspection. The test operations guidance elaborates on the provisions contained in SAE ARP5416 to address inconsistencies in the generation of damage protection performance data, so as to provide for maximum achievable correlation across capable lab facilities. In addition, the guidance details a direct effects test bed design to aid in quantification of the multi-physical phenomena surrounding a lightning direct attachment supporting validation data requirements for the development of predictive computational modeling. The lightning test bed is designed to accommodate a repeatable installation procedure to secure the test panel and eliminate test installation uncertainty. It also facilitates a means to capture the electrical waveform parameters in 2 dimensions, along with the mechanical displacement and thermal heating parameters which occur during lightning attachment. Following guidance defined in the universal common practice LSP test documents, protected and unprotected CFRP panels were evaluated at 20, 40 and 100KAmps. This report presents analyzed data demonstrating the scientific usefulness of the common practice approach. Descriptions of the common practice CFRP test articles, LSP test bed fixture, and monitoring techniques to capture the electrical, mechanical and thermal parameters during lightning attachment are presented here. Two methods of measuring the electrical currents were evaluated, inductive current probes and a newly developed fiberoptic sensor. Two mechanical displacement methods were also examined, optical laser measurement sensors and a digital imaging correlation camera system. Recommendations are provided to help users implement the common practice test approach and obtain LSP test characterizations comparable across data sets.
Development and Commercialization of the Lunar Solar Power System
NASA Astrophysics Data System (ADS)
Criswell, D. R.
2002-01-01
The proposed Lunar Solar Power (LSP) System consists of pairs of power bases located on opposite limbs of the Moon as seen from Earth. The power bases collect the solar energy and convert it to beams of microwaves. The microwaves are delivered directly to moonward-facing receivers on Earth or indirectly through relay satellites in orbit about Earth (1, 2, 3, 4). The LSP System may be the only reasonable method for establishing sustainable global energy prosperity within two generations. Commercial power prosperity requires at least 2 kWe/person. For ten billion people this implies 20 TWe and 2,000 TWe-y of electric energy or ~6,000 TWt-y of thermal energy per century (5, 6, 7, 8). A brief overview is presented of a reference LSP System that supplies 20 TWe by 2050. The engineering scales and the cost and benefits of this system are described. In order to provide low cost commercial electric energy, the power bases are made primarily of local lunar materials by machines, facilities, and people deployed from Earth (1, 2, 3). In addition, lunar production machinery can be made primarily from lunar materials. Advantages of this approach, versus the reference LSP System, are discussed. Full-scale production of a LSP System will certainly be proceeded by terrestrial and lunar operation of the production machinery and a small-scale demonstration of the operational system (1). Using government funds to establishing a permanent lunar base and the associated transportation system would significantly reduce the upfront cost for the demonstration of a commercial LSP System (2). The government program would provide a legal framework for commercial development of the LSP System (3, 9). The LSP System offers the opportunity to establish a materials industry on the Moon that can produce a growing mass and variety of goods and enable new services of benefit on the Earth and the Moon (10). New priorities are suggested for civilian space programs that can accelerate the establishment of a demonstration LSP System and growing commercialization of the Moon and cis-lunar space. 1. Criswell, David R. (2001) Lunar Solar Power System: Industrial Research, Development, and Demonstration, Session 1.2.2: Hydroelectricity, Nuclear Energy and New Renewables, 18th World Energy Congress. [http://www.wec.co.ukin the Congress Papers, Discussion Sessions] 2. Criswell, D. R. and Waldron, R. D. 1993. International Lunar Base and Lunar-based Power System to Supply Earth with Electric Power, Acta Astronautica, Vol. 29, No. 6, pp. 469-480. Pergamon Press Ltd. 3. NASA TASK FORCE. 1989 (July) Report of NASA Lunar Energy Enterprise Case Study Task Force. NASA Technical Memo 101652. 163pp. NASA Headquarters, Office of Exploration (Code Z), Washington, D.C. 20546. 4. Moore, T. (2000, Spring) "Renewed interest in space solar power," EPRI Journal, pp. 6-17. 5. World Energy Council (2000) Energy for Tomorrow's World - Acting Now!, 175pp., Atalink Projects Ltd, London. 6. Criswell, David R. (2002) Energy Prosperity within the 21st Century and Beyond: Options and the Unique Roles of the Sun and the Moon. Chapter 9: Innovative Solutions To CO2 Stabilization, R. Watts (editor), Cambridge Un. Press 7. Strong, Maurice (2001) Where on Earth are We Going?, (See p. 351-352), 419pp., Random House (forward by Kofi Annan) 8. Criswell, D. R. and Thompson, R. G. (1996), "Data envelopment analysis of space and terrestrial-based large scale commercial power systems for Earth: A prototype analysis of their relative economic advantages," Solar Energy, 56, No. 1: 119-131. 9 ILEWG (1997), Proc. 2nd International Lunar Workshop, organized by: International Lunar Exploration Working Group, Inst. Space and Astronautical Science, and National Space Development Agency of Japan, Kyoto, Japan, (October 14 - 17), 89pp. 10. Criswell, D.R. 2000 (October) Commercial power for Earth and lunar industrial development, 7pp., 51st Congress of the International Astronautical Federation (IAF). (Rio de Janeiro, Brazil). Paper #IAA-00-IAA.13.2.06.
Biasutti, Michele; Concina, Eleonora; Wasley, David; Williamon, Aaron
2016-01-01
In ensemble performances, group members use particular bodily behaviors as a sort of "language" to supplement the lack of verbal communication. This article focuses on music regulators, which are defined as signs to other group members for coordinating performance. The following two music regulators are considered: body gestures for articulating attacks (a set of movements externally directed that are used to signal entrances in performance) and eye contact. These regulators are recurring observable behaviors that play an important role in non-verbal communication among ensemble members. To understand how they are used by chamber musicians, video recordings of two string quartet performances (Quartet A performing Bartók and Quartet B performing Haydn) were analyzed under two conditions: a low stress performance (LSP), undertaken in a rehearsal setting, and a high stress performance (HSP) during a public recital. The results provide evidence for more emphasis in gestures for articulating attacks (i.e., the perceived strength of a performed attack-type body gesture) during HSP than LSP. Conversely, no significant differences were found for the frequency of eye contact between HSP and LSP. Moreover, there was variability in eye contact during HSP and LSP, showing that these behaviors are less standardized and may change according to idiosyncratic performance conditions. Educational implications are discussed for improving interpersonal communication skills during ensemble performance.
Biasutti, Michele; Concina, Eleonora; Wasley, David; Williamon, Aaron
2016-01-01
In ensemble performances, group members use particular bodily behaviors as a sort of “language” to supplement the lack of verbal communication. This article focuses on music regulators, which are defined as signs to other group members for coordinating performance. The following two music regulators are considered: body gestures for articulating attacks (a set of movements externally directed that are used to signal entrances in performance) and eye contact. These regulators are recurring observable behaviors that play an important role in non-verbal communication among ensemble members. To understand how they are used by chamber musicians, video recordings of two string quartet performances (Quartet A performing Bartók and Quartet B performing Haydn) were analyzed under two conditions: a low stress performance (LSP), undertaken in a rehearsal setting, and a high stress performance (HSP) during a public recital. The results provide evidence for more emphasis in gestures for articulating attacks (i.e., the perceived strength of a performed attack-type body gesture) during HSP than LSP. Conversely, no significant differences were found for the frequency of eye contact between HSP and LSP. Moreover, there was variability in eye contact during HSP and LSP, showing that these behaviors are less standardized and may change according to idiosyncratic performance conditions. Educational implications are discussed for improving interpersonal communication skills during ensemble performance. PMID:27610089
Spectral properties of bright Fermi-detected blazars in the gamma-ray band
Abdo, A. A.
2010-01-28
We investigated the gamma-ray energy spectra of bright blazars of the LAT Bright AGN Sample (LBAS) using Fermi-LAT data. Spectral properties (hardness, curvature, and variability) established using a data set accumulated over 6 months of operation are presented and discussed for different blazar classes and subclasses: flat spectrum radio quasars (FSRQs), low-synchrotron peaked BLLacs (LSP-BLLacs), intermediate-synchrotron peaked BLLacs (ISP-BLLacs), and high-synchrotron peaked BLLacs (HSP-BLLacs). Furthermore, the distribution of photon index (Γ, obtained from a power-law fit above 100 MeV) is found to correlate strongly with blazar subclass. The change in spectral index from that averaged over the 6 months observingmore » period is < 0.2-0.3 when the flux varies by about an order of magnitude, with a tendency toward harder spectra when the flux is brighter for FSRQs and LSP-BLLacs. A strong departure from a single power-law spectrum appears to be a common feature for FSRQs. Finally, we present this feature for some high-luminosity LSP-BLLacs, and a small number of ISP-BLLacs. It is absent in all LBAS HSP-BLLacs. For 3C 454.3 and AO 0235+164, the two brightest FSRQ source and LSP-BLLac source, respectively, a broken power law (BPL) gives the most acceptable of power law, BPL, and curved forms. The consequences of these findings are discussed.« less
Yao, Ruilian; Pan, Keli; Peng, Huasong; Feng, Lei; Hu, Hongbo; Zhang, Xuehong
2018-01-01
Glycerol, an inevitable byproduct of biodiesel, has become an attractive feedstock for the production of value-added chemicals due to its availability and low price. Pseudomonas chlororaphis HT66 can use glycerol to synthesize phenazine-1-carboxamide (PCN), a phenazine derivative, which is strongly antagonistic to fungal phytopathogens. A systematic understanding of underlying mechanisms for the PCN overproduction will be important for the further improvement and industrialization. We constructed a PCN-overproducing strain (HT66LSP) through knocking out three negative regulatory genes, lon , parS , and prsA in HT66. The strain HT66LSP produced 4.10 g/L of PCN with a yield of 0.23 (g/g) from glycerol, which was of the highest titer and the yield obtained among PCN-producing strains. We studied gene expression, metabolomics, and dynamic 13 C tracer in HT66 and HT66LSP. In response to the phenotype changes, the transcript levels of phz biosynthetic genes, which are responsible for PCN biosynthesis, were all upregulated in HT66LSP. Central carbon was rerouted to the shikimate pathway, which was shown by the modulation of specific genes involved in the lower glycolysis, the TCA cycle, and the shikimate pathway, as well as changes in abundances of intracellular metabolites and flux distribution to increase the precursor availability for PCN biosynthesis. Moreover, dynamic 13 C-labeling experiments revealed that the presence of metabolite channeling of 3-phosphoglyceric acid to phosphoenolpyruvate and shikimate to trans-2,3-dihydro-3-hydroxyanthranilic acid in HT66LSP could enable high-yielding synthesis of PCN. The integrated analysis of gene expression, metabolomics, and dynamic 13 C tracer enabled us to gain a more in-depth insight into complex mechanisms for the PCN overproduction. This study provides important basis for further engineering P . chlororaphis for high PCN production and efficient glycerol conversion.
2014-06-30
VANDENBERG AIR FORCE BASE, Calif. – A memorial plaque honoring Laurie K. Walls is affixed to the umbilical tower on Space Launch Complex 2 at Vandenberg Air Force Base in California for the launch of NASA's Orbiting Carbon Observatory-2, or OCO-2. Walls, a thermal analysis engineer with the Launch Services Program, or LSP, at NASA's Kennedy Space Center, died June 4. This dedication to Walls from the members of the launch team was read during the OCO-2 countdown commentary: "The OCO-2 mission has special meaning to NASA's Launch Services Program as we have dedicated it to one of our LSP Teammates, Laurie Walls. Laurie began her career over 30 years ago as a thermal engineer for McDonnell Douglas in Huntsville, Alabama, supporting NASA's Marshall Space Flight Center. She moved to Florida in 1985. Shortly after coming to Florida, Laurie became a civil servant working on the Shuttle program return to flight effort post-Challenger. In 1998, Laurie joined the newly formed Launch Services Program as one of the founding members of the flight analysis group. She served in LSP as the thermal discipline expert until her untimely death earlier this month. Laurie worked thermal issues for numerous NASA Delta II and Atlas V missions. Additionally, she provided key thermal support for both Delta II Heavy development and Atlas V Certification. Laurie was an integral member of LSP's family and she was truly dedicated to NASA and the LSP team. She will be greatly missed. We honor Laurie with a special memorial placed on the SLC-2 umbilical tower, and we thank ULA for helping to make this happen." Launch of OCO-2 is scheduled for 5:56 a.m. EDT on July 1. To learn more about NASA's Launch Services Program, visit http://www.nasa.gov/centers/kennedy/launchingrockets/index.html. Photo credit: NASA/Randy Beaudoin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiraishi, Hiroyuki
Laser-Supported Detonation (LSD), one type of Laser-Supported Plasma (LSP), is considered as the most important phenomena because it can generate high pressure and high temperature for laser absorption. In this study, I have numerically simulated the 1-D LSD waves propagating through a helium gas, in which Multiply-charged ionization model is considered for describing an accurate ionization process.
LSP simulations of fast ions slowing down in cool magnetized plasma
NASA Astrophysics Data System (ADS)
Evans, Eugene S.; Cohen, Samuel A.
2015-11-01
In MFE devices, rapid transport of fusion products, e.g., tritons and alpha particles, from the plasma core into the scrape-off layer (SOL) could perform the dual roles of energy and ash removal. Through these two processes in the SOL, the fast particle slowing-down time will have a major effect on the energy balance of a fusion reactor and its neutron emissions, topics of great importance. In small field-reversed configuration (FRC) devices, the first-orbit trajectories of most fusion products will traverse the SOL, potentially allowing those particles to deposit their energy in the SOL and eventually be exhausted along the open field lines. However, the dynamics of the fast-ion energy loss processes under conditions expected in the FRC SOL, where the Debye length is greater than the electron gyroradius, are not fully understood. What modifications to the classical slowing down rate are necessary? Will instabilities accelerate the energy loss? We use LSP, a 3D PIC code, to examine the effects of SOL plasma parameters (density, temperature and background magnetic field strength) on the slowing down time of fast ions in a cool plasma with parameters similar to those expected in the SOL of small FRC reactors. This work supported by DOE contract DE-AC02-09CH11466.
Failure to obtain an autoimmune response following cryosurgery to the normal rat liver.
Townell, N H; Tsantoulas, D; Holborow, E J; Hobbs, K E
1980-01-01
Smooth muscle antibody (SMA) and anti-liver-specific lipoprotein (anti-LSP) responses were investigated following five different freeze thaw regimes to the normal rat liver. The livers were examined histologically for evidence of autoimmune liver disease. No SMA or anti-LSP was found in any animal and on histological examination the unfrozen part of all livers was normal. It is concluded that cryosurgical damage to the liver is unlikely to provoke an autoimmune response. PMID:7460392
Khachatryan, Vardan
2016-05-16
Results are presented from a search for supersymmetric particles in scenarios with a compressed mass spectrum. The data sample corresponds to 19.7 inverse femtobarns of proton-proton collisions recorded by the CMS experiment at √s = 8 TeV. The search targets top squark (more » $$\\tilde{t}$$ pair production in scenarios with mass differences Δm = m($$\\tilde{t}$$ – m($$\\tilde{\\chi}$$ 1 0) below the W-boson mass and with top-squark decays in the four-body mode ($$\\tilde{t}$$ → blv$$\\tilde{\\chi}$$ 1 0), where the ($$\\tilde{\\chi}$$ 1 0) is assumed to be the lightest supersymmetric particle (LSP). The signature includes a high transverse momentum (p T) jet associated with initial-state radiation, one or two low-p T leptons, and significant missing transverse energy. The event yields observed in data are consistent with the expected background contributions from standard model processes. Limits are set on the cross section for top squark pair production as a function of the $$\\tilde{t}$$ and LSP masses. Assuming a 100% branching fraction for the four-body decay mode, top-squark masses below 316 GeV are excluded for Δm = 25 GeV at 95% CL. Furthermore, the dilepton data are also interpreted under the assumption of chargino-neutralino production, with subsequent decays to sleptons or sneutrinos. Assuming a difference between the common $$\\tilde{\\chi}$$ 1 +/$$\\tilde{\\chi}$$ 2 + mass and the LSP mass of 20 GeV and a τ-enriched decay scenario, masses in the range m( $$\\tilde{\\chi}$$ 1 +) <307 GeVare excluded at 95% CL.« less
NASA Astrophysics Data System (ADS)
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Fasanella, G.; Favart, L.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; De Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Abdelalim, A. A.; Awad, A.; El Sawy, M.; Mahrous, A.; Radi, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Sieber, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Zanetti, A.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; De Castro Manzano, P.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Yu, S. S.; Kumar, Arun; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. f.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Demiroglu, Z. S.; Dozen, C.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Yang, F.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Di Giovanni, G. P.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Hugon, J.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sady, A.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P., III; Majumder, D.; Malek, M.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Malik, S.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Tan, P.; Verzetti, M.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Gomber, B.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.
2016-08-01
Results are presented from a search for supersymmetric particles in scenarios with small mass splittings. The data sample corresponds to 19.7 fb-1 of proton-proton collisions recorded by the CMS experiment at √{ s} = 8 TeV. The search targets top squark (t ˜) pair production in scenarios with mass differences Δm = m (t ˜) - m ( χ˜10) below the W-boson mass and with top-squark decays in the four-body mode (t ˜ → bℓν χ˜10), where the neutralino (χ˜10) is assumed to be the lightest supersymmetric particle (LSP). The signature includes a high transverse momentum (pT) jet associated with initial-state radiation, one or two low-pT leptons, and significant missing transverse energy. The event yields observed in data are consistent with the expected background contributions from standard model processes. Limits are set on the cross section for top squark pair production as a function of the t ˜ and LSP masses. Assuming a 100% branching fraction for the four-body decay mode, top-squark masses below 316 GeV are excluded for Δm = 25 GeV at 95% CL. The dilepton data are also interpreted under the assumption of chargino-neutralino production, with subsequent decays to sleptons or sneutrinos. Assuming a difference between the common χ˜1+/χ˜20 mass and the LSP mass of 20 GeV and a τ-enriched decay scenario, masses in the range m (χ˜1+) < 307 GeV are excluded at 95% CL.
Laminar Soot Processes (Lsp) Experiment: Findings From Ground-Based Measurements
NASA Technical Reports Server (NTRS)
Kim, C. H.; El-Leathy, A. M.; Faeth, G. M.; Xu, F.
2003-01-01
Processes of soot formation and oxidation must be understood in order to achieve reliable computational combustion calculations for nonpremixed (diffusion) flames involving hydrocarbon fuels. Motivated by this observation, the present investigation extended earlier work on soot formation and oxidation in laminar jet ethylene/air and methane/oxygen premixed and acetylene-nitrogen/air diffusion flames at atmospheric pressure in this laboratory, emphasizing soot surface growth and early soot surface oxidation in laminar diffusion flames fueled with a variety of hydrocarbons at pressures in the range 0.1 - 1.0 atm.
Axino LSP baryogenesis and dark matter
Monteux, Angelo; Shin, Chang Sub
2015-05-01
We discuss a new mechanism for baryogenesis, in which the baryon asymmetry is generated by the lightest supersymmetric particle (LSP) decay via baryonic R-parity-violating interactions. As a specific example, we use a supersymmetric axion model with an axino LSP. This scenario predicts large R-parity violation for the stop, and an upper limit on the squark masses between 15 and 130 TeV, for different choices of the Peccei-Quinn scale and the soft Xt terms. We discuss the implications for the nature of dark matter in light of the axino baryogenesis mechanism, and find that both the axion and a metastable gravitinomore » can provide the correct dark matter density. In the axion dark matter scenario, the initial misalignment angle is restricted to be Script O(1). On the other hand, the reheating temperature is linked to the PQ scale and should be higher than 104-105 GeV in the gravitino dark matter scenario.« less
Long-lived stops in MSSM scenarios with a neutralino LSP
NASA Astrophysics Data System (ADS)
Johansen, M.; Edsjö, J.; Hellman, S.; Milstead, D.
2010-08-01
This work investigates the possibility of a long-lived stop squark in supersymmetric models with the neutralino as the lightest supersymmetric particle (LSP). We study the implications of meta-stable stops on the sparticle mass spectra and the dark matter density. We find that in order to obtain a sufficiently long stop lifetime so as to be observable as a stable R-hadron at an LHC experiment, we need to fine tune the mass degeneracy between the stop and the LSP considerably. This increases the stop-neutralino co-anihilation cross section, leaving the neutralino relic density lower than what is expected from the WMAP results for stop masses ≲1.5 TeV/ c 2. However, if such scenarios are realised in nature we demonstrate that the long-lived stops will be produced at the LHC and that stop-based R-hadrons with masses up to 1 TeV/c2 can be detected after one year of running at design luminosity.
Historical data learning based dynamic LSP routing for overlay IP/MPLS over WDM networks
NASA Astrophysics Data System (ADS)
Yu, Xiaojun; Xiao, Gaoxi; Cheng, Tee Hiang
2013-08-01
Overlay IP/MPLS over WDM network is a promising network architecture starting to gain wide deployments recently. A desirable feature of such a network is to achieve efficient routing with limited information exchanges between the IP/MPLS and the WDM layers. This paper studies dynamic label switched path (LSP) routing in the overlay IP/MPLS over WDM networks. To enhance network performance while maintaining its simplicity, we propose to learn from the historical data of lightpath setup costs maintained by the IP-layer integrated service provider (ISP) when making routing decisions. Using a novel historical data learning scheme for logical link cost estimation, we develop a new dynamic LSP routing method named Existing Link First (ELF) algorithm. Simulation results show that the proposed algorithm significantly outperforms the existing ones under different traffic loads, with either limited or unlimited numbers of optical ports. Effects of the number of candidate routes, add/drop ratio and the amount of historical data are also evaluated.
EVIDENCE FOR MASS EJECTION ASSOCIATED WITH LONG SECONDARY PERIODS IN RED GIANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, P. R.; Nicholls, C. P., E-mail: wood@mso.anu.edu.a, E-mail: nicholls@mso.anu.edu.a
2009-12-10
Approximately 30% of luminous red giants exhibit a long secondary period (LSP) of variation in their light curves in addition to a shorter primary period of oscillation. The cause of the LSP has so far defied explanation: leading possibilities are binarity and a nonradial mode of oscillation. Here, large samples of red giants in the Large Magellanic Cloud both with and without LSPs are examined for evidence of an 8 or 24 mum mid-IR excess caused by circumstellar dust. It is found that stars with LSPs show a significant mid-IR excess compared to stars without LSPs. Furthermore, the near-IR Jmore » - K color seems unaffected by the presence of the 24 mum excess. These findings indicate that LSPs cause mass ejection from red giants and that the lost mass and circumstellar dust is most likely in either a clumpy or a disk-like configuration. The underlying cause of the LSP and the mass ejection remains unknown.« less
Mechanism of Prism-Coupled Scanning Tunneling Microscope Light Emission
NASA Astrophysics Data System (ADS)
Iida, Wataru; Ahamed, Jamal U.; Katano, Satoshi; Uehara, Yoichi
2011-09-01
We have investigated the mechanism of scanning tunneling microscope light emission (STM-LE) in a prism-coupled configuration using finite difference time domain analysis. In this configuration, the sample is a metallic thin film evaporated on the bottom surface of a hemispherical glass prism. STM light emitted into the prism (prism-side emission) through the metallic film is measured. Since both localized surface plasmons (LSP) and surface plasmon polaritons (SPP) contribute to prism-side emission, this emission is stronger than that in conventional STM-LE measured from the sample surface side, which is radiated by LSP alone. We show that the spatial resolution of prism-side emission is determined not by the propagation length of SPP, but by the lateral size of LSP, similarly to conventional (i.e., tip side) STM-LE. Thus, we conclude that, by using the prism-coupled configuration, the signal level of STM-LE improves without the loss of spatial resolution attained in tip side emission.
A Process for Capturing the Art of Systems Engineering
NASA Technical Reports Server (NTRS)
Owens, Clark V., III; Sekeres, Carrie; Roumie, Yasmeen
2016-01-01
There is both an art and a science to systems engineering. The science of systems engineering is effectively captured in processes and procedures, but the art is much more elusive. We propose that there is six step process that can be applied to any systems engineering organization to create an environment from which the "art" of that organization can be captured, be allowed to evolve collaboratively and be shared with all members of the organization. This paper details this process as it was applied to NASA Launch Services Program (LSP) Integration Engineering Branch during a pilot program of Confluence, a Commercial Off The Shelf (COTS) wiki tool.
NASA Astrophysics Data System (ADS)
Du, Guangle; Li, Tianjun; Nanopoulos, D. V.; Raza, Shabbar
2015-07-01
We point out that the electroweak fine-tuning problem in the supersymmetric standard models (SSMs) is mainly due to the high energy definition of the fine-tuning measure. We propose supernatural supersymmetry which has an order one high energy fine-tuning measure automatically. The key point is that all the mass parameters in the SSMs arise from a single supersymmetry breaking parameter. In this paper, we show that there is no supersymmetry electroweak fine-tuning problem explicitly in the minimal SSM (MSSM) with no-scale supergravity and Giudice-Masiero mechanism. We demonstrate that the Z -boson mass, the supersymmetric Higgs mixing parameter μ at the unification scale, and the sparticle spectrum can be given as functions of the universal gaugino mass M1 /2. Because the light stau is the lightest supersymmetric particle (LSP) in the no-scale MSSM, to preserve R parity, we introduce a non-thermally generated axino as the LSP dark matter candidate. We estimate the lifetime of the light stau by calculating its two-body and three-body decays to the LSP axino for several values of axion decay constant fa, and find that the light stau has a lifetime ττ ˜1 in [10-4,100 ] s for an fa range [109,1012] GeV . We show that our next to the LSP stau solutions are consistent with all the current experimental constraints, including the sparticle mass bounds, B-physics bounds, Higgs mass, cosmological bounds, and the bounds on long-lived charged particles at the LHC.
NASA Technical Reports Server (NTRS)
Bauman, William H., III
2014-01-01
NASAs LSP customers and the future SLS program rely on observations of upper-level winds for steering, loads, and trajectory calculations for the launch vehicles flight. On the day of launch, the 45th Weather Squadron (45 WS) Launch Weather Officers (LWOs) monitor the upper-level winds and provide forecasts to the launch team via the AMU-developed LSP Upper Winds tool for launches at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station. This tool displays wind speed and direction profiles from rawinsondes released during launch operations, the 45th Space Wing 915-MHz Doppler Radar Wind Profilers (DRWPs) and KSC 50-MHz DRWP, and output from numerical weather prediction models.The goal of this task was to splice the wind speed and direction profiles from the 45th Space Wing (45 SW) 915-MHz Doppler radar Wind Profilers (DRWPs) and KSC 50-MHz DRWP at altitudes where the wind profiles overlap to create a smooth profile. In the first version of the LSP Upper Winds tool, the top of the 915-MHz DRWP wind profile and the bottom of the 50-MHz DRWP were not spliced, sometimes creating a discontinuity in the profile. The Marshall Space Flight Center (MSFC) Natural Environments Branch (NE) created algorithms to splice the wind profiles from the two sensors to generate an archive of vertically complete wind profiles for the SLS program. The AMU worked with MSFC NE personnel to implement these algorithms in the LSP Upper Winds tool to provide a continuous spliced wind profile.The AMU transitioned the MSFC NE algorithms to interpolate and fill data gaps in the data, implement a Gaussian weighting function to produce 50-m altitude intervals in each sensor, and splice the data together from both DRWPs. They did so by porting the MSFC NE code written with MATLAB software into Microsoft Excel Visual Basic for Applications (VBA). After testing the new algorithms in stand-alone VBA modules, the AMU replaced the existing VBA code in the LSP Upper Winds tool with the new algorithms. They then tested the code in the LSP Upper Winds tool with archived data. The tool will be delivered to the 45 WS after the 50-MHz DRWP upgrade is complete and the tool is tested with real-time data. The 50-MHz DRWP upgrade is expected to be finished in October 2014.
Tackling a Hot Paradox: Laminar Soot Processes-2 (LSP-2)
NASA Technical Reports Server (NTRS)
Faeth, Gerard M.; Urban, David L.; Over, Ann (Technical Monitor)
2002-01-01
The last place you want to be in traffic is behind the bus or truck that is belching large clouds of soot onto your freshly washed car. Besides looking and smelling bad, soot is a health hazard. Particles range from big enough to see to microscopic and can accumulate in the lungs, potentially leading to debilitating or fatal lung diseases. Soot is wasted energy, and therein lies an interesting paradox: Soot forms in a flame's hottest regions where you would expect complete combustion and no waste. Soot enhances the emissions of other pollutants (carbon monoxide and polyaromatic hydrocarbons, etc.) from flames and radiates unwanted heat to combustion chambers (a candle's yellowish glow is soot radiating heat), among other effects. The mechanisms of soot formation are among the most important unresolved problems of combustion science because soot affects contemporary life in so many ways. Although we have used fire for centuries, many fundamental aspects of combustion remain elusive, in part because of limits imposed by the effects of gravity on Earth. Hot or warm air rises quickly and draws in fresh cold air behind it, thus giving flames the classical teardrop shape. Reactions occur in a very small zone, too fast for scientists to observe, in detail, what is happening inside the flame. The Laminar Soot Processes (LSP-2) experiments aboard STS-107 will use the microgravity environment of space to eliminate buoyancy effects and thus slow the reactions inside a flame so they can be more readily studied. 'Laminar' means a simple, smooth fuel jet burning in air, somewhat like a butane lighter. This classical flame approximates combustion in diesel engines, aircraft jet propulsion engines, and furnaces and other devices. LSP-2 will expand on surprising results developed from its first two flights in 1997. The data suggest the existence of a universal relationship, the soot paradigm, that, if proven, will be used to model and control combustion systems on Earth. STS-107 experiments also will help set the stage for extended combustion experiments aboard the International Space Station.
2015-12-04
from back-office big - data analytics to fieldable hot-spot systems providing storage-processing-communication services for off- grid sensors. Speed...and power efficiency are the key metrics. Current state-of-the art approaches for big - data aim toward scaling out to many computers to meet...pursued within Lincoln Laboratory as well as external sponsors. Our vision is to bring new capabilities in big - data and internet-of-things applications
New lumbar disc endoprosthesis applied to the patient's anatomic features.
Mróz, Adrian; Skalski, Konstanty; Walczyk, Wojciech
2015-01-01
The paper describes the process of designing, manufacturing and design verification of the intervertebral of a new structure of lumbar disc endoprosthesis - INOP/LSP.1101. Modern and noninvasive medical imagining techniques, make it possible to record results of tests in a digital form, which creates opportunities for further processing. Mimics Innovation Suite software generates three-dimensional virtual models reflecting the real shape and measurements of components of L4-L5 spinal motion segment. With the use of 3D Print technique, physical models of bone structures of the mobile segment of the spine as well as the INOP/LSP.1101 endoprosthesis model were generated. A simplified FEA analysis of stresses in the endoprosthesis was performed to evaluate the designed geometries and materials of the new structure. The endoprosthesis prototype was made of Co28Cr6Mo alloy with the use of selective laser technology. The prototypes were subject to tribological verification with the use of the SBT-03.1 spine simulator. The structure of the endoprosthesis ensures a full reflection of its kinematics, full range of mobility of the motion segment in all anatomical planes as well as restoration of a normal height of the intervertebral space and curvature of the lordosis. The results of the tribological tests confirmed that SLM technology has the potential for production of the human bone and jointendoprostheses.
Characterizing land surface phenology and responses to rainfall in the Sahara desert
NASA Astrophysics Data System (ADS)
Yan, Dong; Zhang, Xiaoyang; Yu, Yunyue; Guo, Wei; Hanan, Niall P.
2016-08-01
Land surface phenology (LSP) in the Sahara desert is poorly understood due to the difficulty in detecting subtle variations in vegetation greenness. This study examined the spatial and temporal patterns of LSP and its responses to rainfall seasonality in the Sahara desert. We first generated daily two-band enhanced vegetation index (EVI2) from half-hourly observations acquired by the Spinning Enhanced Visible and Infrared Imager on board the Meteosat Second Generation series of geostationary satellites from 2006 to 2012. The EVI2 time series was used to retrieve LSP based on the Hybrid Piecewise Logistic Model. We further investigated the associations of spatial and temporal patterns in LSP with those in rainfall seasonality derived from the daily rainfall time series of the Tropical Rainfall Measurement Mission. Results show that the spatial shifts in the start of the vegetation growing season generally follow the rainy season onset that is controlled by the summer rainfall regime in the southern Sahara desert. In contrast, the end of the growing season significantly lags the end of the rainy season without any significant dependence. Vegetation growing season can unfold during the dry seasons after onset is triggered during rainy seasons. Vegetation growing season can be as long as 300 days or more in some areas and years. However, the EVI2 amplitude and accumulation across the Sahara region was very low indicating sparse vegetation as expected in desert regions. EVI2 amplitude and accumulated EVI2 strongly depended on rainfall received during the growing season and the preceding dormancy period.
Gluino coannihilation revisited
Ellis, John; Luo, Feng; Olive, Keith A.
2015-09-21
In this study, some variants of the MSSM feature a strip in parameter space where the lightest neutralino χ is identified as the lightest supersymmetric particle (LSP), the gluino g ~ is the next-to-lightest supersymmetric particle (NLSP) and is nearly degenerate with χ, and the relic cold dark matter density is brought into the range allowed by astrophysics and cosmology by coannihilation with the gluino NLSP. We calculate the relic density along this gluino coannihilation strip in the MSSM, including the effects of gluino-gluino bound states and initial-state Sommerfeld enhancement, and taking into account the decoupling of the gluino andmore » LSP densities that occurs for large values of the squark mass m q ~. We find that bound-state effects can increase the maximum m χ for which the relic cold dark matter density lies within the range favoured by astrophysics and cosmology by as much as ~50% if m q ~/m g ~=1.1 , and that the LSP may weigh up to ~8 TeV for a wide range of m q ~/m g ~≲100 .« less
NASA Astrophysics Data System (ADS)
Messina, Sergio
2007-10-01
The results of a long-term UBV photometric monitoring of the red supergiant (RSG) star V424 Lac are presented. V424 Lac shows multiperiodic brightness variations which can be attributed to pulsational oscillations. A much longer period ( P = 1601 d), that allows us to classify this star as a long secondary period variable star (LSPV) has been also detected. The B - V and U - B color variations related to the long secondary period (LSP) are similar to those related to the shorter periods, supporting the pulsational nature of LSP. The long period brightness variation of V424 Lac is accompanied by a near-UV (NUV) excess, which was spectroscopically detected in a previous study [Massey, P., Plez, B., Levesque, E.M., et al., 2005. ApJ 634, 1286] and which is now found to be variable from photometry. On the basis of the results found for V424 Lac, the NUV excess recently found in a number of RSGs may be due not solely to circumstellar dust but may also have a contribution from a still undetected LSP variability.
Multiverse dark matter: SUSY or axions
NASA Astrophysics Data System (ADS)
D'Eramo, Francesco; Hall, Lawrence J.; Pappadopulo, Duccio
2014-11-01
The observed values of the cosmological constant and the abundance of Dark Matter (DM) can be successfully understood, using certain measures, by imposing the anthropic requirement that density perturbations go non-linear and virialize to form halos. This requires a probability distribution favoring low amounts of DM, i.e. low values of the PQ scale f for the QCD axion and low values of the superpartner mass scale for LSP thermal relics. In theories with independent scanning of multiple DM components, there is a high probability for DM to be dominated by a single component. For example, with independent scanning of f and , TeV-scale LSP DM and an axion solution to the strong CP problem are unlikely to coexist. With thermal LSP DM, the scheme allows an understanding of a Little SUSY Hierarchy with multi-TeV superpartners. Alternatively, with axion DM, PQ breaking before (after) inflation leads to f typically below (below) the projected range of the current ADMX experiment of f = (3 - 30) × 1011 GeV, providing strong motivation to develop experimental techniques for probing lower f.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing, YouLiang; Li, ZhiFeng, E-mail: zfli@mail.sitp.ac.cn; Chen, PingPing
We report the dependence of the near-field optical modes in metal-insulator-metal quantum well infrared photodetector (MIM-QWIP) on the incident angles. Three optical modes are observed and attributed to the 2nd- and the 3rd-order surface plasmon polariton (SPP) modes and the localized surface polariton (LSP) mode. In addition to the observation of a responsivity enhancement of 14 times by the LSP mode, the varying pattern of the three modes against the incident angle are revealed, in which the LSP mode is fixed while the 2nd SPP mode splits into two branches and the 3rd SPP mode red-shifts. The detailed mechanisms aremore » analyzed and numerically simulated. The results fit the experiments very well, demonstrating the wavevector coupling effect between the incident light and the metal gratings on the SPP modes. Our work will pave the way to fully understanding the influence of incident angles on a detector’s response for applying the MIM-QWIP to focal plane arrays.« less
Painful Lumbosacral Plexopathy
Ehler, Edvard; Vyšata, Oldřich; Včelák, Radek; Pazdera, Ladislav
2015-01-01
Abstract Patients frequently suffer from lumbosacral plexus disorder. When conducting a neurological examination, it is essential to assess the extent of muscle paresis, sensory disorder distribution, pain occurrence, and blocked spine. An electromyography (EMG) can confirm axonal lesions and their severity and extent, root affliction (including dorsal branches), and disorders of motor and sensory fiber conduction. Imaging examination, particularly gadolinium magnetic resonance imaging (MRI) examination, ensues. Cerebrospinal fluid examination is of diagnostic importance with radiculopathy, neuroinfections, and for evidence of immunoglobulin synthesis. Differential diagnostics of lumbosacral plexopathy (LSP) include metabolic, oncological, inflammatory, ischemic, and autoimmune disorders. In the presented case study, a 64-year-old man developed an acute onset of painful LSP with a specific EMG finding, MRI showing evidence of plexus affliction but not in the proximal part of the roots. Painful plexopathy presented itself with severe muscle paresis in the femoral nerve and the obturator nerve innervation areas, and gradual remission occurred after 3 months. Autoimmune origin of painful LSP is presumed. We describe a rare case of patient with painful lumbar plexopathy, with EMG findings of axonal type, we suppose of autoimmune etiology. PMID:25929915
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Tongbo, E-mail: tbwei@semi.ac.cn; Wu, Kui; Sun, Bo
2014-06-15
Large-scale Ag nanodisks (NDs) arrays fabricated using nanospherical-lens lithography (NLL) are embedded in p-GaN layer of an InGaN/GaN light-emitting diode (LED) for generating localized surface plasmon (LSP) coupling with the radiating dipoles in the quantum-well (QWs). Based on the Ag NDs with the controlled surface coverage, LSP leads to the improved crystalline quality of regrowth p-GaN, increased photoluminescence (PL) intensity, reduced PL decay time, and enhanced output power of LED. Compared with the LED without Ag NDs, the optical output power at a current of 350 mA of the LSP-enhanced LEDs with Ag NDs having a distance of 20 andmore » 35 nm to QWs is increased by 26.7% and 31.1%, respectively. The electrical characteristics and optical properties of LEDs with embedded Ag NPs are dependent on the distance of between Ag NPs and QWs region. The LED with Ag NDs array structure is also found to exhibit reduced emission divergence, compared to that without Ag NDs.« less
Optical interactions in a plasmonic particle coupled to a metallic film
NASA Astrophysics Data System (ADS)
Lévêque, Gäetan; Martin, Olivier J. F.
2006-10-01
The interplay between localized surface plasmon (LSP) and surface plasmon-polariton (SPP) is studied in detail in a system composed of a three-dimensional gold particle located at a short distance from a gold thin film. Important frequency shifts of the LSP associated with the particle are observed for spacing distances between 0 and 50 nm. Beyond this distance the LSP and SPP resonances overlap, although some cavity effects between the particle and the film can still be observed. In particular, when the spacing increases the field in the cavity decreases more slowly than one would expect from a simple image dipole interpretation. For short separations the coupling between the particle and the film can produce a dramatic enhancement of the electromagnetic field in the space between them, where the electric field intensity can reach 5000 times that of the illumination field. Several movies show the spectral and time evolutions of the field distribution in the system both in and out of resonance. The character of the different modes excited in the system is studied. They include dipolar and quadrupolar modes, the latter exhibiting essentially a magnetic response.
Investigation on surface-plasmon-enhanced light emission of InGaN/GaN multiple quantum wells
NASA Astrophysics Data System (ADS)
Yu, Zhenzhong; Li, Qiang; Fan, Qigao; Zhu, Yixin
2018-05-01
We demonstrate surface-plasmon (SP) enhanced light emission from InGaN/GaN near ultraviolet (NUV) multiple quantum wells (MQWs) using Ag thin films and nano-particles (NPs). Two types of Ag NP arrays are fabricated on the NUV-MQWs, one is fabricated on p-GaN layer with three different sizes of about 120, 160 and 240 nm formed by self-assembled process, while the other is embedded close to the MQWs. In addition, the influence of the surface plasmon polariton (SPP) and localized surface plasmon (LSP) in NUV-MQWs has been investigated by photoluminescence (PL) measurement. Both PL measurements and theoretical simulation results show that the NUV light would be extracted more effectively under LSP mode than that of SPP mode. The highest enhancement of PL intensity is increased by 324% for the sample with NPs embedded in etched p-GaN near the MQWs as compared with the bare MQWs, also is about 1.24 times higher than the MQW sample covered with Ag NPs on the surface, indicating strong surface scattering and SP coupling between Ag NPs and NUV-MQWs.
NASA Astrophysics Data System (ADS)
Liu, L.; Zhang, X.
2017-12-01
Land surface phenology (LSP) is an important indicator of ecosystem response to global change and reflects the exchange of water, energy, and carbon between the land surface and the atmosphere. However, the extraction of LSP in tropical Southeast Asia is very challenging due to weak seasonal variation and frequent cloud commination during the vegetation growing season. The successful launch of Advanced Himawari Imager (AHI) onboard Himawari-8 geostationary satellite in October 2014 provides large opportunities to obtain cloud-free observations in daily time series data because it collects data every 10 minutes at a spatial resolution of 500m-2000 m. The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard operational Suomi National Polar-orbiting Partnership (Suomi NPP) satellite provides global moderate-resolution (375-750 m) data once every day. To compare the capability of AHI and VIIRS observations to monitor LSP in frequently-cloud-covered tropical Southeast Asia, this research first extracted LSP metrics based on the time series of daily two-band enhanced vegetation index (EVI2) from AHI and VIIRS using a hybrid piecewise logistic model in 2015 and 2016. The daily AHI EVI2 was calculated from diurnal observations after EVI2 at every 10 minutes was angularly corrected using an empirical kernel-driven model to eliminate the effect caused by the varying sun-satellite geometry. Subsequently, we compared the phenological transition dates of greenup onset and dormancy onset retrieved from AHI and VIIRS data at both pixel level and country level. Finally, we assessed the influences of the quality of daily observation from AHI and VIIRS on the reconstruction of EVI2 time series and the retrievals of phenological dates.
Martín Garzón, Oscar Dario; Azhar, Raed A; Brunacci, Leonardo; Ramirez-Troche, Nelson Emilio; Medina Navarro, Luis; Hernández, Luis Cesar; Nuñez Bragayrac, Luciano; Sotelo Noguera, René Javier
2016-03-01
To compare preoperative, intraoperative, and postoperative variables at 1, 6, and 12 months after laparoscopic simple prostatectomy (LSP), robotic simple prostatectomy (RSP), and intrafascial robotic simple prostatectomy (IF-RSP). From January 2003 to November 2014, 315 simple prostatectomies were performed using three techniques, LSP, RSP, and IF-RSP; of the patients who underwent these procedures, 236 met the inclusion criteria for this study. No statistically significant difference (SSD) was found in preoperative or perioperative variables. Of the postoperative variables that were analyzed, an SSD (p > 0.01) in prostate-specific antigen levels was found, with levels of 0.07 ± 1.1 ng/mL following IF-RSP, and the detection rate of prostate adenocarcinoma (26%) and high-grade prostatic intraepithelial neoplasia (HG-PIN; 12%) was higher for IF-RSP. We also found that lower International Prostate Symptom Scores (IPSS) were associated with LSP, at 4.8 ± 3.2. Erectile function was reduced in IF-RSP patients in the first 6 months after surgery but was similar in all patient groups at 12 months after surgery; continence and other measured parameters were also similar at 12 months for all three techniques. The IF-RSP technique is safe and effective, with results at 1-year follow-up for continence, IPSS, and Sexual Health Inventory for Men scores similar to those for the LSP and RSP techniques. IF-RSP also offers the advantages that it does not require postoperative irrigation, has an increased ability to detect prostate cancer (CA) and HG-PIN, and avoids the risk of future cancer and subsequent reintervention for possible new prostate growth.
Shifting relative importance of climatic constraints on land surface phenology
NASA Astrophysics Data System (ADS)
Garonna, Irene; de Jong, Rogier; Stöckli, Reto; Schmid, Bernhard; Schenkel, David; Schimel, David; Schaepman, Michael E.
2018-02-01
Land surface phenology (LSP), the study of seasonal dynamics of vegetated land surfaces from remote sensing, is a key indicator of global change, that both responds to and influences weather and climate. The effects of climatic changes on LSP depend on the relative importance of climatic constraints in specific regions—which are not well understood at global scale. Understanding the climatic constraints that underlie LSP is crucial for explaining climate change effects on global vegetation phenology. We used a combination of modelled and remotely-sensed vegetation activity records to quantify the interplay of three climatic constraints on land surface phenology (namely minimum temperature, moisture availability, and photoperiod), as well as the dynamic nature of these constraints. Our study examined trends and the relative importance of the three constrains at the start and the end of the growing season over eight global environmental zones, for the past three decades. Our analysis revealed widespread shifts in the relative importance of climatic constraints in the temperate and boreal biomes during the 1982-2011 period. These changes in the relative importance of the three climatic constraints, which ranged up to 8% since 1982 levels, varied with latitude and between start and end of the growing season. We found a reduced influence of minimum temperature on start and end of season in all environmental zones considered, with a biome-dependent effect on moisture and photoperiod constraints. For the end of season, we report that the influence of moisture has on average increased for both the temperate and boreal biomes over 8.99 million km2. A shifting relative importance of climatic constraints on LSP has implications both for understanding changes and for improving how they may be modelled at large scales.
Haldavnekar, Richa Vivek; Tekur, Padmini; Nagarathna, Raghuram; Nagendra, Hongasandra Ramarao
2014-01-01
Background: Studies have shown that Integrated Yoga reduces pain, disability, anxiety and depression and increases spinal flexibility and quality-of-life in chronic low back pain (CLBP) patients. Objective: The objective of this study was to compare the effect of two yoga practices namely laghu shankha prakshalana (LSP) kriya, a yogic colon cleansing technique and back pain specific asanas (Back pain special technique [BST]) on pain, disability, spinal flexibility and state anxiety in patients with CLBP. Materials and Methods: In this randomized control (self as control) study, 40 in-patients (25 were males, 15 were females) between 25 and 70 years (44.05 ± 13.27) with CLBP were randomly assigned to receive LSP or BST sessions. The measurements were taken immediately before and after each session of either of the practices (30 min) in the same participant. Randomization was used to decide the day of the session (3rd or 5th day after admission) to ensure random distribution of the hang over effect of the two practices. Statistical analysis was performed using the repeated measures analysis of variance. Results: Significant group * time interaction (P < 0.001) was observed in 11 point numerical rating scale, spinal flexibility (on Leighton type Goniometer) and (straight leg raise test in both legs), Oswestry Disability Index, State Anxiety (XI component of Spieldberger's state and trait anxiety inventory. There was significantly (P < 0.001, between groups) better reduction in LSP than BST group on all variables. No adverse effects were reported by any participant. Conclusion: Clearing the bowel by yoga based colon cleansing technique (LSP) is safe and offers immediate analgesic effect with reduced disability, anxiety and improved spinal flexibility in patients with CLBP. PMID:25035620
The Study on the Physical Properties of Blazar Jets
NASA Astrophysics Data System (ADS)
Kang, S. J.
2017-09-01
Active galactic nuclei (AGNs) belong to a special class of active galaxies, and have violent active phenomena and intense physical processes in the nuclei. Blazar is a subclass of AGNs, and has a relativistic jet with a small jet viewing angle. Therefore, the boosting effect is very important, and almost all the observed radiation is dominated by the jet. The relativistic jet physics is not very clear yet, such as the jet formation, collimation, and matter content etc. The multi-waveband radiation of blazar is dominated by jet, which provides an ideal laboratory for studying the jet physics. The first chapter of this thesis introduces the recent progress of AGNs and blazars. We further introduce the jet model that commonly used in blazars in the second chapter. In the third chapter, we fit simultaneously (or quasi-simultaneously) the multi-waveband spectral energy distributions (SEDs) for a sample of low-synchrotron-peaked (LSP) blazars with the jet model and χ2 procedure, which takes into account different soft photon fields (broad line region or a molecular torus). We find that the SED fitting with an external soft photon from IR torus is systematically better than that from the broad line region (BLR) based on a χ2 test, which suggests that the γ-ray emitting region most possibly stays outside the BLR. The minimum electron Lorentz factor, γmin, is constrained from the modeling of these LSP blazars with good soft X-ray data, and in a range from 5 to 160 (with a median value of 55), which plays a key role in jet power estimation. Assuming one-to-one ratio of proton and electron, we find that the jet power for LSP blazars is systematically higher than that of Fanaroff-Riley type II (FR II) radio galaxies. A possible reason for this is that there are some positrons in the jets of these blazars. If this is the case, the jet power will be reduced. Therefore, we propose a mixed composition of e±-p in the jets of these LSP blazars. If we assume that the jet power of LSP blazars is the same as that of FR IIs, we find that it is an electron-positron pair dominated leptonic jet in these blazars, and the number density of electron-positron pairs is several times higher than that of electron-proton pairs, but the jet power is still dominated by protons. For the high-synchrotron-peaked (HSP) BL Lac PKS 1424+240, the SED fitting with the synchrotron self-Compton (SSC) model gave unreasonable fitting parameters (e.g., a very large Doppler factor δ). In this work, we take into account the possible external soft photon field, and then fit the multi-waveband SEDs of blazar PKS 1424+240 with one-zone leptonic jet models in both states. We find the SSC+external-Compton (EC) model can give a better fitting result if the EC process is included. However, the needed energy density of external soft photon field (U_{ext}) is much lower than the typical value. This result is consistent with the results of some other BL Lacs, where the BLR or torus is very weak or disappearing. It means that there is evolution of the energy density of external soft photon field with decreasing of the luminosity of blazars (the flat spectrum radio quasars (FSRQs)-BL Lac: low energy peaked BL Lac (LBL)-intermediate energy peaked BL Lac (IBL)-high energy peaked BL Lac (HBL)). And on this basis, in the chapter 5, we further explore the possible evolution of the external soft photon field of blazars based on the EC process. We employ the one-zone homogeneous leptonic jet model and χ2 procedure to fit simultaneously or quasi-simultaneously multi-waveband SEDs for a sample of blazars with a wide distribution of luminosities. In our model, we set Uext as a free parameter. Studying the energy density of the external photon field in different subclasses of blazars, we find: (1) the Uext of the high luminosity blazar (FSRQs and LBLs) keeps roughly as a constant, which is, however, smaller than that constrained from BLR observations. Assuming IR as the source of soft photons, the Uext is roughly consistent with the torus observational result. This further supports the result that the external soft photon field may originate from torus, and the γ-ray emitting region of these LSP blazars locates outside the BLR. (2) For some IBLs, the EC process may be still needed, but the photon energy density is less than the typical values of the photon energy density of BLR (or dust torus), where the Uext decreases with decreasing of the luminosity. This evolution is consistent with the BLR or torus as directly constrained from the radio-quiet AGN. The final part summarizes the study on the subject, and makes some suggestions for further researches.
Assessment of multiresolution segmentation for delimiting drumlins in digital elevation models.
Eisank, Clemens; Smith, Mike; Hillier, John
2014-06-01
Mapping or "delimiting" landforms is one of geomorphology's primary tools. Computer-based techniques such as land-surface segmentation allow the emulation of the process of manual landform delineation. Land-surface segmentation exhaustively subdivides a digital elevation model (DEM) into morphometrically-homogeneous irregularly-shaped regions, called terrain segments. Terrain segments can be created from various land-surface parameters (LSP) at multiple scales, and may therefore potentially correspond to the spatial extents of landforms such as drumlins. However, this depends on the segmentation algorithm, the parameterization, and the LSPs. In the present study we assess the widely used multiresolution segmentation (MRS) algorithm for its potential in providing terrain segments which delimit drumlins. Supervised testing was based on five 5-m DEMs that represented a set of 173 synthetic drumlins at random but representative positions in the same landscape. Five LSPs were tested, and four variants were computed for each LSP to assess the impact of median filtering of DEMs, and logarithmic transformation of LSPs. The testing scheme (1) employs MRS to partition each LSP exhaustively into 200 coarser scales of terrain segments by increasing the scale parameter ( SP ), (2) identifies the spatially best matching terrain segment for each reference drumlin, and (3) computes four segmentation accuracy metrics for quantifying the overall spatial match between drumlin segments and reference drumlins. Results of 100 tests showed that MRS tends to perform best on LSPs that are regionally derived from filtered DEMs, and then log-transformed. MRS delineated 97% of the detected drumlins at SP values between 1 and 50. Drumlin delimitation rates with values up to 50% are in line with the success of manual interpretations. Synthetic DEMs are well-suited for assessing landform quantification methods such as MRS, since subjectivity in the reference data is avoided which increases the reliability, validity and applicability of results.
NASA Astrophysics Data System (ADS)
Osés, J.; Fuentes, G. G.; Santo Domingo, S.; Miguel, I.; Gimeno, S.; Carreras, L.; Peyre, P.; Gorny, C.
2017-05-01
100Cr6 steel (AISI 52100) is one of the most used steel grades in the manufacturing of through hardening bearings mainly due to its properties: controlled impurities during steel making process, high hardenability and well known mechanical properties such as wear and fatigue resistance on clean environments. These characteristics play an important role on the performance of a bearing together with the bearing design, loads and environment. However, there is an increasing set of demanding applications where the above mentioned steel does not fulfil the required needs and thus, bearing manufacturers continuously work on the development of technologies to improve the bearing performance. Nowadays thermochemical treatments (TCT), such as carbonitriding are being applied to this steel in order to enhance the performance of such pieces in contaminated environment, where particles can produce defects on the raceway, increasing the onset of defects that eventually lead to premature fail. These treatments induce the formation of carbides and nitrides which are directly related to the enhancement of the wear resistance and also to increasing the amount of Retained Austenite (RA) in the surface which may have a beneficial effect as it delays the crack propagation on subsurface regions, then increasing bearing fatigue life. In this work, different TCTs have been applied to 100Cr6 steel flat samples. Using a tribometer (ball-on-disc configuration) and a grinding machine, surface and in-depth wear resistance measurements have been carried out, obtaining wear resistance profiles that have been correlated with the microstructure, microhardness profiles and RA content. The most promising TCT has been combined either with Laser Shock Peening (LSP) treatments or carbonaceous Physical Vapour Deposition (PVD) coatings with the aim of improving not only the wear resistance but also the CoF of the duplex treated sample. The results obtained on flat samples are promising; the combination of treatments produces long-lasting low CoF and a reduction of 60% in the wear rate. However, the treatments should be applied on real pieces and tested in a test bench in order to obtain more appropriate data about the lifespan of duplex treated bearings.
Dislocation structure produced by an ultrashort shock pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuda, Tomoki, E-mail: t-matsu@mapse.eng.osaka-u.ac.jp; Hirose, Akio; Sano, Tomokazu
We found an ultrashort shock pulse driven by a femtosecond laser pulse on iron generates a different dislocation structure than the shock process which is on the nanosecond timescale. The ultrashort shock pulse produces a highly dense dislocation structure that varies by depth. According to transmission electron microscopy, dislocations away from the surface produce microbands via a network structure similar to a long shock process, but unlike a long shock process dislocations near the surface have limited intersections. Considering the dislocation motion during the shock process, the structure near the surface is attributed to the ultrashort shock duration. This approachmore » using an ultrashort shock pulse will lead to understanding the whole process off shock deformation by clarifying the early stage.« less
PQ-symmetry for a small Dirac neutrino mass, dark radiation and cosmic neutrinos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Wan-Il, E-mail: wipark@kias.re.kr
2014-06-01
We propose a supersymmetric scenario in which the small Yukawa couplings for the Dirac neutrino mass term are generated by the spontaneous-breaking of Pecci-Quinn symmetry. In this scenario, a right amount of dark matter relic density can be obtained by either right-handed sneutrino or axino LSP, and a sizable amount of axion dark radiation can be obtained. Interestingly, the decay of right-handed sneutrino NLSP to axino LSP is delayed to around the present epoch, and can leave an observable cosmological background of neutrinos at the energy scale of O(10−100) GeV.
Three layers multi-granularity OCDM switching system based on learning-stateful PCE
NASA Astrophysics Data System (ADS)
Wang, Yubao; Liu, Yanfei; Sun, Hao
2017-10-01
In the existing three layers multi-granularity OCDM switching system (TLMG-OCDMSS), F-LSP, L-LSP and OC-LSP can be bundled as switching granularity. For CPU-intensive network, the node not only needs to compute the path but also needs to bundle the switching granularity so that the load of single node is heavy. The node will paralyze when the traffic of the node is too heavy, which will impact the performance of the whole network seriously. The introduction of stateful PCE(S-PCE) will effectively solve these problems. PCE is composed of two parts, namely, the path computation element and the database (TED and LSPDB), and returns the result of path computation to PCC (path computation clients) after PCC sends the path computation request to it. In this way, the pressure of the distributed path computation in each node is reduced. In this paper, we propose the concept of Learning PCE (L-PCE), which uses the existing LSPDB as the data source of PCE's learning. By this means, we can simplify the path computation and reduce the network delay, as a result, improving the performance of network.
Optimal Background Estimators in Single-Molecule FRET Microscopy.
Preus, Søren; Hildebrandt, Lasse L; Birkedal, Victoria
2016-09-20
Single-molecule total internal reflection fluorescence (TIRF) microscopy constitutes an umbrella of powerful tools that facilitate direct observation of the biophysical properties, population heterogeneities, and interactions of single biomolecules without the need for ensemble synchronization. Due to the low signal/noise ratio in single-molecule TIRF microscopy experiments, it is important to determine the local background intensity, especially when the fluorescence intensity of the molecule is used quantitatively. Here we compare and evaluate the performance of different aperture-based background estimators used particularly in single-molecule Förster resonance energy transfer. We introduce the general concept of multiaperture signatures and use this technique to demonstrate how the choice of background can affect the measured fluorescence signal considerably. A new, to our knowledge, and simple background estimator is proposed, called the local statistical percentile (LSP). We show that the LSP background estimator performs as well as current background estimators at low molecular densities and significantly better in regions of high molecular densities. The LSP background estimator is thus suited for single-particle TIRF microscopy of dense biological samples in which the intensity itself is an observable of the technique. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Arguin, Hélène; Tremblay, Angelo; Blundell, John E; Després, Jean-Pierre; Richard, Denis; Lamarche, Benoît; Drapeau, Vicky
2017-11-01
The aim of this study was to evaluate the impact of a non-restrictive satiating diet in men displaying various degrees of satiety efficiency. In all, sixty-nine obese men aged 41·5 (sd 5·7) years were randomly assigned to a control (10-15, 55-60 and 30 % energy as protein, carbohydrate and lipid, respectively; n 34) or satiating (20-25, 45-50 and 30-35 % energy as protein, carbohydrate and lipid, respectively; n 35) diet for 16 weeks, and were classified as having a low (LSP) or high (HSP) satiety phenotype. Both diets were consumed ad libitum. Changes in body weight, BMI, percent fat mass, waist circumference, satiety responsiveness and eating behaviour traits were assessed following the intervention. Dropout rates were higher in the control diet (44·1 %) compared with the satiating diet (8·6 %). Decreases in body weight, BMI and waist circumference were significant in both groups, yet HSP individuals lost more body weight than LSP individuals (P=0·048). Decreases in % fat mass were greater in the satiating diet (LSP: -2·1 (sd 2·1) %; P<0·01 and HSP: -3·0 (sd 2·5) %; P<0·001) compared with the control diet (LSP: -1·1 (sd 2·5) % and HSP: -1·3 (sd 2·6) %) (P=0·034). Satiety responsiveness was markedly improved in the satiating diet, whereas no significant changes were observed in the control group. Changes in dietary restraint (+3·3 (sd 2·9) to +7·2 (sd 5·5)), flexible control (+0·9 (sd 1·4) to +2·3 (sd 2·7)), rigid control (+2·2 (sd 1·5) to +2·5 (sd 2·8)), disinhibition (-2·8 (sd 3·7) to -3·2 (sd 2·6)) and susceptibility to hunger (-2·7 (sd 4·1) to -4·6 (sd 3·9)) were similar between the diets. Compared with the control diet, the satiating diet favoured adherence, decreased % fat mass and improved satiety responsiveness in both HSP and LSP individuals.
NASA Technical Reports Server (NTRS)
Prevey, Paul S.; Shepard, Michael; Ravindranath, Ravi A.; Gabb, Timothy
2003-01-01
Surface enhancement technologies such as shot peening, laser shock peening (LSP), and low plasticity burnishing (LPB) can provide substantial fatigue life improvement. However, to be effective, the compressive residual stresses that increase fatigue strength must be retained in service. For successful integration into turbine design, the process must be affordable and compatible with the manufacturing environment. LPB provides thermally stable compression of comparable magnitude and even greater depth than other methods, and can be performed in conventional machine shop environments on CNC machine tools. LPB provides a means to extend the fatigue lives of both new and legacy aircraft engines and ground-based turbines. Improving fatigue performance by introducing deep stable layers of compressive residual stress avoids the generally cost prohibitive alternative of modifying either material or design. The X-ray diffraction based background studies of thermal and mechanical stability of surface enhancement techniques are briefly reviewed, demonstrating the importance of minimizing cold work. The LPB process, tooling, and control systems are described. An overview of current research programs conducted for engine OEMs and the military to apply LPB to a variety of engine and aging aircraft components are presented. Fatigue performance and residual stress data developed to date for several case studies are presented including: * The effect of LPB on the fatigue performance of the nickel based super alloy IN718, showing fatigue benefit of thermal stability at engine temperatures. * An order of magnitude improvement in damage tolerance of LPB processed Ti-6-4 fan blade leading edges. * Elimination of the fretting fatigue debit for Ti-6-4 with prior LPB. * Corrosion fatigue mitigation with LPB in Carpenter 450 steel. *Damage tolerance improvement in 17-4PH steel. Where appropriate, the performance of LPB is compared to conventional shot peening after exposure to engine operating temperatures.
Gangaiah, Dharanesh; Zhang, Xinjun; Baker, Beth; Fortney, Kate R; Gao, Hongyu; Holley, Concerta L; Munson, Robert S; Liu, Yunlong; Spinola, Stanley M
2016-05-01
Haemophilus ducreyi causes the sexually transmitted disease chancroid in adults and cutaneous ulcers in children. In humans, H. ducreyi resides in an abscess and must adapt to a variety of stresses. Previous studies (D. Gangaiah, M. Labandeira-Rey, X. Zhang, K. R. Fortney, S. Ellinger, B. Zwickl, B. Baker, Y. Liu, D. M. Janowicz, B. P. Katz, C. A. Brautigam, R. S. Munson, Jr., E. J. Hansen, and S. M. Spinola, mBio 5:e01081-13, 2014, http://dx.doi.org/10.1128/mBio.01081-13) suggested that H. ducreyi encounters growth conditions in human lesions resembling those found in stationary phase. However, how H. ducreyi transcriptionally responds to stress during human infection is unknown. Here, we determined the H. ducreyi transcriptome in biopsy specimens of human lesions and compared it to the transcriptomes of bacteria grown to mid-log, transition, and stationary phases. Multidimensional scaling showed that the in vivo transcriptome is distinct from those of in vitro growth. Compared to the inoculum (mid-log-phase bacteria), H. ducreyi harvested from pustules differentially expressed ∼93 genes, of which 62 were upregulated. The upregulated genes encode homologs of proteins involved in nutrient transport, alternative carbon pathways (l-ascorbate utilization and metabolism), growth arrest response, heat shock response, DNA recombination, and anaerobiosis. H. ducreyi upregulated few genes (hgbA, flp-tad, and lspB-lspA2) encoding virulence determinants required for human infection. Most genes regulated by CpxRA, RpoE, Hfq, (p)ppGpp, and DksA, which control the expression of virulence determinants and adaptation to a variety of stresses, were not differentially expressed in vivo, suggesting that these systems are cycling on and off during infection. Taken together, these data suggest that the in vivo transcriptome is distinct from those of in vitro growth and that adaptation to nutrient stress and anaerobiosis is crucial for H. ducreyi survival in humans. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Gravitino dark matter and the lithium primordial abundance within a pre-BBN modified expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailly, Sean, E-mail: sean.bailly@lapp.in2p3.fr
2011-03-01
We present supersymmetric scenarios with gravitino LSP and stau NLSP in the case of a non-standard model of cosmology with the addition of a dark component in the pre-BBN era. In the context of the standard model of cosmology, gravitino LSP has drawn quite some attention as it is a good candidate for dark matter. It is produced in scattering processes during reheating after inflation and from the decay of the stau. With a long lifetime, the stau decays during Big Bang Nucleosynthesis. It is strongly constrained by the abundance of light elements but can however address the known ''BBNmore » lithium problem''. It requires fairly massive staus m{sub τ-tilde}∼> 1TeV and puts an upper bound on the reheating temperature T{sub R} ≅ 10{sup 7} GeV which does not satisfy the requirements for thermal leptogenesis. For the non-standard cosmological scenario, the reheating temperature bound can be strongly relaxed T{sub R} >> 10{sup 9}GeV and the lithium-7 problem solved with a stau typical mass of m{sub τ-tilde} ∼ 600–700 GeV and down to ∼ 400GeV with a very important dark component that could enable possible production and detection at the LHC.« less
Enhanced Optical Transmission Mediated by Localized Plasmons in Anisotropic, 3D Nanohole Arrays
Yang, Jiun-Chan; Gao, Hanwei; Suh, Jae Yong; Zhou, Wei; Lee, Min Hyung; Odom, Teri W.
2010-01-01
This paper describes 3D nanohole arrays whose high optical transmission is mediated more by localized surface plasmon (LSP) excitations than by surface plasmon polaritons (SPPs). First, LSPs on 3D hole arrays lead to optical transmission an order of magnitude higher than 2D planar hole arrays. Second, LSP-mediated transmission is broadband and more tunable than SPP-enhanced transmission which is restricted by Bragg coupling. Third, for the first time, two types of surface plasmons can be selectively excited and manipulated on the same plasmonic substrate. This new plasmonic substrate fabricated by high-throughput nanolithography techniques paves the way for cutting-edge optoelectronic and biomedical applications. PMID:20698633
NASA Astrophysics Data System (ADS)
Kurihara, Shin'ichi
The Linked Systems Project (LSP) is the first network project based on the Open Systems Interconnection (OSI) in the world. The purpose of the project is to interconnect between three major bibliographic utilities and LC, and to perform as one system on the whole. The first application developed for the LSP is the sharing of name authority data based on the Name Authority Cooperative (NACO) Project. In 1985, LC began to send name authority records to RLG/RLIN. Since 1987, RLG/RLIN and OCLC send name authority records to LC. Bibliographic records will be sent mutually between three major bibliographic utilities and LC near future.
2013-11-28
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Atlas V Spaceflight Operations Center NASA managers monitor progress of the countdown for the launch the agency's Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. From the left are Amanda Mitskevich, program manager of NASA's Launch Services Program, or LSP, and Chuck Dovale, deputy program manager of LSP. MAVEN was launched on Nov. 18, 2013 from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Kim Shiflett
NASA Astrophysics Data System (ADS)
Yunfeng, Lin; Xiaoqi, Hu; Lin, Hu
2018-04-01
A composite structure design metamaterial absorber is designed and simulated. The proposed composite structure consists of a double-hole sub-structure and a double-metallic particle sub-structure. The damping constant of bulk gold layer is optimized to eliminate the adverse effects of the grain boundary and the surface scattering of thin films on the absorption property. Two absorption peaks (A1 = 58%, A2 = 23%) are achieved based on the localized surface plasmon (LSP) modes resonance. Moreover, the plasmonic hybridization phenomenon between LSP modes is found, which leads to the absorption enhancement between two absorption peaks. The proposed metamaterial absorber holds the property of wide-angle incidence.
Zhu, Wenquan; Chen, Guangsheng; Jiang, Nan; Liu, Jianhong; Mou, Minjie
2013-01-01
Carbon Flux Phenology (CFP) can affect the interannual variation in Net Ecosystem Exchange (NEE) of carbon between terrestrial ecosystems and the atmosphere. In this study, we proposed a methodology to estimate CFP metrics with satellite-derived Land Surface Phenology (LSP) metrics and climate drivers for 4 biomes (i.e., deciduous broadleaf forest, evergreen needleleaf forest, grasslands and croplands), using 159 site-years of NEE and climate data from 32 AmeriFlux sites and MODIS vegetation index time-series data. LSP metrics combined with optimal climate drivers can explain the variability in Start of Carbon Uptake (SCU) by more than 70% and End of Carbon Uptake (ECU) by more than 60%. The Root Mean Square Error (RMSE) of the estimations was within 8.5 days for both SCU and ECU. The estimation performance for this methodology was primarily dependent on the optimal combination of the LSP retrieval methods, the explanatory climate drivers, the biome types, and the specific CFP metric. This methodology has a potential for allowing extrapolation of CFP metrics for biomes with a distinct and detectable seasonal cycle over large areas, based on synoptic multi-temporal optical satellite data and climate data. PMID:24386441
2014-01-01
In the exploratory study presented in this paper, an attempt was made to develop different mixtures of ultrahigh performance concrete (UHPC) using various locally available natural and industrial waste materials as partial replacements of silica fume and sand. Materials such as natural pozzolana (NP), fly ash (FA), limestone powder (LSP), cement kiln dust (CKD), and pulverized steel slag (PSS), all of which are abundantly available in Saudi Arabia at little or no cost, were employed in the development of the UHPC mixtures. A base mixture of UHPC without replacement of silica fume or sand was selected and a total of 24 trial mixtures of UHPC were prepared using different percentages of NP, FA, LSP, CKD, and PSS, partially replacing the silica fume and sand. Flow and 28-d compressive strength of each UHPC mixture were determined to finally select those mixtures, which satisfied the minimum flow and strength criteria of UHPC. The test results showed that the utilization of NP, FA, LSP, CKD, and PSS in production of UHPC is possible with acceptable flow and strength. A total of 10 UHPC mixtures were identified with flow and strength equal to or more than the minimum required. PMID:25197709
NASA Astrophysics Data System (ADS)
Fantoni, Alessandro; Fernandes, Miguel; Vygranenko, Yuri; Vieira, Manuela; Oliveira-Silva, Rui P.; Prazeres, D. M. F.; Ribeiro, Ana P. C.; Alegria, Elisabete C. B. A.
2018-02-01
Localized surface plasmons (LSP) can be excited in metal nanoparticles (NP) by UV, visible or NIR light and are described as coherent oscillation of conduction electrons. Taking advantage of the tunable optical properties of NPs, we propose the realization of a plasmonic structure, based on the LSP interaction of NP with an embedding matrix of amorphous silicon. This study is directed to define the characteristics of NP and substrate necessary to the development of a LSP proteomics sensor that, once provided immobilized antibodies on its surface, will screen the concentration of selected antigens through the determination of LSPR spectra and peaks of light absorption. Metals of interest for NP composition are: Aluminium and Gold. Recent advances in nanoparticle production techniques allow almost full control over shapes and size, permitting full control over their optical and plasmonic properties and, above all, over their responsive spectra. Analytical solution is only possible for simple NP geometries, therefore our analysis, is realized recurring to computer simulation using the Discrete Dipole Approximation method (DDA). In this work we use the free software DDSCAT to study the optical properties of metal nanoparticles embedded in an amorphous silicon matrix, as a function of size, shape, aspect-ratio and metal type. Experimental measurements realized with arrays of metal nanoparticles are compared with the simulations.
Zhu, Wenquan; Chen, Guangsheng; Jiang, Nan; ...
2013-12-27
Carbon Flux Phenology (CFP) can affect the interannual variation in Net Ecosystem Exchange (NEE) of carbon between terrestrial ecosystems and the atmosphere. In this paper, we proposed a methodology to estimate CFP metrics with satellite-derived Land Surface Phenology (LSP) metrics and climate drivers for 4 biomes (i.e., deciduous broadleaf forest, evergreen needleleaf forest, grasslands and croplands), using 159 site-years of NEE and climate data from 32 AmeriFlux sites and MODIS vegetation index time-series data. LSP metrics combined with optimal climate drivers can explain the variability in Start of Carbon Uptake (SCU) by more than 70% and End of Carbon Uptakemore » (ECU) by more than 60%. The Root Mean Square Error (RMSE) of the estimations was within 8.5 days for both SCU and ECU. The estimation performance for this methodology was primarily dependent on the optimal combination of the LSP retrieval methods, the explanatory climate drivers, the biome types, and the specific CFP metric. In conclusion, this methodology has a potential for allowing extrapolation of CFP metrics for biomes with a distinct and detectable seasonal cycle over large areas, based on synoptic multi-temporal optical satellite data and climate data.« less
Open vs Laparoscopic Simple Prostatectomy: A Comparison of Initial Outcomes and Cost.
Demir, Aslan; Günseren, Kadir Ömür; Kordan, Yakup; Yavaşçaoğlu, İsmet; Vuruşkan, Berna Aytaç; Vuruşkan, Hakan
2016-08-01
We compared the cost-effectiveness of laparoscopic simple prostatectomy (LSP) vs open prostatectomy (OP). A total of 73 men treated for benign prostatic hyperplasia were enrolled for OP and LSP in groups 1 and 2, respectively. The findings were recorded perioperative, including operation time (OT), blood lost, transfusion rate, conversion to the open surgery, and the complications according to the Clavien Classification. The postoperative findings, including catheterization and drainage time, the amount of analgesic used, hospitalization time, postoperative complications, international prostate symptom score (IPSS) and International Index of Erectile Function (IIEF) scores, the extracted prostate weight, the uroflowmeter, as well as postvoiding residual (PVR) and quality of life (QoL) score at the postoperative third month, were analyzed. The cost of both techniques was also compared statistically. No statistical differences were found in the preoperative parameters, including age, IPSS and QoL score, maximum flow rate (Qmax), PVR, IIEF score, and prostate volumes, as measured by transabdominal ultrasonography. No statistical differences were established in terms of the OT and the weight of the extracted prostate. No differences were established with regard to complications according to Clavien's classification in groups. However, the bleeding rate was significantly lower in group 2. The drainage, catheterization, and hospitalization times and the amount of analgesics were significantly lower in the second group. The postoperative third month findings were not different statistically. Only the Qmax values were significantly greater in group 2. While there was only a $52 difference between groups with regard to operation cost, this difference was significantly different. The use of LSP for the prostates over 80 g is more effective than the OP in terms of OT, bleeding amount, transfusion rates, catheterization time, drain removal time, hospitalization time, consumed analgesic amount, and Qmax values. On the other hand, the mean cost of the LSP is higher than OP. Better effectiveness comes with higher cost.
Impacts of Wildfires on Land Surface Phenology of Western US Forests
NASA Astrophysics Data System (ADS)
Wang, J.; Zhang, X.
2017-12-01
Land surface phenology (LSP) characterizes seasonal dynamics of vegetation communities within a satellite pixel. The temporal variation of LSP has been widely associated with recent global climate change. However, few studies have focused on the influence of land disturbance, such as wildfire, on LSP variations, which is particularly true at a continental scale. Wildfire has increased in size and severity in the western United States (US) during last few decades. To explore wildfire impacts on LSP in the western US forest, we analyzed the start of growing season (SOS) integrated from the entire forest area, the burned area, and the unburned area, respectively. Specifically, SOS was derived from time series of daily MODIS surface reflectance product at 250 m using a hybrid piecewise logistic detection model. The annual burn perimeters during 2000-2014 were obtained from Monitoring Trends in Burn Severity maps to study the wildfire effect on the SOS in the subsequent years (2001-2015). The wildfire effect was analyzed at three levels: the entire western US, Environmental Protection Agency's Level III ecoregions, and states. Results show that wildfires basically advance SOS but have diverse effects with different regions and years. Comparing SOS in the burned areas with that in surrounding unburned areas from 2001-2015, it was found that the SOS shift was -3.4 days (-: earlier; +: later) on average in the western US forests, and varied from -16.1 to 13.1 days across ecoregions and from -11.4 to 4.3 days across states. Because of the small proportion of annual burned areas (<0.7%) over the entire region, the SOS shift in the burned areas had limited influences on the overall SOS, which caused shifts of -0.06 days over the entire western US, from -0.2 to 0.2 days across ecoregions, and -0.06 to 0.13 days across states. Overall, this study demonstrates that wildfires strongly impact SOS at local areas although the effect in the large region is relatively limited.
NASA Astrophysics Data System (ADS)
Krehbiel, C. P.; Jackson, T.; Henebry, G. M.
2014-12-01
Earth is currently in an era of rapid urban growth with >50% of global population living in urban areas. Urbanization occurs alongside urban population growth, as cities expand to meet the demands of increasing population. Consequently, there is a need for remote sensing research to detect, monitor, and measure urbanization and its impacts on the biosphere. Here we used MODIS and Landsat data products to (1) detect urbanization-related land cover changes, (2) investigate urbanization-related impacts on land surface phenology (LSP) across rural to urban gradients and (3) explore fractional vegetation and impervious surface area regionally across the US Great Plains and within 14 cities in this region. We used the NLCD Percent Impervious Surface Area (%ISA) and Land Cover Type (LCT) products from 2001, 2006, and 2011 for 30m classification of the peri-urban environment. We investigated the impacts of urbanization-related land cover change on urban LSP at 30m resolution using the NDVI product from Web Enabled Landsat Data (http://weld.cr.usgs.gov) with accumulated growing degree-days calculated from first-order weather stations. We fitted convex quadratic LSP models to a decade (2003-2012) of observations to yield these phenometrics: modeled peak NDVI, time (thermal and calendar) to modeled peak, duration of season (DOS), and model fit. We compared our results to NDVI from MODIS NBAR (500m) and we explored the utility of 4 μm radiance (MODIS band 23) at 1 km resolution to characterize fractional vegetation dynamics in and around urbanized areas. Across all 14 cities we found increases in urbanized area (>25 %ISA) exceeding 10% from 2001-2011. Using LSP phenometrics, we were able to detect changes from cropland to suburban LCTs. In general we found negative relationships between DOS and distance from city center. We found a distinct seasonal cycle of MIR radiance over cropland LCTs due to the spectral contrast between bare soils and green vegetation.
Multi-Scale Analysis of Trends in Northeastern Temperate Forest Springtime Phenology
NASA Astrophysics Data System (ADS)
Moon, M.; Melaas, E. K.; Sulla-menashe, D. J.; Friedl, M. A.
2017-12-01
The timing of spring leaf emergence is highly variable in many ecosystems, exerts first-order control growing season length, and significantly modulates seasonally-integrated photosynthesis. Numerous studies have reported trends toward earlier spring phenology in temperate forests, with some papers indicating that this trend is also leading to increased carbon uptake. At broad spatial scales, however, most of these studies have used data from coarse spatial resolution instruments such as MODIS, which does not resolve ecologically important landscape-scale patterns in phenology. In this work, we examine how long-term trends in spring phenology differ across three data sources acquired at different scales of measurements at the Harvard Forest in central Massachusetts. Specifically, we compared trends in the timing of phenology based on long-term in-situ measurements of phenology, estimates based on eddy-covariance measurements of net carbon uptake transition dates, and from two sources of satellite-based remote sensing (MODIS and Landsat) land surface phenology (LSP) data. Our analysis focused on the flux footprint surrounding the Harvard Forest Environmental Measurements (EMS) tower. Our results reveal clearly defined trends toward earlier springtime phenology in Landsat LSP and in the timing of tower-based net carbon uptake. However, we find no statistically significant trend in springtime phenology measured from MODIS LSP data products, possibly because the time series of MODIS observations is relatively short (13 years). The trend in tower-based transition data exhibited a larger negative value than the trend derived from Landsat LSP data (-0.42 and -0.28 days per year for 21 and 28 years, respectively). More importantly, these results have two key implications regarding how changes in spring phenology are impacting carbon uptake at landscape-scale. First, long-term trends in spring phenology can be quite different, depending on what data source is used to estimate the trend, and 2) the response of carbon uptake to climate change may be more sensitive than the response of land surface phenology itself.
Searching for supersymmetry at the LHC: Studies of sleptons and stops
NASA Astrophysics Data System (ADS)
Eckel, Jonathan Daniel
Searches of supersymmetry at the LHC have put stringent constraints on the strong production of squarks and gluinos. Current results exclude colored particles with masses up to roughly 1 TeV. To fully explore the discovery potential of the LHC, we study the challenging signals that are hidden by Standard Model backgrounds but with masses accessible by the LHC. These particles include the sleptons with a weak production cross section, and stops that are hidden by large top-antitop backgrounds. In this dissertation, I explore the collider phenomenology of sleptons and stops at the LHC. Sleptons can be produced at the LHC either through cascade decay or via Drell-Yan pair production. For the cascade decay, we studied neutralino-chargino associated production, with the subsequent decay through on shell sleptons resulting in a trilepton plus missing transverse energy signal. The invariant mass from the neutralino decay has a distinctive triangle shape with a sharp kinematic cutoff. We utilized this feature and obtained the effective cross section that is needed for a 5-sigma discovery of sleptons. We apply these results to the MSSM and find a discovery reach for left-handed sleptons which extends beyond the reach expected in usual Drell-Yan studies. Slepton pair production searches on the other hand, have limited reach at the LHC. The slepton decay branching fractions, however, depend on the composition of the lightest supersymmetric particle (LSP). We extend the experimental analysis for data collected thus far to include different scenarios for the composition of the LSP. We find that the LHC slepton reach is enhanced up to a factor of 2 for a non-Bino-LSP. We present the 95% C.L. exclusion limits and 5-sigma discovery reach for sleptons at the 8 and 14 TeV LHC considering Bino-, Wino-, or Higgsino-like LSPs. Current stop searches at the LHC focus on signals with top-antitop plus missing transverse energy. However, in many regions of SUSY parameter space, these decay modes are not dominant, leading to weakened experimental limits on stops. We identify stop decays that can have significant branching fractions to new final states resulting in new signal channels to observe. We investigate stop pair production by considering the channel of stop to top-higgs-LSP and stop to bottom-W-LSP leading to a signal of 4 b-jets, 2 jets, 1 lepton and missing transverse energy. We present the 95% C.L. exclusion limits and 5-sigma discovery reach for stops at the 14 TeV LHC.
Senay, Gabriel B.
2008-01-01
The main objective of this study is to present an improved modeling technique called Vegetation ET (VegET) that integrates commonly used water balance algorithms with remotely sensed Land Surface Phenology (LSP) parameter to conduct operational vegetation water balance modeling of rainfed systems at the LSP’s spatial scale using readily available global data sets. Evaluation of the VegET model was conducted using Flux Tower data and two-year simulation for the conterminous US. The VegET model is capable of estimating actual evapotranspiration (ETa) of rainfed crops and other vegetation types at the spatial resolution of the LSP on a daily basis, replacing the need to estimate crop- and region-specific crop coefficients.
VizieR Online Data Catalog: LAMOST candidate members of star clusters (Xiang+, 2015)
NASA Astrophysics Data System (ADS)
Xiang, M. S.; Liu, X. W.; Yuan, H. B.; Huang, Y.; Huo, Z. Y.; Zhang, H. W.; Chen, B. Q.; Zhang, H. H.; Sun, N. C.; Wang, C.; Zhao, Y. H.; Shi, J. R.; Luo, A. L.; Li, G. P.; Wu, Y.; Bai, Z. R.; Zhang, Y.; Hou, Y. H.; Yuan, H. L.; Li, G. W.; Wei, Z.
2015-08-01
In this work, we describe the algorithms and implementation of LSP3, the LAMOST Stellar Parameter Pipeline at Peking University, a pipeline developed to determine the stellar parameters (radial velocity Vr, effective temperature Teff, surface gravity logg and metallicity [Fe/H]) from LAMOST spectra based on a template-matching technique. Following the data policy of LAMOST surveys, the data as well as the LSP3 pipeline will be public released as value-added products of the first data release of LAMOST (LAMOST DR1; Bai et al., 2015, A&A submitted), currently scheduled in 2014 December and can be accessed via http://lamost973.pku.edu.cn/site/node/4, along with a description file. (1 data file).
Numerical study on dusty shock reflection over a double wedge
NASA Astrophysics Data System (ADS)
Yin, Jingyue; Ding, Juchun; Luo, Xisheng
2018-01-01
The dusty shock reflection over a double wedge with different length scales is systematically studied using an adaptive multi-phase solver. The non-equilibrium effect caused by the particle relaxation is found to significantly influence the shock reflection process. Specifically, it behaves differently for double wedges with different length scales of the first wedge L1. For a double wedge with L1 relatively longer than the particle relaxation length λ, the equilibrium shock dominates the shock reflection and seven typical reflection processes are obtained, which is similar to the pure gas counterpart. For a double wedge with L1 shorter than λ, the non-equilibrium effect manifests more evidently, i.e., three parts of the dusty shock system including the frozen shock, the relaxation zone, and the equilibrium shock together dominate the reflection process. As a result, the shock reflection is far more complicated than the pure gas counterpart and eleven transition processes are found under various wedge angles. These findings give a complete description of all possible processes of dusty shock reflection over a double wedge and may be useful for better understanding the non-equilibrium shock reflection over complex structures.
Numerical studies of fast ion slowing down rates in cool magnetized plasma using LSP
NASA Astrophysics Data System (ADS)
Evans, Eugene S.; Kolmes, Elijah; Cohen, Samuel A.; Rognlien, Tom; Cohen, Bruce; Meier, Eric; Welch, Dale R.
2016-10-01
In MFE devices, rapid transport of fusion products from the core into the scrape-off layer (SOL) could perform the dual roles of energy and ash removal. The first-orbit trajectories of most fusion products from small field-reversed configuration (FRC) devices will traverse the SOL, allowing those particles to deposit their energy in the SOL and be exhausted along the open field lines. Thus, the fast ion slowing-down time should affect the energy balance of an FRC reactor and its neutron emissions. However, the dynamics of fast ion energy loss processes under the conditions expected in the FRC SOL (with ρe <λDe) are analytically complex, and not yet fully understood. We use LSP, a 3D electromagnetic PIC code, to examine the effects of SOL density and background B-field on the slowing-down time of fast ions in a cool plasma. As we use explicit algorithms, these simulations must spatially resolve both ρe and λDe, as well as temporally resolve both Ωe and ωpe, increasing computation time. Scaling studies of the fast ion charge (Z) and background plasma density are in good agreement with unmagnetized slowing down theory. Notably, Z-scaling represents a viable way to dramatically reduce the required CPU time for each simulation. This work was supported, in part, by DOE Contract Number DE-AC02-09CH11466.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grebogi, C.; Yorke, J.A.
This report discusses the following topics: controlling chaotic dynamical systems; embedding of experimental data; effect of noise on critical exponents of crises; transition to chaotic scattering; and distribution of floaters on a fluid surface. (LSP)
Re-forming supercritical quasi-parallel shocks. I - One- and two-dimensional simulations
NASA Technical Reports Server (NTRS)
Thomas, V. A.; Winske, D.; Omidi, N.
1990-01-01
The process of reforming supercritical quasi-parallel shocks is investigated using one-dimensional and two-dimensional hybrid (particle ion, massless fluid electron) simulations both of shocks and of simpler two-stream interactions. It is found that the supercritical quasi-parallel shock is not steady. Instread of a well-defined shock ramp between upstream and downstream states that remains at a fixed position in the flow, the ramp periodically steepens, broadens, and then reforms upstream of its former position. It is concluded that the wave generation process is localized at the shock ramp and that the reformation process proceeds in the absence of upstream perturbations intersecting the shock.
Analysis techniques for momentum transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, S.D.
1991-08-01
This report discusses the following topics on momentum analysis in tokamaks and stellarators: the momentum balance equation; deposition of torque by neutral beams; effects of toroidal rotation; and experimental observations. (LSP)
Liao, Zhen; Liu, Shuo; Ma, Hui Feng; Li, Chun; Jin, Biaobing; Cui, Tie Jun
2016-01-01
We numerically and experimentally demonstrate a plasmonic metamaterial whose unit cell is composed of an ultrathin metallic disk and four ultrathin metallic spiral arms at terahertz frequencies, which supports both spoof electric and magnetic localized surface plasmon (LSP) resonances. We show that the resonant wavelength is much larger than the size of the unit particle, and further find that the resonant wavelength is very sensitive to the particle’s geometrical dimensions and arrangements. It is clearly illustrated that the magnetic LSP resonance exhibits strong dependence to the incidence angle of terahertz wave, which enables the design of metamaterials to achieve an electromagnetically induced transparency effect in the terahertz frequencies. This work opens up the possibility to apply for the surface plasmons in functional devices in the terahertz band. PMID:27277417
Chen, Cheng; Chen, Jingwen; Zhang, Jun; Wang, Shuai; Zhang, Wei; Liang, Renli; Dai, Jiangnan; Chen, Changqing
2016-12-01
We demonstrate the fabrication and characterization of localized surface plasmon (LSP)-enhanced n-ZnO quantum dot (QD)/MgO/p-GaN heterojunction light-emitting diodes (LEDs) by embedding Ag nanoparticles (Ag-NPs) into the ZnO/MgO interface. The maximum enhancement ration of the Ag-NP-decorated LEDs in electroluminescence (EL) is 4.3-fold by optimizing MgO electron-blocking layer thickness. The EL origination was investigated qualitatively in terms of photoluminescence (PL) results. Through analysis of the energy band structure of device and carrier transport mechanisms, it suggests that the EL enhancement is attributed to the increased rate of spontaneous emission and improved internal quantum efficiency induced by exciton-LSP coupling.
NASA Astrophysics Data System (ADS)
Chen, Cheng; Chen, Jingwen; Zhang, Jun; Wang, Shuai; Zhang, Wei; Liang, Renli; Dai, Jiangnan; Chen, Changqing
2016-10-01
We demonstrate the fabrication and characterization of localized surface plasmon (LSP)-enhanced n-ZnO quantum dot (QD)/MgO/p-GaN heterojunction light-emitting diodes (LEDs) by embedding Ag nanoparticles (Ag-NPs) into the ZnO/MgO interface. The maximum enhancement ration of the Ag-NP-decorated LEDs in electroluminescence (EL) is 4.3-fold by optimizing MgO electron-blocking layer thickness. The EL origination was investigated qualitatively in terms of photoluminescence (PL) results. Through analysis of the energy band structure of device and carrier transport mechanisms, it suggests that the EL enhancement is attributed to the increased rate of spontaneous emission and improved internal quantum efficiency induced by exciton-LSP coupling.
A study of the lecithin/sphingomyelin ratio of amniotic fluid.
Gebhardt, D O; Beintema, A; de Rooij, R E; Wildeboer, F N; Merkus, J M
1975-10-15
1. There is a significant correlation between lecithin/sphingomyelin (L/S) ratios based on densitometry (L/S)D and L/S ratios based on phosphorus determinations ((L/S)P). 2. The fetal lung is mature when the (L/S)D, determined according to Verhoeven, A.G.J. and Merkus, H.M.W.M. (1974) Clin. Chim. Acta 53, 229--232, is 1.2. This value is equivalent to an (L/S)P of 1.8. 3. The acetone precipitation procedure, introduced by Gluck, L., Kulovich, M.V., Borer, R.C. and Keidel, W.N. (1974) Am. J. Obstet. Gynecol. 120, 142--155, is a necessary step for isolating surface-active lecithin. 4. Standardization of the (L/S)D test is feasible and should permit different laboratories to use the same transition point.
NASA Technical Reports Server (NTRS)
Szatkowski, George N.; Dudley, Kenneth L.; Smith, Laura J.; Wang, Chuantong; Ticatch, Larry A.
2014-01-01
Traditional methods to protect composite aircraft from lightning strike damage rely on a conductive layer embedded on or within the surface of the aircraft composite skin. This method is effective at preventing major direct effect damage and minimizes indirect effects to aircraft systems from lightning strike attachment, but provides no additional benefit for the added parasitic weight from the conductive layer. When a known lightning strike occurs, the points of attachment and detachment on the aircraft surface are visually inspected and checked for damage by maintenance personnel to ensure continued safe flight operations. A new multi-functional lightning strike protection (LSP) method has been developed to provide aircraft lightning strike protection, damage detection and diagnosis for composite aircraft surfaces. The method incorporates a SansEC sensor array on the aircraft exterior surfaces forming a "Smart skin" surface for aircraft lightning zones certified to withstand strikes up to 100 kiloamperes peak current. SansEC sensors are open-circuit devices comprised of conductive trace spiral patterns sans (without) electrical connections. The SansEC sensor is an electromagnetic resonator having specific resonant parameters (frequency, amplitude, bandwidth & phase) which when electromagnetically coupled with a composite substrate will indicate the electrical impedance of the composite through a change in its resonant response. Any measureable shift in the resonant characteristics can be an indication of damage to the composite caused by a lightning strike or from other means. The SansEC sensor method is intended to diagnose damage for both in-situ health monitoring or ground inspections. In this paper, the theoretical mathematical framework is established for the use of open circuit sensors to perform damage detection and diagnosis on carbon fiber composites. Both computational and experimental analyses were conducted to validate this new method and system for aircraft composite damage detection and diagnosis. Experimental test results on seeded fault damage coupons and computational modeling simulation results are presented. This paper also presents the shielding effectiveness along with the lightning direct effect test results from several different SansEC LSP and baseline protected and unprotected carbon fiber reinforced polymer (CFRP) test panels struck at 40 and 100 kiloamperes following a universal common practice test procedure to enable damage comparisons between SansEC LSP configurations and common practice copper mesh LSP approaches. The SansEC test panels were mounted in a LSP test bed during the lightning test. Electrical, mechanical and thermal parameters were measured during lightning attachment and are presented with post test nondestructive inspection comparisons. The paper provides correlational results between the SansEC sensors computed electric field distribution and the location of the lightning attachment on the sensor trace and visual observations showing the SansEC sensor's affinity for dispersing the lightning attachment.
Laser-shock damage of iron-based materials
NASA Astrophysics Data System (ADS)
Chu, Jinn P.; Banas, Grzegorz; Lawrence, Frederick V.; Rigsbee, James M.; Elsayed-Ali, Hani E.
1993-05-01
The effects of laser shock processing on the microstructure and mechanical properties of the manganese (1 percent C and 14 percent Mn) steels have been low carbon (0.04 wt. percent C) and Hadfield studied. Laser shock processing was performed with a 1.054 micrometers wavelength Nd-phosphate laser operating in a pulse mode (600 ps pulse length and up to 200 J energy) with power densities above 10 to the 11th power W/cm2. Shock waves were generated by volume expansion of the plasma formed when the material was laser irradiated. Maximum shock wave intensities were obtained using an energy-absorbing black paint coating without a plasma-confining overlay. Maximum modification of compressive residual stresses were achieved when laser shock processing induced deformation occurred without melting. Mechanical properties were improved through modifying the microstructure by laser shock processing. High density arrays of dislocations (greater than 10 to the 11th power/cm2) were generated in low carbon steel by high strain-rate deformation of laser shock processing, resulting in surface hardness increases of 30 to 80 percent. In austenitic Hadfield steel, laser shock processing caused extensive formation of Epsilon-hcp martensite (35 vol. percent), producing increases of 50 to 130 percent in surface hardness. The laser shock processing strengthening effect in Hadfield steel was attributed to the combined effects of the partial dislocation/stacking fault arrays and the grain refinement due to presence of the Epsilon-hcp martensite.
Observations and simulations of specularly reflected He++ at Earth's quasiperpendicular bow shock
NASA Astrophysics Data System (ADS)
Broll, J. M.; Fuselier, S. A.; Trattner, K. J.; Anderson, B. J.; Burch, J. L.; Giles, B. L.
2016-12-01
Specular reflection of protons at Earth's quasiperpendicular bow shock is an important process for supercritical shock dissipation. Previous studies have found evidence of He++ specular reflection from reduced particle distributions downstream from the shock, but confirmation of the process for heavier ions in the shock foot was not possible due to time resolution constraints. We present He++ distributions, observed by MMS in a quasiperpendicular bow shock crossing, that are consistent with specularly reflected He++. We also investigate the He++ dynamics with test-particle simulations in a simulated shock based on this crossing and we conduct wave analysis to determine what processes lead to separate gyrotropization timescales for the transmitted and reflected populations.
Liu, Ze-bin; Cheng, Rui-mei; Xiao, Wen-fa; Guo, Quan-shui; Wang, Na
2015-04-01
The light responses of photosynthesis of two-year-old Distytum chinense seedlings subjected to a simulated reservoir flooding environment in autumn and winter seasons were measured by using a Li-6400 XT portable photosynthesis system, and the light response curves were fitted and analyzed by three models of the rectangular hyperbola, non-rectangular hyperbola and modified rectangular hyperbola to investigate the applicability of different light response models for the D. chinense in different flooding durations and the adaption regulation of light response parameters to flooding stress. The results showed that the fitting effect of the non-rectangular hyperbola model for light response process of D. chinense under normal growth condition and under short-term flooding (15 days of flooding) was better than that of the other two models, while the fitting effect of the modified rectangular hyperbola model for light response process of D. chinense under longer-term flooding (30, 45 and 60 days of flooding) was better than that of the other two models. The modified rectangular hyperbola model gave the best fitted results of light compensation point (LCP) , maximum net photosynthetic rate (P(n max)) and light saturation point (LSP), and the non-rectangular hyperbola model gave the best fitted result of dark respiration rate (R(d)). The apparent quantum yield (Φ), P(n max) and LSP of D. chinense gradually decreased, and the LCP and R(d) of D. chinense gradually increased in early flooding (30 days), but D. chinense gradually produced adaptability for flooding as the flooding duration continued to increase, and various physiological indexes were gradually stabilized. Thus, this species has adaptability to some degree to the flooding environment.
Jet formation of SF6 bubble induced by incident and reflected shock waves
NASA Astrophysics Data System (ADS)
Zhu, Yuejin; Yu, Lei; Pan, Jianfeng; Pan, Zhenhua; Zhang, Penggang
2017-12-01
The computational results of two different cases on the evolution of the shock-SF6 heavy bubble interaction are presented. The shock focusing processes and jet formation mechanisms are analyzed by using the high resolution of computation schemes, and the influence of reflected shock waves is also investigated. It is concluded that there are two steps in the shock focusing process behind the incident shock wave, and the density and pressure values increase distinctly when the shock focusing process is completed. The local high pressure and vorticities in the vicinity of the downstream pole can propel the formation of the jet behind the incident shock wave. In addition, the gas is with the rightward velocity before the reflected shock wave impinges on the bubble; therefore, the evolutions of the waves and the bubble are more complicated when the reflected shock wave impinges on the SF6 bubble. Furthermore, the different end wall distances would affect the deformation degree of the bubble before the interaction of the reflected shock wave; therefore, the different left jet formation processes are found after the impingement of reflected shock waves when L = 27 mm. The local high pressure zones in the vicinity of the left bubble interface and the impingement of different shock waves can induce the local gas to shift the rightward velocity to the leftward velocity, which can further promote the formation of jets.
National Synchrotron Light Source annual report 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulbert, S.; Lazarz, N.; Williams, G.
1988-01-01
This report discusses the experiment done at the National Synchrotron Light Source. Most experiments discussed involves the use of the x-ray beams to study physical properties of solid materials. (LSP)
Simulation and characterization of a laterally-driven inertial micro-switch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wenguo; Wang, Yang; Wang, Huiying
2015-04-15
A laterally-driven inertial micro-switch was designed and fabricated using surface micromachining technology. The dynamic response process was simulated by ANSYS software, which revealed the vibration process of movable electrode when the proof mass is shocked by acceleration in sensitive direction. The test results of fabricated inertial micro-switches with and without anti-shock beams indicated that the contact process of micro-switch with anti-shock beams is more reliable than the one without anti-shock beams. The test results indicated that three contact signals had been observed in the contact process of the inertial switch without anti-shock beams, and only one contact signal in themore » inertial switch with anti-shock beams, which demonstrated that the anti-shock beams can effectively constrain the vibration in non-sensitive direction.« less
Likelihood Analysis of the Minimal AMSB Model
Bagnaschi, E.; Borsato, M.; Sakurai, K.; ...
2017-04-27
We perform a likelihood analysis of the minimal Anomaly-Mediated Supersymmetry Breaking (mAMSB) model using constraints from cosmology and accelerator experiments. We find that a wino-like or a Higgsino-like neutralino LSP,more » $$m_{\\tilde \\chi^0_{1}}$$, may provide the cold dark matter (DM) with similar likelihood. The upper limit on the DM density from Planck and other experiments enforces $$m_{\\tilde \\chi^0_{1}} \\lesssim 3~TeV$$ after the inclusion of Sommerfeld enhancement in its annihilations. If most of the cold DM density is provided by the $$\\tilde \\chi_0^1$$, the measured value of the Higgs mass favours a limited range of $$\\tan \\beta \\sim 5$$ (or for $$\\mu > 0$$, $$\\tan \\beta \\sim 45$$) but the scalar mass $$m_0$$ is poorly constrained. In the wino-LSP case, $$m_{3/2}$$ is constrained to about $900~TeV$ and $${m_{\\tilde \\chi^0_{1}}}$$ to $$2.9\\pm0.1~TeV$$, whereas in the Higgsino-LSP case $$m_{3/2}$$ has just a lower limit $$\\gtrsim 650TeV$$ ($$\\gtrsim 480TeV$$) and $$m_{\\tilde \\chi^0_{1}}$$ is constrained to $$1.12 ~(1.13) \\pm0.02~TeV$$ in the $$\\mu>0$$ ($$\\mu<0$$) scenario. In neither case can the anomalous magnetic moment of the muon, $${(g-2)_\\mu}$$, be improved significantly relative to its Standard Model (SM) value, nor do flavour measurements constrain the model significantly, and there are poor prospects for discovering supersymmetric particles at the LHC, {though there} are some prospects for direct DM detection. On the other hand, if the $${m_{\\tilde \\chi^0_{1}}}$$ contributes only a fraction of the cold DM density, {future LHC $$E_T$$-based searches for gluinos, squarks and heavier chargino and neutralino states as well as disappearing track searches in the wino-like LSP region will be relevant}, and interference effects enable $${\\rm BR}(B_{s, d} \\to \\mu^+\\mu^-)$$ to agree with the data better than in the SM in the case of wino-like DM with $$\\mu > 0$$.« less
NASA Astrophysics Data System (ADS)
Henebry, G. M.; Wimberly, M. C.; Senay, G.; Wang, A.; Chang, J.; Wright, C. R.; Hansen, M. C.
2008-12-01
Land cover change across the Northern Great Plains of North America over the past three decades has been driven by changes in agricultural management (conservation tillage; irrigation), government incentives (Conservation Reserve Program; subsidies to grain-based ethanol), crop varieties (cold-hardy soybean), and market dynamics (increasing world demand). Climate change across the Northern Great Plains over the past three decades has been evident in trends toward earlier warmth in the spring and a longer frost-free season. Together these land and climate changes induce shifts in local and regional land surface phenologies (LSPs). Any significant shift in LSP may correspond to a significant shift in evapotranspiration, with consequences for regional hydrometeorology. We explored possible future scenarios involving land use and climate change in six steps. First, we defined the nominal draw areas of current and future biorefineries in North Dakota, South Dakota, Nebraska, Minnesota, and Iowa and masked those land cover types within the draw areas that were unlikely to change to agricultural use (open water, settlements, forests, etc.). Second, we estimated the proportion of corn and soybean remaining within the masked draw areas using MODIS-derived crop maps. Third, in each draw area, we modified LSPs to simulate crop changes for a control and two treatment scenarios. In the control, we used LSP profiles identified from MODIS Collection 5 NBAR data. In one treatment, we increased the proportion of tallgrass LSPs in the draw areas to represent widespread cultivation of a perennial cellulosic crop, like switchgrass. In a second treatment, we increased the proportion of corn LSPs in the draw areas to represent increased corn cultivation. Fourth, we characterized the seasonal progression of the thermal regime associated with the LSP profiles using MODIS Land Surface Temperature (LST) products. Fifth, we modeled the LSP profile as a quadratic function of accumulated growing degree-days based on the LST time series. Sixth, we used representative IPCC AR4 mid-century projections to force the quadratic models and produce possible future LSPs. The resulting shifts in potential peak vegetation to earlier dates indicate potential seasonal shifts in evapotranspiration.
Plasmon-mediated chemical surface functionalization at the nanoscale
NASA Astrophysics Data System (ADS)
Nguyen, Mai; Lamouri, Aazdine; Salameh, Chrystelle; Lévi, Georges; Grand, Johan; Boubekeur-Lecaque, Leïla; Mangeney, Claire; Félidj, Nordin
2016-04-01
Controlling the surface grafting of species at the nanoscale remains a major challenge, likely to generate many opportunities in materials science. In this work, we propose an original strategy for chemical surface functionalization at the nanoscale, taking advantage of localized surface plasmon (LSP) excitation. The surface functionalization is demonstrated through aryl film grafting (derived from a diazonium salt), covalently bonded at the surface of gold lithographic nanostripes. The aryl film is specifically grafted in areas of maximum near field enhancement, as confirmed by numerical calculation based on the discrete dipole approximation method. The energy of the incident light and the LSP wavelength are shown to be crucial parameters to monitor the aryl film thickness of up to ~30 nm. This robust and versatile strategy opens up exciting prospects for the nanoscale confinement of functional layers on surfaces, which should be particularly interesting for molecular sensing or nanooptics.Controlling the surface grafting of species at the nanoscale remains a major challenge, likely to generate many opportunities in materials science. In this work, we propose an original strategy for chemical surface functionalization at the nanoscale, taking advantage of localized surface plasmon (LSP) excitation. The surface functionalization is demonstrated through aryl film grafting (derived from a diazonium salt), covalently bonded at the surface of gold lithographic nanostripes. The aryl film is specifically grafted in areas of maximum near field enhancement, as confirmed by numerical calculation based on the discrete dipole approximation method. The energy of the incident light and the LSP wavelength are shown to be crucial parameters to monitor the aryl film thickness of up to ~30 nm. This robust and versatile strategy opens up exciting prospects for the nanoscale confinement of functional layers on surfaces, which should be particularly interesting for molecular sensing or nanooptics. Electronic supplementary information (ESI) available: Additional figures are displayed (from Fig. SI1-SI6) to illustrate the content of the paper, including the proposed mechanisms of diazonium-derived aryl film grafting, the AFM measurements of the aryl film thickness and the calculation by the DDA method. See DOI: 10.1039/C6NR00744A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marti-Lopez, L.; Ocana, R.; Porro, J. A.
2009-07-01
We report an experimental study of the temporal and spatial dynamics of shock waves, cavitation bubbles, and sound waves generated in water during laser shock processing by single Nd:YAG laser pulses of nanosecond duration. A fast ICCD camera (2 ns gate time) was employed to record false schlieren photographs, schlieren photographs, and Mach-Zehnder interferograms of the zone surrounding the laser spot site on the target, an aluminum alloy sample. We recorded hemispherical shock fronts, cylindrical shock fronts, plane shock fronts, cavitation bubbles, and phase disturbance tracks.
2014-08-29
KISSIMMEE, Fla. – Guests at the Tom Joyner Family Reunion listen as Malcom Boston of the Fleet System Integration Branch of the Launch Services Program LSP explains a computer demonstration on rockets. Behind the table, from the left, are Brian Norton, Emily Fields and Randy Mizelle, all from the Program Planning Office in LSP. The Tom Joyner Family Reunion is designed to present uplifting programs, entertainment and information about growing, diverse communities. An annual event of the nationally-syndicated Tom Joyner Morning Show, the many exhibits included NASA's participation focusing on encouraging young people to consider studies and careers in STEM -- science, technology, engineering and math. NASA's Education Division promoted the benefits of math and scientific learning along with career opportunities offered by the space agency. The activities took place at the Gaylord Palms Resort in Kissimmee, Florida, during the Labor Day weekend. Photo credit: NASA/Daniel Casper
NASA Astrophysics Data System (ADS)
Liu, W. Z.; Xu, H. Y.; Zhang, L. X.; Zhang, C.; Ma, J. G.; Wang, J. N.; Liu, Y. C.
2012-10-01
Localized surface plasmon (LSP)-enhanced ultraviolet light-emitting diodes were manufactured by introducing Ag nanoparticles and MgO spacer layer into n-ZnO/i-ZnO/p-GaN heterostructures. By optimizing the MgO thickness, which can suppress the undesired charge transfer and nonradiative Förster resonant energy transfer between Ag and ZnO, a 7-fold electroluminescence enhancement was achieved. Time-resolved and temperature-dependent photoluminescence measurements reveal that both spontaneous emission rate and internal quantum efficiency are increased as a result of coupling between ZnO excitons and Ag LSPs, and simple calculations, based on experimental data, also indicate that most of LSP's energy can be converted into the photon energy.
Ultrafast shock-induced orientation of polycrystalline films: Applications to high explosives
NASA Astrophysics Data System (ADS)
Franken, Jens; Hambir, Selezion A.; Dlott, Dana D.
1999-02-01
Tiny laser-driven shock waves of ˜5 GPa pressure (nanoshocks) are used to study fast mechanical processes occurring in a thin layer of polycrystalline insensitive energetic material, (3-nitro-1,2,4-triazol-5-one) (NTO). Ultrafast coherent Raman spectroscopy of shocked NTO shows the existence of three distinct mechanical processes. Very fast (˜600 ps) changes in intensity and the appearance of new transitions are associated with the uniaxial nature of compression by the shock front. Frequency shifting and broadening processes which track the ˜2 ns duration nanoshock are associated with transient changes in density and temperature. A novel slower process (5-10 ns) starts as the shock begins to unload, and continues for several nanoseconds after the shock is over, resulting in changes of widths and intensities of several vibrational transitions. By comparing ultrafast spectra to static Raman spectra of single NTO crystals in various orientations, it is concluded that this process involves shock-induced partial orientation of the crystals in the NTO layer. The NTO crystals are oriented faster than the time scale for initiating chemical reactions. The sensitivity of explosive crystals to shock initiation may depend dramatically on the orientation of the crystal relative to the direction of shock propagation, so the implications of fast shock-induced orientation for energetic materials initiation are discussed briefly.
Flame Structure and Scalar Properties in Microgravity Laminar Fires
NASA Technical Reports Server (NTRS)
Feikema, D. A.; Lim, J.; Sivathanu, Y.
2006-01-01
Recent results from microgravity combustion experiments conducted in the Zero Gravity Facility (ZGF) 5.18 second drop tower are reported. Emission mid-infrared spectroscopy measurements have been completed to quantitatively determine the flame temperature, water and carbon dioxide vapor concentrations, radiative emissive power, and soot concentrations in a microgravity laminar ethylene/air flame. The ethylene/air laminar flame conditions are similar to previously reported experiments including the Flight Project, Laminar Soot Processes (LSP). Soot concentrations and gas temperatures are in reasonable agreement with similar results available in the literature. However, soot concentrations and flame structure dramatically change in long duration microgravity laminar diffusion flames as demonstrated in this paper.
Upper Management Visits Pegasus ICON
2017-06-06
Managers of NASA's Launch Services Program (LSP) at Kennedy Space Center visit the processing facility for the Pegasus XL rocket at Vandenberg Air Force Base in California. From left, are Chuck Dovale, deputy manager; Amanda Mitskevich, manager; Eric Denbrook, launch vehicle processing at VAFB; and Tim Dunn, NASA assistant launch manager for ICON. The Pegasus XL rocket is being prepared for the agency's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.
Selfsimilar time dependent shock structures
NASA Astrophysics Data System (ADS)
Beck, R.; Drury, L. O.
1985-08-01
Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The ame argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions.
Selfsimilar time dependent shock structures
NASA Technical Reports Server (NTRS)
Beck, R.; Drury, L. O.
1985-01-01
Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The ame argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions.
A search for the production of direct leptons in nucleon-nucleus and nucleus-nucleus collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirk, P.N.
1990-12-01
This report discusses the following topics: subthreshold production experiment; testing and selection of PCOS amplifiers; transverse energy detector; development of a sensitive new amplifiers; single-lepton experiment. (LSP)
Time, Dynamics and Chaos: Integrating Poincare's 'Non-Integrable Systems'
DOE R&D Accomplishments Database
Prigogine, I.
1990-10-01
This report discusses the nature of time. The author attempts to resolve the conflict between the concept of time reversibility in classical and quantum mechanics with the macroscopic world's irreversibility of time. (LSP)
NASA Astrophysics Data System (ADS)
Alobaidi, Wissam M.; Nima, Zeid A.; Sandgren, Eric
2018-01-01
Localised surface plasmon (LSP)-like resonance phenomena were simulated in COMSOL Multiphysics™, and the electric field enhancement was evaluated in eight pipe defects using the microwave band from 1.80 to 3.00 GHz and analysed by finite element analysis (FEA). The simulation was carried out, in each defect case, on a pipe that has 762 mm length and 152.4 mm inner diameter, and 12.7 mm pipe wall thickness. Defects were positioned in the middle of the pipe and were named as follows; SD: Square Defect, FCD: fillet corner defect, FD: fillet defect, HCD: half circle defect, TCD: triangle corner defect, TD: triangle defect, ZD: zigzag defect, GD: gear defect. The LSP electric field, and scattering parametric (S21, and S11) waves were evaluated in all cases and found to be strongly dependent on the size and the shape of the defect rather than the pipe and or the medium materials.
Aad, G; Abajyan, T; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdelalim, A A; Abdinov, O; Aben, R; Abi, B; Abolins, M; Abouzeid, O S; Abramowicz, H; Abreu, H; Acharya, B S; Adamczyk, L; Adams, D L; Addy, T N; Adelman, J; Adomeit, S; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, J A; Agustoni, M; Aharrouche, M; Ahlen, S P; Ahles, F; Ahmad, A; Ahsan, M; Aielli, G; Akdogan, T; Akesson, T P A; Akimoto, G; Akimov, A V; Alam, M S; Alam, M A; Albert, J; Albrand, S; Aleksa, M; Aleksandrov, I N; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Allbrooke, B M M; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alonso, F; Altheimer, A D; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amelung, C; Ammosov, V V; Amorim, A; Amram, N; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aoun, S; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Arfaoui, S; Arguin, J-F; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnault, C; Artamonov, A; Artoni, G; Arutinov, D; Asai, S; Asfandiyarov, R; Ask, S; Asman, B; Asquith, L; Assamagan, K; Astbury, A; Atkinson, M; Aubert, B; Auge, E; Augsten, K; Aurousseau, M; Avolio, G; Avramidou, R; Axen, D; Azuelos, G; Azuma, Y; Baak, M A; Baccaglioni, G; Bacci, C; Bach, A M; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Badescu, E; Bagnaia, P; Bahinipati, S; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, M D; Baker, S; Banas, E; Banerjee, P; Banerjee, Sw; Banfi, D; Bangert, A; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barbaro Galtieri, A; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Barrillon, P; Bartoldus, R; Barton, A E; Bartsch, V; Basye, A; Bates, R L; Batkova, L; Batley, J R; Battaglia, A; Battistin, M; Bauer, F; Bawa, H S; Beale, S; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, A K; Becker, S; Beckingham, M; Becks, K H; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Beemster, L J; Begel, M; Behar Harpaz, S; Beimforde, M; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellina, F; Bellomo, M; Belloni, A; Beloborodova, O; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Benoit, M; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernat, P; Bernhard, R; Bernius, C; Berry, T; Bertella, C; Bertin, A; Bertolucci, F; Besana, M I; Besjes, G J; Besson, N; Bethke, S; Bhimji, W; Bianchi, R M; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biscarat, C; Bittner, B; Black, K M; Blair, R E; Blanchard, J-B; Blanchot, G; Blazek, T; Bloch, I; Blocker, C; Blocki, J; Blondel, A; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V B; Bocchetta, S S; Bocci, A; Boddy, C R; Boehler, M; Boek, J; Boelaert, N; Bogaerts, J A; Bogdanchikov, A; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Bolnet, N M; Bomben, M; Bona, M; Boonekamp, M; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borjanovic, I; Borri, M; Borroni, S; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boveia, A; Boyd, J; Boyko, I R; Bozovic-Jelisavcic, I; Bracinik, J; Branchini, P; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brelier, B; Bremer, J; Brendlinger, K; Brenner, R; Bressler, S; Britton, D; Brochu, F M; Brock, I; Brock, R; Broggi, F; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brown, G; Brown, H; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Buanes, T; Buat, Q; Bucci, F; Buchanan, J; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Budick, B; Büscher, V; Bugge, L; Bulekov, O; Bundock, A C; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Buttinger, W; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Calvet, S; Camacho Toro, R; Camarri, P; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Cantrill, R; Capasso, L; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capriotti, D; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, B; Caron, S; Carquin, E; Carrillo Montoya, G D; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Cascella, M; Caso, C; Castaneda Hernandez, A M; Castaneda-Miranda, E; Castillo Gimenez, V; Castro, N F; Cataldi, G; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cavaliere, V; Cavalleri, P; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chan, K; Chang, P; Chapleau, B; Chapman, J D; Chapman, J W; Chareyre, E; Charlton, D G; Chavda, V; Chavez Barajas, C A; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, S; Chen, X; Chen, Y; Cheplakov, A; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Cheung, S L; Chevalier, L; Chiefari, G; Chikovani, L; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choudalakis, G; Chouridou, S; Christidi, I A; Christov, A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciocca, C; Ciocio, A; Cirilli, M; Cirkovic, P; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Cleland, W; Clemens, J C; Clement, B; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Coggeshall, J; Cogneras, E; Colas, J; Cole, S; Colijn, A P; Collins, N J; Collins-Tooth, C; Collot, J; Colombo, T; Colon, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Courneyea, L; Cowan, G; Cowden, C; Cox, B E; Cranmer, K; Crescioli, F; Cristinziani, M; Crosetti, G; Crépé-Renaudin, S; Cuciuc, C-M; Cuenca Almenar, C; Cuhadar Donszelmann, T; Curatolo, M; Curtis, C J; Cuthbert, C; Cwetanski, P; Czirr, H; Czodrowski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dallapiccola, C; Dam, M; Dameri, M; Damiani, D S; Danielsson, H O; Dao, V; Darbo, G; Darlea, G L; Dassoulas, J A; Davey, W; Davidek, T; Davidson, N; Davidson, R; Davies, E; Davies, M; Davignon, O; Davison, A R; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Taille, C; De la Torre, H; De Lorenzi, F; de Mora, L; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dearnaley, W J; Debbe, R; Debenedetti, C; Dechenaux, B; Dedovich, D V; Degenhardt, J; Del Papa, C; Del Peso, J; Del Prete, T; Delemontex, T; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demirkoz, B; Deng, J; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Devetak, E; Deviveiros, P O; Dewhurst, A; Dewilde, B; Dhaliwal, S; Dhullipudi, R; Di Ciaccio, A; Di Ciaccio, L; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dindar Yagci, K; Dingfelder, J; Dinut, F; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobbs, M; Dobinson, R; Dobos, D; Dobson, E; Dodd, J; Doglioni, C; Doherty, T; Doi, Y; Dolejsi, J; Dolenc, I; Dolezal, Z; Dolgoshein, B A; Dohmae, T; Donadelli, M; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dotti, A; Dova, M T; Doxiadis, A D; Doyle, A T; Dris, M; Dubbert, J; Dube, S; Duchovni, E; Duckeck, G; Duda, D; Dudarev, A; Dudziak, F; Dührssen, M; Duerdoth, I P; Duflot, L; Dufour, M-A; Duguid, L; Dunford, M; Duran Yildiz, H; Duxfield, R; Dwuznik, M; Dydak, F; Düren, M; Ebke, J; Eckweiler, S; Edmonds, K; Edson, W; Edwards, C A; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Eisenhandler, E; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Engelmann, R; Engl, A; Epp, B; Erdmann, J; Ereditato, A; Eriksson, D; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Espinal Curull, X; Esposito, B; Etienne, F; Etienvre, A I; Etzion, E; Evangelakou, D; Evans, H; Fabbri, L; Fabre, C; Fakhrutdinov, R M; Falciano, S; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farley, J; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Favareto, A; Fayard, L; Fazio, S; Febbraro, R; Federic, P; Fedin, O L; Fedorko, W; Fehling-Kaschek, M; Feligioni, L; Fellmann, D; Feng, C; Feng, E J; Fenyuk, A B; Ferencei, J; Fernando, W; Ferrag, S; Ferrando, J; Ferrara, V; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filthaut, F; Fincke-Keeler, M; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, G; Fisher, M J; Flechl, M; Fleck, I; Fleckner, J; Fleischmann, P; Fleischmann, S; Flick, T; Floderus, A; Flores Castillo, L R; Flowerdew, M J; Fonseca Martin, T; Formica, A; Forti, A; Fortin, D; Fournier, D; Fox, H; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Frank, T; Franz, S; Fraternali, M; Fratina, S; French, S T; Friedrich, C; Friedrich, F; Froeschl, R; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Gallas, E J; Gallo, V; Gallop, B J; Gallus, P; Gan, K K; Gao, Y S; Gaponenko, A; Garberson, F; Garcia-Sciveres, M; García, C; García Navarro, J E; Gardner, R W; Garelli, N; Garitaonandia, H; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerlach, P; Gershon, A; Geweniger, C; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giakoumopoulou, V; Giangiobbe, V; Gianotti, F; Gibbard, B; Gibson, A; Gibson, S M; Gillberg, D; Gillman, A R; Gingrich, D M; Ginzburg, J; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giovannini, P; Giraud, P F; Giugni, D; Giunta, M; Giusti, P; Gjelsten, B K; Gladilin, L K; Glasman, C; Glatzer, J; Glazov, A; Glitza, K W; Glonti, G L; Goddard, J R; Godfrey, J; Godlewski, J; Goebel, M; Göpfert, T; Goeringer, C; Gössling, C; Goldfarb, S; Golling, T; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez Silva, M L; Gonzalez-Sevilla, S; Goodson, J J; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Gosdzik, B; Goshaw, A T; Gosselink, M; Gostkin, M I; Gough Eschrich, I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozpinar, S; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Grau, N; Gray, H M; Gray, J A; Graziani, E; Grebenyuk, O G; Greenshaw, T; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grigalashvili, N; Grillo, A A; Grinstein, S; Gris, Ph; Grishkevich, Y V; Grivaz, J-F; Gross, E; Grosse-Knetter, J; Groth-Jensen, J; Grybel, K; Guest, D; Guicheney, C; Guindon, S; Gul, U; Guler, H; Gunther, J; Guo, B; Guo, J; Gutierrez, P; Guttman, N; Gutzwiller, O; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haas, S; Haber, C; Hadavand, H K; Hadley, D R; Haefner, P; Hahn, F; Haider, S; Hajduk, Z; Hakobyan, H; Hall, D; Haller, J; Hamacher, K; Hamal, P; Hamer, M; Hamilton, A; Hamilton, S; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Handel, C; Hanke, P; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansson, P; Hara, K; Hare, G A; Harenberg, T; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Hartert, J; Hartjes, F; Haruyama, T; Harvey, A; Hasegawa, S; Hasegawa, Y; Hassani, S; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayakawa, T; Hayashi, T; Hayden, D; Hays, C P; Hayward, H S; Haywood, S J; Head, S J; Hedberg, V; Heelan, L; Heim, S; Heinemann, B; Heisterkamp, S; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, R C W; Henke, M; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Hensel, C; Henß, T; Hernandez, C M; Hernández Jiménez, Y; Herrberg, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Higón-Rodriguez, E; Hill, J C; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirsch, F; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hohlfeld, M; Holder, M; Holmgren, S O; Holy, T; Holzbauer, J L; Hong, T M; Hooft van Huysduynen, L; Horner, S; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hristova, I; Hrivnac, J; Hryn'ova, T; Hsu, P J; Hsu, S-C; Hu, D; Hubacek, Z; Hubaut, F; Huegging, F; Huettmann, A; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hurwitz, M; Husemann, U; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibbotson, M; Ibragimov, I; Iconomidou-Fayard, L; Idarraga, J; Iengo, P; Igonkina, O; Ikegami, Y; Ikeno, M; Iliadis, D; Ilic, N; Ince, T; Inigo-Golfin, J; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ivashin, A V; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, J N; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jana, D K; Jansen, E; Jansen, H; Jantsch, A; Janus, M; Jarlskog, G; Jeanty, L; Jen-La Plante, I; Jennens, D; Jenni, P; Loevschall-Jensen, A E; Jež, P; Jézéquel, S; Jha, M K; Ji, H; Ji, W; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, S; Jinnouchi, O; Joergensen, M D; Joffe, D; Johansen, M; Johansson, K E; Johansson, P; Johnert, S; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Joram, C; Jorge, P M; Joshi, K D; Jovicevic, J; Jovin, T; Ju, X; Jung, C A; Jungst, R M; Juranek, V; Jussel, P; Juste Rozas, A; Kabana, S; Kaci, M; Kaczmarska, A; Kadlecik, P; Kado, M; Kagan, H; Kagan, M; Kajomovitz, E; Kalinin, S; Kalinovskaya, L V; Kama, S; Kanaya, N; Kaneda, M; Kaneti, S; Kanno, T; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kaplon, J; Kar, D; Karagounis, M; Karakostas, K; Karnevskiy, M; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, M; Kataoka, Y; Katsoufis, E; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kayl, M S; Kazama, S; Kazanin, V A; Kazarinov, M Y; Keeler, R; Kehoe, R; Keil, M; Kekelidze, G D; Keller, J S; Kenyon, M; Kepka, O; Kerschen, N; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khoroshilov, A; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kitamura, T; Kittelmann, T; Kiuchi, K; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klemetti, M; Klier, A; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klinkby, E B; Klioutchnikova, T; Klok, P F; Klous, S; Kluge, E-E; Kluge, T; Kluit, P; Kluth, S; Knecht, N S; Kneringer, E; Knoops, E B F G; Knue, A; Ko, B R; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Köneke, K; König, A C; Koenig, S; Köpke, L; Koetsveld, F; Koevesarki, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohn, F; Kohout, Z; Kohriki, T; Koi, T; Kolachev, G M; Kolanoski, H; Kolesnikov, V; Koletsou, I; Koll, J; Komar, A A; Komori, Y; Kondo, T; Kono, T; Kononov, A I; Konoplich, R; Konstantinidis, N; Koperny, S; Korcyl, K; Kordas, K; Korn, A; Korol, A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotov, S; Kotov, V M; Kotwal, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kreiss, S; Krejci, F; Kretzschmar, J; Krieger, N; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kubota, T; Kuday, S; Kuehn, S; Kugel, A; Kuhl, T; Kuhn, D; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kummer, C; Kuna, M; Kunkle, J; Kupco, A; Kurashige, H; Kurata, M; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwee, R; La Rosa, A; La Rotonda, L; Labarga, L; Labbe, J; Lablak, S; Lacasta, C; Lacava, F; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laisne, E; Lamanna, M; Lambourne, L; Lampen, C L; Lampl, W; Lancon, E; Landgraf, U; Landon, M P J; Lane, J L; Lang, V S; Lange, C; Lankford, A J; Lanni, F; Lantzsch, K; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larner, A; Lassnig, M; Laurelli, P; Lavorini, V; Lavrijsen, W; Laycock, P; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; Lecompte, T; Ledroit-Guillon, F; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, M; Legendre, M; Legger, F; Leggett, C; Lehmacher, M; Lehmann Miotto, G; Lei, X; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Lendermann, V; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leonhardt, K; Leontsinis, S; Lepold, F; Leroy, C; Lessard, J-R; Lester, C G; Lester, C M; Levêque, J; Levin, D; Levinson, L J; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, H; Li, S; Li, X; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lichtnecker, M; Lie, K; Liebig, W; Limbach, C; Limosani, A; Limper, M; Lin, S C; Linde, F; Linnemann, J T; Lipeles, E; Lipniacka, A; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, C; Liu, D; Liu, H; Liu, J B; Liu, L; Liu, M; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Llorente Merino, J; Lloyd, S L; Lobodzinska, E; Loch, P; Lockman, W S; Loddenkoetter, T; Loebinger, F K; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Lombardo, V P; Long, R E; Lopes, L; Lopez Mateos, D; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Lo Sterzo, F; Losty, M J; Lou, X; Lounis, A; Loureiro, K F; Love, J; Love, P A; Lowe, A J; Lu, F; Lubatti, H J; Luci, C; Lucotte, A; Ludwig, A; Ludwig, D; Ludwig, I; Ludwig, J; Luehring, F; Luijckx, G; Lukas, W; Lumb, D; Luminari, L; Lund, E; Lund-Jensen, B; Lundberg, B; Lundberg, J; Lundberg, O; Lundquist, J; Lungwitz, M; Lynn, D; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Maček, B; Machado Miguens, J; Mackeprang, R; Madaras, R J; Maddocks, H J; Mader, W F; Maenner, R; Maeno, T; Mättig, P; Mättig, S; Magnoni, L; Magradze, E; Mahboubi, K; Mahmoud, S; Mahout, G; Maiani, C; Maidantchik, C; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Malecki, P; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V; Malyukov, S; Mameghani, R; Mamuzic, J; Manabe, A; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Mangeard, P S; Manhaes de Andrade Filho, L; Manjarres Ramos, J A; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mapelli, A; Mapelli, L; March, L; Marchand, J F; Marchese, F; Marchiori, G; Marcisovsky, M; Marino, C P; Marroquim, F; Marshall, Z; Martens, F K; Marti, L F; Marti-Garcia, S; Martin, B; Martin, B; Martin, J P; Martin, T A; Martin, V J; Martin Dit Latour, B; Martin-Haugh, S; Martinez, M; Martinez Outschoorn, V; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massaro, G; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Matricon, P; Matsunaga, H; Matsushita, T; Mattravers, C; Maurer, J; Maxfield, S J; Mayne, A; Mazini, R; Mazur, M; Mazzaferro, L; Mazzanti, M; Mc Donald, J; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; McFayden, J A; McHedlidze, G; McLaughlan, T; McMahon, S J; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meera-Lebbai, R; Meguro, T; Mehdiyev, R; Mehlhase, S; Mehta, A; Meier, K; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mendoza Navas, L; Meng, Z; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer, J; Meyer, T C; Miao, J; Michal, S; Micu, L; Middleton, R P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Miller, D W; Miller, R J; Mills, W J; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Miñano Moya, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitrevski, J; Mitsou, V A; Mitsui, S; Miyagawa, P S; Mjörnmark, J U; Moa, T; Moeller, V; Mönig, K; Möser, N; Mohapatra, S; Mohr, W; Moles-Valls, R; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Moorhead, G F; Mora Herrera, C; Moraes, A; Morange, N; Morel, J; Morello, G; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Mueller, F; Mueller, J; Mueller, K; Müller, T A; Mueller, T; Muenstermann, D; Munwes, Y; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nadal, J; Nagai, K; Nagai, R; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Nanava, G; Napier, A; Narayan, R; Nash, M; Nattermann, T; Naumann, T; Navarro, G; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negri, G; Negrini, M; Nektarijevic, S; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neusiedl, A; Neves, R M; Nevski, P; Newman, P R; Nguyen Thi Hong, V; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Niedercorn, F; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsen, H; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Norton, P R; Novakova, J; Nozaki, M; Nozka, L; Nugent, I M; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T; Nurse, E; O'Brien, B J; O'Neil, D C; O'Shea, V; Oakes, L B; Oakham, F G; Oberlack, H; Ocariz, J; Ochi, A; Oda, S; Odaka, S; Odier, J; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohshima, T; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira, M; Oliveira Damazio, D; Oliver Garcia, E; Olivito, D; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orlov, I; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Osuna, C; Otero Y Garzon, G; Ottersbach, J P; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Ouyang, Q; Ovcharova, A; Owen, M; Owen, S; Ozcan, V E; Ozturk, N; Pacheco Pages, A; Padilla Aranda, C; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Paleari, C P; Palestini, S; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Pani, P; Panikashvili, N; Panitkin, S; Pantea, D; Papadelis, A; Papadopoulou, Th D; Paramonov, A; Paredes Hernandez, D; Park, W; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pashapour, S; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N; Pater, J R; Patricelli, S; Pauly, T; Pecsy, M; Pedraza Lopez, S; Pedraza Morales, M I; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penson, A; Penwell, J; Perantoni, M; Perez, K; Perez Cavalcanti, T; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Perrodo, P; Peshekhonov, V D; Peters, K; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Petschull, D; Petteni, M; Pezoa, R; Phan, A; Phillips, P W; Piacquadio, G; Picazio, A; Piccaro, E; Piccinini, M; Piec, S M; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Pinto, B; Pizio, C; Plamondon, M; Pleier, M-A; Plotnikova, E; Poblaguev, A; Poddar, S; Podlyski, F; Poggioli, L; Pohl, D; Pohl, M; Polesello, G; Policicchio, A; Polini, A; Poll, J; Polychronakos, V; Pomeroy, D; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Pospelov, G E; Pospisil, S; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Prabhu, R; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Pretzl, K; Price, D; Price, J; Price, L E; Prieur, D; Primavera, M; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Prudent, X; Przybycien, M; Przysiezniak, H; Psoroulas, S; Ptacek, E; Pueschel, E; Purdham, J; Purohit, M; Puzo, P; Pylypchenko, Y; Qian, J; Quadt, A; Quarrie, D R; Quayle, W B; Quinonez, F; Raas, M; Radescu, V; Radloff, P; Rador, T; Ragusa, F; Rahal, G; Rahimi, A M; Rahm, D; Rajagopalan, S; Rammensee, M; Rammes, M; Randle-Conde, A S; Randrianarivony, K; Rauscher, F; Rave, T C; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Reinherz-Aronis, E; Reinsch, A; Reisinger, I; Rembser, C; Ren, Z L; Renaud, A; Rescigno, M; Resconi, S; Resende, B; Reznicek, P; Rezvani, R; Richter, R; Richter-Was, E; Ridel, M; Rijpstra, M; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Rios, R R; Riu, I; Rivoltella, G; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Rocha de Lima, J G; Roda, C; Roda Dos Santos, D; Roe, A; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romeo, G; Romero Adam, E; Rompotis, N; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, A; Rose, M; Rosenbaum, G A; Rosenberg, E I; Rosendahl, P L; Rosenthal, O; Rosselet, L; Rossetti, V; Rossi, E; Rossi, L P; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Ruckstuhl, N; Rud, V I; Rudolph, C; Rudolph, G; Rühr, F; Ruiz-Martinez, A; Rumyantsev, L; Rurikova, Z; Rusakovich, N A; Rutherfoord, J P; Ruwiedel, C; Ruzicka, P; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Salihagic, D; Salnikov, A; Salt, J; Salvachua Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Samset, B H; Sanchez, A; Sanchez Martinez, V; Sandaker, H; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santamarina Rios, C; Santoni, C; Santonico, R; Santos, H; Saraiva, J G; Sarangi, T; Sarkisyan-Grinbaum, E; Sarri, F; Sartisohn, G; Sasaki, O; Sasaki, Y; Sasao, N; Satsounkevitch, I; Sauvage, G; Sauvan, E; Sauvan, J B; Savard, P; Savinov, V; Savu, D O; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scannicchio, D A; Scarcella, M; Schaarschmidt, J; Schacht, P; Schaefer, D; Schäfer, U; Schaepe, S; Schaetzel, S; Schaffer, A C; Schaile, D; Schamberger, R D; Schamov, A G; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, M; Schneider, B; Schnoor, U; Schoening, A; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schroeder, C; Schroer, N; Schultens, M J; Schultes, J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwierz, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciolla, G; Scott, W G; Searcy, J; Sedov, G; Sedykh, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Sellden, B; Sellers, G; Seman, M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Seuster, R; Severini, H; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaw, K; Sherman, D; Sherwood, P; Shibata, A; Shimizu, S; Shimojima, M; Shin, T; Shiyakova, M; Shmeleva, A; Shochet, M J; Short, D; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sidoti, A; Siegert, F; Sijacki, Dj; Silbert, O; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simoniello, R; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinnari, L A; Skottowe, H P; Skovpen, K; Skubic, P; Slater, M; Slavicek, T; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, S L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, B C; Smith, D; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snow, S W; Snow, J; Snyder, S; Sobie, R; Sodomka, J; Soffer, A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solfaroli Camillocci, E; Solodkov, A A; Solovyanov, O V; Solovyev, V; Soni, N; Sopko, V; Sopko, B; Sosebee, M; Soualah, R; Soukharev, A; Spagnolo, S; Spanò, F; Spighi, R; Spigo, G; Spiwoks, R; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Stahlman, J; Stamen, R; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Staude, A; Stavina, P; Steele, G; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoerig, K; Stoicea, G; Stonjek, S; Strachota, P; Stradling, A R; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strang, M; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Strong, J A; Stroynowski, R; Strube, J; Stugu, B; Stumer, I; Stupak, J; Sturm, P; Styles, N A; Soh, D A; Su, D; Subramania, Hs; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Suzuki, Y; Svatos, M; Swedish, S; Sykora, I; Sykora, T; Sánchez, J; Ta, D; Tackmann, K; Taffard, A; Tafirout, R; Taiblum, N; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A; Tamsett, M C; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tani, K; Tannoury, N; Tapprogge, S; Tardif, D; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tassi, E; Tatarkhanov, M; Tayalati, Y; Taylor, C; Taylor, F E; Taylor, G N; Taylor, W; Teinturier, M; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Terada, S; Terashi, K; Terron, J; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thoma, S; Thomas, J P; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Tic, T; Tikhomirov, V O; Tikhonov, Y A; Timoshenko, S; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomoto, M; Tompkins, L; Toms, K; Tonoyan, A; Topfel, C; Topilin, N D; Torchiani, I; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Triplett, N; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiakiris, M; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsung, J-W; Tsuno, S; Tsybychev, D; Tua, A; Tudorache, A; Tudorache, V; Tuggle, J M; Turala, M; Turecek, D; Turk Cakir, I; Turlay, E; Turra, R; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Tzanakos, G; Uchida, K; Ueda, I; Ueno, R; Ugland, M; Uhlenbrock, M; Uhrmacher, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Unno, Y; Urbaniec, D; Urquijo, P; Usai, G; Uslenghi, M; Vacavant, L; Vacek, V; Vachon, B; Vahsen, S; Valenta, J; Valentinetti, S; Valero, A; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van der Poel, E; van der Ster, D; van Eldik, N; van Gemmeren, P; van Vulpen, I; Vanadia, M; Vandelli, W; Vaniachine, A; Vankov, P; Vannucci, F; Vari, R; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vassilakopoulos, V I; Vazeille, F; Vazquez Schroeder, T; Vegni, G; Veillet, J J; Veloso, F; Veness, R; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinek, E; Vinogradov, V B; Virchaux, M; Virzi, J; Vitells, O; Viti, M; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, A; Vokac, P; Volpi, G; Volpi, M; Volpini, G; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorwerk, V; Vos, M; Voss, R; Voss, T T; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Wagner, W; Wagner, P; Wahlen, H; Wahrmund, S; Wakabayashi, J; Walch, S; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Walsh, B; Wang, C; Wang, H; Wang, H; Wang, J; Wang, J; Wang, R; Wang, S M; Wang, T; Warburton, A; Ward, C P; Warsinsky, M; Washbrook, A; Wasicki, C; Watanabe, I; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Weber, M S; Weber, P; Weidberg, A R; Weigell, P; Weingarten, J; Weiser, C; Wells, P S; Wenaus, T; Wendland, D; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Werth, M; Wessels, M; Wetter, J; Weydert, C; Whalen, K; Wheeler-Ellis, S J; White, A; White, M J; White, S; Whitehead, S R; Whiteson, D; Whittington, D; Wicek, F; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilhelm, I; Wilkens, H G; Will, J Z; Williams, E; Williams, H H; Willis, W; Willocq, S; Wilson, J A; Wilson, M G; Wilson, A; Wingerter-Seez, I; Winkelmann, S; Winklmeier, F; Wittgen, M; Wollstadt, S J; Wolter, M W; Wolters, H; Wong, W C; Wooden, G; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wraight, K; Wright, M; Wrona, B; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wynne, B M; Xella, S; Xiao, M; Xie, S; Xu, C; Xu, D; Yabsley, B; Yacoob, S; Yamada, M; Yamaguchi, H; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamaoka, J; Yamazaki, T; Yamazaki, Y; Yan, Z; Yang, H; Yang, U K; Yang, Y; Yang, Z; Yanush, S; Yao, L; Yao, Y; Yasu, Y; Ybeles Smit, G V; Ye, J; Ye, S; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Young, C; Young, C J; Youssef, S; Yu, D; Yu, J; Yu, J; Yuan, L; Yurkewicz, A; Byszewski, M; Zabinski, B; Zaidan, R; Zaitsev, A M; Zajacova, Z; Zanello, L; Zanzi, D; Zaytsev, A; Zeitnitz, C; Zeman, M; Zemla, A; Zendler, C; Zenin, O; Zeniš, T; Zinonos, Z; Zenz, S; Zerwas, D; Zevi Della Porta, G; Zhan, Z; Zhang, D; Zhang, H; Zhang, J; Zhang, X; Zhang, Z; Zhao, L; Zhao, T; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, N; Zhou, Y; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhuravlov, V; Zieminska, D; Zimin, N I; Zimmermann, R; Zimmermann, S; Zimmermann, S; Ziolkowski, M; Zitoun, R; Zivković, L; Zmouchko, V V; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zutshi, V; Zwalinski, L
2012-11-21
A search is presented for direct top squark pair production in final states with one isolated electron or muon, jets, and missing transverse momentum in proton-proton collisions at sqrt[s] = 7 TeV. The measurement is based on 4.7 fb(-1) of data collected with the ATLAS detector at the LHC. Each top squark is assumed to decay to a top quark and the lightest supersymmetric particle (LSP). The data are found to be consistent with standard model expectations. Top squark masses between 230 GeV and 440 GeV are excluded with 95% confidence for massless LSPs, and top squark masses around 400 GeV are excluded for LSP masses up to 125 GeV.
NASA Astrophysics Data System (ADS)
Groenig, Hans
Topics discussed in this volume include shock wave structure, propagation, and interaction; shocks in condensed matter, dusty gases, and multiphase media; chemical processes and related combustion and detonation phenomena; shock wave reflection, diffraction, and focusing; computational fluid dynamic code development and shock wave application; blast and detonation waves; advanced shock tube technology and measuring technique; and shock wave applications. Papers are presented on dust explosions, the dynamics of shock waves in certain dense gases, studies of condensation kinetics behind incident shock waves, the autoignition mechanism of n-butane behind a reflected shock wave, and a numerical simulation of the focusing process of reflected shock waves. Attention is also given to the equilibrium shock tube flow of real gases, blast waves generated by planar detonations, modern diagnostic methods for high-speed flows, and interaction between induced waves and electric discharge in a very high repetition rate excimer laser.
Survival of carbon grains in shocks
NASA Technical Reports Server (NTRS)
Seab, C. Gregory
1990-01-01
Supernova shocks play a significant part in the life of an interstellar grain. In a typical 10 to the 9th power year lifetime, a grain will be hit by an average of 10 shocks of 100 km s(sup -1) or greater velocity, and even more shocks of lower velocity. Evaluation of the results of this frequent shock processing is complicated by a number of uncertainties, but seems to give about 10 percent destruction of silicate grains and about half that for graphite grains. Because of the frequency of shocking, the mineralogy and sizes of the grain population is predominately determined by shock processing effects, and not by the initial grain nucleation and growth environment. One consequence of the significant role played by interstellar shocks is that a certain fraction (up to 5 percent) of the carbon should be transformed into the diamond phase. Diamond transformation is observed in the laboratory at threshold shock pressures easily obtainable in grain-grain collisions in supernova shocks. Yields for transforming graphite, amorphous carbon, glassy carbon, and other nearly pure carbon solids into diamond are quite high. Impurities up to at least the 10 percent level (for oxygen) are tolerated in the process. The typical size diamond expected from shock transformation agrees well with the observed sizes in the Lewis et al. findings in meteoritic material. Isotropic anomalies already contained in the grain are likely to be retained through the conversion process, while others may be implanted by the shock if the grain is close to the supernova. The meteoritic diamonds are likely to be the results of transformation of carbon grains in grain-grain collisions in supernova shock waves.
Takata, Hiroki; Naiki, Hiroyuki; Wang, Li; Fujiwara, Hideki; Sasaki, Keiji; Tamai, Naoto; Masuo, Sadahiro
2016-09-14
The enhancement of multiphoton emission from a single colloidal nanocrystal quantum dot (NQD) interacting with a plasmonic nanostructure was investigated using a silver-coated atomic force microscopy tip (AgTip) as the plasmonic nanostructure. Using the AgTip, which exhibited a well-defined localized surface plasmon (LSP) resonance band, we controlled the spectral overlap and the distance between the single NQD and the AgTip. The emission behavior of the single NQD when approaching the AgTip at the nanometer scale was measured using off-resonance (405 nm) and resonance (465 nm) excitation of the LSP. We directly observed the conversion of the single-photon emission from a single NQD to multiphoton emission with reduction of the emission lifetime at both excitation wavelengths as the NQD-AgTip distance decreased, whereas a decrease and increase in the emission intensity were observed at 405 and 465 nm excitation, respectively. By combining theoretical analysis and the numerical simulation of the AgTip, we deduced that the enhancement of the multiphoton emission was caused by the quenching of the single-exciton state due to the energy transfer from the NQD to the AgTip and that the emission intensity was increased by enhancement of the excitation rate due to the electric field of the LSP on the AgTip. These results provide evidence that the photon statistics and the photon flux from the single NQD can be manipulated by the plasmonic nanostructure through control of the spectral overlap and the distance.
Kinetic simulation of hydrodynamic equivalent capsule implosions
NASA Astrophysics Data System (ADS)
Kwan, Thomas; Le, Ari; Schmitt, Mark; Herrmann, Hans
2016-10-01
We have carried out simulations of direct-drive hydrodynamic equivalent capsule implosion experiments conducted on Omega laser facility at the Laboratory of Laser Energetics of the University of Rochester. The capsules had a glass shell (SiO2) 4.87 μm with an inner diameter of 1086 μm. One was filled with deuterium (D) and tritium (T) at 6.635 and 2.475 atmospheric pressure respectively. The other capsule with D, T, and He-3 at 2.475, 2.475, and 5.55 atmospheric pressure respectively. The capsules were imploded with 60 laser beams with a square pulse length of 0.6ns of total energy of 15.6 kJ. One-dimensional radiation hydrodynamic calculations with HYDRA and kinetic particle/hybrid simulations with LSP are carried out for the post-shot analysis. HYDRA outputs at 0.6ns are linked to LSP, in which the electrons are treated as a fluid while all the ion dynamics is simulated by the standard particle-in-cell technique. Additionally, simulations with the new photon package in LSP are initiated at the beginning of the implosion to include the implosion phase of the capsule. The simulation results of density, temperature, and velocity profiles of the electrons, D, T, He-3, and SiO2species are compared with HYDRA. Detail comparisons among the kinetic simulations, rad-hydro simulations, and experimental results of neutron yield, yield ratio, fusion burn histories, and shell convergence will be presented to assess plasma kinetic effects. Work performed under the auspices of the US DOE by the Los Alamos National Laboratory under Contract No. W7405-ENG-36.
Shan, Peng; Peng, Silong; Zhao, Yuhui; Tang, Liang
2016-03-01
An analysis of binary mixtures of hydroxyl compound by Attenuated Total Reflection Fourier transform infrared spectroscopy (ATR FT-IR) and classical least squares (CLS) yield large model error due to the presence of unmodeled components such as H-bonded components. To accommodate these spectral variations, polynomial-based least squares (LSP) and polynomial-based total least squares (TLSP) are proposed to capture the nonlinear absorbance-concentration relationship. LSP is based on assuming that only absorbance noise exists; while TLSP takes both absorbance noise and concentration noise into consideration. In addition, based on different solving strategy, two optimization algorithms (limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm and Levenberg-Marquardt (LM) algorithm) are combined with TLSP and then two different TLSP versions (termed as TLSP-LBFGS and TLSP-LM) are formed. The optimum order of each nonlinear model is determined by cross-validation. Comparison and analyses of the four models are made from two aspects: absorbance prediction and concentration prediction. The results for water-ethanol solution and ethanol-ethyl lactate solution show that LSP, TLSP-LBFGS, and TLSP-LM can, for both absorbance prediction and concentration prediction, obtain smaller root mean square error of prediction than CLS. Additionally, they can also greatly enhance the accuracy of estimated pure component spectra. However, from the view of concentration prediction, the Wilcoxon signed rank test shows that there is no statistically significant difference between each nonlinear model and CLS. © The Author(s) 2016.
Yao, Yung-Chi; Yang, Zu-Po; Hwang, Jung-Min; Chuang, Yi-Lun; Lin, Chia-Ching; Haung, Jing-Yu; Chou, Chun-Yang; Sheu, Jinn-Kong; Tsai, Meng-Tsan; Lee, Ya-Ju
2016-02-28
ZnO nanorods (NRs) and Ag nanoparticles (NPs) are known to enhance the luminescence of light-emitting diodes (LEDs) through the high directionality of waveguide mode transmission and efficient energy transfer of localized surface plasmon (LSP) resonances, respectively. In this work, we have demonstrated Ag NP-incorporated n-ZnO NRs/p-GaN heterojunctions by facilely hydrothermally growing ZnO NRs on Ag NP-covered GaN, in which the Ag NPs were introduced and randomly distributed on the p-GaN surface to excite the LSP resonances. Compared with the reference LED, the light-output power of the near-band-edge (NBE) emission (ZnO, λ = 380 nm) of our hybridized structure is increased almost 1.5-2 times and can be further modified in a controlled manner by varying the surface morphology of the surrounding medium of the Ag NPs. The improved light-output power is mainly attributed to the LSP resonance between the NBE emission of ZnO NRs and LSPs in Ag NPs. We also observed different behaviors in the electroluminescence (EL) spectra as the injection current increases for the treatment and reference LEDs. This observation might be attributed to the modification of the energy band diagram for introducing Ag NPs at the interface between n-ZnO NRs and p-GaN. Our results pave the way for developing advanced nanostructured LED devices with high luminescence efficiency in the UV emission regime.
Roles of heat shock factors in gametogenesis and development.
Abane, Ryma; Mezger, Valérie
2010-10-01
Heat shock factors form a family of transcription factors (four in mammals), which were named according to the first discovery of their activation by heat shock. As a result of the universality and robustness of their response to heat shock, the stress-dependent activation of heat shock factor became a ‘paradigm’: by binding to conserved DNA sequences (heat shock elements), heat shock factors trigger the expression of genes encoding heat shock proteins that function as molecular chaperones, contributing to establish a cytoprotective state to various proteotoxic stress and in several pathological conditions. Besides their roles in the stress response, heat shock factors perform crucial roles during gametogenesis and development in physiological conditions. First, during these process, in stress conditions, they are either proactive for survival or, conversely, for apoptotic process, allowing elimination or, inversely, protection of certain cell populations in a way that prevents the formation of damaged gametes and secure future reproductive success. Second, heat shock factors display subtle interplay in a tissue- and stage-specific manner, in regulating very specific sets of heat shock genes, but also many other genes encoding growth factors or involved in cytoskeletal dynamics. Third, they act not only by their classical transcription factor activities, but are necessary for the establishment of chromatin structure and, likely, genome stability. Finally, in contrast to the heat shock gene paradigm, heat shock elements bound by heat shock factors in developmental process turn out to be extremely dispersed in the genome, which is susceptible to lead to the future definition of ‘developmental heat shock element’.
Ushakova, Natalia A.; Preobrazhenskaya, Marina E.; Piccoli, Antonio; Totani, Licia; Ustyuzhanina, Nadezhda E.; Bilan, Maria I.; Usov, Anatolii I.; Grachev, Alexey A.; Morozevich, Galina E.; Berman, Albert E.; Sanderson, Craig J.; Kelly, Maeve; Di Gregorio, Patrizia; Rossi, Cosmo; Tinari, Nicola; Iacobelli, Stefano; Rabinovich, Gabriel A.; Nifantiev, Nikolay E.
2011-01-01
Sulfated polysaccharides from Laminaria saccharina (new name: Saccharina latissima) brown seaweed show promising activity for the treatment of inflammation, thrombosis, and cancer; yet the molecular mechanisms underlying these properties remain poorly understood. The aim of this work was to characterize, using in vitro and in vivo strategies, the anti-inflammatory, anti-coagulant, anti-angiogenic, and anti-tumor activities of two main sulfated polysaccharide fractions obtained from L. saccharina: a) L.s.-1.0 fraction mainly consisting of O-sulfated mannoglucuronofucans and b) L.s.-1.25 fraction mainly composed of sulfated fucans. Both fractions inhibited leukocyte recruitment in a model of inflammation in rats, although L.s.-1.25 appeared to be more active than L.s.-1.0. Also, these fractions inhibited neutrophil adhesion to platelets under flow. Only fraction L.s.-1.25, but not L.s.-1.0, displayed anticoagulant activity as measured by the activated partial thromboplastin time. Investigation of these fractions in angiogenesis settings revealed that only L.s.-1.25 strongly inhibited fetal bovine serum (FBS) induced in vitro tubulogenesis. This effect correlated with a reduction in plasminogen activator inhibitor-1 (PAI-1) levels in L.s.-1.25-treated endothelial cells. Furthermore, only parent sulfated polysaccharides from L. saccharina (L.s.-P) and its fraction L.s.-1.25 were powerful inhibitors of basic fibroblast growth factor (bFGF) induced pathways. Consistently, the L.s.-1.25 fraction as well as L.s.-P successfully interfered with fibroblast binding to human bFGF. The incorporation of L.s.-P or L.s.-1.25, but not L.s.-1.0 into Matrigel plugs containing melanoma cells induced a significant reduction in hemoglobin content as well in the frequency of tumor-associated blood vessels. Moreover, i.p. administrations of L.s.-1.25, as well as L.s.-P, but not L.s.-1.0, resulted in a significant reduction of tumor growth when inoculated into syngeneic mice. Finally, L.s.-1.25 markedly inhibited breast cancer cell adhesion to human platelet-coated surfaces. Thus, sulfated fucans are mainly responsible for the anti-inflammatory, anticoagulant, antiangiogenic, and antitumor activities of sulfated polysaccharides from L. saccharina brown seaweed. PMID:21387013
NASA Astrophysics Data System (ADS)
Takayama, Kazuyoshi
Various papers on shock waves are presented. The general topics addressed include: shock wave structure, propagation, and interaction; shock wave reflection, diffraction, refraction, and focusing; shock waves in condensed matter; shock waves in dusty gases and multiphase media; hypersonic flows and shock waves; chemical processes and related combustion phenomena; explosions, blast waves, and laser initiation of shock waves; shock tube technology and instrumentation; CFD of shock wave phenomena; medical applications and biological effects; industrial applications.
Long, Qingzhi; Li, Xiang; He, Hui; He, Dalin
2016-01-01
Extracorporeal shock wave lithotripsy (ESWL) is well documented to exert destructive effect to renal cells and its mechanism is not clear. Autophagy is one of cell basic response for stressful conditions and it is important to determine cell's fate. The aim of this study is to elucidate the role of autophagy in the process of shock wave-induced renal cells injury. NRK-52E cell, a rat renal tubular epithelial cell, was exposed to shock wave at the voltage of 14KV. GFP-LC3 puncta was used to monitor Autophagy flux in the process of shock wave injury. Autophagic relative proteins, such as light chain 3 (LC3), beclin-1 and p62, were also examined. Cell variability and apoptosis were detected when inhibition autophagy with 3-methyladenine (3MA) or stimulating its activity with rapamycin during the process of shock wave injury. The role of Akt/ GSK-3β and its connection with autophagy in the process of shock wave injury were also investigated. Shock wave was confirmed to activate autophagy in renal cells, which was manifested in LC3-II turnover, beclin-1 induction and degradation of p62. Inhibition autophagy enhanced cell damage or apoptosis, whereas its stimulating was able to exert protection from shock wave injury. Akt/ GSK-3β, a cell-survival signaling pathway, can also be activated during the process. And its activation could be suppressed by blockade autophagy. Autophagy is a self-protective response for renal cells from shock wave injury. The cyto-protection of autophagy may be connected with modulation Akt/ GSK-3β pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.
This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport. (LSP)
The Dynamic Quasiperpendicular Shock: Cluster Discoveries
NASA Astrophysics Data System (ADS)
Krasnoselskikh, V.; Balikhin, M.; Walker, S. N.; Schwartz, S.; Sundkvist, D.; Lobzin, V.; Gedalin, M.; Bale, S. D.; Mozer, F.; Soucek, J.; Hobara, Y.; Comisel, H.
The physics of collisionless shocks is a very broad topic which has been studied for more than five decades. However, there are a number of important issues which remain unresolved. The energy repartition amongst particle populations in quasiperpendicular shocks is a multi-scale process related to the spatial and temporal structure of the electromagnetic fields within the shock layer. The most important processes take place in the close vicinity of the major magnetic transition or ramp region. The distribution of electromagnetic fields in this region determines the characteristics of ion reflection and thus defines the conditions for ion heating and energy dissipation for supercritical shocks and also the region where an important part of electron heating takes place. In other words, the ramp region determines the main characteristics of energy repartition. All these processes are crucially dependent upon the characteristic spatial scales of the ramp and foot region provided that the shock is stationary. The process of shock formation consists of the steepening of a large amplitude nonlinear wave. At some point in its evolution the steepening is arrested by processes occurring within the shock transition. From the earliest studies of collisionless shocks these processes were identified as nonlinearity, dissipation, and dispersion. Their relative role determines the scales of electric and magnetic fields, and so control the characteristics of processes such as ion reflection, electron heating and particle acceleration. The determination of the scales of the electric and magnetic field is one of the key issues in the physics of collisionless shocks. Moreover, it is well known that under certain conditions shocks manifest a nonstationary dynamic behaviour called reformation. It was suggested that the transition from stationary to nonstationary quasiperiodic dynamics is related to gradients, e.g. scales of the ramp region and its associated whistler waves that form a precursor wave train. This implies that the ramp region should be considered as the source of these waves. All these questions have been studied making use observations from the Cluster satellites. The Cluster project continues to provide a unique viewpoint from which to study the scales of shocks. During its lifetime the inter-satellite distance between the Cluster satellites has varied from 100 km to 10000 km allowing scientists to use the data best adapted for the given scientific objective.
NASA Astrophysics Data System (ADS)
Rodriguez-Galiano, Victor; Aragones, David; Caparros-Santiago, Jose A.; Navarro-Cerrillo, Rafael M.
2017-10-01
Land surface phenology (LSP) can improve the characterisation of forest areas and their change processes. The aim of this work was: i) to characterise the temporal dynamics in Mediterranean Pinus forests, and ii) to evaluate the potential of LSP for species discrimination. The different experiments were based on 679 mono-specific plots for the 5 native species on the Iberian Peninsula: P. sylvestris, P. pinea, P. halepensis, P. nigra and P. pinaster. The entire MODIS NDVI time series (2000-2016) of the MOD13Q1 product was used to characterise phenology. The following phenological parameters were extracted: the start, end and median days of the season, and the length of the season in days, as well as the base value, maximum value, amplitude and integrated value. Multi-temporal metrics were calculated to synthesise the inter-annual variability of the phenological parameters. The species were discriminated by the application of Random Forest (RF) classifiers from different subsets of variables: model 1) NDVI-smoothed time series, model 2) multi-temporal metrics of the phenological parameters, and model 3) multi-temporal metrics and the auxiliary physical variables (altitude, slope, aspect and distance to the coastline). Model 3 was the best, with an overall accuracy of 82%, a kappa coefficient of 0.77 and whose most important variables were: elevation, coast distance, and the end and start days of the growing season. The species that presented the largest errors was P. nigra, (kappa= 0.45), having locations with a similar behaviour to P. sylvestris or P. pinaster.
NASA Astrophysics Data System (ADS)
Rodriguez-Galiano, Victor; Aragones, David; Navarro-Cerrillo, Rafael M.; Caparros-Santiago, Jose A.
2017-04-01
Land surface phenology (LSP) can improve the monitoring of forest areas and their change processes. The aim of this work is to characterize the temporal dynamics in Mediterranean Pinus forests. The different experiments were based on 679 mono-specific plots for the 5 native species in the Iberian Peninsula: P. sylvestris, P. pinea, P. halepensis, P. nigra and P. pinaster, which were obtained from the Third National Forest Inventory of Spain. The whole MODIS NDVI time series (2000-2016) were used to characterize the seasonal behavior of the pine forest. The following phenological parameters were extracted for each cycle from the smoothed time series: the day of beginning, end, middle and the length in days of season also base value, maximum value, amplitude and integrated value. Multi-temporal metrics were calculated to synthesize the inter-annual variability of the phenological parameters. An atypical behavior was detected for the years 2004 and 2011 and 2000, 2009 and 2015 for all Pinus species, matching wet and dry cycles, respectively. The inter and intra-species analysis of NDVI and LSP showed two different patterns: an important decreasing during the summer for those species such as P. halepensis, P. pinea y P. pinaster; and a lower NDVI variation among the year for P. sylvestris and P. nigra in certain areas. P. sylvestris had a phenological behavior different to P. pinea, P. halepensis and P. pinaster. P. nigra showed and heterogeneous intra-specific behaviour that might be associated to the existence of subspecies with different phenology.
High-Throughput Cryopreservation of Plant Cell Cultures for Functional Genomics
Ogawa, Yoichi; Sakurai, Nozomu; Oikawa, Akira; Kai, Kosuke; Morishita, Yoshihiko; Mori, Kumiko; Moriya, Kanami; Fujii, Fumiko; Aoki, Koh; Suzuki, Hideyuki; Ohta, Daisaku; Saito, Kazuki; Shibata, Daisuke
2012-01-01
Suspension-cultured cell lines from plant species are useful for genetic engineering. However, maintenance of these lines is laborious, involves routine subculturing and hampers wider use of transgenic lines, especially when many lines are required for a high-throughput functional genomics application. Cryopreservation of these lines may reduce the need for subculturing. Here, we established a simple protocol for cryopreservation of cell lines from five commonly used plant species, Arabidopsis thaliana, Daucus carota, Lotus japonicus, Nicotiana tabacum and Oryza sativa. The LSP solution (2 M glycerol, 0.4 M sucrose and 86.9 mM proline) protected cells from damage during freezing and was only mildly toxic to cells kept at room temperature for at least 2 h. More than 100 samples were processed for freezing simultaneously. Initially, we determined the conditions for cryopreservation using a programmable freezer; we then developed a modified simple protocol that did not require a programmable freezer. In the simple protocol, a thick expanded polystyrene (EPS) container containing the vials with the cell–LSP solution mixtures was kept at −30°C for 6 h to cool the cells slowly (pre-freezing); samples from the EPS containers were then plunged into liquid nitrogen before long-term storage. Transgenic Arabidopsis cells were subjected to cryopreservation, thawed and then re-grown in culture; transcriptome and metabolome analyses indicated that there was no significant difference in gene expression or metabolism between cryopreserved cells and control cells. The simplicity of the protocol will accelerate the pace of research in functional plant genomics. PMID:22437846
NASA Astrophysics Data System (ADS)
Gopal Madhav Annamdas, Venu; Kiong Soh, Chee
2017-01-01
Continuous structural health monitoring (SHM) and delayed SHM techniques can be contact/ contactless, surface bonded/embedded, wired/wireless and active/passive actuator-sensor systems which transfer the recorded condition of the structure to the base station almost instantaneously or with time delay respectively. The time between fatal crack initiation and its propagation leading to the collapse of key infrastructures such as aerospace, nuclear facilities, oil and gas is mostly short. Timely discovery of structural problem depends heavily on the scanning period in well-established techniques like piezoelectric (PZT) based electromechanical impedance (EMI) technique. This often takes much scanning time due to the acquisition of resonant structural peaks at all frequencies in the considered bandwidth; thus poses a challenge for its implementation in practice. On the other hand, recently developed strain sensors based on metamaterials and their breeds such as nested split-ring resonators, localized surface plasmons (LSP), etc, employ measurement of reflected or transmitted signal, with super-fast scanning in the order of at most 1/100th of the time taken by the EMI technique. This paper articulates faster measurements by reducing unnecessary resonant structural peaks and focusing on rapid monitoring using PZT and metamaterial plasmons. Our research adopted wired PZT and wireless LSP communications with impedance analyser and vector network analyser respectively. We present integrated and complementary nature of these techniques, which can be processed rapidly for key infrastructures with great effectiveness. This integration can result in both continuous and delayed SHM techniques based on time or frequency or both domains.
The two-beam accelerator and the relativistic klystron power source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sessler, A.M.
1988-04-01
This paper discusses the concept of a two-beam accelerator. Two versions are discussed; one employing a free electron laser, the second employing a branched beam sent through ''transfer cavities'' as in a klystron. 14 refs., 26 figs., 1 tab. (LSP)
Molecular processes in a high temperature shock layer
NASA Technical Reports Server (NTRS)
Guberman, S. L.
1984-01-01
Models of the shock layer encountered by an Aeroassisted Orbital Transfer Vehicle require as input accurate cross sections and rate constants for the atomic and molecular processes that characterize the shock radiation. From the estimated atomic and molecular densities in the shock layer and the expected residence time of 1 m/s, it can be expected that electron-ion collision processes will be important in the shock model. Electron capture by molecular ions followed by dissociation, e.g., O2(+) + e(-) yields 0 + 0, can be expected to be of major importance since these processes are known to have high rates (e.g., 10 to the -7th power cu/cm/sec) at room temperature. However, there have been no experimental measurements of dissociative recombination (DR) at temperatures ( 12000K) that are expected to characterize the shock layer. Indeed, even at room temperature, it is often difficult to perform experiments that determine the dependence of the translational energy and quantum yields of the product atoms on the electronic and vibrational state of the reactant molecular ions. Presented are ab initio quantum chemical studies of DR for molecular ions that are likely to be important in the atmospheric shock layer.
Simulation of transient flow in a shock tunnel and a high Mach number nozzle
NASA Technical Reports Server (NTRS)
Jacobs, P. A.
1991-01-01
A finite volume Navier-Stokes code was used to simulate the shock reflection and nozzle starting processes in an axisymmetric shock tube and a high Mach number nozzle. The simulated nozzle starting processes were found to match the classical quasi-1-D theory and some features of the experimental measurements. The shock reflection simulation illustrated a new mechanism for the driver gas contamination of the stagnated test gas.
The Physics of Molecular Shocks in Star-Forming Regions
NASA Technical Reports Server (NTRS)
Hollenbach, David; Cuzzi, Jeffrey (Technical Monitor)
1996-01-01
Molecular shocks are produced by the impact of the supersonic infall of gas and dust onto protostars and by the interaction of the supersonic outflow from the protostar with the circumstellar material. Infalling gas creates an accretion shock around the circumstellar disk which emits a unique infrared spectrum and which processes the interstellar dust as it enters the disk. The winds and jets from protostars also impact the disk, the infalling material, and the ambient molecular cloud core creating shocks whose spectrum and morphology diagnose the mass loss processes of the protostar and the orientation and structure of the star forming system. We discuss the physics of these shocks, the model spectra derived from theoretical models, and comparisons with observations of H2O masers, H2 emission, as well as other shocks tracers. We show the strong effect of magnetic fields on molecular shock structure, and elucidate the chemical changes induced by the shock heating and compression.
Vachon, Celine M.; Scott, Christopher G.; Fasching, Peter A.; Hall, Per; Tamimi, Rulla M.; Li, Jingmei; Stone, Jennifer; Apicella, Carmel; Odefrey, Fabrice; Gierach, Gretchen L.; Jud, Sebastian M.; Heusinger, Katharina; Beckmann, Matthias W.; Pollan, Marina; Fernández-Navarro, Pablo; González-Neira, Anna; Benítez, Javier; van Gils, Carla H.; Lokate, Mariëtte; Onland-Moret, N. Charlotte; Peeters, Petra H.M.; Brown, Judith; Leyland, Jean; Varghese, Jajini S.; Easton, Douglas F.; Thompson, Deborah J.; Luben, Robert N.; Warren, Ruth ML; Wareham, Nicholas J.; Loos, Ruth JF; Khaw, Kay-Tee; Ursin, Giske; Lee, Eunjung; Gayther, Simon A.; Ramus, Susan J.; Eeles, Rosalind A.; Leach, Martin O.; Kwan-Lim, Gek; Couch, Fergus J.; Giles, Graham G.; Baglietto, Laura; Krishnan, Kavitha; Southey, Melissa C.; Le Marchand, Loic; Kolonel, Laurence N.; Woolcott, Christy; Maskarinec, Gertraud; Haiman, Christopher A; Walker, Kate; Johnson, Nichola; McCormack, Valerie A.; Biong, Margarethe; Alnæs, Grethe I.G.; Gram, Inger Torhild; Kristensen, Vessela N.; Børresen-Dale, Anne-Lise; Lindström, Sara; Hankinson, Susan E.; Hunter, David J.; Andrulis, Irene L.; Knight, Julia A.; Boyd, Norman F.; Figueroa, Jonine D.; Lissowska, Jolanta; Wesolowska, Ewa; Peplonska, Beata; Bukowska, Agnieszka; Reszka, Edyta; Liu, JianJun; Eriksson, Louise; Czene, Kamila; Audley, Tina; Wu, Anna H.; Pankratz, V. Shane; Hopper, John L.; dos-Santos-Silva, Isabel
2013-01-01
Background Mammographic density adjusted for age and body mass index (BMI) is a heritable marker of breast cancer susceptibility. Little is known about the biological mechanisms underlying the association between mammographic density and breast cancer risk. We examined whether common low-penetrance breast cancer susceptibility variants contribute to inter-individual differences in mammographic density measures. Methods We established an international consortium (DENSNP) of 19 studies from 10 countries, comprising 16,895 Caucasian women, to conduct a pooled cross-sectional analysis of common breast cancer susceptibility variants in 14 independent loci and mammographic density measures. Dense and non-dense areas, and percent density, were measured using interactive-thresholding techniques. Mixed linear models were used to assess the association between genetic variants and the square roots of mammographic density measures adjusted for study, age, case status, body mass index (BMI) and menopausal status. Results Consistent with their breast cancer associations, the C-allele of rs3817198 in LSP1 was positively associated with both adjusted dense area (p=0.00005) and adjusted percent density (p=0.001) whereas the A-allele of rs10483813 in RAD51L1 was inversely associated with adjusted percent density (p=0.003), but not with adjusted dense area (p=0.07). Conclusion We identified two common breast cancer susceptibility variants associated with mammographic measures of radio-dense tissue in the breast gland. Impact We examined the association of 14 established breast cancer susceptibility loci with mammographic density phenotypes within a large genetic consortium and identified two breast cancer susceptibility variants, LSP1-rs3817198 and RAD51L1-rs10483813, associated with mammographic measures and in the same direction as the breast cancer association. PMID:22454379
Fellrath, Jean-Marc; Kettner, Alexander; Dufour, Nathalie; Frigerio, Christian; Schneeberger, Dominique; Leimgruber, Annette; Corradin, Gampietro; Spertini, François
2003-04-01
There is a need to improve the safety and efficacy of allergen-specific immunotherapy. Long synthetic peptide-based immunotherapy was proven safe, immunogenic, and protective in preclinical trials. To evaluate the safety and immunogenicity of an allergen-derived long synthetic overlapping peptide (LSP) immunotherapy, we designed a double-blind, placebo-controlled phase I clinical trial in patients hypersensitive to bee venom. Patients from the active group were injected at day 0 with a mixture of 3 LSPs mapping the entire PLA2 molecule, a major bee venom allergen, in a dose-escalating protocol to a maintenance dose of 100 microg per peptide repeated at days 4, 7, 14, 42, and 70. The control group was injected with human albumin. Whereas specific T-cell proliferation in the peptide group increased up to day 14, a sharp decline was observed thereafter, ending in specific T-cell hyporesponsiveness at day 80. Serum-specific IgG4 response was enhanced, in contrast to anti-PLA2 IgE. Specific T-cell cytokine modulation was marked by increased IL-10 and IFN-gamma secretion. LSP injections were well tolerated in all patients except for mild, late allergic reactions in 2 patients at day 70. The results of this short-term study demonstrate that LSP-based allergen immunotherapy was safe and able to induce T(H)1-type immune deviation, allergen-specific IL-10 production, and T-cell hyporesponsiveness. LSPs, which offer the advantage of covering all possible T-cell epitopes for any HLA genotype, can be considered candidates for a novel and safe approach of specific immunotherapy.
NASA Astrophysics Data System (ADS)
Li, Tianjun; Maxin, James A.; Nanopoulos, Dimitri V.; Walker, Joel W.
2012-02-01
We suggest that non-trivial correlations between the dark matter particle mass and collider based probes of missing transverse energy H_{text{T}}^{text{miss}} may facilitate a two tiered approach to the initial discovery of supersymmetry and the subsequent reconstruction of the lightest supersymmetric particle (LSP) mass at the LHC. These correlations are demonstrated via extensive Monte Carlo simulation of seventeen benchmark models, each sampled at five distinct LHC center-of-mass beam energies, spanning the parameter space of No-Scale mathcal{F} -SU(5). This construction is defined in turn by the union of the mathcal{F} -lipped SU(5) Grand Unified Theory, two pairs of hypothetical TeV scale vector-like supersymmetric multiplets with origins in mathcal{F} -theory, and the dynamically established boundary conditions of No-Scale Supergravity. In addition, we consider a control sample comprised of a standard minimal Supergravity benchmark point. Led by a striking similarity between the H_{text{T}}^{text{miss}} distribution and the familiar power spectrum of a black body radiator at various temperatures, we implement a broad empirical fit of our simulation against a Poisson distribution ansätz. We advance the resulting fit as a theoretical blueprint for deducing the mass of the LSP, utilizing only the missing transverse energy in a statistical sampling of ≥ 9 jet events. Cumulative uncertainties central to the method subsist at a satisfactory 12-15% level. The fact that supersymmetric particle spectrum of No-Scale mathcal{F} -SU(5) has thrived the withering onslaught of early LHC data that is steadily decimating the Constrained Minimal Supersymmetric Standard Model and minimal Supergravity parameter spaces is a prime motivation for augmenting more conventional LSP search methodologies with the presently proposed alternative.
Lorenzão, Caio José; Zimpel, Aline Veiga; Novakoski, Eduardo; da Silva, Aline Alves; Martinez-Pereira, Malcon Andrei
2016-03-01
In this study, the spinal nerves that constitute the lumbosacral plexus (LSP) were dissected in two species of South American wild canids (pampas fox-Pseudalopex gymnocercus, and crab-eating fox-Cerdocyon thous). The nerves origin and distribution in the pelvic limb were examined and compared with the LSP model of the dog described in the literature. The LSP was formed by whole ventral branches of L5 at L7 and S1, and a contribution of a one branch from S2, divided in three trunks. The trunk formed by union from L5-6 and S1 was divided into the cranial (cutaneus femoris lateralis nerve) medial (femoralis nerve) and lateral branches (obturatorius nerve). At the caudal part of the plexus, a thick branch, the ischiadicus plexus, was formed by contributions from L6-7 and S1-2. This root gives rise to the nerve branches which was disseminated to the pelvic limb (nerves gluteus cranial and gluteus caudal, cutaneus femoris caudalis and ischiadicus). The ischiadicus nerve was divided into fibularis communis and tibialis nerves. The tibialis nerve emits the cutaneus surae caudalis. The fibularis communis emits the cutaneus surae lateralis, fibularis superficialis and fibularis profundus. The pudendus nerve arises from S2 with contributions of one branch L7-S1 and one ramus of the cutaneus femoris lateralis. Still, one branch of S2 joins with S3 to form the rectales caudales nerve. These data provides an important anatomical knowledge of a two canid species of South American fauna, besides providing the effective surgical and clinical care of these animals. © 2016 Wiley Periodicals, Inc.
Stewart, Catherine R; Burnside, Denise M; Cianciotto, Nicholas P
2011-11-01
When Legionella pneumophila grows on agar plates, it secretes a surfactant that promotes flagellum- and pilus-independent "sliding" motility. We isolated three mutants that were defective for surfactant. The first two had mutations in genes predicted to encode cytoplasmic enzymes involved in lipid metabolism. These genes mapped to two adjacent operons that we designated bbcABCDEF and bbcGHIJK. Backcrossing and complementation confirmed the importance of the bbc genes and suggested that the Legionella surfactant is lipid containing. The third mutant had an insertion in tolC. TolC is the outer membrane part of various trimolecular complexes involved in multidrug efflux and type I protein secretion. Complementation of the tolC mutant restored sliding motility. Mutants defective for an inner membrane partner of TolC also lacked a surfactant, confirming that TolC promotes surfactant secretion. L. pneumophila (lspF) mutants lacking type II protein secretion (T2S) are also impaired for a surfactant. When the tolC and lspF mutants were grown next to each other, the lsp mutant secreted surfactant, suggesting that TolC and T2S conjoin to mediate surfactant secretion, with one being the conduit for surfactant export and the other the exporter of a molecule that is required for induction or maturation of surfactant synthesis/secretion. Although the surfactant was not required for the extracellular growth, intracellular infection, and intrapulmonary survival of L. pneumophila, it exhibited antimicrobial activity toward seven other species of Legionella but not toward various non-Legionella species. These data suggest that the surfactant provides L. pneumophila with a selective advantage over other legionellae in the natural environment.
Stewart, Catherine R.; Burnside, Denise M.; Cianciotto, Nicholas P.
2011-01-01
When Legionella pneumophila grows on agar plates, it secretes a surfactant that promotes flagellum- and pilus-independent “sliding” motility. We isolated three mutants that were defective for surfactant. The first two had mutations in genes predicted to encode cytoplasmic enzymes involved in lipid metabolism. These genes mapped to two adjacent operons that we designated bbcABCDEF and bbcGHIJK. Backcrossing and complementation confirmed the importance of the bbc genes and suggested that the Legionella surfactant is lipid containing. The third mutant had an insertion in tolC. TolC is the outer membrane part of various trimolecular complexes involved in multidrug efflux and type I protein secretion. Complementation of the tolC mutant restored sliding motility. Mutants defective for an inner membrane partner of TolC also lacked a surfactant, confirming that TolC promotes surfactant secretion. L. pneumophila (lspF) mutants lacking type II protein secretion (T2S) are also impaired for a surfactant. When the tolC and lspF mutants were grown next to each other, the lsp mutant secreted surfactant, suggesting that TolC and T2S conjoin to mediate surfactant secretion, with one being the conduit for surfactant export and the other the exporter of a molecule that is required for induction or maturation of surfactant synthesis/secretion. Although the surfactant was not required for the extracellular growth, intracellular infection, and intrapulmonary survival of L. pneumophila, it exhibited antimicrobial activity toward seven other species of Legionella but not toward various non-Legionella species. These data suggest that the surfactant provides L. pneumophila with a selective advantage over other legionellae in the natural environment. PMID:21890700
The Dynamics of Very High Alfvén Mach Number Shocks in Space Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundberg, Torbjörn; Burgess, David; Scholer, Manfred
2017-02-10
Astrophysical shocks, such as planetary bow shocks or supernova remnant shocks, are often in the high or very-high Mach number regime, and the structure of such shocks is crucial for understanding particle acceleration and plasma heating, as well inherently interesting. Recent magnetic field observations at Saturn’s bow shock, for Alfvén Mach numbers greater than about 25, have provided evidence for periodic non-stationarity, although the details of the ion- and electron-scale processes remain unclear due to limited plasma data. High-resolution, multi-spacecraft data are available for the terrestrial bow shock, but here the very high Mach number regime is only attained onmore » extremely rare occasions. Here we present magnetic field and particle data from three such quasi-perpendicular shock crossings observed by the four-spacecraft Cluster mission. Although both ion reflection and the shock profile are modulated at the upstream ion gyroperiod timescale, the dominant wave growth in the foot takes place at sub-proton length scales and is consistent with being driven by the ion Weibel instability. The observed large-scale behavior depends strongly on cross-scale coupling between ion and electron processes, with ion reflection never fully suppressed, and this suggests a model of the shock dynamics that is in conflict with previous models of non-stationarity. Thus, the observations offer insight into the conditions prevalent in many inaccessible astrophysical environments, and provide important constraints for acceleration processes at such shocks.« less
The Dynamics of Very High Alfvén Mach Number Shocks in Space Plasmas
NASA Astrophysics Data System (ADS)
Sundberg, Torbjörn; Burgess, David; Scholer, Manfred; Masters, Adam; Sulaiman, Ali H.
2017-02-01
Astrophysical shocks, such as planetary bow shocks or supernova remnant shocks, are often in the high or very-high Mach number regime, and the structure of such shocks is crucial for understanding particle acceleration and plasma heating, as well inherently interesting. Recent magnetic field observations at Saturn’s bow shock, for Alfvén Mach numbers greater than about 25, have provided evidence for periodic non-stationarity, although the details of the ion- and electron-scale processes remain unclear due to limited plasma data. High-resolution, multi-spacecraft data are available for the terrestrial bow shock, but here the very high Mach number regime is only attained on extremely rare occasions. Here we present magnetic field and particle data from three such quasi-perpendicular shock crossings observed by the four-spacecraft Cluster mission. Although both ion reflection and the shock profile are modulated at the upstream ion gyroperiod timescale, the dominant wave growth in the foot takes place at sub-proton length scales and is consistent with being driven by the ion Weibel instability. The observed large-scale behavior depends strongly on cross-scale coupling between ion and electron processes, with ion reflection never fully suppressed, and this suggests a model of the shock dynamics that is in conflict with previous models of non-stationarity. Thus, the observations offer insight into the conditions prevalent in many inaccessible astrophysical environments, and provide important constraints for acceleration processes at such shocks.
ION ACCELERATION AT THE QUASI-PARALLEL BOW SHOCK: DECODING THE SIGNATURE OF INJECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundberg, Torbjörn; Haynes, Christopher T.; Burgess, D.
Collisionless shocks are efficient particle accelerators. At Earth, ions with energies exceeding 100 keV are seen upstream of the bow shock when the magnetic geometry is quasi-parallel, and large-scale supernova remnant shocks can accelerate ions into cosmic-ray energies. This energization is attributed to diffusive shock acceleration; however, for this process to become active, the ions must first be sufficiently energized. How and where this initial acceleration takes place has been one of the key unresolved issues in shock acceleration theory. Using Cluster spacecraft observations, we study the signatures of ion reflection events in the turbulent transition layer upstream of the terrestrial bowmore » shock, and with the support of a hybrid simulation of the shock, we show that these reflection signatures are characteristic of the first step in the ion injection process. These reflection events develop in particular in the region where the trailing edge of large-amplitude upstream waves intercept the local shock ramp and the upstream magnetic field changes from quasi-perpendicular to quasi-parallel. The dispersed ion velocity signature observed can be attributed to a rapid succession of ion reflections at this wave boundary. After the ions’ initial interaction with the shock, they flow upstream along the quasi-parallel magnetic field. Each subsequent wavefront in the upstream region will sweep the ions back toward the shock, where they gain energy with each transition between the upstream and the shock wave frames. Within three to five gyroperiods, some ions have gained enough parallel velocity to escape upstream, thus completing the injection process.« less
Laser shock wave and its applications
NASA Astrophysics Data System (ADS)
Yang, Chaojun; Zhang, Yongkang; Zhou, Jianzhong; Zhang, Fang; Feng, Aixin
2007-12-01
The technology of laser shock wave is used to not only surface modification but also metal forming. It can be divided into three parts: laser shock processing, laser shock forming (LSF) and laser peenforming(LPF). Laser shock processing as a surface treatment to metals can make engineering components have a residual compressive stress so that it obviously improves their fatigue strength and stress corrosion performances, while laser shock forming (LSF) is a novel technique that is used in plastic deformation of sheet metal recently and Laser peen forming (LPF) is another new sheet metal forming process presented in recent years. They all can be carried out by a high-power and repetition pulse Nd:Glass laser device made by Jiangsu University. Laser shock technology has characterized of ultrahigh pressure and high strain rate (10 6 - 10 7s -1). Now, for different materials, we are able to form different metals to contours and shapes and simultaneity leave their surfaces in crack-resistant compressive stress state. The results show that the technology of laser shock wave can strengthen surface property and prolong fatigue life and especially can deform metals to shapes that could not be adequately made using conventional methods. With the development of the technology of laser shock wave, the applied fields of laser will become greater and greater.
"Language," "Communication," and the Longing for the Authentic in LSP Testing
ERIC Educational Resources Information Center
Hoekje, Barbara
2016-01-01
This commentary argues that the OET research raises inescapable contradictions in trying to separate "language" from "communication" within a weak performance test and advocates for reconceptualizing the legitimate domain of "language" more widely, reclaiming the full potential of the communicative competence…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welch, Dale Robert; MacFarlane, Joseph John; Mehlhorn, Thomas Alan
We have studied the feasibility of using the 3D fully electromagnetic implicit hybrid particle code LSP (Large Scale Plasma) to study laser plasma interactions with dense, compressed plasmas like those created with Z, and which might be created with the planned ZR. We have determined that with the proper additional physics and numerical algorithms developed during the LDRD period, LSP was transformed into a unique platform for studying such interactions. Its uniqueness stems from its ability to consider realistic compressed densities and low initial target temperatures (if required), an ability that conventional PIC codes do not possess. Through several testmore » cases, validations, and applications to next generation machines described in this report, we have established the suitability of the code to look at fast ignition issues for ZR, as well as other high-density laser plasma interaction problems relevant to the HEDP program at Sandia (e.g. backlighting).« less
The microphysics of collisionless shock waves.
Marcowith, A; Bret, A; Bykov, A; Dieckman, M E; Drury, L O'C; Lembège, B; Lemoine, M; Morlino, G; Murphy, G; Pelletier, G; Plotnikov, I; Reville, B; Riquelme, M; Sironi, L; Novo, A Stockem
2016-04-01
Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebulæ, active galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space. It is complexified by the impact due to high-energy cosmic rays in astrophysical environments. This review adresses the physics of shock formation, shock dynamics and particle acceleration based on a close examination of available multi-wavelength or in situ observations, analytical and numerical developments. A particular emphasis is made on the different instabilities triggered during the shock formation and in association with particle acceleration processes with regards to the properties of the background upstream medium. It appears that among the most important parameters the background magnetic field through the magnetization and its obliquity is the dominant one. The shock velocity that can reach relativistic speeds has also a strong impact over the development of the micro-instabilities and the fate of particle acceleration. Recent developments of laboratory shock experiments has started to bring some new insights in the physics of space plasma and astrophysical shock waves. A special section is dedicated to new laser plasma experiments probing shock physics.
The microphysics of collisionless shock waves
NASA Astrophysics Data System (ADS)
Marcowith, A.; Bret, A.; Bykov, A.; Dieckman, M. E.; O'C Drury, L.; Lembège, B.; Lemoine, M.; Morlino, G.; Murphy, G.; Pelletier, G.; Plotnikov, I.; Reville, B.; Riquelme, M.; Sironi, L.; Stockem Novo, A.
2016-04-01
Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebulæ, active galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space. It is complexified by the impact due to high-energy cosmic rays in astrophysical environments. This review adresses the physics of shock formation, shock dynamics and particle acceleration based on a close examination of available multi-wavelength or in situ observations, analytical and numerical developments. A particular emphasis is made on the different instabilities triggered during the shock formation and in association with particle acceleration processes with regards to the properties of the background upstream medium. It appears that among the most important parameters the background magnetic field through the magnetization and its obliquity is the dominant one. The shock velocity that can reach relativistic speeds has also a strong impact over the development of the micro-instabilities and the fate of particle acceleration. Recent developments of laboratory shock experiments has started to bring some new insights in the physics of space plasma and astrophysical shock waves. A special section is dedicated to new laser plasma experiments probing shock physics.
NASA Astrophysics Data System (ADS)
Josephsen, Gary D.; Josephsen, Kelly A.; Beilman, Greg J.; Taylor, Jodie H.; Muiler, Kristine E.
2005-12-01
This is a report of the adaptation of microwave processing in the preparation of liver biopsies for transmission electron microscopy (TEM) to examine ultrastructural damage of mitochondria in the setting of metabolic stress. Hemorrhagic shock was induced in pigs via 35% total blood volume bleed and a 90-min period of shock followed by resuscitation. Hepatic biopsies were collected before shock and after resuscitation. Following collection, biopsies were processed for TEM by a rapid method involving microwave irradiation (Giberson, 2001). Samples pre- and postshock of each of two animals were viewed and scored using the mitochondrial ultrastructure scoring system (Crouser et al., 2002), a system used to quantify the severity of ultrastructural damage during shock. Results showed evidence of increased ultrastructural damage in the postshock samples, which scored 4.00 and 3.42, versus their preshock controls, which scored 1.18 and 1.27. The results of this analysis were similar to those obtained in another model of shock (Crouser et al., 2002). However, the amount of time used to process the samples was significantly shortened with methods involving microwave irradiation.
Natural language processing and the representation of clinical data.
Sager, N; Lyman, M; Bucknall, C; Nhan, N; Tick, L J
1994-01-01
OBJECTIVE: Develop a representation of clinical observations and actions and a method of processing free-text patient documents to facilitate applications such as quality assurance. DESIGN: The Linguistic String Project (LSP) system of New York University utilizes syntactic analysis, augmented by a sublanguage grammar and an information structure that are specific to the clinical narrative, to map free-text documents into a database for querying. MEASUREMENTS: Information precision (I-P) and information recall (I-R) were measured for queries for the presence of 13 asthma-health-care quality assurance criteria in a database generated from 59 discharge letters. RESULTS: I-P, using counts of major errors only, was 95.7% for the 28-letter training set and 98.6% for the 31-letter test set. I-R, using counts of major omissions only, was 93.9% for the training set and 92.5% for the test set. PMID:7719796
Culture-Shock and Reverse-Culture Shock: Implications for Juniors Abroad and Seniors at Home.
ERIC Educational Resources Information Center
Hogan, John T.
Thousands of college seniors who have returned from their junior year abroad may be enduring "reverse culture shock" or "reentry crisis." Social psychology and sociology, in the form of "sojourn research," has derived a developmental, stage specific model of culture shock and reverse culture shock, similar to the grieving process identified by…
STS-107 Crew Interviews: Kalpana Chawla MS2
NASA Technical Reports Server (NTRS)
2002-01-01
STS-107 Mission Specialist 2 Kalpana Chawla is seen during this preflight interview where she gives a quick overview of the mission before answering questions about her inspiration to become an astronaut and her career path. Chawla outlines her role in the mission in general, and specifically in conducting the on-board science experiments. She discusses the following experiments in detail: MEIDEX (Mediterranean Israel Dust Experiment), CM2 (Combustion Module 2), MIST (Water Mist Fire Suppression), SOFBALL (Structures of Flame Balls at Low Lewis-Number), LSP (Laminar Soot Processes), MGM (Mechanics of Granular Materials) and BDS (Biotechnology Demonstration System). She also discusses the potential benefits of space research, the dual-work shift of the mission and the rewards of international cooperation.
The Louisiana Scholarship Program
ERIC Educational Resources Information Center
Egalite, Anna J.; Mills, Jonathan N.
2014-01-01
The Louisiana Scholarship Program (LSP), also known as the Student Scholarships for Educational Excellence Program, provides public funds for low-income students in low-performing public schools to enroll in local private schools. The program was initially piloted in New Orleans in 2008; Louisiana governor Bobby Jindal and the state legislature…
76 FR 3619 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
... tariff filing per 35.13(a)(2)(iii): Compressed Air Energy Storage Station Power Definition Revision, to... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Combined Notice of Filings 1 Monday... Numbers: EG11-43-000. Applicants: LSP Energy, Inc. Description: Notice of Self-Certifiation of EWG Status...
Haemophilus ducreyi Hfq contributes to virulence gene regulation as cells enter stationary phase.
Gangaiah, Dharanesh; Labandeira-Rey, Maria; Zhang, Xinjun; Fortney, Kate R; Ellinger, Sheila; Zwickl, Beth; Baker, Beth; Liu, Yunlong; Janowicz, Diane M; Katz, Barry P; Brautigam, Chad A; Munson, Robert S; Hansen, Eric J; Spinola, Stanley M
2014-02-11
To adapt to stresses encountered in stationary phase, Gram-negative bacteria utilize the alternative sigma factor RpoS. However, some species lack RpoS; thus, it is unclear how stationary-phase adaptation is regulated in these organisms. Here we defined the growth-phase-dependent transcriptomes of Haemophilus ducreyi, which lacks an RpoS homolog. Compared to mid-log-phase organisms, cells harvested from the stationary phase upregulated genes encoding several virulence determinants and a homolog of hfq. Insertional inactivation of hfq altered the expression of ~16% of the H. ducreyi genes. Importantly, there were a significant overlap and an inverse correlation in the transcript levels of genes differentially expressed in the hfq inactivation mutant relative to its parent and the genes differentially expressed in stationary phase relative to mid-log phase in the parent. Inactivation of hfq downregulated genes in the flp-tad and lspB-lspA2 operons, which encode several virulence determinants. To comply with FDA guidelines for human inoculation experiments, an unmarked hfq deletion mutant was constructed and was fully attenuated for virulence in humans. Inactivation or deletion of hfq downregulated Flp1 and impaired the ability of H. ducreyi to form microcolonies, downregulated DsrA and rendered H. ducreyi serum susceptible, and downregulated LspB and LspA2, which allow H. ducreyi to resist phagocytosis. We propose that, in the absence of an RpoS homolog, Hfq serves as a major contributor of H. ducreyi stationary-phase and virulence gene regulation. The contribution of Hfq to stationary-phase gene regulation may have broad implications for other organisms that lack an RpoS homolog. Pathogenic bacteria encounter a wide range of stresses in their hosts, including nutrient limitation; the ability to sense and respond to such stresses is crucial for bacterial pathogens to successfully establish an infection. Gram-negative bacteria frequently utilize the alternative sigma factor RpoS to adapt to stresses and stationary phase. However, homologs of RpoS are absent in some bacterial pathogens, including Haemophilus ducreyi, which causes chancroid and facilitates the acquisition and transmission of HIV-1. Here, we provide evidence that, in the absence of an RpoS homolog, Hfq serves as a major contributor of stationary-phase gene regulation and that Hfq is required for H. ducreyi to infect humans. To our knowledge, this is the first study describing Hfq as a major contributor of stationary-phase gene regulation in bacteria and the requirement of Hfq for the virulence of a bacterial pathogen in humans.
Design, Simulation and Fabrication of Triaxial MEMS High Shock Accelerometer.
Zhang, Zhenhai; Shi, Zhiguo; Yang, Zhan; Xie, Zhihong; Zhang, Donghong; Cai, De; Li, Kejie; Shen, Yajing
2015-04-01
On the basis of analyzing the disadvantage of other structural accelerometer, three-axis high g MEMS piezoresistive accelerometer was put forward in order to apply to the high-shock test field. The accelerometer's structure and working principle were discussed in details. The simulation results show that three-axis high shock MEMS accelerometer can bear high shock. After bearing high shock impact in high-shock shooting test, three-axis high shock MEMS accelerometer can obtain the intact metrical information of the penetration process and still guarantee the accurate precision of measurement in high shock load range, so we can not only analyze the law of stress wave spreading and the penetration rule of the penetration process of the body of the missile, but also furnish the testing technology of the burst point controlling. The accelerometer has far-ranging application in recording the typical data that projectile penetrating hard target and furnish both technology guarantees for penetration rule and defend engineering.
Maginnis, Cathy; Anderson, Judith
2017-06-01
This paper examines the meaning and experience of culture shock for nursing students undertaking an international clinical placement (ICP) and the role of the clinical facilitator. Oberg's four stages of adapting to culture shock were aligned to anecdotal conversations with nursing students on an ICP. All four stages were identified in anecdotal conversations with the students. Support by the accompanying clinical facilitator is pivotalin overcoming culture shock and maximising the learning experience. It is essential that students are prepared for the change in cultural norms and are supported by the academic staff to work through the processes required to adapt to culture shock. Planning and preparation prior to departure is essential to assist with managing culture shock with an emphasis on the inclusion of cultural norms and beliefs. The role of the facilitator is crucial to guide and support the students through the culture shock process.
NASA Astrophysics Data System (ADS)
Gedalin, M.; Liverts, M.; Balikhin, M. A.
2008-05-01
Field-aligned and gyrophase bunched ion beams are observed in the foreshock of the Earth bow shock. One of the mechanisms proposed for their production is non-specular reflection at the shock front. We study the distributions which are formed at the stationary quasi-perpendicular shock front within the same process which is responsible for the generation of reflected ions and transmitted gyrating ions. The test particle motion analysis in a model shock allows one to identify the parameters which control the efficiency of the process and the features of the escaping ion distribution. These parameters are: the angle between the shock normal and the upstream magnetic field, the ratio of the ion thermal velocity to the flow velocity upstream, and the cross-shock potential. A typical distribution of escaping ions exhibits a bimodal pitch angle distribution (in the plasma rest frame).
Numerical investigation of shock induced bubble collapse in water
NASA Astrophysics Data System (ADS)
Apazidis, N.
2016-04-01
A semi-conservative, stable, interphase-capturing numerical scheme for shock propagation in heterogeneous systems is applied to the problem of shock propagation in liquid-gas systems. The scheme is based on the volume-fraction formulation of the equations of motion for liquid and gas phases with separate equations of state. The semi-conservative formulation of the governing equations ensures the absence of spurious pressure oscillations at the material interphases between liquid and gas. Interaction of a planar shock in water with a single spherical bubble as well as twin adjacent bubbles is investigated. Several stages of the interaction process are considered, including focusing of the transmitted shock within the deformed bubble, creation of a water-hammer shock as well as generation of high-speed liquid jet in the later stages of the process.
Quasiperpendicular High Mach Number Shocks
NASA Astrophysics Data System (ADS)
Sulaiman, A. H.; Masters, A.; Dougherty, M. K.; Burgess, D.; Fujimoto, M.; Hospodarsky, G. B.
2015-09-01
Shock waves exist throughout the Universe and are fundamental to understanding the nature of collisionless plasmas. Reformation is a process, driven by microphysics, which typically occurs at high Mach number supercritical shocks. While ongoing studies have investigated this process extensively both theoretically and via simulations, their observations remain few and far between. In this Letter we present a study of very high Mach number shocks in a parameter space that has been poorly explored and we identify reformation using in situ magnetic field observations from the Cassini spacecraft at 10 AU. This has given us an insight into quasiperpendicular shocks across 2 orders of magnitude in Alfvén Mach number (MA ) which could potentially bridge the gap between modest terrestrial shocks and more exotic astrophysical shocks. For the first time, we show evidence for cyclic reformation controlled by specular ion reflection occurring at the predicted time scale of ˜0.3 τc , where τc is the ion gyroperiod. In addition, we experimentally reveal the relationship between reformation and MA and focus on the magnetic structure of such shocks to further show that for the same MA , a reforming shock exhibits stronger magnetic field amplification than a shock that is not reforming.
A New LSP Educational Experience in Nebrija University
ERIC Educational Resources Information Center
Genís, Marta; Orduna, Elena; Rubio Romero, Juana; Perlado, Marta
2012-01-01
The contest "Touched by Advertising," organized by the Publicity Department of Nebrija University, gives awards in three general categories: Great Touched, Young Touched and Touched to Career Development. Alongside these general categories, there are technical awards for the best slogan, the best performance, the best score and the best…
Language Test as Boundary Object: Perspectives from Test Users in the Healthcare Domain
ERIC Educational Resources Information Center
Macqueen, Susy; Pill, John; Knoch, Ute
2016-01-01
Objects that sit between intersecting social worlds, such as Language for Specific Purposes (LSP) tests, are "boundary objects"--dynamic, historically derived mechanisms which maintain coherence between worlds (Star & Griesemer, 1989). They emerge initially from sociopolitical mandates, such as the need to ensure a safe and efficient…
Long-Term Effect of Prefrontal Lobotomy on Verbal Fluency in Patients with Schizophrenia
ERIC Educational Resources Information Center
Stip, Emmanuel; Bigras, Marie-Josee.; Mancini-Marie, Adham; Cosset, Marie-Eve.; Black, Deborah; Lecours, Andre-Roch
2004-01-01
Objective: This study investigated the long-term effects of bilateral prefrontal leukotomy on lexical abilities in schizophrenia subjects. Method: We compared performances of leukotomized (LSP), non-leukotomized schizophrenia patients (NLSP) and normal controls, using a test of verbal fluency. Multiple case and triple comparison design were…
Profiling and Utilizing Learning Style. NASSP Learning Style Series.
ERIC Educational Resources Information Center
Keefe, James W., Ed.
In 1986, the National Association of Secondary School Principals, with the assistance of a national task force, published the NASSP Learning Style Profile (LSP) for diagnosis of the cognitive styles, perceptual response tendencies, and instructional preferences of middle level and senior high school students. This monograph offers a short course…
NASA Technical Reports Server (NTRS)
Strangeway, R. J.; Crawford, G. K.
1995-01-01
Plasma waves observed in the VLF range upstream of planetary bow shocks not only modify the particle distributions, but also provide important information about the acceleration processes that occur at the bow shock. Electron plasma oscillations observed near the tangent field line in the electron foreshock are generated by electrons reflected at the bow shock through a process that has been referred to as Fast Fermi acceleration. Fast Fermi acceleration is the same as shock-drift acceleration, which is one of the mechanisms by which ions are energized at the shock. We have generated maps of the VLF emissions upstream of the Venus bow shock, using these maps to infer properties of the shock energization processes. We find that the plasma oscillations extend along the field line up to a distance that appears to be controlled by the shock scale size, implying that shock curvature restricsts the flux and energy of reflected electrons. We also find that the ion acoustic waves are observed in the ion foreshock, but at Venus these emissions are not detected near the ULF forshock boundary. Through analogy with terrestrial ion observations, this implies that the ion acoustic waves are not generated by ion beams, but are instead generated by diffuse ion distributions found deep within the ion foreshock. However, since the shock is much smaller at Venus, and there is no magnetosphere, we might expect ion distributions within the ion foreshock to be different than at the Earth. Mapping studies of the terrestrial foreshock similar to those carried out at Venus appear to be necessary to determine if the inferences drawn from Venus data are applicable to other foreshocks.
Dynamic properties of ceramic materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grady, D.E.
1995-02-01
The present study offers new data and analysis on the transient shock strength and equation-of-state properties of ceramics. Various dynamic data on nine high strength ceramics are provided with wave profile measurements, through velocity interferometry techniques, the principal observable. Compressive failure in the shock wave front, with emphasis on brittle versus ductile mechanisms of deformation, is examined in some detail. Extensive spall strength data are provided and related to the theoretical spall strength, and to energy-based theories of the spall process. Failure waves, as a mechanism of deformation in the transient shock process, are examined. Strength and equation-of-state analysis ofmore » shock data on silicon carbide, boron carbide, tungsten carbide, silicon dioxide and aluminum nitride is presented with particular emphasis on phase transition properties for the latter two. Wave profile measurements on selected ceramics are investigated for evidence of rate sensitive elastic precursor decay in the shock front failure process.« less
Electron injection by whistler waves in non-relativistic shocks
NASA Astrophysics Data System (ADS)
Riquelme, Mario A.; Spitkovsky, Anatoly
2012-04-01
Radio and X-ray observations of shocks in young supernova remnants (SNRs) reveal electron acceleration to non-thermal, ultra-relativistic energies (~ 10-100 TeV). This acceleration is usually assumed to happen via the diffusive shock acceleration (DSA) mechanism. However, the way in which electrons are initially energized or 'injected' into this acceleration process is an open question and the main focus of this work. We present our study of electron acceleration in nonrelativistic shocks using 2D and 3D particle-in-cell (PIC) plasma simulations. Our simulations show that significant non-thermal acceleration happens due to the growth of oblique whistler waves in the foot of quasi-perpendicular shocks. The obtained electron energy distributions show power law tails with spectral indices up to α ~ 3-4. Also, the maximum energies of the accelerated particles are consistent with the electron Larmor radii being comparable to that of the ions, indicating potential injection into the subsequent DSA process. This injection mechanism requires the shock waves to have fairly low Alfvénic Mach numbers, MA <20, which is consistent with the theoretical conditions for the growth of whistler waves in the shock foot (MA <(mi/me)1/2). Thus, if this mechanism is the only robust electron injection process at work in SNR shocks, then SNRs that display non-thermal emission must have significantly amplified upstream magnetic fields. Such field amplification is likely achieved by accelerated ions in these environments, so electron and ion acceleration in SNR shocks must be interconnected.
HIF-1α regulates Cx40-dependent vasodilatation following hemorrhagic shock in rats
Duan, Chenyang; Chen, Ken; Yang, Guangming; Li, Tao; Liu, Liangming
2017-01-01
HIF-1α plays an essential role in hemorrhagic shock-induced vasoconstriction. However, the underlying mechanisms remain poorly understood. Here, we studied both the role of HIF-1α in regulating vasodilatation, and the involvement of Cx40 in this process. We found that endothelium-dependent vasodilatation exhibited an overall decline after hemorrhagic shock: at the beginning of shock vasodilatation reactivity significantly decreased, followed by a slight increase from 0.5 h to 2 h after shock. After 2 h vasodilatation dropped again. Throughout this process, protein levels of HIF-1α gradually increased. In the late period of shock, vasodilatation reactivity was enhanced by oligomycin, an HIF-1α inhibitor, suggesting that HIF-1α may promote vasoconstriction. Moreover, in the late period of shock Cx40 levels gradually increased and exhibited a negative correlation with endothelium-dependent vasoconstriction reactivity. Furthermore, Cx40 AODN significantly improved vasoconstriction reactivity and could be regulated by either an HIF-1α inhibitor or an agonist. Together, these data suggest that HIF-1α may inhibit endothelium-dependent vasodilatation reactivity following hemorrhagic shock by up-regulating Cx40, especially in the late period of shock. PMID:28386353
In situ measurement of plasma and shock wave properties inside laser-drilled metal holes
NASA Astrophysics Data System (ADS)
Brajdic, Mihael; Hermans, Martin; Horn, Alexander; Kelbassa, Ingomar
2008-10-01
High-speed imaging of shock wave and plasma dynamics is a commonly used diagnostic method for monitoring processes during laser material treatment. It is used for processes such as laser ablation, cutting, keyhole welding and drilling. Diagnosis of laser drilling is typically adopted above the material surface because lateral process monitoring with optical diagnostic methods inside the laser-drilled hole is not possible due to the hole walls. A novel method is presented to investigate plasma and shock wave properties during the laser drilling inside a confined environment such as a laser-drilled hole. With a novel sample preparation and the use of high-speed imaging combined with spectroscopy, a time and spatial resolved monitoring of plasma and shock wave dynamics is realized. Optical emission of plasma and shock waves during drilling of stainless steel with ns-pulsed laser radiation is monitored and analysed. Spatial distributions and velocities of shock waves and of plasma are determined inside the holes. Spectroscopy is accomplished during the expansion of the plasma inside the drilled hole allowing for the determination of electron densities.
Energetics of the terrestrial bow shock
NASA Astrophysics Data System (ADS)
Hamrin, Maria; Gunell, Herbert; Norqvist, Patrik
2017-04-01
The solar wind is the primary energy source for the magnetospheric energy budget. Energy can enter through the magnetopause both as kinetic energy (plasma entering via e.g. magnetic reconnection and impulsive penetration) and as electromagnetic energy (e.g. by the conversion of solar wind kinetic energy into electromagnetic energy in magnetopause generators). However, energy is extracted from the solar wind already at the bow shock, before it encounters the terrestrial magnetopause. At the bow shock the supersonic solar wind is slowed down and heated, and the region near the bow shock is known to host many complex processes, including the accelerating of particles and the generation of waves. The processes at and near the bow shock can be discussed in terms of energetics: In a generator (load) process kinetic energy is converted to (from) electromagnetic energy. Bow shock regions where the solar wind is decelerated correspond to generators, while regions where particles are energized (accelerated and heated) correspond to loads. Recently, it has been suggested that currents from the bow shock generator should flow across the magnetosheath and connect to the magnetospause current systems [Siebert and Siscoe, 2002; Lopez et al., 2011]. In this study we use data from the Magnetospheric MultiScale (MMS) mission to investigate the energetics of the bow shock and the current closure, and we compare with the MHD simulations of Lopez et al., 2011.
NASA Astrophysics Data System (ADS)
Puranik, Bhalchandra; Watvisave, Deepak; Bhandarkar, Upendra
2016-11-01
The interaction of a shock with a density interface is observed in several technological applications such as supersonic combustion, inertial confinement fusion, and shock-induced fragmentation of kidney and gall-stones. The central physical process in this interaction is the mechanism of the Richtmyer-Meshkov Instability (RMI). The specific situation where the density interface is initially an isolated spherical or cylindrical gas bubble presents a relatively simple geometry that exhibits all the essential RMI processes such as reflected and refracted shocks, secondary instabilities, turbulence and mixing of the species. If the incident shocks are strong, the calorically imperfect nature needs to be modelled. In the present work, we have carried out simulations of the shock-bubble interaction using the DSMC method for such situations. Specifically, an investigation of the shock-bubble interaction with diatomic gases involving rotational and vibrational excitations at high temperatures is performed, and the effects of such high temperature phenomena will be presented.
MMS Observation of Shock-Reflected He++ at Earth's Quasi-Perpendicular Bow Shock
NASA Astrophysics Data System (ADS)
Broll, Jeffrey Michael; Fuselier, S. A.; Trattner, K. J.; Schwartz, S. J.; Burch, J. L.; Giles, B. L.; Anderson, B. J.
2018-01-01
Specular reflection of protons at Earth's supercritical quasi-perpendicular bow shock has long been known to lead to the thermalization of solar wind particles by velocity-space dispersion. The same process has been proposed for He++ but could not be confirmed previously due to insufficient time resolution for velocity distribution measurements. We present observations and simulations of a bow shock crossing by the Magnetospheric Multiscale (MMS) mission on 20 November 2015 indicating that a very similar reflection process for He++ is possible, and further that the part of the incoming distribution with the highest probability of reflecting is the same for H+ and He++. However, the reflection process for He++ is accomplished by deeper penetration into the downstream magnetic fields.
Room temperature impact deposition of ceramic by laser shock wave
NASA Astrophysics Data System (ADS)
Jinno, Kengo; Tsumori, Fujio
2018-06-01
In this paper, a direct fine patterning of ceramics at room temperature combining 2 kinds of laser microfabrication methods is proposed. The first method is called laser-induced forward transfer and the other is called laser shock imprinting. In the proposed method, a powder material is deposited by a laser shock wave; therefore, the process is applicable to a low-melting-point material, such as a polymer substrate. In the process, a carbon layer plays an important role in the ablation by laser irradiation to generate a shock wave. This shock wave gives high shock energy to the ceramic particles, and the particles would be deposited and solidified by high-speed collision with the substrate. In this study, we performed deposition experiments by changing the thickness of the carbon layer, laser energy, thickness of the alumina layer, and gap substrates. We compared the ceramic deposits after each experiment.
Langmuir waveforms at interplanetary shocks: STEREO statistical analysis
NASA Astrophysics Data System (ADS)
Briand, C.
2016-12-01
Wave-particle interactions and particle acceleration are the two main processes allowing energy dissipation at non collisional shocks. Ion acceleration has been deeply studied for many years, also for their central role in the shock front reformation. Electron dynamics is also important in the shock dynamics through the instabilities they can generate which may impact the ion dynamics.Particle measurements can be efficiently completed by wave measurements to determine the characteristics of the electron beams and study the turbulence of the medium. Electric waveforms obtained from the S/WAVES instrument of the STEREO mission between 2007 to 2014 are analyzed. Thus, clear signature of Langmuir waves are observed on 41 interplanetary shocks. These data enable a statistical analysis and to deduce some characteristics of the electron dynamics on different shocks sources (SIR or ICME) and types (quasi-perpendicular or quasi-parallel). The conversion process between electrostatic to electromagnetic waves has also been tested in several cases.
Introducing LSP Courses into the Liberal Arts Curriculum: The Case of Butler University.
ERIC Educational Resources Information Center
Phariss, Florence M.
For many years, the modern language enrollment at Butler University included many students with a second major in education, and the language curriculum served this population. As the number of teacher trainees diminished, foreign language majors increasingly indicated second majors in business. To serve this population, the foreign language…
The Role of Technology in Teaching Languages for Specific Purposes Courses
ERIC Educational Resources Information Center
Arno-Macia, Elisabet
2012-01-01
Within the integration of technology into language education, special attention needs to be paid to languages for specific purposes (LSP), drawing on developments in computer-assisted language learning and applied linguistics, on the one hand, and on the pervasive use of technology in academic and professional communication, on the other. From a…
The Research Base in Languages for Specific Purposes.
ERIC Educational Resources Information Center
Grosse, Christine Uber
More than 200 publications regarding Languages for Specific Purposes (LSP) from the past 25 years, excluding work on English for Specific Purposes, are compiled in this literature review. In introductory comments that precede the bibliography, it is noted that most of the activity in this field has occurred in the last decade, with eight…
Case Study 1: Playful Team Reflection Using LEGO® Serious Play®
ERIC Educational Resources Information Center
Seidl, Tobias
2017-01-01
Teamwork and cooperation are important 21st century skills and therefore important parts of the higher education curriculum. Following Kolb's "experiential learning cycle" model a combination of project work and moderated reflection can help students to acquire these skills. This article elaborates how LEGO® Serious Play® (LSP) can be…
Physics division progress report for period ending September 30 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livingston, A.B.
1992-03-01
This report discusses research being conducted at Oak Ridge National Laboratory in physics. The areas covered are: Holifield Heavy Ion Research Facility; low/medium energy nuclear physics; high energy experimental physics; the Unisor program; experimental atomic physics; laser and electro-optics lab; theoretical physics; compilations and evaluations; and radioactive ion beam development. (LSP)
An Object-Oriented Architecture for Intelligent Tutoring Systems. Technical Report No. LSP-3.
ERIC Educational Resources Information Center
Bonar, Jeffrey; And Others
This technical report describes a generic architecture for building intelligent tutoring systems which is developed around objects that represent the knowledge elements to be taught by the tutor. Each of these knowledge elements, called "bites," inherits both a knowledge organization describing the kind of knowledge represented and…
77 FR 30000 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-21
.... Applicants: Golden Spread Electric Cooperative, Inc., Denver City Energy Associates, L.P., Great Point Power Denver City LP, LLC, LSP- Denver City, LLC, GPP Investors I, LLC, QUIXX Mustang Station, LLC Description... ER08- 1419-004--Attachment O to be effective 7/26/2010. Filed Date: 5/11/12 Accession Number: 20120511...
Vocationally Oriented Language Learning Revisited
ERIC Educational Resources Information Center
Vogt, Karin; Kantelinen, Ritva
2013-01-01
Vocationally oriented language learning (VOLL) is often seen as a part of English for Specific Purposes/Language for Specific Purposes (ESP/LSP), which it is not in every case. The diverging characteristics and lines of development that these two branches of ELT have undergone are outlined and contrasted. Then, a discussion of the added value of a…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trent, D.S.; Eyler, L.L.
TEMPEST offers simulation capabilities over a wide range of hydrothermal problems that are definable by input instructions. These capabilities are summarized by categories as follows: modeling capabilities; program control; and I/O control. 10 refs., 22 figs., 2 tabs. (LSP)
Toward Intelligent Systems for Testing. Technical Report LSP-1.
ERIC Educational Resources Information Center
Lesgold, Alan; And Others
This report illustrates one way in which the technologies of testing might combine with cognitive science techniques to help steer instruction. Steering testing is brief diagnostic testing that steers, or individualizes, the course of instruction. Steering testing uses simple heuristics for reasoning about the level of a student's competence in a…
Translanguaging in a Reading Class
ERIC Educational Resources Information Center
Vaish, Viniti; Subhan, Aidil
2015-01-01
Using translanguaging as a theoretical foundation, this paper analyses findings from a Grade 2 reading class for low achieving students, where Malay was used as a scaffold to teach English. Data come from one class in one school in Singapore and its Learning Support Programme (LSP), which is part of a larger research project on biliteracy. The LSP…
Detecting chaos in irregularly sampled time series.
Kulp, C W
2013-09-01
Recently, Wiebe and Virgin [Chaos 22, 013136 (2012)] developed an algorithm which detects chaos by analyzing a time series' power spectrum which is computed using the Discrete Fourier Transform (DFT). Their algorithm, like other time series characterization algorithms, requires that the time series be regularly sampled. Real-world data, however, are often irregularly sampled, thus, making the detection of chaotic behavior difficult or impossible with those methods. In this paper, a characterization algorithm is presented, which effectively detects chaos in irregularly sampled time series. The work presented here is a modification of Wiebe and Virgin's algorithm and uses the Lomb-Scargle Periodogram (LSP) to compute a series' power spectrum instead of the DFT. The DFT is not appropriate for irregularly sampled time series. However, the LSP is capable of computing the frequency content of irregularly sampled data. Furthermore, a new method of analyzing the power spectrum is developed, which can be useful for differentiating between chaotic and non-chaotic behavior. The new characterization algorithm is successfully applied to irregularly sampled data generated by a model as well as data consisting of observations of variable stars.
Supernatural supersymmetry: Phenomenological implications of anomaly-mediated supersymmetry breaking
NASA Astrophysics Data System (ADS)
Feng, Jonathan L.; Moroi, Takeo
2000-05-01
We discuss the phenomenology of supersymmetric models in which supersymmetry breaking terms are induced by the super-Weyl anomaly. Such a scenario is envisioned to arise when supersymmetry breaking takes place in another world, i.e., on another brane. We review the anomaly-mediated framework and study in detail the minimal anomaly-mediated model parametrized by only 3+1 parameters: Maux, m0, tan β, and sgn(μ). The renormalization group equations exhibit a novel ``focus point'' (as opposed to fixed point) behavior, which allows squark and slepton masses far above their usual naturalness bounds. We present the superparticle spectrum and highlight several implications for high energy colliders. Three lightest supersymmetric particle (LSP) candidates exist: the W-ino, the stau, and the tau sneutrino. For the W-ino LSP scenario, light W-ino triplets with the smallest possible mass splittings are preferred; such W-inos are within reach of run II Fermilab Tevatron searches. Finally, we study a variety of sensitive low energy probes, including b-->sγ, the anomalous magnetic moment of the muon, and the electric dipole moments of the electron and neutron.
Uchida, Akira; Murugesapillai, Divakaran; Kastner, Markus; Wang, Yao; Lodeiro, Maria F; Prabhakar, Shaan; Oliver, Guinevere V; Arnold, Jamie J; Maher, L James; Williams, Mark C; Cameron, Craig E
2017-01-01
Human mtDNA contains three promoters, suggesting a need for differential expression of the mitochondrial genome. Studies of mitochondrial transcription have used a reductionist approach, perhaps masking differential regulation. Here we evaluate transcription from light-strand (LSP) and heavy-strand (HSP1) promoters using templates that mimic their natural context. These studies reveal sequences upstream, hypervariable in the human population (HVR3), and downstream of the HSP1 transcription start site required for maximal yield. The carboxy-terminal tail of TFAM is essential for activation of HSP1 but not LSP. Images of the template obtained by atomic force microscopy show that TFAM creates loops in a discrete region, the formation of which correlates with activation of HSP1; looping is lost in tail-deleted TFAM. Identification of HVR3 as a transcriptional regulatory element may contribute to between-individual variability in mitochondrial gene expression. The unique requirement of HSP1 for the TFAM tail may enable its regulation by post-translational modifications. DOI: http://dx.doi.org/10.7554/eLife.27283.001 PMID:28745586
NASA Astrophysics Data System (ADS)
Chen, Chao; Sheng, Yuping; Jun, Wang
2018-01-01
A high performed multiple band metamaterial absorber is designed and computed through the software Ansofts HFSS 10.0, which is constituted with two kinds of separated metal particles sub-structures. The multiple band absorption property of the metamaterial absorber is based on the resonance of localized surface plasmon (LSP) modes excited near edges of metal particles. The damping constant of gold layer is optimized to obtain a near-perfect absorption rate. Four kinds of dielectric layers is computed to achieve the perfect absorption perform. The perfect absorption perform of the metamaterial absorber is enhanced through optimizing the structural parameters (R = 75 nm, w = 80 nm). Moreover, a perfect absorption band is achieved because of the plasmonic hybridization phenomenon between LSP modes. The designed metamaterial absorber shows high sensitive in the changed of the refractive index of the liquid. A liquid refractive index sensor strategy is proposed based on the computed figure of merit (FOM) value of the metamaterial absorber. High FOM values (116, 111, and 108) are achieved with three liquid (Methanol, Carbon tetrachloride, and Carbon disulfide).
On the boundary conditions on a shock wave for hypersonic flow around a descent vehicle
NASA Astrophysics Data System (ADS)
Golomazov, M. M.; Ivankov, A. A.
2013-12-01
Stationary hypersonic flow around a descent vehicle is examined by considering equilibrium and nonequilibrium reactions. We study how physical-chemical processes and shock wave conditions for gas species influence the shock-layer structure. It is shown that conservation conditions of species on the shock wave cause high-temperature and concentration gradients in the shock layer when we calculate spacecraft deceleration trajectory in the atmosphere at 75 km altitude.
Research study of space plasma boundary processes
NASA Technical Reports Server (NTRS)
Greenstadt, E. W.; Taylor, W. W. L.
1984-01-01
Representation of the Earth's bow shock and magnetopause and their geometrically determined macrostructure was investigated. Computer graphic depictions of the global distributions of bow shock structures and elementary animation of the dynamics of those distributions in the changing solar wind were developed. The shock-foreshock boundary and subcritical bow shocks as observed by ISEE 1 and 2 are discussed.
Physical mechanisms in shock-induced turbulent separated flow
NASA Astrophysics Data System (ADS)
Dolling, D. S.
1987-12-01
It has been demonstrated that the flow downstream of the moving shock is separated and that the foot of the shock is effectively the instantaneous separation point. The shock induced turbulent separation is an intermittant process and the separation line indicated by surface tracer methods, such as kerosene-lampblack, is a downstream boundary of a region of intermittent separation.
THE EFFECT OF LASER SHOCK PEENING ON THE LIFE AND FAILURE MODE OF A COLD PILGER DIE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavender, Curt A.; Hong, Sung-tae; Smith, Mark T.
2008-08-11
The laser shock peening process was used to increase fatigue life of pilger dies made of A2 tool steel by imparting compressive residual stresses to fatigue prone areas of the dies. The result of X-Ray diffraction analysis indicated that deep, high- magnitude compressive residual stresses were generated by the laser shock peening process, and the peened dies exhibited a significant increase of in-service life. Fractography of the failed dies indicates that the fracture mechanism was altered by the peening process.
NASA Astrophysics Data System (ADS)
Vorozhtsov, S. A.; Kudryashova, O. B.; Lerner, M. I.; Vorozhtsov, A. B.; Khrustalyov, A. P.; Pervikov, A. V.
2017-11-01
The authors consider and evaluate the physical parameters and regularities of the process of consolidation of Fe-Cu, Cu-Nb, Ag-Ni, Fe-Pb nanoparticles when creating composite materials by means of shock wave compaction. As a result of theoretical consideration of explosive compaction process, researchers established and discussed the physical process conditions, established a number of threshold pressure values corresponding to different target indicators of the state of the compact. The time of shock wave impact on powders for powder consolidation was estimated.
Mei, R; Narihiro, T; Nobu, M K; Liu, W-T
2016-11-01
In anaerobic digesters, temperature fluctuation could lead to process instability and failure. It is still not well understood how digester microbiota as a whole respond to heat shock, and what specific organisms are vulnerable to perturbation or responsible for process recovery after perturbation. To address these questions, a mesophilic benzoate-degrading methanogenic culture enriched from digester was subjected to different levels of heat shock. Three types of methane production profiles after perturbation were observed in comparison to the control: uninhibited, inhibited with later recovery, and inhibited without recovery. These responses were correlated with the microbial community compositions based on the analyses of 16S rRNA and 16S rRNA gene. Specifically, the primary benzoate-degrading syntroph was highly affected by heat shock, and its abundance and activity were both crucial to the restoration of benzoate degradation after heat shock. In contrast, methanogens were stable regardless whether methane production was inhibited. Populations related to 'Candidatus Cloacimonetes' and Firmicutes showed stimulated growth. These observations indicated distinct physiological traits and ecological niches associated with individual microbial groups. The results obtained after exposure to heat shock can be critical to more comprehensive characterization of digester ecology under perturbations. Anaerobic digestion is an essential step in municipal wastewater treatment owing to its striking capacity of reducing wasted sludge and recovering energy. However, as an elaborate microbial process, it requires constant temperature control and is sensitive to heat shock. In this study, we explored the microbial response to heat shock of a methanogenic culture enriched from anaerobic digester sludge. Microorganisms that were vulnerable to perturbation or responsible for process recovery after perturbation were identified. © 2016 The Society for Applied Microbiology.
Using Land Surface Phenology to Detect Land Use Change in the Northern Great Plains
NASA Astrophysics Data System (ADS)
Nguyen, L. H.; Henebry, G. M.
2017-12-01
The Northern Great Plains of the US have been undergoing many types of land cover / land use change over the past two decades, including expansion of irrigation, conversion of grassland to cropland, biofuels production, urbanization, and fossil fuel mining. Much of the literature on these changes has relied on post-classification change detection based on a limited number of observations per year. Here we demonstrate an approach to characterize land dynamics through land surface phenology (LSP) by synergistic use of image time series at two scales. Our study areas include regions of interest (ROIs) across the Northern Great Plains located within Landsat path overlap zones to boost the number of valid observations (free of clouds or snow) each year. We first compute accumulated growing degree-days (AGDD) from MODIS 8-day composites of land surface temperature (MOD11A2 and MYD11A2). Using Landsat Collection 1 surface reflectance-derived vegetation indices (NDVI, EVI), we then fit at each pixel a downward convex quadratic model linking the vegetation index to each year's progression of AGDD. This quadratic equation exhibits linearity in a mathematical sense; thus, the fitted models can be linearly mixed and unmixed using a set of LSP endmembers (defined by the fitted parameter coefficients of the quadratic model) that represent "pure" land cover types with distinct seasonal patterns found within the region, such as winter wheat, spring wheat, maize, soybean, sunflower, hay/pasture/grassland, developed/built-up, among others. Information about land cover corresponding to each endmember are provided by the NLCD (National Land Cover Dataset) and CDL (Cropland Data Layer). We use linear unmixing to estimate the likely proportion of each LSP endmember within particular areas stratified by latitude. By tracking the proportions over the 2001-2011 period, we can quantify various types of land transitions in the Northern Great Plains.
Florida Tech CubeSat Experiment Feasibility Study
NASA Technical Reports Server (NTRS)
Arrasmith, William W.; Bucaille, Stephane; Rusovici, Razvan; Platt, Don; Guidry, Todd; Bandar, Deepika; Coots, Everett; Davidson, Russ
2010-01-01
CubeSats are a relatively new type of satellite. Smaller than long-term (5+ year life expectancy) satellites, these pico-satellites are comparatively cheap, small (10x10x10 cm), and are very versatile. Universities world-wide are using CubeSats to conduct a variety of experiments in space without the need for a large experimental platform. Today CubeSats are considered to be one of the most effective ways to send a small payload into space and has attracted the attention of many educational and non-profit organizations. As this pico-satellite model continues to gain penetration into the satellite build and launch industry, it is expected that more governmental, educational, and commercial interests will emerge. As an example, more of the space-related items of high interest to the National Science Foundation may be tackled with a CubeSat platform resulting in lower life cycle costs than traditional satellite options. NASA LSP, in cooperation with the Florida Institute of Technology, has initiated a feasibility study to investigate the technical aspects of measuring and transferring vibration, acceleration, temperature, and video data from a CubeSat to NASA Hanger AE on Cape Canaveral Air Force Station (CCAFS) a.k.a. Kennedy Space Center (KSC). This report provides a technical feasibility analysis to determine whether-or-not a specific set of NASA/LSP requirements can be accomplished. Our approach has been to provide a "notional" component layout to determine the feasibility of the NASA/LSP stakeholder requirements. The notional layout is used to consider component level technical issues such as size, weight, & power (SWaP), bandwidth, and other critical technical parameters. Even though the notional components may satisfy the stated requirements and thereby demonstrate feasibility, the notional layout is NOT considered a design since no component optimization and design trade-off analysis has taken place. This activity should be accomplished in an appropriate design phase that is outside of the scope of this effort.
Linking Land Surface Phenology and Growth Limiting Factor Shifts over the Past 30 Years
NASA Astrophysics Data System (ADS)
Garonna, I.; Schenkel, D.; de Jong, R.; Schaepman, M. E.
2015-12-01
The study of global vegetation dynamics contributes to a better understanding of global change drivers and how these affect ecosystems and ecological diversity. Land-surface phenology (LSP) is a key response and feedback of vegetation to the climate system, and hence a parameter that needs to be accurately represented in terrestrial biosphere models [1]. However, the effects of climatic changes on LSP depend on the relative importance of climatic constraints in specific regions - which are not well understood at global scale. In this study, we analyzed a Phenology Reanalysis dataset [2] to evaluate shifts in three climatic drivers of phenology at global scale and over the last 30 years (1982-2012): incoming radiation, evaporative demand and minimum temperature. As a first step, we compared LAI as modeled from these three factors (LAIre) to remotely sensed observations of LSP (LAI3g, [3]) over the same time period. As a second step, we examined temporal trends in the climatic constraints at Start- and End- of the Growing Season. There was good agreement between phenology metrics as derived form LAI3g and LAIre over the last 30 years - thus providing confidence in the climatic constraints underlying the modeled data. Our analysis reveals inter-annual variation in the relative importance of the three climatic factors in limiting vegetation growth at Start- and End- of the Growing Season over the last 30 years. High northern latitudes, as well as northern Europe and central Asia, appear to have undergone significant changes in dominance between the three controls. We also find that evaporative demand has become increasingly limiting for growth in many parts of the world, in particular in South America and eastern Asia. [1] Richardson, A.D. et al. Global Change Biology 18, 566-584 (2012). [2] Stöckli, R. et al. J. Geophys. Res 116, G03020 (2011). [3] Zhu, Z. et al. Remote Sensing 5, 927-948 (2013).
Rippled Quasiperpendicular Shock Observed by the Magnetospheric Multiscale Spacecraft.
Johlander, A; Schwartz, S J; Vaivads, A; Khotyaintsev, Yu V; Gingell, I; Peng, I B; Markidis, S; Lindqvist, P-A; Ergun, R E; Marklund, G T; Plaschke, F; Magnes, W; Strangeway, R J; Russell, C T; Wei, H; Torbert, R B; Paterson, W R; Gershman, D J; Dorelli, J C; Avanov, L A; Lavraud, B; Saito, Y; Giles, B L; Pollock, C J; Burch, J L
2016-10-14
Collisionless shock nonstationarity arising from microscale physics influences shock structure and particle acceleration mechanisms. Nonstationarity has been difficult to quantify due to the small spatial and temporal scales. We use the closely spaced (subgyroscale), high-time-resolution measurements from one rapid crossing of Earth's quasiperpendicular bow shock by the Magnetospheric Multiscale (MMS) spacecraft to compare competing nonstationarity processes. Using MMS's high-cadence kinetic plasma measurements, we show that the shock exhibits nonstationarity in the form of ripples.
Rippled Quasiperpendicular Shock Observed by the Magnetospheric Multiscale Spacecraft
NASA Technical Reports Server (NTRS)
Johlander, A.; Schwartz, S. J.; Vaivads, A.; Khotyaintsev, Yu. V.; Gingell, I.; Peng, I. B.; Markidis, S.; Lindqvist, P.-A.; Ergun, R. E.; Marklund, G. T.;
2016-01-01
Collisionless shock nonstationarity arising from microscale physics influences shock structure and particle acceleration mechanisms. Nonstationarity has been difficult to quantify due to the small spatial and temporal scales. We use the closely spaced (subgyroscale), high-time-resolution measurements from one rapid crossing of Earths quasiperpendicular bow shock by the Magnetospheric Multiscale (MMS) spacecraft to compare competing nonstationarity processes. Using MMSs high-cadence kinetic plasma measurements, we show that the shock exhibits nonstationarity in the form of ripples.
NASA Astrophysics Data System (ADS)
Szajnfarber, Zoe; Weigel, Annalisa L.
2013-03-01
This paper investigates the process through which new technical concepts are matured in the NASA innovation ecosystem. We propose an "epoch-shock" conceptualization as an alternative mental model to the traditional stage-gate view. The epoch-shock model is developed inductively, based on detailed empirical observations of the process, and validated, to the extent possible, through expert review. The paper concludes by illustrating how the new epoch-shock conceptualization could provide a useful basis for rethinking feasible interventions to improve innovation management in the space agency context. Where the more traditional stage-gate model leads to an emphasis on centralized flow control, the epoch-shock model acknowledges the decentralized, probabilistic nature of key interactions and highlights which aspects may be influenced.
REVIEWS OF TOPICAL PROBLEMS: Acceleration of cosmic rays by shock waves
NASA Astrophysics Data System (ADS)
Berezhko, E. G.; Krymskiĭ, G. F.
1988-01-01
Theoretical work on various processes by which shock waves accelerate cosmic rays is reviewed. The most efficient of these processes, Fermi acceleration, is singled out for special attention. A linear theory for this process is presented. The results found on the basis of nonlinear models of Fermi acceleration, which incorporate the modification of the structure caused by the accelerated particles, are reported. There is a discussion of various possibilities for explaining the generation of high-energy particles observed in interplanetary and interstellar space on the basis of a Fermi acceleration mechanism. The acceleration by shock waves from supernova explosions is discussed as a possible source of galactic cosmic rays. The most important unresolved questions in the theory of acceleration of charged particles by shock waves are pointed out.
Directional amorphization of boron carbide subjected to laser shock compression.
Zhao, Shiteng; Kad, Bimal; Remington, Bruce A; LaSalvia, Jerry C; Wehrenberg, Christopher E; Behler, Kristopher D; Meyers, Marc A
2016-10-25
Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. Using high-power pulsed-laser-driven shock compression, unprecedented high strain rates can be achieved; here we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45∼50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversion calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B 4 C.
NASA Astrophysics Data System (ADS)
Mataradze, Edgar; Chikhradze, Nikoloz; Bochorishvili, Nika; Akhvlediani, Irakli; Tatishvili, Dimitri
2017-12-01
Explosion protection technologies are based on the formation of a shock wave mitigation barrier between the protection site and the explosion site. Contemporary protective systems use water mist as an extinguishing barrier. To achieve high effectiveness of the protective system, proper selection of water mist characteristics is important. The main factors defining shock wave attenuation in water mist include droplet size distribution, water concentration in the mist, droplet velocity and geometric properties of mist. This paper examines the process of attenuation of shock waves in mist with droplets ranging from 25 to 400 microns under different conditions of water mist location. Experiments were conducted at the Mining Institute with the use of a shock tube to study the processes of explosion suppression by a water mist barrier. The shock tube consists of a blast chamber, a tube, a system for the dosed supply of water, sensors, data recording equipment, and a process control module. Shock wave overpressure reduction coefficient was studied in the shock tube under two different locations of water mist: a) when water mist is created in direct contact with blast chamber and b) the blast chamber and the mist are separated by air space. It is established that in conditions when the air space distance between the blast chamber and the mist is 1 meter, overpressure reduction coefficient is 1.5-1.6 times higher than in conditions when water mist is created in direct contact with blast chamber.
Collisionless dissipation processes in quasi-parallel shocks. [in solar wind
NASA Technical Reports Server (NTRS)
Quest, K. B.; Forslund, D. W.; Brackbill, J. U.; Lee, K.
1983-01-01
The evolution of collisionless, quasi-parallel shocks (the angle between the shock normal and the upstream magnetic field being less than 45 deg) is examined using two dimensional particle simulations. Reflected ions upstream from the shock are observed with average guiding center velocity and gyrational energy which agree well with the prediction of simple specular reflection. Strong ion heating through the shock ramp is apparently caused by large amplitude whistler turbulence. A flux of suprathermal electrons is also the magnetic field direction. Much stronger ion heating occurs in the shock than electron heating. The relevance of this work to the earth's bow shock is discussed.
ELaNa - Educational Launch of Nanosatellite Providing Routine RideShare Opportunities
NASA Technical Reports Server (NTRS)
Skrobot, Garrett Lee; Coelho, Roland
2012-01-01
Since the creation of the NASA CubeSat Launch Initiative (NCSLI), the need for CubeSat rideshares has dramatically increased. After only three releases of the initiative, a total of 66 CubeSats now await launch opportunities. So, how is this challenge being resolved? NASA's Launch Services Program (LSP) has studied how to integrate PPODs on Athena, Atlas V, and Delta IV launch vehicles and has been instrumental in developing several carrier systems to support CubeSats as rideshares on NASA missions. In support of the first two ELaNa missions the Poly-Picosatellite Orbital Deployer (P-POD) was adapted for use on a Taurus XL (ELaNa I) and a Delta n (ELaNa III). Four P-PODs, which contained a total eight CubeSats, were used on these first ELaNa missions. Next up is ELaNa VI, which will launch on an Atlas V in August 2012. The four ELaNa VI CubeSats, in three P-PODs, are awaiting launch, having been integrated in the NPSCuLite. To increase rideshare capabilities, the Launch Services Program (LSP) is working to integrate P-PODs on Falcon 9 missions. The proposed Falcon 9 manifest will provide greater opportunities for the CubeSat community. For years, the standard CubeSat size was 1 U to 3U. As the desire to include more science in each cube grows, so does the standard CubeSat size. No longer is a 1 U, 1.5U, 2U or 3U CubeSat the only option available; the new CubeSat standard will include 6U and possibly even 12U. With each increase in CubeSat size, the CubeSat community is pushing the capability of the current P-POD design. Not only is the carrier system affected, but integration to the Launch Vehicle is also a concern. The development of a system to accommodate not only the 3U P-POD but also carriers for larger CubeSats is ongoing. LSP considers payloads in the lkg to 180 kg range rideshare or small/secondary payloads. As new and emerging small payloads are developed, rideshare opportunities and carrier systems need to be identified and secured. The development of a rideshare carrier system is not always cost effective. Sometimes a launch vehicle with an excellent performance record appears to be a great rideshare candidate however, after completing a feasibility study, LSP may determine that the cost of the rideshare carrier system is too great and, due to budget constraints, the development cannot go forward. With the current budget environment, one cost effective way to secure rideshare opportunities is to look for synergy with other government organizations that share the same interest.
Dodd, Dana A; Worth, Randall G; Rosen, Michael K; Grinstein, Sergio; van Oers, Nicolai S C; Hansen, Eric J
2014-05-20
Haemophilus ducreyi causes chancroid, a sexually transmitted infection. A primary means by which this pathogen causes disease involves eluding phagocytosis; however, the molecular basis for this escape mechanism has been poorly understood. Here, we report that the LspA virulence factors of H. ducreyi inhibit phagocytosis by stimulating the catalytic activity of C-terminal Src kinase (Csk), which itself inhibits Src family protein tyrosine kinases (SFKs) that promote phagocytosis. Inhibitory activity could be localized to a 37-kDa domain (designated YL2) of the 456-kDa LspA1 protein. The YL2 domain impaired ingestion of IgG-opsonized targets and decreased levels of active SFKs when expressed in mammalian cells. YL2 contains tyrosine residues in two EPIYG motifs that are phosphorylated in mammalian cells. These tyrosine residues were essential for YL2-based inhibition of phagocytosis. Csk was identified as the predominant mammalian protein interacting with YL2, and a dominant-negative Csk rescued phagocytosis in the presence of YL2. Purified Csk phosphorylated the tyrosines in the YL2 EPIYG motifs. Phosphorylated YL2 increased Csk catalytic activity, resulting in positive feedback, such that YL2 can be phosphorylated by the same kinase that it activates. Finally, we found that the Helicobacter pylori CagA protein also inhibited phagocytosis in a Csk-dependent manner, raising the possibility that this may be a general mechanism among diverse bacteria. Harnessing Csk to subvert the Fcγ receptor (FcγR)-mediated phagocytic pathway represents a new bacterial mechanism for circumventing a crucial component of the innate immune response and may potentially affect other SFK-involved cellular pathways. Phagocytosis is a critical component of the immune system that enables pathogens to be contained and cleared. A number of bacterial pathogens have developed specific strategies to either physically evade phagocytosis or block the intracellular signaling required for phagocytic activity. Haemophilus ducreyi, a sexually transmitted pathogen, secretes a 4,153-amino-acid (aa) protein (LspA1) that effectively inhibits FcγR-mediated phagocytic activity. In this study, we show that a 294-aa domain within this bacterial protein binds to C-terminal Src kinase (Csk) and stimulates its catalytic activity, resulting in a significant attenuation of Src kinase activity and consequent inhibition of phagocytosis. The ability to inhibit phagocytosis via Csk is not unique to H. ducreyi, because we found that the Helicobacter pylori CagA protein also inhibits phagocytosis in a Csk-dependent manner. Harnessing Csk to subvert the FcγR-mediated phagocytic pathway represents a new bacterial effector mechanism for circumventing the innate immune response. Copyright © 2014 Dodd et al.
Computation of nonstationary strong shock diffraction by curved surfaces
NASA Technical Reports Server (NTRS)
Yang, J. Y.; Lombard, C. K.; Bershader, D.
1986-01-01
A two-dimensional, high resolution shock-capturing algorithm was used on a supercomputer to solve Eulerian gasdynamic equations in order to simulate nonstationary strong shock diffraction by a circular arc model in a shock tube. The hypersonic Mach shock wave was assumed to arrive at a high angle of incidence, and attention was given to the effect of varying values of the ratio of specific heats on the shock diffraction process. Details of the conservation equations of the numerical algorithm, written in curvilinear coordinates, are provided, and model output is illustrated with the results generated for a Mach shock encountering a 15 deg circular arc. The sample graphics include isopycnics, a shock surface density profile, and pressure and Mach number contours.
On a Stochastic Failure Model under Random Shocks
NASA Astrophysics Data System (ADS)
Cha, Ji Hwan
2013-02-01
In most conventional settings, the events caused by an external shock are initiated at the moments of its occurrence. In this paper, we study a new classes of shock model, where each shock from a nonhomogeneous Poisson processes can trigger a failure of a system not immediately, as in classical extreme shock models, but with delay of some random time. We derive the corresponding survival and failure rate functions. Furthermore, we study the limiting behaviour of the failure rate function where it is applicable.
Nuclear reactions in shock wave front during supernova events
NASA Technical Reports Server (NTRS)
Lavrukhina, A. K.
1985-01-01
The new unique isotopic anomalous coponent of Xe(XeX) was found in the carbonaceous chondrites. It is enriched in light shielded isotopes (124Xe and 126Xe) and in heavy nonshielded isotopes (134Xe and 136Xe. All characteristics of Xe-X can be explained by a model of nucleosynthesis of the Xe isotopes in shock wave front passed through the He envelope during supernova events. The light isotopes are created by p process and the heavy isotopes are created by n process (slow r process). They were captured with high temperature carbon grains condensing by supernova shock waves.
NASA Astrophysics Data System (ADS)
Buttler, W. T.; Hixson, R. S.; King, N. S. P.; Olson, R. T.; Rigg, P. A.; Zellner, M. B.; Routley, N.; Rimmer, A.
2007-04-01
The authors consider a mathematical method to separate and determine the amount of ejecta produced in a second-shock material-fragmentation process. The technique is theoretical and assumes that a material undergoing a shock release at a vacuum interface ejects particulate material or fragments as the initial shock unloads and reflects at the vacuum-surface interface. In this case it is thought that the reflected shock may reflect again at the source of the shock and return to the vacuum-surface interface and eject another amount of fragments or particulate material.
Designing high speed diagnostics
NASA Astrophysics Data System (ADS)
Veliz Carrillo, Gerardo; Martinez, Adam; Mula, Swathi; Prestridge, Kathy; Extreme Fluids Team Team
2017-11-01
Timing and firing for shock-driven flows is complex because of jitter in the shock tube mechanical drivers. Consequently, experiments require dynamic triggering of diagnostics from pressure transducers. We explain the design process and criteria for setting up re-shock experiments at the Los Alamos Vertical Shock Tube facility, and the requirements for particle image velocimetry and planar laser induced fluorescence measurements necessary for calculating Richtmeyer-Meshkov variable density turbulent statistics. Dynamic triggering of diagnostics allows for further investigation of the development of the Richtemeyer-Meshkov instability at both initial shock and re-shock. Thanks to the Los Alamos National Laboratory for funding our project.
Who's Listening to Victims? Nurses' Listening Styles and Domestic Violence Screening
ERIC Educational Resources Information Center
Chapin, John; Froats, Ted, Jr.; Hudspeth, Trey
2013-01-01
The current study applies the Listening Styles Profile (LSP16) to nurses and nursing students. Compared to a control group (n = 102), nurses (n = 188) and nursing students (n = 206) show marked differences in listening styles. The majority of participants were people-oriented listeners. People-oriented nurses tend to be more knowledgeable about…
ERIC Educational Resources Information Center
Tseng, Wen-Chih
2017-01-01
The effectiveness of an intervention using LEGO® SERIOUS PLAY® (LSP), a reflective tool using LEGO® building bricks, to speed the development of narrative identity in economically disadvantaged college students was studied. A longitudinal experimental study with non equivalent experimental/control groups (N = 45) was conducted to examine whether…
ERIC Educational Resources Information Center
Lear, Darcy
2012-01-01
Community service learning (CSL) is a type of experiential learning that blends specific course content with real-world applications and ties them together through structured reflection. It is an ideal pedagogy for 21st-century language for specific purposes (LSP) programs. This article frames that argument around sociocultural theory, moves to a…
Assessing the Language Proficiency of Second Language Teachers: An LSP Approach to Test Design.
ERIC Educational Resources Information Center
Elder, Catherine
This paper describes a language-for-specific-purposes test development project designed to assess both general language proficiency and classroom communicative competence for the purpose of accrediting teachers of Italian as a second/foreign language. A rationale for test design is presented that draws in a review of the second language…
Current Perspectives in Teaching English for Specific Purposes
ERIC Educational Resources Information Center
Garcia Laborda, Jesus; Litzler, Mary Frances
2015-01-01
Interest in Languages for Specific Purposes (LSP)courses has grown in recent years (Harding, 2007). For this reason a paper on the current situation in the field is of relevance. The present article provides a discussion of English for Specific Purposes and it does so by reviewing the history and background of this area of teaching, proposing a…
Developing a Virtual Learning Community for LSP Applications
ERIC Educational Resources Information Center
Panagiotidis, Panagiotis
2013-01-01
Foreign language teachers are nowadays required to respond to the changes provoked by the advent of web 2.0 and the developments it has introduced in the learning behaviour of users, and to adopt a new teaching approach, integrating users' online social activities in their educational practice. In this new educational approach, users must be able…
ERIC Educational Resources Information Center
Elder, Cathie; Pill, John; Woodward-Kron, Robyn; McNamara, Tim; Manias, Elizabeth; Webb, Gillian; McColl, Geoff
2012-01-01
The gap between linguistic and professional criteria is a widely acknowledged but unresolved issue in the teaching and assessment of languages for specific purposes (LSP). In the teaching of professional writing, language experts and workplace professionals have been characterized as living worlds apart with respect to their views of…
The Literature Study Programme Trial: Challenging Constructions of English in the Seychelles
ERIC Educational Resources Information Center
Moumou, Margaret
2005-01-01
This paper provides an outline of the development and trialling during 2004 of the Literature Study Programme (LSP), a literature programme designed for use in the junior secondary classes of Seychelles. The programme was developed as a teaching and learning component concerned with the study of literature within the English language programme in…
Shock waves in molecular solids: ultrafast vibrational spectroscopy of the first nanosecond
NASA Astrophysics Data System (ADS)
Franken, J.; Hambir, S. A.; Hare, D. E.; Dlott, D. D.
A novel technique which uses a microfabricated shock target array assembly is described, where the passage of a shock front through a thin (0.5μm) polycrystalline layer and the subsequent unloading process is monitored in real time with ultrafast coherent Raman spectroscopy. Using a high repetition rate laser shock generation technique, high resolution, coherent Raman spectra are obtained in shocked anthracene and in a high explosive material, NTO, with time resolution of 50 ps. Spectroscopic measurements are presented which yield the shock pressure (up to 5 GPa), the shock velocity ( 4 km/s), the shock front risetime (tr < 25 ps), and the temperature ( 400°C). A brief discussion is presented, how this new technique can be used to determine the Hugoniot, the equation of state, the entropy increase across the shock front, and monitor shock induced chemical reactions in real time.
Deformation Monitoring and Analysis of Lsp Landslide Based on Gbinsar
NASA Astrophysics Data System (ADS)
Zhou, L.; Guo, J.; Yang, F.
2018-05-01
Monitoring and analyzing the deformation of the river landslide in city to master the deformation law of landslide, which is an important means of landslide safety assessment. In this paper, aiming at the stability of the Liu Sha Peninsula Landslide during its strengthening process after the landslide disaster. Continuous and high precision deformation monitoring of the landslide was carried out by GBInSAR technique. Meanwhile, the two-dimensional deformation time series pictures of the landslide body were retrieved by the time series analysis method. The deformation monitoring and analysis results show that the reinforcement belt on the landslide body was basically stable and the deformation of most PS points on the reinforcement belt was within 1 mm. The deformation of most areas on the landslide body was basically within 4 mm, and the deformation presented obvious nonlinear changes. GBInSAR technique can quickly and effectively obtain the entire deformation information of the river landslide and the evolution process of deformation.
Modeling target normal sheath acceleration using handoffs between multiple simulations
NASA Astrophysics Data System (ADS)
McMahon, Matthew; Willis, Christopher; Mitchell, Robert; King, Frank; Schumacher, Douglass; Akli, Kramer; Freeman, Richard
2013-10-01
We present a technique to model the target normal sheath acceleration (TNSA) process using full-scale LSP PIC simulations. The technique allows for a realistic laser, full size target and pre-plasma, and sufficient propagation length for the accelerated ions and electrons. A first simulation using a 2D Cartesian grid models the laser-plasma interaction (LPI) self-consistently and includes field ionization. Electrons accelerated by the laser are imported into a second simulation using a 2D cylindrical grid optimized for the initial TNSA process and incorporating an equation of state. Finally, all of the particles are imported to a third simulation optimized for the propagation of the accelerated ions and utilizing a static field solver for initialization. We also show use of 3D LPI simulations. Simulation results are compared to recent ion acceleration experiments using SCARLET laser at The Ohio State University. This work was performed with support from ASOFR under contract # FA9550-12-1-0341, DARPA, and allocations of computing time from the Ohio Supercomputing Center.
Effect of target-fixture geometry on shock-wave compacted copper powders
NASA Astrophysics Data System (ADS)
Kim, Wooyeol; Ahn, Dong-Hyun; Yoon, Jae Ik; Park, Lee Ju; Kim, Hyoung Seop
2018-01-01
In shock compaction with a single gas gun system, a target fixture is used to safely recover a powder compact processed by shock-wave dynamic impact. However, no standard fixture geometry exists, and its effect on the processed compact is not well studied. In this study, two types of fixture are used for the dynamic compaction of hydrogen-reduced copper powders, and the mechanical properties and microstructures are investigated using the Vickers microhardness test and electron backscatter diffraction, respectively. With the assistance of finite element method simulations, we analyze several shock parameters that are experimentally hard to control. The results of the simulations indicate that the target geometry clearly affects the characteristics of incident and reflected shock waves. The hardness distribution and the microstructure of the compacts also show their dependence on the geometry. With the results of the simulations and the experiment, it is concluded that the target geometry affects the shock wave propagation and wave interaction in the specimen.
Shock wave interactions in hypervelocity flow
NASA Astrophysics Data System (ADS)
Sanderson, S. R.; Sturtevant, B.
1994-08-01
The impingement of shock waves on blunt bodies in steady supersonic flow is known to cause extremely high local heat transfer rates and surface pressures. Although these problems have been studied in cold hypersonic flow, the effects of dissociative relaxation processes are unknown. In this paper we report a model aimed at determining the boundaries of the possible interaction regimes for an ideal dissociating gas. Local analysis about shock wave intersection points in the pressure-flow deflection angle plane with continuation of singular solutions is the fundamental tool employed. Further, we discuss an experimental investigation of the nominally two-dimensional mean flow that results from the impingement of an oblique shock wave on the leading edge of a cylinder. The effects of variations in shock impingement geometry were visualized using differential interferometry. Generally, real gas effects are seen to increase the range of shock impingement points for which enhanced heating occurs. They also reduce the type 4 interaction supersonic jet width and influence the type 2-3 transition process.
Mechanical analysis of a heat-shock induced developmental defect
NASA Astrophysics Data System (ADS)
Crews, Sarah M.; McCleery, W. Tyler; Hutson, M. Shane
2014-03-01
Embryonic development in Drosophila is a complex process involving coordinated movements of mechanically interacting tissues. Perturbing this system with a transient heat shock can result in a number of developmental defects. In particular, a heat shock applied during the earliest morphogenetic movements of gastrulation can lead to apparent recovery, but then subsequent morphogenetic failure 5-6 hours later during germ band retraction. The process of germ band retraction requires an intact amnioserosa - a single layered extra-embryonic epithelial tissue - and heat shock at gastrulation can induce the later opening of holes in the amnioserosa. These holes are highly correlated with failures of germ band retraction. These holes could be caused by a combination of mechanical weakness in the amnioserosa or local increases in mechanical stress. Here, we assess the role of mechanical stress using confocal imaging to compare cell and tissue morphology in the amnioserosa of normal and heat-shocked embryos and laser hole drilling to map the stress field around the times and locations at which heat-shock induced holes open.
Shock wave-droplet interaction
NASA Astrophysics Data System (ADS)
Habibi Khoshmehr, Hamed; Krechetnikov, Rouslan
2016-11-01
Disintegration of a liquid droplet under the action of a shock wave is experimentally investigated. The shock wave-pulse is electromagnetically generated by discharging a high voltage capacitor into a flat spiral coil, above which an isolated circular metal membrane is placed in a close proximity. The Lorentz force arising due to the eddy current induced in the membrane abruptly accelerates it away from the spiral coil thus generating a shock wave. The liquid droplet placed at the center of the membrane, where the maximum deflection occurs, is disintegrated in the process of interaction with the shock wave. The effects of droplet viscosity and surface tension on the droplet destruction are studied with high-speed photography. Water-glycerol solution at different concentrations is used for investigating the effect of viscosity and various concentrations of water-sugar and water-ethanol solution are used for studying the effect of surface tension. Here we report on how the metamorphoses, which a liquid drop undergoes in the process of interaction with a shock wave, are affected by varied viscosity and surface tension.
Directional amorphization of boron carbide subjected to laser shock compression
Zhao, Shiteng; Kad, Bimal; Remington, Bruce A.; LaSalvia, Jerry C.; Wehrenberg, Christopher E.; Behler, Kristopher D.; Meyers, Marc A.
2016-01-01
Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. Using high-power pulsed-laser-driven shock compression, unprecedented high strain rates can be achieved; here we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45∼50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversion calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B4C. PMID:27733513
Directional amorphization of boron carbide subjected to laser shock compression
Zhao, Shiteng; Kad, Bimal; Remington, Bruce A.; ...
2016-10-12
Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. When using high-power pulsed-laser-driven shock compression, an unprecedented high strain rates can be achieved; we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45~50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. We also propose that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversionmore » calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B 4C.« less
[Response processes of Aralia elata photosynthesis and transpiration to light and soil moisture].
Chen, Jian; Zhang, Guang-Can; Zhang, Shu-Yong; Wang, Meng-Jun
2008-06-01
By using CIRAS-2 portable photosynthesis system, the light response processes of Aralia elata photosynthesis and transpiration under different soil moisture conditions were studied, aimed to understand the adaptability of A. elata to different light and soil moisture conditions. The results showed that the response processes of A. elata net photosynthetic rate (Pn), transpiration rate (Tr), and water use efficiency (WUE) to photon flux density (PFD) were different. With the increasing PFD in the range of 800-1800 micromol x m2(-2) x s(-1), Pn changed less, Tr decreased gradually, while WUE increased obviously. The light saturation point (LSP) and light compensation point (LCP) were about 800 and 30 micromol m(-2) x s(-1), respectively, and less affected by soil water content; while the apparent photosynthetic quantum yield (Phi) and dark respiratory rate (Rd) were more affected by the moisture content. The Pn and WUE had evident threshold responses to the variations of soil water content. When the soil relative water content (RWC) was in the range of 44%-79%, A. elata could have higher levels of Pn and WUE.
A study on the development of engineering plastic piston used in the shock absorber
NASA Astrophysics Data System (ADS)
Kim, Young-Ho; Bae, Won-Byong; Lim, Dong-Ju; Suh, Yun-Soo
1998-08-01
A piston is an important component of the shock absorber which determines comfortable riding and handling. Conventional piston is made of metal powder that is pressed in a mold, and then sintered at high temperatures below the melting point before machining processes such as drilling, sizing and teflon banding. This study aims at cutting down cost and weight, and improving the process by replacing the traditional sintering process used for manufacturing the shock absorber with the injection molding process adopting engineering plastics as raw material. To analyze the injection molding process, we used the commercial program, MOLDFLOW, and obtained an optimal combination of the process parameters. In addition, by comparing the engineering plastic piston with the metal powder piston through the formability and the performance experiments, we confirmed the availability of this alternative process suggested.
Unifying role of dissipative action in the dynamic failure of solids
NASA Astrophysics Data System (ADS)
Grady, Dennis E.
2015-04-01
A fourth-power law underlying the steady shock-wave structure and solid viscosity of condensed material has been observed for a wide range of metals and non-metals. The fourth-power law relates the steady-wave Hugoniot pressure to the fourth power of the strain rate during passage of the material through the structured shock wave. Preceding the fourth-power law was the observation in a shock transition that the product of the shock dissipation energy and the shock transition time is a constant independent of the shock pressure amplitude. Invariance of this energy-time product implies the fourth-power law. This property of the shock transition in solids was initially identified as a shock invariant. More recently, it has been referred to as the dissipative action, although no relationship to the accepted definitions of action in mechanics has been demonstrated. This same invariant property has application to a wider range of transient failure phenomena in solids. Invariance of this dissipation action has application to spall fracture, failure through adiabatic shear, shock compaction of granular media, and perhaps others. Through models of the failure processes, a clearer picture of the physics underlying the observed invariance is emerging. These insights in turn are leading to a better understanding of the shock deformation processes underlying the fourth-power law. Experimental result and material models encompassing the dynamic failure of solids are explored for the purpose of demonstrating commonalities leading to invariance of the dissipation action. Calculations are extended to aluminum and uranium metals with the intent of predicting micro-scale dynamics and spatial structure in the steady shock wave.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grady, Dennis E.
A fourth-power law underlying the steady shock-wave structure and solid viscosity of condensed material has been observed for a wide range of metals and non-metals. The fourth-power law relates the steady-wave Hugoniot pressure to the fourth power of the strain rate during passage of the material through the structured shock wave. Preceding the fourth-power law was the observation in a shock transition that the product of the shock dissipation energy and the shock transition time is a constant independent of the shock pressure amplitude. Invariance of this energy-time product implies the fourth-power law. This property of the shock transition inmore » solids was initially identified as a shock invariant. More recently, it has been referred to as the dissipative action, although no relationship to the accepted definitions of action in mechanics has been demonstrated. This same invariant property has application to a wider range of transient failure phenomena in solids. Invariance of this dissipation action has application to spall fracture, failure through adiabatic shear, shock compaction of granular media, and perhaps others. Through models of the failure processes, a clearer picture of the physics underlying the observed invariance is emerging. These insights in turn are leading to a better understanding of the shock deformation processes underlying the fourth-power law. Experimental result and material models encompassing the dynamic failure of solids are explored for the purpose of demonstrating commonalities leading to invariance of the dissipation action. Calculations are extended to aluminum and uranium metals with the intent of predicting micro-scale dynamics and spatial structure in the steady shock wave.« less
A Study of Fundamental Shock Noise Mechanisms
NASA Technical Reports Server (NTRS)
Meadows, Kristine R.
1997-01-01
This paper investigates two mechanisms fundamental to sound generation in shocked flows: shock motion and shock deformation. Shock motion is modeled numerically by examining the interaction of a sound wave with a shock. This numerical approach is validated by comparison with results obtained by linear theory for a small-disturbance case. Analysis of the perturbation energy with Myers' energy corollary demonstrates that acoustic energy is generated by the interaction of acoustic disturbances with shocks. This analysis suggests that shock motion generates acoustic and entropy disturbance energy. Shock deformation is modeled numerically by examining the interaction of a vortex ring with a shock. These numerical simulations demonstrate the generation of both an acoustic wave and contact surfaces. The acoustic wave spreads cylindrically. The sound intensity is highly directional and the sound pressure increases with increasing shock strength. The numerically determined relationship between the sound pressure and the Mach number is found to be consistent with experimental observations of shock noise. This consistency implies that a dominant physical process in the generation of shock noise is modeled in this study.
Relationship of Interplanetary Shock Micro and Macro Characteristics: A Wind Study
NASA Technical Reports Server (NTRS)
Szabo, Adam; Koval, A
2008-01-01
The non-linear least squared MHD fitting technique of Szabo 11 9941 has been recently further refined to provide realistic confidence regions for interplanetary shock normal directions and speeds. Analyzing Wind observed interplanetary shocks from 1995 to 200 1, macro characteristics such as shock strength, Theta Bn and Mach numbers can be compared to the details of shock micro or kinetic structures. The now commonly available very high time resolution (1 1 or 22 vectors/sec) Wind magnetic field data allows the precise characterization of shock kinetic structures, such as the size of the foot, ramp, overshoot and the duration of damped oscillations on either side of the shock. Detailed comparison of the shock micro and macro characteristics will be given. This enables the elucidation of shock kinetic features, relevant for particle energization processes, for observations where high time resolution data is not available. Moreover, establishing a quantitative relationship between the shock micro and macro structures will improve the confidence level of shock fitting techniques during disturbed solar wind conditions.
Ion Ramp Structure of Bow shocks and Interplanetary Shocks: Differences and Similarities
NASA Astrophysics Data System (ADS)
Goncharov, O.; Safrankova, J.; Nemecek, Z.; Koval, A.; Szabo, A.; Prech, L.; Zastenker, G. N.; Riazantseva, M.
2017-12-01
Collisionless shocks play a significant role in the solar wind interaction with the Earth. Fast forward shocks driven by coronal mass ejections or by interaction of fast and slow solar wind streams can be encountered in the interplanetary space, whereas the bow shock is a standing fast reverse shock formed by an interaction of the supersonic solar wind with the Earth magnetic field. Both types of shocks are responsible for a transformation of a part of the energy of the directed solar wind motion to plasma heating and to acceleration of reflected particles to high energies. These processes are closely related to the shock front structure. In present paper, we compares the analysis of low-Mach number fast forward interplanetary shocks registered in the solar wind by the DSCOVR, WIND, and ACE with observations of bow shock crossings observed by the Cluster, THEMIS, MMS, and Spektr-R spacecraft. An application of the high-time resolution data facilitates further discussion on formation mechanisms of both types of shocks.
The physics of interstellar shock waves
NASA Technical Reports Server (NTRS)
Shull, J. Michael; Draine, Bruce T.
1987-01-01
This review discusses the observations and theoretical models of interstellar shock waves, in both diffuse cloud and molecular cloud environments. It summarizes the relevant gas dynamics, atomic, molecular and grain processes, radiative transfer, and physics of radiative and magnetic precursors in shock models. It then describes the importance of shocks for observations, diagnostics, and global interstellar dynamics. It concludes with current research problems and data needs for atomic, molecular and grain physics.
Koenig, Stephan; Uengoer, Metin; Lachnit, Harald
2017-01-01
We conducted a human fear conditioning experiment in which three different color cues were followed by an aversive electric shock on 0, 50, and 100% of the trials, and thus induced low (L), partial (P), and high (H) shock expectancy, respectively. The cues differed with respect to the strength of their shock association (L < P < H) and the uncertainty of their prediction (L < P > H). During conditioning we measured pupil dilation and ocular fixations to index differences in the attentional processing of the cues. After conditioning, the shock-associated colors were introduced as irrelevant distracters during visual search for a shape target while shocks were no longer administered and we analyzed the cues’ potential to capture and hold overt attention automatically. Our findings suggest that fear conditioning creates an automatic attention bias for the conditioned cues that depends on their correlation with the aversive outcome. This bias was exclusively linked to the strength of the cues’ shock association for the early attentional processing of cues in the visual periphery, but additionally was influenced by the uncertainty of the shock prediction after participants fixated on the cues. These findings are in accord with attentional learning theories that formalize how associative learning shapes automatic attention. PMID:28588466
INJECTION TO RAPID DIFFUSIVE SHOCK ACCELERATION AT PERPENDICULAR SHOCKS IN PARTIALLY IONIZED PLASMAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohira, Yutaka, E-mail: ohira@phys.aoyama.ac.jp
2016-08-10
We present a three-dimensional hybrid simulation of a collisionless perpendicular shock in a partially ionized plasma for the first time. In this simulation, the shock velocity and upstream ionization fraction are v {sub sh} ≈ 1333 km s{sup −1} and f {sub i} ∼ 0.5, which are typical values for isolated young supernova remnants (SNRs) in the interstellar medium. We confirm previous two-dimensional simulation results showing that downstream hydrogen atoms leak into the upstream region and are accelerated by the pickup process in the upstream region, and large magnetic field fluctuations are generated both in the upstream and downstream regions.more » In addition, we find that the magnetic field fluctuations have three-dimensional structures and the leaking hydrogen atoms are injected into the diffusive shock acceleration (DSA) at the perpendicular shock after the pickup process. The observed DSA can be interpreted as shock drift acceleration with scattering. In this simulation, particles are accelerated to v ∼ 100 v {sub sh} ∼ 0.3 c within ∼100 gyroperiods. The acceleration timescale is faster than that of DSA in parallel shocks. Our simulation results suggest that SNRs can accelerate cosmic rays to 10{sup 15.5} eV (the knee) during the Sedov phase.« less
Survival of microbial life under shock compression: implications for Panspermia
NASA Astrophysics Data System (ADS)
Burchell, M.
2007-09-01
An analysis is carried out of the survival fraction of micro-organisms exposed to extreme shock pressures. A variety of data sources are used in this analysis. The key findings are that survival depends on the behaviour of the cell wall. Below a critical shock pressure there is a relatively slow fall in survival fraction as shock pressures increase. Above the critical threshold survival starts to fall rapidly as shock pressure increases further. The critical shock pressures found here are in the range 2.4 to 20 GPa, and vary not only from organism to organism, but also depend on the growth stage of given organisms, with starved (i.e., no growth) states favoured for survival. At the shock pressures typical of those involved in interplanetary transfer of rocky materials, the survival fractions are found to be small but finite. This lends credence to the idea of Panspermia, i.e. life may naturally migrate through space. Thus for example, Martian meteorites should not a prior be considered as sterile due to the shock processes they have undergone, but their lack of viable micro-organisms either reflects no such life being present at the source at the time of departure or the influence of other hazardous processes such as radiation in space or heating of surfaces during entry into a planetary atmosphere.
Laser beam temporal and spatial tailoring for laser shock processing
Hackel, Lloyd; Dane, C. Brent
2001-01-01
Techniques are provided for formatting laser pulse spatial shape and for effectively and efficiently delivering the laser energy to a work surface in the laser shock process. An appropriately formatted pulse helps to eliminate breakdown and generate uniform shocks. The invention uses a high power laser technology capable of meeting the laser requirements for a high throughput process, that is, a laser which can treat many square centimeters of surface area per second. The shock process has a broad range of applications, especially in the aerospace industry, where treating parts to reduce or eliminate corrosion failure is very important. The invention may be used for treating metal components to improve strength and corrosion resistance. The invention has a broad range of applications for parts that are currently shot peened and/or require peening by means other than shot peening. Major applications for the invention are in the automotive and aerospace industries for components such as turbine blades, compressor components, gears, etc.
Shock initiation of nitromethane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, C.S.; Holmes, N.C.
1994-07-10
The shock initiation processes of nitromethane have been examined by using a fast time-resolved emission spectroscopy at a two-stage gas gun. A broad, but strong emission has been observed in a spectral range between 350 nm and 700 nm from the shocked nitromethane above 9 GPa. The temporal profile suggests that the shocked nitromethane detonates through three characteristic periods, namely an induction period, a shock initiation period, and a thermal explosion period. In this paper we will discuss the temporal and chemical characteristics of these periods and present the temperature of the shock-detonating nitromethane at pressures between 9 and 15more » GPa. [copyright]American Institute of Physics« less
Shock initiation of nitromethane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, C.S.; Holmes, N.C.
1993-12-31
The shock initiation processes of nitromethane have been examined by using a fast time-resolved emission spectroscopy at a two-stage gas gun. a broad, but strong emission has been observed in a spectral range between 350 and 700 nm from shocked nitromethane above 9 GPa. The temporal profile suggests that shocked nitromethane detonates through three characteristic periods, namely an induction period, a hock initiation period, and a thermal explosion period. This paper discusses temporal and chemical characteristics of these periods and present the temperature of the shock-detonating nitromethane at pressures between 9 and 15 GPa.
Collisionless dissipation in quasi-perpendicular shocks. [in terresrial bow waves
NASA Technical Reports Server (NTRS)
Forslund, D. W.; Quest, K. B.; Brackbill, J. U.; Lee, K.
1984-01-01
Microscopic dissipation processes in quasi-perpendicular shocks are studied by two-dimensional plasma simulations in which electrons and ions are treated as particles moving in self-consistent electric and magnetic fields. Cross-field currents induce substantial turbulence at the shock front reducing the reflected ion fraction, increasing the bulk ion temperature behind the shock, doubling the average magnetic ramp thickness, and enhancing the upstream field aligned electron heat flow. The short scale length magnetic fluctuations observed in the bow shock are probably associated with this turbulence.
Particle acceleration at shocks in the inner heliosphere
NASA Astrophysics Data System (ADS)
Parker, Linda Neergaard
This dissertation describes a study of particle acceleration at shocks via the diffusive shock acceleration mechanism. Results for particle acceleration at both quasi-parallel and quasi-perpendicular shocks are presented to address the question of whether there are sufficient particles in the solar wind thermal core, modeled as either a Maxwellian or kappa- distribution, to account for the observed accelerated spectrum. Results of accelerating the theoretical upstream distribution are compared to energetic observations at 1 AU. It is shown that the particle distribution in the solar wind thermal core is sufficient to explain the accelerated particle spectrum downstream of the shock, although the shape of the downstream distribution in some cases does not follow completely the theory of diffusive shock acceleration, indicating possible additional processes at work in the shock for these cases. Results show good to excellent agreement between the theoretical and observed spectral index for one third to one half of both quasi-parallel and quasi-perpendicular shocks studied herein. Coronal mass ejections occurring during periods of high solar activity surrounding solar maximum can produce shocks in excess of 3-8 shocks per day. During solar minimum, diffusive shock acceleration at shocks can generally be understood on the basis of single independent shocks and no other shock necessarily influences the diffusive shock acceleration mechanism. In this sense, diffusive shock acceleration during solar minimum may be regarded as Markovian. By contrast, diffusive shock acceleration of particles at periods of high solar activity (e.g. solar maximum) see frequent, closely spaced shocks that include the effects of particle acceleration at preceding and following shocks. Therefore, diffusive shock acceleration of particles at solar maximum cannot be modeled on the basis of diffusive shock acceleration as a single, independent shock and the process is essentially non-Markovian. A multiple shock model is developed based in part on the box model of (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al. 1999) that accelerates particles at multiple shocks and decompresses the particles between shocks via two methods. The first method of decompression is based on the that used by Melrose and Pope (1993), which adiabatically decompresses particles between shocks. The second method solves the cosmic ray transport equation and adiabatically decompresses between shocks and includes the loss of particles through convection and diffusion. The transport method allows for the inclusion of a temporal variability and thus allows for a more representative frequency distribution of shocks. The transport method of decompression and loss is used to accelerate particles at seventy-three shocks in a thirty day time period. Comparisons with observations taken at 1 AU during the same time period are encouraging as the model is able to reproduce the observed amplitude of the accelerated particles and in part the variability. This work provides the basis for developing more sophisticated models that can be applied to a suite of observations
Dynamic calibration of fast-response probes in low-pressure shock tubes
NASA Astrophysics Data System (ADS)
Persico, G.; Gaetani, P.; Guardone, A.
2005-09-01
Shock tube flows resulting from the incomplete burst of the diaphragm are investigated in connection with the dynamic calibration of fast-response pressure probes. As a result of the partial opening of the diaphragm, pressure disturbances are observed past the shock wave and the measured total pressure profile deviates from the envisaged step signal required by the calibration process. Pressure oscillations are generated as the initially normal shock wave diffracts from the diaphragm's orifice and reflects on the shock tube walls, with the lowest local frequency roughly equal to the ratio of the sound speed in the perturbed region to the shock tube diameter. The energy integral of the perturbations decreases with increasing distance from the diaphragm, as the diffracted leading shock and downwind reflections coalesce into a single normal shock. A procedure is proposed to calibrate fast-response pressure probes downwind of a partially opened shock tube diaphragm.
Excitation of Ion Acoustic Waves in Confined Plasmas with Untrapped Electrons
NASA Astrophysics Data System (ADS)
Schamis, Hanna; Dow, Ansel; Carlsson, Johan; Kaganovich, Igor; Khrabrov, Alexander
2015-11-01
Various plasma propulsion devices exhibit strong electron emission from the walls either as a result of secondary processes or due to thermionic emission. To understand the electron kinetics in plasmas with strong emission, we have performed simulations using a reduced model with the LSP particle-in-cell code. This model aims to show the instability generated by the electron emission, in the form of ion acoustic waves near the sheath. It also aims to show the instability produced by untrapped electrons that propagate across the plasma, similarly to a beam, and can drive ion acoustic waves in the plasma bulk. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No.DE-AC02-09CH11466.
New Occurrence of Shocked Graphite Aggregates at Barringer Crater
NASA Astrophysics Data System (ADS)
Miura, Y.; Noma, Y.; Iancu, O. G.
1993-07-01
High-pressure carbon minera]s are considered to be formed by solid-solid transformation under static or impact high-pressure condition, but shocked quartz aggregates of impact craters are considered to be formed by quenched accretion of various aggregates by dynamic impact process [1-3]. The main purpose of this study is to elucidate new findings and occurrences of shocked graphite (SG) aggregates [2,3] at the Barringer meteorite crater. The graphite nodule block of Barringer Crater used in this study is collected near the rim. The sample is compared with standard graphite samples of Korea, Madagascar, and artificial impact graphites. There are four different mineral aggregates of the Barringer graphite nodule sample: (1) shocked graphite-1, (2) shocked graphite-2 and hexagonal diamond in the vein, (3) shocked quartz-1 (with kamacite) in the rim, and (4) calcite in the rim (Table 1). X-ray diffraction peaks of shocked graphite reveal low X-ray intensity, high Bragg-angle shift of X-ray diffraction peak, and multiple splitting of X-ray diffraction peaks. X-ray calculated density (rho) has been determined by X-ray diffractometer by the equation of density deviation Delta rho (%) = 100 x {(rho-rho(sub)0)/rho(sub)0}, where standard density rho(sub)0 is 2.255 g/cm^3 in Korean graphite [2,3]. The high-density value of shocked graphite grain obtained in Barringer is Delta rho = +0.6 +/- 0.1%. Shocked hexagonal diamonds (chaoite) show a high value of Delta rho = +0.6 +/- 0.9%. Analytical electron microscopy data reveal three different aggregates in the graphite nodule samples (Table 1): (1) shocked graphite-1 in the matrix, which contains uniformly Fe and Ca elements formed under gas state; (2) shocked graphite-2 in the vein, where crystallized shocked graphites and hexagonal diamonds are surrounded by kamacite-rich metals formed under gas-melt states of mixed compositions from iron meteorite and target rocks; and (3) shocked quartz-1 and kamacite in the rim, where coexisted elements are supplied from kamacite, sandstone, and limestone. The shocked quartz-1 grains with high density contain Fe and Ca elements that are different from the shocked quartz-2 of pure silica [1] formed at the final stage from the Coconino sandstone. (4) Limestone in the rim is attached from Kaibab limestone. The present shocked graphites with high density are the same as artificial fine-grained shocked graphites (Delta rho = +0.7%). Table 1, which appears here in the hard copy, shows formation stages with two shocked graphites in the Barringer Crater. Formation of shocked aggregates with chemical contamination indicate dynamic accretion processes of quenching and depression at impact. The existence of two shocked graphites indicates the two formation stages of the first gas-state and the second gas-melt states with quenching processes. The origin of carbon in the shocked graphites is considered in this study to be from Kaibab limestone. References: [1] Miura Y. (1991) Shock Waves, 1, 35-41. [2] Miura Y. (1992) Proc. Shock Waves (Japan), 2, 54-57. [3] Miura Y. et al. (1993) Symp. NIPR Antarctic Meteorite (Tokyo), in press. [4] Foote A. E. (1891) Am. J. Sci., 42, 413-417. [5] Hannemann R. E. et al. (1967) Science, 155, 995-997.
High-Speed Edge-Detecting Line Scan Smart Camera
NASA Technical Reports Server (NTRS)
Prokop, Norman F.
2012-01-01
A high-speed edge-detecting line scan smart camera was developed. The camera is designed to operate as a component in a NASA Glenn Research Center developed inlet shock detection system. The inlet shock is detected by projecting a laser sheet through the airflow. The shock within the airflow is the densest part and refracts the laser sheet the most in its vicinity, leaving a dark spot or shadowgraph. These spots show up as a dip or negative peak within the pixel intensity profile of an image of the projected laser sheet. The smart camera acquires and processes in real-time the linear image containing the shock shadowgraph and outputting the shock location. Previously a high-speed camera and personal computer would perform the image capture and processing to determine the shock location. This innovation consists of a linear image sensor, analog signal processing circuit, and a digital circuit that provides a numerical digital output of the shock or negative edge location. The smart camera is capable of capturing and processing linear images at over 1,000 frames per second. The edges are identified as numeric pixel values within the linear array of pixels, and the edge location information can be sent out from the circuit in a variety of ways, such as by using a microcontroller and onboard or external digital interface to include serial data such as RS-232/485, USB, Ethernet, or CAN BUS; parallel digital data; or an analog signal. The smart camera system can be integrated into a small package with a relatively small number of parts, reducing size and increasing reliability over the previous imaging system..
Synchronized shocks in an inhomogeneous exclusion process
NASA Astrophysics Data System (ADS)
Arita, Chikashi
2015-11-01
We study an exclusion process with 4 segments, which was recently introduced by T. Banerjee, N. Sarkar and A. Basu (J. Stat. Mech. (2015) P01024). The segments have hopping rates 1, r(<1) , 1 and r, respectively. In a certain parameter region, two shocks appear, which are not static but synchronized. We explore dynamical properties of each shock and correlation of shocks, by means of the so-called second-class particle. The mean-squared displacement of shocks has three diffusive regimes, and the asymptotic diffusion coefficient is different from the known formula. In some time interval, it also exhibits sub-diffusion, being proportional to t1/2 . Furthermore we introduce a correlation function and a crossover time, in order to quantitatively characterize the synchronization. We numerically estimate the dynamical exponent for the crossover time. We also revisit the 2-segment case and the open boundary condition for comparison.
NASA Technical Reports Server (NTRS)
Milton, D. J.
1977-01-01
Shatter cone characteristics are surveyed. Shatter cones, a form of rock fracture in impact structures, apparently form as a shock front interacts with inhomogeneities or discontinuities in the rock. Topics discussed include morphology, conditions of formation, shock pressure of formation, and theories of formation. It is thought that shatter cones are produced within a limited range of shock pressures extending from about 20 to perhaps 250 kbar. Apical angles range from less than 70 deg to over 120 deg. Tentative hypotheses concerning the physical process of shock coning are considered. The range in shock pressures which produce shatter cones might correspond to the range in which shock waves decompose into elastic and deformational fronts.
Molecule formation and infrared emission in fast interstellar shocks. I Physical processes
NASA Technical Reports Server (NTRS)
Hollenbach, D.; Mckee, C. F.
1979-01-01
The paper analyzes the structure of fast shocks incident upon interstellar gas of ambient density from 10 to the 7th per cu cm, while focusing on the problems of formation and destruction of molecules and infrared emission in the cooling, neutral post shock gas. It is noted that such fast shocks initially dissociate almost all preexisting molecules. Discussion covers the physical processes which determine the post shock structure between 10 to the 4 and 10 to the 2 K. It is shown that the chemistry of important molecular coolants H2, CO, OH, and H2O, as well as HD and CH, is reduced to a relatively small set of gas phase and grain surface reactions. Also, the chemistry follows the slow conversion of atomic hydrogen into H2, which primarily occurs on grain surfaces. The dependence of this H2 formation rate on grain and gas temperatures is examined and the survival of grains behind fast shocks is discussed. Post shock heating and cooling rates are calculated and an appropriate, analytic, universal cooling function is developed for molecules other than hydrogen which includes opacities from both the dust and the lines.
Study of magnetized accretion flow with variable Γ equation of state
NASA Astrophysics Data System (ADS)
Singh, Kuldeep; Chattopadhyay, Indranil
2018-05-01
We present here the solutions of magnetized accretion flow on to a compact object with hard surface such as neutron stars. The magnetic field of the central star is assumed dipolar and the magnetic axis is assumed to be aligned with the rotation axis of the star. We have used an equation of state for the accreting fluid in which the adiabatic index is dependent on temperature and composition of the flow. We have also included cooling processes like bremsstrahlung and cyclotron processes in the accretion flow. We found all possible accretion solutions. All accretion solutions terminate with a shock very near to the star surface and the height of this primary shock does not vary much with either the spin period or the Bernoulli parameter of the flow, although the strength of the shock may vary with the period. For moderately rotating central star, there is possible formation of multiple sonic points in the flow and therefore, a second shock far away from the star surface may also form. However, the second shock is much weaker than the primary one near the surface. We found that if rotation period is below a certain value (P*), then multiple critical points or multiple shocks are not possible and P* depends upon the composition of the flow. We also found that cooling effect dominates after the shock and that the cyclotron and the bremsstrahlung cooling processes should be considered to obtain a consistent accretion solution.
Assessment Issues in Languages for Specific Purposes
ERIC Educational Resources Information Center
O'Sullivan, Barry
2012-01-01
While Grosse and Voght (1991) set out a well-considered overview of LSP and identified areas in need of development, they limited their observations on the topic of assessment to a short section devoted to what they called the "proficiency movement." While it is true that they really did not have a lot to report on at the time they wrote their…
NASA Astrophysics Data System (ADS)
Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Escalante Del Valle, A.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Taurok, A.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Pieters, M.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Marchesini, I.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Beghin, D.; Bilin, B.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dorney, B.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Kalsi, A. K.; Lenzi, T.; Luetic, J.; Seva, T.; Starling, E.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Trocino, D.; Tytgat, M.; Verbeke, W.; Vit, M.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caputo, C.; Caudron, A.; David, P.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Saggio, A.; Vidal Marono, M.; Wertz, S.; Zobec, J.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correia Silva, G.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Coelho, E.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Medina Jaime, M.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Sanchez Rosas, L. J.; Santoro, A.; Sznajder, A.; Thiel, M.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Misheva, M.; Rodozov, M.; Shopova, M.; Sultanov, G.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Yuan, L.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, J.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Wang, Y.; Avila, C.; Cabrera, A.; Carrillo Montoya, C. A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Segura Delgado, M. A.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Abdelalim, A. A.; Elgammal, S.; Khalil, S.; Bhowmik, S.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Veelken, C.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Leloup, C.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Amendola, C.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Kucher, I.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Collard, C.; Conte, E.; Coubez, X.; Drouhin, F.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Juillot, P.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chanon, N.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lattaud, H.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Zhang, S.; Khvedelidze, A.; Rurua, L.; Autermann, C.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Teroerde, M.; Wittmer, B.; Zhukov, V.; Albert, A.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; De Wit, A.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Meyer, M.; Missiroli, M.; Mittag, G.; Mnich, J.; Mussgiller, A.; Pitzl, D.; Raspereza, A.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Stefaniuk, N.; Tholen, H.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Aggleton, R.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Kasieczka, G.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Marconi, D.; Multhaup, J.; Niedziela, M.; Nowatschin, D.; Peiffer, T.; Perieanu, A.; Reimers, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Troendle, D.; Usai, E.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baselga, M.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Faltermann, N.; Freund, B.; Friese, R.; Giffels, M.; Harrendorf, M. A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Kousouris, K.; Papakrivopoulos, I.; Evangelou, I.; Foudas, C.; Gianneios, P.; Katsoulis, P.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Tsitsonis, D.; Csanad, M.; Filipovic, N.; Pasztor, G.; Surányi, O.; Veres, G. I.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Vámi, T. Á.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chauhan, S.; Chawla, R.; Dhingra, N.; Gupta, R.; Kaur, A.; Kaur, M.; Kaur, S.; Kumar, R.; Kumari, P.; Mehta, A.; Sharma, S.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Bhowmik, D.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Rout, P. K.; Roy, A.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Singh, B.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Di Florio, A.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Marangelli, B.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Zito, G.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Borgonovi, L.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Iemmi, F.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Latino, G.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Ravera, F.; Robutti, E.; Tosi, S.; Benaglia, A.; Beschi, A.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Lujan, P.; Margoni, M.; Meneguzzo, A. T.; Passaseo, M.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Tiko, A.; Torassa, E.; Ventura, S.; Zanetti, M.; Zotto, P.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bianchini, L.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Messineo, A.; Palla, F.; Rizzi, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Di Marco, E.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Pandolfi, F.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Castello, R.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza, R.; Ramirez-Sanchez, G.; Duran-Osuna, M. C.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo, R. I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Eysermans, J.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Galinhas, B.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Strong, G.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sosnov, D.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Stolin, V.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chadeeva, M.; Parygin, P.; Philippov, D.; Polikarpov, S.; Popova, E.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Rusakov, S. V.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Blinov, V.; Shtol, D.; Skovpen, Y.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Godizov, A.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Mandrik, P.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Babaev, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Alcaraz Maestre, J.; Bachiller, I.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Moran, D.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Redondo, I.; Romero, L.; Soares, M. S.; Triossi, A.; Álvarez Fernández, A.; Albajar, C.; de Trocóniz, J. F.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Duarte Campderros, J.; Fernandez, M.; Fernández Manteca, P. J.; Garcia-Ferrero, J.; García Alonso, A.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Prieels, C.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Akgun, B.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Bianco, M.; Bocci, A.; Botta, C.; Camporesi, T.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Deelen, N.; Dobson, M.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gilbert, A.; Gill, K.; Glege, F.; Gulhan, D.; Hegeman, J.; Innocente, V.; Jafari, A.; Janot, P.; Karacheban, O.; Kieseler, J.; Knünz, V.; Kornmayer, A.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Ngadiuba, J.; Orfanelli, S.; Orsini, L.; Pantaleo, F.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pitters, F. M.; Rabady, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Tsirou, A.; Veckalns, V.; Verweij, M.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Backhaus, M.; Bäni, L.; Berger, P.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dorfer, C.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Klijnsma, T.; Lustermann, W.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Sanz Becerra, D. A.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Brzhechko, D.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Neutelings, I.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Schweiger, K.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Candelise, V.; Chang, Y. H.; Cheng, K. y.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Bat, A.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Tok, U. G.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Komurcu, Y.; Grynyov, B.; Levchuk, L.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Newbold, D. M.; Paramesvaran, S.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Linacre, J.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Auzinger, G.; Bainbridge, R.; Bloch, P.; Borg, J.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; Della Negra, M.; Di Maria, R.; Elwood, A.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Komm, M.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Strebler, T.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wardle, N.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Morton, A.; Reid, I. D.; Teodorescu, L.; Zahid, S.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Hadley, M.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Lee, J.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Stolp, D.; Taylor, D.; Tos, K.; Tripathi, M.; Wang, Z.; Zhang, F.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Regnard, S.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Karapostoli, G.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Gilbert, D.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Citron, M.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; Gouskos, L.; Heller, R.; Incandela, J.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bornheim, A.; Bunn, J.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T. Q.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Wilkinson, R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Macdonald, E.; Mulholland, T.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chaves, J.; Cheng, Y.; Chu, J.; Datta, A.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Quach, D.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Alyari, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kortelainen, M. J.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Savoy-Navarro, A.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Wu, W.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Joshi, B. M.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Shi, K.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Sharma, V.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Dittmer, S.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Rogan, C.; Royon, C.; Sanders, S.; Schmitz, E.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Modak, A.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Rebassoo, F.; Wright, D.; Baden, A.; Baron, O.; Belloni, A.; Eno, S. C.; Feng, Y.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bauer, G.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Harris, P.; Hsu, D.; Hu, M.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Zhaozhong, S.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Wadud, M. A.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Golf, F.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Freer, C.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Orimoto, T.; Teixeira De Lima, R.; Wamorkar, T.; Wang, B.; Wisecarver, A.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Bucci, R.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Li, W.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Siddireddy, P.; Smith, G.; Taroni, S.; Wayne, M.; Wightman, A.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Ling, T. Y.; Luo, W.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Kalogeropoulos, A.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Salfeld-Nebgen, J.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Gutay, L.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Qiu, H.; Schulte, J. F.; Sun, J.; Wang, F.; Xiao, R.; Xie, W.; Cheng, T.; Parashar, N.; Chen, Z.; Ecklund, K. M.; Freed, S.; Geurts, F. J. M.; Guilbaud, M.; Kilpatrick, M.; Li, W.; Michlin, B.; Padley, B. P.; Roberts, J.; Rorie, J.; Shi, W.; Tu, Z.; Zabel, J.; Zhang, A.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Mengke, T.; Muthumuni, S.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Padeken, K.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Joyce, M.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Poudyal, N.; Sturdy, J.; Thapa, P.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Carlsmith, D.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Rekovic, V.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Woods, N.; CMS Collaboration
2018-06-01
A search for physics beyond the standard model in events with one or more high-momentum Higgs bosons, H , decaying to pairs of b quarks in association with missing transverse momentum is presented. The data, corresponding to an integrated luminosity of 35.9 fb-1, were collected with the CMS detector at the LHC in proton-proton collisions at the center-of-mass energy √{s }=13 TeV . The analysis utilizes a new b quark tagging technique based on jet substructure to identify jets from H →b b ¯ . Events are categorized by the multiplicity of H -tagged jets, jet mass, and the missing transverse momentum. No significant deviation from standard model expectations is observed. In the context of supersymmetry (SUSY), limits on the cross sections of pair-produced gluinos are set, assuming that gluinos decay to quark pairs, H (or Z ), and the lightest SUSY particle, LSP, through an intermediate next-to-lightest SUSY particle, NLSP. With large mass splitting between the NLSP and LSP, and 100% NLSP branching fraction to H , the lower limit on the gluino mass is found to be 2010 GeV.
Simulations of electron transport and ignition for direct-drive fast-ignition targets
NASA Astrophysics Data System (ADS)
Solodov, A. A.; Anderson, K. S.; Betti, R.; Gotcheva, V.; Myatt, J.; Delettrez, J. A.; Skupsky, S.; Theobald, W.; Stoeckl, C.
2008-11-01
The performance of high-gain, fast-ignition fusion targets is investigated using one-dimensional hydrodynamic simulations of implosion and two-dimensional (2D) hybrid fluid-particle simulations of hot-electron transport, ignition, and burn. The 2D/3D hybrid-particle-in-cell code LSP [D. R. Welch et al., Nucl. Instrum. Methods Phys. Res. A 464, 134 (2001)] and the 2D fluid code DRACO [P. B. Radha et al., Phys. Plasmas 12, 056307 (2005)] are integrated to simulate the hot-electron transport and heating for direct-drive fast-ignition targets. LSP simulates the transport of hot electrons from the place where they are generated to the dense fuel core where their energy is absorbed. DRACO includes the physics required to simulate compression, ignition, and burn of fast-ignition targets. The self-generated resistive magnetic field is found to collimate the hot-electron beam, increase the coupling efficiency of hot electrons with the target, and reduce the minimum energy required for ignition. Resistive filamentation of the hot-electron beam is also observed. The minimum energy required for ignition is found for hot electrons with realistic angular spread and Maxwellian energy-distribution function.
Supernatural supersymmetry: Phenomenological implications of anomaly-mediated supersymmetry breaking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Jonathan L.; Moroi, Takeo
2000-05-01
We discuss the phenomenology of supersymmetric models in which supersymmetry breaking terms are induced by the super-Weyl anomaly. Such a scenario is envisioned to arise when supersymmetry breaking takes place in another world, i.e., on another brane. We review the anomaly-mediated framework and study in detail the minimal anomaly-mediated model parametrized by only 3+1 parameters: M{sub aux}, m{sub 0}, tan {beta}, and sgn({mu}). The renormalization group equations exhibit a novel ''focus point'' (as opposed to fixed point) behavior, which allows squark and slepton masses far above their usual naturalness bounds. We present the superparticle spectrum and highlight several implications formore » high energy colliders. Three lightest supersymmetric particle (LSP) candidates exist: the W-ino, the stau, and the tau sneutrino. For the W-ino LSP scenario, light W-ino triplets with the smallest possible mass splittings are preferred; such W-inos are within reach of run II Fermilab Tevatron searches. Finally, we study a variety of sensitive low energy probes, including b{yields}s{gamma}, the anomalous magnetic moment of the muon, and the electric dipole moments of the electron and neutron. (c) 2000 The American Physical Society.« less
The eisosome core is composed of BAR domain proteins
Olivera-Couto, Agustina; Graña, Martin; Harispe, Laura; Aguilar, Pablo S.
2011-01-01
Eisosomes define sites of plasma membrane organization. In Saccharomyces cerevisiae, eisosomes delimit furrow-like plasma membrane invaginations that concentrate sterols, transporters, and signaling molecules. Eisosomes are static macromolecular assemblies composed of cytoplasmic proteins, most of which have no known function. In this study, we used a bioinformatics approach to analyze a set of 20 eisosome proteins. We found that the core components of eisosomes, paralogue proteins Pil1 and Lsp1, are distant homologues of membrane-sculpting Bin/amphiphysin/Rvs (BAR) proteins. Consistent with this finding, purified recombinant Pil1 and Lsp1 tubulated liposomes and formed tubules when the proteins were overexpressed in mammalian cells. Structural homology modeling and site-directed mutagenesis indicate that Pil1 positively charged surface patches are needed for membrane binding and liposome tubulation. Pil1 BAR domain mutants were defective in both eisosome assembly and plasma membrane domain organization. In addition, we found that eisosome-associated proteins Slm1 and Slm2 have F-BAR domains and that these domains are needed for targeting to furrow-like plasma membrane invaginations. Our results support a model in which BAR domain protein–mediated membrane bending leads to clustering of lipids and proteins within the plasma membrane. PMID:21593205
NASA Astrophysics Data System (ADS)
Wang, Jianmin; Zhang, Xiaoyang
2017-05-01
Land surface phenology (LSP) derived from satellite data has been widely associated with recent global climate change. However, LSP is frequently influenced by land disturbances, which significantly limits our understanding of the phenological trends driven by climate change. Because wildfire is one of the most significant disturbance agents, we investigated the influences of wildfire on the start of growing season (SOS) and the interannual trends of SOS in the Hayman Fire area that occurred in 2002 in Colorado using time series of daily MODIS data (2001-2014). Results show that the Hayman Fire advanced the area-integrated SOS by 15.2 d and converted SOS from a delaying trend of 3.9 d/decade to an advancing trend of -1.9 d/decade during 2001-2014. The fire impacts on SOS increased from low burn severity to high burn severity. Moreover, the rate of increase of annual maximum and minimum EVI2 from 2003-2014 reflects that vegetation greenness could recover to pre-fire status in 2022 and 2053, respectively, which suggests that the fire impacts on the satellite-derived SOS variability and the interannual trends should continue in the next few decades.
NASA Astrophysics Data System (ADS)
Hinkle, Kenneth; Fekel, Francis; Joyce, Richard; Mikolajewska, Joanna; Galan, Cezary
2018-01-01
V934 Her = 4U 1700+24 is a previously known M giant - neutron star X-ray symbiotic system. Employing newly measured optical and infrared radial velocities spanning 29 years plus the extensive set of velocities in the literature, we have computed the orbit of the M III in that system. We determine an orbital period of 4391 days or 12.0 yr, far longer than the 404 day orbit commonly cited in the literature. In addition to the 12.0 yr orbital period we find a shorter period of 420 days, similar to that previously found. Instead of orbital motion, we attribute this shorter period to a long secondary pulsation (LSP) period in the SRb variable M3 III. The orbit is seen nearly pole on explaining why X-ray pulsations associated with the neutron star have not been detected. Arguments are made that this orientation supports a pulsation origin for LSP. We also measure CNO and Fe peak abundances of the M giant. Basic properties of the M giant are derived. We discuss the possible evolutionary paths this system has taken to get to its current state.
The properties and causes of rippling in quasi-perpendicular collisionless shock fronts
NASA Astrophysics Data System (ADS)
Lowe, R. E.; Burgess, D.
2003-03-01
The overall structure of quasi-perpendicular, high Mach number collisionless shocks is controlled to a large extent by ion reflection at the shock ramp. Departure from a strictly one-dimensional structure is indicated by simulation results showing that the surface of such shocks is rippled, with variations in the density and all field components. We present a detailed analysis of these shock ripples, using results from a two-dimensional hybrid (particle ions, electron fluid) simulation. The process that generates the ripples is poorly understood, because the large gradients at the shock ramp make it difficult to identify instabilities. Our analysis reveals new features of the shock ripples, which suggest the presence of a surface wave mode dominating the shock normal magnetic field component of the ripples, as well as whistler waves excited by reflected ions.
Modeling the effect of orientation on the shock response of a damageable composite material
NASA Astrophysics Data System (ADS)
Lukyanov, Alexander A.
2012-10-01
A carbon fiber-epoxy composite (CFEC) shock response in the through thickness orientation and in one of the fiber directions is significantly different. The hydrostatic pressure inside anisotropic materials depends on deviatoric strain components as well as volumetric strain. Non-linear effects, such as shock effects, can be incorporated through the volumetric straining in the material. Thus, a new basis is required to couple the anisotropic material stiffness and strength with anisotropic shock effects, associated energy dependence, and damage softening process. This article presents these constitutive equations for shock wave modeling of a damageable carbon fiber-epoxy composite. Modeling the effect of fiber orientation on the shock response of a CFEC has been performed using a generalized decomposition of the stress tensor [A. A. Lukyanov, Int. J. Plast. 24, 140 (2008)] and Mie-Grüneisen's extrapolation of high-pressure shock Hugoniot states to other thermodynamics states for shocked CFEC materials. The three-wave structure (non-linear anisotropic, fracture, and isotropic elastic waves) that accompanies damage softening process is also proposed in this work for describing CFEC behavior under shock loading which allows to remove any discontinuities observed in the linear case for relation between shock velocities and particle velocities [A. A. Lukyanov, Eur. Phys. J. B 74, 35 (2010)]. Different Hugoniot stress levels are obtained when the material is impacted in different directions; their good agreement with the experiment demonstrates that the anisotropic equation of state, strength, and damage model are adequate for the simulation of shock wave propagation within damageable CFEC material. Remarkably, in the through thickness orientation, the material behaves similar to a simple polymer whereas in the fiber direction, the proposed in this paper model explains an initial ramp, before at sufficiently high stresses, and a much faster rising shock above it. The numerical results for shock wave modeling using proposed constitutive equations are presented, discussed, and future studies are outlined.
SUPRATHERMAL ELECTRONS AT SATURN'S BOW SHOCK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masters, A.; Dougherty, M. K.; Sulaiman, A. H.
2016-07-20
The leading explanation for the origin of galactic cosmic rays is particle acceleration at the shocks surrounding young supernova remnants (SNRs), although crucial aspects of the acceleration process are unclear. The similar collisionless plasma shocks frequently encountered by spacecraft in the solar wind are generally far weaker (lower Mach number) than these SNR shocks. However, the Cassini spacecraft has shown that the shock standing in the solar wind sunward of Saturn (Saturn's bow shock) can occasionally reach this high-Mach number astrophysical regime. In this regime Cassini has provided the first in situ evidence for electron acceleration under quasi-parallel upstream magneticmore » conditions. Here we present the full picture of suprathermal electrons at Saturn's bow shock revealed by Cassini . The downstream thermal electron distribution is resolved in all data taken by the low-energy electron detector (CAPS-ELS, <28 keV) during shock crossings, but the higher energy channels were at (or close to) background. The high-energy electron detector (MIMI-LEMMS, >18 keV) measured a suprathermal electron signature at 31 of 508 crossings, where typically only the lowest energy channels (<100 keV) were above background. We show that these results are consistent with the theory in which the “injection” of thermal electrons into an acceleration process involves interaction with whistler waves at the shock front, and becomes possible for all upstream magnetic field orientations at high Mach numbers like those of the strong shocks around young SNRs. A future dedicated study will analyze the rare crossings with evidence for relativistic electrons (up to ∼1 MeV).« less
Suprathermal Electrons at Saturn's Bow Shock
NASA Astrophysics Data System (ADS)
Masters, A.; Sulaiman, A. H.; Sergis, N.; Stawarz, L.; Fujimoto, M.; Coates, A. J.; Dougherty, M. K.
2016-07-01
The leading explanation for the origin of galactic cosmic rays is particle acceleration at the shocks surrounding young supernova remnants (SNRs), although crucial aspects of the acceleration process are unclear. The similar collisionless plasma shocks frequently encountered by spacecraft in the solar wind are generally far weaker (lower Mach number) than these SNR shocks. However, the Cassini spacecraft has shown that the shock standing in the solar wind sunward of Saturn (Saturn's bow shock) can occasionally reach this high-Mach number astrophysical regime. In this regime Cassini has provided the first in situ evidence for electron acceleration under quasi-parallel upstream magnetic conditions. Here we present the full picture of suprathermal electrons at Saturn's bow shock revealed by Cassini. The downstream thermal electron distribution is resolved in all data taken by the low-energy electron detector (CAPS-ELS, <28 keV) during shock crossings, but the higher energy channels were at (or close to) background. The high-energy electron detector (MIMI-LEMMS, >18 keV) measured a suprathermal electron signature at 31 of 508 crossings, where typically only the lowest energy channels (<100 keV) were above background. We show that these results are consistent with the theory in which the “injection” of thermal electrons into an acceleration process involves interaction with whistler waves at the shock front, and becomes possible for all upstream magnetic field orientations at high Mach numbers like those of the strong shocks around young SNRs. A future dedicated study will analyze the rare crossings with evidence for relativistic electrons (up to ˜1 MeV).
Multispacecraft study of shock-flux rope interaction
NASA Astrophysics Data System (ADS)
Blanco-Cano, Xochitl; Burgess, David; Sundberg, Torbjorn; Kajdic, Primoz
2017-04-01
Interplanetary (IP) shocks can be driven in the solar wind by fast coronal mass ejections. These shocks can accelerate particles near the Sun and through the heliosphere, being associated to solar energetic particle (SEP) and energetic storm particle (ESP) events. IP shocks can interact with structures in the solar wind, and with planetary magnetospheres. In this study we show how the properties of an IP shock change when it interacts with a medium scale flux rope (FR) like structure. We use data measurements from CLUSTER, WIND and ACE. These three spacecraft observed the shock-FR interaction at different stages of its evolution. We find that the shock-FR interaction locally changes the shock geometry, affecting ion injection processes, and the upstream and downstream regions. While WIND and ACE observed a quasi-perpendicular shock, CLUSTER crossed a quasi-parallel shock and a foreshock with a variety of ion distributions. The complexity of the ion foreshock can be explained by the dynamics of the shock transitioning from quasi-perpendicular to quasi-parallel, and the geometry of the magnetic field around the flux rope. Interactions such as the one we discuss can occur often along the extended IP shock fronts, and hence their importance towards a better understanding of shock acceleration.
Calculating shock arrival in expansion tubes and shock tunnels using Bayesian changepoint analysis
NASA Astrophysics Data System (ADS)
James, Christopher M.; Bourke, Emily J.; Gildfind, David E.
2018-06-01
To understand the flow conditions generated in expansion tubes and shock tunnels, shock speeds are generally calculated based on shock arrival times at high-frequency wall-mounted pressure transducers. These calculations require that the shock arrival times are obtained accurately. This can be non-trivial for expansion tubes especially because pressure rises may be small and shock speeds high. Inaccurate shock arrival times can be a significant source of uncertainty. To help address this problem, this paper investigates two separate but complimentary techniques. Principally, it proposes using a Bayesian changepoint detection method to automatically calculate shock arrival, potentially reducing error and simplifying the shock arrival finding process. To compliment this, a technique for filtering the raw data without losing the shock arrival time is also presented and investigated. To test the validity of the proposed techniques, tests are performed using both a theoretical step change with different levels of noise and real experimental data. It was found that with conditions added to ensure that a real shock arrival time was found, the Bayesian changepoint analysis method was able to automatically find the shock arrival time, even for noisy signals.
Nonequilibrium radiation and chemistry models for aerocapture vehicle flowfields, volume 3
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1991-01-01
The computer programs developed to calculate the shock wave precursor and the method of using them are described. This method calculated the precursor flow field in a nitrogen gas including the effects of emission and absorption of radiation on the energy and composition of gas. The radiative transfer is calculated including the effects of absorption and emission through the line as well as the continuum process in the shock layer and through the continuum processes only in the precursor. The effects of local thermodynamic nonequilibrium in the shock layer and precursor regions are also included in the radiative transfer calculations. Three computer programs utilized by this computational scheme to calculate the precursor flow field solution for a given shock layer flow field are discussed.
The effect of stochastic re-acceleration on the energy spectrum of shock-accelerated protons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afanasiev, Alexandr; Vainio, Rami; Kocharov, Leon
2014-07-20
The energy spectra of particles in gradual solar energetic particle (SEP) events do not always have a power-law form attributed to the diffusive shock acceleration mechanism. In particular, the observed spectra in major SEP events can take the form of a broken (double) power law. In this paper, we study the effect of a process that can modify the power-law spectral form produced by the diffusive shock acceleration: the stochastic re-acceleration of energetic protons by enhanced Alfvénic turbulence in the downstream region of a shock wave. There are arguments suggesting that this process can be important when the shock propagatesmore » in the corona. We consider a coronal magnetic loop traversed by a shock and perform Monte Carlo simulations of interactions of shock-accelerated protons with Alfvén waves in the loop. The wave-particle interactions are treated self-consistently, so the finiteness of the available turbulent energy is taken into account. The initial energy spectrum of particles is taken to be a power law. The simulations reveal that the stochastic re-acceleration leads either to the formation of a spectrum that is described in a wide energy range by a power law (although the resulting power-law index is different from the initial one) or to a broken power-law spectrum. The resulting spectral form is determined by the ratio of the energy density of shock-accelerated protons to the wave energy density in the shock's downstream region.« less
NASA Astrophysics Data System (ADS)
Islam, Md Mahbubul; Strachan, Alejandro
A detailed atomistic-level understanding of the ultrafast chemistry of detonation processes of high energy materials is crucial to understand their performance and safety. Recent advances in laser shocks and ultra-fast spectroscopy is yielding the first direct experimental evidence of chemistry at extreme conditions. At the same time, reactive molecular dynamics (MD) in current high-performance computing platforms enable an atomic description of shock-induced chemistry with length and timescales approaching those of experiments. We use MD simulations with the reactive force field ReaxFF to investigate the shock-induced chemical decomposition mechanisms of polyvinyl nitrate (PVN) and nitromethane (NM). The effect of shock pressure on chemical reaction mechanisms and kinetics of both the materials are investigated. For direct comparison of our simulation results with experimentally derived IR absorption data, we performed spectral analysis using atomistic velocity at various shock conditions. The combination of reactive MD simulations and ultrafast spectroscopy enables both the validation of ReaxFF at extreme conditions and contributes to the interpretation of the experimental data relating changes in spectral features to atomic processes. Office of Naval Research MURI program.
Ge, Ni-Na; Wei, Yong-Kai; Ji, Guang-Fu; Chen, Xiang-Rong; Zhao, Feng; Wei, Dong-Qing
2012-11-26
We have performed quantum-based multiscale simulations to study the initial chemical processes of condensed-phase octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) under shock wave loading. A self-consistent charge density-functional tight-binding (SCC-DFTB) method was employed. The results show that the initial decomposition of shocked HMX is triggered by the N-NO(2) bond breaking under the low velocity impact (8 km/s). As the shock velocity increases (11 km/s), the homolytic cleavage of the N-NO(2) bond is suppressed under high pressure, the C-H bond dissociation becomes the primary pathway for HMX decomposition in its early stages. It is accompanied by a five-membered ring formation and hydrogen transfer from the CH(2) group to the -NO(2) group. Our simulations suggest that the initial chemical processes of shocked HMX are dependent on the impact velocity, which gain new insights into the initial decomposition mechanism of HMX upon shock loading at the atomistic level, and have important implications for understanding and development of energetic materials.
Multispacecraft study of shock-flux rope interaction
NASA Astrophysics Data System (ADS)
Blanco-Cano, X.; Burgess, D.; Sundberg, T.; Kajdic, P.
2016-12-01
Interplanetary (IP) shocks can be driven in the solar wind by fast coronal mass ejections. These shocks play an active role in particle acceleration near the Sun and through the heliosphere, being associated to solar energetic particle (SEP) and energetic storm particle (ESP) events. IP shocks can interact with structures in the solar wind, and with planetary magnetospheres. In this work we study how the properties of an IP shock change when it interacts with a medium scale flux rope (FR). We use measurements from CLUSTER, WIND and ACE. These three spacecraft observed the shock-FR interaction at different stages of its evolution. We find that the shock-FR interaction locally changes the shock geometry, affecting ion injection processes, and the upstream and downstream regions. While WIND and ACE observed a quasi-perpendicular shock, CLUSTER crossed a quasi-parallel shock and a foreshock with a variety of ion distributions. The complexity of the ion foreshock can be explained by the dynamics of the shock transitioning from quasi-perpendicular to quasi-parallel, and the geometry of the magnetic field around the flux rope.
Shock drift acceleration in the presence of waves
NASA Technical Reports Server (NTRS)
Decker, R. B.; Vlahos, L.
1985-01-01
Attention is given to the initial results of a model designed to study the modification of the scatter-free, shock drift acceleration of energetic test particles by wave activity in the vicinity of a quasi-perpendicular, fast-mode MHD shock. It is emphasized that the concept of magnetic moment conservation is a valid approximation only in the perpendicular and nearly perpendicular regimes, when the angle theta-Bn between the shock normal and the upstream magnetic field vector is in the range from 70 deg to 90 deg. The present investigation is concerned with one step in a program which is being developed to combine the shock drift and diffusive processes at a shock of arbitrary theta-Bn.
A Theoretical Basis for the Scaling Law of Broadband Shock Noise Intensity in Supersonic Jets
NASA Technical Reports Server (NTRS)
Kandula, Max
2011-01-01
A theoretical basis for the scaling of broadband shock noise intensity In supersonic jets was formulated considering linear shock-shear wave interaction. Modeling of broadband shock noise with the aid of shock-turbulence interaction with special reference to linear theories is briefly reviewed. An hypothesis has been postulated that the peak angle of incidence (closer to the critical angle) for the shear wave primarily governs the generation of sound in the interaction process with the noise generation contribution from off-peak incident angles being relatively unimportant. The proposed hypothesis satisfactorily explains the well-known scaling law for the broadband shock-associated noise in supersonic jets.
Ion distributions in the Earth's foreshock upstream from the bow shock
NASA Technical Reports Server (NTRS)
Fuselier, S. A.
1995-01-01
A variety of suprathermal and energetic ion distributions are found upstream from shocks. Some distributions, such as field-aligned beams, are generated directly at the shock either through reflection processes or through leakage from the hotter downstream region. Other distributions, such as intermediate distributions, evolve from these parent distributions through wave-particle interactions. This paper reviews our current understanding of the creation and evolution of suprathermal distributions at shocks. Examples of suprathermal ion distributions are taken from observations at the Earth's bow shock. Particular emphasis is placed on the creation of field-aligned beams and specularly reflected ion distributions and on the evolution of these distributions in the Earth's ion foreshock. However, the results from this heavily studied region are applicable to interplanetary shocks, bow shocks at other planets, and comets.
Shock-wave processing of C60 in hydrogen
NASA Astrophysics Data System (ADS)
Biennier, L.; Jayaram, V.; Suas-David, N.; Georges, R.; Singh, M. Kiran; Arunan, E.; Kassi, S.; Dartois, E.; Reddy, K. P. J.
2017-03-01
Context. Interstellar carbonaceous particles and molecules are subject to intense shocks in astrophysical environments. Shocks induce a rapid raise in temperature and density which strongly affects the chemical and physical properties of both the gas and solid phases of the interstellar matter. Aims: The shock-induced thermal processing of C60 particles in hydrogen has been investigated in the laboratory under controlled conditions up to 3900 K with the help of a material shock-tube. Methods: The solid residues generated by the exposure of a C60/H2 mixture to a millisecond shock wave were collected and analyzed using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman micro-spectroscopy, and infrared micro-spectroscopy. The gaseous products were analyzed by Gas Chromatography and Cavity Ring Down Spectroscopy. Results: Volatile end-products appear above reflected shock gas temperatures of 2540 K and reveal the substantial presence of small molecules with one or two C atoms. These observations confirm the role played by the C2 radical as a major product of C60 fragmentation and less expectedly highlight the existence of a single C atom loss channel. Molecules with more than two carbon atoms are not observed in the post-shock gas. The analysis of the solid component shows that C60 particles are rapidly converted into amorphous carbon with a number of aliphatic bridges. Conclusions: The absence of aromatic CH stretches on the IR spectra indicates that H atoms do not link directly to aromatic cycles. The fast thermal processing of C60 in H2 over the 800-3400 K temperature range leads to amorphous carbon. The analysis hints at a collapse of the cage with the formation of a few aliphatic connections. A low amount of hydrogen is incorporated into the carbon material. This work extends the range of applications of shock tubes to studies of astrophysical interest.
Nonlinear waves and shocks in relativistic two-fluid hydrodynamics
NASA Astrophysics Data System (ADS)
Haim, L.; Gedalin, M.; Spitkovsky, A.; Krasnoselskikh, V.; Balikhin, M.
2012-06-01
Relativistic shocks are present in a number of objects where violent processes are accompanied by relativistic outflows of plasma. The magnetization parameter σ = B2/4πnmc2 of the ambient medium varies in wide range. Shocks with low σ are expected to substantially enhance the magnetic fields in the shock front. In non-relativistic shocks the magnetic compression is limited by nonlinear effects related to the deceleration of flow. Two-fluid analysis of perpendicular relativistic shocks shows that the nonlinearities are suppressed for σ<<1 and the magnetic field reaches nearly equipartition values when the magnetic energy density is of the order of the ion energy density, Beq2 ~ 4πnmic2γ. A large cross-shock potential eφ/mic2γ0 ~ B2/Beq2 develops across the electron-ion shock front. This potential is responsible for electron energization.
A shock absorber model for structure-borne noise analyses
NASA Astrophysics Data System (ADS)
Benaziz, Marouane; Nacivet, Samuel; Thouverez, Fabrice
2015-08-01
Shock absorbers are often responsible for undesirable structure-borne noise in cars. The early numerical prediction of this noise in the automobile development process can save time and money and yet remains a challenge for industry. In this paper, a new approach to predicting shock absorber structure-borne noise is proposed; it consists in modelling the shock absorber and including the main nonlinear phenomena responsible for discontinuities in the response. The model set forth herein features: compressible fluid behaviour, nonlinear flow rate-pressure relations, valve mechanical equations and rubber mounts. The piston, base valve and complete shock absorber model are compared with experimental results. Sensitivity of the shock absorber response is evaluated and the most important parameters are classified. The response envelope is also computed. This shock absorber model is able to accurately reproduce local nonlinear phenomena and improves our state of knowledge on potential noise sources within the shock absorber.
NASA Technical Reports Server (NTRS)
Liu, N. S.; Shamroth, S. J.; Mcdonald, H.
1983-01-01
The multidimensional ensemble averaged compressible time dependent Navier Stokes equations in conjunction with mixing length turbulence model and shock capturing technique were used to study the terminal shock type of flows in various flight regimes occurring in a diffuser/inlet model. The numerical scheme for solving the governing equations is based on a linearized block implicit approach and the following high Reynolds number calculations were carried out: (1) 2 D, steady, subsonic; (2) 2 D, steady, transonic with normal shock; (3) 2 D, steady, supersonic with terminal shock; (4) 2 D, transient process of shock development and (5) 3 D, steady, transonic with normal shock. The numerical results obtained for the 2 D and 3 D transonic shocked flows were compared with corresponding experimental data; the calculated wall static pressure distributions agree well with the measured data.
An electromagnetic railgun accelerator: a generator of strong shock waves in channels
NASA Astrophysics Data System (ADS)
Bobashev, S. V.; Zhukov, B. G.; Kurakin, R. O.; Ponyaev, S. A.; Reznikov, B. I.
2014-11-01
Processes that accompany the generation of strong shock waves during the acceleration of a free plasma piston (PP) in the electromagnetic railgun channel have been experimentally studied. The formation of shock waves in the railgun channel and the motion of a shock-wave-compressed layer proceed (in contrast to the case of a classical shock tube) in a rather strong electric field (up to 300 V/cm). The experiments were performed at the initial gas pressures in the channel ranging from 25 to 500 Torr. At 25 Torr, the shock-wave Mach numbers reached 32 in argon and 16 in helium. At high concentrations of charged particles behind the shock wave, the electric field causes the passage of a part of the discharge current through the volume of the shock-wave-compressed layer, which induces intense glow comparable with that of the PP glow.
NASA Astrophysics Data System (ADS)
Timmermans, J.; Gomez-Dans, J. L.; Verhoef, W.; Tol, C. V. D.; Lewis, P.
2017-12-01
Evapotranspiration (ET) cannot be directly measured from space. Instead it relies on modelling approaches that use several land surface parameters (LSP), LAI and LST, in conjunction with meteorological parameters. Such a modelling approach presents two caveats: the validity of the model, and the consistency between the different input parameters. Often this second step is not considered, ignoring that without good inputs no decent output can provided. When LSP- dynamics contradict each other, the output of the model cannot be representative of reality. At present however, the LSPs used in large scale ET estimations originate from different single-sensor retrieval-approaches and even from different satellite sensors. In response, the Earth Observation Land Data Assimilation System (EOLDAS) was developed. EOLDAS uses a multi-sensor approach to couple different satellite observations/types to radiative transfer models (RTM), consistently. It is therefore capable of synergistically estimating a variety of LSPs. Considering that ET is most sensitive to the temperatures of the land surface (components), the goal of this research is to expand EOLDAS to the thermal domain. This research not only focuses on estimating LST, but also on retrieving (soil/vegetation, Sunlit/shaded) component temperatures, to facilitate dual/quad-source ET models. To achieve this, The Soil Canopy Observations of Photosynthesis and Energy (SCOPE) model was integrated into EOLDAS. SCOPE couples key-parameters to key-processes, such as photosynthesis, ET and optical/thermal RT. In this research SCOPE was also coupled to MODTRAN RTM, in order to estimate BOA component temperatures directly from TOA observations. This paper presents the main modelling steps of integrating these complex models into an operational platform. In addition it highlights the actual retrieval using different satellite observations, such as MODIS and Sentinel-3, and meteorological variables from the ERA-Interim.
Shock Wave Structure Mediated by Energetic Particles
NASA Astrophysics Data System (ADS)
Mostafavi, P.; Zank, G. P.; Webb, G. M.
2016-12-01
Energetic particles such as cosmic rays, Pick Up Ions (PUIs), and solar energetic particles can affect all facets of plasma physics and astrophysical plasma. Energetic particles play an especially significant role in the dissipative process at shocks and in determining their structure. The very interesting recent observations of shocks in the inner heliosphere found that many shocks appear to be significantly mediated by solar energetic particles which have a pressure that exceeds considerably both the thermal gas pressure and the magnetic field pressure. Energetic particles contribute an isotropic scalar pressure to the plasma system at the leading order, as well as introducing dissipation via a collisionless heat flux (diffusion) at the next order and a collisionless stress tensor (viscosity) at the second order. Cosmic-ray modified shocks were discussed by Axford et al. (1982), Drury (1983), and Webb (1983). Zank et al. (2014) investigated the incorporation of PUIs in the supersonic solar wind beyond 10AU, in the inner Heliosheath and in the Very Local Interstellar Medium. PUIs do not equilibrate collisionally with the background plasma in these regimes. In the absence of equilibration between plasma components, a separate coupled plasma description for the energetic particles is necessary. This model is used to investigate the structure of shock waves assuming that we can neglect the magnetic field. Specifically, we consider the dissipative role that both the energetic particle collisionless heat flux and viscosity play in determining the structure of collisionless shock waves. We show that the incorporation of both energetic particle collisionless heat flux and viscosity is sufficient to completely determine the structure of a shock. Moreover, shocks with three sub-shocks converge to the weak sub-shocks. This work differs from the investigation of Jokipii and Williams (1992) who restricted their attention to a cold thermal gas. For a cold thermal non-magnetized gas, all shocks are smoothed by cosmic ray diffusion and therefore viscosity is not an important process.
Effect of Shock Waves on Dielectric Properties of KDP Crystal
NASA Astrophysics Data System (ADS)
Sivakumar, A.; Suresh, S.; Pradeep, J. Anto; Balachandar, S.; Martin Britto Dhas, S. A.
2018-05-01
An alternative non-destructive approach is proposed and demonstrated for modifying electrical properties of crystal using shock-waves. The method alters dielectric properties of a potassium dihydrogen phosphate (KDP) crystal by loading shock-waves generated by a table-top shock tube. The experiment involves launching the shock-waves perpendicular to the (100) plane of the crystal using a pressure driven table-top shock tube with Mach number 1.9. Electrical properties of dielectric constant, dielectric loss, permittivity, impedance, AC conductivity, DC conductivity and capacitance as a function of spectrum of frequency from 1 Hz to 1 MHz are reported for both pre- and post-shock wave loaded conditions of the KDP crystal. The experimental results reveal that dielectric constant of KDP crystal is sensitive to the shock waves such that the value decreases for the shock-loaded KDP sample from 158 to 147. The advantage of the proposed approach is that it is an alternative to the conventional doping process for tailoring dielectric properties of this type of crystal.
Time-resolved diffraction of shock-released SiO 2 and diaplectic glass formation
Gleason, A. E.; Bolme, C. A.; Lee, H. J.; ...
2017-11-14
Understanding how rock-forming minerals transform under shock loading is critical for modeling collisions between planetary bodies, interpreting the significance of shock features in minerals and for using them as diagnostic indicators of impact conditions, such as shock pressure. To date, our understanding of the formation processes experienced by shocked materials is based exclusively on ex situ analyses of recovered samples. Formation mechanisms and origins of commonly observed mesoscale material features, such as diaplectic (i.e., shocked) glass, remain therefore controversial and unresolvable. Here in this paper we show in situ pump-probe X-ray diffraction measurements on fused silica crystallizing to stishovite onmore » shock compression and then converting to an amorphous phase on shock release in only 2.4 ns from 33.6 GPa. Recovered glass fragments suggest permanent densification. These observations of real-time diaplectic glass formation attest that it is a back-transformation product of stishovite with implications for revising traditional shock metamorphism stages.« less
Time-resolved diffraction of shock-released SiO 2 and diaplectic glass formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gleason, A. E.; Bolme, C. A.; Lee, H. J.
Understanding how rock-forming minerals transform under shock loading is critical for modeling collisions between planetary bodies, interpreting the significance of shock features in minerals and for using them as diagnostic indicators of impact conditions, such as shock pressure. To date, our understanding of the formation processes experienced by shocked materials is based exclusively on ex situ analyses of recovered samples. Formation mechanisms and origins of commonly observed mesoscale material features, such as diaplectic (i.e., shocked) glass, remain therefore controversial and unresolvable. Here in this paper we show in situ pump-probe X-ray diffraction measurements on fused silica crystallizing to stishovite onmore » shock compression and then converting to an amorphous phase on shock release in only 2.4 ns from 33.6 GPa. Recovered glass fragments suggest permanent densification. These observations of real-time diaplectic glass formation attest that it is a back-transformation product of stishovite with implications for revising traditional shock metamorphism stages.« less
Integrating Turnover Reasons and Shocks with Turnover Decision Processes
ERIC Educational Resources Information Center
Maertz, Carl P., Jr.; Kmitta, Kayla R.
2012-01-01
We interviewed and classified 186 quitters from many jobs and organizations via a theoretically-based protocol into five decision process types. We then tested exploratory hypotheses comparing users of these types on their propensity to report certain turnover reasons and turnover shocks. "Impulsive-type quitters," with neither a job offer in hand…
Slate Islands, Lake Superior, Canada: A mid-size, Complex Impact Structure
NASA Technical Reports Server (NTRS)
Dressler, B. O.; Sharpton, V. L.; Copeland, P.
1999-01-01
The target rocks of the 30-32-km diameter Slate Islands impact structure in northern Lake Superior, Canada, are Archean supracrustal and igneous rocks and supracrustal Proterozoic rocks. Shatter cones, pseudotachylites, impact glasses, and microscopic shock metamorphic features were formed during the contact and compression phase of the impact process, followed, during excavation and central uplift, by polymict, clastic matrix breccias in the uplifted target, and by allogenic fall-back breccias (suevite and bunte breccia). Monomict, autoclastic breccias were mainly observed on Mortimer Island and the other outlying islands of the archipelago and were probably generated relatively late in the impact process (central uplift and/or crater modification). The frequency of low index planar shock metamorphic features in quartz was correlated with results from shock experiments to estimate shock pressures experienced by the target rocks. The resulting shock attenuation plan across the archipelago is irregular, probably because the shock wave did not expand from a point or spherical source, and because of the destruction of an originally more regular shock attenuation plan during the central uplift and crater modification stages of the impact process. No impact melt rock bodies have been positively identified on the islands. An impact melt may be present in the annular trough around the islands, though and-based on a weighted mixture of target rocks-may have an intermediate-mafic composition. No such impact melt was found on the archipelago. An Ar-40-Ar-39 release spectrum of a pseudotachylite provides an age of about 436 Ma for the impact structure, substantiating age constraints based on various stratigraphic considerations.
Explosively generated shock wave processing of metal powders by instrumented detonics
NASA Astrophysics Data System (ADS)
Sharma, A. D.; Sharma, A. K.; Thakur, N.
2013-06-01
The highest pressures generated by dynamic processes resulting either from high velocity impact or by spontaneous release of high energy rate substances in direct contact with a metal find superior applications over normal mechanical means. The special feature of explosive loading to the powder materials over traditional methods is its controlled detonation pressure which directly transmits shock energy to the materials which remain entrapped inside powder resulting into several micro-structural changes and hence improved mechanical properties. superalloy powders have been compacted nearer to the theoretical density by shock wave consolidation. In a single experimental set-up, compaction of metal powder and measurement of detonation velocity have been achieved successfully by using instrumented detonics. The thrust on the work is to obtain uniform, crack-free and fracture-less compacts of superalloys having intact crystalline structure as has been examined from FE-SEM, XRD and mechanical studies. Shock wave processing is an emerging technique and receiving much attention of the materials scientists and engineers owing to its excellent advantages over traditional metallurgical methods due to short processing time, scaleup advantage and controlled detonation pressure.
The framing effect and skin conductance responses.
Ring, Patrick
2015-01-01
Individuals often rely on simple heuristics when they face complex choice situations under uncertainty. Traditionally, it has been proposed that cognitive processes are the main driver to evaluate different choice options and to finally reach a decision. Growing evidence, however, highlights a strong interrelation between judgment and decision-making (JDM) on the one hand, and emotional processes on the other hand. This also seems to apply to judgmental heuristics, i.e., decision processes that are typically considered to be fast and intuitive. In this study, participants are exposed to different probabilities of receiving an unpleasant electric shock. Information about electric shock probabilities is either positively or negatively framed. Integrated skin conductance responses (ISCRs) while waiting for electric shock realization are used as an indicator for participants' emotional arousal. This measure is compared to objective probabilities. I find evidence for a relation between emotional body reactions measured by ISCRs and the framing effect. Under negative frames, participants show significantly higher ISCRs while waiting for an electric shock to be delivered than under positive frames. This result might contribute to a better understanding of the psychological processes underlying JDM. Further studies are necessary to reveal the causality underlying this finding, i.e., whether emotional processes influence JDM or vice versa.
Methodology for the investigation of ignition near hot surfaces in a high-pressure shock tube
NASA Astrophysics Data System (ADS)
Niegemann, P.; Fikri, M.; Wlokas, I.; Röder, M.; Schulz, C.
2018-05-01
Autoignition of fuel/air mixtures is a determining process in internal combustion engines. Ignition can start either homogeneously in the gas phase after compression or in the vicinity of hot surfaces. While ignition properties of commercial fuels are conventionally described by a single quantity (octane number), it is known that some fuels have a varying propensity to the two processes. We present a new experimental concept that generates well-controlled temperature inhomogeneities in the shock-heated gases of a high-pressure shock tube. A shock-heated reactive mixture is brought into contact with a heated silicon nitride ceramic glow plug. The glow-plug temperature can be set up to 1200 K, higher than the post-reflected-shock gas temperatures (650-1050 K). High-repetition-rate chemiluminescence imaging is used to localize the onset of ignition in the vicinity of the hot surface. In experiments with ethanol, the results show that in most cases under shock-heated conditions, the ignition begins inhomogeneously in the vicinity of the glow plug and is favored because of the high wall temperature. Additionally, the interaction of geometry, external heating, and gas-dynamic effects was investigated by numerical simulations of the shock wave in a non-reactive flow.
Nonlinear theory of diffusive acceleration of particles by shock waves
NASA Astrophysics Data System (ADS)
Malkov, M. A.; Drury, L. O'C.
2001-04-01
Among the various acceleration mechanisms which have been suggested as responsible for the nonthermal particle spectra and associated radiation observed in many astrophysical and space physics environments, diffusive shock acceleration appears to be the most successful. We review the current theoretical understanding of this process, from the basic ideas of how a shock energizes a few reactionless particles to the advanced nonlinear approaches treating the shock and accelerated particles as a symbiotic self-organizing system. By means of direct solution of the nonlinear problem we set the limit to the test-particle approximation and demonstrate the fundamental role of nonlinearity in shocks of astrophysical size and lifetime. We study the bifurcation of this system, proceeding from the hydrodynamic to kinetic description under a realistic condition of Bohm diffusivity. We emphasize the importance of collective plasma phenomena for the global flow structure and acceleration efficiency by considering the injection process, an initial stage of acceleration and, the related aspects of the physics of collisionless shocks. We calculate the injection rate for different shock parameters and different species. This, together with differential acceleration resulting from nonlinear large-scale modification, determines the chemical composition of accelerated particles. The review concentrates on theoretical and analytical aspects but our strategic goal is to link the fundamental theoretical ideas with the rapidly growing wealth of observational data.
Methodology for the investigation of ignition near hot surfaces in a high-pressure shock tube.
Niegemann, P; Fikri, M; Wlokas, I; Röder, M; Schulz, C
2018-05-01
Autoignition of fuel/air mixtures is a determining process in internal combustion engines. Ignition can start either homogeneously in the gas phase after compression or in the vicinity of hot surfaces. While ignition properties of commercial fuels are conventionally described by a single quantity (octane number), it is known that some fuels have a varying propensity to the two processes. We present a new experimental concept that generates well-controlled temperature inhomogeneities in the shock-heated gases of a high-pressure shock tube. A shock-heated reactive mixture is brought into contact with a heated silicon nitride ceramic glow plug. The glow-plug temperature can be set up to 1200 K, higher than the post-reflected-shock gas temperatures (650-1050 K). High-repetition-rate chemiluminescence imaging is used to localize the onset of ignition in the vicinity of the hot surface. In experiments with ethanol, the results show that in most cases under shock-heated conditions, the ignition begins inhomogeneously in the vicinity of the glow plug and is favored because of the high wall temperature. Additionally, the interaction of geometry, external heating, and gas-dynamic effects was investigated by numerical simulations of the shock wave in a non-reactive flow.
An unstructured shock-fitting solver for hypersonic plasma flows in chemical non-equilibrium
NASA Astrophysics Data System (ADS)
Pepe, R.; Bonfiglioli, A.; D'Angola, A.; Colonna, G.; Paciorri, R.
2015-11-01
A CFD solver, using Residual Distribution Schemes on unstructured grids, has been extended to deal with inviscid chemical non-equilibrium flows. The conservative equations have been coupled with a kinetic model for argon plasma which includes the argon metastable state as independent species, taking into account electron-atom and atom-atom processes. Results in the case of an hypersonic flow around an infinite cylinder, obtained by using both shock-capturing and shock-fitting approaches, show higher accuracy of the shock-fitting approach.
Exploiting the Multi-Service Domain Protecting Interface
2012-10-17
Linux OpenVPN and IPSec VLAN services subsystems. Essentially, MSDPI becomes the transport mechanism for these subsystems. For the RIB, LSP, and...includes those necessary files to build a complete LiveCD system For example, adding various configuration files: ifcfg-eth?, ifcfg-ib?, openvpn ...aka IP address), openvpn files, specific files in the etc/sysconfig directory. %prep %build %install rm -rf $RPM_BUILD_ROOT mkdir -p
ERIC Educational Resources Information Center
Moody, James
A survey of 98 Papua New Guinea technical university graduates in the applied sciences, engineering fields, and forestry investigated their language skill use and language needs in the workplace. Results indicate that, as in Papua New Guinea society in general, English and Tok Pisin are the two most important languages for technical communication…
SEARCH AT LEP FOR ˜ \\chi 1^ ± MASS-DEGENERATE WITH THE ˜ \\chi 10
NASA Astrophysics Data System (ADS)
Grenier, G.
2001-04-01
This article describes the key points of the chargino search at LEP, when the mass difference between the chargino and the LSP is between a few hundred Me and a few GeV. DELPHI results for √ {s} up to 189 GeV and preliminary L3 results for √ {s} up to 202 GeV are given.
STAMMER2 Production System for Tactical Situation Assessment. Volume 2. Code.
1979-10-01
1961 (WITHINR * [NLAMBDA L (*NOBIND ൖ-Nov-78 19:25") (NCONC WITHINRFNS L) (MAKEFILE (QUOTE WITHINR.LSP]) [ 1971 (CROSSPATHS [LAMBDA (Si S2 TI T2)V...176 46. 1 I 1 FKACS 47. 1 I FKSYM (221 48. 1 FKIDPB 49. I M KALL (9) 50. 1 DSPTTY FKCALL (9) 51. I 1 FKJSYS (3) 52. 1 1 1 DSPTTYSTR DECSAMEDIGITS {bl
ERIC Educational Resources Information Center
O'Hagan, Sally; Pill, John; Zhang, Ying
2016-01-01
Criticism of specific-purpose language (LSP) tests is often directed at their limited ability to represent fully the demands of the target language use situation. Such criticisms extend to the criteria used to assess test performance, which may fail to capture what matters to participants in the domain of interest. This paper reports on the…
The shock process and light-element production in supernova envelopes
NASA Technical Reports Server (NTRS)
Brown, Lawrence E.; Dearborn, David S.; Schramm, David N.; Larsen, Jon T.; Kurokawa, Shin
1991-01-01
Detailed hydrodynamic modeling of the passage of supernova shocks through the hydrogen enevlopes of blue and red progenitor stars was carried out to explore the sensitivity to model conditions of light element production (specifically Li7 and B-11) which was noted by Dearborn, Schramm, Steigman and Truran (1989) (DSST). It is found that, for stellar models with M is less than or approximately 100 M solar mass, current state of the art supernova shocks do not produce significant light element yields by hydrodynamic processes alone. The dependence of this conclusion on stellar models and on shock strengths is explored. Preliminary implications for Galactic evolution of lithium are discussed, and it is suspected that intermediate mass red giant stars may be the most consistent production site for lithium.
The shock process and light element production in supernovae envelopes. Ph.D. Thesis - Chicago Univ.
NASA Technical Reports Server (NTRS)
Brown, Lawrence E.; Dearborn, David S.; Schramm, David N.; Larsen, Jon T.; Kurokawa, Shin
1990-01-01
Detailed hydrodynamic modeling of the passage of supernova shocks through the hydrogen envelopes of blue and red progenitor stars was carried out to explore the sensitivity to model conditions of light element production (specifically Li-7 and B-11) which was noted by Dearborn, Schramm, Steigman and Truran (1989) (DSST). It is found that, for stellar models with M is less than or approximately 100 M solar mass, current state of the art supernova shocks do not produce significant light element yields by hydrodynamic processes alone. The dependence of this conclusion on stellar models and on shock strengths is explored. Preliminary implications for Galactic evolution of lithium are discussed, and it is suspected that intermediate mass red giant stars may be the most consistent production site for lithium.
NASA Technical Reports Server (NTRS)
Winske, D.; Thomas, V. A.; Omidi, N.; Quest, K. B.
1990-01-01
This paper continues the study of Thomas et al. (1990) in which hybrid simulations of quasi-parallel shocks were performed in one and two spatial dimensions. To identify the wave generation processes, the electromagnetic structure of the shock is examined by performing a number of one-dimensional hybrid simulations of quasi-parallel shocks for various upstream conditions. In addition, numerical experiments were carried out in which the backstreaming ions were removed from calculations to show their fundamental importance in reformation process. The calculations show that the waves are excited before ions can propagate far enough upstream to generate resonant modes. At some later times, the waves are regenerated at the leading edge of the interface, with properties like those of their initial interactions.
NASA Astrophysics Data System (ADS)
Matsui, H.; Kondo, Y.; Moteki, N.; Takegawa, N.; Sahu, L. K.; Koike, M.; Zhao, Y.; Fuelberg, H. E.; Sessions, W. R.; Diskin, G.; Anderson, B. E.; Blake, D. R.; Wisthaler, A.; Cubison, M. J.; Jimenez, J. L.
2011-10-01
We evaluate the impact of transport from midlatitudes on aerosol number concentrations in the accumulation mode (light-scattering particles (LSP) with diameters >180 nm) in the Arctic during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. We focus on transport from the Asian continent. We find marked contrasts in the number concentration (NLSP), transport efficiency (TEN_LSP, the fraction transported from sources to the Arctic), size distribution, and the chemical composition of aerosols between air parcels from anthropogenic sources in East Asia (Asian AN) and biomass burning sources in Russia and Kazakhstan (Russian BB). Asian AN air had lower NLSP and TEN_LSP (25 cm-3 and 18% in spring and 6.2 cm-3 and 3.0% in summer) than Russian BB air (280 cm-3 and 97% in spring and 36 cm-3 and 7.6% in summer) due to more efficient wet scavenging during transport from East Asia. Russian BB in this spring is the most important source of accumulation-mode aerosols over the Arctic, and BB emissions are found to be the primary source of aerosols within all the data in spring during ARCTAS. On the other hand, the contribution of Asian AN transport had a negligible effect on the accumulation-mode aerosol number concentration in the Arctic during ARCTAS. Compared with background air, NLSP was 2.3-4.7 times greater for Russian BB air but 2.4-2.6 times less for Asian AN air in both spring and summer. This result shows that the transport of Asian AN air decreases aerosol number concentrations in the Arctic, despite the large emissions of aerosols in East Asia. The very low aerosol number concentrations in Asian AN air were caused by wet removal during vertical transport in association with warm conveyor belts (WCBs). Therefore, this cleansing effect will be prominent for air transported via WCBs from other midlatitude regions and seasons. The inflow of clean midlatitude air can potentially have an important impact on accumulation-mode aerosol number concentrations in the Arctic.
Mohanty, Sanghamitra; Santangeli, Pasquale; Mohanty, Prasant; Di Biase, Luigi; Holcomb, Shawna; Trivedi, Chintan; Bai, Rong; Burkhardt, David; Hongo, Richard; Hao, Steven; Beheiry, Salwa; Santoro, Francesco; Forleo, Giovanni; Gallinghouse, Joseph G; Horton, Rodney; Sanchez, Javier E; Bailey, Shane; Hranitzky, Patrick M; Zagrodzky, Jason; Natale, Andrea
2014-10-01
Impact of catheter ablation on exercise performance, quality of life (QoL) and symptom perception in asymptomatic longstanding persistent AF (LSP-AF) patients has not been reported yet. Sixty-one consecutive patients (mean age 62 ±13 years, 71% males) with asymptomatic LSP-AF undergoing first catheter ablation were enrolled. Extended pulmonary vein antrum isolation plus ablation of complex fractionated atrial electrograms and nonpulmonary vein triggers was performed in all. QoL survey was taken at baseline and 12-months postablation, using Short Form-36 (SF-36). Information on arrhythmia perception was obtained using a standard questionnaire and corroborating symptoms with documented evidence of arrhythmia. Exercise tests were performed on 38 patients at baseline and 5 months after procedure. Recurrence was assessed using event recorder, cardiology evaluation, electrocardiogram, and 7-day holter monitoring. After 20 ± 5 months follow-up, 36 (57%) patients remained recurrence-free off-AAD. Of the 25 patients experiencing recurrence, 21 (84%) were symptomatic. Compared to baseline, follow-up SF-36 scores improved significantly in many measures. For patients with successful ablation, physical component summary (PCS) and mental component summary (MCS) demonstrated substantial improvement ( 64.2 ± 22.3 to 70.1 ± 18.6 [P = 0.041]; PCS: 62.6 ± 18.4 to 70.0 ± 14.4 [P = 0.032]). Postablation exercise study in recurrence-free patients showed significant reduction in resting and peak heart rate (75 ± 11 vs. 90 ± 17 and 132 ± 20 vs. 154.5 ± 36, respectively, P < 0.001), increase in peak oxygen pulse (13.4 ± 3 vs. 18.9 ± 16 mL/beat, Δ5.5 ± 15, P = 0.001), peak VO2 /kg (19.7 ± 5 to 23.4 ± 13 mL/kg/min [Δ 3.7 ± 10, P = 0.043]), and corresponding MET (5.6 ± 1 to 6.7 ± 4 [Δ1.1 ± 3, P = 0.03]). No improvement was observed in patients with failed procedures. Successful ablation improves exercise performance and QoL in asymptomatic LSP-AF patients. © 2014 Wiley Periodicals, Inc.
Revisiting Shock Initiation Modeling of Homogeneous Explosives
NASA Astrophysics Data System (ADS)
Partom, Yehuda
2013-04-01
Shock initiation of homogeneous explosives has been a subject of research since the 1960s, with neat and sensitized nitromethane as the main materials for experiments. A shock initiation model of homogeneous explosives was established in the early 1960s. It involves a thermal explosion event at the shock entrance boundary, which develops into a superdetonation that overtakes the initial shock. In recent years, Sheffield and his group, using accurate experimental tools, were able to observe details of buildup of the superdetonation. There are many papers on modeling shock initiation of heterogeneous explosives, but there are only a few papers on modeling shock initiation of homogeneous explosives. In this article, bulk reaction reactive flow equations are used to model homogeneous shock initiation in an attempt to reproduce experimental data of Sheffield and his group. It was possible to reproduce the main features of the shock initiation process, including thermal explosion, superdetonation, input shock overtake, overdriven detonation after overtake, and the beginning of decay toward Chapman-Jouget (CJ) detonation. The time to overtake (TTO) as function of input pressure was also calculated and compared to the experimental TTO.
NASA Astrophysics Data System (ADS)
Feng, Aixin; Cao, Yupeng; Wang, Heng; Zhang, Zhengang
2018-01-01
In order to reveal the quantitative control of the residual stress on the surface of metal materials, the relevant theoretical and experimental studies were carried out to investigate the dynamic response of metal thin plates and the formation mechanism of residual stress induced by laser shock wave. In this paper, the latest research trends on the surface residual stress of laser shock processing technology were elaborated. The main progress of laser shock wave propagation mechanism and dynamic response, laser shock, and surface residual stress were discussed. It is pointed out that the multi-scale characterization of laser and material, surface residual stress and microstructure change is a new hotspot in laser shock strengthening technology.
Tatur, Sabina; Brochiero, Emmanuelle; Grygorczyk, Ryszard; Berthiaume, Yves
2013-01-01
Alveolar epithelial cells are involved in Na+ absorption via the epithelial Na+ channel (ENaC), an important process for maintaining an appropriate volume of liquid lining the respiratory epithelium and for lung oedema clearance. Here, we investigated how a 20% hypotonic shock modulates the ionic current in these cells. Polarized alveolar epithelial cells isolated from rat lungs were cultured on permeant filters and their electrophysiological properties recorded. A 20% bilateral hypotonic shock induced an immediate, but transient 52% rise in total transepithelial current and a 67% increase in the amiloride-sensitive current mediated by ENaC. Amiloride pre-treatment decreased the current rise after hypotonic shock, showing that ENaC current is involved in this response. Since Cl- transport is modulated by hypotonic shock, its contribution to the basal and hypotonic-induced transepithelial current was also assessed. Apical NPPB, a broad Cl- channel inhibitor and basolateral DIOA a potassium chloride co-transporter (KCC) inhibitor reduced the total and ENaC currents, showing that transcellular Cl- transport plays a major role in that process. During hypotonic shock, a basolateral Cl- influx, partly inhibited by NPPB is essential for the hypotonic-induced current rise. Hypotonic shock promoted apical ATP secretion and increased intracellular Ca2+. While apyrase, an ATP scavenger, did not inhibit the hypotonic shock current response, W7 a calmodulin antagonist completely prevented the hypotonic current rise. These results indicate that a basolateral Cl- influx as well as Ca2+/calmodulin, but not ATP, are involved in the acute transepithelial current rise elicited by hypotonic shock. PMID:24019969
Fast molecular shocks. I - Reformation of molecules behind a dissociative shock
NASA Technical Reports Server (NTRS)
Neufeld, David A.; Dalgarno, A.
1989-01-01
The physical and chemical processes that operate in the cooling gas behind a fast, dissociative, single-fluid shock propagating in a dense interstellar cloud are discussed. The treatment extends previous theoretical work on fast molecular shocks by including the effects of the conversion of Ly-alpha photons into radiation of the two-photon continuum and into H2 Lyman band emission lines, the effects of CO photodissociation following line absorption, and the formation and destruction of molecules containing the elements nitrogen, silicon, and sulphur, and of the complex hydrocarbons. Abundance profiles for the molecular species of interest are presented. After molecular hydrogen begins to reform, by means of gas phase and grain surface processes, the neutral species OH, H2O, O2, CO, CN, HCN, N2, NO, SO, and SiO reach substantial abundances. The molecular ions HeH(+), OH(+), SO(+), CH(+), H2(+), and H3(+), are produced while the gas is still hot and partially ionized. Emissions from them provide a possible diagnostic probe of fast molecular shocks.
NASA Technical Reports Server (NTRS)
White, J. C.
1992-01-01
High-pressure silica polymorphs (coesite and stishovite) were described from the Vredefort structure in association with pseudotachylite veinlets. In addition to the fundamental significance of the polymorphs to genetic interpretations of the structure, it was additionally argued that the type of pseudotachylite with which they occur forms during the compressional phase of the shock process, while the larger, classic pseudotachylite occurrences are barren of polymorphs and formed during passage of the rarefaction wave. This identification of temporal relationships among transient shock features at a regional scale is similar to observations from the Manicouagan structure, Quebec, where texturally distinct diaplectic plagioclase glasses formed during both compressional and decompressional phases of the shock process. The clarification of such relationships impinges directly on interpretations of natural shock processes and the identification of high probability targets for polymorph searches. Detailed analytical scanning (SEM) and transmission electron microscopy (TEM) were utilized to further establish the nature of both the pseudotachylite and the silica polymorph occurrences in the Vredefort rocks. The results of this investigation are discussed.
Particle Acceleration in Two Converging Shocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xin; Wang, Na; Shan, Hao
2017-06-20
Observations by spacecraft such as ACE , STEREO , and others show that there are proton spectral “breaks” with energy E {sub br} at 1–10 MeV in some large CME-driven shocks. Generally, a single shock with the diffusive acceleration mechanism would not predict the “broken” energy spectrum. The present paper focuses on two converging shocks to identify this energy spectral feature. In this case, the converging shocks comprise one forward CME-driven shock on 2006 December 13 and another backward Earth bow shock. We simulate the detailed particle acceleration processes in the region of the converging shocks using the Monte Carlomore » method. As a result, we not only obtain an extended energy spectrum with an energy “tail” up to a few 10 MeV higher than that in previous single shock model, but also we find an energy spectral “break” occurring on ∼5.5 MeV. The predicted energy spectral shape is consistent with observations from multiple spacecraft. The spectral “break,” then, in this case is caused by the interaction between the CME shock and Earth’s bow shock, and otherwise would not be present if Earth were not in the path of the CME.« less
Research on data from the ATLAS experiment at CERN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purohit, Milind V.
2015-07-31
In this report senior investigator Prof. Milind V. Purohit describes research done with data from the ATLAS experiment at CERN. This includes preparing papers on the performance of the CSC detector, searches for SUSY using a new modern ''big data'' technique, and a search for supersymmetry (SUSY) using the "zero leptons razor" (0LRaz) technique. The prediction of the W=Z+jets background processes by the ATLAS simulation prior to the fit is found to be overestimated in the phase space of interest. In all new signal regions presented in this analysis the number of events observed is consistent with the post-fit SMmore » expectations. Assuming R-parity conservation, the limit on the gluino mass exceeds 1150 GeV at 95% confidence level, for an LSP mass smaller than 100 GeV. Other USC personnel who participated in this project during the period of this grant were a graduate student, Anton Kravchenko.« less
Analysis of a bubble deformation process in a microcapsule by shock waves for developing DDS
NASA Astrophysics Data System (ADS)
Tamagawa, Masaaki; Morimoto, Kenshi
2012-09-01
This paper describes development of DDS (drug delivery systems) microcapsule using underwater shock waves, especially (1) making polymer microcapsules including a bubble and analysis of a bubble deformation process in a polymer capsule by pressure wave, (2) making liposome microcapsules with different elastic membrane and disintegration tests by ultrasonic waves.
Dissipation Mechanisms and Particle Acceleration at the Earth's Bow Shock
NASA Astrophysics Data System (ADS)
Desai, M. I.; Burch, J. L.; Broll, J. M.; Genestreti, K.; Torbert, R. B.; Ergun, R.; Wei, H.; Giles, B. L.; Russell, C. T.; Phan, T.; Chen, L. J.; Lai, H.; Wang, S.; Schwartz, S. J.; Allen, R. C.; Mauk, B.; Gingell, I.
2017-12-01
NASA's Magnetospheric Multiscale (MMS) mission has four spacecraft equipped with identical state-of-the-art instruments that acquire magnetic and electric field, plasma wave, and particle data at unprecedented temporal resolution to study the fundamental physics of magnetic reconnection in the Earth's magnetosphere. During Phase 1a, MMS also encountered and crossed the Earth's bow shock more than 300 times. We use burst data during 2 bow shock crossings to shed new light on key open questions regarding the formation, evolution, and dissipation mechanisms at collisionless shocks. Specifically, we focus on two events that exhibit clear differences in the ion and electron properties, the associated wave activity, and, therefore in the nature of the dissipation. In the case of a quasi-perpendicular, low beta shock crossing, we find that the dissipation processes are most likely associated with field-aligned electron beams that are coincident with high frequency electrostatic waves. On the other hand, the dissipation processes at an oblique, high beta shock crossing are largely governed by the quasi-static electric field and generation of magnetosonic whistler waves that result in perpendicular temperature anisotropy for the electrons. We also discuss the implications of these results for ion heating, reflection, and particle acceleration.
SOME NEW PROCESSING TECHNIQUES FOR THE IMPERIAL VALLEY 1979 AFTERSHOCKS.
Brady, A. Gerald; ,
1983-01-01
This paper describes some of the features of the latest processing improvements that the U. S. Geological Survey (USGS) is currently applying to strong-motion accelerograms from the national network of permanent stations. At the same time it introduces the application of this processing to the set of Imperial Valley aftershocks recorded following the main shock of October 15, 1979. Earlier processing of the 22 main shock recordings provided corrected accelerations, velocity and displacement, response spectra, and Fourier spectra.
Sources of Shock Waves in the Protoplanetary Disk
NASA Astrophysics Data System (ADS)
Boss, A. P.; Durisen, R. H.
2005-12-01
Finding an appropriate heat source for melting the chondrules that constitute the bulk of many primitive meteorites is perhaps the most important outstanding problem in all of meteoritics. Shock waves within the Solar Nebula are one possible means for accomplishing this provided that they move with respect to the precursor aggregates at speeds of ~ 6 to 9 km s-1 in environments with appropriate nebular pressures and densities. Here we briefly review the status of four different mechanisms which have been proposed as sources of such shock fronts. We argue that two of them, the accretion shock at the nebular surface and shocks propagating inside the nebula launched by the impact of gas clumps falling onto the disk, are unlikely to work. Bow shocks driven by 1000-km-size planetesimals show more promise, but require the presence of Jupiter to raise the eccentricities of the planetesimals. We then focus this chapter on the fourth mechanism, which may be the dominant source of shocks in the early nebula. Wood (1996) proposed that the chondrule-producing shocks were due to nebular spiral arms. This hypothesis is now strongly supported by recent calculations of the evolution of gravitationally unstable disks. In a gaseous disk capable of forming Jupiter, the disk gas must have been close to marginal gravitational instability near or beyond Jupiter's orbit. Massive clumps and spirals due to such instability can drive spiral shock fronts inward with shock speeds as large as ~ 10 km s-1 at asteroidal orbits, sufficient to account for chondrule formation. Once Jupiter forms, it may either continue to drive strong shock fronts at asteroidal distances, or it may pump up the eccentricity of planetesimals, leading to chondrule processing for as long as the inner disk gas survives, a few Myr or so. Mixing and transport of solids in an unstable disk results in a scenario that unifies chondrite formation from chondrules, refractory inclusions, and matrix grains with disk processes associated with gas giant planet formation.
Electron heating and the potential jump across fast mode shocks. [in interplanetary space
NASA Technical Reports Server (NTRS)
Schwartz, Steven J.; Thomsen, Michelle F.; Bame, S. J.; Stansberry, John
1988-01-01
Two different methods were applied to determine the cross-shock potential jump in the de Hoffmann-Teller reference frame, using a data set that represented 66 crossings of the terrestrial bow shock and 14 interplanetary shocks observed by various ISEE spacecraft, and one crossing each of the Jovian bow shock and the Uranian bow shock made by the Voyager spacecraft. Results for estimates of the electrostatic potential based on an estimate of the jump in electron enthalpy correlated well with estimates based on Liouville's theorem, although the Liouville-determined values were systematically the higher of the two, suggesting that significant irreversible processes contribute to the shape of the downstream distribution. The potential jump corresponds to approximately 12-15 percent of the incident ion ram kinetic energy, and was found not to be controlled by the Mach number, plasma beta, shock geometry, or electron to ion temperature ratios.
Entropy Generation Across Earth's Bow Shock
NASA Technical Reports Server (NTRS)
Parks, George K.; McCarthy, Michael; Fu, Suiyan; Lee E. s; Cao, Jinbin; Goldstein, Melvyn L.; Canu, Patrick; Dandouras, Iannis S.; Reme, Henri; Fazakerley, Andrew;
2011-01-01
Earth's bow shock is a transition layer that causes an irreversible change in the state of plasma that is stationary in time. Theories predict entropy increases across the bow shock but entropy has never been directly measured. Cluster and Double Star plasma experiments measure 3D plasma distributions upstream and downstream of the bow shock that allow calculation of Boltzmann's entropy function H and his famous H-theorem, dH/dt O. We present the first direct measurements of entropy density changes across Earth's bow shock. We will show that this entropy generation may be part of the processes that produce the non-thermal plasma distributions is consistent with a kinetic entropy flux model derived from the collisionless Boltzmann equation, giving strong support that solar wind's total entropy across the bow shock remains unchanged. As far as we know, our results are not explained by any existing shock models and should be of interests to theorists.
Overview and recent progress of the Magnetized Shock Experiment (MSX)
NASA Astrophysics Data System (ADS)
Weber, T. E.; Intrator, T. P.; Smith, R. J.; Hutchinson, T. M.; Boguski, J. C.; Sears, J. A.; Swan, H. O.; Gao, K. W.; Chapdelaine, L. J.; Winske, D.; Dunn, J. P.
2013-10-01
The Magnetized Shock Experiment (MSX) has been constructed to study the physics of super-Alfvènic, supercritical, magnetized shocks. Exhibiting transitional length and time scales much smaller than can be produced through collisional processes, these shocks are observed to create non-thermal distributions, amplify magnetic fields, and accelerate particles to relativistic velocities. Shocks are produced through the acceleration and subsequent stagnation of Field Reversed Configuration (FRC) plasmoids against a high-flux magnetic mirror with a conducting boundary or a plasma target with embedded field. Adjustable shock velocity, density, and magnetic geometry (B parallel, perpendicular, or oblique to k) provide unique access to a wide range of dimensionless parameters relevant to astrophysical shocks. Information regarding the experimental configuration, diagnostics suite, recent simulations, experimental results, and physics goals will be presented. This work is supported by DOE OFES and NNSA under LANS contract DE-AC52-06NA25369 Approved for Public Release: LA-UR-13-24859.
Monte Carlo simulations of particle acceleration at oblique shocks: Including cross-field diffusion
NASA Technical Reports Server (NTRS)
Baring, M. G.; Ellison, D. C.; Jones, F. C.
1995-01-01
The Monte Carlo technique of simulating diffusive particle acceleration at shocks has made spectral predictions that compare extremely well with particle distributions observed at the quasi-parallel region of the earth's bow shock. The current extension of this work to compare simulation predictions with particle spectra at oblique interplanetary shocks has required the inclusion of significant cross-field diffusion (strong scattering) in the simulation technique, since oblique shocks are intrinsically inefficient in the limit of weak scattering. In this paper, we present results from the method we have developed for the inclusion of cross-field diffusion in our simulations, namely model predictions of particle spectra downstream of oblique subluminal shocks. While the high-energy spectral index is independent of the shock obliquity and the strength of the scattering, the latter is observed to profoundly influence the efficiency of injection of cosmic rays into the acceleration process.
Monte Carlo shock-like solutions to the Boltzmann equation with collective scattering
NASA Technical Reports Server (NTRS)
Ellison, D. C.; Eichler, D.
1984-01-01
The results of Monte Carlo simulations of steady state shocks generated by a collision operator that isotropizes the particles by means of elastic scattering in some locally defined frame of reference are presented. The simulations include both the back reaction of accelerated particles on the inflowing plasma and the free escape of high-energy particles from finite shocks. Energetic particles are found to be naturally extracted out of the background plasma by the shock process with an efficiency in good quantitative agreement with an earlier analytic approximation (Eichler, 1983 and 1984) and observations (Gosling et al., 1981) of the entire particle spectrum at a quasi-parallel interplanetary shock. The analytic approximation, which allows a self-consistent determination of the effective adiabatic index of the shocked gas, is used to calculate the overall acceleration efficiency and particle spectrum for cases where ultrarelativistic energies are obtained. It is found that shocks of the strength necessary to produce galactic cosmic rays put approximately 15 percent of the shock energy into relativistic particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanborn, Brett; Song, Bo; Smith, Scott
Silicone foams have been used in a variety of applications from gaskets to cushioning pads over a wide range of environments. Particularly, silicone foams are used as a shock mitigation material for shock and vibration applications. Understanding the shock mitigation response, particularly in the frequency domain, is critical for optimal designs to protect internal devices and components more effectively and efficiently. The silicone foams may be subjected to pre-strains during the assembly process which may consequently influence the frequency response with respect to shock mitigation performance. A Kolsky compression bar was modified with pre-compression capabilities to characterize the shock mitigationmore » response of silicone foam in the frequency domain to determine the effect of pre-strain. Lastly, a silicone sample was also intentionally subjected to repeated pre-strain and dynamic loadings to explore the effect of repeated loading on the frequency response of shock mitigation.« less
Acceleration of Particles Near Earth's Bow Shock
NASA Astrophysics Data System (ADS)
Sandroos, A.
2012-12-01
Collisionless shock waves, for example, near planetary bodies or driven by coronal mass ejections, are a key source of energetic particles in the heliosphere. When the solar wind hits Earth's bow shock, some of the incident particles get reflected back towards the Sun and are accelerated in the process. Reflected ions are responsible for the creation of a turbulent foreshock in quasi-parallel regions of Earth's bow shock. We present first results of foreshock macroscopic structure and of particle distributions upstream of Earth's bow shock, obtained with a new 2.5-dimensional self-consistent diffusive shock acceleration model. In the model particles' pitch angle scattering rates are calculated from Alfvén wave power spectra using quasilinear theory. Wave power spectra in turn are modified by particles' energy changes due to the scatterings. The new model has been implemented on massively parallel simulation platform Corsair. We have used an earlier version of the model to study ion acceleration in a shock-shock interaction event (Hietala, Sandroos, and Vainio, 2012).
Sanborn, Brett; Song, Bo; Smith, Scott
2015-12-29
Silicone foams have been used in a variety of applications from gaskets to cushioning pads over a wide range of environments. Particularly, silicone foams are used as a shock mitigation material for shock and vibration applications. Understanding the shock mitigation response, particularly in the frequency domain, is critical for optimal designs to protect internal devices and components more effectively and efficiently. The silicone foams may be subjected to pre-strains during the assembly process which may consequently influence the frequency response with respect to shock mitigation performance. A Kolsky compression bar was modified with pre-compression capabilities to characterize the shock mitigationmore » response of silicone foam in the frequency domain to determine the effect of pre-strain. Lastly, a silicone sample was also intentionally subjected to repeated pre-strain and dynamic loadings to explore the effect of repeated loading on the frequency response of shock mitigation.« less
Diffusive shock acceleration - Acceleration rate, magnetic-field direction and the diffusion limit
NASA Technical Reports Server (NTRS)
Jokipii, J. R.
1992-01-01
This paper reviews the concept of diffusive shock acceleration, showing that the acceleration of charged particles at a collisionless shock is a straightforward consequence of the standard cosmic-ray transport equation, provided that one treats the discontinuity at the shock correctly. This is true for arbitrary direction of the upstream magnetic field. Within this framework, it is shown that acceleration at perpendicular or quasi-perpendicular shocks is generally much faster than for parallel shocks. Paradoxically, it follows also that, for a simple scattering law, the acceleration is faster for less scattering or larger mean free path. Obviously, the mean free path can not become too large or the diffusion limit becomes inapplicable. Gradient and curvature drifts caused by the magnetic-field change at the shock play a major role in the acceleration process in most cases. Recent observations of the charge state of the anomalous component are shown to require the faster acceleration at the quasi-perpendicular solar-wind termination shock.
Observation of dust acoustic shock wave in a strongly coupled dusty plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Sumita K., E-mail: sumita-sharma82@yahoo.com; Boruah, A.; Nakamura, Y.
2016-05-15
Dust acoustic shock wave is observed in a strongly coupled laboratory dusty plasma. A supersonic flow of charged microparticles is allowed to perturb a stationary dust fluid to excite dust acoustic shock wave. The evolution process beginning with steepening of initial wave front and then formation of a stable shock structure is similar to the numerical results of the Korteweg-de Vries-Burgers equation. The measured Mach number of the observed shock wave agrees with the theoretical results. Reduction of shock amplitude at large distances is also observed due to the dust neutral collision and viscosity effects. The dispersion relation and themore » spatial damping of a linear dust acoustic wave are also measured and compared with the relevant theory.« less
Simulation of Shock-Shock Interaction in Parsec-Scale Jets
NASA Astrophysics Data System (ADS)
Fromm, Christian M.; Perucho, Manel; Ros, Eduardo; Mimica, Petar; Savolainen, Tuomas; Lobanov, Andrei P.; Zensus, J. Anton
The analysis of the radio light curves of the blazar CTA 102 during its 2006 flare revealed a possible interaction between a standing shock wave and a traveling one. In order to better understand this highly non-linear process, we used a relativistic hydrodynamic code to simulate the high energy interaction and its related emission. The calculated synchrotron emission from these simulations showed an increase in turnover flux density, Sm, and turnover frequency, νm, during the interaction and decrease to its initial values after the passage of the traveling shock wave.
On the Scaling Law for Broadband Shock Noise Intensity in Supersonic Jets
NASA Technical Reports Server (NTRS)
Kanudula, Max
2009-01-01
A theoretical model for the scaling of broadband shock noise intensity in supersonic jets was formulated on the basis of linear shock-shear wave interaction. An hypothesis has been postulated that the peak angle of incidence (closer to the critical angle) for the shear wave primarily governs the generation of sound in the interaction process rather than the noise generation contribution from off-peak incident angles. The proposed theory satisfactorily explains the well-known scaling law for the broadband shock -associated noise in supersonic jets.
Autoshaping of key pecking in pigeons with negative reinforcement.
Rachlin, H
1969-07-01
Pigeons exposed to gradually increasing intensities of pulsing electric shock pecked a key and thereby reduced the intensity of shock to zero for 2 min. Acquisition of key pecking was brought about through an autoshaping process in which periodic brief keylight presentations immediately preceded automatic reduction of the shock. On the occasions of such automatic reduction of shock preceding the first measured key peck, little or no orientation to the key was observed. Observations of pigeons with autoshaping of positive reinforcement also revealed little evidence of orientation toward the key.
NASA Astrophysics Data System (ADS)
Nguyen, Thao T. P.; Tanabe, Rie; Ito, Yoshiro
2018-03-01
We compared the expansion characteristics of the plasma plumes and shock waves generated in laser-induced shock process between the two ablation regimes: in air and under water. The observation was made from the initial moment when the laser pulse hit the target until 1.5 μs. The shock processes were driven by focusing a single laser pulse (1064 nm, FWHM = 13 ns) onto the surface of epoxy-resin blocks using a 40-mm focal length lens. The estimated laser intensity at the target plane is approximate to 9 ×109Wcm-2 . We used the fast-imaging technique to observe the expansion of the plasma plume and a custom-designed time-resolved photoelasticity imaging technique to observe the propagation of shock waves with the time resolution of nanoseconds. We found that at the same intensity of the laser beam, the plasma expansion during the laser pulse follows different mechanisms: the plasma plume that grows in air follows a radiation-wave model while a detonation-wave model can explain the expansion of the plasma plume induced in water. The ideal blast wave theory can be used to predict the decay of the shock wave in air but is not appropriate to describe the decay of the shock wave induced under water.
NASA Technical Reports Server (NTRS)
Ho, C. M.; Tsurutani, B. T.; Smith, E. J.; Feldman, W. C.
1994-01-01
We report an observation of Petschek-type magnetic reconnection at a distant neutral line (X = -230 R(sub e)) with a full set of signatures of the magnetic merging process. These features include a reversal of plasma flows from earthward to tailward, a pair of slow shocks and the magnetic field X-type line. These two slow shocks are shown to satisfy the shock criteria used by Feldman et al. (1987). The spacecraft first crosses a slow shock to enter the earthward flowing plasmasheet with velocity of about 440 km/s. The embedded magnetic field has a positive B(sub z) component. The spacecraft next enters a region of tailward plasma flow with speed approximately 670 km/s and an embedded negative B(sub z), indicating entry into the plasmasheet tailward of the X-line. These observed velocities are comparable to calculated velocities based on Rankine-Hugoniot conservation relationships. The spacecraft subsequently returns into the south tail lobe by crossing another slow shock. Coplanarity analyses shows that the two slow shocks have orientations consistent with that predicted by the Petschek reconnection model. We note that this event occurs during northward interplanetary magnetic fields. Thus, a magnetic stress built-up in the distant tail may be responsible for this reconnection process.
Shankar-Hari, Manu; Phillips, Gary S; Levy, Mitchell L; Seymour, Christopher W; Liu, Vincent X; Deutschman, Clifford S; Angus, Derek C; Rubenfeld, Gordon D; Singer, Mervyn
2016-02-23
Septic shock currently refers to a state of acute circulatory failure associated with infection. Emerging biological insights and reported variation in epidemiology challenge the validity of this definition. To develop a new definition and clinical criteria for identifying septic shock in adults. The Society of Critical Care Medicine and the European Society of Intensive Care Medicine convened a task force (19 participants) to revise current sepsis/septic shock definitions. Three sets of studies were conducted: (1) a systematic review and meta-analysis of observational studies in adults published between January 1, 1992, and December 25, 2015, to determine clinical criteria currently reported to identify septic shock and inform the Delphi process; (2) a Delphi study among the task force comprising 3 surveys and discussions of results from the systematic review, surveys, and cohort studies to achieve consensus on a new septic shock definition and clinical criteria; and (3) cohort studies to test variables identified by the Delphi process using Surviving Sepsis Campaign (SSC) (2005-2010; n = 28,150), University of Pittsburgh Medical Center (UPMC) (2010-2012; n = 1,309,025), and Kaiser Permanente Northern California (KPNC) (2009-2013; n = 1,847,165) electronic health record (EHR) data sets. Evidence for and agreement on septic shock definitions and criteria. The systematic review identified 44 studies reporting septic shock outcomes (total of 166,479 patients) from a total of 92 sepsis epidemiology studies reporting different cutoffs and combinations for blood pressure (BP), fluid resuscitation, vasopressors, serum lactate level, and base deficit to identify septic shock. The septic shock-associated crude mortality was 46.5% (95% CI, 42.7%-50.3%), with significant between-study statistical heterogeneity (I2 = 99.5%; τ2 = 182.5; P < .001). The Delphi process identified hypotension, serum lactate level, and vasopressor therapy as variables to test using cohort studies. Based on these 3 variables alone or in combination, 6 patient groups were generated. Examination of the SSC database demonstrated that the patient group requiring vasopressors to maintain mean BP 65 mm Hg or greater and having a serum lactate level greater than 2 mmol/L (18 mg/dL) after fluid resuscitation had a significantly higher mortality (42.3% [95% CI, 41.2%-43.3%]) in risk-adjusted comparisons with the other 5 groups derived using either serum lactate level greater than 2 mmol/L alone or combinations of hypotension, vasopressors, and serum lactate level 2 mmol/L or lower. These findings were validated in the UPMC and KPNC data sets. Based on a consensus process using results from a systematic review, surveys, and cohort studies, septic shock is defined as a subset of sepsis in which underlying circulatory, cellular, and metabolic abnormalities are associated with a greater risk of mortality than sepsis alone. Adult patients with septic shock can be identified using the clinical criteria of hypotension requiring vasopressor therapy to maintain mean BP 65 mm Hg or greater and having a serum lactate level greater than 2 mmol/L after adequate fluid resuscitation.
ERIC Educational Resources Information Center
Egalite, Anna J.; Mills, Jonathan N.; Wolf, Patrick J.
2016-01-01
The question of how school choice programs affect the racial stratification of schools is highly salient in the field of education policy. We use a student-level panel data set to analyze the impacts of the Louisiana Scholarship Program (LSP) on racial segregation in public and private schools. This targeted school voucher program provides funding…
Intentions and knowledge shaping local safety policy: A comparison of two Swedish cities.
Hanberger, Anders; Lundström, Ulf; Mårald, Gunilla
2015-12-01
This article explores how intentions and knowledge shape two Swedish cities' local safety policy (LSP). The applied framework is derived from the integration of governance and implementation research and the theory of knowledge and its use. The study shows that LSPs are shaped by a mix of intentions and different kinds of knowledge, and intentions and knowledge interplay and intertwine in many ways. Key-persons construct LSPs when they work out solutions to urgent safety problems and take departure in the local context, its pre-conditions, and their experience-based and professional knowledge. The state governs LSP softly through management by objectives in the background, but more often key-actor intentions and commitments, local safety problems, and events initiated and influenced LSPs. The article contributes to a better understanding of conditions for LSPs in multi-level governance. The article can be used to improve governance, identify implementation problems and knowledge needs that will improve LSPs and the overall safety situation in the community. The study has implications for how LSPs should be evaluated; many different evaluation criteria can be appropriate, such as relevance, legitimacy, achievement of key actors' objectives, sustainability of policy solutions, and creation of a local safety culture. Copyright © 2015 Elsevier Ltd and National Safety Council. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirunyan, Albert M; et al.
A search for physics beyond the standard model in events with one or more high-momentum Higgs bosons, H, decaying to pairs of b quarks in association with missing transverse momentum is presented. The data, corresponding to an integrated luminosity of 35.9 fbmore » $$^{-1}$$, were collected with the CMS detector at the LHC in proton-proton collisions at the center-of-mass energy $$\\sqrt{s}=$$ 13 TeV. The analysis utilizes a new b quark tagging technique based on jet substructure to identify jets from H$$\\to$$bb. Events are categorized by the multiplicity of H-tagged jets, jet mass, and the missing transverse momentum. No significant deviation from standard model expectations is observed. In the context of supersymmetry (SUSY), limits on the cross sections of pair-produced gluinos are set, assuming that gluinos decay to quark pairs, H (or Z), and the lightest SUSY particle, LSP, through an intermediate next-to-lightest SUSY particle, NLSP. With large mass splitting between the NLSP and LSP, and 100% NLSP branching fraction to H, the lower limit on the gluino mass is found to be 2010 GeV.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirunyan, A. M.; Tumasyan, A.; Adam, W.
Here, a search for physics beyond the standard model in events with one or more high-momentum Higgs bosons, H, decaying to pairs of b quarks in association with missing transverse momentum is presented. The data, corresponding to an integrated luminosity of 35.9 fb -1, were collected with the CMS detector at the LHC in proton-proton collisions at the center-of-mass energy √s = 13 TeV. The analysis utilizes a new b quark tagging technique based on jet substructure to identify jets from H → bb¯. Events are categorized by the multiplicity of H-tagged jets, jet mass, and the missing transverse momentum.more » No significant deviation from standard model expectations is observed. In the context of supersymmetry (SUSY), limits on the cross sections of pair-produced gluinos are set, assuming that gluinos decay to quark pairs, H (or Z), and the lightest SUSY particle, LSP, through an intermediate next-to-lightest SUSY particle, NLSP. With large mass splitting between the NLSP and LSP, and 100% NLSP branching fraction to H, the lower limit on the gluino mass is found to be 2010 GeV.« less
Gao, Song; Yan, Qiaodi; Chen, Luxi; Song, Yaobin; Fu, Chengxin; Dong, Ming
2017-01-01
To reveal the effects of ploidy level and haplotype on photosynthetic traits, we chose 175 genotypes of wild strawberries belonging to two haplotypes at two types of ploidy levels (diploidy and tetraploidy) and measured photosynthetic traits. Our results revealed that ploidy significantly affected the characteristics of light-response curves, CO2-response curves, and leaf gas exchange parameters, except intercellular CO2 concentration (Ci). Tetraploid species had a lower light saturation point (LSP) and CO2 saturation point (CSP), higher light compensation point (LCP), dark respiration (Rd), and CO2 compensation point (CCP) than diploid species. Furthermore, tetraploid species have lower photosynthetic capacity than diploid species, including net photosynthetic rate (Pn), stomatal conductivity (Gs), and transpiration rate (Tr). In addition, haplotype had a significant effect on LSP, CSP, Tr, and Ci as well as a significant interactive effect between ploidy and haplotype on the maximal photosynethic rate of the light-response curve and Rd. Most of the variance existed within haplotypes among individuals. These results suggest that polyploidization was the main driver for the evolution of photosynthesis with increasing ploidy level (i.e. from diploidy to tetraploidy in Fragaria species), while the origin of a chromosome could also affect the photosynthetic traits and the polyploidization effect on photosynthetic traits. PMID:28644876
Gao, Song; Yan, Qiaodi; Chen, Luxi; Song, Yaobin; Li, Junmin; Fu, Chengxin; Dong, Ming
2017-01-01
To reveal the effects of ploidy level and haplotype on photosynthetic traits, we chose 175 genotypes of wild strawberries belonging to two haplotypes at two types of ploidy levels (diploidy and tetraploidy) and measured photosynthetic traits. Our results revealed that ploidy significantly affected the characteristics of light-response curves, CO2-response curves, and leaf gas exchange parameters, except intercellular CO2 concentration (Ci). Tetraploid species had a lower light saturation point (LSP) and CO2 saturation point (CSP), higher light compensation point (LCP), dark respiration (Rd), and CO2 compensation point (CCP) than diploid species. Furthermore, tetraploid species have lower photosynthetic capacity than diploid species, including net photosynthetic rate (Pn), stomatal conductivity (Gs), and transpiration rate (Tr). In addition, haplotype had a significant effect on LSP, CSP, Tr, and Ci as well as a significant interactive effect between ploidy and haplotype on the maximal photosynethic rate of the light-response curve and Rd. Most of the variance existed within haplotypes among individuals. These results suggest that polyploidization was the main driver for the evolution of photosynthesis with increasing ploidy level (i.e. from diploidy to tetraploidy in Fragaria species), while the origin of a chromosome could also affect the photosynthetic traits and the polyploidization effect on photosynthetic traits.
Long-term outcomes following high intensity focused ultrasound ablation for atrial fibrillation.
Davies, Edward J; Bazerbashi, Samer; Asopa, Sanjay; Haywood, Guy; Dalrymple-Hay, Malcolm
2014-01-01
The aim of this study is to assess the safety and efficacy of the Epicor high intensity focused ultrasound (St. Jude, Inc.®, Minneapolis, MN, USA) system using seven-day ambulatory electrocardiogram (ECG) monitoring over a two-year follow-up period. One hundred and ten patients undergoing ablation were included from a single center between January 2006 and December 2009. Rhythm was assessed using seven-day ambulatory ECG or permanent pacemaker interrogation. Seventeen patients were lost to follow-up, seven through death. Results were reported according to atrial fibrillation (AF) class preoperatively: paroxysmal, persistent, and long-standing persistent (LSP). Forty-nine percent of patients remained in sinus rhythm at greater than two years. The percentage of patients in sinus rhythm according to preoperative AF class were 81% (paroxysmal AF), 56% (persistent AF), and 18% (long-standing AF). The class of AF prior to surgery, left atrium size, and body mass index determined the long-term outcome. There were no procedure-related complications. We conclude that high intensity focused ultrasound ablation for atrial fibrillation using the Epicor system is safe and effective for surgical patients with paroxysmal AF. The persistent and LSP AF results suggest that alternative ablation strategies should be considered for these patients. © 2013 Wiley Periodicals, Inc.
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...
2014-11-21
Searches for supersymmetry (SUSY) are presented based on the electroweak pair production of neutralinos and charginos, leading to decay channels with Higgs, Z, and W bosons and undetected lightest SUSY particles (LSPs). The data sample corresponds to an integrated luminosity of about 19.5 fb -1 of proton-proton collisions at a center-of-mass energy of 8 TeV collected in 2012 with the CMS detector at the LHC. The main emphasis is neutralino pair production in which each neutralino decays either to a Higgs boson (h) and an LSP or to a Z boson and an LSP, leading to hh, hZ, and ZZ states with missing transverse energy (Emore » $$miss\\atop{T}$$). A second aspect is chargino-neutralino pair production, leading to hW states with E$$miss\\atop{T}$$. The decays of a Higgs boson to a bottom-quark pair, to a photon pair, and to final states with leptons are considered in conjunction with hadronic and leptonic decay modes of the Z and W bosons. As a result, no evidence is found for supersymmetric particles, and 95% confidence level upper limits are evaluated for the respective pair production cross sections and for neutralino and chargino mass values.« less
Sirunyan, A M; Tumasyan, A; Adam, W; Ambrogi, F; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Escalante Del Valle, A; Flechl, M; Friedl, M; Frühwirth, R; Ghete, V M; Grossmann, J; Hrubec, J; Jeitler, M; König, A; Krammer, N; Krätschmer, I; Liko, D; Madlener, T; Mikulec, I; Pree, E; Rad, N; Rohringer, H; Schieck, J; Schöfbeck, R; Spanring, M; Spitzbart, D; Taurok, A; Waltenberger, W; Wittmann, J; Wulz, C-E; Zarucki, M; Chekhovsky, V; Mossolov, V; Suarez Gonzalez, J; De Wolf, E A; Di Croce, D; Janssen, X; Lauwers, J; Pieters, M; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Abu Zeid, S; Blekman, F; D'Hondt, J; De Bruyn, I; De Clercq, J; Deroover, K; Flouris, G; Lontkovskyi, D; Lowette, S; Marchesini, I; Moortgat, S; Moreels, L; Python, Q; Skovpen, K; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Parijs, I; Beghin, D; Bilin, B; Brun, H; Clerbaux, B; De Lentdecker, G; Delannoy, H; Dorney, B; Fasanella, G; Favart, L; Goldouzian, R; Grebenyuk, A; Kalsi, A K; Lenzi, T; Luetic, J; Seva, T; Starling, E; Vander Velde, C; Vanlaer, P; Vannerom, D; Yonamine, R; Cornelis, T; Dobur, D; Fagot, A; Gul, M; Khvastunov, I; Poyraz, D; Roskas, C; Trocino, D; Tytgat, M; Verbeke, W; Vit, M; Zaganidis, N; Bakhshiansohi, H; Bondu, O; Brochet, S; Bruno, G; Caputo, C; Caudron, A; David, P; De Visscher, S; Delaere, C; Delcourt, M; Francois, B; Giammanco, A; Krintiras, G; Lemaitre, V; Magitteri, A; Mertens, A; Musich, M; Piotrzkowski, K; Quertenmont, L; Saggio, A; Vidal Marono, M; Wertz, S; Zobec, J; Aldá Júnior, W L; Alves, F L; Alves, G A; Brito, L; Correia Silva, G; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Coelho, E; Da Costa, E M; Da Silveira, G G; De Jesus Damiao, D; Fonseca De Souza, S; Huertas Guativa, L M; Malbouisson, H; Medina Jaime, M; Melo De Almeida, M; Mora Herrera, C; Mundim, L; Nogima, H; Sanchez Rosas, L J; Santoro, A; Sznajder, A; Thiel, M; Tonelli Manganote, E J; Torres Da Silva De Araujo, F; Vilela Pereira, A; Ahuja, S; Bernardes, C A; Tomei, T R Fernandez Perez; Gregores, E M; Mercadante, P G; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Marinov, A; Misheva, M; Rodozov, M; Shopova, M; Sultanov, G; Dimitrov, A; Litov, L; Pavlov, B; Petkov, P; Fang, W; Gao, X; Yuan, L; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Chen, Y; Jiang, C H; Leggat, D; Liao, H; Liu, Z; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Yazgan, E; Zhang, H; Zhao, J; Ban, Y; Chen, G; Li, J; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Wang, Y; Avila, C; Cabrera, A; Carrillo Montoya, C A; Chaparro Sierra, L F; Florez, C; González Hernández, C F; Ruiz Alvarez, J D; Segura Delgado, M A; Courbon, B; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Sculac, T; Antunovic, Z; Kovac, M; Brigljevic, V; Ferencek, D; Kadija, K; Mesic, B; Starodumov, A; Susa, T; Ather, M W; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Finger, M; Finger, M; Carrera Jarrin, E; Abdelalim, A A; Elgammal, S; Khalil, S; Bhowmik, S; Dewanjee, R K; Kadastik, M; Perrini, L; Raidal, M; Veelken, C; Eerola, P; Kirschenmann, H; Pekkanen, J; Voutilainen, M; Havukainen, J; Heikkilä, J K; Järvinen, T; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Laurila, S; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Siikonen, H; Tuominen, E; Tuominiemi, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Faure, J L; Ferri, F; Ganjour, S; Ghosh, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Leloup, C; Locci, E; Machet, M; Malcles, J; Negro, G; Rander, J; Rosowsky, A; Sahin, M Ö; Titov, M; Abdulsalam, A; Amendola, C; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Charlot, C; Granier de Cassagnac, R; Jo, M; Kucher, I; Lisniak, S; Lobanov, A; Martin Blanco, J; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Salerno, R; Sauvan, J B; Sirois, Y; Stahl Leiton, A G; Yilmaz, Y; Zabi, A; Zghiche, A; Agram, J-L; Andrea, J; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Collard, C; Conte, E; Coubez, X; Drouhin, F; Fontaine, J-C; Gelé, D; Goerlach, U; Jansová, M; Juillot, P; Le Bihan, A-C; Tonon, N; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Chanon, N; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Finco, L; Gascon, S; Gouzevitch, M; Grenier, G; Ille, B; Lagarde, F; Laktineh, I B; Lattaud, H; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Popov, A; Sordini, V; Vander Donckt, M; Viret, S; Zhang, S; Khvedelidze, A; Rurua, L; Autermann, C; Feld, L; Kiesel, M K; Klein, K; Lipinski, M; Preuten, M; Schomakers, C; Schulz, J; Teroerde, M; Wittmer, B; Zhukov, V; Albert, A; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Merschmeyer, M; Meyer, A; Millet, P; Mukherjee, S; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Teyssier, D; Thüer, S; Flügge, G; Kargoll, B; Kress, T; Künsken, A; Müller, T; Nehrkorn, A; Nowack, A; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Arndt, T; Asawatangtrakuldee, C; Beernaert, K; Behnke, O; Behrens, U; Bermúdez Martínez, A; Bin Anuar, A A; Borras, K; Botta, V; Campbell, A; Connor, P; Contreras-Campana, C; Costanza, F; De Wit, A; Diez Pardos, C; Eckerlin, G; Eckstein, D; Eichhorn, T; Eren, E; Gallo, E; Garay Garcia, J; Geiser, A; Grados Luyando, J M; Grohsjean, A; Gunnellini, P; Guthoff, M; Harb, A; Hauk, J; Hempel, M; Jung, H; Kasemann, M; Keaveney, J; Kleinwort, C; Korol, I; Krücker, D; Lange, W; Lelek, A; Lenz, T; Lipka, K; Lohmann, W; Mankel, R; Melzer-Pellmann, I-A; Meyer, A B; Meyer, M; Missiroli, M; Mittag, G; Mnich, J; Mussgiller, A; Pitzl, D; Raspereza, A; Savitskyi, M; Saxena, P; Shevchenko, R; Stefaniuk, N; Tholen, H; Van Onsem, G P; Walsh, R; Wen, Y; Wichmann, K; Wissing, C; Zenaiev, O; Aggleton, R; Bein, S; Blobel, V; Centis Vignali, M; Dreyer, T; Garutti, E; Gonzalez, D; Haller, J; Hinzmann, A; Hoffmann, M; Karavdina, A; Kasieczka, G; Klanner, R; Kogler, R; Kovalchuk, N; Kurz, S; Marconi, D; Multhaup, J; Niedziela, M; Nowatschin, D; Peiffer, T; Perieanu, A; Reimers, A; Scharf, C; Schleper, P; Schmidt, A; Schumann, S; Schwandt, J; Sonneveld, J; Stadie, H; Steinbrück, G; Stober, F M; Stöver, M; Troendle, D; Usai, E; Vanhoefer, A; Vormwald, B; Akbiyik, M; Barth, C; Baselga, M; Baur, S; Butz, E; Caspart, R; Chwalek, T; Colombo, F; De Boer, W; Dierlamm, A; Faltermann, N; Freund, B; Friese, R; Giffels, M; Harrendorf, M A; Hartmann, F; Heindl, S M; Husemann, U; Kassel, F; Kudella, S; Mildner, H; Mozer, M U; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Schröder, M; Shvetsov, I; Sieber, G; Simonis, H J; Ulrich, R; Wayand, S; Weber, M; Weiler, T; Williamson, S; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Kyriakis, A; Loukas, D; Topsis-Giotis, I; Karathanasis, G; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Tziaferi, E; Kousouris, K; Papakrivopoulos, I; Evangelou, I; Foudas, C; Gianneios, P; Katsoulis, P; Kokkas, P; Mallios, S; Manthos, N; Papadopoulos, I; Paradas, E; Strologas, J; Triantis, F A; Tsitsonis, D; Csanad, M; Filipovic, N; Pasztor, G; Surányi, O; Veres, G I; Bencze, G; Hajdu, C; Horvath, D; Hunyadi, Á; Sikler, F; Veszpremi, V; Vesztergombi, G; Vámi, T Á; Beni, N; Czellar, S; Karancsi, J; Makovec, A; Molnar, J; Szillasi, Z; Bartók, M; Raics, P; Trocsanyi, Z L; Ujvari, B; Choudhury, S; Komaragiri, J R; Bahinipati, S; Mal, P; Mandal, K; Nayak, A; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chauhan, S; Chawla, R; Dhingra, N; Gupta, R; Kaur, A; Kaur, M; Kaur, S; Kumar, R; Kumari, P; Mehta, A; Sharma, S; Singh, J B; Walia, G; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A; Choudhary, B C; Garg, R B; Keshri, S; Kumar, A; Malhotra, S; Naimuddin, M; Ranjan, K; Sharma, R; Bhardwaj, R; Bhattacharya, R; Bhattacharya, S; Bhawandeep, U; Bhowmik, D; Dey, S; Dutt, S; Dutta, S; Ghosh, S; Majumdar, N; Mondal, K; Mukhopadhyay, S; Nandan, S; Purohit, A; Rout, P K; Roy, A; Roy Chowdhury, S; Sarkar, S; Sharan, M; Singh, B; Thakur, S; Behera, P K; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Netrakanti, P K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Dugad, S; Mahakud, B; Mitra, S; Mohanty, G B; Sur, N; Sutar, B; Banerjee, S; Bhattacharya, S; Chatterjee, S; Das, P; Guchait, M; Jain, Sa; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Sarkar, T; Wickramage, N; Chauhan, S; Dube, S; Hegde, V; Kapoor, A; Kothekar, K; Pandey, S; Rane, A; Sharma, S; Chenarani, S; Eskandari Tadavani, E; Etesami, S M; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Di Florio, A; Errico, F; Fiore, L; Iaselli, G; Lezki, S; Maggi, G; Maggi, M; Marangelli, B; Miniello, G; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Sharma, A; Silvestris, L; Venditti, R; Verwilligen, P; Zito, G; Abbiendi, G; Battilana, C; Bonacorsi, D; Borgonovi, L; Braibant-Giacomelli, S; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Iemmi, F; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Albergo, S; Costa, S; Di Mattia, A; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Chatterjee, K; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Latino, G; Lenzi, P; Meschini, M; Paoletti, S; Russo, L; Sguazzoni, G; Strom, D; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Ravera, F; Robutti, E; Tosi, S; Benaglia, A; Beschi, A; Brianza, L; Brivio, F; Ciriolo, V; Dinardo, M E; Fiorendi, S; Gennai, S; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Manzoni, R A; Menasce, D; Moroni, L; Paganoni, M; Pauwels, K; Pedrini, D; Pigazzini, S; Ragazzi, S; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; Di Guida, S; Fabozzi, F; Fienga, F; Iorio, A O M; Khan, W A; Lista, L; Meola, S; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Benato, L; Bisello, D; Boletti, A; Carlin, R; Checchia, P; Dall'Osso, M; De Castro Manzano, P; Dorigo, T; Gasparini, F; Gasparini, U; Gozzelino, A; Lacaprara, S; Lujan, P; Margoni, M; Meneguzzo, A T; Passaseo, M; Pozzobon, N; Ronchese, P; Rossin, R; Simonetto, F; Tiko, A; Torassa, E; Ventura, S; Zanetti, M; Zotto, P; Braghieri, A; Magnani, A; Montagna, P; Ratti, S P; Re, V; Ressegotti, M; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Alunni Solestizi, L; Biasini, M; Bilei, G M; Cecchi, C; Ciangottini, D; Fanò, L; Lariccia, P; Leonardi, R; Manoni, E; Mantovani, G; Mariani, V; Menichelli, M; Rossi, A; Santocchia, A; Spiga, D; Androsov, K; Azzurri, P; Bagliesi, G; Bianchini, L; Boccali, T; Borrello, L; Castaldi, R; Ciocci, M A; Dell'Orso, R; Fedi, G; Giannini, L; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Manca, E; Mandorli, G; Messineo, A; Palla, F; Rizzi, A; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Cipriani, M; Daci, N; Del Re, D; Di Marco, E; Diemoz, M; Gelli, S; Longo, E; Margaroli, F; Marzocchi, B; Meridiani, P; Organtini, G; Pandolfi, F; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bartosik, N; Bellan, R; Biino, C; Cartiglia, N; Castello, R; Cenna, F; Costa, M; Covarelli, R; Degano, A; Demaria, N; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Monteno, M; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Romero, A; Ruspa, M; Sacchi, R; Shchelina, K; Sola, V; Solano, A; Staiano, A; Traczyk, P; Belforte, S; Casarsa, M; Cossutti, F; Della Ricca, G; Zanetti, A; Kim, D H; Kim, G N; Kim, M S; Lee, J; Lee, S; Lee, S W; Moon, C S; Oh, Y D; Sekmen, S; Son, D C; Yang, Y C; Kim, H; Moon, D H; Oh, G; Brochero Cifuentes, J A; Goh, J; Kim, T J; Cho, S; Choi, S; Go, Y; Gyun, D; Ha, S; Hong, B; Jo, Y; Kim, Y; Lee, K; Lee, K S; Lee, S; Lim, J; Park, S K; Roh, Y; Almond, J; Kim, J; Kim, J S; Lee, H; Lee, K; Nam, K; Oh, S B; Radburn-Smith, B C; Seo, S H; Yang, U K; Yoo, H D; Yu, G B; Kim, H; Kim, J H; Lee, J S H; Park, I C; Choi, Y; Hwang, C; Lee, J; Yu, I; Dudenas, V; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Md Ali, M A B; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Zolkapli, Z; Reyes-Almanza, R; Ramirez-Sanchez, G; Duran-Osuna, M C; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-De La Cruz, I; Rabadan-Trejo, R I; Lopez-Fernandez, R; Mejia Guisao, J; Sanchez-Hernandez, A; Carrillo Moreno, S; Oropeza Barrera, C; Vazquez Valencia, F; Eysermans, J; Pedraza, I; Salazar Ibarguen, H A; Uribe Estrada, C; Morelos Pineda, A; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Saddique, A; Shah, M A; Shoaib, M; Waqas, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Zalewski, P; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Pyskir, A; Walczak, M; Bargassa, P; Beirão Da Cruz E Silva, C; Di Francesco, A; Faccioli, P; Galinhas, B; Gallinaro, M; Hollar, J; Leonardo, N; Lloret Iglesias, L; Nemallapudi, M V; Seixas, J; Strong, G; Toldaiev, O; Vadruccio, D; Varela, J; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Lanev, A; Malakhov, A; Matveev, V; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Shulha, S; Skatchkov, N; Smirnov, V; Voytishin, N; Zarubin, A; Ivanov, Y; Kim, V; Kuznetsova, E; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sosnov, D; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, I; Safronov, G; Spiridonov, A; Stepennov, A; Stolin, V; Toms, M; Vlasov, E; Zhokin, A; Aushev, T; Bylinkin, A; Chadeeva, M; Parygin, P; Philippov, D; Polikarpov, S; Popova, E; Rusinov, V; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Rusakov, S V; Terkulov, A; Baskakov, A; Belyaev, A; Boos, E; Bunichev, V; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Miagkov, I; Obraztsov, S; Petrushanko, S; Savrin, V; Blinov, V; Shtol, D; Skovpen, Y; Azhgirey, I; Bayshev, I; Bitioukov, S; Elumakhov, D; Godizov, A; Kachanov, V; Kalinin, A; Konstantinov, D; Mandrik, P; Petrov, V; Ryutin, R; Sobol, A; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Babaev, A; Adzic, P; Cirkovic, P; Devetak, D; Dordevic, M; Milosevic, J; Alcaraz Maestre, J; Bachiller, I; Barrio Luna, M; Cerrada, M; Colino, N; De La Cruz, B; Delgado Peris, A; Fernandez Bedoya, C; Fernández Ramos, J P; Flix, J; Fouz, M C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Moran, D; Pérez-Calero Yzquierdo, A; Puerta Pelayo, J; Redondo, I; Romero, L; Soares, M S; Triossi, A; Álvarez Fernández, A; Albajar, C; de Trocóniz, J F; Cuevas, J; Erice, C; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; González Fernández, J R; Palencia Cortezon, E; Sanchez Cruz, S; Vischia, P; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chazin Quero, B; Duarte Campderros, J; Fernandez, M; Fernández Manteca, P J; Garcia-Ferrero, J; García Alonso, A; Gomez, G; Lopez Virto, A; Marco, J; Martinez Rivero, C; Martinez Ruiz Del Arbol, P; Matorras, F; Piedra Gomez, J; Prieels, C; Rodrigo, T; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Akgun, B; Auffray, E; Baillon, P; Ball, A H; Barney, D; Bendavid, J; Bianco, M; Bocci, A; Botta, C; Camporesi, T; Cepeda, M; Cerminara, G; Chapon, E; Chen, Y; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Roeck, A; Deelen, N; Dobson, M; du Pree, T; Dünser, M; Dupont, N; Elliott-Peisert, A; Everaerts, P; Fallavollita, F; Franzoni, G; Fulcher, J; Funk, W; Gigi, D; Gilbert, A; Gill, K; Glege, F; Gulhan, D; Hegeman, J; Innocente, V; Jafari, A; Janot, P; Karacheban, O; Kieseler, J; Knünz, V; Kornmayer, A; Krammer, M; Lange, C; Lecoq, P; Lourenço, C; Lucchini, M T; Malgeri, L; Mannelli, M; Martelli, A; Meijers, F; Merlin, J A; Mersi, S; Meschi, E; Milenovic, P; Moortgat, F; Mulders, M; Neugebauer, H; Ngadiuba, J; Orfanelli, S; Orsini, L; Pantaleo, F; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Pitters, F M; Rabady, D; Racz, A; Reis, T; Rolandi, G; Rovere, M; Sakulin, H; Schäfer, C; Schwick, C; Seidel, M; Selvaggi, M; Sharma, A; Silva, P; Sphicas, P; Stakia, A; Steggemann, J; Stoye, M; Tosi, M; Treille, D; Tsirou, A; Veckalns, V; Verweij, M; Zeuner, W D; Bertl, W; Caminada, L; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Rohe, T; Wiederkehr, S A; Backhaus, M; Bäni, L; Berger, P; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Dorfer, C; Grab, C; Heidegger, C; Hits, D; Hoss, J; Klijnsma, T; Lustermann, W; Marionneau, M; Meinhard, M T; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pata, J; Pauss, F; Perrin, G; Perrozzi, L; Quittnat, M; Reichmann, M; Sanz Becerra, D A; Schönenberger, M; Shchutska, L; Tavolaro, V R; Theofilatos, K; Vesterbacka Olsson, M L; Wallny, R; Zhu, D H; Aarrestad, T K; Amsler, C; Brzhechko, D; Canelli, M F; De Cosa, A; Del Burgo, R; Donato, S; Galloni, C; Hreus, T; Kilminster, B; Neutelings, I; Pinna, D; Rauco, G; Robmann, P; Salerno, D; Schweiger, K; Seitz, C; Takahashi, Y; Zucchetta, A; Candelise, V; Chang, Y H; Cheng, K Y; Doan, T H; Jain, Sh; Khurana, R; Kuo, C M; Lin, W; Pozdnyakov, A; Yu, S S; Kumar, Arun; Chang, P; Chao, Y; Chen, K F; Chen, P H; Fiori, F; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Paganis, E; Psallidas, A; Steen, A; Tsai, J F; Asavapibhop, B; Kovitanggoon, K; Singh, G; Srimanobhas, N; Bat, A; Boran, F; Cerci, S; Damarseckin, S; Demiroglu, Z S; Dozen, C; Dumanoglu, I; Girgis, S; Gokbulut, G; Guler, Y; Hos, I; Kangal, E E; Kara, O; Kayis Topaksu, A; Kiminsu, U; Oglakci, M; Onengut, G; Ozdemir, K; Sunar Cerci, D; Tali, B; Tok, U G; Turkcapar, S; Zorbakir, I S; Zorbilmez, C; Karapinar, G; Ocalan, K; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Tekten, S; Yetkin, E A; Agaras, M N; Atay, S; Cakir, A; Cankocak, K; Komurcu, Y; Grynyov, B; Levchuk, L; Ball, F; Beck, L; Brooke, J J; Burns, D; Clement, E; Cussans, D; Davignon, O; Flacher, H; Goldstein, J; Heath, G P; Heath, H F; Kreczko, L; Newbold, D M; Paramesvaran, S; Sakuma, T; Seif El Nasr-Storey, S; Smith, D; Smith, V J; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Linacre, J; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Womersley, W J; Auzinger, G; Bainbridge, R; Bloch, P; Borg, J; Breeze, S; Buchmuller, O; Bundock, A; Casasso, S; Colling, D; Corpe, L; Dauncey, P; Davies, G; Della Negra, M; Di Maria, R; Elwood, A; Haddad, Y; Hall, G; Iles, G; James, T; Komm, M; Lane, R; Laner, C; Lyons, L; Magnan, A-M; Malik, S; Mastrolorenzo, L; Matsushita, T; Nash, J; Nikitenko, A; Palladino, V; Pesaresi, M; Richards, A; Rose, A; Scott, E; Seez, C; Shtipliyski, A; Strebler, T; Summers, S; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Wardle, N; Winterbottom, D; Wright, J; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Morton, A; Reid, I D; Teodorescu, L; Zahid, S; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Smith, C; Bartek, R; Dominguez, A; Buccilli, A; Cooper, S I; Henderson, C; Rumerio, P; West, C; Arcaro, D; Avetisyan, A; Bose, T; Gastler, D; Rankin, D; Richardson, C; Rohlf, J; Sulak, L; Zou, D; Benelli, G; Cutts, D; Hadley, M; Hakala, J; Heintz, U; Hogan, J M; Kwok, K H M; Laird, E; Landsberg, G; Lee, J; Mao, Z; Narain, M; Pazzini, J; Piperov, S; Sagir, S; Syarif, R; Yu, D; Band, R; Brainerd, C; Breedon, R; Burns, D; Calderon De La Barca Sanchez, M; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Flores, C; Funk, G; Ko, W; Lander, R; Mclean, C; Mulhearn, M; Pellett, D; Pilot, J; Shalhout, S; Shi, M; Smith, J; Stolp, D; Taylor, D; Tos, K; Tripathi, M; Wang, Z; Zhang, F; Bachtis, M; Bravo, C; Cousins, R; Dasgupta, A; Florent, A; Hauser, J; Ignatenko, M; Mccoll, N; Regnard, S; Saltzberg, D; Schnaible, C; Valuev, V; Bouvier, E; Burt, K; Clare, R; Ellison, J; Gary, J W; Ghiasi Shirazi, S M A; Hanson, G; Karapostoli, G; Kennedy, E; Lacroix, F; Long, O R; Olmedo Negrete, M; Paneva, M I; Si, W; Wang, L; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cittolin, S; Derdzinski, M; Gerosa, R; Gilbert, D; Hashemi, B; Holzner, A; Klein, D; Kole, G; Krutelyov, V; Letts, J; Masciovecchio, M; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Simon, S; Tadel, M; Vartak, A; Wasserbaech, S; Wood, J; Würthwein, F; Yagil, A; Zevi Della Porta, G; Amin, N; Bhandari, R; Bradmiller-Feld, J; Campagnari, C; Citron, M; Dishaw, A; Dutta, V; Franco Sevilla, M; Gouskos, L; Heller, R; Incandela, J; Ovcharova, A; Qu, H; Richman, J; Stuart, D; Suarez, I; Yoo, J; Anderson, D; Bornheim, A; Bunn, J; Lawhorn, J M; Newman, H B; Nguyen, T Q; Pena, C; Spiropulu, M; Vlimant, J R; Wilkinson, R; Xie, S; Zhang, Z; Zhu, R Y; Andrews, M B; Ferguson, T; Mudholkar, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Weinberg, M; Cumalat, J P; Ford, W T; Jensen, F; Johnson, A; Krohn, M; Leontsinis, S; Macdonald, E; Mulholland, T; Stenson, K; Ulmer, K A; Wagner, S R; Alexander, J; Chaves, J; Cheng, Y; Chu, J; Datta, A; Mcdermott, K; Mirman, N; Patterson, J R; Quach, D; Rinkevicius, A; Ryd, A; Skinnari, L; Soffi, L; Tan, S M; Tao, Z; Thom, J; Tucker, J; Wittich, P; Zientek, M; Abdullin, S; Albrow, M; Alyari, M; Apollinari, G; Apresyan, A; Apyan, A; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Canepa, A; Cerati, G B; Cheung, H W K; Chlebana, F; Cremonesi, M; Duarte, J; Elvira, V D; Freeman, J; Gecse, Z; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hanlon, J; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jayatilaka, B; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kortelainen, M J; Kreis, B; Lammel, S; Lincoln, D; Lipton, R; Liu, M; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Magini, N; Marraffino, J M; Mason, D; McBride, P; Merkel, P; Mrenna, S; Nahn, S; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Ristori, L; Savoy-Navarro, A; Schneider, B; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Stoynev, S; Strait, J; Strobbe, N; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Wang, M; Weber, H A; Whitbeck, A; Wu, W; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Brinkerhoff, A; Carnes, A; Carver, M; Curry, D; Field, R D; Furic, I K; Gleyzer, S V; Joshi, B M; Konigsberg, J; Korytov, A; Kotov, K; Ma, P; Matchev, K; Mei, H; Mitselmakher, G; Shi, K; Sperka, D; Terentyev, N; Thomas, L; Wang, J; Wang, S; Yelton, J; Joshi, Y R; Linn, S; Markowitz, P; Rodriguez, J L; Ackert, A; Adams, T; Askew, A; Hagopian, S; Hagopian, V; Johnson, K F; Kolberg, T; Martinez, G; Perry, T; Prosper, H; Saha, A; Santra, A; Sharma, V; Yohay, R; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Cavanaugh, R; Chen, X; Dittmer, S; Evdokimov, O; Gerber, C E; Hangal, D A; Hofman, D J; Jung, K; Kamin, J; Sandoval Gonzalez, I D; Tonjes, M B; Varelas, N; Wang, H; Wu, Z; Zhang, J; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Blumenfeld, B; Cocoros, A; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Roskes, J; Sarica, U; Swartz, M; Xiao, M; You, C; Al-Bataineh, A; Baringer, P; Bean, A; Boren, S; Bowen, J; Castle, J; Khalil, S; Kropivnitskaya, A; Majumder, D; Mcbrayer, W; Murray, M; Rogan, C; Royon, C; Sanders, S; Schmitz, E; Tapia Takaki, J D; Wang, Q; Ivanov, A; Kaadze, K; Maravin, Y; Modak, A; Mohammadi, A; Saini, L K; Skhirtladze, N; Rebassoo, F; Wright, D; Baden, A; Baron, O; Belloni, A; Eno, S C; Feng, Y; Ferraioli, C; Hadley, N J; Jabeen, S; Jeng, G Y; Kellogg, R G; Kunkle, J; Mignerey, A C; Ricci-Tam, F; Shin, Y H; Skuja, A; Tonwar, S C; Abercrombie, D; Allen, B; Azzolini, V; Barbieri, R; Baty, A; Bauer, G; Bi, R; Brandt, S; Busza, W; Cali, I A; D'Alfonso, M; Demiragli, Z; Gomez Ceballos, G; Goncharov, M; Harris, P; Hsu, D; Hu, M; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Lee, Y-J; Levin, A; Luckey, P D; Maier, B; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Roland, C; Roland, G; Stephans, G S F; Sumorok, K; Tatar, K; Velicanu, D; Wang, J; Wang, T W; Wyslouch, B; Zhaozhong, S; Benvenuti, A C; Chatterjee, R M; Evans, A; Hansen, P; Kalafut, S; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Turkewitz, J; Wadud, M A; Acosta, J G; Oliveros, S; Avdeeva, E; Bloom, K; Claes, D R; Fangmeier, C; Golf, F; Gonzalez Suarez, R; Kamalieddin, R; Kravchenko, I; Monroy, J; Siado, J E; Snow, G R; Stieger, B; Dolen, J; Godshalk, A; Harrington, C; Iashvili, I; Nguyen, D; Parker, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Freer, C; Hortiangtham, A; Massironi, A; Morse, D M; Orimoto, T; Teixeira De Lima, R; Wamorkar, T; Wang, B; Wisecarver, A; Wood, D; Bhattacharya, S; Charaf, O; Hahn, K A; Mucia, N; Odell, N; Schmitt, M H; Sung, K; Trovato, M; Velasco, M; Bucci, R; Dev, N; Hildreth, M; Hurtado Anampa, K; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Li, W; Loukas, N; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Planer, M; Reinsvold, A; Ruchti, R; Siddireddy, P; Smith, G; Taroni, S; Wayne, M; Wightman, A; Wolf, M; Woodard, A; Alimena, J; Antonelli, L; Bylsma, B; Durkin, L S; Flowers, S; Francis, B; Hart, A; Hill, C; Ji, W; Ling, T Y; Luo, W; Winer, B L; Wulsin, H W; Cooperstein, S; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Higginbotham, S; Kalogeropoulos, A; Lange, D; Luo, J; Marlow, D; Mei, K; Ojalvo, I; Olsen, J; Palmer, C; Piroué, P; Salfeld-Nebgen, J; Stickland, D; Tully, C; Malik, S; Norberg, S; Barker, A; Barnes, V E; Das, S; Gutay, L; Jones, M; Jung, A W; Khatiwada, A; Miller, D H; Neumeister, N; Peng, C C; Qiu, H; Schulte, J F; Sun, J; Wang, F; Xiao, R; Xie, W; Cheng, T; Parashar, N; Chen, Z; Ecklund, K M; Freed, S; Geurts, F J M; Guilbaud, M; Kilpatrick, M; Li, W; Michlin, B; Padley, B P; Roberts, J; Rorie, J; Shi, W; Tu, Z; Zabel, J; Zhang, A; Bodek, A; de Barbaro, P; Demina, R; Duh, Y T; Ferbel, T; Galanti, M; Garcia-Bellido, A; Han, J; Hindrichs, O; Khukhunaishvili, A; Lo, K H; Tan, P; Verzetti, M; Ciesielski, R; Goulianos, K; Mesropian, C; Agapitos, A; Chou, J P; Gershtein, Y; Gómez Espinosa, T A; Halkiadakis, E; Heindl, M; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Kyriacou, S; Lath, A; Montalvo, R; Nash, K; Osherson, M; Saka, H; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Delannoy, A G; Heideman, J; Riley, G; Rose, K; Spanier, S; Thapa, K; Bouhali, O; Castaneda Hernandez, A; Celik, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Eusebi, R; Gilmore, J; Huang, T; Kamon, T; Mueller, R; Pakhotin, Y; Patel, R; Perloff, A; Perniè, L; Rathjens, D; Safonov, A; Tatarinov, A; Akchurin, N; Damgov, J; De Guio, F; Dudero, P R; Faulkner, J; Gurpinar, E; Kunori, S; Lamichhane, K; Lee, S W; Mengke, T; Muthumuni, S; Peltola, T; Undleeb, S; Volobouev, I; Wang, Z; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Melo, A; Ni, H; Padeken, K; Sheldon, P; Tuo, S; Velkovska, J; Xu, Q; Arenton, M W; Barria, P; Cox, B; Hirosky, R; Joyce, M; Ledovskoy, A; Li, H; Neu, C; Sinthuprasith, T; Wang, Y; Wolfe, E; Xia, F; Harr, R; Karchin, P E; Poudyal, N; Sturdy, J; Thapa, P; Zaleski, S; Brodski, M; Buchanan, J; Caillol, C; Carlsmith, D; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Herndon, M; Hervé, A; Hussain, U; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Rekovic, V; Ruggles, T; Savin, A; Smith, N; Smith, W H; Woods, N
2018-06-15
A search for physics beyond the standard model in events with one or more high-momentum Higgs bosons, H, decaying to pairs of b quarks in association with missing transverse momentum is presented. The data, corresponding to an integrated luminosity of 35.9 fb^{-1}, were collected with the CMS detector at the LHC in proton-proton collisions at the center-of-mass energy sqrt[s]=13 TeV. The analysis utilizes a new b quark tagging technique based on jet substructure to identify jets from H→bb[over ¯]. Events are categorized by the multiplicity of H-tagged jets, jet mass, and the missing transverse momentum. No significant deviation from standard model expectations is observed. In the context of supersymmetry (SUSY), limits on the cross sections of pair-produced gluinos are set, assuming that gluinos decay to quark pairs, H (or Z), and the lightest SUSY particle, LSP, through an intermediate next-to-lightest SUSY particle, NLSP. With large mass splitting between the NLSP and LSP, and 100% NLSP branching fraction to H, the lower limit on the gluino mass is found to be 2010 GeV.
Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...
2018-06-11
Here, a search for physics beyond the standard model in events with one or more high-momentum Higgs bosons, H, decaying to pairs of b quarks in association with missing transverse momentum is presented. The data, corresponding to an integrated luminosity of 35.9 fb -1, were collected with the CMS detector at the LHC in proton-proton collisions at the center-of-mass energy √s = 13 TeV. The analysis utilizes a new b quark tagging technique based on jet substructure to identify jets from H → bb¯. Events are categorized by the multiplicity of H-tagged jets, jet mass, and the missing transverse momentum.more » No significant deviation from standard model expectations is observed. In the context of supersymmetry (SUSY), limits on the cross sections of pair-produced gluinos are set, assuming that gluinos decay to quark pairs, H (or Z), and the lightest SUSY particle, LSP, through an intermediate next-to-lightest SUSY particle, NLSP. With large mass splitting between the NLSP and LSP, and 100% NLSP branching fraction to H, the lower limit on the gluino mass is found to be 2010 GeV.« less