Conservatism implications of shock test tailoring for multiple design environments
NASA Technical Reports Server (NTRS)
Baca, Thomas J.; Bell, R. Glenn; Robbins, Susan A.
1987-01-01
A method for analyzing shock conservation in test specifications that have been tailored to qualify a structure for multiple design environments is discussed. Shock test conservation is qualified for shock response spectra, shock intensity spectra and ranked peak acceleration data in terms of an Index of Conservation (IOC) and an Overtest Factor (OTF). The multi-environment conservation analysis addresses the issue of both absolute and average conservation. The method is demonstrated in a case where four laboratory tests have been specified to qualify a component which must survive seven different field environments. Final judgment of the tailored test specification is shown to require an understanding of the predominant failure modes of the test item.
An Alternative Method Of Specifying Shock Test Criteria
NASA Technical Reports Server (NTRS)
Ferebee, R. C.; Clayton, J.; Alldredge, D.; Irvine, T.
2008-01-01
Shock testing of aerospace vehicle hardware has presented many challenges over the years due to the high magnitude and short duration of the specifications. Recently, component structural failures have occurred during testing that have not manifested themselves on over 200 Space Shuttle solid rocket booster (SRB) flights (two boosters per flight). It is suspected that the method of specifying shock test criteria may be leaving important information out of the test process. The traditional test criteria specification, the shock response spectrum, can be duplicated by any number of waveforms that may not resemble the actual flight test recorded time history. One method of overcoming this limitation is described herein, which may prove useful for qualifying hardware for the upcoming Constellation Program.
The Shock and Vibration Bulletin. Part 3. Acoustic and Vibration Testing, Impact and Blast
1976-08-01
Research Institute, San Antonio, Texas DESIGN OF A BLAST LOAD GENERATOR FOR OVERPRESSURE TESTING .................................. 261I P. Lieberman...Mathews and B. W. Duggin, Sandia Laboratories, Albuquerque, New Mexico ESTIMATION OF SHIP SHOCK PARAMETERS FOR CONSISTENT DESIGN AND TEST SPECIFICATION G. C...Seattle, Washington COMPONENT TESTING OF LIQUID SHOCK ISOLATORS AND ELASTOMERS IN SUPPORT OF RECENT SHOCK ISOLATION SYSTEM DESIGNS AJ.IP. Ashley, Boeing
NASA Technical Reports Server (NTRS)
1981-01-01
The Space Shuttle LWT is divided into zones and subzones. Zones are designated primarily to assist in determining the applicable specifications. A subzone (general Specification) is available for use when the location of the component is known but component design and weight are not well defined. When the location, weight, and mounting configuration of the component are known, specifications for appropriate subzone weight ranges are available. Along with the specifications are vibration, acoustic, shock, transportation, handling, and acceptance test requirements and procedures. A method of selecting applicable vibration, acoustic, and shock specifications is presented.
NASA Technical Reports Server (NTRS)
1976-01-01
Specifications for vibration, acoustic and shock design for components and subassemblies on the External Tank (ET), Solid Rocket Booster (SRB), and Space Shuttle Main Engine (SSME). Included are vibration, acoustic, shock, transportation, handling, and acceptance test requirements and procedures. The space shuttle ET, SRB, and SSME have been divided into zones and subzones. Zones are designated primarily to assist in determining the applicable specifications. A subzone (General Specification) is available for use when the location of the component is known but component design and weight are not well defined. When the location, weight, and mounting configuration of the component are known, specifications for appropriate subzone weight ranges are available. Criteria for some specific components are also presented.
The development of pyro shock test requirements for Viking Lander Capsule components
NASA Technical Reports Server (NTRS)
Barrett, S.
1975-01-01
The procedure used to derive component-level pyro shock specifications for the Viking Lander Capsule (VLC) is described. Effects of shock path distance and mechanical joints between the device and the point at which the environment is to be estimated are accounted for in the method. The validity of the prediction technique was verified by a series of shock tests on a full-scale structural model of the lander body.
NASA Technical Reports Server (NTRS)
1984-01-01
The vibration, acoustics, and shock design and test criteria for components and subassemblies on the space shuttle solid rocket booster (SRB), lightweight tank (LWT), and main engines (SSME) are presented. Specifications for transportation, handling, and acceptance testing are also provided.
NASA Technical Reports Server (NTRS)
Miller, C. G., III
1975-01-01
Shock shape results for flat-faced cylinders, spheres, and spherically blunted cones in various test gases, along with preliminary results from a calibration study performed in the Langley 6-inch expansion tube are presented. Free-stream velocities from 5 to 7 km/sec are generated at hypersonic conditions with helium, air, and CO2, resulting in normal shock density ratios from 4 to 19. Ideal-gas shock shape predictions, in which an effective ratio of specific heats is used as input, are compared with the measured results. The effect of model diameter is examined to provide insight to the thermochemical state of the flow in the shock layer. The regime for which equilibrium exists in the shock layer for the present air and CO2 test conditions is defined. Test core flow quality, test repeatability, and comparison of measured and predicted expansion-tube flow quantities are discussed.
Effect of ITE and nozzle exit cone erosion on specific impulse of solid rocket motors
NASA Astrophysics Data System (ADS)
Smith-Kent, Randall; Ridder, Jeffrey P.; Loh, Hai-Tien; Abel, Ralph
1993-06-01
Specific impulse loss due to the use of a slowly eroding integral throat entrance, or a throat insert, with a faster eroding nozzle exit cone is studied. It is suggested that an oblique shock wave produced by step-off erosion results in loss of specific impulse. This is studied by use of a shock capturing CFD method. The shock loss predictions for first-stage Peacekeeper and Castor 25 motors are found to match the trends of the test data. This work suggests that a loss mechanism, previously unaccounted, should be considered in the specific impulse prediction procedure for nozzles with step-off exit cone erosion.
Gap Test Calibrations and Their Scaling
NASA Astrophysics Data System (ADS)
Sandusky, Harold
2011-06-01
Common tests for measuring the threshold for shock initiation are the NOL large scale gap test (LSGT) with a 50.8-mm diameter donor/gap and the expanded large scale gap test (ELSGT) with a 95.3-mm diameter donor/gap. Despite the same specifications for the explosive donor and polymethyl methacrylate (PMMA) gap in both tests, calibration of shock pressure in the gap versus distance from the donor scales by a factor of 1.75, not the 1.875 difference in their sizes. Recently reported model calculations suggest that the scaling discrepancy results from the viscoelastic properties of PMMA in combination with different methods for obtaining shock pressure. This is supported by the consistent scaling of these donors when calibrated in water-filled aquariums. Calibrations with water gaps will be provided and compared with PMMA gaps. Scaling for other donor systems will also be provided. Shock initiation data with water gaps will be reviewed.
Shock and vibration tests of a SNAP-8 NaK pump
NASA Technical Reports Server (NTRS)
Stromquist, A. J.; Nelson, R. B.; Hibben, L.
1971-01-01
The pump used for reactor cooling in the SNAP 8 space power system was subjected to the expected vehicle launch vibration, and shock loading in accordance with the SNAP 8 environmental specification. Subsequent disassembly revealed damage to the thrust bearing pins, which should be redesigned and strengthened. The unit was operational, however, when run in a test loop after reassembly.
Jørgensen, U; Bojsen-Møller, F
1989-06-01
The heel pad acts as a shock absorber in walking and in heel-strike running. In some patients, a reduction of its shock-absorbing capacity has been connected to the development of overuse injuries. In this article, the shock absorption of the heel pad as well as external shock absorbers are studied. Individual variation and the effect of trauma and confinement on the heel pad were specifically investigated. Drop tests, imitating heel impacts, were performed on a force plate. The test specimens were cadaver heel pads (n = 10); the shoe sole component consisted of ethyl vinyl acetate (EVA) foam and Sorbothane inserts. The shock absorption was significantly greater in the heel pad than in the external shock absorbers. The mean heel pad shock absorption was 1.1 times for EVA foam and 2.1 times for Sorbothane. The shock absorption varied by as much as 100% between heel pads. Trauma caused a decrease in the heel pad shock absorbency (24%), whereas heel pad confinement increased the shock absorbency (49% in traumatized heel pads and 29.5% in nontraumatized heel pads). These findings provide a biomechanical rationale for the clinical observations of a correlation between heel pad shock absorbency loss and heel strike-dependent overuse injuries. To increase shock absorbency, confinement of the heel pad should be attempted in vivo.
Economou, Katerina; Kotsiliti, Elena; Mintzas, Anastassios C
2017-01-01
The cell-specific expression and intracellular distribution of the small heat protein Hsp27 was investigated in the ovaries and testes of the Mediterranean fruit fly, Ceratitis capitata (medfly), under both normal and heat shock conditions. For this study, a gfp-hsp27 strain was used to detect the chimeric protein by confocal microscopy. In unstressed ovaries, the protein was expressed throughout egg development in a stage and cell-specific pattern. In germarium, the protein was detected in the cytoplasm of the somatic cells in both unstressed and heat-shocked ovaries. In the early stages of oogenesis of unstressed ovaries, the protein was mainly located in the perinuclear region of the germ cells and in the cytoplasm of the follicle cells, while in later stages (9-10) it was distributed in the cytoplasm of the germ cells. In late stages (12-14), the protein changed localization pattern and was exclusively associated with the nuclei of the somatic cells. In heat shocked ovaries, the protein was mainly located in the nuclei of the somatic cells throughout egg chamber's development. In unstressed testes, the chimeric protein was detected in the nuclei of primary spermatocytes and in the filamentous structures of spermatid bundles, called actin cones. Interestingly, after a heat shock, the protein presented the same cell-specific localization pattern as in unstressed testes. Furthermore, the protein was also detected in the nuclei of the epithelial cells of the deferent duct, the accessory glands and the ejaculatory bulb. Our data suggest that medfly Hsp27 may have cell-specific functions, especially in the nucleus. Moreover, the association of this protein to actin cones during spermatid individualization, suggests a possible role of the protein in the formation and stabilization of actin cones. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gap Test Calibrations And Their Scalin
NASA Astrophysics Data System (ADS)
Sandusky, Harold
2012-03-01
Common tests for measuring the threshold for shock initiation are the NOL large scale gap test (LSGT) with a 50.8-mm diameter donor/gap and the expanded large scale gap test (ELSGT) with a 95.3-mm diameter donor/gap. Despite the same specifications for the explosive donor and polymethyl methacrylate (PMMA) gap in both tests, calibration of shock pressure in the gap versus distance from the donor scales by a factor of 1.75, not the 1.875 difference in their sizes. Recently reported model calculations suggest that the scaling discrepancy results from the viscoelastic properties of PMMA in combination with different methods for obtaining shock pressure. This is supported by the consistent scaling of these donors when calibrated in water-filled aquariums. Calibrations and their scaling are compared for other donors with PMMA gaps and for various donors in water.
Recent Progress in Entry Radiation Measurements in the NASA Ames Electric ARC Shock Tube Facility
NASA Technical Reports Server (NTRS)
Cruden, Brett A.
2012-01-01
The Electric Arc Shock Tube (EAST) at NASA Ames Research Center is NASA's only working shock tube capable of obtaining conditions representative of entry in a multitude of planetary atmospheres. The facility is capable of mapping spectroscopic signatures of a wide range of planetary entries from the Vacuum Ultraviolet through Mid-Wave Infrared (120-5500 nm). This paper summarizes the tests performed in EAST for Earth, Mars and Venus entries since 2008, then focuses on a specific test case for CO2/N2 mixtures. In particular, the paper will focus on providing information for the proper interpretation of the EAST data.
Non-intrusive Shock Measurements Using Laser Doppler Vibrometers
NASA Technical Reports Server (NTRS)
Statham, Shannon M.; Kolaini, Ali R.
2012-01-01
Stud mount accelerometers are widely used by the aerospace industry to measure shock environments during hardware qualification. The commonly used contact-based sensors, however, interfere with the shock waves and distort the acquired signature, which is a concern not actively discussed in the community. To alleviate these interference issues, engineers at the Jet Propulsion Laboratory are investigating the use of non-intrusive sensors, specifically Laser Doppler Vibrometers, as alternatives to the stud mounted accelerometers. This paper will describe shock simulation tests completed at the Jet Propulsion Laboratory, compare the measurements from stud mounted accelerometers and Laser Doppler Vibrometers, and discuss the advantages and disadvantages of introducing Laser Doppler Vibrometers as alternative sensors for measuring shock environments.
Stress-induced rise in serum anti-brain autoantibody levels in the rat.
Andrejević, S; Bukilica, M; Dimitrijević, M; Laban, O; Radulovic, J; Kovacevic-Jovanovic, V; Stanojevic, S; Vasiljevic, T; Marković, B M
1997-02-01
Sera from Wistar rats subjected to different stress procedures were tested by ELISA for the presence of autoantibodies with specificity for neuron-specific enolase (NSE) and S100 protein that are preferentially localized in neurons and glia, respectively. Autoantibodies were present in sera of animals before exposure to stress, and raised with age. Anti-NSE and anti-S100 autoantibody levels were increased one day after termination of restraint (2 hours daily, 10 days) and electric tail shock (80 shocks daily, 19 days), and in fifth and tenth week of overcrowding stress. Differences between stressed and control animals were not present one month following restraint and electric tail shock and in twentieth week of overcrowding.
Designing and testing computer based screening engine for severe sepsis/septic shock.
Herasevich, V; Afessa, B; Chute, C G; Gajic, O
2008-11-06
This study addresses the role of a sepsis "sniffer", an automatic screening tool for the timely identification of patients with severe sepsis/septic shock, based electronic medical records. During the two months prospective implementation in a medical intensive care unit, 37 of 320 consecutive patients developed severe sepsis/septic shock. The sniffer demonstrated a sensitivity of 48% and specificity of 86%, and positive predictive value 32%. Further improvements are needed prior to the implementation of sepsis sniffer in clinical practice and research.
Conservative, special-relativistic smoothed particle hydrodynamics
NASA Astrophysics Data System (ADS)
Rosswog, Stephan
2010-11-01
We present and test a new, special-relativistic formulation of smoothed particle hydrodynamics (SPH). Our approach benefits from several improvements with respect to earlier relativistic SPH formulations. It is self-consistently derived from the Lagrangian of an ideal fluid and accounts for the terms that stem from non-constant smoothing lengths, usually called “grad-h terms”. In our approach, we evolve the canonical momentum and the canonical energy per baryon and thus circumvent some of the problems that have plagued earlier formulations of relativistic SPH. We further use a much improved artificial viscosity prescription which uses the extreme local eigenvalues of the Euler equations and triggers selectively on (a) shocks and (b) velocity noise. The shock trigger accurately monitors the relative density slope and uses it to fine-tune the amount of artificial viscosity that is applied. This procedure substantially sharpens shock fronts while still avoiding post-shock noise. If not triggered, the viscosity parameter of each particle decays to zero. None of these viscosity triggers is specific to special relativity, both could also be applied in Newtonian SPH.The performance of the new scheme is explored in a large variety of benchmark tests where it delivers excellent results. Generally, the grad-h terms deliver minor, though worthwhile, improvements. As expected for a Lagrangian method, it performs close to perfect in supersonic advection tests, but also in strong relativistic shocks, usually considered a particular challenge for SPH, the method yields convincing results. For example, due to its perfect conservation properties, it is able to handle Lorentz factors as large as γ = 50,000 in the so-called wall shock test. Moreover, we find convincing results in a rarely shown, but challenging test that involves so-called relativistic simple waves and also in multi-dimensional shock tube tests.
Alay, Eren; Zheng, James Q.; Chandra, Namas
2018-01-01
We exposed a headform instrumented with 10 pressure sensors mounted flush with the surface to a shock wave with three nominal intensities: 70, 140 and 210 kPa. The headform was mounted on a Hybrid III neck, in a rigid configuration to eliminate motion and associated pressure variations. We evaluated the effect of the test location by placing the headform inside, at the end and outside of the shock tube. The shock wave intensity gradually decreases the further it travels in the shock tube and the end effect degrades shock wave characteristics, which makes comparison of the results obtained at three locations a difficult task. To resolve these issues, we developed a simple strategy of data reduction: the respective pressure parameters recorded by headform sensors were divided by their equivalents associated with the incident shock wave. As a result, we obtained a comprehensive set of non-dimensional parameters. These non-dimensional parameters (or amplification factors) allow for direct comparison of pressure waveform characteristic parameters generated by a range of incident shock waves differing in intensity and for the headform located in different locations. Using this approach, we found a correlation function which allows prediction of the peak pressure on the headform that depends only on the peak pressure of the incident shock wave (for specific sensor location on the headform), and itis independent on the headform location. We also found a similar relationship for the rise time. However, for the duration and impulse, comparable correlation functions do not exist. These findings using a headform with simplified geometry are baseline values and address a need for the development of standardized parameters for the evaluation of personal protective equipment (PPE) under shock wave loading. PMID:29894521
Effects of oxytocin on background anxiety in rats with high or low baseline startle
Ayers, Luke; Agostini, Andrew; Schulkin, Jay; Rosen, Jeffrey B.
2016-01-01
Rationale Oxytocin has antianxiety properties in humans and rodents. However, the antianxiety effects have been variable. Objectives To reduce variability and strengthen to the antianxiety effect of oxytocin in fear-potentiated startle, two experiments were performed. First, different amounts of light-shock pairings were given to determine the optimal levels of cue-specific fear conditioning and non-predictable startle (background anxiety). Second, the antianxiety effects of oxytocin were examined in rats with high and low pre-fear conditioning baseline startle to determine if oxytocin differentially affects high and low trait anxiety rats. Methods Baseline pre-fear conditioning startle responses were first measured. Rats then received 1, 5 or 10 light-shock pairings. Fear-potentiated startle was then tested with two trial types: light-cued startle and non-cued startle trials. In the second experiment, rats fear conditioned with 10 light-shock pairings were administered either saline or oxytocin before a fear-potentiated startle test. Rats were categorized as low or high startlers by their pre-fear conditioning startle amplitude. Results Ten shock-pairings produced the largest non-cued startle responses (background anxiety), without increasing cue-specific fear-potentiated startle compared to 1 and 5 light-shock pairings. Cue-specific fear-potentiated startle was unaffected by oxytocin. Oxytocin reduced background anxiety only in rats with low pre-fear startle responses. Conclusions Oxytocin has population selective antianxiety effects on non-cued unpredictable threat, but only in rats with low pre-fear baseline startle responses. The low startle responses are reminiscent of humans with low startle responses and high trait anxiety. PMID:27004789
Comparison of three large-eddy simulations of shock-induced turbulent separation bubbles
NASA Astrophysics Data System (ADS)
Touber, Emile; Sandham, Neil D.
2009-12-01
Three different large-eddy simulation investigations of the interaction between an impinging oblique shock and a supersonic turbulent boundary layer are presented. All simulations made use of the same inflow technique, specifically aimed at avoiding possible low-frequency interferences with the shock/boundary-layer interaction system. All simulations were run on relatively wide computational domains and integrated over times greater than twenty five times the period of the most commonly reported low-frequency shock-oscillation, making comparisons at both time-averaged and low-frequency-dynamic levels possible. The results confirm previous experimental results which suggested a simple linear relation between the interaction length and the oblique-shock strength if scaled using the boundary-layer thickness and wall-shear stress. All the tested cases show evidences of significant low-frequency shock motions. At the wall, energetic low-frequency pressure fluctuations are observed, mainly in the initial part of interaction.
Rompe, Jan D; Furia, John; Cacchio, Angelo; Schmitz, Christoph; Maffulli, Nicola
2015-12-01
Whether shock wave therapy or shock wave therapy combined with plantar fascia-specific stretching is more efficient in treating chronic plantar heel pain remains unclear. The aim of the study was to test the null hypothesis of no difference of these two forms of management for patients who had unilateral plantar fasciopathy for a minimum duration of twelve months and which had failed at least three other forms of treatment. One hundred and fifty-two patients with chronic plantar fasciopathy were assigned to receive repetitive low-energy radial shock-wave therapy without local anesthesia, administered weekly for three weeks (Group 1, n = 73) or to receive the identical shock wave treatment and to perform an eight-week plantar fascia-specific stretching program (Group 2, n = 79). All patients completed the nine-item pain subscale of the validated Foot Function Index and a subject-relevant outcome questionnaire. Patients were evaluated at baseline, and at two, four, and twenty-four months after baseline. The primary outcome measures were a mean change in the Foot Function Index sum score at two months after baseline, a mean change in item 2 (pain during the first steps of walking in the morning) on this Index, and satisfaction with treatment. No difference in mean age, sex, weight or duration of symptoms was found between the groups at baseline. At two months after baseline, the Foot Function Index sum score showed significantly greater changes for the patients managed with shock-wave therapy plus plantar fascia-specific stretching than those managed with shock-wave therapy alone (p < 0.001), as well as individually for item 2 (p < 0.001). Twenty-four patients in Group 1 (32%) versus forty-seven patients in Group 2 (59%) were satisfied with the treatment (p < 0.001). Significant differences persisted at four months, but not at twenty-four months. A program of manual stretching exercises specific to the plantar fascia in combination with repetitive low-energy radial shock-wave therapy is more efficient than repetitive low-energy radial shock-wave therapy alone for the treatment of chronic symptoms of proximal plantar fasciopathy. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.
Capp, Roberta; Chang, Yuchiao; Brown, David F M
2012-01-01
Diagnosis of source of infection in patients with septic shock and severe sepsis needs to be done rapidly and accurately to guide appropriate antibiotic therapy. The purpose of this study is to evaluate the accuracy of two diagnostic studies used in the emergency department (ED) to guide diagnosis of source of infection in this patient population. This was a retrospective review of ED patients admitted to an intensive care unit with the diagnosis of severe sepsis or septic shock over a 12-month period. We evaluated accuracy of initial microscopic urine analysis testing and chest radiography in the diagnosis of urinary tract infections and pneumonia, respectively. Of the 1400 patients admitted to intensive care units, 170 patients met criteria for severe sepsis and septic shock. There were a total of 47 patients diagnosed with urinary tract infection, and their initial microscopic urine analysis with counts>10 white blood cells were 80% sensitive (95% confidence interval [CI] .66-.90) and 66% specific (95% CI .52-.77) for the positive final urine culture result. There were 85 patients with final diagnosis of pneumonia. The sensitivity and specificity of initial chest radiography were, respectively, 58% (95% CI .46-.68) and 91% (95% CI .81-.95) for the diagnosis of pneumonia. In patients with severe sepsis and septic shock, the chest radiograph has low sensitivity of 58%, whereas urine analysis has a low specificity of 66%. Given the importance of appropriate antibiotic selection and optimal but not perfect test characteristics, this population may benefit from broad-spectrum antibiotics, rather than antibiotics tailored toward a particular source of infection. Published by Elsevier Inc.
Non-specific protein modifications by a phytochemical induce heat shock response for self-defense.
Ohnishi, Kohta; Ohkura, Shinya; Nakahata, Erina; Ishisaka, Akari; Kawai, Yoshichika; Terao, Junji; Mori, Taiki; Ishii, Takeshi; Nakayama, Tsutomu; Kioka, Noriyuki; Matsumoto, Shinya; Ikeda, Yasutaka; Akiyama, Minoru; Irie, Kazuhiro; Murakami, Akira
2013-01-01
Accumulated evidence shows that some phytochemicals provide beneficial effects for human health. Recently, a number of mechanistic studies have revealed that direct interactions between phytochemicals and functional proteins play significant roles in exhibiting their bioactivities. However, their binding selectivities to biological molecules are considered to be lower due to their small and simple structures. In this study, we found that zerumbone, a bioactive sesquiterpene, binds to numerous proteins with little selectivity. Similar to heat-denatured proteins, zerumbone-modified proteins were recognized by heat shock protein 90, a constitutive molecular chaperone, leading to heat shock factor 1-dependent heat shock protein induction in hepa1c1c7 mouse hepatoma cells. Furthermore, oral administration of this phytochemical up-regulated heat shock protein expressions in the livers of Sprague-Dawley rats. Interestingly, pretreatment with zerumbone conferred a thermoresistant phenotype to hepa1c1c7 cells as well as to the nematode Caenorhabditis elegans. It is also important to note that several phytochemicals with higher hydrophobicity or electrophilicity, including phenethyl isothiocyanate and curcumin, markedly induced heat shock proteins, whereas most of the tested nutrients did not. These results suggest that non-specific protein modifications by xenobiotic phytochemicals cause mild proteostress, thereby inducing heat shock response and leading to potentiation of protein quality control systems. We considered these bioactivities to be xenohormesis, an adaptation mechanism against xenobiotic chemical stresses. Heat shock response by phytochemicals may be a fundamental mechanism underlying their various bioactivities.
Non-Specific Protein Modifications by a Phytochemical Induce Heat Shock Response for Self-Defense
Ohnishi, Kohta; Ohkura, Shinya; Nakahata, Erina; Ishisaka, Akari; Kawai, Yoshichika; Terao, Junji; Mori, Taiki; Ishii, Takeshi; Nakayama, Tsutomu; Kioka, Noriyuki; Matsumoto, Shinya; Ikeda, Yasutaka; Akiyama, Minoru; Irie, Kazuhiro; Murakami, Akira
2013-01-01
Accumulated evidence shows that some phytochemicals provide beneficial effects for human health. Recently, a number of mechanistic studies have revealed that direct interactions between phytochemicals and functional proteins play significant roles in exhibiting their bioactivities. However, their binding selectivities to biological molecules are considered to be lower due to their small and simple structures. In this study, we found that zerumbone, a bioactive sesquiterpene, binds to numerous proteins with little selectivity. Similar to heat-denatured proteins, zerumbone-modified proteins were recognized by heat shock protein 90, a constitutive molecular chaperone, leading to heat shock factor 1-dependent heat shock protein induction in hepa1c1c7 mouse hepatoma cells. Furthermore, oral administration of this phytochemical up-regulated heat shock protein expressions in the livers of Sprague-Dawley rats. Interestingly, pretreatment with zerumbone conferred a thermoresistant phenotype to hepa1c1c7 cells as well as to the nematode Caenorhabditis elegans. It is also important to note that several phytochemicals with higher hydrophobicity or electrophilicity, including phenethyl isothiocyanate and curcumin, markedly induced heat shock proteins, whereas most of the tested nutrients did not. These results suggest that non-specific protein modifications by xenobiotic phytochemicals cause mild proteostress, thereby inducing heat shock response and leading to potentiation of protein quality control systems. We considered these bioactivities to be xenohormesis, an adaptation mechanism against xenobiotic chemical stresses. Heat shock response by phytochemicals may be a fundamental mechanism underlying their various bioactivities. PMID:23536805
Pancreatic injury in patients with septic shock: A literature review
Chaari, Anis; Abdel Hakim, Karim; Bousselmi, Kamel; Etman, Mahmoud; El Bahr, Mohamed; El Saka, Ahmed; Hamza, Eman; Ismail, Mohamed; Khalil, Elsayed Mahmoud; Kauts, Vipin; Casey, William Francis
2016-01-01
Sepsis and septic shock are life threatening condition associated with high mortality rate in critically-ill patients. This high mortality is mainly related to the inadequacy between oxygen delivery and cellular demand leading to the onset of multiorgan dysfunction. Whether this multiorgan failure affect the pancreas is not fully investigated. In fact, pancreatic injury may occur because of ischemia, overwhelming inflammatory response, oxidative stress, cellular apoptosis and/or metabolic derangement. Increased serum amylase and/or lipase levels are common in patients with septic shock. However, imaging test rarely reveal significant pancreatic damage. Whether pancreatic dysfunction does affect the prognosis of patients with septic shock or not is still a matter of debate. In fact, only few studies with limited sample size assessed the clinical relevance of the pancreatic injury in this group of patients. In this review, we aimed to describe the epidemiology and the physiopathology of pancreatic injury in septic shock patients, to clarify whether it requires specific management and to assess its prognostic value. Our main finding is that pancreatic injury does not significantly affect the outcome in septic shock patients. Hence, increased serum pancreatic enzymes without clinical features of acute pancreatitis do not require further imaging investigations and specific therapeutic intervention. PMID:27559431
Onion-shell model of cosmic ray acceleration in supernova remnants
NASA Technical Reports Server (NTRS)
Bogdan, T. J.; Volk, H. J.
1983-01-01
A method is devised to approximate the spatially averaged momentum distribution function for the accelerated particles at the end of the active lifetime of a supernova remnant. The analysis is confined to the test particle approximation and adiabatic losses are oversimplified, but unsteady shock motion, evolving shock strength, and non-uniform gas flow effects on the accelerated particle spectrum are included. Monoenergetic protons are injected at the shock front. It is found that the dominant effect on the resultant accelerated particle spectrum is a changing spectral index with shock strength. High energy particles are produced in early phases, and the resultant distribution function is a slowly varying power law over several orders of magnitude, independent of the specific details of the supernova remnant.
Test report: Shock test of the electron/proton spectrometer structural test unit
NASA Technical Reports Server (NTRS)
Vincent, D. L.
1972-01-01
A shock test of the electron-proton spectrometer structural test unit was conducted. The purpose of the shock test was to verify the structural integrity of the electron-spectrometer design and to obtain data on the shock response of the electronics and electronic housing. The test equipment is described and typical shock response data are provided.
SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*SPRINGS, (*SHOCK(MECHANICS), REDUCTION), TORSION BARS, ELASTOMERS, DAMPING, EQUATIONS OF MOTION, MODEL TESTS, TEST METHODS, NUCLEAR EXPLOSIONS, HARDENING.
Xu, Jia-Jia; Zhang, Zheng-Zhe; Ji, Zheng-Quan; Zhu, Ying-Hong; Qi, Si-Yu; Tang, Chong-Jian; Jin, Ren-Cun
2018-06-01
The stability and resilience of an anaerobic ammonium oxidation (anammox) system under transient nanoscale Zero-Valent Iron (nZVI) (50, 75 and 100 mg L -1 ), hydraulic shock (2-fold increase in flow rate) and their combination were studied in an up-flow anaerobic sludge blanket reactor. The response to the shock loads can be divided into three phases i.e. shock, inertial and recovery periods. The effects of the shock loads were directly proportional to the shock intensity. The effluent quality was gradually deteriorated after exposure to high nZVI level (100 mg L -1 ) for 2 h. The higher effluent sensitivity index and response caused by unit intensity of shock was observed under hydraulic and combined shocks. Notably, the specific anammox activity and the content of heme c were considerably reduced during the shock phase and the maximum loss rates were about 30.5% and 24.8%, respectively. Nevertheless, the extracellular polymeric substance amount in the shock phase was enhanced in varying degrees and variation tendency was disparate at all the tested shock loads. These results suggested that robustness of the anammox system was dependent on the magnitude shocks applied and the reactor resistance can be improved by reducing hydraulic retention time with the increase of nZVI concentration under these circumstances. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dynamic testing of airplane shock-absorbing struts
NASA Technical Reports Server (NTRS)
Langer, P; Thome, W
1932-01-01
Measurement of perpendicular impacts of a landing gear with different shock-absorbing struts against the drum testing stand. Tests were made with pneumatic shock absorbers having various degrees of damping, liquid shock absorbers, steel-spring shock absorbers and rigid struts. Falling tests and rolling tests. Maximum impact and gradual reduction of the impacts in number and time in the falling tests. Maximum impact and number of weaker impacts in rolling tests.
Shock Isolation Elements Testing for High Input Loadings. Volume II. Foam Shock Isolation Elements.
SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*EXPANDED PLASTICS, (*SHOCK(MECHANICS), REDUCTION), TEST METHODS, SHOCK WAVES, STRAIN(MECHANICS), LOADS(FORCES), MATHEMATICAL MODELS, NUCLEAR EXPLOSIONS, HARDENING.
Characterization for the performance of capacitive switches activated by mechanical shock.
Younis, Mohammad I; Alsaleem, Fadi M; Miles, Ronald; Su, Quang
2007-01-01
This paper presents experimental and theoretical investigation of a new concept of switches (triggers) that are actuated at or beyond a specific level of mechanical shock or acceleration. The principle of operation of the switches is based on dynamic pull-in instability induced by the combined interaction between electrostatic and mechanical shock forces. These switches can be tuned to be activated at various shock and acceleration thresholds by adjusting the DC voltage bias. Two commercial off-the-shelf capacitive accelerometers operating in air are tested under mechanical shock and electrostatic loading. A single-degree-of-freedom model accounting for squeeze-film damping, electrostatic forces, and mechanical shock is utilized for the theoretical investigation. Good agreement is found between simulation results and experimental data. Our results indicate that designing these new switches to respond quasi-statically to mechanical shock makes them robust against variations in shock shape and duration. More importantly, quasi-static operation makes the switches insensitive to variations in damping conditions. This can be promising to lower the cost of packaging for these switches since they can operate in atmospheric pressure with no hermetic sealing or costly package required.
Characterization for the performance of capacitive switches activated by mechanical shock
Younis, Mohammad I.; Alsaleem, Fadi M; Miles, Ronald; Su, Quang
2009-01-01
This paper presents experimental and theoretical investigation of a new concept of switches (triggers) that are actuated at or beyond a specific level of mechanical shock or acceleration. The principle of operation of the switches is based on dynamic pull-in instability induced by the combined interaction between electrostatic and mechanical shock forces. These switches can be tuned to be activated at various shock and acceleration thresholds by adjusting the DC voltage bias. Two commercial off-the-shelf capacitive accelerometers operating in air are tested under mechanical shock and electrostatic loading. A single-degree-of-freedom model accounting for squeeze-film damping, electrostatic forces, and mechanical shock is utilized for the theoretical investigation. Good agreement is found between simulation results and experimental data. Our results indicate that designing these new switches to respond quasi-statically to mechanical shock makes them robust against variations in shock shape and duration. More importantly, quasi-static operation makes the switches insensitive to variations in damping conditions. This can be promising to lower the cost of packaging for these switches since they can operate in atmospheric pressure with no hermetic sealing or costly package required. PMID:21720493
FUEL ASSEMBLY SHAKER TEST SIMULATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klymyshyn, Nicholas A.; Sanborn, Scott E.; Adkins, Harold E.
This report describes the modeling of a PWR fuel assembly under dynamic shock loading in support of the Sandia National Laboratories (SNL) shaker test campaign. The focus of the test campaign is on evaluating the response of used fuel to shock and vibration loads that a can occur during highway transport. Modeling began in 2012 using an LS-DYNA fuel assembly model that was first created for modeling impact scenarios. SNL’s proposed test scenario was simulated through analysis and the calculated results helped guide the instrumentation and other aspects of the testing. During FY 2013, the fuel assembly model was refinedmore » to better represent the test surrogate. Analysis of the proposed loads suggested the frequency band needed to be lowered to attempt to excite the lower natural frequencies of the fuel assembly. Despite SNL’s expansion of lower frequency components in their five shock realizations, pretest predictions suggested a very mild dynamic response to the test loading. After testing was completed, one specific shock case was modeled, using recorded accelerometer data to excite the model. Direct comparison of predicted strain in the cladding was made to the recorded strain gauge data. The magnitude of both sets of strain (calculated and recorded) are very low, compared to the expected yield strength of the Zircaloy-4 material. The model was accurate enough to predict that no yielding of the cladding was expected, but its precision at predicting micro strains is questionable. The SNL test data offers some opportunity for validation of the finite element model, but the specific loading conditions of the testing only excite the fuel assembly to respond in a limited manner. For example, the test accelerations were not strong enough to substantially drive the fuel assembly out of contact with the basket. Under this test scenario, the fuel assembly model does a reasonable job of approximating actual fuel assembly response, a claim that can be verified through direct comparison of model results to recorded test results. This does not offer validation for the fuel assembly model in all conceivable cases, such as high kinetic energy shock cases where the fuel assembly might lift off the basket floor to strike to basket ceiling. This type of nonlinear behavior was not witnessed in testing, so the model does not have test data to be validated against.a basis for validation in cases that substantially alter the fuel assembly response range. This leads to a gap in knowledge that is identified through this modeling study. The SNL shaker testing loaded a surrogate fuel assembly with a certain set of artificially-generated time histories. One thing all the shock cases had in common was an elimination of low frequency components, which reduces the rigid body dynamic response of the system. It is not known if the SNL test cases effectively bound all highway transportation scenarios, or if significantly greater rigid body motion than was tested is credible. This knowledge gap could be filled through modeling the vehicle dynamics of a used fuel conveyance, or by collecting acceleration time history data from an actual conveyance under highway conditions.« less
Mild neurotrauma indicates a range-specific pressure response to low level shock wave exposure.
Vandevord, Pamela J; Bolander, Richard; Sajja, Venkata Siva Sai Sujith; Hay, Kathryn; Bir, Cynthia A
2012-01-01
Identifying the level of overpressure required to create physiological deficits is vital to advance prevention, diagnostic, and treatment strategies for individuals exposed to blasts. In this study, a rodent model of primary blast neurotrauma was employed to determine the pressure at which acute neurological alterations occurred. Rats were exposed to a single low intensity shock wave at a pressure of 0, 97, 117, or 153 kPa. Following exposure, rats were assessed for acute cognitive alterations using the Morris water maze and motor dysfunction using the horizontal ladder test. Subsequently, histological analyses of three brain regions (primary motor cortex, the hippocampal dentate gyrus region, and the posteromedial cortical amygdala) were conducted. Histological parameters included measuring the levels of glial fibrillary acidic protein (GFAP) to identify astrocyte activation, cleaved caspase-3 for early apoptosis identification and Fluoro-Jade B (FJB) which labels degenerating neurons within the brain tissue. The results demonstrated that an exposure to a single 117 kPa shock wave revealed a significant change in overall neurological deficits when compared to controls and the other pressures. The animals showed significant alterations in water maze parameters and a histological increase in the number of GFAP, caspase-3, and FJB-positive cells. It is suggested that when exposed to a low level shock wave, there may be a biomechanical response elicited by a specific pressure range which can cause low level neurological deficits within the rat. These data indicate that neurotrauma induced from a shock wave may lead to cognitive deficits in short-term learning and memory of rats. Additional histological evidence supports significant and diffuse glial activation and cellular damage. Further investigation into the biomechanical aspects of shock wave exposure is required to elucidate this pressure range-specific phenomenon.
On the dynamic behavior of three readily available soft tissue simulants
NASA Astrophysics Data System (ADS)
Appleby-Thomas, G. J.; Hazell, P. J.; Wilgeroth, J. M.; Shepherd, C. J.; Wood, D. C.; Roberts, A.
2011-04-01
Plate-impact experiments have been employed to investigate the dynamic response of three readily available tissue simulants for ballistic purposes: gelatin, ballistic soap (both subdermal tissue simulants), and lard (adipose layers). All three materials exhibited linear Hugoniot equations-of-state in the US-uP plane. While gelatin behaved hydrodynamically under shock, soap and lard appeared to strengthen under increased loading. Interestingly, the simulants under test appeared to strengthen in a material-independent manner on shock arrival (tentatively attributed to a rearrangement of the amorphous molecular chains under loading). However, material-specific behavior was apparent behind the shock. This behavior appeared to correlate with microstructural complexity, suggesting a steric hindrance effect.
A Statistical Approach to Establishing Subsystem Environmental Test Specifications
NASA Technical Reports Server (NTRS)
Keegan, W. B.
1974-01-01
Results are presented of a research task to evaluate structural responses at various subsystem mounting locations during spacecraft level test exposures to the environments of mechanical shock, acoustic noise, and random vibration. This statistical evaluation is presented in the form of recommended subsystem test specifications for these three environments as normalized to a reference set of spacecraft test levels and are thus suitable for extrapolation to a set of different spacecraft test levels. The recommendations are dependent upon a subsystem's mounting location in a spacecraft, and information is presented on how to determine this mounting zone for a given subsystem.
De Maria, Elia; Borghi, Ambra; Bonetti, Lorenzo; Fontana, Pier Luigi; Cappelli, Stefano
2016-01-01
AIM To describe our experience with shock testing for the evaluation of patients with Riata™ leads. METHODS Among 51 patients with normal baseline electrical parameters, 20 died during follow-up. Of the remaining 31 patients, 15 underwent the test: In 10 cases a defibrillation testing with ventricular fibrillation (VF) induction and in 5 cases a R-wave-synchronized shock (> 20 J, without inducing VF). The test was performed under sedation with Midazolam. RESULTS Twelve patients (80%) had a normal behavior during shock testing: In 8 cases induced VF was correctly detected and treated; in 4 cases of R-wave-synchronized shock electrical parameters remained stable and normal. Three patients (20%) failed the test. One patient with externalized conductors showed a sudden drop of high-voltage impedance (< 10 Ohm) after a 25 J R-wave-synchronized shock. Two other patients with externalized conductors, undergoing defibrillation testing, showed a short-circuit during shock delivery and the implantable cardioverter defibrillator was unable to interrupt VF. CONCLUSION In Riata™ leads the delivery of a low current during routine measurement of high-voltage impedance may not reveal a small short circuit, that can only be evident by attempting to deliver a true shock, either for spontaneous arrhythmias or in the context of a shock testing. PMID:27957252
Vazquez, Lauren D; Conti, Jamie B; Sears, Samuel F
2010-09-01
Significant rates of psychological distress occur in implantable cardioverter defibrillator (ICD) patients. Research has demonstrated that women are particularly at risk for developing distress and warrant psychosocial attention. The major objectives were to implement and test the effectiveness of a female-specific psychosocial group intervention on disease-specific quality of life outcomes in outpatient female ICD recipients versus a wait-list control group. Twenty-nine women were recruited for the study. Fourteen women were randomized to the intervention group and participated in a psychosocial intervention focused on female-specific issues; 15 were randomized to the wait-list control group. All women completed individual psychological batteries at baseline and at 1-month follow-up measuring shock anxiety and device acceptance. Pre-post measures of shock anxiety demonstrated a significant time by group interaction effect with the intervention group having a significantly greater decrease (Pillai's trace = 5.58, P = 0.026). A significant interaction effect (Pillai's trace = 5.05, P = 0.046) was found, such that women under the age of 50 experienced greater reduction in shock anxiety than their middle-aged cohorts. Pre-post measures of device acceptance revealed a significant time by group interaction effect with the intervention group having significantly greater increases (Pillai's trace = 5.80, P = 0.023). Structured interventions for female ICD patients involving ICD-specific education, cognitive behavioral therapy strategies, and group social support provide improvements in shock anxiety and device acceptance at 1-month re-assessment. Young women appear to be an at-risk subgroup of this population and may experience more benefit from psychosocial treatment targeting device-specific concerns. ©2010, The Authors. Journal compilation ©2010 Wiley Periodicals, Inc.
Peddareddy, Lakshmi; Merchant, Faisal M; Leon, Angel R; Smith, Paige; Patel, Akshar; El-Chami, Mikhael F
2018-06-12
Defibrillation threshold (DFT) testing is recommended with the subcutaneous ICD (SICD). To describe first shock efficacy for appropriate SICD therapies stratified by the presence of implant DFT testing. We reviewed all patients receiving SICDs at our institution and stratified them based on whether implant DFT testing was performed. Appropriate shocks were reviewed to see if ventricular tachycardia/ventricular fibrillation (VT/VF) terminated with a single shock. First shock efficacy was stratified by implant DFT status. 178 patients implanted with SICDs and followed in our center were included in this study. Of these, 135 (76 %) underwent DFT testing (DFT (+) group). In the DFT (+) 80 appropriate shocks were needed to treat 69 episodes of VT/VF. The first shock was effective in 61 out of 69 episodes (88.4 %), whereas multiple shocks were required to terminate VT/VF in the remaining 8 episodes. Among 43 patients without implant DFT testing (DFT (-) group), 20 appropriate shocks to treat 17 episodes of VT/VF occurred in 7 patients. VT/VF was successfully terminated with the first shock in 16 out of 17 episodes (first shock efficacy 94.1 %). There was no significant difference in first shock effectiveness between those with and without implant DFT testing (p = 0.97). A strategy that omits DFT testing at implant did not appear to compromise the effictiveness of the SICD. These data suggest that routine DFT testing at SICD implant might not be necessary. Randomized trials are needed to confirm this finding. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Probabilistic thermal-shock strength testing using infrared imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wereszczak, A.A.; Scheidt, R.A.; Ferber, M.K.
1999-12-01
A thermal-shock strength-testing technique has been developed that uses a high-resolution, high-temperature infrared camera to capture a specimen's surface temperature distribution at fracture. Aluminum nitride (AlN) substrates are thermally shocked to fracture to demonstrate the technique. The surface temperature distribution for each test and AlN's thermal expansion are used as input in a finite-element model to determine the thermal-shock strength for each specimen. An uncensored thermal-shock strength Weibull distribution is then determined. The test and analysis algorithm show promise as a means to characterize thermal shock strength of ceramic materials.
NASA Technical Reports Server (NTRS)
Keegan, W. B.
1974-01-01
In order to produce cost effective environmental test programs, the test specifications must be realistic and to be useful, they must be available early in the life of a program. This paper describes a method for achieving such specifications for subsystems by utilizing the results of a statistical analysis of data acquired at subsystem mounting locations during system level environmental tests. The paper describes the details of this statistical analysis. The resultant recommended levels are a function of the subsystems' mounting location in the spacecraft. Methods of determining this mounting 'zone' are described. Recommendations are then made as to which of the various problem areas encountered should be pursued further.
Tesmoingt, Chloe; Lidove, Olivier; Reberga, Axele; Thetis, Marguerite; Ackaert, Chloe; Nicaise, Pascale; Arnaud, Philippe; Papo, Thomas
2009-11-01
To report a severe adverse event related to enzyme replacement therapy with agalsidase in an hemizygous male patient treated for Fabry disease. Retrospective analysis of clinical, radiological and biochemical data in a patient who suffered adverse events related to both agalsidase alfa and agalsidase beta treatments. A hemizygous male patient was first treated for Fabry disease with agalsidase alfa. After more than 1 year of therapy, infusion-related symptoms necessitated systemic steroids and antihistaminic therapy. Decline in kidney function prompted a switch for agalsidase beta. Anaphylactoid shock occurred after the second infusion. No serum IgE antibodies were disclosed. Skin-test reactivity to agalsidase beta was negative. Following a published rechallenge infusion protocol, agalsidase beta was reintroduced, leading to a second anaphylactoid shock episode. Enzyme replacement therapy was stopped and the patient was treated with symptomatic therapy only. This case was referred to the pharmacovigilance department. The negativity of immunological tests (specific anti-agalsidase IgE antibodies and skin tests) does not rule out the risk of repeated anaphylactoid shock following agalsidase infusion.
Tesmoingt, Chloe; Lidove, Olivier; Reberga, Axele; Thetis, Marguerite; Ackaert, Chloe; Nicaise, Pascale; Arnaud, Philippe; Papo, Thomas
2009-01-01
AIMS To report a severe adverse event related to enzyme replacement therapy with agalsidase in an hemizygous male patient treated for Fabry disease. METHODS Retrospective analysis of clinical, radiological and biochemical data in a patient who suffered adverse events related to both agalsidase alfa and agalsidase beta treatments. RESULTS A hemizygous male patient was first treated for Fabry disease with agalsidase alfa. After more than 1 year of therapy, infusion-related symptoms necessitated systemic steroids and antihistaminic therapy. Decline in kidney function prompted a switch for agalsidase beta. Anaphylactoid shock occurred after the second infusion. No serum IgE antibodies were disclosed. Skin-test reactivity to agalsidase beta was negative. Following a published rechallenge infusion protocol, agalsidase beta was reintroduced, leading to a second anaphylactoid shock episode. Enzyme replacement therapy was stopped and the patient was treated with symptomatic therapy only. This case was referred to the pharmacovigilance department. CONCLUSION The negativity of immunological tests (specific anti-agalsidase IgE antibodies and skin tests) does not rule out the risk of repeated anaphylactoid shock following agalsidase infusion. PMID:19917001
Shock tunnel studies of scramjet phenomena
NASA Technical Reports Server (NTRS)
Morgan, R. G.; Paull, A.; Stalker, R. J.; Jacobs, P.; Morris, N.; Stringer, I.; Brescianini, C.
1988-01-01
Commissioning of the new T4 shock tunnel at the University of Queensland implied that it was no longer necessary to focus the work of the research group about an annual test series conducted in the T3 shock tunnel in Canberra. Therefore, it has been possible to organize a group for work to proceed along lines such that particular personnel are associated with particular project areas. The format of this report consists of a series of reports on specific project areas, with a brief general introduction commenting on each report. The introduction is structured by project areas, with the title of the relevant report stated under the project area heading. The reports themselves follow in the order of the project area headings.
Rompe, Jan D; Cacchio, Angelo; Weil, Lowell; Furia, John P; Haist, Joachim; Reiners, Volker; Schmitz, Christoph; Maffulli, Nicola
2010-11-03
Whether plantar fascia-specific stretching or shock-wave therapy is effective as an initial treatment for proximal plantar fasciopathy remains unclear. The aim of this study was to test the null hypothesis of no difference in the effectiveness of these two forms of treatment for patients who had unilateral plantar fasciopathy for a maximum duration of six weeks and which had not been treated previously. One hundred and two patients with acute plantar fasciopathy were randomly assigned to perform an eight-week plantar fascia-specific stretching program (Group I, n = 54) or to receive repetitive low-energy radial shock-wave therapy without local anesthesia, administered weekly for three weeks (Group II, n = 48). All patients completed the seven-item pain subscale of the validated Foot Function Index and a patient-relevant outcome questionnaire. Patients were evaluated at baseline and at two, four, and fifteen months after baseline. The primary outcome measures were a mean change in the Foot Function Index sum score at two months after baseline, a mean change in item 2 (pain during the first few steps of walking in the morning) on this index, and satisfaction with treatment. No difference in mean age, sex, weight, or duration of symptoms was found between the groups at baseline. At two months after baseline, the Foot Function Index sum score showed significantly greater changes for the patients managed with plantar fascia-specific stretching than for those managed with shock-wave therapy (p < 0.001), as well as individually for item 2 (p = 0.002). Thirty-five patients (65%) in Group I versus fourteen patients (29%) in Group II were satisfied with the treatment (p < 0.001). These findings persisted at four months. At fifteen months after baseline, no significant between-group difference was measured. A program of manual stretching exercises specific to the plantar fascia is superior to repetitive low-energy radial shock-wave therapy for the treatment of acute symptoms of proximal plantar fasciopathy.
Essays on the behavior of the oil market and OPEC
NASA Astrophysics Data System (ADS)
Algudhea, Salim
This dissertation consists of three essays. The first essay is mainly concerned with investigating the risk-responsive behavior of OPEC members. Economic theory suggests that producers respond to the risk of volatile price by lowering production level. In the case of OPEC, the risk of the volatility in the price of crude oil does not seem to be a key determinant in the production decision-making process. Engineering constraints, data frequency, and political consideration may be the main causes of such a result. In the second essay, we tested the presence of the asymmetric adjustment in the cheating behavior as a result of crude oil price shocks. We utilize a set of cointegration and error correction methods that do not assume a linear adjustment to test whether cheaters within OPEC respond more to positive or negative crude oil price shocks. We conclude that cheaters respond more to negative shocks than positive shocks in oil price. The inelastic nature of demand for oil seems to play a crucial role in such asymmetric behavior. When there is a negative price shock, OPEC producers compensate for the loss in revenue by overproducing (i.e. cheat). Yet, if there is a positive shock in the price of crude oil, OPEC producers have less incentive to overproduce because of the inelastic demand for oil. The third essay is concerned with testing for the asymmetric adjustment in gasoline prices in the U.S. We consider a Momentum Threshold Autoregressive (MTAR) process to test for the asymmetric adjustment in all of the possible stages that a gallon of gasoline goes through in order to find the source of asymmetry. Then, we examine the dynamics of gasoline prices using asymmetric error correction models based on the MTAR specifications. We find the asymmetric adjustment present in all stages. The asymmetry in the retail stage seems to be the result of insufficient demand faced by retailers.
1992-03-01
Specific goals were: these conditions was evident at the 1977 meeting in the shock oscillation calculations of Magnus and Yoshihara (Ref 7) and* Application... Magnus . for the minimum flutter speed at M = 0.96 and a favorable, - A case of self-excited shock oscillation about a 14% though unconservarive, agreement...Computational Test cases for Type 11 flows should be es- 7. Magnus , R. and Yoshihara, H.: The Transonic Oscillating tablished (unsteady separating and
Magnetohydrodynamic Jump Conditions for Oblique Relativistic Shocks with Gyrotropic Pressure
NASA Technical Reports Server (NTRS)
Double, Glen P.; Baring, Matthew G.; Jones, Frank C.; Ellison, Donald C.
2003-01-01
Shock jump conditions, i.e., the specification of the downstream parameters of the gas in terms of the upstream parameters, are obtained for steady-state, plane shocks with oblique magnetic fields and arbitrary flow speeds. This is done by combining the continuity of particle number flux and the electromagnetic boundary conditions at the shock with the magnetohydrodynamic conservation laws derived from the stress-energy tensor. For ultrarelativistic and nonrelativistic shocks, the jump conditions may be solved analytically. For mildly relativistic shocks, analytic solutions are obtained for isotropic pressure using an approximation for the adiabatic index that is valid in high sonic Mach number cases. Examples assuming isotropic pressure illustrate how the shock compression ratio depends on the shock speed and obliquity. In the more general case of gyrotropic pressure, the jump conditions cannot be solved analytically with- out additional assumptions, and the effects of gyrotropic pressure are investigated by parameterizing the distribution of pressure parallel and perpendicular to the magnetic field. Our numerical solutions reveal that relatively small departures from isotropy (e.g., approximately 20%) produce significant changes in the shock compression ratio, r , at all shock Lorentz factors, including ultrarelativistic ones, where an analytic solution with gyrotropic pressure is obtained. In particular, either dynamically important fields or significant pressure anisotropies can incur marked departures from the canonical gas dynamic value of r = 3 for a shocked ultrarelativistic flow and this may impact models of particle acceleration in gamma-ray bursts and other environments where relativistic shocks are inferred. The jump conditions presented apply directly to test-particle acceleration, and will facilitate future self-consistent numerical modeling of particle acceleration at oblique, relativistic shocks; such models include the modification of the fluid velocity profile due to the contribution of energetic particles to the momentum and energy fluxes.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 21PF fire and shock resistant, phenolic-foam insulated, metal overpack. 178.358 Section 178.358 Transportation Other Regulations Relating...) Materials § 178.358 Specification 21PF fire and shock resistant, phenolic-foam insulated, metal overpack. ...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Specification 21PF fire and shock resistant, phenolic-foam insulated, metal overpack. 178.358 Section 178.358 Transportation Other Regulations Relating... Class 7 (Radioactive) Materials § 178.358 Specification 21PF fire and shock resistant, phenolic-foam...
Effects of Filtering on Experimental Blast Overpressure Measurements.
Alphonse, Vanessa D; Kemper, Andrew R; Duma, Stefan M
2015-01-01
When access to live-fire test facilities is limited, experimental studies of blast-related injuries necessitate the use of a shock tube or Advanced Blast Simulator (ABS) to mimic free-field blast overpressure. However, modeling blast overpressure in a laboratory setting potentially introduces experimental artifacts in measured responses. Due to the high sampling rates required to capture a blast overpressure event, proximity to alternating current (AC-powered electronics) and poorly strain-relieved or unshielded wires can result in artifacts in the recorded overpressure trace. Data in this study were collected for tests conducted on an empty ABS (Empty Tube) using high frequency pressure sensors specifically designed for blast loading rates (n=5). Additionally, intraocular overpressure data (IOP) were collected for porcine eyes potted inside synthetic orbits located inside the ABS using an unshielded miniature pressure sensor (n=3). All tests were conducted at a 30 psi static overpressure level. A 4th order phaseless low pass Butterworth software filter was applied to the data. Various cutoff frequencies were examined to determine if the raw shock wave parameters values could be preserved while eliminating noise and artifacts. A Fast Fourier Transform (FFT) was applied to each test to examine the frequency spectra of the raw and filtered signals. Shock wave parameters (time of arrival, peak overpressure, positive duration, and positive impulse) were quantified using a custom MATLAB® script. Lower cutoff frequencies attenuated the raw signal, effectively decreasing the peak overpressure and increasing the positive duration. Rise time was not preserved the filtered data. A CFC 6000 filter preserved the remaining shock wave parameters within ±2.5% of the average raw values for the Empty Tube test data. A CFC 7000 filter removed experimental high-frequency artifacts and preserved the remaining shock wave parameters within ±2.5% of the average raw values for test IOP test data. Though the region of interest of the signals examined in the current study did not contain extremely high frequency content, it is possible that live-fire testing may produce shock waves with higher frequency content. While post-processing filtering can remove experimental artifacts, special care should be taken to minimize or eliminate the possibility of recording these artifacts in the first place.
NASA Astrophysics Data System (ADS)
Trott, Wayne M.; Knudson, Marcus D.; Chhabildas, Lalit C.; Asay, James R.
2000-04-01
Relatively straightforward changes in the design of a conventional optically recording velocity interferometer system (ORVIS) can be used to produce a line-imaging instrument that allows adjustment of spatial resolution over a wide range. As a result, line-imaging ORVIS can be tailored to various specific applications involving dynamic deformation of heterogeneous materials as required by their characteristic length scales (ranging from a few μm for ferroelectric ceramics to a few mm for concrete). A line-imaging system has been successfully interfaced to a compressed gas gun driver and fielded on numerous tests in combination with simultaneous dual delay-leg, "push-pull" VISAR measurements. These tests include shock loading of glass-reinforced polyester composites, foam reverberation experiments (measurements at the free surface of a thin aluminum plate impacted by foam), and measurements of dispersive velocity in a shock-loaded explosive simulant (sugar). Results are presented that illustrate the capability for recording detailed spatially resolved material response.
16 CFR 1204.4 - Electric shock protection tests.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Electric shock protection tests. 1204.4... Electric shock protection tests. (a) Safety precautions. For tests involving high voltage, the following... Effectiveness Test or the Antenna-Mast System Test if no electrical breakdown occurs and if no current reading...
16 CFR 1204.4 - Electric shock protection tests.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Electric shock protection tests. 1204.4... Electric shock protection tests. (a) Safety precautions. For tests involving high voltage, the following... Effectiveness Test or the Antenna-Mast System Test if no electrical breakdown occurs and if no current reading...
16 CFR 1204.4 - Electric shock protection tests.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Electric shock protection tests. 1204.4... Electric shock protection tests. (a) Safety precautions. For tests involving high voltage, the following... Effectiveness Test or the Antenna-Mast System Test if no electrical breakdown occurs and if no current reading...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, George; Gilbertson, Steve Michael
Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolvesmore » its spectral response, shows that 100-MHz–1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 µm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. In conclusion, results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor.« less
NASA Technical Reports Server (NTRS)
Roddy, D.; Hatfield, D.; Hassig, P.; Rosenblatt, M.; Soderblom, L.; Dejong, E.
1992-01-01
We have completed computer simulations that model shock effects in the venusian atmosphere caused during the passage of two cometlike bodies 100 m and 1000 m in diameter and an asteroidlike body 10 km in diameter. Our objective is to examine hypervelocity-generated shock effects in the venusian atmosphere for bodies of different types and sizes in order to understand the following: (1) their deceleration and depth of penetration through the atmosphere; and (2) the onset of possible ground-surface shock effects such as splotches, craters, and ejecta formations. The three bodies were chosen to include both a range of general conditions applicable to Venus as well as three specific cases of current interest. These calculations use a new multiphase computer code (DICE-MAZ) designed by California Research & Technology for shock-dynamics simulations in complex environments. The code was tested and calibrated in large-scale explosion, cratering, and ejecta research. It treats a wide range of different multiphase conditions, including material types (vapor, melt, solid), particle-size distributions, and shock-induced dynamic changes in velocities, pressures, temperatures (internal energies), densities, and other related parameters, all of which were recorded in our calculations.
Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments
Rodriguez, George; Gilbertson, Steve M.
2017-01-01
Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolves its spectral response, shows that 100-MHz–1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 μm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. Results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor. PMID:28134819
Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments
Rodriguez, George; Gilbertson, Steve Michael
2017-01-27
Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolvesmore » its spectral response, shows that 100-MHz–1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 µm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. In conclusion, results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor.« less
Do oil shocks predict economic policy uncertainty?
NASA Astrophysics Data System (ADS)
Rehman, Mobeen Ur
2018-05-01
Oil price fluctuations have influential role in global economic policies for developed as well as emerging countries. I investigate the role of international oil prices disintegrated into structural (i) oil supply shock, (ii) aggregate demand shock and (iii) oil market specific demand shocks, based on the work of Kilian (2009) using structural VAR framework on economic policies uncertainty of sampled markets. Economic policy uncertainty, due to its non-linear behavior is modeled in a regime switching framework with disintegrated structural oil shocks. Our results highlight that Indian, Spain and Japanese economic policy uncertainty responds to the global oil price shocks, however aggregate demand shocks fail to induce any change. Oil specific demand shocks are significant only for China and India in high volatility state.
Chang, Shih-Dar; Liang, K C
2017-02-01
Contextual fear conditioning involves forming a representation for the context and associating it with a shock, which were attributed by the prevailing view to functions of the hippocampus and amygdala, respectively. Yet our recent evidence suggested that both processes require integrity of the dorsal hippocampus (DH). In view of the DH involvement in uniting multiple stimuli into a configuration, this study examined whether the DH would integrate context and shock into a shocked-context representation. Male Wistar rats were trained on a two-phase training paradigm of contextual fear conditioning. They explored a novel context on the first day to acquire a contextual representation, and received a shock in that context on the second day to form the context-shock memory. Tests of conditioned freezing given on the following days revealed two properties of configural memory-direct and mediated pattern completion: First, the contextual fear memory was retrieved in a novel context by a cue embedded in the configural set-a shock that did not elicit significant freezing on its own. Second, freezing was also elicited in a novel context by a transportation chamber that was not directly paired with the shock but could activate the fear memory inferentially. The effects were specific to the cue and not due to context generalization. Infusion of lidocaine into the DH, but not the amygdala, immediately after context-shock training impaired conditioned freezing elicited through either type of pattern completion. Our data suggest that the DH in contextual fear conditioning associates context and shock in parallel with the amygdala by incorporating the shock into an otherwise neutral context representation and turning it into a shocked-context representation. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Thermal shock resistance of ceramic matrix composites
NASA Technical Reports Server (NTRS)
Carper, D. M.; Nied, H. F.
1993-01-01
The experimental and analytical investigation of the thermal shock phenomena in ceramic matrix composites is detailed. The composite systems examined were oxide-based, consisting of an aluminosilicate matrix with either polycrystalline aluminosilicate or single crystal alumina fiber reinforcement. The program was divided into three technical tasks; baseline mechanical properties, thermal shock modeling, and thermal shock testing. The analytical investigation focused on the development of simple expressions for transient thermal stresses induced during thermal shock. The effect of various material parameters, including thermal conductivity, elastic modulus, and thermal expansion, were examined analytically for their effect on thermal shock performance. Using a simple maximum stress criteria for each constituent, it was observed that fiber fracture would occur only at the most extreme thermal shock conditions and that matrix fracture, splitting parallel to the reinforcing fiber, was to be expected for most practical cases. Thermal shock resistance for the two material systems was determined experimentally by subjecting plates to sudden changes in temperature on one surface while maintaining the opposite surface at a constant temperature. This temperature change was varied in severity (magnitude) and in number of shocks applied to a given sample. The results showed that for the most severe conditions examined that only surface matrix fracture was present with no observable fiber fracture. The impact of this damage on material performance was limited to the matrix dominated properties only. Specifically, compression strength was observed to decrease by as much as 50 percent from the measured baseline.
Code of Federal Regulations, 2014 CFR
2014-07-01
... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.584 Shock test. A fuel tank is tested by performing the following procedures in the following order: (a) Perform the static pressure test under § 183... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Shock test. 183.584 Section 183...
Code of Federal Regulations, 2010 CFR
2010-07-01
... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.584 Shock test. A fuel tank is tested by performing the following procedures in the following order: (a) Perform the static pressure test under § 183... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Shock test. 183.584 Section 183...
Code of Federal Regulations, 2013 CFR
2013-07-01
... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.584 Shock test. A fuel tank is tested by performing the following procedures in the following order: (a) Perform the static pressure test under § 183... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Shock test. 183.584 Section 183...
Code of Federal Regulations, 2012 CFR
2012-07-01
... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.584 Shock test. A fuel tank is tested by performing the following procedures in the following order: (a) Perform the static pressure test under § 183... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Shock test. 183.584 Section 183...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Shock test. 183.584 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.584 Shock test. A fuel tank is tested by performing the following procedures in the following order: (a) Perform the static pressure test under § 183...
16 CFR § 1204.4 - Electric shock protection tests.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Electric shock protection tests. § 1204.4... Electric shock protection tests. (a) Safety precautions. For tests involving high voltage, the following... Effectiveness Test or the Antenna-Mast System Test if no electrical breakdown occurs and if no current reading...
NASA Technical Reports Server (NTRS)
Budweg, H. L.; Shin, Y. S.
1987-01-01
An experimental investigation was conducted to determine the static and dynamic responses of a specific stiffened flat plate design. The air-backed rectangular flat plates of 6061-T6 aluminum with an externally machined longitudinal narrow-flanged T-stiffener and clamped boundary conditions were subjected to static loading by water hydropump pressure and shock loading from an eight pound TNT charge detonated underwater. The dynamic test plate was instrumented to measure transient strains and free field pressure. The static test plate was instrumented to measure transient strains, plate deflection, and pressure. Emphasis was placed upon forcing static and dynamic stiffener tripping, obtaining relevant strain and pressure data, and studying the associated plate-stiffener behavior.
He, Lan; Sewell, Thomas D; Thompson, Donald L
2012-01-21
Molecular dynamics simulations of supported shock waves (shock pressure P(s) ∼ 15 GPa) propagating along the [110], [011], [101], and [111] directions in crystalline nitromethane initially at T = 200 K were performed using the nonreactive Sorescu-Rice-Thompson force field [D. C. Sorescu, B. M. Rice, and D. L. Thompson, J. Phys. Chem. B 104, 8406 (2000)]. These simulations, combined with those from a preceding study of shocks propagating along [100], [010], and [001] directions in nitromethane for similar conditions of temperature and shock pressure [L. He, T. D. Sewell, and D. L. Thompson, J. Chem. Phys. 134, 124506 (2011)], have been used to study the post-shock relaxation phenomena. Shocks along [010] and [101] lead to a crystal-crystal structure transformation. Shocks propagating along [011], [110], [111], [100], and [001] exhibit plane-specific disordering, which was characterized by calculating as functions of time the 1D mean square displacement (MSD), 2D radial distribution function (RDF), and 2D orientation order parameter P(2)(θ) in orthogonal planes mutually perpendicular to the shock plane; and by calculating as functions of distance behind the shock front the Cartesian components of intermolecular, intramolecular, and total kinetic energies. The 2D RDF results show that the structural disordering for shocks along [100], [110], and [111] is strongly plane-specific; whereas for shocks along [001] and [011], the loss of crystal structural order is almost equivalent in the orthogonal planes perpendicular to the shock plane. Based on the entire set of simulations, there is a trend for the most extensive disordering to occur in the (010) and (110) planes, less extensive disordering to occur in the (100) plane, and essentially no disordering to occur in the (001) plane. The 2D P(2)(θ) and 1D MSD profiles show, respectively, that the orientational and translational disordering is plane-specific, which results in the plane-specific structural disordering observed in the 2D RDF. By contrast, the kinetic energy partitioning and redistribution do not exhibit plane specificity, as shown by the similarity of spatial profiles of the Cartesian components of the intermolecular, intramolecular, and total kinetic energies in orthogonal planes perpendicular to the shock plane. © 2012 American Institute of Physics
Boddez, Yannick; Vervliet, Bram; Baeyens, Frank; Lauwers, Stephanie; Hermans, Dirk; Beckers, Tom
2012-06-01
In a blocking procedure, a single conditioned stimulus (CS) is paired with an unconditioned stimulus (US), such as electric shock, in the first stage. During the subsequent stage, the CS is presented together with a second CS and this compound is followed by the same US. Fear conditioning studies in non-human animals have demonstrated that fear responding to the added second CS typically remains low, despite its being paired with the US. Accordingly, the blocking procedure is well suited as a laboratory model for studying (deficits in) selective threat appraisal. The present study tested the relation between trait anxiety and blocking in human aversive conditioning. Healthy participants filled in a trait anxiety questionnaire and underwent blocking treatment in the human aversive conditioning paradigm. Threat appraisal was measured through shock expectancy ratings and skin conductance. As hypothesized, trait anxiety was positively associated with shock expectancy ratings to the blocked stimulus. In skin conductance responding, no significant effects of stimulus type could be detected during blocking training or testing. The current study does not allow strong claims to be made regarding the theoretical process underlying the expectancy bias we observed. The observed shock expectancy bias might be one of the mechanisms leading to non-specific fear in individuals at risk for developing anxiety disorders. A deficit in blocking, or a deficit in selective threat appraisal at the more general level, indeed results in fear becoming non-specific and disconnected from the most likely causes or predictors of danger. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgenstern, R.; Vroman, W.
1981-05-01
The objective of this study was to explore the relationship between aggregate employment and output, with special reference to the 1979-1980 experience. An indirect relationship was posited between energy price shocks and the occupational mix. Specifically, it was hypothesized that the energy price shocks of 1978-1979 (and possibly 1973-1974) may have created new investment opportunities for simple, short term energy conservation type investments which may, in turn, have increased the demand for blue collar labor. A framework for viewing the problem is described and the basic hypothesis tested by estimating a time series model of occupational/industrial employment patterns. Included inmore » the model is a set of variables designed to measure the energy price shocks.« less
NASA Technical Reports Server (NTRS)
Larsen, Curtis E.
2012-01-01
As commercial companies are nearing a preliminary design review level of design maturity, several companies are identifying the process for qualifying their multi-use electrical and mechanical components for various shock environments, including pyrotechnic, mortar firing, and water impact. The experience in quantifying the environments consists primarily of recommendations from Military Standard-1540, Product Verification Requirement for Launch, Upper Stage, and Space Vehicles. Therefore, the NASA Engineering and Safety Center (NESC) formed a team of NASA shock experts to share the NASA experience with qualifying hardware for the Space Shuttle Program (SSP) and other applicable programs and projects. Several team teleconferences were held to discuss past experience and to share ideas of possible methods for qualifying components for multiple missions. This document contains the information compiled from the discussions
Calculated shock pressures in the aquarium test
NASA Astrophysics Data System (ADS)
Johnson, J. N.
1982-04-01
A new method of analysis has been developed for determintion of shock pressures in aquarium tests on commercial explosives. This test consists of photographing the expanding cylindrical tube wall (which contains the detonation products) and the shock wave in water surrounding the explosive charge. By making a least-squares fit to the shock-front data, it is possible to determine the peak shock-front pressure as a function of distance from the cylinder wall. This has been done for 10-cm and 20-cm-diam ANFO (ammonium nitrate/fuel oil) and aluminized ANFO (7.5 wt% Al) aquarium test data.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Shock test. 159.105 Section 159.105 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.105 Shock test. The device, with liquid...
Optoacoustic monitoring of central and peripheral venous oxygenation during simulated hemorrhage
NASA Astrophysics Data System (ADS)
Petrov, Andrey; Kinsky, Michael; Prough, Donald S.; Petrov, Yuriy; Petrov, Irene Y.; Henkel, S. Nan; Seeton, Roger; Salter, Michael G.; Khan, Muzna N.; Esenaliev, Rinat O.
2014-03-01
Circulatory shock may be fatal unless promptly recognized and treated. The most commonly used indicators of shock (hypotension and tachycardia) lack sensitivity and specificity. In the initial stages of shock, the body compensates by reducing blood flow to the peripheral (skin, muscle, etc.) circulation in order to preserve vital organ (brain, heart, liver) perfusion. Characteristically, this can be observed by a greater reduction in peripheral venous oxygenation (for instance, the axillary vein) compared to central venous oxygenation (the internal jugular vein). While invasive measurements of oxygenation are accurate, they lack practicality and are not without complications. We have developed a novel optoacoustic system that noninvasively determines oxygenation in specific veins. In order to test this application, we used lower body negative pressure (LBNP) system, which simulates hemorrhage by exerting a variable amount of suction on the lower body, thereby reducing the volume of blood available for central circulation. Restoration of normal blood flow occurs promptly upon cessation of LBNP. Using two optoacoustic probes, guided by ultrasound imaging, we simultaneously monitored oxygenation in the axillary and internal jugular veins (IJV). LBNP began at -20 mmHg, thereafter was reduced in a step-wise fashion (up to 30 min). The optoacoustically measured axillary oxygenation decreased with LBNP, whereas IJV oxygenation remained relatively constant. These results indicate that our optoacoustic system may provide safe and rapid measurement of peripheral and central venous oxygenation and diagnosis of shock with high specificity and sensitivity.
Thermal shock testing for assuring reliability of glass-sealed microelectronic packages
NASA Technical Reports Server (NTRS)
Thomas, Walter B., III; Lewis, Michael D.
1991-01-01
Tests were performed to determine if thermal shocking is destructive to glass-to-metal seal microelectronic packages and if thermal shock step stressing can compare package reliabilities. Thermal shocking was shown to be not destructive to highly reliable glass seals. Pin-pull tests used to compare the interfacial pin glass strengths showed no differences between thermal shocked and not-thermal shocked headers. A 'critical stress resistance temperature' was not exhibited by the 14 pin Dual In-line Package (DIP) headers evaluated. Headers manufactured in cryogenic nitrogen based and exothermically generated atmospheres showed differences in as-received leak rates, residual oxide depths and pin glass interfacial strengths; these were caused by the different manufacturing methods, in particular, by the chemically etched pins used by one manufacturer. Both header types passed thermal shock tests to temperature differentials of 646 C. The sensitivity of helium leak rate measurements was improved up to 70 percent by baking headers for two hours at 200 C after thermal shocking.
The Shock and Vibration Bulletin. Part 3. Aerospace Vehicles, Vibro-acoustics
1975-06-01
Corporation, San Diego, California .ANALYSIS AND FLIGHIT TEST CORRELATION OF VIBROACOUS’IIC ENVIRONMENTS ON A REMOTELY PILOTED VEHIICLE... piloted aircraft shown in tic set of specifications calls for extensive flight Figure 1. It is powered by a single, fuselage- test data encompassing the...Company, Hamptnn Virginia c1 DETERMINAf ION OF PROPELLATNT EFFECTIVE MASS PROPERTIES USING MODAL TEST DATAj 15 J. C. Chen and J,. A Garba, Jet Propulsion
A matter of timing: harm reduction in learned helplessness.
Richter, Sophie Helene; Sartorius, Alexander; Gass, Peter; Vollmayr, Barbara
2014-11-03
Learned helplessness has excellent validity as an animal model for depression, but problems in reproducibility limit its use and the high degree of stress involved in the paradigm raises ethical concerns. We therefore aimed to identify which and how many trials of the learned helplessness paradigm are necessary to distinguish between helpless and non-helpless rats. A trial-by-trial reanalysis of tests from 163 rats with congenital learned helplessness or congenital non-learned helplessness and comparison of 82 rats exposed to inescapable shock with 38 shock-controls revealed that neither the first test trials, when rats showed unspecific hyperlocomotion, nor trials of the last third of the test, when almost all animals responded quickly to the stressor, contributed to sensitivity and specificity of the test. Considering only trials 3-10 improved the classification of helpless and non-helpless rats. The refined analysis allows abbreviation of the test for learned helplessness from 15 trials to 10 trials thereby reducing pain and stress of the experimental animals without losing statistical power.
2017-02-06
and methodology for transitioning craft acceleration data to laboratory shock test requirements are summarized and example requirements for...engineering rationale, assumptions, and methodology for transitioning craft acceleration data to laboratory shock test requirements are summarized and... Methodologies for Small High-Speed Craft Structure, Equipment, Shock Isolation Seats, and Human Performance At-Sea, 10 th Symposium on High
Finite-Difference Lattice Boltzmann Scheme for High-Speed Compressible Flow: Two-Dimensional Case
NASA Astrophysics Data System (ADS)
Gan, Yan-Biao; Xu, Ai-Guo; Zhang, Guang-Cai; Zhang, Ping; Zhang, Lei; Li, Ying-Jun
2008-07-01
Lattice Boltzmann (LB) modeling of high-speed compressible flows has long been attempted by various authors. One common weakness of most of previous models is the instability problem when the Mach number of the flow is large. In this paper we present a finite-difference LB model, which works for flows with flexible ratios of specific heats and a wide range of Mach number, from 0 to 30 or higher. Besides the discrete-velocity-model by Watari [Physica A 382 (2007) 502], a modified Lax Wendroff finite difference scheme and an artificial viscosity are introduced. The combination of the finite-difference scheme and the adding of artificial viscosity must find a balance of numerical stability versus accuracy. The proposed model is validated by recovering results of some well-known benchmark tests: shock tubes and shock reflections. The new model may be used to track shock waves and/or to study the non-equilibrium procedure in the transition between the regular and Mach reflections of shock waves, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubouchi, Masatoshi; Hojo, Hidemitsu
The thermal shock resistance of epoxy resin specimens toughened with carboxy-terminated poly(butadiene-acrylonitrile) (CTBN) and poly-glycol were tested using a new notched disk-type specimen. The new thermal shock testing method consists of quenching a notched disk-type specimen and applying a theoretical analysis to the test results to determine crack propagation conditions. For both toughened epoxy resins, this test method evaluated improvements in thermal shock resistance. The thermal shock resistance of epoxy resin toughened with CTBN exhibited a maximum at a 35 parts per hundred resin content of CTBN. The epoxy resin toughened with polyglycol exhibited improved thermal shock resistance with increasingmore » glycol content. 7 refs., 14 figs., 1 tab.« less
NASA Technical Reports Server (NTRS)
Kranz, M
1954-01-01
Drop hammer tests with different shock strut models and shock strut oils were performed at temperatures ranging to -40 C. The various shock strut models do not differ essentially regarding their springing and damping properties at low temperatures; however, the influence of the different shock strut oils on the springing properties at low temperatures varies greatly.
Capabilities of electrodynamic shakers when used for mechanical shock testing
NASA Technical Reports Server (NTRS)
Keegan, W. B.
1973-01-01
The results of a research task to investigate the capabilities of electrodynamic vibrators (shakers) to perform mechanical shock tests are presented. The simulation method employed was that of developing a transient whose shock response spectrum matched the desired shock response spectrum. Areas investigated included the maximum amplitude capabilities of the shaker systems, the ability to control the shape of the resultant shock response spectrum, the response levels induced at frequencies outside the controlled bandwidth, and the nonlinearities in structural response induced by a change in test level.
Energy cost of riding bicycles with shock absorption systems on a flat surface.
Nielens, H; Lejeune, T M
2001-08-01
Bike shock absorption systems reduce the energy variation induced by terrain irregularities, leading to a greater comfort. However, they may also induce an increase in energy expenditure for the rider. More specifically, cross-country racers claim that rear shock absorption systems generate significant energy loss. The energy losses caused by such systems may be divided in terrain-induced or rider-induced. This study aims at evaluating the rider-induced energy loss of modern suspended bicycles riding on a flat surface. Twelve experienced competitive racers underwent three multistage gradational tests (50 to 250 W) on a cross-country bicycle mounted on an electromagnetically braked cycle ergometer. Three different tests were performed on a fully suspended bike, front suspended and non-suspended bicycle, respectively. The suspension mode has no significant effect on VO2. The relative difference of VO2 between the front-suspended or full-suspended bike and the rigid bike reaches a non significant maximum of only 3%. The claims of many competitors who still prefer front shock absorption systems could be related to a possible significant energy loss that could be present at powers superior to 250 W or when they stand on the pedals. It could also be generated by terrain-induced energy loss.
Development and Realization of a Shock Wave Test on Expert Flap Qualification Model
NASA Astrophysics Data System (ADS)
De Fruytier, C.; Dell'Orco, F.; Ullio, R.; Gomiero, F.
2012-07-01
This paper presents the methodology and the results of the shock test campaign conducted by TAS-I and TAS ETCA to qualify the EXPERT Flap in regards of shock wave and acoustic load generated by pyrocord detonation at stages 2/3 separation phase of the EXPERT vehicle. The design concept of the open flap (manufactured by MT AEROSPACE) is a fully integral manufactured, four sided control surface, with an additional stiffening rib and flanges to meet the first eigenfrequency and the allowable deformation requirement with a minimum necessary mass. The objectives were to reproduce equivalent loading at test article level in terms of pulse duration, front pressure, front velocity and acoustic emission. The Thales Alenia Space ETCA pyrotechnic shock test device is usually used to produce high level shocks by performing a shock on a test fixture supporting the unit under test. In this case, the facility has been used to produce a shock wave, with different requested physical characteristics, directed to the unit under test. Different configurations have been tried on a dummy of the unit to test, following an empirical process. This unusual work has lead to the definition of a nominal set- up meeting the requested physical parameters. Two blast sensors have been placed to acquire the pressure around the flap. The distance between the two sensors has allowed estimating the front pressure velocity. Then, several locations have been selected to acquire the acceleration responses on the unit when it was submitted to this environment. Additionally, a “standard” shock test has been performed on this model. The qualification of the flap, in regards of shock environment, has been successfully conducted.
Learned helplessness: effects of response requirement and interval between treatment and testing.
Hunziker, M H L; Dos Santos, C V
2007-11-01
Three experiments investigated learned helplessness in rats manipulating response requirements, shock duration, and intervals between treatment and testing. In Experiment 1, rats previously exposed to uncontrollable or no shocks were tested under one of four different contingencies of negative reinforcement: FR 1 or FR 2 escape contingency for running, and FR1 escape contingency for jumping (differing for the maximum shock duration of 10s or 30s). The results showed that the uncontrollable shocks produced a clear operant learning deficit (learned helplessness effect) only when the animals were tested under the jumping FR 1 escape contingency with 10-s max shock duration. Experiment 2 isolated of the effects of uncontrollability from shock exposure per se and showed that the escape deficit observed using the FR 1 escape jumping response (10-s shock duration) was produced by the uncontrollability of shock. Experiment 3 showed that using the FR 1 jumping escape contingency in the test, the learned helplessness effect was observed one, 14 or 28 days after treatment. These results suggest that running may not be an appropriate test for learned helplessness, and that many diverging results found in the literature might be accounted for by the confounding effects of respondent and operant contingencies present when running is required of rats.
Edwards, Mark S; Burt, Jennifer S; Lipp, Ottmar V
2010-05-01
We investigated selective attention for masked and unmasked, threat, and positively valenced words, in high trait anxious (HTA) and low trait anxious (LTA) individuals using the emotional Stroop colour-naming task. State anxiety was varied within participants through the threat of electric shock. To investigate whether the sequencing of the state anxiety manipulation affected colour-naming latencies, the ordering of the shock threat and shock safe conditions was counterbalanced across participants. The results indicated that the ordering of the state anxiety manipulation moderated masked and unmasked threat bias effects. Specifically, relative to LTA individuals, HTA individuals showed a threat interference effect, but this effect was limited to those who performed under the threat of shock in the later stages of the experiment. Irrespective of exposure mode and state anxiety status, all individuals showed interference for threat in the early stages of the experiment, relative to a threat facilitation effect in the later stages of the experiment. For the unmasked trials alone, the data also revealed a significant threat interference effect for the HTA group relative to the LTA group in the shock threat condition, and this effect was evident irrespective of shock threat order. The results are discussed with respect to the automatic nature of emotional processing in anxiety.
Comparison of Two Sepsis Recognition Methods in a Pediatric Emergency Department
Balamuth, Fran; Alpern, Elizabeth R.; Grundmeier, Robert W.; Chilutti, Marianne; Weiss, Scott L.; Fitzgerald, Julie C.; Hayes, Katie; Bilker, Warren; Lautenbach, Ebbing
2015-01-01
Objectives To compare the effectiveness of physician judgment and an electronic algorithmic alert to identify pediatric patients with severe sepsis/septic shock in a pediatric emergency department (ED). Methods This was an observational cohort study of patients older than 56 days with fever or hypothermia. All patients were evaluated for potential sepsis in real time by the ED clinical team. An electronic algorithmic alert was retrospectively applied to identify patients with potential sepsis independent of physician judgment. The primary outcome was the proportion of patients correctly identified with severe sepsis/septic shock defined by consensus criteria. Test characteristics were determined and receiver operating characteristic (ROC) curves were compared. Results Of 19,524 eligible patient visits, 88 patients developed consensus-confirmed severe sepsis or septic shock. Physician judgment identified 159, and the algorithmic alert identified 3,301 patients with potential sepsis. Physician judgment had sensitivity of 72.7% (95% CI = 72.1% to 73.4%) and specificity 99.5% (95% CI = 99.4% to 99.6%); the algorithmic alert had sensitivity 92.1% (95% CI = 91.7% to 92.4%), and specificity 83.4% (95% CI = 82.9% to 83.9%) for severe sepsis/septic shock. There was no significant difference in the area under the ROC curve for physician judgment (0.86, 95% CI = 0.81 to 0.91) or the algorithm (0.88, 95% CI = 0.85 to 0.91; p = 0.54). A combination method using either positive physician judgment or an algorithmic alert improved sensitivity to 96.6% and specificity to 83.3%. A sequential approach, in which positive identification by the algorithmic alert was then confirmed by physician judgment, achieved 68.2% sensitivity and 99.6% specificity. Positive and negative predictive values for physician judgment vs. algorithmic alert were 40.3% vs. 2.5% and 99.88 % vs. 99.96%, respectively. Conclusions The electronic algorithmic alert was more sensitive but less specific than physician judgment for recognition of pediatric severe sepsis and septic shock. These findings can help to guide institutions in selecting pediatric sepsis recognition methods based on institutional needs and priorities. PMID:26474032
Comparison of Two Sepsis Recognition Methods in a Pediatric Emergency Department.
Balamuth, Fran; Alpern, Elizabeth R; Grundmeier, Robert W; Chilutti, Marianne; Weiss, Scott L; Fitzgerald, Julie C; Hayes, Katie; Bilker, Warren; Lautenbach, Ebbing
2015-11-01
The objective was to compare the effectiveness of physician judgment and an electronic algorithmic alert to identify pediatric patients with severe sepsis/septic shock in a pediatric emergency department (ED). This was an observational cohort study of patients older than 56 days with fever or hypothermia. All patients were evaluated for potential sepsis in real time by the ED clinical team. An electronic algorithmic alert was retrospectively applied to identify patients with potential sepsis independent of physician judgment. The primary outcome was the proportion of patients correctly identified with severe sepsis/septic shock defined by consensus criteria. Test characteristics were determined and receiver operating characteristic (ROC) curves were compared. Of 19,524 eligible patient visits, 88 patients developed consensus-confirmed severe sepsis or septic shock. Physician judgment identified 159 and the algorithmic alert identified 3,301 patients with potential sepsis. Physician judgment had sensitivity of 72.7% (95% confidence interval [CI] = 72.1% to 73.4%) and specificity of 99.5% (95% CI = 99.4% to 99.6%); the algorithmic alert had sensitivity of 92.1% (95% CI = 91.7% to 92.4%) and specificity of 83.4% (95% CI = 82.9% to 83.9%) for severe sepsis/septic shock. There was no significant difference in the area under the ROC curve for physician judgment (0.86, 95% CI = 0.81 to 0.91) or the algorithm (0.88, 95% CI = 0.85 to 0.91; p = 0.54). A combination method using either positive physician judgment or an algorithmic alert improved sensitivity to 96.6% and specificity to 83.3%. A sequential approach, in which positive identification by the algorithmic alert was then confirmed by physician judgment, achieved 68.2% sensitivity and 99.6% specificity. Positive and negative predictive values for physician judgment versus algorithmic alert were 40.3% versus 2.5% and 99.88% versus 99.96%, respectively. The electronic algorithmic alert was more sensitive but less specific than physician judgment for recognition of pediatric severe sepsis and septic shock. These findings can help to guide institutions in selecting pediatric sepsis recognition methods based on institutional needs and priorities. © 2015 by the Society for Academic Emergency Medicine.
Day, John D; Doshi, Rahul N; Belott, Peter; Birgersdotter-Green, Ulrika; Behboodikhah, Mahnaz; Ott, Peter; Glatter, Kathryn A; Tobias, Serge; Frumin, Howard; Lee, Byron K; Merillat, John; Wiener, Isaac; Wang, Samuel; Grogin, Harlan; Chun, Sung; Patrawalla, Rob; Crandall, Brian; Osborn, Jeffrey S; Weiss, J Peter; Lappe, Donald L; Neuman, Stacey
2007-05-08
Implantable cardioverter-defibrillators and cardiac resynchronization therapy defibrillators have relied on multiple ventricular fibrillation (VF) induction/defibrillation tests at implantation to ensure that the device can reliably sense, detect, and convert VF. The ASSURE Study (Arrhythmia Single Shock Defibrillation Threshold Testing Versus Upper Limit of Vulnerability: Risk Reduction Evaluation With Implantable Cardioverter-Defibrillator Implantations) is the first large, multicenter, prospective trial comparing vulnerability safety margin testing versus defibrillation safety margin testing with a single VF induction/defibrillation. A total of 426 patients receiving an implantable cardioverter-defibrillator or cardiac resynchronization therapy defibrillator underwent vulnerability safety margin or defibrillation safety margin screening at 14 J in a randomized order. After this, patients underwent confirmatory testing, which required 2 VF conversions without failure at < or = 21 J. Patients who passed their first 14-J and confirmatory tests, irrespective of the results of their second 14-J test, had their devices programmed to a 21-J shock for ventricular tachycardia (VT) or VF > or = 200 bpm and were followed up for 1 year. Of 420 patients who underwent 14-J vulnerability safety margin screening, 322 (76.7%) passed. Of these, 317 (98.4%) also passed 21-J confirmatory tests. Of 416 patients who underwent 14-J defibrillation safety margin screening, 343 (82.5%) passed, and 338 (98.5%) also passed 21-J confirmatory tests. Most clinical VT/VF episodes (32 of 37, or 86%) were terminated by the first shock, with no difference in first shock success. In all observed cases in which the first shock was unsuccessful, subsequent shocks terminated VT/VF without complication. Although spontaneous episodes of fast VT/VF were limited, there was no difference in the odds of first shock efficacy between groups. Screening with vulnerability safety margin or defibrillation safety margin may allow for inductionless or limited shock testing in most patients.
Numerical computation of Pop plot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menikoff, Ralph
The Pop plot — distance-of-run to detonation versus initial shock pressure — is a key characterization of shock initiation in a heterogeneous explosive. Reactive burn models for high explosives (HE) must reproduce the experimental Pop plot to have any chance of accurately predicting shock initiation phenomena. This report describes a methodology for automating the computation of a Pop plot for a specific explosive with a given HE model. Illustrative examples of the computation are shown for PBX 9502 with three burn models (SURF, WSD and Forest Fire) utilizing the xRage code, which is the Eulerian ASC hydrocode at LANL. Comparisonmore » of the numerical and experimental Pop plot can be the basis for a validation test or as an aid in calibrating the burn rate of an HE model. Issues with calibration are discussed.« less
NASA Technical Reports Server (NTRS)
Midden, Raymond E.; Miller, Charles G., III
1985-01-01
The Langley Hypersonic CF4 Tunnel is a Mach 6 facility which simulates an important aspect of dissociative real-gas phenomena associated with the reentry of blunt vehicles, i.e., the decrease in the ratio of specific heats (gamma) that occurs within the shock layer of the vehicle. A general description of this facility is presented along with a discussion of the basic components, instrumentation, and operating procedure. Pitot-pressure surveys were made at the nozzle exit and downstream of the exit for reservoir temperatures from 1020 to 1495 R and reservoir pressures from 1000 to 2550 psia. A uniform test core having a diameter of circa 11 in. (0.55 times the nozzle-exit diameter) exists at the maximum value of reservoir pressure and temperature. The corresponding free-stream Mach number is 5.9, the unit Reynolds number is 4 x 10 to the 5th power per foot, the ratio of specific heats immediately behind a normal shock is 1.10, and the normal-shock density ratio is 12.6. When the facility is operated at reservoir temperatures below 1440 R, irregularities occur in the pitot-pressure profile within a small region about the nozzle centerline. These variations in pitot pressure indicate the existence of flow distrubances originating in the upstream region of the nozzle. This necessitates testing models off centerline in the uniform flow between the centerline region and either the nozzle boundary layer or the lip shock originating at the nozzle exit. Samples of data obtained in this facility with various models are presented to illustrate the effect of gamma on flow conditions about the model and the importance of knowing the magnitude of this effect.
Scramjet Isolator Modeling and Control
2011-12-01
12 γ Ratio of specific heats . . . . . . . . . . . . . . . . . . . . 12 p1 Static pressure entering shock . . . . . . . . . . . . . . . . 12 M1 Mach...138 MAve Average stream Mach number . . . . . . . . . . . . . . . . 138 γ Ratio of specific heats ... heats , p1 is the static pressure entering the shock, and M1 is the Mach number of the flow entering the shock. Subsequent researchers [9] took a
Effects of variables upon pyrotechnically induced shock response spectra, part 2
NASA Technical Reports Server (NTRS)
Smith, James Lee
1988-01-01
Throughout the aerospace industry, large variations of 50 percent (6 dB) or more in shock response spectra (SRS) derived from pyrotechnic separation events continue to be reported from actual spaceflight data and from laboratory tests. As a result of these variations, NASA funded a research program for 1984 through 1986. The purpose of the 1984 through 1986 project was to analyze variations in pyrotechnically induced SRS and to determine if and to what degree manufacturing and assembly variables and tolerances, distance from the shock source, data acquisition instrumentation, and shock energy propagation affect the SRS. Sixty-four free-free boundary plate tests were performed. NASA funded an additional study for 1987 through 1988. This paper is a summary of the additional study. The purpose was to evaluate shock dissipation through various spacecraft structural joint types, to evaluate shock variation for various manufacturing and assembly variables on clamped boundary test plates, and to verify data correction techniques. Five clamped boundary plate tests investigated manufacturing and assembly variables and mass loading effects. Six free-free boundary plate tests investigated shock dissipation across spacecraft joint structures.
NASA Astrophysics Data System (ADS)
Chen, Feng; Xu, Ai-Guo; Zhang, Guang-Cai; Gan, Yan-Biao; Cheng, Tao; Li, Ying-Jun
2009-10-01
We present a highly efficient lattice Boltzmann model for simulating compressible flows. This model is based on the combination of an appropriate finite difference scheme, a 16-discrete-velocity model [Kataoka and Tsutahara, Phys. Rev. E 69 (2004) 035701(R)] and reasonable dispersion and dissipation terms. The dispersion term effectively reduces the oscillation at the discontinuity and enhances numerical precision. The dissipation term makes the new model more easily meet with the von Neumann stability condition. This model works for both high-speed and low-speed flows with arbitrary specific-heat-ratio. With the new model simulation results for the well-known benchmark problems get a high accuracy compared with the analytic or experimental ones. The used benchmark tests include (i) Shock tubes such as the Sod, Lax, Sjogreen, Colella explosion wave, and collision of two strong shocks, (ii) Regular and Mach shock reflections, and (iii) Shock wave reaction on cylindrical bubble problems. With a more realistic equation of state or free-energy functional, the new model has the potential tostudy the complex procedure of shock wave reaction on porous materials.
A full scale hydrodynamic simulation of pyrotechnic combustion
NASA Astrophysics Data System (ADS)
Kim, Bohoon; Jang, Seung-Gyo; Yoh, Jack
2017-06-01
A full scale hydrodynamic simulation that requires an accurate reproduction of shock-induced detonation was conducted for design of an energetic component system. A series of small scale gap tests and detailed hydrodynamic simulations were used to validate the reactive flow model for predicting the shock propagation in a train configuration and to quantify the shock sensitivity of the energetic materials. The energetic component system is composed of four main components, namely a donor unit (HNS + HMX), a bulkhead (STS), an acceptor explosive (RDX), and a propellant (BKNO3) for gas generation. The pressurized gases generated from the burning propellant were purged into a 10 cc release chamber for study of the inherent oscillatory flow induced by the interferences between shock and rarefaction waves. The pressure fluctuations measured from experiment and calculation were investigated to further validate the peculiar peak at specific characteristic frequency (ωc = 8.3 kHz). In this paper, a step-by-step numerical description of detonation of high explosive components, deflagration of propellant component, and deformation of metal component is given in order to facilitate the proper implementation of the outlined formulation into a shock physics code for a full scale hydrodynamic simulation of the energetic component system.
Test Operations Procedure (TOP) 10-2-400 Open End Compressed Gas Driven Shock Tube
gas-driven shock tube. Procedures are provided for instrumentation, test item positioning, estimation of key test parameters, operation of the shock...tube, data collection, and reporting. The procedures in this document are based on the use of helium gas and Mylar film diaphragms.
A second-generation constrained reaction volume shock tube
NASA Astrophysics Data System (ADS)
Campbell, M. F.; Tulgestke, A. M.; Davidson, D. F.; Hanson, R. K.
2014-05-01
We have developed a shock tube that features a sliding gate valve in order to mechanically constrain the reactive test gas mixture to an area close to the shock tube endwall, separating it from a specially formulated non-reactive buffer gas mixture. This second-generation Constrained Reaction Volume (CRV) strategy enables near-constant-pressure shock tube test conditions for reactive experiments behind reflected shocks, thereby enabling improved modeling of the reactive flow field. Here we provide details of the design and operation of the new shock tube. In addition, we detail special buffer gas tailoring procedures, analyze the buffer/test gas interactions that occur on gate valve opening, and outline the size range of fuels that can be studied using the CRV technique in this facility. Finally, we present example low-temperature ignition delay time data to illustrate the CRV shock tube's performance.
Report on Alternative Devices to Pyrotechnics on Spacecraft
NASA Technical Reports Server (NTRS)
Lucy, M. H.; Hardy, R. C.; Kist, E. H., Jr.; Watson, J. J.; Wise, S. A.
1996-01-01
Pyrotechnics accomplish many functions on today's spacecraft, possessing minimum volume/weight, providing instantaneous operation on demand, and requiring little input energy. However, functional shock, safety, and overall system cost issues, combined with emergence and availability of new technologies question their continued use on space missions. Upon request from the National Aeronautics and Space Administration's (NASA) Program Management Council (PMC), Langley Research Center (LaRC) conducted a survey to identify and evaluate state-of-the-art non-explosively actuated (NEA) alternatives to pyrotechnics, identify NEA devices planned for NASA use, and investigate potential interagency cooperative efforts. In this study, over 135 organizations were contacted, including NASA field centers, Department of Defense (DOD) and other government laboratories, universities, and American and European industrial sources resulting in further detailed discussions with over half, and 18 face-to-face briefings. Unlike their single use pyrotechnic predecessors, NEA mechanisms are typically reusable or refurbishable, allowing flight of actual tested units. NEAs surveyed include spool-based devices, thermal knife, Fast Acting Shockless Separation Nut (FASSN), paraffin actuators, and shape memory alloy (SMA) devices (e.g., Frangibolt). The electro-mechanical spool, paraffin actuator and thermal knife are mature, flight proven technologies, while SMA devices have a limited flight history. There is a relationship between shock, input energy requirements, and mechanism functioning rate. Some devices (e.g., Frangibolt and spool based mechanisms) produce significant levels of functional shock. Paraffin, thermal knife, and SMA devices can provide gentle, shock-free release but cannot perform critically timed, simultaneous functions. The FASSN flywheel-nut release device possesses significant potential for reducing functional shock while activating nearly instantaneously. Specific study recommendations include: (1) development of NEA standards, specifically in areas of material characterization, functioning rates, and test methods; (2) a systems level approach to assure successful NEA technology application; and (3) further investigations into user needs, along with industry/government system-level real spacecraft cost benefit trade studies to determine NEA application foci and performance requirements. Additional survey observations reveal an industry and government desire to establish partnerships to investigate remaining unknowns and formulate NEA standards, specifically those driven by SMAs. Finally, there is increased interest and need to investigate alternative devices for such functions as stage/shroud separation and high pressure valving. This paper summarizes results of the NASA-LaRC survey of pyrotechnic alternatives. State of-the-art devices with their associated weight and cost savings are presented. Additionally, a comparison of functional shock characteristics of several devices are shown, and potentially related technology developments are highlighted.
LIGS measurements in the nozzle reservoir of a free-piston shock tunnel
NASA Astrophysics Data System (ADS)
Altenhöfer, P.; Sander, T.; Koroll, F.; Mundt, Ch.
2018-02-01
Free-piston shock tunnels are ground-based test facilities allowing the simulation of reentry flow conditions in a simple and cost-efficient way. For a better understanding of the processes occurring in a shock tunnel as well as for an optimal comparability of experimental data gained in shock tunnels to numerical simulations, it is highly desirable to have the best possible characterization of the generated test gas flows. This paper describes the final step of the development of a laser-induced grating spectroscopy (LIGS) system capable of measuring the temperature in the nozzle reservoir of a free-piston shock tunnel during tests: the successful adaptation of the measurement system to the shock tunnel. Preliminary measurements were taken with a high-speed camera and a LED lamp in order to investigate the optical transmissibility of the measurement volume during tests. The results helped to successfully measure LIGS signals in shock tube mode and shock tunnel mode in dry air seeded with NO. For the shock tube mode, six successful measurements for a shock Mach number of about 2.35 were taken in total, two of them behind the incoming shock (p ≈ 1 MPa, T ≈ 600 K) and four after the passing of the reflected shock (p ≈ 4 MPa, T ≈ 1000 K). For five of the six measurements, the derived temperatures were within a deviation range of 6% to a reference value calculated from measured shock speed. The uncertainty estimated was less than or equal to 3.5% for all six measurements. Two LIGS signals from measurements behind the reflected shock in shock tunnel mode were analyzed in detail. One of the signals allowed an unambiguous derivation of the temperature under the conditions of a shock with Mach 2.7 (p ≈ 5 MPa, T ≈ 1200 K, deviation 0.5% , uncertainty 4.9% ).
Results of the NASP Ames Integrated Mixing Hypersonic Engine (AIMHYE) Scramjet Test Program
NASA Technical Reports Server (NTRS)
Cavolowsky, John A.; Loomis, Mark P.; Deiwert, George S.
1995-01-01
This paper describes the test techniques and results from the National Aerospace Plane Government Work Package 53, the Ames Integrated Mixing Hypersonic Engine (AIMHYE) Scramjet Test program conducted in the NASA Ames 16-Inch Combustion Driven Shock Tunnel. This was a series of near full-scale scramjet combustor tests with the objective to obtain high speed combustor and nozzle data from an engine with injector configurations similar to the NASP E21 and E22a designs. The experimental test approach was to use a large combustor model (80-100% throat height) designed and fabricated for testing in the semi-free jet mode. The conditions tested were similar to the "blue book" conditions at Mach 12, 14, and 16. GWP 53 validated use of large, long test time impulse facilities, specifically the Ames 16-Inch Shock Tunnel, for high Mach number scramjet propulsion testing an integrated test rig (inlet, combustor, and nozzle). Discussion of key features of the test program will include: effects of the 2-D combustor inlet pressure profile; performance of large injectors' fueling system that included nozzlettes, base injection, and film cooling; and heat transfer measurements to the combustor. Significant instrumentation development and application efforts include the following: combustor force balance application for measurement of combustor drag for comparison with integrated point measurements of skin friction; nozzle metric strip for measuring thrust with comparison to integrated pressure measurements; and nonintrusive optical fiber-based diode laser absorption measurements of combustion products for determination of combustor performance. Direct measurements will be reported for specific test article configurations and compared with CFD solutions.
Fitzgerald, Abi; Johnson, Meshell; Hirsch, Jan; Rich, Mary-Ann; Fidler, Richard
2015-07-01
Cardiovascular disease and sudden cardiac arrest are the leading causes of death in the United States. Early defibrillation is key to successful resuscitation for patients who experience shockable rhythms during a cardiac arrest. It is therefore vital that the shock advisory of AEDs (automated external defibrillators) or defibrillators in AED mode be reliable and appropriate. The goal of this study was to better understand the performance of multiple lay-rescuer and hospital professional defibrillators in AED mode in their analysis of ventricular arrhythmias. The measurable objectives of this study sought to quantify: 1. No shock advisory for sinus rhythms at any rate. 2. Recognition and shock advisory for ventricular fibrillation (VF). 3. Recognition and shock advisory for monomorphic ventricular tachycardia (VT). 4. Recognition and shock advisory for Torsades de Pointes (TdP). This is a prospective evaluation of two AEDs and four semi-automatic, hospital professional defibrillators. This study represents post-marketing evaluation of FDA approved devices. Each defibrillator was connected to multiple rhythm simulators and presented with simulated ECG waveforms 20 consecutive times at various rates when possible. All four defibrillators and both AEDs tested consistently recognized normal sinus rhythm (NSR) from all rhythm sources, and did not recommend a shock for NSR at any rate (from 80 to 220 bpm). All four defibrillators and both AEDs recognized VF from all rhythm sources tested and recommended a shock 100% of the time. Variations were found in the shock advisory rates among defibrillators when testing simulated VT heart rates at or below 150 bpm. One AED tested did not consistently advise a shock for monomorphic VT or TdP at any tested rate. Lay-rescuer AEDs and professional hospital defibrillators tested in AED mode did not reliably recommend a shock for sustained monomorphic VT or TdP at certain rates, despite the fact that it is a critical component of the currently recommended treatment. These findings require further examination of the risk benefit analysis of shocking or not shocking rhythms such as TdP or pulseless VT. Published by Elsevier Ireland Ltd.
Design, Simulation and Fabrication of Triaxial MEMS High Shock Accelerometer.
Zhang, Zhenhai; Shi, Zhiguo; Yang, Zhan; Xie, Zhihong; Zhang, Donghong; Cai, De; Li, Kejie; Shen, Yajing
2015-04-01
On the basis of analyzing the disadvantage of other structural accelerometer, three-axis high g MEMS piezoresistive accelerometer was put forward in order to apply to the high-shock test field. The accelerometer's structure and working principle were discussed in details. The simulation results show that three-axis high shock MEMS accelerometer can bear high shock. After bearing high shock impact in high-shock shooting test, three-axis high shock MEMS accelerometer can obtain the intact metrical information of the penetration process and still guarantee the accurate precision of measurement in high shock load range, so we can not only analyze the law of stress wave spreading and the penetration rule of the penetration process of the body of the missile, but also furnish the testing technology of the burst point controlling. The accelerometer has far-ranging application in recording the typical data that projectile penetrating hard target and furnish both technology guarantees for penetration rule and defend engineering.
Effect of wall heat transfer on shock-tube test temperature at long times
NASA Astrophysics Data System (ADS)
Frazier, C.; Lamnaouer, M.; Divo, E.; Kassab, A.; Petersen, E.
2011-02-01
When performing chemical kinetics experiments behind reflected shock waves at conditions of lower temperature (<1,000 K), longer test times on the order of 10-20 ms may be required. The integrity of the test temperature during such experiments may be in question, because heat loss to the tube walls may play a larger role than is generally seen in shock-tube kinetics experiments that are over within a millisecond or two. A series of detailed calculations was performed to estimate the effect of longer test times on the temperature uniformity of the post-shock test gas. Assuming the main mode of heat transfer is conduction between the high-temperature gas and the colder shock-tube walls, a comprehensive set of calculations covering a range of conditions including test temperatures between 800 and 1,800 K, pressures between 1 and 50 atm, driven-tube inner diameters between 3 and 16.2 cm, and test gases of N2 and Ar was performed. Based on the results, heat loss to the tube walls does not significantly reduce the area-averaged temperature behind the reflected shock wave for test conditions that are likely to be used in shock-tube studies for test times up to 20 ms (and higher), provided the shock-tube inner diameter is sufficiently large (>8cm). Smaller diameters on the order of 3 cm or less can experience significant temperature loss near the reflected-shock region. Although the area-averaged gas temperature decreases due to the heat loss, the main core region remains spatially uniform so that the zone of temperature change is limited to only the thermal layer adjacent to the walls. Although the heat conduction model assumes the gas and wall to behave as solid bodies, resulting in a core gas temperature that remains constant at the initial temperature, a two-zone gas model that accounts for density loss from the core to the colder thermal layer indicates that the core temperature and gas pressure both decrease slightly with time. A full CFD solution of the shock-tube flow field and heat transfer at long test times was also performed for one typical condition (800 K, 1 atm, Ar), the results of which indicate that the simpler analytical conduction model is realistic but somewhat conservative in that it over predicts the mean temperature loss by a few Kelvins. This paper presents the first comprehensive study on the effects of long test times on the average test gas temperature behind the reflected shock wave for conditions representative of chemical kinetics experiments.
NASA Technical Reports Server (NTRS)
Miller, C. G., III
1972-01-01
A computer program written in FORTRAN 4 language is presented which determines expansion-tube flow quantities for real test gases CO2 N2, O2, Ar, He, and H2, or mixtures of these gases, in thermochemical equilibrium. The effects of dissociation and first and second ionization are included. Flow quantities behind the incident shock into the quiescent test gas are determined from the pressure and temperature of the quiescent test gas in conjunction with: (1) incident-shock velocity, (2) static pressure immediately behind the incident shock, or (3) pressure and temperature of the driver gas (imperfect hydrogen or helium). The effect of the possible existence of a shock reflection at the secondary diaphragm of the expansion tube is included. Expansion-tube test-section flow conditions are obtained by performing an isentropic unsteady expansion from the conditions behind the incident shock or reflected shock to either the test-region velocity or the static pressure. Both a thermochemical-equilibrium expansion and a frozen expansion are included. Flow conditions immediately behind the bow shock of a model positioned at the test section are also determined. Results from the program are compared with preliminary experimental data obtained in the Langley 6-inch expansion tube.
Shock Layer Radiation Measurements and Analysis for Mars Entry
NASA Technical Reports Server (NTRS)
Bose, Deepak; Grinstead, Jay Henderson; Bogdanoff, David W.; Wright, Michael J.
2009-01-01
NASA's In-Space Propulsion program is supporting the development of shock radiation transport models for aerocapture missions to Mars. A comprehensive test series in the NASA Antes Electric Arc Shock Tube facility at a representative flight condition was recently completed. The facility optical instrumentation enabled spectral measurements of shocked gas radiation from the vacuum ultraviolet to the near infrared. The instrumentation captured the nonequilibrium post-shock excitation and relaxation dynamics of dispersed spectral features. A description of the shock tube facility, optical instrumentation, and examples of the test data are presented. Comparisons of measured spectra with model predictions are also made.
Culture-Shock and Reverse-Culture Shock: Implications for Juniors Abroad and Seniors at Home.
ERIC Educational Resources Information Center
Hogan, John T.
Thousands of college seniors who have returned from their junior year abroad may be enduring "reverse culture shock" or "reentry crisis." Social psychology and sociology, in the form of "sojourn research," has derived a developmental, stage specific model of culture shock and reverse culture shock, similar to the grieving process identified by…
1986-08-01
Shock Testing Mr. John D. Favour, Mr. William J.24 October, P.M. and Anslysis Boeing Aerospace Kacene, Company, Martin Marietta Seattle, WA Denver...THE FEASIOILITY STUDY PRESENTED HERE SHOWS REPORT NO. SC-RR- 71 -02811, 7 THAT, THE CONCEPT Or ACTIVE PROTECTION OFFERS MANY ADVANTAGES OVEi, PASSIVE...paper. Mr. Fotieo ( Martin Marietta Orlando): Would this technique be helpful in predicting the pressures icting on the back end of a projectile as it
CFD Validation Experiment of a Mach 2.5 Axisymmetric Shock-Wave/Boundary-Layer Interaction
NASA Technical Reports Server (NTRS)
Davis, David O.
2015-01-01
Experimental investigations of specific flow phenomena, e.g., Shock Wave Boundary-Layer Interactions (SWBLI), provide great insight to the flow behavior but often lack the necessary details to be useful as CFD validation experiments. Reasons include: 1.Undefined boundary conditions Inconsistent results 2.Undocumented 3D effects (CL only measurements) 3.Lack of uncertainty analysis While there are a number of good subsonic experimental investigations that are sufficiently documented to be considered test cases for CFD and turbulence model validation, the number of supersonic and hypersonic cases is much less. This was highlighted by Settles and Dodsons [1] comprehensive review of available supersonic and hypersonic experimental studies. In all, several hundred studies were considered for their database.Of these, over a hundred were subjected to rigorous acceptance criteria. Based on their criteria, only 19 (12 supersonic, 7 hypersonic) were considered of sufficient quality to be used for validation purposes. Aeschliman and Oberkampf [2] recognized the need to develop a specific methodology for experimental studies intended specifically for validation purposes.
DETERMINATION OF THE SPEED OF SOUND ALONG THE HUGONIOT IN A SHOCKED MATERIAL
2017-04-25
correctly predict higher speeds of sound for the higher energy shocked states. The approximations of higher shock pressures diverge progressively...List 11 FIGURES 1 Copper Hugoniot pressure-specific volume plane 4 2 Copper Hugoniot energy -specific volume plane 4 3 Comparison between rate of...volume and energy are being used. = (, ) Then by the chain rule: = | + | Dividing by dv
Soscia, Isabella; Turrini, Alex; Tanzi, Emilio
2012-01-01
This article investigates the effects of different emotional appeals in HIV/AIDS prevention campaigns using printed advertisements. More specifically, it examines the effectiveness of humor appeal compared with shock and fear appeals. The authors experimentally test the level of attention drawn and the spontaneous recall arising when young Italian adults are shown different HIV/AIDS prevention campaigns. Findings show that humor appeals are less effective than fear and shock appeals, evidencing the failures in HIV/AIDS prevention campaigns in Italy, a country where the former communication strategy has been used in substantive ways. The results also indicate the higher effectiveness of fear appeals (over shock and humor) in printed HIV/AIDS advertising campaigns. The implications of these results for further studies and for improving the design, implementation, and evaluation of HIV/AIDS campaign efforts are also discussed.
Blast shock wave mitigation using the hydraulic energy redirection and release technology.
Chen, Yun; Huang, Wei; Constantini, Shlomi
2012-01-01
A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel.
Blast Shock Wave Mitigation Using the Hydraulic Energy Redirection and Release Technology
Chen, Yun; Huang, Wei; Constantini, Shlomi
2012-01-01
A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel. PMID:22745740
Llompart-Pou, Juan Antonio; Raurich, Joan Maria; Ayestarán, Ignacio; Fernández-de-Castillo, Ana G; Pérez-Bárcena, Jon; Ibáñez, Jordi
2012-06-01
The use of the high-dose corticotrophin stimulation test (HDCST) as a guide to use low-dose steroid therapy in septic shock is controversial. The adrenocotropin hormone (ACTH) constitutes the immediate stimuli to produce cortisol. We evaluated the correlation of the response to the HDCST with plasma ACTH levels in patients with septic shock. This is a retrospective review of 102 patients with septic shock in which adrenal function was evaluated using the HDCST and plasma ACTH levels were measured. Patients with a δ cortisol of 9 μg/dL or less were considered as nonresponders or with subnormal response. The association between plasma ACTH levels and the response to the HDCST was investigated. Sixty-four patients (62.7%) had a subnormal response. Plasma ACTH levels were higher in patients with subnormal response (19.8 [11.7-31.4] vs 10.0 [7.0-21.2] pg/mL; P = .002). Patients in the highest quartile of plasma ACTH had lower δ cortisol (P = .014) and higher percentage of subnormal response (P = .005). The optimal cutoff point of plasma ACTH level with fewest false classifications was 10 pg/mL (sensitivity, 0.83 [95% confidence interval, 074-0.90] and specificity, 0.50 [95% confidence interval, 0.74-0.90]). Patients with septic shock with higher plasma ACTH values presented a subnormal response to the HDCST. The number of patients who failed to the HDCST was higher as plasma ACTH increased. Copyright © 2012 Elsevier Inc. All rights reserved.
Plume and Shock Interaction Effects on Sonic Boom in the 1-foot by 1-foot Supersonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Castner, Raymond; Elmiligui, Alaa; Cliff, Susan; Winski, Courtney
2015-01-01
The desire to reduce or eliminate the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions are due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed by the aircraft. A study has been performed focused on reducing the magnitude of the sonic boom N-wave generated by airplane components with a focus on shock waves caused by the exhaust nozzle plume. Testing was completed in the 1-foot by 1-foot supersonic wind tunnel to study the effects of an exhaust nozzle plume and shock wave interaction. The plume and shock interaction study was developed to collect data for computational fluid dynamics (CFD) validation of a nozzle plume passing through the shock generated from the wing or tail of a supersonic vehicle. The wing or tail was simulated with a wedgeshaped shock generator. This test entry was the first of two phases to collect schlieren images and off-body static pressure profiles. Three wedge configurations were tested consisting of strut-mounted wedges of 2.5- degrees and 5-degrees. Three propulsion configurations were tested simulating the propulsion pod and aft deck from a low boom vehicle concept, which also provided a trailing edge shock and plume interaction. Findings include how the interaction of the jet plume caused a thickening of the shock generated by the wedge (or aft deck) and demonstrate how the shock location moved with increasing nozzle pressure ratio.
A new class of high-G and long-duration shock testing machines
NASA Astrophysics Data System (ADS)
Rastegar, Jahangir
2018-03-01
Currently available methods and systems for testing components for survival and performance under shock loading suffer from several shortcomings for use to simulate high-G acceleration events with relatively long duration. Such events include most munitions firing and target impact, vehicular accidents, drops from relatively high heights, air drops, impact between machine components, and other similar events. In this paper, a new class of shock testing machines are presented that can be used to subject components to be tested to high-G acceleration pulses of prescribed amplitudes and relatively long durations. The machines provide for highly repeatable testing of components. The components are mounted on an open platform for ease of instrumentation and video recording of their dynamic behavior during shock loading tests.
Investigation of shock focusing in a cavity with incident shock diffracted by an obstacle
NASA Astrophysics Data System (ADS)
Zhang, Q.; Chen, X.; He, L.-M.; Rong, K.; Deiterding, R.
2017-03-01
Experiments and numerical simulations were carried out in order to investigate the focusing of a shock wave in a test section after the incident shock has been diffracted by an obstacle. A conventional shock tube was used to generate the planar shock. Incident shock Mach numbers of 1.4 and 2.1 were tested. A high-speed camera was employed to obtain schlieren photos of the flow field in the experiments. In the numerical simulations, a weighted essentially non-oscillatory (WENO) scheme of third-order accuracy supplemented with structured dynamic mesh adaptation was adopted to simulate the shock wave interaction. Good agreement between experiments and numerical results is observed. The configurations exhibit shock reflection phenomena, shock-vortex interaction and—in particular—shock focusing. The pressure history in the cavity apex was recorded and compared with the numerical results. A quantitative analysis of the numerically observed shock reflection configurations is also performed by employing a pseudo-steady shock transition boundary calculation technique. Regular reflection, single Mach reflection and transitional Mach reflection phenomena are observed and are found to correlate well with analytic predictions from shock reflection theory.
Learned helplessness in the rat: improvements in validity and reliability.
Vollmayr, B; Henn, F A
2001-08-01
Major depression has a high prevalence and a high mortality. Despite many years of research little is known about the pathophysiologic events leading to depression nor about the causative molecular mechanisms of antidepressant treatment leading to remission and prevention of relapse. Animal models of depression are urgently needed to investigate new hypotheses. The learned helplessness paradigm initially described by Overmier and Seligman [J. Comp. Physiol. Psychol. 63 (1967) 28] is the most widely studied animal model of depression. Animals are exposed to inescapable shock and subsequently tested for a deficit in acquiring an avoidance task. Despite its excellent validity concerning the construct of etiology, symptomatology and prediction of treatment response [Clin. Neurosci. 1 (1993) 152; Trends Pharmacol. Sci. 12 (1991) 131] there has been little use of the model for the investigation of recent theories on the pathogenesis of depression. This may be due to reported difficulties in reliability of the paradigm [Animal Learn. Behav. 4 (1976) 401; Pharmacol. Biochem. Behav. 36 (1990) 739]. The aim of the current study was therefore to improve parameters for inescapable shock and learned helplessness testing to minimize artifacts and random error and yield a reliable fraction of helpless animals after shock exposure. The protocol uses mild current which induces helplessness only in some of the animals thereby modeling the hypothesis of variable predisposition for depression in different subjects [Psychopharmacol. Bull. 21 (1985) 443; Neurosci. Res. 38 (200) 193]. This allows us to use animals which are not helpless after inescapable shock as a stressed control, but sensitivity, specificity and variability of test results have to be reassessed.
NASA Technical Reports Server (NTRS)
Kamath, Pradeep S.; Holden, Michael S.; Mcclinton, Charles R.
1990-01-01
This paper presents results from a study conducted to investigate the effect of incident oblique shocks on the effectiveness of a coolant film at Mach numbers, typical of those expected in a scramjet combustor at Mach 15 to 20 flight. Computations with a parabolic code are in good agreement with the measured pressures and heat fluxes, after accounting for the influence of the shock upstream of its point of impingement on the plate, and the expansion from the trailing edge of the shock generator. The test data shows that, for the blowing rates tested, the film is rendered largely ineffective by the shock. Computations show that coolant blowing rates five to ten times those tested are required to protect against shock-induced heating. The implications of the results to scramjet combustor design are discussed.
Time-resolved spectroscopic measurements behind incident and reflected shock waves in air and xenon
NASA Technical Reports Server (NTRS)
Yoshinaga, T.
1973-01-01
Time-resolved spectra have been obtained behind incident and reflected shock waves in air and xenon at initial pressures of 0.1 and 1.0 torr using a rotating drum spectrograph and the OSU (The Ohio State University) arc-driven shock tube. These spectra were used to determine the qualitative nature of the flow as well as for making estimates of the available test time. The (n+1,n) and (n,n) band spectra of N2(+) (1st negative) were observed in the test gas behind incident shock waves in air at p1=1.0 torr and Us=9-10 km/sec. Behind reflected shock waves in air, the continuum of spectra appeared to cover almost the entire wavelength of 2,500-7,000 A for the shock-heated test gas. For xenon, the spectra for the incident shock wave cases for p1=0.1 torr show an interesting structure in which two intensely bright regions are witnessed in the time direction. The spectra obtained behind reflected shock waves in xenon were also dominated by continuum radiation but included strong absorption spectra due to FeI and FeII from the moment the reflected shock passed and on.
NASA Astrophysics Data System (ADS)
Lee, Tae-Kyu; Chen, Zhiqiang; Guirguis, Cherif; Akinade, Kola
2017-10-01
The stability of solder interconnects in a mechanical shock environment is crucial for large body size flip-chip ball grid array (FCBGA) electronic packages. Additionally, the junction temperature increases with higher electric power condition, which brings the component into an elevated temperature environment, thus introducing another consideration factor for mechanical stability of interconnection joints. Since most of the shock performance data available were produced at room temperature, the effect of elevated temperature is of interest to ensure the reliability of the device in a mechanical shock environment. To achieve a stable␣interconnect in a dynamic shock environment, the interconnections must tolerate mechanical strain, which is induced by the shock wave input and reaches the particular component interconnect joint. In this study, large body size (52.5 × 52.5 mm2) FCBGA components assembled on 2.4-mm-thick boards were tested with various isothermal pre-conditions and testing conditions. With a heating element embedded in the test board, a test temperature range from room temperature to 100°C was established. The effects of elevated temperature on mechanical shock performance were investigated. Failure and degradation mechanisms are identified and discussed based on the microstructure evolution and grain structure transformations.
Shock wave attenuation by grids and orifice plates
NASA Astrophysics Data System (ADS)
Britan, A.; Igra, O.; Ben-Dor, G.; Shapiro, H.
2006-11-01
The interaction of weak shock waves with porous barriers of different geometries and porosities is examined. Installing a barrier inside the shock tube test section will cause the development of the following wave pattern upon a head-on collision between the incident shock wave and the barrier: a reflected shock from the barrier and a transmitted shock propagating towards the shock tube end wall. Once the transmitted shock wave reaches the end wall it is reflected back towards the barrier. This is the beginning of multiple reflections between the barrier and the end wall. This full cycle of shock reflections/interactions resulting from the incident shock wave collision with the barrier can be studied in a single shock tube test. A one-dimensional (1D), inviscid flow model was proposed for simulating the flow resulting from the initial collision of the incident shock wave with the barrier. Fairly good agreement is found between experimental findings and simulations based on a 1D flow model. Based on obtained numerical and experimental findings an optimal design procedure for shock wave attenuator is suggested. The suggested attenuator may ensure the safety of the shelter’s ventilation systems.
Calculating shock arrival in expansion tubes and shock tunnels using Bayesian changepoint analysis
NASA Astrophysics Data System (ADS)
James, Christopher M.; Bourke, Emily J.; Gildfind, David E.
2018-06-01
To understand the flow conditions generated in expansion tubes and shock tunnels, shock speeds are generally calculated based on shock arrival times at high-frequency wall-mounted pressure transducers. These calculations require that the shock arrival times are obtained accurately. This can be non-trivial for expansion tubes especially because pressure rises may be small and shock speeds high. Inaccurate shock arrival times can be a significant source of uncertainty. To help address this problem, this paper investigates two separate but complimentary techniques. Principally, it proposes using a Bayesian changepoint detection method to automatically calculate shock arrival, potentially reducing error and simplifying the shock arrival finding process. To compliment this, a technique for filtering the raw data without losing the shock arrival time is also presented and investigated. To test the validity of the proposed techniques, tests are performed using both a theoretical step change with different levels of noise and real experimental data. It was found that with conditions added to ensure that a real shock arrival time was found, the Bayesian changepoint analysis method was able to automatically find the shock arrival time, even for noisy signals.
Bohor, B.F.; Betterton, W.J.; Krogh, T.E.
1993-01-01
Textural effects specifically characteristic of shock metamorphism in zircons from impact environments have not been reported previously. However, planar deformation features (PDF) due to shock metamorphism are well documented in quartz and other mineral grains from these same environments. An etching technique was developed that allows SEM visualization of PDF and other probable shock-induced textural features, such as granular (polycrystalline) texture, in zircons from a variety of impact shock environments. These textural features in shocked zircons from K/T boundary distal ejecta form a series related to increasing degrees of shock that should correlate with proportionate resetting of the UPb isotopic system. ?? 1993.
Abreu, Patrícia L; Cunha-Oliveira, Teresa; Ferreira, Leonardo M R; Urbano, Ana M
2018-03-16
Exposure to hexavalent chromium [Cr(VI)], a lung carcinogen, triggers several types of cellular stresses, namely oxidative, genotoxic and proteotoxic stresses. Given the evolutionary character of carcinogenesis, it is tempting to speculate that cells that survive the stresses produced by this carcinogen become more resistant to subsequent stresses, namely those encountered during neoplastic transformation. To test this hypothesis, we determined whether pre-incubation with Cr(VI) increased the resistance of human bronchial epithelial cells (BEAS-2B cells) to the antiproliferative action of acute thermal shock, used here as a model for stress. In line with the proposed hypothesis, it was observed that, at mildly cytotoxic concentrations, Cr(VI) attenuated the antiproliferative effects of both cold and heat shock. Mechanistically, Cr(VI) interfered with the expression of two components of the stress response pathway: heat shock proteins Hsp72 and Hsp90α. Specifically, Cr(VI) significantly depleted the mRNA levels of the former and the protein levels of the latter. Significantly, these two proteins are members of heat shock protein (Hsp) families (Hsp70 and Hsp90, respectively) that have been implicated in carcinogenesis. Thus, our results confirm and extend previous studies showing the capacity of Cr(VI) to interfere with the expression of stress response components.
Roles of heat shock factors in gametogenesis and development.
Abane, Ryma; Mezger, Valérie
2010-10-01
Heat shock factors form a family of transcription factors (four in mammals), which were named according to the first discovery of their activation by heat shock. As a result of the universality and robustness of their response to heat shock, the stress-dependent activation of heat shock factor became a ‘paradigm’: by binding to conserved DNA sequences (heat shock elements), heat shock factors trigger the expression of genes encoding heat shock proteins that function as molecular chaperones, contributing to establish a cytoprotective state to various proteotoxic stress and in several pathological conditions. Besides their roles in the stress response, heat shock factors perform crucial roles during gametogenesis and development in physiological conditions. First, during these process, in stress conditions, they are either proactive for survival or, conversely, for apoptotic process, allowing elimination or, inversely, protection of certain cell populations in a way that prevents the formation of damaged gametes and secure future reproductive success. Second, heat shock factors display subtle interplay in a tissue- and stage-specific manner, in regulating very specific sets of heat shock genes, but also many other genes encoding growth factors or involved in cytoskeletal dynamics. Third, they act not only by their classical transcription factor activities, but are necessary for the establishment of chromatin structure and, likely, genome stability. Finally, in contrast to the heat shock gene paradigm, heat shock elements bound by heat shock factors in developmental process turn out to be extremely dispersed in the genome, which is susceptible to lead to the future definition of ‘developmental heat shock element’.
Lancaster, Graeme I; Febbraio, Mark A
2005-01-01
The heat shock proteins are a family of highly conserved proteins with critical roles in maintaining cellular homeostasis and in protecting the cell from stressful conditions. While the critical intracellular roles of heat shock proteins are undisputed, evidence suggests that the cell possess the necessary machinery to actively secrete specific heat shock proteins in response to cellular stress. In this review, we firstly discuss the evidence that physical exercise induces the release of heat shock protein 72 from specific tissues in humans. Importantly, it appears as though this release is the result of an active secretory process, as opposed to non-specific processes such as cell lysis. Next we discuss recent in vitro evidence that has identified a mechanistic basis for the observation that cellular stress induces the release of a specific subset of heat shock proteins. Importantly, while the classical protein secretory pathway does not seem to be involved in the stress-induced release of HSP72, we discuss the evidence that lipid-rafts and exosomes are important mediators of the stress-induced release of HSP72.
False context fear memory in rats.
Bae, Sarah E; Holmes, Nathan M; Westbrook, R Frederick
2015-10-01
Four experiments used rats to study false context fear memories. In Experiment 1, rats were pre-exposed to a distinctive chamber (context A) or to a control environment (context C), shocked after a delay in a second chamber (context B) and tested either in B or A. Rats pre-exposed to A froze just as much as control rats in B but more than control rats in A. In Experiment 2, rats were pre-exposed to A or C, subjected to an immediate shock in B and tested in B or A. Rats pre-exposed to A froze when tested in A but did not freeze when tested in B and control rats did not freeze in either A or B. The false fear memory to the pre-exposed A was contingent on its similarity with the shocked B. In Experiment 3, rats pre-exposed to A and subjected to immediate shock in B froze when tested in A but did not freeze when tested in C and rats pre-exposed to C did not freeze when tested either in A or C. In Experiment 4, rats pre-exposed to A and subjected to immediate shock in B froze more when tested in A than rats whose pre-exposure to A began with an immediate shock. The results were discussed in terms of a dual systems explanation of context fear conditioning: a hippocampal-dependent process that forms a unitary representation of context and an amygdala-based process which associates this representation with shock. © 2015 Bae et al.; Published by Cold Spring Harbor Laboratory Press.
Transonic Unsteady Aerodynamics of the F/A-18E at Conditions Promoting Abrupt Wing Stall
NASA Technical Reports Server (NTRS)
Schuster, David M.; Byrd, James E.
2003-01-01
A transonic wind tunnel test of an 8% F/A-18E model was conducted in the NASA Langley Research Center (LaRC) 16-Foot Transonic Tunnel (16-Ft TT) to investigate the Abrupt Wing Stall (AWS) characteristics of this aircraft. During this test, both steady and unsteady measurements of balance loads, wing surface pressures, wing root bending moments, and outer wing accelerations were performed. The test was conducted with a wide range of model configurations and test conditions in an attempt to reproduce behavior indicative of the AWS phenomenon experienced on full-scale aircraft during flight tests. This paper focuses on the analysis of the unsteady data acquired during this test. Though the test apparatus was designed to be effectively rigid. model motions due to sting and balance flexibility were observed during the testing, particularly when the model was operating in the AWS flight regime. Correlation between observed aerodynamic frequencies and model structural frequencies are analyzed and presented. Significant shock motion and separated flow is observed as the aircraft pitches through the AWS region. A shock tracking strategy has been formulated to observe this phenomenon. Using this technique, the range of shock motion is readily determined as the aircraft encounters AWS conditions. Spectral analysis of the shock motion shows the frequencies at which the shock oscillates in the AWS region, and probability density function analysis of the shock location shows the propensity of the shock to take on a bi-stable and even tri-stable character in the AWS flight regime.
1993-01-25
10 DISCUSSION ............................................... 14 FIELD TESTS OF ANTIBODY DETECTION OF HEAT SHOCK PROTEIN ACCUMULATION IN... TESTS OF ANTIBODY DETECTION OF HEAT SHOCK PROTEIN ACCUMULATION IN ASIAN CLAMS (CORBICULA FLUMINEA) INTRODUCTION The Trinity River flows through...the utility of induction of heat shock proteins as an indicator of stress in another test organism, the Asian clam (Corbicula fluminea). This organism
Shock-tube studies of silicon-compound vapors
NASA Technical Reports Server (NTRS)
Park, C.; Fujiwara, T.
1977-01-01
Test gas mixtures containing SiO, SiO2, Si2, and SiH were produced in a shock tube by processing shock waves through a mixture of SiCl4 + N2O + Ar, SiH4 + Ar, or SiH4 + O2 + Ar. Absorption spectra of the test gases were studied photographically in the reflected shock region using a xenon flash lamp as the light source in the range of wavelengths between 250 and 600 nm. SiO was found to be a dominant species in the vapors produced by the SiCl4 + N2O and SiH4 + O2 mixtures. Spontaneous combustion was observed in the SiH4 + O2 + Ar mixture prior to the shock arrival, and the resulting solid SiO2 particles evaporated behind the shock wave. Spectral absorption characteristics of SiO, SiO2, Si2, and SiH were determined by studying the test gases.
Modeling Three-Dimensional Shock Initiation of PBX 9501 in ALE3D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leininger, L; Springer, H K; Mace, J
A recent SMIS (Specific Munitions Impact Scenario) experimental series performed at Los Alamos National Laboratory has provided 3-dimensional shock initiation behavior of the HMX-based heterogeneous high explosive, PBX 9501. A series of finite element impact calculations have been performed in the ALE3D [1] hydrodynamic code and compared to the SMIS results to validate and study code predictions. These SMIS tests used a powder gun to shoot scaled NATO standard fragments into a cylinder of PBX 9501, which has a PMMA case and a steel impact cover. This SMIS real-world shot scenario creates a unique test-bed because (1) SMIS tests facilitatemore » the investigation of 3D Shock to Detonation Transition (SDT) within the context of a considerable suite of diagnostics, and (2) many of the fragments arrive at the impact plate off-center and at an angle of impact. A particular goal of these model validation experiments is to demonstrate the predictive capability of the ALE3D implementation of the Tarver-Lee Ignition and Growth reactive flow model [2] within a fully 3-dimensional regime of SDT. The 3-dimensional Arbitrary Lagrange Eulerian (ALE) hydrodynamic model in ALE3D applies the Ignition and Growth (I&G) reactive flow model with PBX 9501 parameters derived from historical 1-dimensional experimental data. The model includes the off-center and angle of impact variations seen in the experiments. Qualitatively, the ALE3D I&G calculations reproduce observed 'Go/No-Go' 3D Shock to Detonation Transition (SDT) reaction in the explosive, as well as the case expansion recorded by a high-speed optical camera. Quantitatively, the calculations show good agreement with the shock time of arrival at internal and external diagnostic pins. This exercise demonstrates the utility of the Ignition and Growth model applied for the response of heterogeneous high explosives in the SDT regime.« less
Thermal shock tests to qualify different tungsten grades as plasma facing material
NASA Astrophysics Data System (ADS)
Wirtz, M.; Linke, J.; Loewenhoff, Th; Pintsuk, G.; Uytdenhouwen, I.
2016-02-01
The electron beam device JUDITH 1 was used to establish a testing procedure for the qualification of tungsten as plasma facing material. Absorbed power densities of 0.19 and 0.38 GW m-2 for an edge localized mode-like pulse duration of 1 ms were chosen. Furthermore, base temperatures of room temperature, 400 °C and 1000 °C allow investigating the thermal shock performance in the brittle, ductile and high temperature regime. Finally, applying 100 pulses under all mentioned conditions helps qualifying the general damage behaviour while with 1000 pulses for the higher power density the influence of thermal fatigue is addressed. The investigated reference material is a tungsten product produced according to the ITER material specifications. The obtained results provide a general overview of the damage behaviour with quantified damage characteristics and thresholds. In particular, it is shown that the damage strongly depends on the microstructure and related thermo-mechanical properties.
NASA Astrophysics Data System (ADS)
Puranik, Bhalchandra; Watvisave, Deepak; Bhandarkar, Upendra
2016-11-01
The interaction of a shock with a density interface is observed in several technological applications such as supersonic combustion, inertial confinement fusion, and shock-induced fragmentation of kidney and gall-stones. The central physical process in this interaction is the mechanism of the Richtmyer-Meshkov Instability (RMI). The specific situation where the density interface is initially an isolated spherical or cylindrical gas bubble presents a relatively simple geometry that exhibits all the essential RMI processes such as reflected and refracted shocks, secondary instabilities, turbulence and mixing of the species. If the incident shocks are strong, the calorically imperfect nature needs to be modelled. In the present work, we have carried out simulations of the shock-bubble interaction using the DSMC method for such situations. Specifically, an investigation of the shock-bubble interaction with diatomic gases involving rotational and vibrational excitations at high temperatures is performed, and the effects of such high temperature phenomena will be presented.
Hess, M A; Duncan, R F
1996-01-01
Preferential translation of Drosophila heat shock protein 70 (Hsp70) mRNA requires only the 5'-untranslated region (5'-UTR). The sequence of this region suggests that it has relatively little secondary structure, which may facilitate efficient protein synthesis initiation. To determine whether minimal 5'-UTR secondary structure is required for preferential translation during heat shock, the effect of introducing stem-loops into the Hsp70 mRNA 5'-UTR was measured. Stem-loops of -11 kcal/mol abolished translation during heat shock, but did not reduce translation in non-heat shocked cells. A -22 kcal/mol stem-loop was required to comparably inhibit translation during growth at normal temperatures. To investigate whether specific sequence elements are also required for efficient preferential translation, deletion and mutation analyses were conducted in a truncated Hsp70 5'-UTR containing only the cap-proximal and AUG-proximal segments. Linker-scanner mutations in the cap-proximal segment (+1 to +37) did not impair translation. Re-ordering the segments reduced mRNA translational efficiency by 50%. Deleting the AUG-proximal segment severely inhibited translation. A 5-extension of the full-length leader specifically impaired heat shock translation. These results indicate that heat shock reduces the capacity to unwind 5-UTR secondary structure, allowing only mRNAs with minimal 5'-UTR secondary structure to be efficiently translated. A function for specific sequences is also suggested. PMID:8710519
Mixing-model Sensitivity to Initial Conditions in Hydrodynamic Predictions
NASA Astrophysics Data System (ADS)
Bigelow, Josiah; Silva, Humberto; Truman, C. Randall; Vorobieff, Peter
2017-11-01
Amagat and Dalton mixing-models were studied to compare their thermodynamic prediction of shock states. Numerical simulations with the Sandia National Laboratories shock hydrodynamic code CTH modeled University of New Mexico (UNM) shock tube laboratory experiments shocking a 1:1 molar mixture of helium (He) and sulfur hexafluoride (SF6) . Five input parameters were varied for sensitivity analysis: driver section pressure, driver section density, test section pressure, test section density, and mixture ratio (mole fraction). We show via incremental Latin hypercube sampling (LHS) analysis that significant differences exist between Amagat and Dalton mixing-model predictions. The differences observed in predicted shock speeds, temperatures, and pressures grow more pronounced with higher shock speeds. Supported by NNSA Grant DE-0002913.
High Order Numerical Methods for LES of Turbulent Flows with Shocks
NASA Technical Reports Server (NTRS)
Kotov, D. V.; Yee, H. C.; Hadjadj, A.; Wray, A.; Sjögreen, B.
2014-01-01
Simulation of turbulent flows with shocks employing explicit subgrid-scale (SGS) filtering may encounter a loss of accuracy in the vicinity of a shock. In this work we perform a comparative study of different approaches to reduce this loss of accuracy within the framework of the dynamic Germano SGS model. One of the possible approaches is to apply Harten's subcell resolution procedure to locate and sharpen the shock, and to use a one-sided test filter at the grid points adjacent to the exact shock location. The other considered approach is local disabling of the SGS terms in the vicinity of the shock location. In this study we use a canonical shock-turbulence interaction problem for comparison of the considered modifications of the SGS filtering procedure. For the considered test case both approaches show a similar improvement in the accuracy near the shock.
NASA Technical Reports Server (NTRS)
Garcia, Daniel B.; Forman, Royce; Shindo, David
2010-01-01
A test program was developed and executed to evaluate the influence of corroded hemispherical notches on the fatigue crack initiation and propagation in aluminum 7075-T7351, 4340 steel, and D6AC steel. Surface enhancements such as shot peening and laser shock peening were also incorporated as part of the test effort with the intent of improving fatigue performance. In addition to the testing, fracture mechanics and endurance limit based analysis methods were evaluated to characterize the results with the objective of challenging typical assumptions used in modeling fatigue cracks from corrosion pits. The results specifically demonstrate that the aluminum and steel alloys behave differently with respect to fatigue crack initiation from hemispherical corrosion pits. The aluminum test results were bounded by the fracture mechanics and endurance limit models while exhibiting a general insensitivity to the residual stress field generated by shot peening. The steel specimens were better characterized by the endurance limit fatigue properties and did exhibit sensitivities to residual stresses from the shot peening and laser shock peening
Transient Three-Dimensional Startup Side Load Analysis of a Regeneratively Cooled Nozzle
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2008-01-01
The objective of this effort is to develop a computational methodology to capture the startup side load physics and to anchor the computed aerodynamic side loads with the available data from a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, a transient 5 s inlet history based on an engine system simulation, and a wall temperature distribution to reflect the effect of regenerative cooling. To understand the effect of regenerative wall cooling, two transient computations were performed using the boundary conditions of adiabatic and cooled walls, respectively. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with the pulsation of shocks across the lip, although the combustion wave is commonly eliminated with the sparklers during actual test. The test measured two side load events: a secondary and lower side load, followed by a primary and peak side load. Results from both wall boundary conditions captured the free-shock separation to restricted-shock separation transition with computed side loads matching the measured secondary side load. For the primary side load, the cooled wall transient produced restricted-shock pulsation across the nozzle lip with peak side load matching that of the test, while the adiabatic wall transient captured shock transitions and free-shock pulsation across the lip with computed peak side load 50% lower than that of the measurement. The computed dominant pulsation frequency of the cooled wall nozzle agrees with that of a separate test, while that of the adiabatic wall nozzle is more than 50% lower than that of the measurement. The computed teepee-like formation and the tangential motion of the shocks during lip pulsation also qualitatively agree with those of test observations. Moreover, a third transient computation was performed with a proportionately shortened 1 s sequence, and lower side loads were obtained with the higher ramp rate.
Xie, Zhiyi; Zhang, Zhenyu; Xu, Yuan; Zhou, Hua; Wu, Sheng; Wang, Zhong
2018-06-01
In this prospective observational study, we investigated the variability in radial artery invasive blood pressure associated with arm elevation in patients with different hemodynamic types. We carried out a prospective observational study using data from 73 general anesthesia hepatobiliary postoperative adult patients admitted to an ICU over a 1-year period. A standard procedure was used for the arm elevation test. The value of invasive radial arterial pressure was recorded at baseline, and 30 and 60 s after the arm had been raised from 0° to 90°. We compared the blood pressure before versus after arm elevation, and between hemodynamically stable, hypovolemic shock, and septic shock patient groups. In all 73 patients, systolic arterial pressure (SAP) decreased, diastolic arterial pressure (DAP) increased, and pulse pressure (PP) decreased at 30 and 60 s after arm elevation (P<0.01), but the mean arterial pressure (MAP) was unchanged (P>0.05). On comparing 30 and 60 s, there was no significant difference in SAP, DAP, PP, or MAP (P>0.05). In 40 hemodynamically stable patients, SAP and PP decreased, and DAP and MAP increased significantly at 30 and 60 s after arm elevation compared with baseline (P<0.01). In 16 hypovolemic patients, SAP, DAP, and MAP increased significantly compared with baseline at 30 and 60 s (P<0.01), but PP was unchanged (P>0.05). In 17 patients with septic shock, SAP, PP, and MAP decreased significantly versus baseline at 30 and 60 s (P<0.01), but DAP was unchanged (P>0.05). Comparison of the absolute value of pressure change of septic shock patients at 30 s after raising the arm showed that SAP, DAP, and MAP changes were significantly lower compared with those in hypovolemic shock and hemodynamically stable patients (P<0.01). The areas under the receiver operator characteristic curve for predicting septic shock was 0.930 [95% confidence interval (CI): 0.867-0.992, P< 0.001] for change value at 30 s after arm elevation of SAP. The best cut-off point for the SAP change value was -5 mmHg or less, with a sensitivity of 94.12%, a specificity of 80.36%, a positive likelihood ratio of 4.79 (95% CI: 2.8-8.2), and a negative likelihood ratio of 0.073 (95% CI: 0.01-0.5). Our study shows that hypovolemic shock and septic shock patients have significantly different radial artery invasive blood pressure changes in an arm elevation test, which could be applied as a new method to distinguish hypovolemic shock and septic shock from hypotension.
Application of the Bootstrap Statistical Method in Deriving Vibroacoustic Specifications
NASA Technical Reports Server (NTRS)
Hughes, William O.; Paez, Thomas L.
2006-01-01
This paper discusses the Bootstrap Method for specification of vibroacoustic test specifications. Vibroacoustic test specifications are necessary to properly accept or qualify a spacecraft and its components for the expected acoustic, random vibration and shock environments seen on an expendable launch vehicle. Traditionally, NASA and the U.S. Air Force have employed methods of Normal Tolerance Limits to derive these test levels based upon the amount of data available, and the probability and confidence levels desired. The Normal Tolerance Limit method contains inherent assumptions about the distribution of the data. The Bootstrap is a distribution-free statistical subsampling method which uses the measured data themselves to establish estimates of statistical measures of random sources. This is achieved through the computation of large numbers of Bootstrap replicates of a data measure of interest and the use of these replicates to derive test levels consistent with the probability and confidence desired. The comparison of the results of these two methods is illustrated via an example utilizing actual spacecraft vibroacoustic data.
NASA Technical Reports Server (NTRS)
Bohor, B. F.; Betterton, W. J.; Krogh, T. E.
1993-01-01
Textural effects specifically characteristic of shock metamorphism in zircons from impact environments have not been reported previously. However, planar deformation features (PDF) due to shock metamorphism are well documented in quartz and other mineral grains from these same environments. An etching technique was developed that allows scanning electron microscope (SEM) visualization of PDF and other probable shock-induced textural features, such as granular (polycrystalline) texture, in zircons from a variety of impact shock environments. These textural features in shocked zircons from K/T boundary distal ejecta form a series related to increasing degrees of shock that should correlate with proportionate resetting of the U-Pb isotopic system.
Modeling The Shock Initiation of PBX-9501 in ALE3D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leininger, L; Springer, H K; Mace, J
The SMIS (Specific Munitions Impact Scenario) experimental series performed at Los Alamos National Laboratory has determined the 3-dimensional shock initiation behavior of the HMX-based heterogeneous high explosive, PBX 9501. A series of finite element impact calculations have been performed in the ALE3D [1] hydrodynamic code and compared to the SMIS results to validate the code predictions. The SMIS tests use a powder gun to shoot scaled NATO standard fragments at a cylinder of PBX 9501, which has a PMMA case and a steel impact cover. The SMIS real-world shot scenario creates a unique test-bed because many of the fragments arrivemore » at the impact plate off-center and at an angle of impact. The goal of this model validation experiments is to demonstrate the predictive capability of the Tarver-Lee Ignition and Growth (I&G) reactive flow model [2] in this fully 3-dimensional regime of Shock to Detonation Transition (SDT). The 3-dimensional Arbitrary Lagrange Eulerian hydrodynamic model in ALE3D applies the Ignition and Growth (I&G) reactive flow model with PBX 9501 parameters derived from historical 1-dimensional experimental data. The model includes the off-center and angle of impact variations seen in the experiments. Qualitatively, the ALE3D I&G calculations accurately reproduce the 'Go/No-Go' threshold of the Shock to Detonation Transition (SDT) reaction in the explosive, as well as the case expansion recorded by a high-speed optical camera. Quantitatively, the calculations show good agreement with the shock time of arrival at internal and external diagnostic pins. This exercise demonstrates the utility of the Ignition and Growth model applied in a predictive fashion for the response of heterogeneous high explosives in the SDT regime.« less
Pyrotechnic shock at the orbiter/external tank forward attachment
NASA Technical Reports Server (NTRS)
Rogers, W. F.; Grissom, D. S.; Rhodes, L. R.
1980-01-01
During the initial certification test of the forward structural attachment of the space shuttle orbiter to the external tank, pyrotechnic shock from actuation of the separation device resulted in structural failure of the thermal protection tiles surrounding the attachment. Because of the high shock associated with the separation bolt, the development of alternative low shock separation designs was initiated. Two concepts that incorporate a 5.08 centimeter frangible nut as the release device were developed and tested.
Code of Federal Regulations, 2010 CFR
2010-07-01
... MARINE SANITATION DEVICES Design, Construction, and Testing § 159.105 Shock test. The device, with liquid retention components, if any, filled with water to half of their volume, must be subjected to 1,000 vertical...
High-speed OH* chemiluminescence imaging of ignition through a shock tube end-wall
NASA Astrophysics Data System (ADS)
Troutman, V. A.; Strand, C. L.; Campbell, M. F.; Tulgestke, A. M.; Miller, V. A.; Davidson, D. F.; Hanson, R. K.
2016-03-01
A high-speed OH* chemiluminescence imaging diagnostic was developed to image the structure and homogeneity of combustion events behind reflected shock waves in the Stanford Constrained Reaction Volume Shock Tube. An intensified high-repetition-rate imaging system was used to acquire images of OH* chemiluminescence (near 308 nm) through a fused quartz shock tube end-wall window at 10-33 kHz during the combustion of n-heptane (21 % O2/Ar, φ = 0.5). In general, the imaging technique enabled observation of the main ignition event in the core of the shock tube that corresponded to typical markers of ignition (e.g., pressure rise), as well as localized ignition near the wall that preceded the main core ignition event for some conditions. Case studies were performed to illustrate the utility of this novel imaging diagnostic. First, by comparing localized wall ignition events to the core ignition event, the temperature homogeneity of the post-reflected shock gas near the end-wall was estimated to be within 0.5 % for the test condition presented (T=1159 hbox {K}, P=0.25 hbox {MPa}). Second, the effect of a recession in the shock tube wall, created by an observation window, on the combustion event was visualized. Localized ignition was observed near the window, but this disturbance did not propagate to the core of the shock tube before the main ignition event. Third, the effect of shock tube cleanliness was investigated by conducting tests in which the shock tube was not cleaned for multiple consecutive runs. For tests after no cleaning was performed, ignition events were concentrated in the lower half of the shock tube. In contrast, when the shock tube was cleaned, the ignition event was distributed around the entire circumference of the shock tube; validating the cleaning procedure.
Spared Anterograde Memory for Shock-Probe Fear Conditioning After Inactivation of the Amygdala
Lehmann, Hugo; Treit, Dallas; Parent, Marise B.
2003-01-01
Previous studies have shown that amygdala lesions impair avoidance of an electrified probe. This finding has been interpreted as indicating that amygdala lesions reduce fear. It is unclear, however, whether amygdala-lesioned rats learn that the probe is associated with shock. If the lesions prevent the formation of this association, then pretraining reversible inactivation of the amygdala should impair both acquisition and retention performance. To test this hypothesis, the amygdala was inactivated (tetrodotoxin; TTX; 1 ng/side) before a shock-probe acquisition session, and retention was tested 4 d later. The data indicated that, compared with rats infused with vehicle, rats infused with TTX received more shocks during the acquisition session, but more importantly, were not impaired on the retention test. In Experiment 2, we assessed whether the spared memory on the retention test was caused by overtraining during acquisition. We used the same procedure as in Experiment 1, with the exception that the number of shocks the rats received during the acquisition session was limited to four. Again the data indicated that amygdala inactivation did not impair performance on the retention test. These results indicate that amygdala inactivation does not prevent the formation of an association between the shock and the probe and that shock-probe deficits during acquisition likely reflect the amygdala's involvement in other processes. PMID:12888544
Effects of Extremely High ’G’ Acceleration Forces on NASA’s Control and Space Exposed Tomato Seeds
1991-12-01
mechanical shock test; tomatoes staked 28 and interplanted with dwarf marigolds for nematode protection of tomatoes 28 NASA control seed mechanical shock...plants transplanted to garden Figure 27. NASA control seed mechanical shock test; tomatoes staked and interplanted with dwarf marigolds for nematode
Simulation and characterization of a laterally-driven inertial micro-switch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wenguo; Wang, Yang; Wang, Huiying
2015-04-15
A laterally-driven inertial micro-switch was designed and fabricated using surface micromachining technology. The dynamic response process was simulated by ANSYS software, which revealed the vibration process of movable electrode when the proof mass is shocked by acceleration in sensitive direction. The test results of fabricated inertial micro-switches with and without anti-shock beams indicated that the contact process of micro-switch with anti-shock beams is more reliable than the one without anti-shock beams. The test results indicated that three contact signals had been observed in the contact process of the inertial switch without anti-shock beams, and only one contact signal in themore » inertial switch with anti-shock beams, which demonstrated that the anti-shock beams can effectively constrain the vibration in non-sensitive direction.« less
Effect of Board Thickness on Sn-Ag-Cu Joint Interconnect Mechanical Shock Performance
NASA Astrophysics Data System (ADS)
Lee, Tae-Kyu; Xie, Weidong
2014-12-01
The mechanical stability of solder joints with Sn-Ag-Cu alloy joints on various board thicknesses was investigated with a high G level shock environment. A test vehicle with three different board thicknesses was used for board drop shock performance tests. These vehicles have three different strain and shock level condition couples per board, and are used to identify the joint stability and failure modes based on the board responses. The results revealed that joint stability is sensitive to board thickness. The board drop shock test showed that the first failure location shifts from the corner location near the standoff to the center with increased board thickness due to the shock wave response. From analysis of the thickness variation and failure cycle number, the strain rate during the pulse strain cycle is the dominant factor, which defines the life cycle number per board thickness, and not the maximum strain value. The failure location shift and the shock performance differentiation are discussed from the perspective of maximum principal strain, cycle frequency and strain rate per cycle.
Flight Demonstration of a Shock Location Sensor Using Constant Voltage Hot-Film Anemometry
NASA Technical Reports Server (NTRS)
Moes, Timothy R.; Sarma, Garimella R.; Mangalam, Siva M.
1997-01-01
Flight tests have demonstrated the effectiveness of an array of hot-film sensors using constant voltage anemometry to determine shock position on a wing or aircraft surface at transonic speeds. Flights were conducted at the NASA Dryden Flight Research Center using the F-15B aircraft and Flight Test Fixture (FTF). A modified NACA 0021 airfoil was attached to the side of the FTF, and its upper surface was instrumented to correlate shock position with pressure and hot-film sensors. In the vicinity of the shock-induced pressure rise, test results consistently showed the presence of a minimum voltage in the hot-film anemometer outputs. Comparing these results with previous investigations indicate that hot-film anemometry can identify the location of the shock-induced boundary layer separation. The flow separation occurred slightly forward of the shock- induced pressure rise for a laminar boundary layer and slightly aft of the start of the pressure rise when the boundary layer was tripped near the airfoil leading edge. Both minimum mean output and phase reversal analyses were used to identify the shock location.
Henning, Daniel J; Puskarich, Michael A; Self, Wesley H; Howell, Michael D; Donnino, Michael W; Yealy, Donald M; Jones, Alan E; Shapiro, Nathan I
2017-10-01
The Third International Consensus Definitions Task Force (SEP-3) proposed revised criteria defining sepsis and septic shock. We seek to evaluate the performance of the SEP-3 definitions for prediction of inhospital mortality in an emergency department (ED) population and compare the performance of the SEP-3 definitions to that of the previous definitions. This was a secondary analysis of 3 prospectively collected, observational cohorts of infected ED subjects aged 18 years or older. The primary outcome was all-cause inhospital mortality. In accordance with the SEP-3 definitions, we calculated test characteristics of sepsis (quick Sequential Organ Failure Assessment [qSOFA] score ≥2) and septic shock (vasopressor dependence plus lactate level >2.0 mmol/L) for mortality and compared them to the original 1992 consensus definitions. We identified 7,754 ED patients with suspected infection overall; 117 had no documented mental status evaluation, leaving 7,637 patients included in the analysis. The mortality rate for the overall population was 4.4% (95% confidence interval [CI] 3.9% to 4.9%). The mortality rate for patients with qSOFA score greater than or equal to 2 was 14.2% (95% CI 12.2% to 16.2%), with a sensitivity of 52% (95% CI 46% to 57%) and specificity of 86% (95% CI 85% to 87%) to predict mortality. The original systemic inflammatory response syndrome-based 1992 consensus sepsis definition had a 6.8% (95% CI 6.0% to 7.7%) mortality rate, sensitivity of 83% (95% CI 79% to 87%), and specificity of 50% (95% CI 49% to 51%). The SEP-3 septic shock mortality was 23% (95% CI 16% to 30%), with a sensitivity of 12% (95% CI 11% to 13%) and specificity of 98.4% (95% CI 98.1% to 98.7%). The original 1992 septic shock definition had a 22% (95% CI 17% to 27%) mortality rate, sensitivity of 23% (95% CI 18% to 28%), and specificity of 96.6% (95% CI 96.2% to 97.0%). Both the new SEP-3 and original sepsis definitions stratify ED patients at risk for mortality, albeit with differing performances. In terms of mortality prediction, the SEP-3 definitions had improved specificity, but at the cost of sensitivity. Use of either approach requires a clearly intended target: more sensitivity versus specificity. Copyright © 2017 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Donmez, Orhan
We present a general procedure to solve the General Relativistic Hydrodynamical (GRH) equations with Adaptive-Mesh Refinement (AMR) and model of an accretion disk around a black hole. To do this, the GRH equations are written in a conservative form to exploit their hyperbolic character. The numerical solutions of the general relativistic hydrodynamic equations is done by High Resolution Shock Capturing schemes (HRSC), specifically designed to solve non-linear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. We use Marquina fluxes with MUSCL left and right states to solve GRH equations. First, we carry out different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations to verify the second order convergence of the code in 1D, 2 D and 3D. Second, we solve the GRH equations and use the general relativistic test problems to compare the numerical solutions with analytic ones. In order to this, we couple the flux part of general relativistic hydrodynamic equation with a source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time. The test problems examined include shock tubes, geodesic flows, and circular motion of particle around the black hole. Finally, we apply this code to the accretion disk problems around the black hole using the Schwarzschild metric at the background of the computational domain. We find spiral shocks on the accretion disk. They are observationally expected results. We also examine the star-disk interaction near a massive black hole. We find that when stars are grounded down or a hole is punched on the accretion disk, they create shock waves which destroy the accretion disk.
1973-06-01
approximately 4. Use of a cold gas for determining was determined and presented in Figure 3. This analysis was unsteady flow characteristics and...driven by a hydraulic motor. shown experimentally that drawbar force re- Roller motion develops a high rotating force , ductions greater than one part in...of doors, a water table flow bient pressure. The interest in determining this decay time is analogy was used. With this analogy, a two-dimensional
Analysis of the flow in a 1-MJ electric-arc shock tunnel
NASA Technical Reports Server (NTRS)
Reller, J. O., Jr.; Reddy, N. M.
1972-01-01
In the electric-arc-heated shock tunnel, the facility performance over a range of shock Mach numbers from 7 to 19 was evaluated. The efficiency of the arc-heated driver is deduced using an improved form of the shock tube equation. A theoretical and experimental analysis is made of the tailored-interface condition. The free stream properties in the test section, with nitrogen as the test gas, are evaluated using a method based on stagnation point, heat transfer measurements.
Computer modeling of test particle acceleration at oblique shocks
NASA Technical Reports Server (NTRS)
Decker, Robert B.
1988-01-01
The present evaluation of the basic techniques and illustrative results of charged particle-modeling numerical codes suitable for particle acceleration at oblique, fast-mode collisionless shocks emphasizes the treatment of ions as test particles, calculating particle dynamics through numerical integration along exact phase-space orbits. Attention is given to the acceleration of particles at planar, infinitessimally thin shocks, as well as to plasma simulations in which low-energy ions are injected and accelerated at quasi-perpendicular shocks with internal structure.
Development Status of Low-Shock Payload Separation Mechanism for H-IIA Launch Vehicle
NASA Astrophysics Data System (ADS)
Terashima, Keita; Kamita, Toru; Horie, Youichi; Kobayashi, Masakazu; Onikura, Hiroki
2013-09-01
This paper presents the design, analysis and test results of the low-shock payload separation mechanism for the H-IIA launch vehicle. The mechanism is based on a simple and reliable four-bar linkage, which makes the release speed of the marman clamp band tension lower than the current system.The adequacy of the principle for low-shock mechanism was evaluated by some simulations and results of fundamental tests. Then, we established the reliability design model of this mechanism, and the adequacy of this model was evaluated by elemental tests.Finally, we conducted the system separation tests using the payload adapter to which the mechanism was assembled, to confirm that the actual separation shock level satisfied our target.
A new facility for studying shock-wave passage over dust layers
NASA Astrophysics Data System (ADS)
Chowdhury, A. Y.; Marks, B. D.; Johnston, H. Greg; Mannan, M. Sam; Petersen, E. L.
2016-03-01
Dust explosion hazards in areas where coal and other flammable materials are found have caused unnecessary loss of life and halted business operations in some instances. The elimination of secondary dust explosion hazards, i.e., reducing dust dispersion, can be characterized in shock tubes to understand shock-dust interactions. For this reason, a new shock-tube test section was developed and integrated into an existing shock-tube facility. The test section has large windows to allow for the use of the shadowgraph technique to track dust-layer growth behind a passing normal shock wave, and it is designed to handle an initial pressure of 1 atm with an incident shock wave Mach number as high as 2 to mimic real-world conditions. The test section features an easily removable dust pan with inserts to allow for adjustment of the dust-layer thickness. The design also allows for changing the experimental variables such as initial pressure, shock Mach number (Ms), dust-layer thickness, and the characteristics of the dust itself. The characterization experiments presented herein demonstrate the advantages of the authors' test techniques toward providing new physical insights over a wider range of data than what have been available heretofore in the literature. Limestone dust with a layer thickness of 3.2 mm was subjected to Ms = 1.23, 1.32, and 1.6 shock waves, and dust-layer rise height was mapped with respect to time after shock passage. Dust particles subjected to a Ms = 1.6 shock wave rose more rapidly and to a greater height with respect to shock wave propagation than particles subjected to Ms = 1.23 and 1.32 shock waves. Although these results are in general agreement with the literature, the new data also highlight physical trends for dust-layer growth that have not been recorded previously, to the best of the authors' knowledge. For example, the dust-layer height rises linearly until a certain time where the growth rate is dramatically reduced, and in this second regime there is clear evidence of surface vertical structures at the dust-air interface.
Assaly-Kaddoum, Rana; Giuliano, François; Laurin, Miguel; Gorny, Diane; Kergoat, Micheline; Bernabé, Jacques; Vardi, Yoram; Alexandre, Laurent; Behr-Roussel, Delphine
2016-09-01
Erectile dysfunction is highly prevalent in type II diabetes mellitus. Low intensity extracorporeal shock wave therapy improves erectile function in patients with erectile dysfunction of vasculogenic origin, including diabetes. However, its mode of action remains unknown. We investigated the effects of low intensity extracorporeal shock wave therapy compared to or combined with sildenafil on erectile dysfunction in a type II diabetes mellitus model. Our purpose was to test our hypothesis of a mode of action targeting the cavernous nitric oxide/cyclic guanosine monophosphate pathway. GK rats, a validated model of type II diabetes mellitus, and age matched Wistar rats were treated with low intensity extracorporeal shock wave therapy twice weekly for 3 weeks. Treatment was repeated after a 3-week no-treatment interval. The penis was stretched and dipped in a specifically designed water-filled cage. Shock waves were delivered by a calibrated probe yielding a controlled energy flux density (0.09 mJ/mm(2)). The probe was attached to an electrohydraulic unit with a focused shock wave source, allowing for accurate extrapolation to humans. Following a 4-week washout period erectile function was assessed as well as endothelium dependent and independent, and nitrergic relaxations of the corpus cavernosum of GK rats. Low intensity extracorporeal shock wave therapy significantly improved erectile function in GK rats to the same extent as sildenafil. Treatment effects were potentiated when combined with sildenafil. Shock wave effects were not associated with improved cavernous endothelium dependent or independent, or nitrergic reactivity. Low intensity extracorporeal shock wave therapy improved erectile function in GK rats. Unexpectedly, this was not mediated by a nitric oxide/cyclic guanosine monophosphate dependent mechanism. Sildenafil increased shock wave efficacy. This preclinical paradigm to deliver low intensity extracorporeal shock wave therapy to the rat penis should help further exploration of the mode of action of this therapy on erectile tissue. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Further shock tunnel studies of scramjet phenomena
NASA Technical Reports Server (NTRS)
Morgan, R. G.; Paull, A.; Morris, N. A.; Stalker, R. J.
1986-01-01
Scramjet phenomena were studied using the shock tunnel T3 at the Australian National University. Simple two dimensional models were used with a combination of wall and central injectors. Silane as an additive to hydrogen fuel was studied over a range of temperatures and pressures to evaluate its effect as an ignition aid. The film cooling effect of surface injected hydrogen was measured over a wide range of equivalence. Heat transfer measurements without injection were repeated to confirm previous indications of heating rates lower than simple flat plate predictions for laminar boundary layers in equilibrium flow. The previous results were reproduced and the discrepancies are discussed in terms of the model geometry and departures of the flow from equilibrium. In the thrust producing mode, attempts were made to increase specific impulse with wall injection. Some preliminary tests were also performed on shock induced ignition, to investigate the possibility in flight of injecting fuel upstream of the combustion chamber, where it could mix but not burn.
Asymmetric conditional volatility in international stock markets
NASA Astrophysics Data System (ADS)
Ferreira, Nuno B.; Menezes, Rui; Mendes, Diana A.
2007-08-01
Recent studies show that a negative shock in stock prices will generate more volatility than a positive shock of similar magnitude. The aim of this paper is to appraise the hypothesis under which the conditional mean and the conditional variance of stock returns are asymmetric functions of past information. We compare the results for the Portuguese Stock Market Index PSI 20 with six other Stock Market Indices, namely the SP 500, FTSE 100, DAX 30, CAC 40, ASE 20, and IBEX 35. In order to assess asymmetric volatility we use autoregressive conditional heteroskedasticity specifications known as TARCH and EGARCH. We also test for asymmetry after controlling for the effect of macroeconomic factors on stock market returns using TAR and M-TAR specifications within a VAR framework. Our results show that the conditional variance is an asymmetric function of past innovations raising proportionately more during market declines, a phenomenon known as the leverage effect. However, when we control for the effect of changes in macroeconomic variables, we find no significant evidence of asymmetric behaviour of the stock market returns. There are some signs that the Portuguese Stock Market tends to show somewhat less market efficiency than other markets since the effect of the shocks appear to take a longer time to dissipate.
Mass spectrometric measurements of driver gas arrival in the T4 free-piston shock-tunnel
NASA Astrophysics Data System (ADS)
Boyce, R. R.; Takahashi, M.; Stalker, R. J.
2005-12-01
Available test time is an important issue for ground-based flow research, particularly for impulse facilities such as shock tunnels, where test times of the order of several ms are typical. The early contamination of the test flow by the driver gas in such tunnels restricts the test time. This paper reports measurements of the driver gas arrival time in the test section of the T4 free-piston shock-tunnel over the total enthalpy range 3 17 MJ/kg, using a time-of-flight mass spectrometer. The results confirm measurements made by previous investigators using a choked duct driver gas detector at these conditions, and extend the range of previous mass spectrometer measurements to that of 3 20 MJ/kg. Comparisons of the contamination behaviour of various piston-driven reflected shock tunnels are also made.
NASA Astrophysics Data System (ADS)
Hwang, James Ho-Jin; Duran, Adam
2016-08-01
Most of the times pyrotechnic shock design and test requirements for space systems are provided in Shock Response Spectrum (SRS) without the input time history. Since the SRS does not describe the input or the environment, a decomposition method is used to obtain the source time history. The main objective of this paper is to develop a decomposition method producing input time histories that can satisfy the SRS requirement based on the pyrotechnic shock test data measured from a mechanical impact test apparatus. At the heart of this decomposition method is the statistical representation of the pyrotechnic shock test data measured from the MIT Lincoln Laboratory (LL) designed Universal Pyrotechnic Shock Simulator (UPSS). Each pyrotechnic shock test data measured at the interface of a test unit has been analyzed to produce the temporal peak acceleration, Root Mean Square (RMS) acceleration, and the phase lag at each band center frequency. Maximum SRS of each filtered time history has been calculated to produce a relationship between the input and the response. Two new definitions are proposed as a result. The Peak Ratio (PR) is defined as the ratio between the maximum SRS and the temporal peak acceleration at each band center frequency. The ratio between the maximum SRS and the RMS acceleration is defined as the Energy Ratio (ER) at each band center frequency. Phase lag is estimated based on the time delay between the temporal peak acceleration at each band center frequency and the peak acceleration at the lowest band center frequency. This stochastic process has been applied to more than one hundred pyrotechnic shock test data to produce probabilistic definitions of the PR, ER, and the phase lag. The SRS is decomposed at each band center frequency using damped sinusoids with the PR and the decays obtained by matching the ER of the damped sinusoids to the ER of the test data. The final step in this stochastic SRS decomposition process is the Monte Carlo (MC) simulation. The MC simulation identifies combinations of the PR and decays that can meet the SRS requirement at each band center frequency. Decomposed input time histories are produced by summing the converged damped sinusoids with the MC simulation of the phase lag distribution.
March, Jordon K; Pratt, Michael D; Lowe, Chinn-Woan; Cohen, Marissa N; Satterfield, Benjamin A; Schaalje, Bruce; O'Neill, Kim L; Robison, Richard A
2015-01-01
This study investigated (1) the susceptibility of Bacillus anthracis (Ames strain), Bacillus subtilis (ATCC 19659), and Clostridium sporogenes (ATCC 3584) spores to commercially available peracetic acid (PAA)- and glutaraldehyde (GA)-based disinfectants, (2) the effects that heat-shocking spores after treatment with these disinfectants has on spore recovery, and (3) the timing of heat-shocking after disinfectant treatment that promotes the optimal recovery of spores deposited on carriers. Suspension tests were used to obtain inactivation kinetics for the disinfectants against three spore types. The effects of heat-shocking spores after disinfectant treatment were also determined. Generalized linear mixed models were used to estimate 6-log reduction times for each spore type, disinfectant, and heat treatment combination. Reduction times were compared statistically using the delta method. Carrier tests were performed according to AOAC Official Method 966.04 and a modified version that employed immediate heat-shocking after disinfectant treatment. Carrier test results were analyzed using Fisher's exact test. PAA-based disinfectants had significantly shorter 6-log reduction times than the GA-based disinfectant. Heat-shocking B. anthracis spores after PAA treatment resulted in significantly shorter 6-log reduction times. Conversely, heat-shocking B. subtilis spores after PAA treatment resulted in significantly longer 6-log reduction times. Significant interactions were also observed between spore type, disinfectant, and heat treatment combinations. Immediately heat-shocking spore carriers after disinfectant treatment produced greater spore recovery. Sporicidal activities of disinfectants were not consistent across spore species. The effects of heat-shocking spores after disinfectant treatment were dependent on both disinfectant and spore species. Caution must be used when extrapolating sporicidal data of disinfectants from one spore species to another. Heat-shocking provides a more accurate picture of spore survival for only some disinfectant/spore combinations. Collaborative studies should be conducted to further examine a revision of AOAC Official Method 966.04 relative to heat-shocking. PMID:26185111
Supersonic flow gradients at an overexpanded nozzle lip
NASA Astrophysics Data System (ADS)
Silnikov, M. V.; Chernyshov, M. V.
2018-07-01
The flowfield of a planar, overexpanded jet flow and an axisymmetric one are analyzed theoretically for a wide range of governing flow parameters (such as the nozzle divergence angle, the initial flow Mach number, the jet expansion ratio, and the ratio of specific heats). Significant differences are discovered between these parameters of the incident shock and the downstream flow for a planar jet and for an axisymmetric overexpanded jet flow. Incident shock curvature, shock strength variation, the geometrical curvature of the jet boundary, gradients of total and static pressure and Mach number, and flow vorticity parameters in post-shock flow are studied theoretically for non-separated nozzle flows. Flow parameters indicating zero and extrema values of these gradients are reported. Some theoretical results (such as concavities of incident shock and jet boundary, local decreases in the incident shock strength, increases and decreases in the static pressure, and the Mach number downstream of the incident shock) seem rather specific and non-evident at first sight. The theoretical results, achieved while using an inviscid flow model, are compared and confirmed with experimental data obtained by other authors.
On the role of covarying functions in stimulus class formation and transfer of function.
Markham, Rebecca G; Markham, Michael R
2002-01-01
This experiment investigated whether directly trained covarying functions are necessary for stimulus class formation and transfer of function in humans. Initial class training was designed to establish two respondent-based stimulus classes by pairing two visual stimuli with shock and two other visual stimuli with no shock. Next, two operant discrimination functions were trained to one stimulus of each putative class. The no-shock group received the same training and testing in all phases, except no stimuli were ever paired with shock. The data indicated that skin conductance response conditioning did not occur for the shock groups or for the no-shock group. Tests showed transfer of the established discriminative functions, however, only for the shock groups, indicating the formation of two stimulus classes only for those participants who received respondent class training. The results suggest that transfer of function does not depend on first covarying the stimulus class functions. PMID:12507017
Cognitive Function and Heat Shock Protein 70 in Children With Temporal Lobe Epilepsy.
Oraby, Azza M; Raouf, Ehab R Abdol; El-Saied, Mostafa M; Abou-Khadra, Maha K; Helal, Suzette I; Hashish, Adel F
2017-01-01
We conducted the present study to examine cognitive function and serum heat shock protein 70 levels among children with temporal lobe epilepsy. The Stanford-Binet Intelligence Test was carried out to examine cognitive function in 30 children with temporal lobe epilepsy and 30 controls. Serum heat shock protein 70 levels were determined with an enzyme-linked immunosorbent assay. The epilepsy group had significantly lower cognitive function testing scores and significantly higher serum heat shock protein 70 levels than the control group; there were significant negative correlations between serum heat shock protein 70 levels and short-term memory and composite scores. Children with uncontrolled seizures had significantly lower verbal reasoning scores and significantly higher serum heat shock protein 70 levels than children with controlled seizures. Children with temporal lobe epilepsy have cognitive dysfunction and elevated levels of serum heat shock protein 70, which may be considered a stress biomarker.
Frommeyer, Gerrit; Zumhagen, Sven; Dechering, Dirk G; Larbig, Robert; Bettin, Markus; Löher, Andreas; Köbe, Julia; Reinke, Florian; Eckardt, Lars
2016-03-15
The results of the recently published randomized SIMPLE trial question the role of routine intraoperative defibrillation testing. However, testing is still recommended during implantation of the entirely subcutaneous implantable cardioverter-defibrillator (S-ICD) system. To address the question of whether defibrillation testing in S-ICD systems is still necessary, we analyzed the data of a large, standard-of-care prospective single-center S-ICD registry. In the present study, 102 consecutive patients received an S-ICD for primary (n=50) or secondary prevention (n=52). Defibrillation testing was performed in all except 4 patients. In 74 (75%; 95% CI 0.66-0.83) of 98 patients, ventricular fibrillation was effectively terminated by the first programmed internal shock. In 24 (25%; 95% CI 0.22-0.44) of 98 patients, the first internal shock was ineffective and further internal or external shock deliveries were required. In these patients, programming to reversed shock polarity (n=14) or repositioning of the sensing lead (n=1) or the pulse generator (n=5) led to successful defibrillation. In 4 patients, a safety margin of <10 J was not attained. Nevertheless, in these 4 patients, ventricular arrhythmias were effectively terminated with an internal 80-J shock. Although it has been shown that defibrillation testing is not necessary in transvenous ICD systems, it seems particular important for S-ICD systems, because in nearly 25% of the cases the primary intraoperative test was not successful. In most cases, a successful defibrillation could be achieved by changing shock polarity or by optimizing the shock vector caused by the pulse generator or lead repositioning. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
2018-03-30
ARL-TR-8335•MAR 2018 US Army Research Laboratory Influence of Test Section Geometry on theBlast Environment in an Explosively DrivenConical Shock...ARL-TR-8335•MAR 2018 US Army Research Laboratory Influence of Test Section Geometry on theBlast Environment in an Explosively DrivenConical Shock...Tube by Joel B Stewart Weapons and Materials Research Directorate, ARL Approved for public release; distribution is unlimited. REPORT DOCUMENTATION
NASA Technical Reports Server (NTRS)
Krogh, T. E.; Kamo, S. L.; Bohor, B. F.
1993-01-01
U-Pb isotopic dating of single 1 - 3 micrograms zircons from K/T distal ejecta from a site in the Raton Basin, Colorado provides a powerful new tool with which to determine both the time of the impact event and the age of the basement at the impact site. Data for the least shocked zircons are slightly displaced from the 544 +/- 5 Ma primary age for a component of the target site, while those for highly shocked and granular grains are strongly displaced towards the time of impact at 65.5 +/- 3.0 Ma. Such shocked and granular zircons have never been reported from any source, including explosive volcanic rocks. Zircon is refractory and has one of the highest thermal blocking temperatures; hence, it can record both shock features and primary and secondary ages without modification by post-crystallization processes. Unlike shocked quartz, which can come from almost anywhere on the Earth's crust, shocked zircons can be shown to come from a specific site because basement ages vary on the scale of meters to kilometers. With U-Pb zircon dating, it is now possible to correlate ejecta layers derived from the same target site, test the single versus multiple impact hypothesis, and identify the target source of impact ejecta. The ages obtained in this study indicate that the Manson impact site, Iowa, which has basement rocks that are mid-Proterozoic in age, cannot be the source of K/T distal ejecta. The K/T distal ejecta probably originated from a single impact site because most grains have the same primary age.
NASA Technical Reports Server (NTRS)
Yamamoto, K.; Brausch, J. F.; Balsa, T. F.; Janardan, B. A.; Knott, P. R.
1984-01-01
Seven single stream model nozzles were tested in the Anechoic Free-Jet Acoustic Test Facility to evaluate the effectiveness of convergent divergent (C-D) flowpaths in the reduction of shock-cell noise under both static and mulated flight conditions. The test nozzles included a baseline convergent circular nozzle, a C-D circular nozzle, a convergent annular plug nozzle, a C-D annular plug nozzle, a convergent multi-element suppressor plug nozzle, and a C-D multi-element suppressor plug nozzle. Diagnostic flow visualization with a shadowgraph and aerodynamic plume measurements with a laser velocimeter were performed with the test nozzles. A theory of shock-cell noise for annular plug nozzles with shock-cells in the vicinity of the plug was developed. The benefit of these C-D nozzles was observed over a broad range of pressure ratiosin the vicinity of their design conditions. At the C-D design condition, the C-D annual nozzle was found to be free of shock-cells on the plug.
Development of clinical decision rules to predict recurrent shock in dengue
2013-01-01
Introduction Mortality from dengue infection is mostly due to shock. Among dengue patients with shock, approximately 30% have recurrent shock that requires a treatment change. Here, we report development of a clinical rule for use during a patient’s first shock episode to predict a recurrent shock episode. Methods The study was conducted in Center for Preventive Medicine in Vinh Long province and the Children’s Hospital No. 2 in Ho Chi Minh City, Vietnam. We included 444 dengue patients with shock, 126 of whom had recurrent shock (28%). Univariate and multivariate analyses and a preprocessing method were used to evaluate and select 14 clinical and laboratory signs recorded at shock onset. Five variables (admission day, purpura/ecchymosis, ascites/pleural effusion, blood platelet count and pulse pressure) were finally trained and validated by a 10-fold validation strategy with 10 times of repetition, using a logistic regression model. Results The results showed that shorter admission day (fewer days prior to admission), purpura/ecchymosis, ascites/pleural effusion, low platelet count and narrow pulse pressure were independently associated with recurrent shock. Our logistic prediction model was capable of predicting recurrent shock when compared to the null method (P < 0.05) and was not outperformed by other prediction models. Our final scoring rule provided relatively good accuracy (AUC, 0.73; sensitivity and specificity, 68%). Score points derived from the logistic prediction model revealed identical accuracy with AUCs at 0.73. Using a cutoff value greater than −154.5, our simple scoring rule showed a sensitivity of 68.3% and a specificity of 68.2%. Conclusions Our simple clinical rule is not to replace clinical judgment, but to help clinicians predict recurrent shock during a patient’s first dengue shock episode. PMID:24295509
Properties and shock response of PMMA
NASA Astrophysics Data System (ADS)
Jordan, Jennifer L.; Casem, Daniel; Moy, Paul; Walter, Timothy
2017-01-01
Polymethylmethacrylate (PMMA) is used widely in shock experiments as a window material and in explosive characterization tests, e.g. gap tests, as a shock mitigation material. In order to simulate the complex loading present in a gap test, the constitutive response of the PMMA must be well understood. However, it is not clear what characterization must be done when the PMMA material is changed, e.g. changing supplier, and the Rohm and Haas Type II UVA PMMA, which was used for many of the calibration experiments, is no longer available. In this paper, we will present characterization results on legacy Rohm and Haas Type II UVA in comparison with a new PMMA grade proposed for use in gap tests. Planar shock experiments are performed to determine the compression and release response.
Holmes, Nathan M.
2014-01-01
Four experiments used rats to study appetitive–aversive transfer. Rats trained to eat a palatable food in a distinctive context and shocked in that context ate and did not freeze when tested 1 d later but froze and did not eat when tested 14 d later. These results were associatively mediated (Experiments 1 and 2), observed when rats were or were not food deprived (Experiments 1 and 2), and were not due to latent inhibition (Experiment 3). In contrast, rats trained to eat in the context and shocked there 13 d later froze and did not eat when tested 1 d after the shocked exposure. However, rats that received an additional eating session in the context 1 d before the shocked exposure ate and did not freeze when tested 1 d after the shocked exposure (Experiment 4). The results show that appetitive conditioning transiently interferes with aversive conditioning. They are discussed in terms of a weak context–shock association becoming stronger with the lapse of time (so-called fear incubation) or of the interference by the context–food association becoming weaker with the lapse of time. PMID:25320352
Entropy jump across an inviscid shock wave
NASA Technical Reports Server (NTRS)
Salas, Manuel D.; Iollo, Angelo
1995-01-01
The shock jump conditions for the Euler equations in their primitive form are derived by using generalized functions. The shock profiles for specific volume, speed, and pressure are shown to be the same, however density has a different shock profile. Careful study of the equations that govern the entropy shows that the inviscid entropy profile has a local maximum within the shock layer. We demonstrate that because of this phenomenon, the entropy, propagation equation cannot be used as a conservation law.
Used fuel rail shock and vibration testing options analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, Steven B.; Best, Ralph E.; Klymyshyn, Nicholas A.
2014-09-25
The objective of the rail shock and vibration tests is to complete the framework needed to quantify loads of fuel assembly components that are necessary to guide materials research and establish a technical basis for review organizations such as the U.S. Nuclear Regulatory Commission (NRC). A significant body of experimental and numerical modeling data exists to quantify loads and failure limits applicable to normal conditions of transport (NCT) rail transport, but the data are based on assumptions that can only be verified through experimental testing. The test options presented in this report represent possible paths for acquiring the data thatmore » are needed to confirm the assumptions of previous work, validate modeling methods that will be needed for evaluating transported fuel on a case-by-case basis, and inform material test campaigns on the anticipated range of fuel loading. The ultimate goal of this testing is to close all of the existing knowledge gaps related to the loading of used fuel under NCT conditions and inform the experiments and analysis program on specific endpoints for their research. The options include tests that would use an actual railcar, surrogate assemblies, and real or simulated rail transportation casks. The railcar carrying the cradle, cask, and surrogate fuel assembly payload would be moved in a train operating over rail track modified or selected to impart shock and vibration forces that occur during normal rail transportation. Computer modeling would be used to help design surrogates that may be needed for a rail cask, a cask’s internal basket, and a transport cradle. The objective of the design of surrogate components would be to provide a test platform that effectively simulates responses to rail shock and vibration loads that would be exhibited by state-of-the-art rail cask, basket, and/or cradle structures. The computer models would also be used to help determine the placement of instrumentation (accelerometers and strain gauges) on the surrogate fuel assemblies, cask and cradle structures, and the railcar so that forces and deflections that would result in the greatest potential for damage to high burnup and long-cooled UNF can be determined. For purposes of this report we consider testing on controlled track when we have control of the track and speed to facilitate modeling.« less
Montalvo, A M; Fraga, J; Maes, I; Dujardin, J-C; Van der Auwera, G
2012-07-01
The heat-shock protein 70 gene (hsp70) has been exploited for Leishmania species identification in the New and Old World, using PCR followed by restriction fragment length polymorphism (RFLP) analysis. Current PCR presents limitations in terms of sensitivity, which hampers its use for analyzing clinical and biological samples, and specificity, which makes it inappropriate to discriminate between Leishmania and other trypanosomatids. The aim of the study was to improve the sensitivity and specificity of a previously reported hsp70 PCR using alternative PCR primers and RFLPs. Following in silico analysis of available sequences, three new PCR primer sets and restriction digest schemes were tested on a globally representative panel of 114 Leishmania strains, various other infectious agents, and clinical samples. The largest new PCR fragment retained the discriminatory power from RFLP, while two smaller fragments discriminated less species. The detection limit of the new PCRs was between 0.05 and 0.5 parasite genomes, they amplified clinical samples more efficiently, and were Leishmania specific. We succeeded in significantly improving the specificity and sensitivity of the PCRs for hsp70 Leishmania species typing. The improved PCR-RFLP assays can impact diagnosis, treatment, and epidemiological studies of leishmaniasis in any setting worldwide.
Yang, Wei-zhong; Yu, Hong-jie; Jing, Huai-qi; Xu, Jian-guo; Chen, Zhi-hai; Zhu, Xiao-ping; Wang, Hua; Liu, Xue-cCheng; Wang, Shi-wen; Liu, Lun-guang; Zu, Rong-qiang; Luo, Long-ze; Xiang, Ni-juan; Liu, Hong-lu; Zhong, Wen-jun; Liu, Li; Meng, Ling; Yuan, Heng; Gao, Yong-jun; DU, Hua-mao; Ou, Yang-bin; Ye, Chang-yun; Jin, Dong; Lv, Qiang; Cui, Zhi-gang; Huang, Yan; Zhang, Shou-yin; An, Xiang-dong; Huang, Ting; Zhou, Xing-yu; Feng, Liao; Pang, Qi-di; Shu, Yue-long; Wang, Yu
2006-03-01
In mid-July 2005, five patients presented with septic shock to a hospital in Ziyang city in Sichuan, China, to identify the etiology of the unknown reason disease, an epidemiological, clinical, and laboratory study were conducted. An enhanced surveillance program were established in Sichuan, the following activities were introduced: active case finding in Sichuan of (a) laboratory diagnosed Streptococcus suis infection and (b) clinically diagnosed probable cases with exposure history; supplemented by (c) monitoring reports on meningococcal meningitis. Streptococcus suis serotype 2 infection was confirmed by culture and biochemical reactions, followed by sequencing for specific genes for serotype and virulence factors. From June 10 to August 21, 2005, 68 laboratory confirmed cases of human Streptococcus suis infections were reported. All were villagers who gave a history of direct exposure to deceased or sick pigs in their backyards where slaughtering was performed. Twenty six (38%) presented with toxic shock syndrome of which 15 (58%) died. Other presentations were septicaemia or meningitis. All isolates were tested positive for genes for tuf, species-specific 16S rRNA, cps2J, mrp, ef and sly. There were 136 clinically diagnosed probable cases with similar exposure history but incomplete laboratory investigations. An outbreak of human Streptococcus suis serotype 2 infections occurred in villagers after direct exposure to deceased or sick pigs in Sichuan. Prohibition of slaughtering in backyards brought the outbreak to a halt. A virulent strain of the bacteria is speculated to be in circulation, and is responsible for the unusual presentation of toxic shock syndrome with high case fatality.
Computations of Axisymmetric Flows in Hypersonic Shock Tubes
NASA Technical Reports Server (NTRS)
Sharma, Surendra P.; Wilson, Gregory J.
1995-01-01
A time-accurate two-dimensional fluid code is used to compute test times in shock tubes operated at supersonic speeds. Unlike previous studies, this investigation resolves the finer temporal details of the shock-tube flow by making use of modern supercomputers and state-of-the-art computational fluid dynamic solution techniques. The code, besides solving the time-dependent fluid equations, also accounts for the finite rate chemistry in the hypersonic environment. The flowfield solutions are used to estimate relevant shock-tube parameters for laminar flow, such as test times, and to predict density and velocity profiles. Boundary-layer parameters such as bar-delta(sub u), bar-delta(sup *), and bar-tau(sub w), and test time parameters such as bar-tau and particle time of flight t(sub f), are computed and compared with those evaluated by using Mirels' correlations. This article then discusses in detail the effects of flow nonuniformities on particle time-of-flight behind the normal shock and, consequently, on the interpretation of shock-tube data. This article concludes that for accurate interpretation of shock-tube data, a detailed analysis of flowfield parameters, using a computer code such as used in this study, must be performed.
A geophysical shock and air blast simulator at the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fournier, K. B.; Brown, C. G.; May, M. J.
2014-09-15
The energy partitioning energy coupling experiments at the National Ignition Facility (NIF) have been designed to measure simultaneously the coupling of energy from a laser-driven target into both ground shock and air blast overpressure to nearby media. The source target for the experiment is positioned at a known height above the ground-surface simulant and is heated by four beams from the NIF. The resulting target energy density and specific energy are equal to those of a low-yield nuclear device. The ground-shock stress waves and atmospheric overpressure waveforms that result in our test system are hydrodynamically scaled analogs of full-scale seismicmore » and air blast phenomena. This report summarizes the development of the platform, the simulations, and calculations that underpin the physics measurements that are being made, and finally the data that were measured. Agreement between the data and simulation of the order of a factor of two to three is seen for air blast quantities such as peak overpressure. Historical underground test data for seismic phenomena measured sensor displacements; we measure the stresses generated in our ground-surrogate medium. We find factors-of-a-few agreement between our measured peak stresses and predictions with modern geophysical computer codes.« less
A geophysical shock and air blast simulator at the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fournier, K. B.; Brown, C. G.; May, M. J.
2014-09-01
The energy partitioning energy coupling experiments at the National Ignition Facility (NIF) have been designed to measure simultaneously the coupling of energy from a laser-driven target into both ground shock and air blast overpressure to nearby media. The source target for the experiment is positioned at a known height above the ground-surface simulant and is heated by four beams from the NIF. The resulting target energy density and specific energy are equal to those of a low-yield nuclear device. The ground-shock stress waves and atmospheric overpressure waveforms that result in our test system are hydrodynamically scaled analogs of full-scale seismicmore » and air blast phenomena. This report summarizes the development of the platform, the simulations, and calculations that underpin the physics measurements that are being made, and finally the data that were measured. Agreement between the data and simulation of the order of a factor of two to three is seen for air blast quantities such as peak overpressure. Historical underground test data for seismic phenomena measured sensor displacements; we measure the stresses generated in our ground-surrogate medium. We find factors-of-a-few agreement between our measured peak stresses and predictions with modern geophysical computer codes.« less
NASA Technical Reports Server (NTRS)
Holland, Scott D.
1993-01-01
Three-dimensional sidewall-compression scramjet inlets with leading-edge sweeps of 30 deg and 70 deg were tested in the Langley Hypersonic CF4 Tunnel at Mach 6 and with a ratio of specific heats of 1.2. The parametric effects of leading-edge sweep, cowl position, contraction ratio, and Reynolds number were investigated. The models were instrumented with 42 static pressure orifices that were distributed on the sidewalls, base plate, and cowl. Schlieren movies were made of each test for flow visualization of the effects of the internal flow spillage on the external flow field. To obtain an approximate characterization of the flow field, a modification to two-dimensional, inviscid, oblique shock theory was derived to accommodate the three-dimensional effects of leading-edge sweep. This theory qualitatively predicted the reflected shock structure (i.e., sidewall impingement locations) and the observed increase in spillage with increasing leading-edge sweep. The primary effect of moving the cowl forward was capturing the flow that would have otherwise spilled out ahead of the cowl. Increasing the contraction ratio increases the number of internal shock reflections and hence incrementally increases the sidewall pressure distribution. Significant Reynolds number effects were noted over a small range of Reynolds number.
Computation of nonstationary strong shock diffraction by curved surfaces
NASA Technical Reports Server (NTRS)
Yang, J. Y.; Lombard, C. K.; Bershader, D.
1986-01-01
A two-dimensional, high resolution shock-capturing algorithm was used on a supercomputer to solve Eulerian gasdynamic equations in order to simulate nonstationary strong shock diffraction by a circular arc model in a shock tube. The hypersonic Mach shock wave was assumed to arrive at a high angle of incidence, and attention was given to the effect of varying values of the ratio of specific heats on the shock diffraction process. Details of the conservation equations of the numerical algorithm, written in curvilinear coordinates, are provided, and model output is illustrated with the results generated for a Mach shock encountering a 15 deg circular arc. The sample graphics include isopycnics, a shock surface density profile, and pressure and Mach number contours.
Dockery, Colleen A; Wesierska, Malgorzata J
2010-08-30
We present a paradigm for assessing visuospatial working memory and skill learning in a rodent model, based on the place avoidance test. In our allothetic place avoidance alternation task (APAAT) the paradigm is comprised of minimal training sessions, tests various aspects of learning and memory and provides a rich set of parameters. A single working memory session consists of four conditions: habituation (no shock), two place avoidance training intervals (shock activated) and a retrieval test (shock inactivated). The location of the shock sector is alternated for each training day which initially requires extinction of previous representations and further working memory to achieve effective place avoidance across sessions. Visuospatial skill memory was evaluated by the shock/entrance ratio by tracking locomotor activity which is essential to execute a place avoidance strategy. For each day rats learned to avoid a new place with shock, as shown by a decreased number of entrances, and an increased time to the first entrance and maximum avoidance time. Skill learning improved according to the decreased number of shocks per entrance across conditions. These results indicate that complex cognitive functions are captured by this behavioral method. This APAAT paradigm expands and complements existing tools for studying hippocampal-prefrontal dependent functions to support development of treatment interventions. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Preparation and Characterization of Cyclotrimethylenetrinitramine (RDX) with Reduced Sensitivity
Wang, Yuqiao; Li, Xin; Chen, Shusen; Ma, Xiao; Yu, Ziyang; Jin, Shaohua; Li, Lijie; Chen, Yu
2017-01-01
The internal defects and shape of cyclotrimethylenetrinitramine (RDX) crystal are critical parameters for the preparation of reduced sensitivity RDX (RS-RDX). In the current study, RDX was re-crystallized and spheroidized to form the high-quality RDX that was further characterized by purity, apparent density, size distribution, specific surface area, impact sensitivity, and shock sensitivity. The effects of re-crystallization solvent on the growth morphology of RDX crystal were investigated by both theoretical simulation and experiment test, and consistent results were obtained. The high-quality RDX exhibited a high purity (≥99.90%), high apparent density (≥1.811 g/cm3), spherical shape, and relatively low impact sensitivity (6%). Its specific surface area was reduced more than 30%. Compared with conventional RDXs, the high-quality RDX reduced the shock sensitivities of PBXN-109 and PBXW-115 by more than 30%, indicating that it was a RS-RDX. The reduced sensitivity and good processability of the high-quality RDX would be significant in improving the performances of RDX-based PBXs. PMID:28825661
Heat shock protein 90{beta}: A novel mediator of vitamin D action
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angelo, Giana; Mineral Bioavailability Laboratory, 711 Washington Street, Boston, MA 02111; Lamon-Fava, Stefania
2008-03-14
We investigated the role of Heat shock protein 90 (Hsp90) in vitamin D action in Caco-2 cells using geldanamycin (GA) to block Hsp90 function and RNA interference to reduce Hsp90{beta} expression. When cells were exposed to GA, vitamin D-mediated gene expression and transcriptional activity were inhibited by 69% and 54%, respectively. Gel shift analysis indicated that GA reduced vitamin D-mediated DNA binding activity of the vitamin D receptor (VDR). We tested the specific role of Hsp90{beta} by knocking down its expression with stably expressed short hairpin RNA. Vitamin D-induced gene expression and transcriptional activity were reduced by 90% and 80%,more » respectively, in Hsp90{beta}-deficient cells. Nuclear protein for VDR and RXR{alpha}, its heterodimer partner, were not reduced in Hsp90{beta}-deficient cells. These findings indicate that Hsp90{beta} is needed for optimal vitamin D responsiveness in the enterocyte and demonstrate a specific role for Hsp90{beta} in VDR signaling.« less
Transonic shock-induced dynamics of a flexible wing with a thick circular-arc airfoil
NASA Technical Reports Server (NTRS)
Bennett, Robert M.; Dansberry, Bryan E.; Farmer, Moses G.; Eckstrom, Clinton V.; Seidel, David A.; Rivera, Jose A., Jr.
1991-01-01
Transonic shock boundary layer oscillations occur on rigid models over a small range of Mach numbers on thick circular-arc airfoils. Extensive tests and analyses of this phenomena have been made in the past but essentially all of them were for rigid models. A simple flexible wing model with an 18 pct. circular arc airfoil was constructed and tested in the Langley Transonic Dynamics Tunnel to study the dynamic characteristics that a wing might have under these circumstances. In the region of shock boundary layer oscillations, buffeting of the first bending mode was obtained. This mode was well separated in frequency from the shock boundary layer oscillations. A limit cycle oscillation was also measured in a third bending like mode, involving wind vertical bending and splitter plate motion, which was in the frequency range of the shock boundary layer oscillations. Several model configurations were tested, and a few potential fixes were investigated.
Energetic ion acceleration at collisionless shocks
NASA Technical Reports Server (NTRS)
Decker, R. B.; Vlahos, L.
1985-01-01
An example is presented from a test particle simulation designed to study ion acceleration at oblique turbulent shocks. For conditions appropriate at interplanetary shocks near 1 AU, it is found that a shock with theta sub B n = 60 deg is capable of producing an energy spectrum extending from 10 keV to approx. 1 MeV in approx 1 hour. In this case total energy gains result primarily from several separate episodes of shock drift acceleration, each of which occurs when particles are scattered back to the shock by magnetic fluctuations in the shock vicinity.
An improved measurement system for FOG pure lag time with no changing of FOG work status
NASA Astrophysics Data System (ADS)
Chen, X.; Yang, J. H.; Zhou, Y. L.; Shu, X. W.
2018-05-01
The minimum pure lag time is an important factor for characterizing the dynamic performance of fiber optical gyroscope. It is defined as the time duration from the reception of velocity-shock signal to the output of corresponding fiber-optic gyroscope data. Many engineering projects have required for this index specifically, so the measurement of the minimum pure lag time is highly demanded. In typically measurement system, the work status of tested FOG has to be changed. In this work, a FOG pure lag time measurement system without changing the work status of the FOG has been demonstrated. During the operation of this test system, the impact structure generated a shock towards the FOG, and the pure lag time was measured through data processing analysis. The design scheme and test principle have been researched and analyzed in detail. And a prototype has been developed and used for experiment successfully. This measurement system can realize a measurement accuracy of better than ±3 μs and a system resolution of 108.6ns.
DeJong, Sandra; Arnett, Justin K.; Kennedy, Kathleen; Franklin, Jay O.; Berbarie, Rafic F.
2014-01-01
Firefighters who have received an implantable cardioverter-defibrillator (ICD) are asked to retire or are permanently placed on restricted duty because of concerns about their being incapacitated by an ICD shock during a fire emergency. We present the case of a 40-year-old firefighter who, after surviving sudden cardiac arrest and undergoing ICD implantation, sought to demonstrate his fitness for active duty by completing a high-intensity, occupation-specific cardiac rehabilitation training program. The report details the exercise training, ICD monitoring, and stress testing that he underwent. During the post-training treadmill stress test in firefighter turnout gear, the patient reached a functional capacity of 17 metabolic equivalents (METs), exceeding the 12-MET level required for his occupation. He had no ICD shock therapy or recurrent sustained arrhythmias during stress testing or at any time during his cardiac rehabilitation stay. By presenting this case, we hope to stimulate further discussion about firefighters who have an ICD, can meet the functional capacity requirements of their occupation, and want to return to work. PMID:24982569
Adams, Jenny; DeJong, Sandra; Arnett, Justin K; Kennedy, Kathleen; Franklin, Jay O; Berbarie, Rafic F
2014-07-01
Firefighters who have received an implantable cardioverter-defibrillator (ICD) are asked to retire or are permanently placed on restricted duty because of concerns about their being incapacitated by an ICD shock during a fire emergency. We present the case of a 40-year-old firefighter who, after surviving sudden cardiac arrest and undergoing ICD implantation, sought to demonstrate his fitness for active duty by completing a high-intensity, occupation-specific cardiac rehabilitation training program. The report details the exercise training, ICD monitoring, and stress testing that he underwent. During the post-training treadmill stress test in firefighter turnout gear, the patient reached a functional capacity of 17 metabolic equivalents (METs), exceeding the 12-MET level required for his occupation. He had no ICD shock therapy or recurrent sustained arrhythmias during stress testing or at any time during his cardiac rehabilitation stay. By presenting this case, we hope to stimulate further discussion about firefighters who have an ICD, can meet the functional capacity requirements of their occupation, and want to return to work.
Development and qualification testing of a laser-ignited, all-secondary (DDT) detonator
NASA Technical Reports Server (NTRS)
Blachowski, Thomas J.; Krivitsky, Darrin Z.; Tipton, Stephen
1994-01-01
The Indian Head Division, Naval Surface Warfare Center (IHDIV, NSWC) is conducting a qualification program for a laser-ignited, all-secondary (DDT) explosive detonator. This detonator was developed jointly by IHDIV, NSWC and the Department of Energy's EG&G Mound Applied Technologies facility in Miamisburg, Ohio to accept a laser initiation signal and produce a fully developed shock wave output. The detonator performance requirements were established by the on-going IHDIV, NSWC Laser Initiated Transfer Energy Subsystem (LITES) advanced development program. Qualification of the detonator as a component utilizing existing military specifications is the selected approach for this program. The detonator is a deflagration-to-detonator transfer (DDT) device using a secondary explosive, HMX, to generate the required shock wave output. The prototype development and initial system integration tests for the LITES and for the detonator were reported at the 1992 International Pyrotechnics Society Symposium and at the 1992 Survival and Flight Equipment National Symposium. Recent results are presented for the all-fire sensitivity and qualification tests conducted at two different laser initiation pulses.
Chase, J Geoffrey; Lambermont, Bernard; Starfinger, Christina; Hann, Christopher E; Shaw, Geoffrey M; Ghuysen, Alexandre; Kolh, Philippe; Dauby, Pierre C; Desaive, Thomas
2011-01-01
A cardiovascular system (CVS) model and parameter identification method have previously been validated for identifying different cardiac and circulatory dysfunctions in simulation and using porcine models of pulmonary embolism, hypovolemia with PEEP titrations and induced endotoxic shock. However, these studies required both left and right heart catheters to collect the data required for subject-specific monitoring and diagnosis-a maximally invasive data set in a critical care setting although it does occur in practice. Hence, use of this model-based diagnostic would require significant additional invasive sensors for some subjects, which is unacceptable in some, if not all, cases. The main goal of this study is to prove the concept of using only measurements from one side of the heart (right) in a 'minimal' data set to identify an effective patient-specific model that can capture key clinical trends in endotoxic shock. This research extends existing methods to a reduced and minimal data set requiring only a single catheter and reducing the risk of infection and other complications-a very common, typical situation in critical care patients, particularly after cardiac surgery. The extended methods and assumptions that found it are developed and presented in a case study for the patient-specific parameter identification of pig-specific parameters in an animal model of induced endotoxic shock. This case study is used to define the impact of this minimal data set on the quality and accuracy of the model application for monitoring, detecting and diagnosing septic shock. Six anesthetized healthy pigs weighing 20-30 kg received a 0.5 mg kg(-1) endotoxin infusion over a period of 30 min from T0 to T30. For this research, only right heart measurements were obtained. Errors for the identified model are within 8% when the model is identified from data, re-simulated and then compared to the experimentally measured data, including measurements not used in the identification process for validation. Importantly, all identified parameter trends match physiologically and clinically and experimentally expected changes, indicating that no diagnostic power is lost. This work represents a further with human subjects validation for this model-based approach to cardiovascular diagnosis and therapy guidance in monitoring endotoxic disease states. The results and methods obtained can be readily extended from this case study to the other animal model results presented previously. Overall, these results provide further support for prospective, proof of concept clinical testing with humans.
Shock and vibration tests of uranium mononitride fuel pellets for a space power nuclear reactor
NASA Technical Reports Server (NTRS)
Adams, D. W.
1972-01-01
Shock and vibration tests were conducted on cylindrically shaped, depleted, uranium mononitride (UN) fuel pellets. The structural capabilities of the pellets were determined under exposure to shock and vibration loading which a nuclear reactor may encounter during launching into space. Various combinations of diametral and axial clearances between the pellets and their enclosing structures were tested. The results of these tests indicate that for present fabrication of UN pellets, a diametral clearance of 0.254 millimeter and an axial clearance of 0.025 millimeter are tolerable when subjected to launch-induced loads.
Correlation of bow shock plasma wave turbulence with solar wind parameters
NASA Technical Reports Server (NTRS)
Rodriguez, P.; Gurnett, D. A.
1975-01-01
The r.m.s. field strengths of electrostatic and electromagnetic turbulence in the earth's bow shock, measured in the frequency range 20 Hz to 200 kHz with IMP-6 satellite, are found to correlate with specific solar wind parameters measured upstream of the bow shock.
NASA Astrophysics Data System (ADS)
Kim, W. Y.; Richards, P. G.
2017-12-01
At least four small seismic events were detected around the North Korean nuclear test site following the 3 September 2017 underground nuclear test. The magnitude of these shocks range from 2.6 to 3.5. Based on their proximity to the September 3 UNT, these shocks may be considered as aftershocks of the UNT. We assess the best method to classify these small events based on spectral amplitude ratios of regional P and S wave from the shocks. None of these shocks are classified as explosion-like based on P/S spectral amplitude ratios. We examine additional possible small seismic events around the North Korean test site by using seismic data from stations in southern Korea and northeastern China including IMS seismic arrays, GSN stations, and regional network stations in the region.
Shock Radiation Tests for Saturn and Uranus Entry Probes
NASA Technical Reports Server (NTRS)
Cruden, Brett A.; Bogdanoff, David W.
2017-01-01
This paper describes a test series in the Electric Arc Shock Tube at NASA Ames Research Center with the objective of quantifying shock-layer radiative heating magnitudes for future probe entries into Saturn and Uranus atmospheres. Normal shock waves are measured in Hydrogen-Helium mixtures (89:11 by volume) at freestream pressures between 13-66 Pa (0.1-0.5 Torr) and velocities from 20-30 kms. No shock layer radiation is detected within measurement limits below 25 kms, a finding consistent with predictions for Uranus entries. Between 25-30 kms, radiance is quantified from the Vacuum Ultraviolet through Near Infrared, with focus on the Lyman-a and Balmer series lines of Hydrogen. Shock profiles are analyzed for electron number density and electronic state distribution. The shocks do not equilibrate over several cm, and in many cases the state distributions are non-Boltzmann. Radiation data are compared to simulations of Decadal Survey entries for Saturn and shown to be as much as 8x lower than predicted with the Boltzmann radiation model. Radiance is observed in front of the shock layer, the characteristics of which match the expected diffusion length.
Sikiric, P; Jelovac, N; Jelovac-Gjeldum, A; Dodig, G; Staresinic, M; Anic, T; Zoricic, I; Ferovic, D; Aralica, G; Buljat, G; Prkacin, I; Lovric-Bencic, M; Separovic, J; Seiwerth, S; Rucman, R; Petek, M; Turkovic, B; Ziger, T
2001-03-01
To study anxiolytic effect of a gastric pentadecapeptide, BPC-157. In shock probe/burying test, pentadecapeptide BPC-157 (10 microg/kg, 10 ng/kg, ip), diazepam (0.075, 0.0375 mg/kg, ip), and an equivolume of saline (5 mL/kg, ip) were given at 30 min prior test. In light/dark test, the same dosage of diazepam, BPC-157, and saline were given at 45 min prior procedure. Shock probe/burying test: rats treated with either diazepam or pentadecapeptide BPC-157 were much less afraid after the shock: almost not burying and the total time spent in burying was clearly less than in controls. However, while in the diazepam treated rats the number of shocks received increased over control values, in pentadecapeptide BPC-157 treated groups the number of shocks remained not modified compared with the control values. Light/dark test: after exposure to the intense light, diazepam treated mice had longer latencies of crossing to the dark compartment, a greater number of crossing and a greater number of exploratory rearing, and spent longer time in the light compartment, as compared to the control mice, while BPC-157 mice had a similar behavior to that of the control mice. In contrast with the effect in light area, in dark zone diazepam produced no change with respect to controls, while BPC-157 (10 microg/kg) mice had a greater number of crossing and a greater number of exploratory rearing. Both diazepam and BPC-157 displayed a bidirectional effect, but the activity of pentadecapeptide BPC-157 was particular, and different from diazepam.
Bio-inspired Armor Protective Material Systems for Ballistic Shock Mitigation
2011-01-01
Coupon testing a b s t r a c t Severe transient ballistic shocks from projectile impacts, mine blasts , or overhead artillery attacks can incapacitate an...past two decades [1]. A ballistic shock results from a significant amount of concentrated energy deposited from caliber projectile impacts, mine blasts ...LS- Dyna , has been predominately utilized to calculate the target shock responses including acceleration histo- ries, shock response spectra
Pyro shock simulation: Experience with the MIPS simulator
NASA Technical Reports Server (NTRS)
Dwyer, Thomas J.; Moul, David S.
1988-01-01
The Mechanical Impulse Pyro Shock (MIPS) Simulator at GE Astro Space Division is one version of a design that is in limited use throughout the aerospace industry, and is typically used for component shock testing at levels up to 10,000 response g's. Modifications to the force imput, table and component boundary conditions have allowed a range of test conditions to be achieved. Twelve different designs of components with weights up to 23 Kg are in the process or have completed qualification testing in the Dynamic Simulation Lab at GE in Valley Forge, Pa. A summary of the experience gained through the use of this simulator is presented as well as examples of shock experiments that can be readily simulated at the GE Astro MIPS facility.
Exact and approximate solutions to the oblique shock equations for real-time applications
NASA Technical Reports Server (NTRS)
Hartley, T. T.; Brandis, R.; Mossayebi, F.
1991-01-01
The derivation of exact solutions for determining the characteristics of an oblique shock wave in a supersonic flow is investigated. Specifically, an explicit expression for the oblique shock angle in terms of the free stream Mach number, the centerbody deflection angle, and the ratio of the specific heats, is derived. A simpler approximate solution is obtained and compared to the exact solution. The primary objectives of obtaining these solutions is to provide a fast algorithm that can run in a real time environment.
Shock Radiation Tests for Saturn and Uranus Entry Probes
NASA Technical Reports Server (NTRS)
Cruden, Brett A.; Bogdanoff, David W.
2014-01-01
This paper describes a test series in the Electric Arc Shock Tube at NASA Ames Research Center with the objective of quantifying shock-layer radiative heating magnitudes for future probe entries into Saturn and Uranus atmospheres. Normal shock waves are measured in Hydrogen/Helium mixtures (89:11 by mole) at freestream pressures between 13-66 Pa (0.1-0.5 Torr) and velocities from 20-30 km/s. No shock layer radiation is detected below 25 km/s, a finding consistent with predictions for Uranus entries. Between 25-30 km/s, radiance is quantified from the Vacuum Ultraviolet through Near Infrared, with focus on the Lyman-alpha and Balmer series lines of Hydrogen. Shock profiles are analyzed for electron number density and electronic state distribution. The shocks do not equilibrate over several cm, and distributions are demonstrated to be non-Boltzmann. Radiation data are compared to simulations of Decadal survey entries for Saturn and shown to be significantly lower than predicted with the Boltzmann radiation model.
Hadid, Claudio; Atienza, Felipe; Strasberg, Boris; Arenal, Ángel; Codner, Pablo; González-Torrecilla, Esteban; Datino, Tomás; Percal, Tamara; Almendral, Jesús; Ortiz, Mercedes; Martins, Raphael; Martinez-Alzamora, Nieves; Fernandez Aviles, Francisco
2015-01-01
Ventricular fibrillation is routinely induced during implantable cardioverter-defibrillator insertion to assess defibrillator performance, but this strategy is experiencing a progressive decline. We aimed to assess the efficacy of defibrillator therapies and long-term outcome in a cohort of patients that underwent defibrillator implantation with and without defibrillation testing. Retrospective observational series of consecutive patients undergoing initial defibrillator insertion or generator replacement. We registered spontaneous ventricular arrhythmias incidence and therapy efficacy, and mortality. A total of 545 patients underwent defibrillator implantation (111 with and 434 without defibrillation testing). After 19 (range 9-31) months of follow-up, the death rate per observation year (4% vs. 4%; p = 0.91) and the rate of patients with defibrillator-treated ventricular arrhythmic events per observation year (with test: 10% vs. without test: 12%; p = 0.46) were similar. The generalized estimating equations-adjusted first shock probability of success in patients with test (95%; CI 88-100%) vs. without test (98%; CI 96-100%; p = 0.42) and the proportion of successful antitachycardia therapies (with test: 87% vs. without test: 80%; p = 0.35) were similar between groups. There was no difference in the annualized rate of failed first shock per patient and per shocked patient between groups (5% vs. 4%; p = 0.94). In this observational study, that included an unselected population of patients with a defibrillator, no difference was found in overall mortality, first shock efficacy and rate of failed shocks regardless of whether defibrillation testing was performed or not.
Material properties and their influence on the behaviour of tungsten as plasma facing material
NASA Astrophysics Data System (ADS)
Wirtz, M.; Uytdenhouwen, I.; Barabash, V.; Escourbiac, F.; Hirai, T.; Linke, J.; Loewenhoff, Th.; Panayotis, S.; Pintsuk, G.
2017-06-01
With the aim of a possible improvement of the material specification for tungsten, five different tungsten products by different companies and by different production technologies (forging and rolling) are subject to a materials characterization program. Tungsten produced by forging results in an uniaxial elongated grain shape while rolled products have a plate like grain shape which has an influence on the mechanical properties of the material. The materials were investigated with respect to the following parameters: hardness measurements, microstructural investigations, tensile tests and recrystallisation sensitivity tests at 3 different temperatures. The obtained results show that different production processes have an influence on the resulting anisotropic microstructure and the related material properties of tungsten in the as-received state. Additionally, the recrystallization sensitivity varies between the different products, what could be a result of the different production processes. Additionally, two tungsten products were exposed to thermal shocks. The obtained results show that the improved recrystallisation behaviour has no major impact on the thermal shock performance.
A New Spin on an Old Technology: Piezoelectric Ejecta Diagnostics for Shock Environments
NASA Astrophysics Data System (ADS)
Vogan, W. S.; Anderson, W. W.; Grover, M.; King, N. S. P.; Lamoreaux, S. K.; Morley, K. B.; Rigg, P. A.; Stevens, G. D.; Turley, W. D.; Buttler, W. T.
2006-07-01
In our investigation of ejecta, or metal particulate emitted from a surface subjected to shock-loaded conditions, we have developed a shock experiment suitable for testing new ideas in piezoelectric mass and impact detectors. High-explosive (HE) shock loading of tin targets subjected to various machined and compressed finishes results in significant trends in ejecta characteristics of interest such as areal density and velocity. Our enhanced piezoelectric diagnostic, "piezo-pins" modified for shock mitigation, have proven levels of robustness and reliability suitable for effective operation in these ejecta milieux. These field tests address questions about ejecta production from surfaces of interest; experimental results are discussed and compared with those from complementary diagnostics such as x-ray and optical attenuation visualization techniques.
NASA Technical Reports Server (NTRS)
Chriss, R. M.; Hingst, W. R.; Strazisar, A. J.; Keith, T. G., Jr.
1989-01-01
Nonintrusive measurements were made of a normal shock wave/boundary layer interaction. Two dimensional measurements were made throughout the interaction region while 3-D measurements were made in the vicinity of the shock wave. The measurements were made in the corner of the test section of a continuous supersonic wind tunnel in which a normal shock wave had been stabilized. Laser Doppler Anemometry, surface pressure measurement and flow visualization techniques were employed for two freestream Mach number test cases: 1.6 and 1.3. The former contained separated flow regions and a system of shock waves. The latter was found to be far less complicated. The results define the flow field structure in detail for each case.
An analysis of combustion studies in shock expansion tunnels and reflected shock tunnels
NASA Technical Reports Server (NTRS)
Jachimowski, Casimir J.
1992-01-01
The effect of initial nonequilibrium dissociated air constituents on the combustion of hydrogen in high-speed flows for a simulated Mach 17 flight condition was investigated by analyzing the results of comparative combustion experiments performed in a reflected shock tunnel test gas and in a shock expansion tunnel test gas. The results were analyzed and interpreted with a one-dimensional quasi-three-stream combustor code that includes finite rate combustion chemistry. The results of this study indicate that the combustion process is kinetically controlled in the experiments in both tunnels and the presence of the nonequilibrium partially dissociated oxygen in the reflected shock tunnel enhances the combustion. Methods of compensating for the effect of dissociated oxygen are discussed.
Interaction of strong converging shock wave with SF6 gas bubble
NASA Astrophysics Data System (ADS)
Liang, Yu; Zhai, ZhiGang; Luo, XiSheng
2018-06-01
Interaction of a strong converging shock wave with an SF6 gas bubble is studied, focusing on the effects of shock intensity and shock shape on interface evolution. Experimentally, the converging shock wave is generated by shock dynamics theory and the gas bubble is created by soap film technique. The post-shock flow field is captured by a schlieren photography combined with a high-speed video camera. Besides, a three-dimensional program is adopted to provide more details of flow field. After the strong converging shock wave impact, a wide and pronged outward jet, which differs from that in planar shock or weak converging shock condition, is derived from the downstream interface pole. This specific phenomenon is considered to be closely associated with shock intensity and shock curvature. Disturbed by the gas bubble, the converging shocks approaching the convergence center have polygonal shapes, and the relationship between shock intensity and shock radius verifies the applicability of polygonal converging shock theory. Subsequently, the motion of upstream point is discussed, and a modified nonlinear theory considering rarefaction wave and high amplitude effects is proposed. In addition, the effects of shock shape on interface morphology and interface scales are elucidated. These results indicate that the shape as well as shock strength plays an important role in interface evolution.
Characterization of laser-driven shock waves in solids using a fiber optic pressure probe.
Cranch, Geoffrey A; Lunsford, Robert; Grün, Jacob; Weaver, James; Compton, Steve; May, Mark; Kostinski, Natalie
2013-11-10
Measurement of laser-driven shock wave pressure in solid blocks of polymethyl methacrylate is demonstrated using fiber optic pressure probes. Three probes based on a fiber Fabry-Perot, fiber Bragg grating, and interferometric fiber tip sensor are tested and compared. Shock waves are generated using a high-power laser focused onto a thin foil target placed in close proximity to the test blocks. The fiber Fabry-Perot sensor appears capable of resolving the shock front with a rise time of 91 ns. The peak pressure is estimated, using a separate shadowgraphy measurement, to be 3.4 GPa.
March, Jordon K; Pratt, Michael D; Lowe, Chinn-Woan; Cohen, Marissa N; Satterfield, Benjamin A; Schaalje, Bruce; O'Neill, Kim L; Robison, Richard A
2015-10-01
This study investigated (1) the susceptibility of Bacillus anthracis (Ames strain), Bacillus subtilis (ATCC 19659), and Clostridium sporogenes (ATCC 3584) spores to commercially available peracetic acid (PAA)- and glutaraldehyde (GA)-based disinfectants, (2) the effects that heat-shocking spores after treatment with these disinfectants has on spore recovery, and (3) the timing of heat-shocking after disinfectant treatment that promotes the optimal recovery of spores deposited on carriers. Suspension tests were used to obtain inactivation kinetics for the disinfectants against three spore types. The effects of heat-shocking spores after disinfectant treatment were also determined. Generalized linear mixed models were used to estimate 6-log reduction times for each spore type, disinfectant, and heat treatment combination. Reduction times were compared statistically using the delta method. Carrier tests were performed according to AOAC Official Method 966.04 and a modified version that employed immediate heat-shocking after disinfectant treatment. Carrier test results were analyzed using Fisher's exact test. PAA-based disinfectants had significantly shorter 6-log reduction times than the GA-based disinfectant. Heat-shocking B. anthracis spores after PAA treatment resulted in significantly shorter 6-log reduction times. Conversely, heat-shocking B. subtilis spores after PAA treatment resulted in significantly longer 6-log reduction times. Significant interactions were also observed between spore type, disinfectant, and heat treatment combinations. Immediately heat-shocking spore carriers after disinfectant treatment produced greater spore recovery. Sporicidal activities of disinfectants were not consistent across spore species. The effects of heat-shocking spores after disinfectant treatment were dependent on both disinfectant and spore species. Caution must be used when extrapolating sporicidal data of disinfectants from one spore species to another. Heat-shocking provides a more accurate picture of spore survival for only some disinfectant/spore combinations. Collaborative studies should be conducted to further examine a revision of AOAC Official Method 966.04 relative to heat-shocking. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
The Shock and Vibration Bulletin. Part 3. Shock Testing, Shock Analysis
1974-08-01
APPROXIMATE TRANSFORMATION C.S. O’Hearne and J.W. Shipley, Martin Marietta Aerospace, Orlando, Florida LINEAR LUMPED-MASS MODELING TECHNIQUES FOR BLAST LOADED...Leppert, B.K. Wada, Jet Propulsion Laboratory, Pasadena, California, and R. Miyakawa, Martin - Marietta Aerospace, Denver, Colorado (assigned to the Jet...Wilmington, Delaware Vibration Testing and Analysis DEVELOPMENT OF SAM-D MISSILE RANDOM VIBRATION RESPONSE LOADS P.G. Hahn, Martin Marietta Aerospace
Conen, David; Arendacká, Barbora; Röver, Christian; Bergau, Leonard; Munoz, Pascal; Wijers, Sofieke; Sticherling, Christian; Zabel, Markus; Friede, Tim
2016-01-01
Some but not all prior studies have shown that women receiving a primary prophylactic implantable cardioverter defibrillator (ICD) have a lower risk of death and appropriate shocks than men. To evaluate the effect of gender on the risk of appropriate shock, all-cause mortality and inappropriate shock in contemporary studies of patients receiving a primary prophylactic ICD. PubMed, LIVIVO, Cochrane CENTRAL between 2010 and 2016. Studies providing at least 1 gender-specific risk estimate for the outcomes of interest. Abstracts were screened independently for potentially eligible studies for inclusion. Thereby each abstract was reviewed by at least two authors. Out of 680 abstracts retained by our search strategy, 20 studies including 46'657 patients had gender-specific information on at least one of the relevant endpoints. Mean age across the individual studies varied between 58 and 69 years. The proportion of women enrolled ranged from 10% to 30%. Across 6 available studies, women had a significantly lower risk of first appropriate shock compared with men (pooled multivariable adjusted hazard ratio 0.62 (95% CI [0.44; 0.88]). Across 14 studies reporting multivariable adjusted gender-specific hazard ratio estimates for all-cause mortality, women had a lower risk of death than men (pooled hazard ratio 0.75 (95% CI [0.66; 0.86]). There was no statistically significant difference for the incidence of first inappropriate shocks (3 studies, pooled hazard ratio 0.99 (95% CI [0.56; 1.73]). Individual patient data were not available for most studies. In this large contemporary meta-analysis, women had a significantly lower risk of appropriate shocks and death than men, but a similar risk of inappropriate shocks. These data may help to select patients who benefit from primary prophylactic ICD implantation.
Hassoun, S; Sabbah, A
1998-03-01
Allergy to the gelatin used as a plasma filler product has not been recognised until now. Methods used have not been validated but are composed of specific serum IgE, skin tests and histamine release by leucotrienes. The clinical observation that we report has the merit of showing the reality of an allergy that is dependent on plasma filler products due to development of a protocol which includes firstly, during anaphylactic shock, measurement of the mediators of immediate hypersensitivity and secondly, after the clinical accident, test of the activation of basophils by flow cytometry (TAB) and measurement of leucotrienes.
Nakagawa, Yoshihide; Amino, Mari; Inokuchi, Sadaki; Hayashi, Satoshi; Wakabayashi, Tsutomu; Noda, Tatsuya
2017-04-01
Amplitude spectral area (AMSA), an index for analysing ventricular fibrillation (VF) waveforms, is thought to predict the return of spontaneous circulation (ROSC) after electric shocks, but its validity is unconfirmed. We developed an equation to predict ROSC, where the change in AMSA (ΔAMSA) is added to AMSA measured immediately before the first shock (AMSA1). We examine the validity of this equation by comparing it with the conventional AMSA1-only equation. We retrospectively investigated 285 VF patients given prehospital electric shocks by emergency medical services. ΔAMSA was calculated by subtracting AMSA1 from last AMSA immediately before the last prehospital electric shock. Multivariate logistic regression analysis was performed using post-shock ROSC as a dependent variable. Analysis data were subjected to receiver operating characteristic curve analysis, goodness-of-fit testing using a likelihood ratio test, and the bootstrap method. AMSA1 (odds ratio (OR) 1.151, 95% confidence interval (CI) 1.086-1.220) and ΔAMSA (OR 1.289, 95% CI 1.156-1.438) were independent factors influencing ROSC induction by electric shock. Area under the curve (AUC) for predicting ROSC was 0.851 for AMSA1-only and 0.891 for AMSA1+ΔAMSA. Compared with the AMSA1-only equation, the AMSA1+ΔAMSA equation had significantly better goodness-of-fit (likelihood ratio test P<0.001) and showed good fit in the bootstrap method. Post-shock ROSC was accurately predicted by adding ΔAMSA to AMSA1. AMSA-based ROSC prediction enables application of electric shock to only those patients with high probability of ROSC, instead of interrupting chest compressions and delivering unnecessary shocks to patients with low probability of ROSC. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Clegg, R. A.; White, D. M.; Hayhurst, C.; Ridel, W.; Harwick, W.; Hiermaier, S.
2003-09-01
The development and validation of an advanced material model for orthotropic materials, such as fibre reinforced composites, is described. The model is specifically designed to facilitate the numerical simulation of impact and shock wave propagation through orthotropic materials and the prediction of subsequent material damage. Initial development of the model concentrated on correctly representing shock wave propagation in composite materials under high and hypervelocity impact conditions [1]. This work has now been extended to further concentrate on the development of improved numerical models and material characterisation techniques for the prediction of damage, including residual strength, in fibre reinforced composite materials. The work is focussed on Kevlar-epoxy however materials such as CFRP are also being considered. The paper describes our most recent activities in relation to the implementation of advanced material modelling options in this area. These enable refined non-liner directional characteristics of composite materials to be modelled, in addition to the correct thermodynamic response under shock wave loading. The numerical work is backed by an extensive experimental programme covering a wide range of static and dynamic tests to facilitate derivation of model input data and to validate the predicted material response. Finally, the capability of the developing composite material model is discussed in relation to a hypervelocity impact problem.
Metabolic Response of Maize Roots to Hyperosmotic Shock 1
Spickett, Corinne M.; Smirnoff, Nicholas; Ratcliffe, R. George
1992-01-01
31P nuclear magnetic resonance spectroscopy was used to study the response of maize (Zea mays L.) root tips to hyperosmotic shock. The aim was to identify changes in metabolism that might be relevant to the perception of low soil water potential and the subsequent adaptation of the tissue to these conditions. Osmotic shock was found to result in two different types of response: changes in metabolite levels and changes in intracellular pH. The most notable metabolic changes, which were produced by all the osmotica tested, were increases in phosphocholine and vacuolar phosphate, with a transient increase in cytoplasmic phosphate. It was observed that treatment with ionic and nonionic osmotica produced different effects on the concentrations of bioenergetically important metabolites. It is postulated that these changes are the result of hydrolysis of phosphatidylcholine and other membrane phospholipids, due to differential activation of specific membrane-associated phospholipases by changes in the surface tension of the plasmalemma. These events may be important in the detection of osmotic shock and subsequent acclimatization. A cytoplasmic alkalinization was also observed during hyperosmotic treatment, and this response, which is consistent with the activation of the plasmalemma H+-ATPase, together with the other metabolic changes, may suggest the existence of a complex and integrated mechanism of osmoregulation. PMID:16669012
NASA Astrophysics Data System (ADS)
Dürrstein, Steffen H.; Aghsaee, Mohammad; Jerig, Ludger; Fikri, Mustapha; Schulz, Christof
2011-08-01
A conventional membrane-type stainless steel shock tube has been coupled to a high-repetition-rate time-of-flight mass spectrometer (HRR-TOF-MS) to be used to study complex reaction systems such as the formation of pollutants in combustion processes or formation of nanoparticles from metal containing organic compounds. Opposed to other TOF-MS shock tubes, our instrument is equipped with a modular sampling unit that allows to sample with or without a skimmer. The skimmer unit can be mounted or removed in less than 10 min. Thus, it is possible to adjust the sampling procedure, namely, the mass flux into the ionization chamber of the HRR-TOF-MS, to the experimental situation imposed by species-specific ionization cross sections and vapor pressures. The whole sampling section was optimized with respect to a minimal distance between the nozzle tip inside the shock tube and the ion source inside the TOF-MS. The design of the apparatus is presented and the influence of the skimmer on the measured spectra is demonstrated by comparing data from both operation modes for conditions typical for chemical kinetics experiments. The well-studied thermal decomposition of acetylene has been used as a test system to validate the new setup against kinetics mechanisms reported in literature.
Simulations of the Richtmyer-Meshkov Instability in a two-shock vertical shock tube
NASA Astrophysics Data System (ADS)
Ferguson, Kevin; Olson, Britton; Jacobs, Jeffrey
2017-11-01
Simulations of the Richtmyer-Meshkov Instability (RMI) in a new two-shock vertical shock tube configuration are presented. The simulations are performed using the ARES code at Lawrence-Livermore National Laboratory (LLNL). Two M=1.2 shock waves travel in opposing directions and impact an initially stationary interface formed by sulfur hexaflouride (SF6) and air. The delay between the two shocks is controlled to achieve a prescribed temporal separation in shock wave arrival time. Initial interface perturbations and diffusion profiles are generated in keeping with previously gathered experimental data. The effect of varying the inter-shock delay and initial perturbation structure on instability growth and mixing parameters is examined. Information on the design, construction, and testing of a new two-shock vertical shock tube are also presented.
Scramjet Tests in a Shock Tunnel at Flight Mach 7, 10, and 15 Conditions
NASA Technical Reports Server (NTRS)
Rogers, R. C.; Shih, A. T.; Tsai, C.-Y.; Foelsche, R. O.
2001-01-01
Tests of the Hyper-X scramjet engine flowpath have been conducted in the HYPULSE shock tunnel at conditions duplicating the stagnation enthalpy at flight Mach 7, 10, and 15. For the tests at Mach 7 and 10 HYPULSE was operated as a reflected-shock tunnel; at the Mach 15 condition, HYPULSE was operated as a shock-expansion tunnel. The test conditions matched the stagnation enthalpy of a scramjet engine on an aerospace vehicle accelerating through the atmosphere along a 1000 psf dynamic pressure trajectory. Test parameter variation included fuel equivalence ratios from lean (0.8) to rich (1.5+); fuel composition from pure hydrogen to mixtures of 2% and 5% silane in hydrogen by volume; and inflow pressure and Mach number made by changing the scramjet model mounting angle in the HYPULSE test chamber. Data sources were wall pressures and heat flux distributions and schlieren and fuel plume imaging in the combustor/nozzle sections. Data are presented for calibration of the facility nozzles and the scramjet engine model. Comparisons of pressure distributions and flowpath streamtube performance estimates are made for the three Mach numbers tested.
Water impact shock test system
NASA Technical Reports Server (NTRS)
1977-01-01
The basic objective was to design, manufacture, and install a shock test system which, in part, would have the ability to subject test articles weighing up to 1,000 pounds to both half sine and/or full sine pulses having peak levels of up to 50 G's with half sine pulse durations of 100 milliseconds or full sine period duration of 200 milliseconds. The tolerances associated with the aforementioned pulses were +20% and -10% for the peak levels and plus or minus 10% for the pulse durations. The subject shock test system was to be capable of accepting test article sizes of up to 4 feet by 4 feet mounting surface by 4 feet in length.
Bänsch, Dietmar; Bonnemeier, Hendrik; Brandt, Johan; Bode, Frank; Svendsen, Jesper Hastrup; Felk, Angelika; Hauser, Tino; Wegscheider, Karl
2015-01-01
Although defibrillation (DF) testing is still considered a standard procedure during implantable cardioverter-defibrillator (ICD) insertion and has been an essential element of all trials that demonstrated the survival benefit of ICD therapy, there are no large randomized clinical trials demonstrating that DF testing improves clinical outcome and if the outcome would remain the same by omitting DF testing. Between February 2011 and July 2013, we randomly assigned 1077 patients to ICD implantation with (n = 540) or without (n = 537) DF testing. The intra-operative DF testing was standardized across all participating centres. After inducing a fast ventricular tachycardia (VT) with a heart rate ≥240 b.p.m. or ventricular fibrillation (VF) with a low-energy T-wave shock, DF was attempted with an initial 15 J shock. If the shock reversed the VT or VF, DF testing was considered successful and terminated. If unsuccessful, two effective 24 J shocks were administered. If DF was unsuccessful, the system was reconfigured and another DF testing was performed. An ICD shock energy of 40 J had to be programmed in all patients for treatment of spontaneous VT/VF episodes. The primary endpoint was the average efficacy of the first ICD shock for all true VT/VF episodes in each patient during follow-up. The secondary endpoints included the frequency of system revisions, total fluoroscopy, implantation time, procedural serious adverse events, and all-cause, cardiac, and arrhythmic mortality during follow-up. Home Monitoring was used in all patients to continuously monitor the system integrity, device programming and performance. The NO Regular Defibrillation testing In Cardioverter Defibrillator Implantation (NORDIC ICD) trial is one of two large prospective randomized trials assessing the effect of DF testing omission during ICD implantation. NCT01282918. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.
2011-09-14
Team members check the progress of a liquid nitrogen cold shock test on the A-1 Test Stand at Stennis Space Center on Sept. 15. The cold shock test is used to confirm the test stand's support system can withstand test conditions, when super-cold rocket engine propellant is piped. The A-1 Test Stand is preparing to conduct tests on the powerpack component of the J-2X rocket engine, beginning in early 2012.
Vyas, Meenal; Raza, Amir; Ali, Muhammad Yousaf; Ashraf, Muhammad Aleem; Mansoor, Shahid; Shahid, Ahmad Ali; Brown, Judith K
2017-01-01
Control of the whitefly Bemisia tabaci (Genn.) agricultural pest and plant virus vector relies on the use of chemical insecticides. RNA-interference (RNAi) is a homology-dependent innate immune response in eukaryotes, including insects, which results in degradation of the corresponding transcript following its recognition by a double-stranded RNA (dsRNA) that shares 100% sequence homology. In this study, six whitefly 'gut' genes were selected from an in silico-annotated transcriptome library constructed from the whitefly alimentary canal or 'gut' of the B biotype of B. tabaci, and tested for knock down efficacy, post-ingestion of dsRNAs that share 100% sequence homology to each respective gene target. Candidate genes were: Acetylcholine receptor subunit α, Alpha glucosidase 1, Aquaporin 1, Heat shock protein 70, Trehalase1, and Trehalose transporter1. The efficacy of RNAi knock down was further tested in a gene-specific functional bioassay, and mortality was recorded in 24 hr intervals, six days, post-treatment. Based on qPCR analysis, all six genes tested showed significantly reduced gene expression. Moderate-to-high whitefly mortality was associated with the down-regulation of osmoregulation, sugar metabolism and sugar transport-associated genes, demonstrating that whitefly survivability was linked with RNAi results. Silenced Acetylcholine receptor subunit α and Heat shock protein 70 genes showed an initial low whitefly mortality, however, following insecticide or high temperature treatments, respectively, significantly increased knockdown efficacy and death was observed, indicating enhanced post-knockdown sensitivity perhaps related to systemic silencing. The oral delivery of gut-specific dsRNAs, when combined with qPCR analysis of gene expression and a corresponding gene-specific bioassay that relates knockdown and mortality, offers a viable approach for functional genomics analysis and the discovery of prospective dsRNA biopesticide targets. The approach can be applied to functional genomics analyses to facilitate, species-specific dsRNA-mediated control of other non-model hemipterans.
Voyager: Vibration Acoustics and Pyro Shock Testing
2017-07-05
An engineer works on vibration acoustics and pyro shock testing for one of NASA's Voyager spacecraft on November 18, 1976. Several of the spacecraft's science instruments are visible at left. https://photojournal.jpl.nasa.gov/catalog/PIA21733
Constrained-transport Magnetohydrodynamics with Adaptive Mesh Refinement in CHARM
NASA Astrophysics Data System (ADS)
Miniati, Francesco; Martin, Daniel F.
2011-07-01
We present the implementation of a three-dimensional, second-order accurate Godunov-type algorithm for magnetohydrodynamics (MHD) in the adaptive-mesh-refinement (AMR) cosmological code CHARM. The algorithm is based on the full 12-solve spatially unsplit corner-transport-upwind (CTU) scheme. The fluid quantities are cell-centered and are updated using the piecewise-parabolic method (PPM), while the magnetic field variables are face-centered and are evolved through application of the Stokes theorem on cell edges via a constrained-transport (CT) method. The so-called multidimensional MHD source terms required in the predictor step for high-order accuracy are applied in a simplified form which reduces their complexity in three dimensions without loss of accuracy or robustness. The algorithm is implemented on an AMR framework which requires specific synchronization steps across refinement levels. These include face-centered restriction and prolongation operations and a reflux-curl operation, which maintains a solenoidal magnetic field across refinement boundaries. The code is tested against a large suite of test problems, including convergence tests in smooth flows, shock-tube tests, classical two- and three-dimensional MHD tests, a three-dimensional shock-cloud interaction problem, and the formation of a cluster of galaxies in a fully cosmological context. The magnetic field divergence is shown to remain negligible throughout.
Plasma and energetic particle structure of a collisionless quasi-parallel shock
NASA Technical Reports Server (NTRS)
Kennel, C. F.; Scarf, F. L.; Coroniti, F. V.; Russell, C. T.; Smith, E. J.; Wenzel, K. P.; Reinhard, R.; Sanderson, T. R.; Feldman, W. C.; Parks, G. K.
1983-01-01
The quasi-parallel interplanetary shock of November 11-12, 1978 from both the collisionless shock and energetic particle points of view were studied using measurements of the interplanetary magnetic and electric fields, solar wind electrons, plasma and MHD waves, and intermediate and high energy ions obtained on ISEE-1, -2, and -3. The interplanetary environment through which the shock was propagating when it encountered the three spacecraft was characterized; the observations of this shock are documented and current theories of quasi-parallel shock structure and particle acceleration are tested. These observations tend to confirm present self consistent theories of first order Fermi acceleration by shocks and of collisionless shock dissipation involving firehouse instability.
1983-05-01
DESIGN PROCEDURE M. S. IIAndal, University of Vermont, Burlington, VT Machinery Dynamics ANALYTICAL AND EXPERIMENTAL INVESTIGATION OF ROTATING BLADE... methodology to accurately predict rotor vibratory loads and has recently been initiated for detail design and bench test- coupled rotor/airframe vibrations... design methodology , a trating on the basic disciplines of aerodynamics and struc. coupled rotor/airframe vibration analysis has been developed. tural
In Vitro Comparison of a Novel Single Probe Dual-Energy Lithotripter to Current Devices.
Carlos, Evan C; Wollin, Daniel A; Winship, Brenton B; Jiang, Ruiyang; Radvak, Daniela; Chew, Ben H; Gustafson, Michael R; Simmons, W Neal; Zhong, Pei; Preminger, Glenn M; Lipkin, Michael E
2018-06-01
The LithoClast Trilogy is a novel single probe, dual-energy lithotripter with ultrasonic (US) vibration and electromagnetic impact forces. ShockPulse and LithoClast Select are existing lithotripters that also use a combination of US and mechanical impact energies. We compared the efficacy and tip motion of these devices in an in vitro setting. Begostones, in the ratio 15:3, were used in all trials. Test groups were Trilogy, ShockPulse, Select ultrasound (US) only, and Select ultrasound with pneumatic (USP). For clearance testing, a single investigator facile with each lithotripter fragmented 10 stones per device. For drill testing, a hands-free apparatus with a submerged balance was used to apply 1 or 2 lbs of pressure on a stone in contact with the device tip. High-speed photography was used to assess Trilogy and ShockPulse's probe tip motion. Select-USP was slowest and Trilogy fastest on clearance testing (p < 0.01). On 1 lbs drill testing, Select-US was slowest (p = 0.001). At 2 lbs, ShockPulse was faster than Select US (p = 0.027), but did not significantly outpace Trilogy nor Select-USP. At either weight, there was no significant difference between Trilogy and ShockPulse. During its US function, Trilogy's maximum downward tip displacement was 0.041 mm relative to 0.0025 mm with ShockPulse. Trilogy had 0.25 mm of maximum downward displacement during its impactor function while ShockPulse had 0.01 mm. Single probe dual-energy devices, such as Trilogy and ShockPulse, represent the next generation of lithotripters. Trilogy more efficiently cleared stone than currently available devices, which could be explained by its larger probe diameter and greater downward tip displacement during both US and impactor functions.
NASA Technical Reports Server (NTRS)
Hughes, William O.; McNelis, Anne M.
2010-01-01
The Earth Observing System (EOS) Terra spacecraft was launched on an Atlas IIAS launch vehicle on its mission to observe planet Earth in late 1999. Prior to launch, the new design of the spacecraft's pyroshock separation system was characterized by a series of 13 separation ground tests. The analysis methods used to evaluate this unusually large amount of shock data will be discussed in this paper, with particular emphasis on population distributions and finding statistically significant families of data, leading to an overall shock separation interface level. The wealth of ground test data also allowed a derivation of a Mission Assurance level for the flight. All of the flight shock measurements were below the EOS Terra Mission Assurance level thus contributing to the overall success of the EOS Terra mission. The effectiveness of the statistical methodology for characterizing the shock interface level and for developing a flight Mission Assurance level from a large sample size of shock data is demonstrated in this paper.
NASA Astrophysics Data System (ADS)
Hufner, D. R.; Augustine, M. R.
2018-05-01
A novel experimental method was developed to simulate underwater explosion pressure pulses within a laboratory environment. An impact-based experimental apparatus was constructed; capable of generating pressure pulses with basic character similar to underwater explosions, while also allowing the pulse to be tuned to different intensities. Having the capability to vary the shock impulse was considered essential to producing various levels of shock-induced damage without the need to modify the fixture. The experimental apparatus and test method are considered ideal for investigating the shock response of composite material systems and/or experimental validation of new material models. One such test program is presented herein, in which a series of E-glass/Vinylester laminates were subjected to a range of shock pulses that induced varying degrees of damage. Analysis-test correlations were performed using a rate-dependent constitutive model capable of representing anisotropic damage and ultimate yarn failure. Agreement between analytical predictions and experimental results was considered acceptable.
NASA Astrophysics Data System (ADS)
Benelli, Giovanni; Stefanini, Cesare; Giunti, Giulia; Geri, Serena; Messing, Russell H.; Canale, Angelo
2014-09-01
Animals rely on associative learning for a wide range of purposes, including danger avoidance. This has been demonstrated for several insects, including cockroaches, mosquitoes, drosophilid flies, paper wasps, stingless bees, bumblebees and honeybees, but less is known for parasitic wasps. We tested the ability of Psyttalia concolor (Hymenoptera: Braconidae) females to associate different dosages of two innately attractive host-induced plant volatiles (HIPVs), ethyl octanoate and decanal, with danger (electric shocks). We conducted an associative treatment involving odours and shocks and two non-associative controls involving shocks but not odours and odours but not shocks. In shock-only and odour-only trained wasps, females preferred on HIPV-treated than on blank discs. In associative-trained wasps, however, P. concolor's innate positive chemotaxis for HIPVs was nullified (lowest HIPV dosage tested) or reversed (highest HIPV dosage tested). This is the first report of associative learning of olfactory cues for danger avoidance in parasitic wasps, showing that the effects of learning can override innate positive chemotaxes.
Boundary Layer Effects on Unsteady Airloads.
1981-02-01
Magnus have shown by a "viscous ramp" behind the shock, whose inclination and height can be deduced from measured shock values such that calculated shock...sat- isfactory treatment of the shock). See YanglII -6 for these specific results. " Magnus 1 1 -7 (solution of the complete, nonlinear, inviscid...34, AFFDL-TR-78-202, December 1978. 111-7 R. J. Magnus and H. Yoshihara, "Calculations of Transonic Flow Over an Oscillating Airfoil", AIAA Paper 75-98
Piront, M L; Schmidt, R
1988-02-23
Ependymins are acidic glycoprotein constituents of goldfish brain cytoplasm and extracellular fluid which are known to participate in biochemical reactions of long-term memory formation. In earlier experiments, anti-ependymin antisera were found to cause amnesia when injected into goldfish brain ventricles after the acquisition of a vestibulomotoric training task. To investigate whether they also inhibit memory consolidation after other learning events the anti-ependymin antisera were injected after an active shock-avoidance learning paradigm, as follows: goldfish were trained in a shuttle-box to cross a barrier in order to avoid electric shocks (unconditioned stimulus) applied shortly after a light signal (conditioned stimulus). Anti-ependymin antisera blocked retention of the learned avoidance when injected 0.5, 4.5 or 24 h after acquisition of the new behavior. They had no effect, however, when injected 72 h after learning. Apparently, long-term memory was already consolidated at this point. Antisera injected 0.5 or 72 h prior to training, also did not influence learning or memory. Thirteen percent of the goldfish fled the light stimulus spontaneously. These fish therefore did not experience the unconditioned stimulus and thus were unable to learn the task. When they were treated with the anti-ependymin antisera and tested 3 days later, the spontaneous escape reaction was not affected (active control group). The ability of anti-ependymin antisera to inhibit memory consolidation and their efficacy after administration at specific time intervals are very similar for the active shock-avoidance learning and for the vestibulomotoric training. We conclude that ependymins are not task-specific, but serve a general function in biochemical reactions essential for long-term memory formation.
A test of Lee's quasi-linear theory of ion acceleration by interplanetary traveling shocks
NASA Technical Reports Server (NTRS)
Kennel, C. F.; Coroniti, F. V.; Scarf, F. L.; Livesey, W. A.; Russell, C. T.; Smith, E. J.
1986-01-01
Lee's (1983) quasi-linear theory of ion acceleration is tested using ISEE-3 measurements of the November 12, 1978 quasi-parallel interplanetary shock. His theory accounts with varying degrees of precision for the energetic proton spatial profiles; the dependence of the spectral index of the power law proton velocity distribution upon the shock compression ratio; the power law dependence of the upstream proton scalelength upon energy; the absolute magnitude of the upstream proton scale length; the behavior of the energetic proton anisotropy upstream and downstream of the shock; the behavior of the alpha-particle proton ratio upstream; the equality of the spatial scale lengths at the shock of the upstream waves and of the protons that resonate with them; and the dependence of the integrated wave energy density upon the proton energy density at the shock. However, the trace magnetic field frequency spectra disagree with his theory in two ways. The part of the spectrum that can resonate with the observed protons via first-order cyclotron resonance is flat, whereas Lee's theory predicts an f exp - 7/4 frequency dependence for the November 12 shock. Higher frequency waves, which could not resonate with the observed upstream protons, increased in amplitude as the shock approached, suggesting that they too were generated by the shock.
Application of a computational glass model to the shock response of soda-lime glass
Gorfain, Joshua E.; Key, Christopher T.; Alexander, C. Scott
2016-04-20
This article details the implementation and application of the glass-specific computational constitutive model by Holmquist and Johnson [1] to simulate the dynamic response of soda-lime glass under high rate and high pressure shock conditions. The predictive capabilities of this model are assessed through comparison of experimental data with numerical results from computations using the CTH shock physics code. The formulation of this glass model is reviewed in the context of its implementation within CTH. Using a variety of experimental data compiled from the open literature, a complete parameterization of the model describing the observed behavior of soda-lime glass is developed.more » Simulation results using the calibrated soda-lime glass model are compared to flyer plate and Taylor rod impact experimental data covering a range of impact and failure conditions spanning an order of magnitude in velocity and pressure. In conclusion, the complex behavior observed in the experimental testing is captured well in the computations, demonstrating the capability of the glass model within CTH.« less
Li, Wenwen; Janardhan, Ajit H.; Fedorov, Vadim V.; Sha, Qun; Schuessler, Richard B.; Efimov, Igor R.
2011-01-01
Background Implantable device therapy of atrial fibrillation (AF) is limited by pain from high-energy shocks. We developed a low-energy multi-stage defibrillation therapy and tested it in a canine model of AF. Methods and Results AF was induced by burst pacing during vagus nerve stimulation. Our novel defibrillation therapy consisted of three stages: ST1 (1-4 low energy biphasic shocks), ST2 (6-10 ultra-low energy monophasic shocks), and ST3 (anti-tachycardia pacing). Firstly, ST1 testing compared single or multiple monophasic (MP) and biphasic (BP) shocks. Secondly, several multi-stage therapies were tested: ST1 versus ST1+ST3 versus ST1+ST2+ST3. Thirdly, three shock vectors were compared: superior vena cava to distal coronary sinus (SVC>CSd), proximal coronary sinus to left atrial appendage (CSp>LAA) and right atrial appendage to left atrial appendage (RAA>LAA). The atrial defibrillation threshold (DFT) of 1BP shock was less than 1MP shock (0.55 ± 0.1 versus 1.38 ± 0.31 J; p =0.003). 2-3 BP shocks terminated AF with lower peak voltage than 1BP or 1MP shock and with lower atrial DFT than 4 BP shocks. Compared to ST1 therapy alone, ST1+ST3 lowered the atrial DFT moderately (0.51 ± 0.46 versus 0.95 ± 0.32 J; p = 0.036) while a three-stage therapy, ST1+ST2+ST3, dramatically lowered the atrial DFT (0.19 ± 0.12 J versus 0.95 ± 0.32 J for ST1 alone, p=0.0012). Finally, the three-stage therapy ST1+ST2+ST3 was equally effective for all studied vectors. Conclusions Three-stage electrotherapy significantly reduces the AF defibrillation threshold and opens the door to low energy atrial defibrillation at or below the pain threshold. PMID:21980076
Cold Shock as a Screen for Genes Involved in Cold Acclimatization in Neurospora crassa
Watters, Michael K.; Manzanilla, Victor; Howell, Holly; Mehreteab, Alexander; Rose, Erik; Walters, Nicole; Seitz, Nicholas; Nava, Jacob; Kekelik, Sienna; Knuth, Laura; Scivinsky, Brianna
2018-01-01
When subjected to rapid drops of temperature (cold shock), Neurospora responds with a temporary shift in its morphology. This report is the first to examine this response genetically. We report here the results of a screen of selected mutants from the Neurospora knockout library for alterations in their morphological response to cold shock. Three groups of knockouts were selected to be subject to this screen: genes previously suspected to be involved in hyphal development as well as knockouts resulting in morphological changes; transcription factors; and genes homologous to E. coli genes known to alter their expression in response to cold shock. A total of 344 knockout strains were subjected to cold shock. Of those, 118 strains were identified with altered responses. We report here the cold shock morphologies and GO categorizations of strains subjected to this screen. Of strains with knockouts in genes associated with hyphal growth or morphology, 33 of 131 tested (25%) showed an altered response to cold shock. Of strains with knockouts in transcription factor genes, 30 of 145 (20%) showed an altered response to cold shock. Of strains with knockouts in genes homologous to E. coli genes which display altered levels of transcription in response to cold shock, a total of 55 of 68 tested (81%) showed an altered cold shock response. This suggests that the response to cold shock in these two organisms is largely shared in common. PMID:29563189
NASA Astrophysics Data System (ADS)
Archer, R. D.; Milton, B. E.
Techniques and facilities are examined, taking into account compressor cascades research using a helium-driven shock tube, the suppression of shocks on transonic airfoils, methods of isentropically achieving superpressures, optimized performance of arc heated shock tubes, pressure losses in free piston driven shock tubes, large shock tubes designed for nuclear survivability testing, and power-series solutions of the gasdynamic equations for Mach reflection of a planar shock by a wedge. Other subjects considered are related to aerodynamics in shock tubes, shocks in dusty gases, chemical kinetics, and lasers, plasmas, and optical methods. Attention is given to vapor explosions and the blast at Mt. St. Helens, combustion reaction mechanisms from ignition delay times, the development and use of free piston wind tunnels, models for nonequilibrium flows in real shock tubes, air blast measuring techniques, finite difference computations of flow about supersonic lifting bodies, and the investigation of ionization relaxation in shock tubes.
Experimental study on a heavy-gas cylinder accelerated by cylindrical converging shock waves
NASA Astrophysics Data System (ADS)
Si, T.; Zhai, Z.; Luo, X.; Yang, J.
2014-01-01
The Richtmyer-Meshkov instability behavior of a heavy-gas cylinder accelerated by a cylindrical converging shock wave is studied experimentally. A curved wall profile is well-designed based on the shock dynamics theory [Phys. Fluids, 22: 041701 (2010)] with an incident planar shock Mach number of 1.2 and a converging angle of in a mm square cross-section shock tube. The cylinder mixed with the glycol droplets flows vertically through the test section and is illuminated horizontally by a laser sheet. The images obtained only one per run by an ICCD (intensified charge coupled device) combined with a pulsed Nd:YAG laser are first presented and the complete evolution process of the cylinder is then captured in a single test shot by a high-speed video camera combined with a high-power continuous laser. In this way, both the developments of the first counter-rotating vortex pair and the second counter-rotating vortex pair with an opposite rotating direction from the first one are observed. The experimental results indicate that the phenomena induced by the converging shock wave and the reflected shock formed from the center of convergence are distinct from those found in the planar shock case.
Computational considerations for the simulation of shock-induced sound
NASA Technical Reports Server (NTRS)
Casper, Jay; Carpenter, Mark H.
1996-01-01
The numerical study of aeroacoustic problems places stringent demands on the choice of a computational algorithm, because it requires the ability to propagate disturbances of small amplitude and short wavelength. The demands are particularly high when shock waves are involved, because the chosen algorithm must also resolve discontinuities in the solution. The extent to which a high-order-accurate shock-capturing method can be relied upon for aeroacoustics applications that involve the interaction of shocks with other waves has not been previously quantified. Such a study is initiated in this work. A fourth-order-accurate essentially nonoscillatory (ENO) method is used to investigate the solutions of inviscid, compressible flows with shocks in a quasi-one-dimensional nozzle flow. The design order of accuracy is achieved in the smooth regions of a steady-state test case. However, in an unsteady test case, only first-order results are obtained downstream of a sound-shock interaction. The difficulty in obtaining a globally high-order-accurate solution in such a case with a shock-capturing method is demonstrated through the study of a simplified, linear model problem. Some of the difficult issues and ramifications for aeroacoustics simulations of flows with shocks that are raised by these results are discussed.
Characterization of laser-driven shock waves in solids using a fiber optic pressure probe
Cranch, Geoffrey A.; Lunsford, Robert; Grun, Jacob; ...
2013-11-08
Measurement of laser-driven shock wave pressure in solid blocks of polymethyl methacrylate is demonstrated using fiber optic pressure probes. Three probes based on a fiber Fabry–Perot, fiber Bragg grating, and interferometric fiber tip sensor are tested and compared. Shock waves are generated using a high-power laser focused onto a thin foil target placed in close proximity to the test blocks. The fiber Fabry–Perot sensor appears capable of resolving the shock front with a rise time of 91 ns. As a result, the peak pressure is estimated, using a separate shadowgraphy measurement, to be 3.4 GPa.
Shock melting and vaporization of metals.
NASA Technical Reports Server (NTRS)
Ahrens, T. J.
1972-01-01
The effect of initial porosity on shock induction of melting and vaporization is investigated for Ba, Sr, Li, Fe, Al, U, and Th. For the less compressible of these metals, it is found that for a given strong shock-generation system (explosive in contact, or flyer-plate impact) an optimum initial specific volume exists such that the total entropy production, and hence the amount of metal liquid or vapor, is a maximum. Initial volumes from 1.4 to 2.0 times crystal volumes, depending on the metal sample and shock-inducing system, will result in optimum post-shock entropies.
Thermal Shock Resistance of Si3N4/h -BN Composites Prepared via Catalytic Reaction-Bonding Route
NASA Astrophysics Data System (ADS)
Yang, Wanli; Peng, Zhigang; Dai, Lina; Shi, Zhongqi; Jin, Zhihao
2017-09-01
Si3N4/h-BN ceramic matrix composites were prepared via a catalytic reaction-bonding route by using ZrO2 as nitridation catalyst, and the water quenching (fast cooling) and molten aluminum quenching tests (fast heating) were carried out to evaluate the thermal shock resistance of the composites. The results showed that the thermal shock resistance was improved obviously with the increase in h-BN content, and the critical thermal shock temperature difference (Δ T c) reaches as high as 780 °C when the h-BN content was 30 wt.%. The improvement of thermal shock resistance of the composites was mainly due to the crack tending to quasi static propagating at weak bonding interface between Si3N4 and h-BN with the increase in h-BN content. For the molten aluminum quenching test, the residual strength showed no obvious decrease compared with water quenching test, which could be caused by the mild stress condition on the surface. In addition, a calculated parameter, volumetric crack density ( N f), was presented to quantitative evaluating the thermal shock resistance of the composites in contrast to the conventional R parameter.
Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas
2016-01-01
The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent. PMID:27603017
Kuriakose, Matthew; Skotak, Maciej; Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas
2016-01-01
The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent.
On the formation of Friedlander waves in a compressed-gas-driven shock tube
Tasissa, Abiy F.; Hautefeuille, Martin; Fitek, John H.; Radovitzky, Raúl A.
2016-01-01
Compressed-gas-driven shock tubes have become popular as a laboratory-scale replacement for field blast tests. The well-known initial structure of the Riemann problem eventually evolves into a shock structure thought to resemble a Friedlander wave, although this remains to be demonstrated theoretically. In this paper, we develop a semi-analytical model to predict the key characteristics of pseudo blast waves forming in a shock tube: location where the wave first forms, peak over-pressure, decay time and impulse. The approach is based on combining the solutions of the two different types of wave interactions that arise in the shock tube after the family of rarefaction waves in the Riemann solution interacts with the closed end of the tube. The results of the analytical model are verified against numerical simulations obtained with a finite volume method. The model furnishes a rational approach to relate shock tube parameters to desired blast wave characteristics, and thus constitutes a useful tool for the design of shock tubes for blast testing. PMID:27118888
Experimental Study of Hypersonic Wing/Fin Root Heating at Mach 8
2012-12-27
at 700%, 200% and 60% for 45?, 55? and 65? of sweep respectively. 15. SUBJECT TERMS Hypersonics, Hypersonic Test Facilities , Shock Tunnels , wing...consisting of a flat plate and a cylinder with an adjustable sweep angle. The tests were conducted in the T4 shock tunnel at conditions simulating Mach 8...root experiment began with an assessment of design considerations for the experiment and the parameters of the T4 shock tunnel facilities. A CAD
The Shock and Vibration Bulletin. Part 2. Environmental Testing, Shock Testing, Shock Analysis
1981-05-01
held at the Holiday 17 Inn at the Embarcadero, San Diego, CA on October 21-23, 1980. The cop), Naval Ocean Systems Center, San Diego CA was the Host...Hellqvist, Kockuma AB, Malmo Sweden A 9OMPUTER-PONTROLLED MEASURING SYSTEM HAVING 128 ANALOG MEASURING CHANNELS *$1D FACILITIES 1POR NIGNALANALYSIS...SANDWICH STRUCTURES M. L Sonu, University of Daytom Research Institute, Dayton, OH PNEUMATIC VIBRATION CONTROL USING ACTIVE FORCE GENERATORS S. Banker and R
Guide for Oxygen Component Qualification Tests
NASA Technical Reports Server (NTRS)
Bamford, Larry J.; Rucker, Michelle A.; Dobbin, Douglas
1996-01-01
Although oxygen is a chemically stable element, it is not shock sensitive, will not decompose, and is not flammable. Oxygen use therefore carries a risk that should never be overlooked, because oxygen is a strong oxidizer that vigorously supports combustion. Safety is of primary concern in oxygen service. To promote safety in oxygen systems, the flammability of materials used in them should be analyzed. At the NASA White Sands Test Facility (WSTF), we have performed configurational tests of components specifically engineered for oxygen service. These tests follow a detailed WSTF oxygen hazards analysis. The stated objective of the tests was to provide performance test data for customer use as part of a qualification plan for a particular component in a particular configuration, and under worst-case conditions. In this document - the 'Guide for Oxygen Component Qualification Tests' - we outline recommended test systems, and cleaning, handling, and test procedures that address worst-case conditions. It should be noted that test results apply specifically to: manual valves, remotely operated valves, check valves, relief valves, filters, regulators, flexible hoses, and intensifiers. Component systems are not covered.
Evidence for Coordination and Redox Changes of Iron in Shocked Feldspar from Synchrotron MicroXANES
NASA Technical Reports Server (NTRS)
Delaney, J. S.; Dyar, M. D.; Hoerz, F.; Johnson, J. R.
2003-01-01
Shock modification of feldspar has been documented and experimentally reproduced in many studies since the recognition of maskelynite in Shergotty. Experimentally shocked feldspar samples have been well studied using chemical and crystallographic techniques. The crystallographic, site-specific characterization of major and minor elements is less well documented. We present early x-ray absorption (XAS) spectral data for a suite of albitite samples that were experimentally shocked at pressures between 17 and 50 Gpa.
NASA Technical Reports Server (NTRS)
Lucy, M. H.; Buehrle, R. D.; Woolley, J. P.
1996-01-01
Functional shock, safety, overall system costs, and emergence of new technologies, have raised concerns regarding continued use of pyrotechnics on spacecraft. NASA Headquarters-Office of Chief Engineer requested Langley Research Center (LaRC) study pyrotechnic alternatives using non-explosive actuators (NEA's), and LARC participated with Lockheed Martin Missile and Space Co. (LMMSC)-Sunnyvale, CA in objectively evaluating applicability of some NEA mechanisms to reduce small spacecraft and booster separation event shock. Comparative tests were conducted on a structural simulator using five different separation nut mechanisms, consisting of three pyrotechnics from OEA-Aerospace and Hi-Shear Technology and two NEA's from G&H Technology and Lockheed Martin Astronautics (LMA)-Denver, CO. Multiple actuations were performed with preloads up to 7000 pounds, 7000 being the comparison standard. All devices except LMA's NEA rotary flywheel-nut concept were available units with no added provisions to attenuate shock. Accelerometer measurements were recorded, reviewed, processed into Shock Response Spectra (SRS), and comparisons performed. For the standard preload, pyrotechnics produced the most severe and the G&H NEA the least severe functional shock levels. Comparing all results, the LMA concept produced the lowest levels, with preload limited to approximately 4200 pounds. Testing this concept over a range of 3000 to 4200 pounds indicated no effect of preload on shock response levels. This report presents data from these tests and the comparative results.
NASA Technical Reports Server (NTRS)
Glass, Christopher E.
1989-01-01
The effects of cylindrical leading edge sweep on surface pressure and heat transfer rate for swept shock wave interference were investigated. Experimental tests were conducted in the Calspan 48-inch Hypersonic Shock Tunnel at a nominal Mach number of 8, nominal unit Reynolds number of 1.5 x 10 to the 6th power per foot, leading edge and incident shock generator sweep angles of 0, 15, and 30 deg, and incident shock generator angle-of-attack fixed at 12.5 deg. Detailed surface pressure and heat transfer rate on the cylindircal leading edge of a swept shock wave interference model were measured at the region of the maximum surface pressure and heat transfer rate. Results show that pressure and heat transfer rate on the cylindrical leading edge of the shock wave interference model were reduced as the sweep was increased over the range of tested parameters. Peak surface pressure and heat transfer rate on the cylinder were about 10 and 30 times the undisturbed flow stagnation point value, respectively, for the 0 deg sweep test. A comparison of the 15 and 30 deg swept results with the 0 deg swept results showed that peak pressure was reduced about 13 percent and 44 percent, respectively, and peak heat transfer rate was reduced about 7 percent and 27 percent, respectively.
Okamura, Hideo; Desimone, Christopher V; Killu, Ammar M; Gilles, Emily J; Tri, Jason; Asirvatham, Roshini; Ladewig, Dejae J; Suddendorf, Scott H; Powers, Joanne M; Wood-Wentz, Christina M; Gray, Peter D; Raymond, Douglas M; Savage, Shelley J; Savage, Walter T; Bruce, Charles J; Asirvatham, Samuel J; Friedman, Paul A
2017-02-01
Automated external defibrillators can provide life-saving therapies to treat ventricular fibrillation. We developed a prototype unit that can deliver a unique shock waveform produced by four independent capacitors that is delivered through two shock vectors, with the rationale of providing more robust shock pathways during emergent defibrillation. We describe the initial testing and feasibility of this unique defibrillation unit, features of which may enable downsizing of current defibrillator devices. We tested our defibrillation unit in four large animal models (two canine and two swine) under general anesthesia. Experimental defibrillation thresholds (DFT) were obtained by delivery of a unique waveform shock pulse via a dual-vector pathway with four defibrillation pads (placed across the chest). DFTs were measured and compared with those of a commercially available biphasic defibrillator (Zoll M series, Zoll Medical, Chelmsford, MA, USA) tested in two different vectors. Shocks were delivered after 10 seconds of stable ventricular fibrillation and the output characteristics and shock outcome recorded. Each defibrillation series used a step-down to failure protocol to define the defibrillation threshold. A total of 96 shocks were delivered during ventricular fibrillation in four large animals. In comparison to the Zoll M series, which delivered a single-vector, biphasic shock, the energy required for successful defibrillation using the unique dual-vector biphasic waveform did not differ significantly (P = 0.65). Our early findings support the feasibility of a unique external defibrillation unit using a dual-vector biphasic waveform approach. This warrants further study to leverage this unique concept and work toward a miniaturized, portable shock delivery system. © 2016 Wiley Periodicals, Inc.
Compaction by impact of unconsolidated lunar fines
NASA Technical Reports Server (NTRS)
Ahrens, T. J.
1975-01-01
New Hugoniot and release adiabat data for 1.8 g/cu cm lunar fines in the approximately 2 to 70 kbar range demonstrate that upon shock compression intrinsic crystal density (approximately 3.1 g/cu cm) is achieved under shock stress of 15 to 20 kbar. Release adiabat determinations indicate that measurable irreversible compaction occurs upon achieving shock pressures above approximately 4 kbar. For shocks in the approximately 7 to 15 kbar range, the inferred post-shock specific volumes observed decrease nearly linearly with increasing peak shock pressures. Upon shocking to approximately 15 kbar the post-shock density is approximately that of the intrinsic minerals. If the present data are taken to be representative of the response to impact of unconsolidated regolith material on the moon, it is inferred that the formation of appreciable quantities of soil breccia can be associated with the impact of meteoroids or ejecta at speeds as low as approximately 1 km/sec.
Astrophysical Connections to Collapsing Radiative Shock Experiments
NASA Astrophysics Data System (ADS)
Reighard, A. B.; Hansen, J. F.; Bouquet, S.; Koenig, M.
2005-10-01
Radiative shocks occur in many high-energy density explosions, but prove difficult to create in laboratory experiments or to fully model with astrophysical codes. Low astrophysical densities combined with powerful explosions provide ideal conditions for producing radiative shocks. Here we describe an experiment significant to astrophysical shocks, which produces a driven, planar radiative shock in low density Xe gas. Including radiation effects precludes scaling experiments directly to astrophysical conditions via Euler equations, as can be done in purely hydrodynamic experiments. We use optical depth considerations to make comparisons between the driven shock in xenon and specific astrophysical phenomena. This planar shock may be subject to thin shell instabilities similar to those affecting the evolution of astrophysical shocks. This research was sponsored by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Research Grants DE-FG52-03NA00064, DE-FG53-2005-NA26014, and other grants and contracts.
Heat-shock-specific phosphorylation and transcriptional activity of RNA polymerase II.
Egyházi, E; Ossoinak, A; Lee, J M; Greenleaf, A L; Mäkelä, T P; Pigon, A
1998-07-10
The carboxyl-terminal domain (CTD) of the largest RNA polymerase II (pol II) subunit is a target for extensive phosphorylation in vivo. Using in vitro kinase assays it was found that several different protein kinases can phosphorylate the CTD including the transcription factor IIH-associated CDK-activating CDK7 kinase (R. Roy, J. P. Adamczewski, T. Seroz, W. Vermeulen, J. P. Tassan, L. Schaeffer, E. A. Nigg, J. H. Hoeijmakers, and J. M. Egly, 1994, Cell 79, 1093-1101). Here we report the colocalization of CDK7 and the phosphorylated form of CTD (phosphoCTD) to actively transcribing genes in intact salivary gland cells of Chironomus tentans. Following a heat-shock treatment, both CDK7 and pol II staining disappear from non-heat-shock genes concomitantly with the abolishment of transcriptional activity of these genes. In contrast, the actively transcribing heat-shock genes, manifested as chromosomal puff 5C on chromosome IV (IV-5C), stain intensely for phosphoCTD, but are devoid of CDK7. Furthermore, the staining of puff IV-5C with anti-PCTD antibodies was not detectably influenced by the TFIIH kinase and transcription inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB). Following heat-shock treatment, the transcription of non-heat-shock genes was completely eliminated, while newly formed heat-shock gene transcripts emerged in a DRB-resistant manner. Thus, heat shock in these cells induces a rapid clearance of CDK7 from the non-heat-shock genes, indicating a lack of involvement of CDK7 in the induction and function of the heat-induced genes. The results taken together suggest the existence of heat-shock-specific CTD phosphorylation in living cells. This phosphorylation is resistant to DRB treatment, suggesting that not only phosphorylation but also transcription of heat-shock genes is DRB resistant and that CDK7 in heat shock cells is not associated with TFIIH.
Post-Transcriptional Regulation of the Trypanosome Heat Shock Response by a Zinc Finger Protein
Droll, Dorothea; Minia, Igor; Fadda, Abeer; Singh, Aditi; Stewart, Mhairi; Queiroz, Rafael; Clayton, Christine
2013-01-01
In most organisms, the heat-shock response involves increased heat-shock gene transcription. In Kinetoplastid protists, however, virtually all control of gene expression is post-transcriptional. Correspondingly, Trypanosoma brucei heat-shock protein 70 (HSP70) synthesis after heat shock depends on regulation of HSP70 mRNA turnover. We here show that the T. brucei CCCH zinc finger protein ZC3H11 is a post-transcriptional regulator of trypanosome chaperone mRNAs. ZC3H11 is essential in bloodstream-form trypanosomes and for recovery of insect-form trypanosomes from heat shock. ZC3H11 binds to mRNAs encoding heat-shock protein homologues, with clear specificity for the subset of trypanosome chaperones that is required for protein refolding. In procyclic forms, ZC3H11 was required for stabilisation of target chaperone-encoding mRNAs after heat shock, and the HSP70 mRNA was also decreased upon ZC3H11 depletion in bloodstream forms. Many mRNAs bound to ZC3H11 have a consensus AUU repeat motif in the 3′-untranslated region. ZC3H11 bound preferentially to AUU repeats in vitro, and ZC3H11 regulation of HSP70 mRNA in bloodstream forms depended on its AUU repeat region. Tethering of ZC3H11 to a reporter mRNA increased reporter expression, showing that it is capable of actively stabilizing an mRNA. These results show that expression of trypanosome heat-shock genes is controlled by a specific RNA-protein interaction. They also show that heat-shock-induced chaperone expression in procyclic trypanosome enhances parasite survival at elevated temperatures. PMID:23592996
Isolator fragmentation and explosive initiation tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickson, Peter; Rae, Philip John; Foley, Timothy J.
2016-09-19
Three tests were conducted to evaluate the effects of firing an isolator in proximity to a barrier or explosive charge. The tests with explosive were conducted without a barrier, on the basis that since any barrier will reduce the shock transmitted to the explosive, bare explosive represents the worst-case from an inadvertent initiation perspective. No reaction was observed. The shock caused by the impact of a representative plastic material on both bare and cased PBX 9501 is calculated in the worst-case, 1-D limit, and the known shock response of the HE is used to estimate minimum run-to-detonation lengths. The estimatesmore » demonstrate that even 1-D impacts would not be of concern and that, accordingly, the divergent shocks due to isolator fragment impact are of no concern as initiating stimuli.« less
Isolator fragmentation and explosive initiation tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickson, Peter; Rae, Philip John; Foley, Timothy J.
2015-09-30
Three tests were conducted to evaluate the effects of firing an isolator in proximity to a barrier or explosive charge. The tests with explosive were conducted without barrier, on the basis that since any barrier will reduce the shock transmitted to the explosive, bare explosive represents the worst-case from an inadvertent initiation perspective. No reaction was observed. The shock caused by the impact of a representative plastic material on both bare and cased PBX9501 is calculated in the worst-case, 1-D limit, and the known shock response of the HE is used to estimate minimum run-to-detonation lengths. The estimates demonstrate thatmore » even 1-D impacts would not be of concern and that, accordingly, the divergent shocks due to isolator fragment impact are of no concern as initiating stimuli.« less
The Shock and Vibration Digest. Volume 16, Number 4
1984-04-01
The 2nd International Modal Analysis Conference, which was held in Orlando, Florida, this past February, was highly successful in all respects. A...announcement of the formation of a new technical society dedicated to advancing the modal analysis technology, the International Society for Modal Testing and... Analysis . This new society is I unique in two respects. First, it is dedicated to a specific branch of a specialized technical field..Second, it is a
Neutron irradiation effects on plasma facing materials
NASA Astrophysics Data System (ADS)
Barabash, V.; Federici, G.; Rödig, M.; Snead, L. L.; Wu, C. H.
2000-12-01
This paper reviews the effects of neutron irradiation on thermal and mechanical properties and bulk tritium retention of armour materials (beryllium, tungsten and carbon). For each material, the main properties affected by neutron irradiation are described and the specific tests of neutron irradiated armour materials under thermal shock and disruption conditions are summarized. Based on current knowledge, the expected thermal and structural performance of neutron irradiated armour materials in the ITER plasma facing components are analysed.
NASA Technical Reports Server (NTRS)
Green, C.
1971-01-01
Guidelines of the methods and applications used in vibration technology at the MSFC are presented. The purpose of the guidelines is to provide a practical tool for coordination and understanding between industry and government groups concerned with vibration of systems and equipments. Topics covered include measuring, reducing, analyzing, and methods for obtaining simulated environments and formulating vibration specifications. Methods for vibration and shock testing, theoretical aspects of data processing, vibration response analysis, and techniques of designing for vibration are also presented.
Reece, Stephen T; Stride, Nicole; Ovendale, Pamela; Reed, Steven G; Campos-Neto, Antonio
2005-06-01
Tuberculin shock due to inoculation of Mycobacterium tuberculosis antigens in patients with tuberculosis is a serious syndrome originally described over 100 years ago by Robert Koch. Here, we present experimental evidence that a single M. tuberculosis recombinant protein, CFP-10, triggers this syndrome. Intradermal inoculation of CFP-10 elicits in M. tuberculosis-infected mice high levels of serum tumor necrosis factor alpha and causes tuberculin shock in infected guinea pigs characterized by hypothermia and death within 6 to 48 h after the antigen inoculation. Autopsies of these animals revealed intense polycythemia and hemorrhagic patches in the lung parenchyma, a pathological observation consistent with tuberculin shock. These results point to the possible occurrence of tuberculin shock in sensitive individuals inoculated with highly purified M. tuberculosis recombinant proteins as vaccine candidates or skin test reagents.
Role of the calcaneal heel pad and polymeric shock absorbers in attenuation of heel strike impact.
Noe, D A; Voto, S J; Hoffmann, M S; Askew, M J; Gradisar, I A
1993-01-01
The capacity of the calcaneal heel pad, with and without augmentation by a polymeric shock absorbing material (Sorbothane 0050), to attenuate heel strike impulses has been studied using five fresh human cadaveric lower leg specimens. The specimens, instrumented with an accelerometer, were suspended and impacted with a hammer; a steel rod was similarly suspended and impacted. The calcaneal heel pad attenuated the peak accelerations by 80%. Attenuations of up to 93% were achieved by the shock absorbing material when tested against the steel rod; however, when tested in series with the calcaneal heel pad, the reduction in peak acceleration due to the shock absorbing material dropped to 18%. Any evaluation of the effectiveness of shock absorbing shoe materials must take into account their mechanical interaction with the body.
Kinetic theory and turbulent discontinuities. [shock tube flow
NASA Technical Reports Server (NTRS)
Johnson, J. A., III; I, L.; Li, Y.; Ramaian, R.; Santigo, J. P.
1981-01-01
Shock tube discontinuities were used to test and extend a kinetic theory of turbulence. In shock wave and contact surface fluctuations, coherent phenomena were found which provide new support for the microscopic nonempirical approach to turbulent systems, especially those with boundary layer-like instabilities.
Hugoniot equation of state of rock materials under shock compression
Braithwaite, C. H.; Zhao, J.
2017-01-01
Two sets of shock compression tests (i.e. conventional and reverse impact) were conducted to determine the shock response of two rock materials using a plate impact facility. Embedded manganin stress gauges were used for the measurements of longitudinal stress and shock velocity. Photon Doppler velocimetry was used to capture the free surface velocity of the target. Experimental data were obtained on a fine-grained marble and a coarse-grained gabbro over a shock pressure range of approximately 1.5–12 GPa. Gabbro exhibited a linear Hugoniot equation of state (EOS) in the pressure–particle velocity (P–up) plane, while for marble a nonlinear response was observed. The EOS relations between shock velocity (US) and particle velocity (up) are linearly fitted as US = 2.62 + 3.319up and US = 5.4 85 + 1.038up for marble and gabbro, respectively. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956506
Experimental Investigation of Shock Initiation in Mixtures of Manganese and Sulfur
NASA Astrophysics Data System (ADS)
Jetté, F. X.; Goroshin, S.; Higgins, A. J.
2009-12-01
Equimolar mixtures of manganese powder and sulfur at different starting densities were tested in two different types of steel recovery capsules in order to study the shock initiation phenomenon in Self-Propagating High-Temperature Synthesis (SHS) mixtures. Two different sizes of Mn particles were used for these experiments, <10 μm and -325 mesh (<44 μm). This mixture was selected due to the large exothermic heat release of the manganese-sulfur reaction (214 kJ/mol), which causes the reaction to be self-sustaining once initiated. The test samples were placed in planar recovery capsules and a strong shock was delivered via the detonation of a charge of amine-sensitized nitromethane. Various shock strengths were achieved by placing different thicknesses of PMMA attenuator discs between the explosive charge and the capsule. The results confirmed that shock-induced reactions can be produced in highly non-porous mixtures. It was also found that shock interactions with the side walls of the recovery capsule can play a significant role in the initiation.
Technology development and demonstration of a low thrust resistojet thruster
NASA Technical Reports Server (NTRS)
Pfeifer, G. R.
1972-01-01
Three thrusters were fabricated to definitized thruster drawings using new rhenium vapor deposition technology. Two of the thrusters were operated using ammonia as propellant and one was operated using hydrogen propellant for performance determination. All demonstrated consistent operational specific impulse performance while demonstrating thermal performance better than the development units from which they evolved. Two of the thrusters were subjected to environmental structural testing including vibration, acceleration and shock loading to specifications. Both of the thrusters subjected to the environmental tests passed all required tests. The third, spare, thruster was introduced into the life test portion of the program. Two thrusters were then subjected to a life cycling test program under typical spacecraft operating power levels. During the life test sequence, the hydrogen thruster accrued 720 operating life test cycles, more than 370 on-off cycles and 365 hours of powered up time. The ammonia accrued approximately 380 on-off cycles and 392.2 on time hours of operation during the 720 cycling hour test. Both thrusters completed the scheduled operational life test in reasonably good condition, structurally integral and capable of indefinite further operation.
Bangalore, Sripal; Gupta, Navdeep; Guo, Yu; Lala, Anuradha; Balsam, Leora; Roswell, Robert O; Reyentovich, Alex; Hochman, Judith S
2015-06-01
In the SHOCK trial, an invasive strategy of early revascularization was associated with a significant mortality benefit at 6 months when compared with initial stabilization in patients with cardiogenic shock complicating acute myocardial infarction. Our objectives were to evaluate the data on real-world practice and outcomes of invasive vs conservative management in patients with cardiogenic shock. We analyzed data from the Nationwide Inpatient Sample from 2002 to 2011 with primary discharge diagnosis of acute myocardial infarction and secondary diagnosis of cardiogenic shock. Propensity score matching was used to assemble a cohort of patients managed invasively (with cardiac catheterization, percutaneous coronary intervention, or coronary artery bypass graft surgery) vs conservatively with similar baseline characteristics. The primary outcome was in-hospital mortality. We identified 60,833 patients with cardiogenic shock, of which 20,644 patients (10,322 in each group) with similar propensity scores, including 11,004 elderly patients (≥75 years), were in the final analysis. Patients who underwent invasive management had 59% lower odds of in-hospital mortality (37.7% vs 59.7%; odds ratio [OR] 0.41; 95% confidence interval [CI], 0.39-0.43; P < .0001) when compared with those managed conservatively. This lower mortality was consistently seen across all tested subgroups; specifically in the elderly (≥75 years) (44.0% vs 63.6%; OR 0.45; 95% CI, 0.42-0.49; P < .0001) and those younger than 75 years (30.6% vs 55.1%; OR 0.36; 95% CI, 0.33-0.39; P < .0001), although the magnitude of risk reduction differed (Pinteraction < .0001). In this largest cohort of patients with cardiogenic shock complicating acute myocardial infarction, patients managed invasively had significantly lower mortality when compared with those managed conservatively, even in the elderly. Our results emphasize the need for aggressive management in this high-risk subgroup. Copyright © 2015 Elsevier Inc. All rights reserved.
Design of a pulse-type strain gauge balance for a long-test-duration hypersonic shock tunnel
NASA Astrophysics Data System (ADS)
Wang, Y.; Liu, Y.; Jiang, Z.
2016-11-01
When the measurement of aerodynamic forces is conducted in a hypersonic shock tunnel, the inertial forces lead to low-frequency vibrations of the model, and its motion cannot be addressed through digital filtering because a sufficient number of cycles cannot be obtained during a tunnel run. This finding implies restrictions on the model size and mass as the natural frequencies are inversely proportional to the length scale of the model. Therefore, the force measurement still has many problems, particularly for large and heavy models. Different structures of a strain gauge balance (SGB) are proposed and designed, and the measurement element is further optimized to overcome the difficulties encountered during the measurement of aerodynamic forces in a shock tunnel. The motivation for this study is to assess the structural performance of the SGB used in a long-test-duration JF12 hypersonic shock tunnel, which has more than 100 ms of test time. Force tests were conducted for a large-scale cone with a 10^° semivertex angle and a length of 0.75 m in the JF12 long-test-duration shock tunnel. The finite element method was used for the analysis of the vibrational characteristics of the Model-Balance-Sting System (MBSS) to ensure a sufficient number of cycles, particularly for the axial force signal during a shock tunnel run. The higher-stiffness SGB used in the test shows good performance, wherein the frequency of the MBSS increases because of the stiff construction of the balance. The experimental results are compared with the data obtained in another wind tunnel and exhibit good agreement at M = 7 and α =5°.
Observations and simulations of specularly reflected He++ at Earth's quasiperpendicular bow shock
NASA Astrophysics Data System (ADS)
Broll, J. M.; Fuselier, S. A.; Trattner, K. J.; Anderson, B. J.; Burch, J. L.; Giles, B. L.
2016-12-01
Specular reflection of protons at Earth's quasiperpendicular bow shock is an important process for supercritical shock dissipation. Previous studies have found evidence of He++ specular reflection from reduced particle distributions downstream from the shock, but confirmation of the process for heavier ions in the shock foot was not possible due to time resolution constraints. We present He++ distributions, observed by MMS in a quasiperpendicular bow shock crossing, that are consistent with specularly reflected He++. We also investigate the He++ dynamics with test-particle simulations in a simulated shock based on this crossing and we conduct wave analysis to determine what processes lead to separate gyrotropization timescales for the transmitted and reflected populations.
Intification and modelling of flight characteristics for self-build shock flyer type UAV
NASA Astrophysics Data System (ADS)
Rashid., Z. A.; Dardin, A. S. F. Syed.; Azid, A. A.; Ahmad, K. A.
2018-02-01
The development of an autonomous Unmanned Aerial Vehicle (UAV) requires a fundamentals studies of the UAV's flight characteristic. The aim of this study is to identify and model the flight characteristic of a conventional fixed-wing type UAV. Subsequence to this, the mode of flight of the UAV can be investigated. One technique to identify the characteristic of a UAV is a flight test where it required specific maneuvering to be executed while measuring the attitude sensor. In this study, a simple shock flyer type UAV was used as the aircraft. The result shows that the modeled flight characteristic has a significant relation with actual values but the fitting value is rather small. It is suggested that the future study is conducted with an improvement of the physical UAV, data filtering and better system identification methods.
Biomechanics of stair walking and jumping.
Loy, D J; Voloshin, A S
1991-01-01
Physical activities such as stair walking and jumping result in increased dynamic loading on the human musculoskeletal system. Use of light weight, externally attached accelerometers allows for in-vivo monitoring of the shock waves invading the human musculoskeletal system during those activities. Shock waves were measured in four subjects performing stair walking up and down, jumping in place and jumping off a fixed elevation. The results obtained show that walking down a staircase induced shock waves with amplitude of 130% of that observed in walking up stairs and 250% of the shock waves experienced in level gait. The jumping test revealed levels of the shock waves nearly eight times higher than that in level walking. It was also shown that the shock waves invading the human musculoskeletal system may be generated not only by the heel strike, but also by the metatarsal strike. To moderate the risk of degenerative joint disorders four types of viscoelastic insoles were utilized to reduce the impact generated shock waves. The insoles investigated were able to reduce the amplitude of the shock wave by between 9% and 41% depending on the insole type and particular physical activity. The insoles were more effective in the reduction of the heel strike impacts than in the reduction of the metatarsal strike impacts. In all instances, the shock attenuation capacities of the insoles tested were greater in the jumping trials than in the stair walking studies. The insoles were ranked in three groups on the basis of their shock absorbing capacity.
Small-scale dynamic confinement gap test
NASA Astrophysics Data System (ADS)
Cook, Malcolm
2011-06-01
Gap tests are routinely used to ascertain the shock sensitiveness of new explosive formulations. The tests are popular since that are easy and relatively cheap to perform. However, with modern insensitive formulations with big critical diameters, large test samples are required. This can make testing and screening of new formulations expensive since large quantities of test material are required. Thus a new test that uses significantly smaller sample quantities would be very beneficial. In this paper we describe a new small-scale test that has been designed using our CHARM ignition and growth routine in the DYNA2D hydrocode. The new test is a modified gap test and uses detonating nitromethane to provide dynamic confinement (instead of a thick metal case) whilst exposing the sample to a long duration shock wave. The long duration shock wave allows less reactive materials that are below their critical diameter, more time to react. We present details on the modelling of the test together with some preliminary experiments to demonstrate the potential of the new test method.
Gas density field imaging in shock dominated flows using planar laser scattering
NASA Astrophysics Data System (ADS)
Pickles, Joshua D.; Mettu, Balachandra R.; Subbareddy, Pramod K.; Narayanaswamy, Venkateswaran
2018-07-01
Planar laser scattering (PLS) imaging of ice particulates present in a supersonic stream is demonstrated to measure 2D gas density fields of shock dominated flows in low enthalpy test facilities. The technique involves mapping the PLS signal to gas density using a calibration curve that accounts for the seed particulate size distribution change across the shock wave. The PLS technique is demonstrated in a shock boundary layer interaction generated by a sharp fin placed on a cylindrical surface in Mach 2.5 flow. The shock structure generated in this configuration has complicating effects from the finite height of the fin as well as the 3D relief offered by the cylindrical surface, which result in steep spatial gradients as well as a wide range of density jumps across different locations of the shock structure. Instantaneous and mean PLS fields delineated the inviscid, separation, and reattachment shock structures at various downstream locations. The inviscid shock assumed increasingly larger curvature with downstream distance; concomitantly, the separation shock wrapped around the cylinder and the separation shock foot missed the cylinder surface entirely. The density fields obtained from the PLS technique were evaluated using RANS simulations of the same flowfield. Comparisons between the computed and measured density fields showed excellent agreement over the entire measurable region that encompassed the flow processed by inviscid, separation, and reattachment shocks away from viscous regions. The PLS approach demonstrated in this work is also shown to be largely independent of the seed particulates, which lends the extension of this approach to a wide range of test facilities.
NASA Technical Reports Server (NTRS)
Tokars, Roger; Adamovsky, Grigory; Anderson, Robert; Hirt, Stefanie; Huang, John; Floyd, Bertram
2012-01-01
A 15- by 15-cm supersonic wind tunnel application of a one-dimensional laser beam scanning approach to shock sensing is presented. The measurement system design allowed easy switching between a focused beam and a laser sheet mode for comparison purposes. The scanning results were compared to images from the tunnel Schlieren imaging system. The tests revealed detectable changes in the laser beam in the presence of shocks. The results lend support to the use of the one-dimensional scanning beam approach for detecting and locating shocks in a flow, but some issues must be addressed in regards to noise and other limitations of the system.
1982-05-01
discovered during posttest inspection. The unit had experienced 2 As- designed damper, 0.92-1-.14 grams 8 tests for a total of 330 seconds of opera- 3...a Modeling DAMPED STRUCTURE DESIGN USING FINITE ELEMENT ANALYSIS M. F. Klunmner and M. L. Drake, University of Dayti-n Resatch Institute, Dayton, OH...IN DYNAMICS T. E. Simkins, U.S. Army Armament Research and Development Command, Watervliet, NY Stucturd Dynamics A PROCEDURE FOR DESIGNING OVERDAMPED
Time-dependent diffusive acceleration of test particles at shocks
NASA Astrophysics Data System (ADS)
Drury, L. O'C.
1991-07-01
A theoretical description is developed for the acceleration of test particles at a steady plane nonrelativistic shock. The mean and the variance of the acceleration-time distribution are expressed analytically for the condition under which the diffusion coefficient is arbitrarily dependent on position and momentum. The formula for an acceleration rate with arbitrary spatial variation in the diffusion coefficient developed by Drury (1987) is supplemented by a general theory of time dependence. An approximation scheme is developed by means of the analysis which permits the description of the spectral cutoff resulting from the finite shock age. The formulas developed in the analysis are also of interest for analyzing the observations of heliospheric shocks made from spacecraft.
Acceleration of low-energy ions at parallel shocks with a focused transport model
Zuo, Pingbing; Zhang, Ming; Rassoul, Hamid K.
2013-04-10
Here, we present a test particle simulation on the injection and acceleration of low-energy suprathermal particles by parallel shocks with a focused transport model. The focused transport equation contains all necessary physics of shock acceleration, but avoids the limitation of diffusive shock acceleration (DSA) that requires a small pitch angle anisotropy. This simulation verifies that the particles with speeds of a fraction of to a few times the shock speed can indeed be directly injected and accelerated into the DSA regime by parallel shocks. At higher energies starting from a few times the shock speed, the energy spectrum of acceleratedmore » particles is a power law with the same spectral index as the solution of standard DSA theory, although the particles are highly anisotropic in the upstream region. The intensity, however, is different from that predicted by DSA theory, indicating a different level of injection efficiency. It is found that the shock strength, the injection speed, and the intensity of an electric cross-shock potential (CSP) jump can affect the injection efficiency of the low-energy particles. A stronger shock has a higher injection efficiency. In addition, if the speed of injected particles is above a few times the shock speed, the produced power-law spectrum is consistent with the prediction of standard DSA theory in both its intensity and spectrum index with an injection efficiency of 1. CSP can increase the injection efficiency through direct particle reflection back upstream, but it has little effect on the energetic particle acceleration once the speed of injected particles is beyond a few times the shock speed. This test particle simulation proves that the focused transport theory is an extension of DSA theory with the capability of predicting the efficiency of particle injection.« less
Effect of prior heat shock on heat resistance of Listeria monocytogenes in meat.
Farber, J M; Brown, B E
1990-01-01
The effect of prior heat shock on the thermal resistance of Listeria monocytogenes in meat was investigated. A sausage mix inoculated with approximately 10(7) L. monocytogenes per g was initially subjected to a heat shock temperature of 48 degrees C before being heated at a final test temperature of 62 or 64 degrees C. Although cells heat shocked at 48 degrees C for 30 or 60 min did not show a significant increase in thermotolerance as compared with control cells (non-heat shocked), bacteria heat shocked for 120 min did, showing an average 2.4-fold increase in the D64 degrees C value. Heat-shocked cells shifted to 4 degrees C appeared to maintain their thermotolerance for at least 24 h after heat shock. PMID:2116757
Development of a shock wave adhesion test for composite bonds by pulsed laser and mechanical impacts
NASA Astrophysics Data System (ADS)
Ecault, R.; Boustie, M.; Touchard, F.; Arrigoni, M.; Berthe, L.
2014-05-01
Evaluating the bonding quality of composite material is becoming one of the main challenges faced by aeronautic industries. This work aims to the development of a technique using shock wave, which would enable to quantify the bonding mechanical quality. Laser shock experiments were carried out. This technique enables high tensile stress generation in the thickness of composite bonds. The resulting damage has been quantified using different methods such as confocal microscopy, ultrasound and cross section observation. The discrimination between a correct bond and a weak bond was possible thanks to these experiments. Nevertheless, laser sources are not well adapted for optimization of such a test because of often fixed settings. That is why mechanical impacts on bonded composites were also performed in this work. By changing the thickness of aluminum projectiles, the generated tensile stresses by the shock wave propagation were moved toward the composite/bond interface. The made observations prove that the technique optimization is possible. The key parameters for the development of a bonding test using shock waves have been identified.
Development of a shock wave adhesion test for composite bonds by laser pulsed and mechanical impacts
NASA Astrophysics Data System (ADS)
Ecault, Romain; Boustie, Michel; Touchard, Fabienne; Arrigoni, Michel; Berthe, Laurent; CNRS Collaboration
2013-06-01
Evaluating the bonding quality of composite material is becoming one of the main challenges faced by aeronautic industries. This work aims the development of a technique using shock wave, which would enable to quantify the bonding mechanical quality. Laser shock experiments were carried out. This technique enables high tensile stress generation in the thickness of composite bond without any mechanical contact. The resulting damage has been quantified using different method such as confocal microscopy, ultrasound and cross section observation. The discrimination between a correct bond and a weak bond was possible thanks to these experiments. Nevertheless, laser sources are not well adapted for optimization of such a test since it has often fixed parameters. That is why mechanical impacts bonded composites were also performed in this work. By changing the thickness of aluminum projectiles, the tensile stresses generated by the shock wave propagation were moved toward the composite/bond interface. The observations made prove that the optimization of the technique is possible. The key parameters for the development of a bonding test using shock wave have been identified.
Explosively driven air blast in a conical shock tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Joel B., E-mail: joel.b.stewart2.civ@mail.mil; Pecora, Collin, E-mail: collin.r.pecora.civ@mail.mil
2015-03-15
Explosively driven shock tubes present challenges in terms of safety concerns and expensive upkeep of test facilities but provide more realistic approximations to the air blast resulting from free-field detonations than those provided by gas-driven shock tubes. Likewise, the geometry of conical shock tubes can naturally approximate a sector cut from a spherically symmetric blast, leading to a better agreement with the blast profiles of free-field detonations when compared to those provided by shock tubes employing constant cross sections. The work presented in this article documents the design, fabrication, and testing of an explosively driven conical shock tube whose goalmore » was to closely replicate the blast profile seen from a larger, free-field detonation. By constraining the blast through a finite area, large blasts (which can add significant damage and safety constraints) can be simulated using smaller explosive charges. The experimental data presented herein show that a close approximation to the free-field air blast profile due to a 1.5 lb charge of C4 at 76 in. can be achieved by using a 0.032 lb charge in a 76-in.-long conical shock tube (which translates to an amplification factor of nearly 50). Modeling and simulation tools were used extensively in designing this shock tube to minimize expensive fabrication costs.« less
NASA Astrophysics Data System (ADS)
Al-Abdulkarim, Bander B.
The increasing fluctuations in the oil prices through the last decades have been transferred to the oil exporting countries. Thus, many oil exporting countries experienced significant changes in the economic activity due to changes in the oil markets. In light of this, oil exporting countries have attempted to implement a policy that would stabilize the fluctuations in the oil markets recognizing the adverse effects of such behavior on oil exporting countries, as well as oil importing countries. Saudi Arabia, as the largest oil-exporting country and a member of OPEC, takes the role of oil-markets stabilizer by behaving as the swing producer. This role has caused the global economic fluctuations to transfer into the domestic economy. In addition, Saudi Arabian government has adopted a fixed exchange rate currency regime. Although it has contributed to domestic price stabilizations, this policy has also exposed the country to global economic disturbances. The purpose of the study is to empirically investigate these aspects for Saudi Arabia. First, the effects of shocks originated in the international markets on the Saudi Arabian economy. Second, how the fixed exchange rate regimes influences the domestic macroeconomic variables. Third, to what extent the oil sector contributes to the non-oil domestic fluctuations. Finally, how the findings from the study can be explained by economic theory. In pursuing this, there are four economic theories that are considered to explain the causes of business cycles. These theories are Classical Theory, Keynesian Theory, Monetarist Theory, and the Real Business Cycles. In addition, a theoretical model is derived that is suitable for an oil-based economy. The model follows the set up of McCallum and Nelson (1999). Then, the empirical models of Structural Vector Autoregression (SVAR) and Error Correction Model (ECM) are implemented with three different specifications: Choleski Decomposition, Block Exogeneity and long-run Cointegration Model. The empirical models then are applied to sets of data from 1980 to 2002 for Saudi Arabia, Kuwait, Venezuela and Norway. The rationale of including other oil-exporting countries is to distinguish whether the shocks are country-specific, regional-specific, or global. Two sets of shocks are considered: international shocks and domestic shocks. Three types of international shocks are chosen: commodity-price (oil price) shock, international financial (interest rate) shock, and international real (output) shock. In addition, five domestic shocks which are non-oil output shock, oil production shock, price level shock, monetary shock, and exchange rate shock. The findings reached in the study demonstrate that the international shocks are responsible for a high proportion of fluctuations in the economic activity in Saudi Arabia. Most importantly, the international financial shocks represented by the US interest rate and oil price shocks are the major sources of fluctuations in the Saudi Arabian economy. Domestically, the economy is mostly affected by the oil production and the non-oil output shocks for Saudi Arabia. These results emphasize that the Saudi Arabia's role in the international oil market and its fixed exchange rate regime have significant implications on the domestic economy. Thus, special considerations should be placed on designing the appropriate policies to lessen the dependency on the oil sector and strengthen the role of private sector to diversify the economic base, and provide an independent sound monetary policy to steer the economy from the fluctuations in the global economy. (Abstract shortened by UMI.)
Rodríguez-Nuñez, Antonio; Dosil-Gallardo, Silvia; Jordan, Iolanda
2011-05-01
Streptococcal toxic shock syndrome (STSS) is a very rare and severe form of group A streptococcal infection whose clinical characteristics, therapy, morbidity, and mortality in children are not well known. Our objective was to describe the clinical characteristics of STSS in a series of children admitted to pediatric intensive care units (PICU). A multicenter, retrospective study of children with STSS admitted to 14 PICUs between January 1998 and December 2009 was conducted. Clinical information was obtained retrospectively by chart review. Data from 41 children were collected, 90% corresponding to the second half of the study period. Initial symptoms and signs were nonspecific. All patients developed shock and organ dysfunction, 78.0% developed coagulopathy, 70.7% neurologic dysfunction, and 68.3% respiratory failure. Rapid pharyngeal test for Streptococcus was positive in 78.0%. Initial leukocyte count was quite variable, with leukopenia present in 51.2% of patients and leukocytosis in 31.7%. Children were treated with antibiotics against group A Streptococcus (GAS), usually G penicillin or cephalosporin plus clindamycin. After a median PICU stay of 7 days (range 0-41), 65.8% of patients survived, 26.8% with sequelae. The cause of death of the 11 non-survivors was refractory shock and multi-organ failure. STSS is a very severe condition secondary to invasive GAS infection. It can occur at any age, but especially in young children. Due to the lack of specific symptoms and signs and its very rapid progression to shock and organ dysfunction, pediatricians and emergency physicians must be aware of this possibility and immediately initiate aggressive treatment when suspected.
Hierholzer, C; Kelly, E; Billiar, T R; Tweardy, D J
1997-01-01
Granulocyte colony-stimulating factor (G-CSF) is the cytokine that is critical for polymorphonuclear neutrophilic granulocyte (PMN) production as well as being a potent agonist of PMN activation. We have recently reported that in the lung and the liver of rats resuscitated after hemorrhagic shock (HS) G-CSF mRNA expression is induced. It is not known if both phases of HS, the ischemic and the reperfusion phase, are required for G-CSF mRNA induction. The present study was designed to test the hypothesis that the upregulation of G-CSF mRNA expression is the consequence of HS followed by resuscitation and that ischemia alone is insufficient to induce G-CSF mRNA expression in the affected organs. Male Sprague-Dawley rats were subjected to resuscitated and unresuscitated shock protocols of varying severity. Control animals were subjected to anesthesia and all surgical preparations except for hemorrhage. Lungs and livers were isolated and their RNA extracted. Using semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR), we demonstrated that G-CSF mRNA was induced in the lung and liver of shock animals above the level observed in control animals. Upregulation of G-CSF mRNA relative to controls occurred only in animals undergoing resuscitated HS and not in ones subjected to unresuscitated HS. These results indicate that G-CSF production specific for the hemorrhage component of shock is dependent on resuscitation. As a consequence, the production of this cytokine may be decreased through modifications in the resuscitation protocols.
IR-Raman Correlation of Shocked Minerals in Csátalja Meteorite — Clues for Shock Stages
NASA Astrophysics Data System (ADS)
Gyollai, I.; Kereszturi, A.; Fintor, K.; Kereszty, Zs.; Szabo, M.; Walter, H.
2017-11-01
The analyzed meteorite called Csátalja is an H chondrite (H4, S2, W2), and based on the differences between its certain parts, probably it is a breccia. The aim of methodological testing is characterizing shock deformation and heterogeneity.
NASA Astrophysics Data System (ADS)
Stewart, J. B.
2018-02-01
This paper presents experimental data on incident overpressures and the corresponding impulses obtained in the test section of an explosively driven 10° (full angle) conical shock tube. Due to the shock tube's steel walls approximating the boundary conditions seen by a spherical sector cut out of a detonating sphere of energetic material, a 5.3-g pentolite shock tube driver charge produces peak overpressures corresponding to a free-field detonation from an 816-g sphere of pentolite. The four test section geometries investigated in this paper (open air, cylindrical, 10° inscribed square frustum, and 10° circumscribed square frustum) provide a variety of different time histories for the incident overpressures and impulses, with a circumscribed square frustum yielding the best approximation of the estimated blast environment that would have been produced by a free-field detonation.
Transonic Shock-Wave/Boundary-Layer Interactions on an Oscillating Airfoil
NASA Technical Reports Server (NTRS)
Davis, Sanford S.; Malcolm, Gerald N.
1980-01-01
Unsteady aerodynamic loads were measured on an oscillating NACA 64A010 airfoil In the NASA Ames 11 by 11 ft Transonic Wind Tunnel. Data are presented to show the effect of the unsteady shock-wave/boundary-layer interaction on the fundamental frequency lift, moment, and pressure distributions. The data show that weak shock waves induce an unsteady pressure distribution that can be predicted quite well, while stronger shock waves cause complex frequency-dependent distributions due to flow separation. An experimental test of the principles of linearity and superposition showed that they hold for weak shock waves while flows with stronger shock waves cannot be superimposed.
Scott, Halden F; Donoghue, Aaron J; Gaieski, David F; Marchese, Ronald F; Mistry, Rakesh D
2014-11-19
Early detection of compensated pediatric septic shock requires diagnostic tests that are sensitive and specific. Four physical exam signs are recommended for detecting pediatric septic shock prior to hypotension (cold extremities, mental status, capillary refill, peripheral pulse quality); this study tested their ability to detect patients who develop organ dysfunction among a cohort of undifferentiated pediatric systemic inflammatory response syndrome patients. A prospective cohort of 239 pediatric emergency department patients <19 years with fever and tachycardia and undergoing phlebotomy were enrolled. Physicians recorded initial physical exams on a standardized form. Abstraction of the medical record determined outcomes including organ dysfunction, intensive care unit stay, serious bacterial infection, and therapies. Organ dysfunction occurred in 13/239 (5.4%) patients. Presence of at least one sign was significantly associated with organ dysfunction (Relative Risk: 2.71, 95% CI: 1.05-6.99), and presence of at least two signs had a Relative Risk = 4.98 (95% CI: 1.82-13.58). The sensitivity of exam findings ranged from 8-54%, specificity from 84-98%. Signs were associated with increased risk of intensive care and fluid bolus, but not with serious bacterial infection, intravenous antibiotics or admission. Altered mental status and peripheral pulse quality were significantly associated with organ dysfunction, while abnormal capillary refill time and presence of cold, mottled extremities were not. Certain recommended physical exam signs were associated with increased risk of organ dysfunction, a rare outcome in this undifferentiated pediatric population with fever and tachycardia. Sensitivity was low, while specificity was high. Additional research into optimally sensitive and specific diagnostic strategies is needed.
Molecular dynamics simulations of shock waves in oriented nitromethane single crystals.
He, Lan; Sewell, Thomas D; Thompson, Donald L
2011-03-28
The structural relaxation of crystalline nitromethane initially at T = 200 K subjected to moderate (~15 GPa) supported shocks on the (100), (010), and (001) crystal planes has been studied using microcanonical molecular dynamics with the nonreactive Sorescu-Rice-Thompson force field [D. C. Sorescu, B. M. Rice, and D. L. Thompson, J. Phys. Chem. B 104, 8406 (2000)]. The responses to the shocks were determined by monitoring the mass density, the intermolecular, intramolecular, and total temperatures (average kinetic energies), the partitioning of total kinetic energy among Cartesian directions, the radial distribution functions for directions perpendicular to those of shock propagation, the mean-square displacements in directions perpendicular to those of shock propagation, and the time dependence of molecular rotational relaxation as a function of time. The results show that the mechanical response of crystalline nitromethane strongly depends on the orientation of the shock wave. Shocks propagating along [100] and [001] result in translational disordering in some crystal planes but not in others, a phenomenon that we refer to as plane-specific disordering; whereas for [010] the shock-induced stresses are relieved by a complicated structural rearrangement that leads to a paracrystalline structure. The plane-specific translational disordering is more complete by the end of the simulations (~6 ps) for shock propagation along [001] than along [100]. Transient excitation of the intermolecular degrees of freedom occurs in the immediate vicinity of the shock front for all three orientations; the effect is most pronounced for the [010] shock. In all three cases excitation of molecular vibrations occurs more slowly than the intermolecular excitation. The intermolecular and intramolecular temperatures are nearly equal by the end of the simulations, with 400-500 K of net shock heating. Results for two-dimensional mean-square molecular center-of-mass displacements, calculated as a function of time since shock wave passage in planes perpendicular to the direction of shock propagation, show that the molecular translational mobility in the picoseconds following shock wave passage is greatest for [001] and least for the [010] case. In all cases the root-mean-square center-of-mass displacement is small compared to the molecular diameter of nitromethane on the time scale of the simulations. The calculated time scales for the approach to thermal equilibrium are generally consistent with the predictions of a recent theoretical analysis due to Hooper [J. Chem. Phys. 132, 014507 (2010)].
20000G shock energy harvesters for gun-fired munition
NASA Astrophysics Data System (ADS)
Willemin, J.; Boisseau, S.; Olmos, L.; Gallardo, M.; Despesse, G.; Robert, T.
2016-11-01
This paper presents a 20000G shock energy harvester dedicated to gun-fired munitions and based on a mass-spring resonant structure coupled to a coil-magnet electromagnetic converter. The 20000G shock energy is firstly stored in the spring as elastic potential energy, released as mass-spring mechanical oscillations right after the shock and finally converted into electricity thanks to the coil-magnet transducer. The device has been modeled, sized to generate 200mJ in 150ms, manufactured and tested in a gun-fired munition. The prototype sizes 117cm3 and weighs 370g. 210mJ have been generated in a test bench and 140mJ in real conditions; this corresponds to a mean output power of 0.93W (7.9mW/cm3) and a maximum output power of 4.83W (41.3mW/cm3) right after the shock.
Sound velocities in shocked liquid D2 to 28 GPa
NASA Astrophysics Data System (ADS)
Holmes, N. C.; Ross, M.; Nellis, W. J.
1999-06-01
Recent measurements of shock temperatures(N. C. Holmes, W. J. Nellis, and M. Ross, Phys. Rev.) B52, 15835 (1995). and laser-driven Hugoniot measurements(L. B. Da Silva, et al.), Phys. Rev. Lett. 78, 483 (1997). of shocked liquid deuterium strongly indicate that molecular dissociation is important above 20 GPa. Since the amount of expected dissociation is small on the Hugoniot at the 30 GPa limit of conventional impact experiments, other methods must be used to test our understanding of the physics of highly compressed deuterium in this regime. We have recently performed experiments to measure the sound velocity of deuterium which test the isentropic compressibility, c^2 = (partial P/partial ρ)_S. We used the shock overtake method to measure sound velocities at several shock pressures between 10--28 GPa. These data provide support for recently developed molecular dissociation models.
Simulation and Analysis of Converging Shock Wave Test Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsey, Scott D.; Shashkov, Mikhail J.
2012-06-21
Results and analysis pertaining to the simulation of the Guderley converging shock wave test problem (and associated code verification hydrodynamics test problems involving converging shock waves) in the LANL ASC radiation-hydrodynamics code xRAGE are presented. One-dimensional (1D) spherical and two-dimensional (2D) axi-symmetric geometric setups are utilized and evaluated in this study, as is an instantiation of the xRAGE adaptive mesh refinement capability. For the 2D simulations, a 'Surrogate Guderley' test problem is developed and used to obviate subtleties inherent to the true Guderley solution's initialization on a square grid, while still maintaining a high degree of fidelity to the originalmore » problem, and minimally straining the general credibility of associated analysis and conclusions.« less
Clinical Studies of Real-Time Monitoring of Lithotripter Performance Using Passive Acoustic Sensors
NASA Astrophysics Data System (ADS)
Leighton, T. G.; Fedele, F.; Coleman, A. J.; McCarthy, C.; Ryves, S.; Hurrell, A. M.; De Stefano, A.; White, P. R.
2008-09-01
This paper describes the development and clinical testing of a passive device which monitors the passive acoustic emissions generated within the patient's body during Extracorporeal Shock Wave Lithotripsy (ESWL). Designed and clinically tested so that it can be operated by a nurse, the device analyses the echoes generated in the body in response to each ESWL shock, and so gives real time shock-by-shock feedback on whether the stone was at the focus of the lithotripter, and if so whether the previous shock contributed to stone fragmentation when that shock reached the focus. A shock is defined as being `effective' if these two conditions are satisfied. Not only can the device provide real-time feedback to the operator, but the trends in shock `effectiveness' can inform treatment. In particular, at any time during the treatment (once a statistically significant number of shocks have been delivered), the percentage of shocks which were `effective' provides a treatment score TS(t) which reflects the effectiveness of the treatment up to that point. The TS(t) figure is automatically delivered by the device without user intervention. Two clinical studies of the device were conducted, the ethics guidelines permitting only use of the value of TS(t) obtained at the end of treatment (this value is termed the treatment score TS0). The acoustically-derived treatment score was compared with the treatment score CTS2 given by the consultant urologist at the three-week patient's follow-up appointment. In the first clinical study (phase 1), records could be compared for 30 out of the 118 patients originally recruited, and the results of phase 1 were used to refine the parameter values (the `rules') with which the acoustic device provides its treatment score. These rules were tested in phase 2, for which records were compared for 49 of the 85 patients recruited. Considering just the phase 2 results (since the phase 1 data were used to draw up the `rules' under which phase 2 operated), comparison of the opinion of the urologist at follow-up with the acoustically derived judgment identified a good correlation (kappa = 0.94), the device demonstrating a sensitivity of 91.7% (in that it correctly predicted 11 of the 12 treatments which the urologist stated had been `successful' at the 3-week follow-up), and a specificity of 100% (in that it correctly predicted all of the 37 treatments which the urologist stated had been `unsuccessful' at the 3-week follow-up). The `gold standard' opinion of the urologist (CTS2) correlated poorly (kappa = 0.38) with the end-of-treatment opinion of the radiographer (CTS1). This is due to the limited resolution of the lithotripter X-Ray fluoroscopy system. If the results of phase 1 and phase 2 are pooled to form a dataset against which retrospectively to test the rules drawn up in phase 1, when compared with the gold standard CTS2, over the two clinical trials (79 patients) the device-derived scored (TS0) correctly predicted the clinical effectiveness of the treatment for 78 for the 79 patients (the error occurred on a difficult patient with a high body mass index). In comparison, using the currently available technology the in-theatre clinician (the radiographer) provided a treatment score CTS1 which correctly predicted the outcome of only 61 of the 79 therapies. In particular the passive acoustic device correctly predicted 18 of the 19 treatments that were successful (i.e. 94.7 sensitivity), whilst the current technology enabled the in-theatre radiographer to predict only 7 of the 19 successful treatments (i.e. 36.8 sensitivity). The real-time capabilities of the device were used in a preliminary examination of the effect of ventilation.
Strategies for obtaining long constant-pressure test times in shock tubes
Campbell, Matthew Frederick; Parise, T.; Tulgestke, A. M.; ...
2015-09-22
Several techniques have been developed for obtaining long, constant-pressure test times in reflected shock wave experiments in a shock tube, including the use of driver inserts, driver gas tailoring, helium gas diaphragm interfaces, driver extensions, and staged driver gas filling. Here, we detail these techniques, including discussion on the most recent strategy, staged driver gas filling. Experiments indicate that this staged filling strategy increases available test time by roughly 20 % relative to single-stage filling of tailored driver gas mixtures, while simultaneously reducing the helium required per shock by up to 85 %. This filling scheme involves firstly mixing amore » tailored helium–nitrogen mixture in the driver section as in conventional driver filling and, secondly, backfilling a low-speed-of-sound gas such as nitrogen or carbon dioxide from a port close to the end cap of the driver section. Using this staged driver gas filling, in addition to the other techniques listed above, post-reflected shock test times of up to 0.102 s (102 ms) at 524 K and 1.6 atm have been obtained. Spectroscopically based temperature measurements in non-reactive mixtures have confirmed that temperature and pressure conditions remain constant throughout the length of these long test duration trials. Finally, these strategies have been used to measure low-temperature n-heptane ignition delay times.« less
2017-01-01
time histories with peak pressures of approximately 250 psi and 500 psi. 1.2 TESTING OBJECTIVES The first goal of this test series was to explore how...finally the late- time at-rest fragments were physically collected and analyzed post-test. Because this test series physically collected over 50,000...for a single fragmenting object. Comparing the three measurement techniques used in this test series , the late- time physically- collected mass
Parsonnet, Jeffrey; Hansmann, Melanie A; Seymour, Jon L; Delaney, Mary L; Dubois, Andrea M; Modern, Paul A; Jones, Michaelle B; Wild, John E; Onderdonk, Andrew B
2010-08-23
Menstrual Toxic Shock Syndrome (mTSS) is thought to be associated with the vaginal colonization with specific strains of Staphylococcus aureus TSST-1 in women who lack sufficient antibody titers to this toxin. There are no published studies that examine the seroconversion in women with various colonization patterns of this organism. Thus, the aim of this study was to evaluate the persistence of Staphylococcus aureus colonization at three body sites (vagina, nares, and anus) and serum antibody to toxic shock syndrome toxin-producing Staphylococcus aureus among a small group of healthy, menstruating women evaluated previously in a larger study. One year after the completion of that study, 311 subjects were recalled into 5 groups. Four samples were obtained from each participant at several visits over an additional 6-11 month period: 1) an anterior nares swab; 2) an anal swab; 3) a vagina swab; and 4) a blood sample. Gram stain, a catalase test, and a rapid S. aureus-specific latex agglutination test were performed to phenotypically identify S. aureus from sample swabs. A competitive ELISA was used to quantify TSST-1 production. Human TSST-1 IgG antibodies were determined from the blood samples using a sandwich ELISA method. We found only 41% of toxigenic S. aureus and 35.5% of non-toxigenic nasal carriage could be classified as persistent. None of the toxigenic S. aureus vaginal or anal carriage could be classified as persistent. Despite the low persistence of S. aureus colonization, subjects colonized with a toxigenic strain were found to display distributions of antibody titers skewed toward higher titers than other subjects. Seven percent (5/75) of subjects became seropositive during recall, but none experienced toxic shock syndrome-like symptoms. Nasal carriage of S. aureus appears to be persistent and the best predicator of subsequent colonization, whereas vaginal and anal carriage appear to be more transient. From these findings, it appears that antibody titers in women found to be colonized with toxigenic S. aureus remained skewed toward higher titers whether or not the colonies were found to be persistent or transient in nature. This suggests that colonization at some point in time is sufficient to elevate antibody titer levels and those levels appear to be persistent. Results also indicate that women can become seropositive without experiencing signs or symptoms of toxic shock syndrome.
Learned helplessness in the rat: effect of response topography in a within-subject design.
dos Santos, Cristiano Valerio; Gehm, Tauane; Hunziker, Maria Helena Leite
2011-02-01
Three experiments investigated learned helplessness in rats manipulating response topography within-subject and different intervals between treatment and tests among groups. In Experiment 1, rats previously exposed to inescapable shocks were tested under an escape contingency where either jumping or nose poking was required to terminate shocks; tests were run either 1, 14 or 28 days after treatment. Most rats failed to jump, as expected, but learned to nose poke, regardless of the interval between treatment and tests and order of testing. The same results were observed in male and female rats from a different laboratory (Experiment 2) and despite increased exposure to the escape contingencies using a within-subject design (Experiment 3). Furthermore, no evidence of helplessness reversal was observed, since animals failed to jump even after having learned to nose-poke in a previous test session. These results are not consistent with a learned helplessness hypothesis, which claims that shock (un)controllability is the key variable responsible for the effect. They are nonetheless consistent with the view that inescapable shocks enhance control by irrelevant features of the relationship between the environment and behavior. Copyright © 2010 Elsevier B.V. All rights reserved.
Micromachined integrated self-adaptive nonlinear stops for mechanical shock protection of MEMS
NASA Astrophysics Data System (ADS)
Xu, Kaisi; Jiang, Fushuai; Zhang, Wei; Hao, Yilong
2018-06-01
This paper presents a novel concept of self-adaptive nonlinear stops (SANS) for the generic in-plane shock protection of microelectromechanical systems (MEMS) suspensions. This new shock protection strategy decouples the reliability design from the device design and is compatible with wafer-level MEMS batch fabrication without the requirement of additional processes or materials. SANS increase shock reliability by limiting the travel of the suspension in a compliant manner with efficient energy dissipation. Using numerical simulation, we analyzed the energy dissipation and the impact force between suspensions and shock stops under a half-sine shock impulse (3000 g (1 g ≈ 9.8 m s‑2), 0.15 ms). The simulation results indicate that SANS can reduce approximately 89.4% of the impact force compared with hard stops, and additionally, dissipate more than 22.7% of the total mechanical energy in a round trip of the proof mass. To prove the improvement in shock protection, we designed and fabricated model test specimens of both SANS and conventional hard stops. The experimental results demonstrate that test specimens of SANS achieved twice the robustness compared with those of hard stops.
Experimental Investigation of Shock Initiation in Mixtures of Manganese and Sulfur
NASA Astrophysics Data System (ADS)
Jette, Francois-Xavier; Goroshin, Sam; Higgins, Andrew
2009-06-01
Equimolar mixtures of manganese powder and sulfur at different initial densities were tested in two different types of steel recovery capsules in order to study the shock initiation phenomenon in SHS mixtures. This mixture composition was selected due to the large exothermic heat release of the manganese-sulfur reaction (214 kJ/mol), which causes the reaction to be self-sustaining once initiated. Two different sizes of Mn particles were used for these experiments, 1-5 μm and -325 mesh (44μm or less). The test samples were placed in planar recovery ampoules and a strong shock was delivered via the detonation of a charge of amine-sensitized nitromethane. Various shock strengths were achieved by placing different thicknesses of PMMA attenuator discs between the explosive charge and the ampoule. The results confirmed that shock-induced reactions can be produced in highly non-porous mixtures. It was also found that shock interactions with the side walls of the recovery capsule can play a significant role in the initiation, and that mixtures containing the larger Mn particles were very difficult to initiate in the absence of shock interactions with the capsule walls.
Thermal shock effect on Mechanical and Physical properties of pre-moisture treated GRE composite
NASA Astrophysics Data System (ADS)
Chakraverty, A. P.; Panda, A. B.; Mohanty, U. K.; Mishra, S. C.; Biswal, B. B.
2018-03-01
Many practical situations may be encountered under which a GFRP (Glass fibre reinforced polymer) composite, during its service life, is exposed to the severities of sudden temperature fluctuations. Moisture absorption of GRE (Glass fibre reinforced epoxy) composites followed by various gradients of temperature fluctuations may cause thermo- mechanical degradation. It is on this context, the hand layed GRE composite samples are exposed to up-thermal shock (-40°C to +50°C) and down-thermal shock (+50°C to -40°C) for various time interval after several periods of moisture (hydrothermal/hygrothermal) conditioning. The thermally shocked GRE specimens are put to 3-point bend test to divulge inter laminar shear strength (ILSS). Least ILSS values are recorded for the samples with maximum period of moisture treatments under with both up-thermal and down-thermal shock conditions. Lower glass transition temperature (Tg) values, as revealed through the low temperature DSC test, are exhibited at maximum durations of both up-thermal and down-thermal shock for the samples with higher periods of hygrothermal/hydrothermal treatments. SEM fractographs of representative GRE specimens after optimum period of moisture treatments and thermal shock show the various modes of failures.
NASA Technical Reports Server (NTRS)
Desautel, D.
1985-01-01
Hypersonic bow-shock location and geometry are of central importance to the aerodynamics and aerothermodynamics of aeroassisted orbital transfer vehicles (AOTVs), but they are difficult to predict for a given vehicle configuration. This paper reports experimental measurements of shock standoff distance for the 70 deg cone AOTV configuration in shock-tunnel-test flows at Mach numbers of 3.8 to 7.9 and for angles of attack from 0 deg to 20 deg. The controlling parameter for hypersonic bow-shock standoff distance (for a given forebody shape) is the mean normal-shock density ratio. Values for this parameter in the tests reported are in the same range as those of the drag-brake AOTV perigee regime. Results for standoff distance are compared with those previously reported in the literature for this AOTV configuration. It is concluded that the AOTV shock standoff distance for the conical configuration, based on frustrum (base) radius, is equivalent to that of a sphere with a radius about 35 percent greater than that of the cone; the distance is, therefore, much less than reported in previous studies. Some reasons for the discrepancies between the present and previous are advanced. The smaller standoff distance determined here implies there will be less radiative heat transfer than was previously expected.
Numerical study on dusty shock reflection over a double wedge
NASA Astrophysics Data System (ADS)
Yin, Jingyue; Ding, Juchun; Luo, Xisheng
2018-01-01
The dusty shock reflection over a double wedge with different length scales is systematically studied using an adaptive multi-phase solver. The non-equilibrium effect caused by the particle relaxation is found to significantly influence the shock reflection process. Specifically, it behaves differently for double wedges with different length scales of the first wedge L1. For a double wedge with L1 relatively longer than the particle relaxation length λ, the equilibrium shock dominates the shock reflection and seven typical reflection processes are obtained, which is similar to the pure gas counterpart. For a double wedge with L1 shorter than λ, the non-equilibrium effect manifests more evidently, i.e., three parts of the dusty shock system including the frozen shock, the relaxation zone, and the equilibrium shock together dominate the reflection process. As a result, the shock reflection is far more complicated than the pure gas counterpart and eleven transition processes are found under various wedge angles. These findings give a complete description of all possible processes of dusty shock reflection over a double wedge and may be useful for better understanding the non-equilibrium shock reflection over complex structures.
Shock loading predictions from application of indicial theory to shock-turbulence interactions
NASA Technical Reports Server (NTRS)
Keefe, Laurence R.; Nixon, David
1991-01-01
A sequence of steps that permits prediction of some of the characteristics of the pressure field beneath a fluctuating shock wave from knowledge of the oncoming turbulent boundary layer is presented. The theory first predicts the power spectrum and pdf of the position and velocity of the shock wave, which are then used to obtain the shock frequency distribution, and the pdf of the pressure field, as a function of position within the interaction region. To test the validity of the crucial assumption of linearity, the indicial response of a normal shock is calculated from numerical simulation. This indicial response, after being fit by a simple relaxation model, is used to predict the shock position and velocity spectra, along with the shock passage frequency distribution. The low frequency portion of the shock spectra, where most of the energy is concentrated, is satisfactorily predicted by this method.
Adiabatic invariants in stellar dynamics. 2: Gravitational shocking
NASA Technical Reports Server (NTRS)
Weinberg, Martin D.
1994-01-01
A new theory of gravitational shocking based on time-dependent perturbation theory shows that the changes in energy and angular momentum due to a slowly varying disturbance are not exponentially small for stellar dynamical systems in general. It predicts significant shock heating by slowly varying perturbations previously thought to be negligible according to the adiabatic criterion. The theory extends the scenarios traditionally computed only with the impulse approximation and is applicable to a wide class of disturbances. The approach is applied specifically to the problem of disk shocking of star clusters.
Characteristics of Navy Medium-Weight High-Impact Shock Machine
1951-09-14
Ar 2-4~ -C 0 ofoL "- oili 0jit -1 b. V’ A . -- c- MC a y - w CmLUA ~ E~8.9. - flb. A 9 Er IL v II - W43 4P " It IIf ~NRL REPORT I CHARACTERISTICS OF...this machine under specification operation. A comnarison of datta is intended to correlate this shock to shipboard shock experienced in actual combat...table reversal are discussed, and it is shown that this secondsry shock can be the largest under certain condition. Theoretical equations of motion are
Simulation of transient flow in a shock tunnel and a high Mach number nozzle
NASA Technical Reports Server (NTRS)
Jacobs, P. A.
1991-01-01
A finite volume Navier-Stokes code was used to simulate the shock reflection and nozzle starting processes in an axisymmetric shock tube and a high Mach number nozzle. The simulated nozzle starting processes were found to match the classical quasi-1-D theory and some features of the experimental measurements. The shock reflection simulation illustrated a new mechanism for the driver gas contamination of the stagnated test gas.
NASA Technical Reports Server (NTRS)
Bogdanoff, David W.; Cruden, Brett A.
2016-01-01
The Ames Electric Arc Shock Tube (EAST) is a shock tube wherein the driver gas can be heated by an electric arc discharge. The electrical energy is stored in a 1.2 MJ capacitor bank. Four inch and 24 inch diameter driven tubes are available. The facility is described and the need for testing in the 24 inch tube to better simulate low density NASA mission profiles is discussed. Three test entries, 53, 53B and 59, are discussed. Tests are done with air or Mars gas (95.7% CO2/2.7% N2/1.6% Ar) at pressures of 0.01 to 0.14 Torr. Velocities spanned 6.3-9.2 km/s, with a nominal center of 7 km/s. Many facility configurations are studied in an effort to improve data quality. Various driver and driven tube configurations and the use of a buffer section between the driver and the driven tube are studied. Diagnostics include test times, time histories of the shock light pulses and tilts of the shock wave off the plane normal to the tube axis. The report will detail the results of the various trials, give the best configuration/operating conditions found to date and provide recommendations for further improvements. Finally, diaphragm performance is discussed.
Sarahroodi, Shadi; Esmaeili, Somayyeh; Mikaili, Peyman; Hemmati, Zahra; Saberi, Yousof
2012-01-01
The purpose of this study was evaluation of green Ocimum basilicum (sweet basil) hydroalcoholic extract on memory retention and retrieval of mice by using passive avoidance apparatus. For this purpose, after weighting, coding and classifying the mice, they were grouped (n = 8) as follow as: test groups (electric shock plus sweet basil extract by doses: 100, 200, 400 and 800 mg/kg, i.p.), control group (Only electric shock) and blank group (electric shock plus normal saline). In all mentioned groups delay time of leaving the platform for both retention and retrieval test of memory was measured. In retention test, sweet basil extract was administered immediately after receiving electric shock and in retrieval test it was administered 24 hours after receiving electric shock. The results indicated that hydroalcoholic extract of green Ocimum basilicum significantly (P < 0.05) increased memory retention. The best response was achieved with 400 mg/Kg of the extract. Also, results showed that sweet basil extract significantly (P < 0.05) increased memory retrieval and the best result was achieved with 400 mg/Kg too. It can be concluded that memory enhancing effects of green Ocimum basilicum is because of antioxidant activity of flavonoids, tannins and terpenoids. PMID:23661866
Various continuum approaches for studying shock wave structure in carbon dioxide
NASA Astrophysics Data System (ADS)
Alekseev, I. V.; Kosareva, A. A.; Kustova, E. V.; Nagnibeda, E. A.
2018-05-01
Shock wave structure in carbon dioxide is studied using different continuum models within the framework of one-temperature thermal equilibrium flow description. Navier-Stokes and Euler equations as well as commonly used Rankine-Hugoniot equations with different specific heat ratios are used to find the gas-dynamic parameters behind the shock wave. The accuracy of the Rankine-Hugoniot relations in polyatomic gases is assessed, and it is shown that they give a considerable error in the predicted values of fluid-dynamic variables. The effect of bulk viscosity on the shock wave structure in CO2 is evaluated. Taking into account bulk viscosity yields a significant increase in the shock wave width; for the complete model, the shock wave thickness varies non-monotonically with the Mach number.
Characteristic Model of a Shock Absorber in an Unmanned Ground Vehicle
NASA Astrophysics Data System (ADS)
Danko, Ján; Milesich, Tomáš; Bugár, Martin; Madarás, Juraj
2012-12-01
Explosives for Lunar Seismic Profiling Experiment (LSPE)
NASA Technical Reports Server (NTRS)
1973-01-01
Explosive charges of various sizes were investigated for use in lunar seismic studies. Program logistics, and the specifications for procurement of bulk explosives are described. The differential analysis, thermal properties, and detonation velocity measurements on HNS/Teflon 7C 90/10 are reported along with the field tests of the hardware. It is concluded that nearly all large explosive charges crack after fabrication, from aging or thermal shock. The cracks do not affect the safety, or reliability of the explosives.
Summary of gas bearing applications in the field of space electric power systems
NASA Technical Reports Server (NTRS)
Dunn, J. H.; Ream, L. W.
1972-01-01
The testing and evaluation of different bearing systems to be used in the turbine-alternator-compressor of a closed Brayton cycle electric power system are described. A specification of each bearing is presented along with the results of the evaluation and a comparison of the merits and limitations of each bearing. The contribution of improved bearings to the power supply reliability, potential life, and ability to accept shock and vibration is examined.
16 CFR 1204.4 - Electric shock protection tests.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Electric shock protection tests. 1204.4 Section 1204.4 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT... the cable shall be between 28 and 29 feet (8.5 to 8.8 meters) above a horizontal plane through the...
Xiao-ting, Wang; Hua, Zhao; Da-wei, Liu; Hong-min, Zhang; Huai-wu, He; Yun, Long; Wen-zhao, Chai
2015-10-01
The objective is to explore the value of end-tidal carbon dioxide (ETCO2) in replacing cardiac index for evaluating fluid responsiveness during the passive leg raising (PLR) test and mini-fluid challenge (mini-FC). Patients experiencing septic shock and who were on mechanical ventilation in an intensive care unit were divided into responder and nonresponder groups according to whether their cardiac index increased by more than 10% after the FC. Before and after those tests, the changes in ETCO2, central venous pressure, heart rate, mean arterial pressure, pulse pressure, and cardiac output were recorded. Of the 48 patients in the study, 34 had fluid responsiveness according to the changes in cardiac output or stroke volume. The ΔCI and ΔETCO2 in the responder group were larger than the changes in the nonresponder group during the PLR test (1.1 ± 0.7 vs 0.2 ± 0.4 L/min per square meter, 3.0 ± 3.0 vs 0.5 ± 2.5 mm Hg; P < .05) but not during mini-FC. ΔETCO2 greater than or equal to 5% during the PLR test predicted fluid responsiveness with 93.4% specificity and 75.8% sensitivity in a receiver operating characteristic curve. The area under the curve was 0.849 (95% confidence interval, 0.739-0.930). ΔETCO2 greater than or equal to 3% during the mini-FC predicted fluid responsiveness with 93.4% specificity and 33.3% sensitivity in a receiver operating characteristic curve, and the area under the curve was 0.781 (95% confidence interval, 0.646-0.915). The changes in ETCO2 may predict fluid responsiveness during the PLR test in patients with septic shock, but similar results were not found with the mini-FC. Copyright © 2015 Elsevier Inc. All rights reserved.
Han, J H; Yim, S W; Lim, C S; Park, C W; Kaang, B K
1999-05-01
We assessed the role of a non-inactivating K+ channel (aKv5.1) in the resting potential by overexpressing this channel by heat shock in the neurons. A reporter gene lacZ linked to a promoter region spanning from the -285 to the +88 base of the rat HSP70ib gene was induced 62.5-fold when this DNA construct was microinjected into the neurons of the marine mollusk Aplysia and treated with heat shock at 30 degrees C for 3 h. Using this efficient induction system, we induced the expression of aKv5.1 by heat shock in cultured, electrically silent neurons of Aplysia and examined its effect on the resting potential. The channel expression increased the resting potential by approximately 10 mV. This increase was specific to heat shock induction and abolished by treatment with TEA, a specific K+ channel blocker. These results provide the direct evidence that a low voltage-activated, non-inactivating K+ channel can contribute to the resting potential.
NASA Technical Reports Server (NTRS)
Foust, J. W.
1975-01-01
Results are presented of heat transfer tests of a 147B configuration orbiter model (50-0) conducted in the NASA Langley Research Center Freon Tunnel (LRC/CF4). These tests were conducted at a nominal Mach number of 6, and at Reynolds numbers of 0.3 and 0.5 x 1,000,000 per foot. The objectives of the tests were to determine the effects of the low freon specific heat ratio, gamma, on the heating distributions and to determine the impingement of the orbiter bow shock on the wing. The data presented include thin skin heat transfer data (tabulated data and plotted data).
Conrad, Marie; Perez, Pierre; Thivilier, Carine; Levy, Bruno
2015-08-01
The purpose of the study is to improve our ability to detect catecholamine dependency and refractory septic shock. Fifty-one patients with septic shock were studied within the first 4 hours of norepinephrine administration. Patients were divided into 2 groups according to their evolution in the intensive care unit, namely, group A, shock reversal, and group B, no shock reversal. Reversal of shock was defined as the maintenance of a systolic blood pressure greater than or equal to 90 mm Hg without vasopressor support for 24 hours or more. Vascular reactivity was tested using incremental doses of phenylephrine. Muscle tissue oxygen saturation and its changes during a vascular occlusion test were measured. Group B patients had a higher Sequential Organ Failure Assessment (SOFA) score and lactate level and more frequently received norepinephrine and renal replacement. Overall mortality was 100% in group B (16/16) and 20% (7/35) in group A. Phenylephrine increased mean arterial pressure in a dose-dependent manner more significantly in group A patients than in group B (P = .0004). Basal tissue oxygen saturation and the recovery slope after vascular occlusion test were lower in group B. In multivariate analysis, 4 parameters remained independently associated with mortality: the increase in mean arterial pressure at phenylephrine 6 μg/kg per minute, the recovery slope, SOFA score, and norepinephrine doses at H0. The intensity of septic shock-induced vascular hyporesponsiveness to vasopressor is tightly linked to septic shock severity and evolution and may potentially be identified early with simple to obtain parameters such as near-infrared spectroscopy value, SOFA score, or norepinephrine dose. Copyright © 2015 Elsevier Inc. All rights reserved.
1978-09-01
self with a nonlinear (thermocouple) function, the limits X os nu 2O being: x Enables Temperature Controller to command heat 0 Code Temnperature ___6...34 Shock and Vi- bration Bulletin 42, 1970. (2) R.T. Fandrich, " Self -Tuning Re- • sonant Fixtures", 47th Shock andVibration Symposium, October 1976. . " (3...is given in Fig. 4. timTit for "ysem From the shape of some of these it is apparent linear respose that in some tests dampino ratios of the order 0 of
NASA Technical Reports Server (NTRS)
Hirt, Stefanie M.; Anderson, Bernhard H.
2009-01-01
The effectiveness of microramp flow control devices in controlling an oblique shock interaction was tested in the 15- by 15-Centimeter Supersonic Wind Tunnel at NASA Glenn Research Center. Fifteen microramp geometries were tested varying the height, chord length, and spacing between ramps. Measurements of the boundary layer properties downstream of the shock reflection were analyzed using design of experiments methods. Results from main effects, D-optimal, full factorial, and central composite designs were compared. The designs provided consistent results for a single variable optimization.
1982-05-01
signal generation history can then be generated. These opera- processes generally consisted of recording tions work quite well electromagnetic ex...fninduerointe gualinicharactestics I PLOTTER MULTI CHANNEL TAPE RECORDER TEST ITEM 71T RESPONSE MOTIO ANALOG SIGNAL SHOCK CONDITIONING SPECTRUM ANALYZER...of TM to the EM. The exciter displacement producing a drive signal with excessive actua- drive signal is generated fron the linear sm tor stroke
Shock reliability analysis and improvement of MEMS electret-based vibration energy harvesters
NASA Astrophysics Data System (ADS)
Renaud, M.; Fujita, T.; Goedbloed, M.; de Nooijer, C.; van Schaijk, R.
2015-10-01
Vibration energy harvesters can serve as a replacement solution to batteries for powering tire pressure monitoring systems (TPMS). Autonomous wireless TPMS powered by microelectromechanical system (MEMS) electret-based vibration energy harvester have been demonstrated. The mechanical reliability of the MEMS harvester still has to be assessed in order to bring the harvester to the requirements of the consumer market. It should survive the mechanical shocks occurring in the tire environment. A testing procedure to quantify the shock resilience of harvesters is described in this article. Our first generation of harvesters has a shock resilience of 400 g, which is far from being sufficient for the targeted application. In order to improve this aspect, the first important aspect is to understand the failure mechanism. Failure is found to occur in the form of fracture of the device’s springs. It results from impacts between the anchors of the springs when the harvester undergoes a shock. The shock resilience of the harvesters can be improved by redirecting these impacts to nonvital parts of the device. With this philosophy in mind, we design three types of shock absorbing structures and test their effect on the shock resilience of our MEMS harvesters. The solution leading to the best results consists of rigid silicon stoppers covered by a layer of Parylene. The shock resilience of the harvesters is brought above 2500 g. Results in the same range are also obtained with flexible silicon bumpers, which are simpler to manufacture.
ERIC Educational Resources Information Center
Holtom, Brooks C.; Burton, James P.; Crossley, Craig D.
2012-01-01
We integrated the unfolding model of turnover, job embeddedness theory and affective events theory to build and test a model specifying the relationship between negative shocks, on-the-job embeddedness and important employee behaviors. The results showed that embeddedness mediates the relationship between negative shocks and job search behaviors…
Thøgersen, Anna Margrethe; Larsen, Jacob Moesgaard; Johansen, Jens Brock; Abedin, Moeen
2017-01-01
Background: In clinical trials, manufacturer-specific, strategic programming of implantable cardioverter–defibrillators (ICDs), including faster detection rates, reduces unnecessary therapy but permits therapy for ventricular tachycardia/ventricular fibrillation (VF). Present consensus recommends a generic rate threshold between 185 and 200 beats per minute, which exceeds the rate tested in clinical trials for some manufacturers. In a case series, we sought to determine the relationship between programmed parameters and failure of modern ICDs to treat VF. Methods and Results: We reviewed cases in which normally functioning ICDs failed to deliver timely therapy for VF from April 2015 to January 2017 at 4 institutions. Of 10 ambulatory patients, 5 died from untreated VF, 4 had cardiac arrests requiring external shocks, and 1 was rescued by a delayed ICD shock. VF did not satisfy programmed detection criteria in 9 patients (90%). Seven of these patients had slowest detection rates that were consistent with generic recommendations but not tested in a peer-reviewed trial for their manufacturer’s ICDs. Manufacturer-specific factors interacted with fast detection rates to withhold therapy, including strict VF episode termination rules, enhancements to minimize T-wave oversensing, and features that restrict therapy to regular rhythms in ventricular tachycardia zones. Untreated VF despite recommended programming accounted for 56% of sudden deaths and 11% of all deaths during the study period. Conclusions: Complex and unanticipated interactions between manufacturer-specific features and generic programming can prevent therapy for VF. More data are needed to assess the risks and benefits of translating evidence-based detection parameters from one manufacturer to another. PMID:28916511
NASA Astrophysics Data System (ADS)
Chen, Hong-Yu; Luo, Lai-Ma; Zan, Xiang; Xu, Qiu; Tokunaga, Kazutoshi; Liu, Jia-Qin; Zhu, Xiao-Yong; Cheng, Ji-Gui; Wu, Yu-Cheng
2018-02-01
The transient thermal shock behaviors of W-ZrC/Sc2O3 composites with different ZrC contents were evaluated using transient thermal shock test by electron and laser beams. The effects of different ZrC doping contents on the surface morphology and thermal shock resistance of W-ZrC/Sc2O3 composites were then investigated. Similarity and difference between effects of electron and laser beam transient heat loading were also discussed in this study. Repeated heat loading resulted in thermal fatigue of the irradiated W-ZrC/Sc2O3 samples by thermal stress, leading to the rough surface morphologies with cracks. After different transient thermal tests, significant surface roughening, cracks, surface melting, and droplet ejection occurred. W-2vol.%Sc2O3 sample has superior thermal properties and greater resistance to surface modifications under transient thermal shock, and with the increasing ZrC content in W alloys, thermal shock resistance of W-Zr/Sc2O3 sample tends to be unsatisfied.
Studies of Shock Wave Interaction with a Curtain of Massive Particles
NASA Astrophysics Data System (ADS)
Lingampally, Sumanth Reddy; Wayne, Patrick; Cooper, Sean; Izard, Ricardo Gonzalez; Jacobs, Gustaaf; Vorobieff, Peter
2017-11-01
Interaction of a shock wave with planar and perturbed curtain of massive particles is studied experimentally. To form the curtain, solid soda lime particles (30-50 micron diameter) are dropped from a hopper fitted with mesh sieves and vibrated with a motor. The curtain forms when the particles move through a rectangular slot in the top of the test section of the shock tube used in experiment. The curtain can be either planar or perturbed in the horizontal plane (parallel to the shock direction) based on the shape of the slot. This setup generates a particle curtain with a volume fraction varying between 2 and 8 percent along its vertical height. A laser illuminates the curtain in vertical and horizontal planes. When the diaphragm separating the driver and the driven section is ruptured, shock waves with Mach numbers ranging from 1 to 2, depending on the pressure, propagate down the driven section and into test section. The phenomena following the shock wave impingement on the particle curtain are captured using an Apogee Alta U42 camera. This work is supported by the National Science Foundation Grant 1603915/1603326.
Injection Efficiency of Low-energy Particles at Oblique Shocks with a Focused Transport Model
NASA Astrophysics Data System (ADS)
Zuo, P.; Zhang, M.; Rassoul, H.
2013-12-01
There is strong evidence that a small portion of thermal and suprathermal particles from hot coronal material or remnants of previous solar energetic particle (SEP) events serve as the source of large SEP events (Desai et al. 2006). To build more powerful SEP models, it is necessary to model the detailed particle injection and acceleration process for source particles especially at lower energies. We present a test particle simulation on the injection and acceleration of low-energy suprathermal particles by Laminar nonrelativistic oblique shocks in the framework of the focused transport theory, which is proved to contain all necessary physics of shock acceleration, but avoid the limitation of diffusive shock acceleration (DSA). The injection efficiency as a function of Mach number, obliquity, injection speed, shock strength, cross-shock potential and the degree of turbulence is calculated. This test particle simulation proves that the focused transport theory is an extension of DSA theory with the capability of predicting the efficiency of particle injection. The results can be applied to modeling the SEP acceleration from source particles.
Jekova, Irena; Krasteva, Vessela; Ménétré, Sarah; Stoyanov, Todor; Christov, Ivaylo; Fleischhackl, Roman; Schmid, Johann-Jakob; Didon, Jean-Philippe
2009-07-01
This paper presents a bench study on a commercial automated external defibrillator (AED). The objective was to evaluate the performance of the defibrillation advisory system and its robustness against electromagnetic interferences (EMI) with central frequencies of 16.7, 50 and 60 Hz. The shock advisory system uses two 50 and 60 Hz band-pass filters, an adaptive filter to identify and suppress 16.7 Hz interference, and a software technique for arrhythmia analysis based on morphology and frequency ECG parameters. The testing process includes noise-free ECG strips from the internationally recognized MIT-VFDB ECG database that were superimposed with simulated EMI artifacts and supplied to the shock advisory system embedded in a real AED. Measurements under special consideration of the allowed variation of EMI frequency (15.7-17.4, 47-52, 58-62 Hz) and amplitude (1 and 8 mV) were performed to optimize external validity. The accuracy was reported using the American Heart Association (AHA) recommendations for arrhythmia analysis performance. In the case of artifact-free signals, the AHA performance goals were exceeded for both sensitivity and specificity: 99% for ventricular fibrillation (VF), 98% for rapid ventricular tachycardia (VT), 90% for slow VT, 100% for normal sinus rhythm, 100% for asystole and 99% for other non-shockable rhythms. In the presence of EMI, the specificity for some non-shockable rhythms (NSR, N) may be affected in some specific cases of a low signal-to-noise ratio and extreme frequencies, leading to a drop in the specificity with no more than 7% point. The specificity for asystole and the sensitivity for VF and rapid VT in the presence of any kind of 16.7, 50 or 60 Hz EMI simulated artifact were shown to reach the equivalence of sensitivity required for non-noisy signals. In conclusion, we proved that the shock advisory system working in a real AED operates accurately according to the AHA recommendations without artifacts and in the presence of EMI. The results may be affected for specificity in the case of a low signal-to-noise ratio or in some extreme frequency setting.
Reserves and trade jointly determine exposure to food supply shocks
NASA Astrophysics Data System (ADS)
Marchand, P.; Carr, J. A.; Dell'Angelo, J.; Fader, M.; Gephart, J.; Kummu, M.; Magliocca, N. R.; Porkka, M.; Puma, M. J.; Ratajczak, Z.; Rulli, M. C.; Seekell, D.; Suweis, S. S.; Tavoni, A.; D'Odorico, P.
2016-12-01
While a growing proportion of global food consumption is obtained through international trade, there is an ongoing debate on whether this increased reliance on trade benefits or hinders food security, and specifically, the ability of global food systems to absorb shocks due to local or regional losses of production. This paper introduces a model that simulates the short-term response to a food supply shock originating in a single country, which is partly absorbed through domestic reserves and consumption, and partly transmitted through the adjustment of trade flows. By applying the model to publicly-available data for the cereals commodity group over a 17-year period, we find that differential outcomes of supply shocks simulated through this time period are driven not only by the intensification of trade, but as importantly by changes in the distribution of reserves. Our analysis also identifies countries where trade dependency may accentuate the risk of food shortages from foreign production shocks; such risk could be reduced by increasing domestic reserves or importing food from a diversity of suppliers that possess their own reserves. This simulation-based model provides a framework to study the short-term, non-linear and out-of-equilibrium response of trade networks to supply shocks, and could be applied to specific scenarios of environmental or economic perturbations.
Reserves and Trade Jointly Determine Exposure to Food Supply Shocks
NASA Technical Reports Server (NTRS)
Marchand, Philippe; Carr, Joel A.; Dell'Angelo, Jampel; Fader, Marianela; Gephart, Jessica A.; Kummu, Matti; Magliocca, Nicholas; Porkka, Miina; Puma, Michael J.; Zak, Ratajczak
2016-01-01
While a growing proportion of global food consumption is obtained through international trade, there is an ongoing debate on whether this increased reliance on trade benefits or hinders food security, and specifically, the ability of global food systems to absorb shocks due to local or regional losses of production. This paper introduces a model that simulates the short-term response to a food supply shock originating in a single country, which is partly absorbed through decreases in domestic reserves and consumption, and partly transmitted through the adjustment of trade flows. By applying the model to publicly-available data for the cereals commodity group over a 17 year period, we find that differential outcomes of supply shocks simulated through this time period are driven not only by the intensification of trade, but as importantly by changes in the distribution of reserves. Our analysis also identifies countries where trade dependency may accentuate the risk of food shortages from foreign production shocks; such risk could be reduced by increasing domestic reserves or importing food from a diversity of suppliers that possess their own reserves. This simulation-based model provides a framework to study the short-term, nonlinear and out-of-equilibrium response of trade networks to supply shocks, and could be applied to specific scenarios of environmental or economic perturbations.
NASA Technical Reports Server (NTRS)
Halfon, M. S.; Kose, H.; Chiba, A.; Keshishian, H.
1997-01-01
We have developed a method to target gene expression in the Drosophila embryo to a specific cell without having a promoter that directs expression in that particular cell. Using a digitally enhanced imaging system to identify single cells within the living embryo, we apply a heat shock to each cell individually by using a laser microbeam. A 1- to 2-min laser treatment is sufficient to induce a heat-shock response but is not lethal to the heat-shocked cells. Induction of heat shock was measured in a variety of cell types, including neurons and somatic muscles, by the expression of beta-galactosidase from an hsp26-lacZ reporter construct or by expression of a UAS target gene after induction of hsGAL4. We discuss the applicability of this technique to ectopic gene expression studies, lineage tracing, gene inactivation studies, and studies of cells in vitro. Laser heat shock is a versatile technique that can be adapted for use in a variety of research organisms and is useful for any studies in which it is desirable to express a given gene in only a distinct cell or clone of cells, either transiently or constitutively, at a time point of choice.
Reserves and trade jointly determine exposure to food supply shocks
NASA Astrophysics Data System (ADS)
Marchand, Philippe; Carr, Joel A.; Dell'Angelo, Jampel; Fader, Marianela; Gephart, Jessica A.; Kummu, Matti; Magliocca, Nicholas R.; Porkka, Miina; Puma, Michael J.; Ratajczak, Zak; Rulli, Maria Cristina; Seekell, David A.; Suweis, Samir; Tavoni, Alessandro; D'Odorico, Paolo
2016-09-01
While a growing proportion of global food consumption is obtained through international trade, there is an ongoing debate on whether this increased reliance on trade benefits or hinders food security, and specifically, the ability of global food systems to absorb shocks due to local or regional losses of production. This paper introduces a model that simulates the short-term response to a food supply shock originating in a single country, which is partly absorbed through decreases in domestic reserves and consumption, and partly transmitted through the adjustment of trade flows. By applying the model to publicly-available data for the cereals commodity group over a 17 year period, we find that differential outcomes of supply shocks simulated through this time period are driven not only by the intensification of trade, but as importantly by changes in the distribution of reserves. Our analysis also identifies countries where trade dependency may accentuate the risk of food shortages from foreign production shocks; such risk could be reduced by increasing domestic reserves or importing food from a diversity of suppliers that possess their own reserves. This simulation-based model provides a framework to study the short-term, nonlinear and out-of-equilibrium response of trade networks to supply shocks, and could be applied to specific scenarios of environmental or economic perturbations.
F-15B in flight with X-33 Thermal Protection Systems (TPS) on Flight Test Fixture
NASA Technical Reports Server (NTRS)
1998-01-01
In-flight photo of the NASA F-15B used in tests of the X-33 Thermal Protection System (TPS) materials. Flying at subsonic speeds, the F-15B tests measured the air loads on the proposed X-33 protective materials. In contrast, shock loads testing investigated the local impact of the supersonic shock wave itself on the TPS materials. Similar tests had been done in 1985 for the space shuttle tiles, using an F-104 aircraft.
F-15B in flight with X-33 Thermal Protection Systems (TPS) on Flight Test Fixture
1998-05-14
In-flight photo of the NASA F-15B used in tests of the X-33 Thermal Protection System (TPS) materials. Flying at subsonic speeds, the F-15B tests measured the air loads on the proposed X-33 protective materials. In contrast, shock loads testing investigated the local impact of the supersonic shock wave itself on the TPS materials. Similar tests had been done in 1985 for the space shuttle tiles, using an F-104 aircraft.
Two-Fluid Description of Collisionless Perpendicular Shocks
NASA Astrophysics Data System (ADS)
Gomez, D. O.; Morales, L. F.; Dmitruk, P.; Bertucci, C.
2017-12-01
Collisionless shocks are ubiquitous in space physics and astrophysics, such as the bow shocks formed by the solar wind in front of planets, the termination shock at the heliospheric boundary or the supernova shock fronts expanding in the interstellar plasma. Although the one-fluid magnetohydrodynamic framework provides a reasonable description of the large scale structures of the upstream and downstream plasmas, it falls short of providing an adequate description of the internal structure of the shock. A more comprehensive description of the inner and outer features of collisionless shocks would require the use of kinetic theory. Nonetheless, in the present work we show that a complete two-fluid framework (considering the role of both ions and electrons in the dynamics) can properly capture some of the features observed in real shocks. For the specific case of perpendicular shocks, i.e. cases in which the magnetic field is perpendicular to the shock normal, we integrate the one-dimensional two-fluid MHD equations numerically, to describe the generation of shocks and their spatial structure along the shock normal. Starting from finite amplitude fast-magnetosonic waves, our simulations show the generation of a stationary fast-magnetosonic shock. More importantly, we show that the ramp thickness is of the order of a few electron inertial lengths. The parallel and perpendicular components of the self-consistent electric field are derived, and their role in accelerating particles is discussed.
NASA Astrophysics Data System (ADS)
Weingart, Robert
This thesis is about the validation of a computational fluid dynamics simulation of a ground vehicle by means of a low-budget coast-down test. The vehicle is built to the standards of the 2014 Formula SAE rules. It is equipped with large wings in the front and rear of the car; the vertical loads on the tires are measured by specifically calibrated shock potentiometers. The coast-down test was performed on a runway of a local airport and is used to determine vehicle specific coefficients such as drag, downforce, aerodynamic balance, and rolling resistance for different aerodynamic setups. The test results are then compared to the respective simulated results. The drag deviates about 5% from the simulated to the measured results. The downforce numbers show a deviation up to 18% respectively. Moreover, a sensitivity analysis of inlet velocities, ride heights, and pitch angles was performed with the help of the computational simulation.
Modeling of ion acceleration through drift and diffusion at interplanetary shocks
NASA Technical Reports Server (NTRS)
Decker, R. B.; Vlahos, L.
1986-01-01
A test particle simulation designed to model ion acceleration through drift and diffusion at interplanetary shocks is described. The technique consists of integrating along exact particle orbits in a system where the angle between the shock normal and mean upstream magnetic field, the level of magnetic fluctuations, and the energy of injected particles can assume a range of values. The technique makes it possible to study time-dependent shock acceleration under conditions not amenable to analytical techniques. To illustrate the capability of the numerical model, proton acceleration was considered under conditions appropriate for interplanetary shocks at 1 AU, including large-amplitude transverse magnetic fluctuations derived from power spectra of both ambient and shock-associated MHD waves.
Shock drift acceleration in the presence of waves
NASA Technical Reports Server (NTRS)
Decker, R. B.; Vlahos, L.
1985-01-01
Attention is given to the initial results of a model designed to study the modification of the scatter-free, shock drift acceleration of energetic test particles by wave activity in the vicinity of a quasi-perpendicular, fast-mode MHD shock. It is emphasized that the concept of magnetic moment conservation is a valid approximation only in the perpendicular and nearly perpendicular regimes, when the angle theta-Bn between the shock normal and the upstream magnetic field vector is in the range from 70 deg to 90 deg. The present investigation is concerned with one step in a program which is being developed to combine the shock drift and diffusive processes at a shock of arbitrary theta-Bn.
Portable fiber optic coupled Doppler interferometer system for detonation and shock wave diagnostics
NASA Technical Reports Server (NTRS)
Fleming, Kevin J.
1993-01-01
Testing and analysis of shock wave characteristics such as detonators and ground shock propagation frequently require a method of measuring velocity and displacement of the surface of interest. One method of measurement is Doppler interferometry. The VISAR (Velocity Interferometer System for Any Reflector) uses Doppler interferometry and has gained wide acceptance as the preferred tool for shock measurement. An important asset of VISAR is that it measures velocity and displacement nonintrusively.
NASA Technical Reports Server (NTRS)
Cole, G. L.; Neiner, G. H.; Baumbick, R. J.
1973-01-01
Experimental results of terminal shock and restart control system tests of a two-dimensional, twin-duct mixed compression inlet are presented. High-response (110-Hz bandwidth) overboard bypass doors were used, both as the variable to control shock position and as the means of disturbing the inlet airflow. An inherent instability in inlet shock position resulted in noisy feedback signals and thus restricted the terminal shock position control performance that was achieved. Proportional-plus-integral type controllers using either throat exit static pressure or shock position sensor feedback gave adequate low-frequency control. The inlet restart control system kept the terminal shock control loop closed throughout the unstart-restart transient. The capability to restart the inlet was non limited by the inlet instability.
Petrowski, Katja; Wintermann, Gloria-Beatrice; Petzold, Christian; Strasser, Ruth H; Guenther, Michael
2013-09-01
After the implantation of an implantable cardioverter-defibrillator (ICD), patients often fear therapeutic shock. The extent to which the experience of pre-hospital discharge (PHD) testing without anesthesia after ICD implantation, under observation by a physician, affects shock-related anxiety symptoms on follow-up has not been investigated as yet. In a prospective, randomized controlled trial, 44 patients with a primary prevention indication for an ICD were randomly assigned to experience PHD testing without anesthesia (n = 23) or with anesthesia (n = 21). Patients were longitudinally evaluated before (T(1)), shortly after (T(2)), and 3 months after (T(3)) PHD testing. During the respective PHD testings, the course of patients' serum cortisol release was measured. During PHD testing, patients without anesthesia showed a significantly higher serum cortisol release than patients with anesthesia (F(4,152) = 22.227, p < .001). Patients who experienced PHD testing without anesthesia felt significantly safer with the ICD (U = 165.000, p = .040), would significantly more often recommend other patients to undergo PHD testing without anesthesia (χ(2) = 12.013, p = .002), and showed significantly lower levels of general shock-related anxiety shortly afterward (F(1,42) = 6.327, p = .02) and 3 months after PHD testing (F(1,41) = 8.603, p = .005). The implementation of PHD testing without anesthesia is associated with lower anxiety concerning therapeutic shock. Patients should be advised about the effects of PHD testing without anesthesia on their psychological well-being in the long run.
NASA Astrophysics Data System (ADS)
Pelanti, Marica; Shyue, Keh-Ming
2015-05-01
The authors regret that one erroneous plot of the numerical results for a dodecane liquid-vapor shock tube problem was included in Fig. 3, p. 346, of the article [1]. Specifically, the graph of the vapor-liquid temperature difference (Tv -Tl) displayed at the bottom-right corner of Fig. 3 in [1] is not correct due to some wrong settings introduced in the temperature visualization tool. The error pertains solely to simulation data post-processing, and it is not related to the numerical methods and programs employed to run the experiment. We display here in Fig. 1 the correct temperature difference plot, generated from our original results computed for the dodecane shock tube test described in [1]. We think that is important to notify this correction to avoid any confusion.
NASA Astrophysics Data System (ADS)
Wu, N.; Wang, J. H.; Shen, L.
2017-03-01
This paper presents a numerical investigation on the three-dimensional interaction between two bow shock waves in two environments, i.e. ground high-enthalpy wind tunnel test and real space flight, using Fluent 15.0. The first bow shock wave, also called induced shock wave, which is generated by the leading edge of a hypersonic vehicle. The other bow shock wave can be deemed objective shock wave, which is generated by the cowl clip of hypersonic inlet, and in this paper the inlet is represented by a wedge shaped nose cone. The interaction performances including flow field structures, aerodynamic pressure and heating are analyzed and compared between the ground test and the real space flight. Through the analysis and comparison, we can find the following important phenomena: 1) Three-dimensional complicated flow structures appear in both cases, but only in the real space flight condition, a local two-dimensional type IV interaction appears; 2) The heat flux and pressure in the interaction region are much larger than those in the no-interaction region in both cases, but the peak values of the heat flux and pressure in real space flight are smaller than those in ground test. 3) The interaction region on the objective surface are different in the two cases, and there is a peak value displacement of 3 mm along the stagnation line.
Measurement of the Shock Velocity and Symmetry History in Decaying Shock Pulses
NASA Astrophysics Data System (ADS)
Baker, Kevin; Milovich, Jose; Jones, Oggie; Robey, Harry; Smalyuk, Vladimir; Casey, Daniel; Celliers, Peter; Clark, Dan; Giraldez, Emilio; Haan, Steve; Hamza, Alex; Berzak-Hopkins, Laura; Jancaitis, Ken; Kroll, Jeremy; Lafortune, Kai; MacGowan, Brian; Macphee, Andrew; Moody, John; Nikroo, Abbas; Peterson, Luc; Raman, Kumar; Weber, Chris; Widmayer, Clay
2014-10-01
Decaying first shock pulses are predicted in simulations to provide more stable implosions and still achieve a low adiabat in the fuel, enabling a higher fuel compression similar to ``low foot'' laser pulses. The first step in testing these predictions was to measure the shock velocity for both a three shock and a four shock adiabat-shaped pulse in a keyhole experimental platform. We present measurements of the shock velocity history, including the decaying shock velocity inside the ablator, and compare it with simulations, as well as with previous low and high foot pulses. Using the measured pulse shape, the predicted adiabat from simulations is presented and compared with the calculated adiabat from low and high foot laser pulse shapes. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Bragard, Jean; Simic, Ana; Elorza, Jorge; Grigoriev, Roman O.; Cherry, Elizabeth M.; Gilmour, Robert F.; Otani, Niels F.; Fenton, Flavio H.
2013-12-01
In this article, we compare quantitatively the efficiency of three different protocols commonly used in commercial defibrillators. These are based on monophasic and both symmetric and asymmetric biphasic shocks. A numerical one-dimensional model of cardiac tissue using the bidomain formulation is used in order to test the different protocols. In particular, we performed a total of 4.8 × 106 simulations by varying shock waveform, shock energy, initial conditions, and heterogeneity in internal electrical conductivity. Whenever the shock successfully removed the reentrant dynamics in the tissue, we classified the mechanism. The analysis of the numerical data shows that biphasic shocks are significantly more efficient (by about 25%) than the corresponding monophasic ones. We determine that the increase in efficiency of the biphasic shocks can be explained by the higher proportion of newly excited tissue through the mechanism of direct activation.
Laser measurements of bacterial endospore destruction from shock waves
NASA Astrophysics Data System (ADS)
Lappas, Petros P.; McCartt, A. Daniel; Gates, Sean D.; Jeffries, Jay B.; Hanson, Ronald K.
2013-12-01
The effects of shock waves on bioaerosols containing endospores were measured by combined laser absorption and scattering. Experiments were conducted in the Stanford aerosol shock tube for post-shock temperatures ranging from 400 K to 1100 K. Laser intensity measurements through the test section of the shock tube at wavelengths of 266 and 665 nm provided real-time monitoring of the morphological changes (includes changes in shape, structure and optical properties) in the endospores. Scatter of the visible light measured the integrity of endospore structure, while absorption of the UV light provided a measure of biochemicals released when endospores ruptured. For post-shock temperatures above 750 K the structural breakdown of Bacillus atrophaeus (BA) endospores was observed. A simple theoretical model using laser extinction is presented for determining the fraction of endospores that are ruptured by the shock waves. In addition, mechanisms of endospore mortality preceding their disintegration due to shock waves are discussed.
Grain Destruction in a Supernova Remnant Shock Wave
NASA Technical Reports Server (NTRS)
Raymond, John C.; Ghavamian, Parviz; Williams, Brian J.; Blair, William P.; Borkowski, Kazimierz J.; Gaetz, Terrance J.; Sankrit, Ravi
2014-01-01
Dust grains are sputtered away in the hot gas behind shock fronts in supernova remnants, gradually enriching the gas phase with refractory elements. We have measured emission in C IV (lambda)1550 from C atoms sputtered from dust in the gas behind a non-radiative shock wave in the northern Cygnus Loop. Overall, the intensity observed behind the shock agrees approximately with predictions from model calculations that match the Spitzer 24 micron and the X-ray intensity profiles. Thus these observations confirm the overall picture of dust destruction in SNR shocks and the sputtering rates used in models. However, there is a discrepancy in that the CIV intensity 10'' behind the shock is too high compared to the intensities at the shock and 25'' behind it. Variations in the density, hydrogen neutral fraction and the dust properties over parsec scales in the pre- shock medium limit our ability to test dust destruction models in detail.
Effect of Shockwave Curvature on Run Distance Observed with a Modified Wedge Test
NASA Astrophysics Data System (ADS)
Lee, Richard; Dorgan, Robert; Sutherland, Gerrit; Benedetta, Ashley; Milby, Christopher
2011-06-01
The effect of wave curvature on shock initiation in PBXN-110 was investigated using a modified wedge test configuration. Various thicknesses of PBXN-110 donor slabs were used to define the shockwave curvature introduced to wedge samples of the same explosive. The donor slabs were initiated with line-wave generators so that the introduced shock would be the same shape, magnitude and duration across the entire input surface of the wedge. The shock parameters were varied for a given donor thickness via different widths of PMMA spacers placed between the donor and the wedge. A framing camera was used to observe where initiation occurred along the face of the wedge. Initiation always occurred at the center of the shock front instead of the sides like that reported by others using a much smaller test format. Results were compared to CTH calculations to indicate if there were effects associated with highly curved shock fronts that could not be adequately predicted. The run distance predicted in CTH for a 50.8 mm thick donor slab (low curvature) compared favorably with experimental results. However, results from thinner donor slabs (higher curvature) indicate a more sensitive behavior than the simulations predicted.
Effect of shockwave curvature on run distance observed with a modified wedge test
NASA Astrophysics Data System (ADS)
Lee, Richard; Dorgan, Robert J.; Sutherland, Gerrit; Benedetta, Ashley; Milby, Christopher
2012-03-01
The effect of wave curvature on shock initiation in PBXN-110 was investigated using a modified wedge test configuration. Various widths of PBXN-110 donor slabs were used to define the shockwave curvature introduced to wedge samples of the same explosive. The donor slabs were initiated with line-wave generators so that the shock from the donor would be the same shape, magnitude and duration across the entire input surface of the wedge. The shock parameters were varied for a given donor with PMMA spacers placed between the donor and the wedge sample. A high-speed electronic framing camera was used to observe where initiation occurred along the face of the wedge. Initiation always occurred at the center of the shock front instead of along the sides like that reported by others using a much smaller test format. Results were compared to CTH calculations to indicate if there were effects associated with highly curved shock fronts that could not be adequately predicted. The run distance predicted in CTH for a 50.8 mm wide donor slab (low curvature) compared favorably with experimental results. However, results from thinner donor slabs (higher curvature) indicate a more sensitive behavior than the simulations predicted.
Réfega, Susana; Girard-Misguich, Fabienne; Bourdieu, Christiane; Péry, Pierre; Labbé, Marie
2003-04-02
Specific antibodies were produced ex vivo from intestinal culture of Eimeria tenella infected chickens. The specificity of these intestinal antibodies was tested against different parasite stages. These antibodies were used to immunoscreen first generation schizont and sporozoite cDNA libraries permitting the identification of new E. tenella antigens. We obtained a total of 119 cDNA clones which were subjected to sequence analysis. The sequences coding for the proteins inducing local immune responses were compared with nucleotide or protein databases and with expressed sequence tags (ESTs) databases. We identified new Eimeria genes coding for heat shock proteins, a ribosomal protein, a pyruvate kinase and a pyridoxine kinase. Specific features of other sequences are discussed.
Dynamic comparisons of piezoelectric ejecta diagnostics
NASA Astrophysics Data System (ADS)
Buttler, W. T.; Zellner, M. B.; Olson, R. T.; Rigg, P. A.; Hixson, R. S.; Hammerberg, J. E.; Obst, A. W.; Payton, J. R.; Iverson, A.; Young, J.
2007-03-01
We investigate the quantitative reliability and precision of three different piezoelectric technologies for measuring ejected areal mass from shocked surfaces. Specifically we performed ejecta measurements on Sn shocked at two pressures, P ≈215 and 235 kbar. The shock in the Sn was created by launching a impactor with a powder gun. We self-compare and cross-compare these measurements to assess the ability of these probes to precisely determine the areal mass ejected from a shocked surface. We demonstrate the precision of each technology to be good, with variabilities on the order of ±10%. We also discuss their relative accuracy.
High-order shock-fitted detonation propagation in high explosives
NASA Astrophysics Data System (ADS)
Romick, Christopher M.; Aslam, Tariq D.
2017-03-01
A highly accurate numerical shock and material interface fitting scheme composed of fifth-order spatial and third- or fifth-order temporal discretizations is applied to the two-dimensional reactive Euler equations in both slab and axisymmetric geometries. High rates of convergence are not typically possible with shock-capturing methods as the Taylor series analysis breaks down in the vicinity of discontinuities. Furthermore, for typical high explosive (HE) simulations, the effects of material interfaces at the charge boundary can also cause significant computational errors. Fitting a computational boundary to both the shock front and material interface (i.e. streamline) alleviates the computational errors associated with captured shocks and thus opens up the possibility of high rates of convergence for multi-dimensional shock and detonation flows. Several verification tests, including a Sedov blast wave, a Zel'dovich-von Neumann-Döring (ZND) detonation wave, and Taylor-Maccoll supersonic flow over a cone, are utilized to demonstrate high rates of convergence to nontrivial shock and reaction flows. Comparisons to previously published shock-capturing multi-dimensional detonations in a polytropic fluid with a constant adiabatic exponent (PF-CAE) are made, demonstrating significantly lower computational error for the present shock and material interface fitting method. For an error on the order of 10 m /s, which is similar to that observed in experiments, shock-fitting offers a computational savings on the order of 1000. In addition, the behavior of the detonation phase speed is examined for several slab widths to evaluate the detonation performance of PBX 9501 while utilizing the Wescott-Stewart-Davis (WSD) model, which is commonly used in HE modeling. It is found that the thickness effect curve resulting from this equation of state and reaction model using published values is dramatically more steep than observed in recent experiments. Utilizing the present fitting strategy, in conjunction with a nonlinear optimizer, a new set of reaction rate parameters improves the correlation of the model to experimental results. Finally, this new model is tested against two dimensional slabs as a validation test.
NASA Astrophysics Data System (ADS)
Font, J. A.; Ibanez, J. M.; Marti, J. M.
1993-04-01
Some numerical solutions via local characteristic approach have been obtained describing multidimensional flows. These solutions have been used as tests of a two- dimensional code which extends some high-resolution shock-captunng methods, designed recently to solve nonlinear hyperbolic systems of conservation laws. K words: HYDRODYNAMICS - BLACK HOLE - RELATIVITY - SHOCK WAVES
Child Growth, Shocks, and Food Aid in Rural Ethiopia. World Bank Policy Research Working Paper.
ERIC Educational Resources Information Center
Yamano, Takashi; Alderman, Harold; Christiaensen, Luc
Children that grow slowly experience poorer psychomotor development and tend to have delayed school enrollment and lower scores on cognitive tests. Rural households in developing countries often are unable to protect their consumption against temporary income shocks, such as droughts. Such income shocks have been shown to have negative effects on…
Behavior of Materials Under Conditions of Thermal Stress
NASA Technical Reports Server (NTRS)
Manson, S S
1954-01-01
A review is presented of available information on the behavior of brittle and ductile materials under conditions of thermal stress and thermal shock. For brittle materials, a simple formula relating physical properties to thermal-shock resistance is derived and used to determine the relative significance of two indices currently in use for rating materials. For ductile materials, thermal-shock resistance depends upon the complex interrelation among several metallurgical variables which seriously affect strength and ductility. These variables are briefly discussed and illustrated from literature sources. The importance of simulating operating conditions in tests for rating materials is especially to be emphasized because of the importance of testing conditions in metallurgy. A number of practical methods that have been used to minimize the deleterious effects of thermal stress and thermal shock are outlined.
The effect of suppressors and muzzle brakes on shock wave strength
NASA Astrophysics Data System (ADS)
Phan, K. C.; Stollery, J. L.
Experimental simulations of a gun blast were performed in the course of an optimization study of shock-wave suppressor and muzzle-brake geometry. A single-spark schlieren system was used to photograph the shock waves emerging from a 32-mm shock tube. The suppressor systems tested with respect to the overpressure level included a perforated tube enclosed in an expansion chamber, a cup-and-box suppressor, and noise-absorbent materials inside a suppressor; high suppression efficiency was observed for the first two. Recoil simulation tests, performed with plain and pyramidal baffles, disk, and cylinder, show that the blast level is generally higher for a more efective muzzle brake. An optimum distance from the muzzle to the brake is suggested to be in the region of one caliber.
Viellard, Juliette; Baldo, Marcus Vinicius C; Canteras, Newton Sabino
2016-12-15
Previous studies from our group have shown that risk assessment behaviors are the primary contextual fear responses to predatory and social threats, whereas freezing is the main contextual fear response to physically harmful events. To test contextual fear responses to a predator or aggressive conspecific threat, we developed a model that involves placing the animal in an apparatus where it can avoid the threat-associated environment. Conversely, in studies that use shock-based fear conditioning, the animals are usually confined inside the conditioning chamber during the contextual fear test. In the present study, we tested shock-based contextual fear responses using two different behavioral testing conditions: confining the animal in the conditioning chamber or placing the animal in an apparatus with free access to the conditioning compartment. Our results showed that during the contextual fear test, the animals confined to the shock chamber exhibited significantly more freezing. In contrast, the animals that could avoid the conditioning compartment displayed almost no freezing and exhibited risk assessment responses (i.e., crouch-sniff and stretch postures) and burying behavior. In addition, the animals that were able to avoid the shock chamber had increased Fos expression in the juxtadorsomedial lateral hypothalamic area, the dorsomedial part of the dorsal premammillary nucleus and the lateral and dorsomedial parts of the periaqueductal gray, which are elements of a septo/hippocampal-hypothalamic-brainstem circuit that is putatively involved in mediating contextual avoidance. Overall, the present findings show that testing conditions significantly influence both behavioral responses and the activation of circuits involved in contextual avoidance. Copyright © 2016 Elsevier B.V. All rights reserved.
Studies of aerothermal loads generated in regions of shock/shock interaction in hypersonic flow
NASA Technical Reports Server (NTRS)
Holden, Michael S.; Moselle, John R.; Lee, Jinho
1991-01-01
Experimental studies were conducted to examine the aerothermal characteristics of shock/shock/boundary layer interaction regions generated by single and multiple incident shocks. The presented experimental studies were conducted over a Mach number range from 6 to 19 for a range of Reynolds numbers to obtain both laminar and turbulent interaction regions. Detailed heat transfer and pressure measurements were made for a range of interaction types and incident shock strengths over a transverse cylinder, with emphasis on the 3 and 4 type interaction regions. The measurements were compared with the simple Edney, Keyes, and Hains models for a range of interaction configurations and freestream conditions. The complex flowfields and aerothermal loads generated by multiple-shock impingement, while not generating as large peak loads, provide important test cases for code prediction. The detailed heat transfer and pressure measurements proved a good basis for evaluating the accuracy of simple prediction methods and detailed numerical solutions for laminar and transitional regions or shock/shock interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelsen, Nicholas H.; Kolb, James D.; Kulkarni, Akshay G.
Mechanical component response to shock environments must be predictable in order to ensure reliability and safety. Whether the shock input results from accidental drops during transportation to projectile impact scenarios, the system must irreversibly transition into a safe state that is incapable of triggering the component . With this critical need in mind, the 2017 Nuclear Weapons Summer Product Realization Institute (NW SPRINT) program objective sought the design of a passive shock failsafe with emphasis on additively manufactured (AM) components. Team Advanced and Exploratory (A&E) responded to the challenge by designing and delivering multiple passive shock sensing mech anisms thatmore » activate within a prescribed mechanical shock threshold. These AM failsafe designs were tuned and validated using analytical and computational techniques including the shock response spectrum (SRS) and finite element analysis (FEA). After rapid prototyping, the devices experienced physical shock tests conducted on Sandia drop tables to experimentally verify performance. Keywords: Additive manufacturing, dynamic system, failsafe, finite element analysis, mechanical shock, NW SPRINT, shock respon se spectrum« less
Development and Field Test of Task-Based MOS-Specific Criterion Measures. Volume 1. Appendixes A-E
1988-04-01
WOUND 081-831-1033 APPLY A DRESSING TO AN OPEN HEAD WOUND 081-831-1005 PREVENT SHOCK 081-831-1034 SPLINT A SUSPECTED FRACTURE 081-831-1007 GTVE FIRST...Check seat belts and shoulder harnesses Check unit vehicle/trailer blackout system Service refrigeration unit Check and clean cab interior/exterior...DRESSING TO AN OPEN HEAD WOUND 081-831-1040 TRANSPORT A CASUALTY USING A ONE MAN CARRY 081-831-1041 TRANSPORT A CASUALTY USING A TWO MAN CARRY OR
1995-05-01
Hulshof , 1990; and Milby and Spear, 1974). Some studies focus on subjective symptoms of health problems, such as backache. Other studies 2 investigate...syndromes, rather than causing specific pathologies (Seidel and Heide, 1986; Dupuis and Zerlett, 1986; Hulshof and van Zanten, 1987). Although some...In: AGARD Conference Proceedings No.378 on Backache and Back Discomfort. Pozzuoli, Italy: NATO. 82 Boshuizen, H.C., Bongers, P.M. and Hulshof , C.T.J
Archer, T.; Danysz, W.; Jonsson, G.; Minor, B. G.; Post, C.
1986-01-01
The effects of the alpha-adrenoceptor antagonists prazosin, phentolamine and yohimbine upon 5-methoxy-N,N-dimethyltryptamine (5-MeODMT)-induced analgesia were tested in the hot-plate, tail-flick and shock-titration tests of nociception with rats. Intrathecally injected yohimbine and phentolamine blocked or attenuated the analgesia produced by systemic administration of 5-MeODMT in all three nociceptive tests. Intrathecally administered prazosin attenuated the analgesic effects of 5-MeODMT in the hot-plate and tail-flick tests, but not in the shock titration test. Intrathecal yohimbine showed a dose-related lowering of pain thresholds in saline and 5-MeODMT-treated animals. Phentolamine and prazosin produced normal dose-related curves in the hot-plate test and biphasic effects in the shock titration and tail-flick tests. These results demonstrate a functional interaction between alpha 2-adrenoceptors and 5-HT agonist-induced analgesia at a spinal level in rats. PMID:2877697
Planar blast scaling with condensed-phase explosives in a shock tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Scott L
2011-01-25
Blast waves are strong shock waves that result from large power density deposition into a fluid. The rapid energy release of high-explosive (HE) detonation provides sufficiently high power density for blast wave generation. Often it is desirable to quantify the energy released by such an event and to determine that energy relative to other reference explosives to derive an explosive-equivalence value. In this study, we use condensed-phase explosives to drive a blast wave in a shock tube. The explosive material and quantity were varied to produce blast waves of differing strengths. Pressure transducers at varying lengths measured the post-shock pressure,more » shock-wave arrival time and sidewall impulse associated with each test. Blast-scaling concepts in a one-dimensional geometry were then used to both determine the energy release associated with each test and to verify the scaling of the shock position versus time, overpressure versus distance, and impulse. Most blast scaling measurements to-date have been performed in a three-dimensional geometry such as a blast arena. Testing in a three-dimensional geometry can be challenging, however, as spherical shock-wave symmetry is required for good measurements. Additionally, the spherical wave strength decays rapidly with distance and it can be necessary to utilize larger (several kg) quantities of explosive to prevent significant decay from occurring before an idealized blast wave has formed. Such a mode of testing can be expensive, require large quantities of explosive, and be limited by both atmospheric conditions (such as rain) and by noise complaints from the population density near the test arena. Testing is possible in more compact geometries, however. Non-planar blast waves can be formed into a quasi-planar shape by confining the shock diffraction with the walls of a shock tube. Regardless of the initial form, the wave shape will begin to approximate a planar front after successive wave reflections from the tube walls. Such a technique has previously been used to obtain blast scaling measurements in the planar geometry with gaseous explosives and the condensed-phase explosive nitroguanidine. Recently, there has been much interest in the blast characterization of various non-ideal high explosive (NIHE) materials. With non-ideals, the detonation reaction zone is significantly larger (up to several cm for ANFO) than more ideal explosives. Wave curvature, induced by charge-geometry, can significantly affect the energy release associated with NIHEs. To measure maximum NIHE energy release accurately, it is desirable to minimize any such curvature and, if possible, to overdrive the detonation shock to ensure completion of chemical reactions ahead of the sonic locus associated with the reaction zone. This is achieved in the current study through use of a powerful booster HE and a charge geometry consisting of short cylindrical lengths of NIHE initiated along the charge centerline.« less
Shock Generation and Control Using DBD Plasma Actuators
NASA Technical Reports Server (NTRS)
Patel, Mehul P.; Cain, Alan B.; Nelson, Christopher C.; Corke, Thomas C.; Matlis, Eric H.
2012-01-01
This report is the final report of a NASA Phase I SBIR contract, with some revisions to remove company proprietary data. The Shock Boundary Layer Interaction (SBLI) phenomena in a supersonic inlet involve mutual interaction of oblique shocks with boundary layers, forcing the boundary layer to separate from the inlet wall. To improve the inlet efficiency, it is desired to prevent or delay shock-induced boundary layer separation. In this effort, Innovative Technology Applications Company (ITAC), LLC and the University of Notre Dame (UND) jointly investigated the use of dielectric-barrier-discharge (DBD) plasma actuators for control of SBLI in a supersonic inlet. The research investigated the potential for DBD plasma actuators to suppress flow separation caused by a shock in a turbulent boundary layer. The research involved both numerical and experimental investigations of plasma flow control for a few different SBLI configurations: (a) a 12 wedge flow test case at Mach 1.5 (numerical and experimental), (b) an impinging shock test case at Mach 1.5 using an airfoil as a shock generator (numerical and experimental), and (c) a Mach 2.0 nozzle flow case in a simulated 15 X 15 cm wind tunnel with a shock generator (numerical). Numerical studies were performed for all three test cases to examine the feasibility of plasma flow control concepts. These results were used to guide the wind tunnel experiments conducted on the Mach 1.5 12 degree wedge flow (case a) and the Mach 1.5 impinging shock test case (case b) which were at similar flow conditions as the corresponding numerical studies to obtain experimental evidence of plasma control effects for SBLI control. The experiments also generated data that were used in validating the numerical studies for the baseline cases (without plasma actuators). The experiments were conducted in a Mach 1.5 test section in the University of Notre Dame Hessert Laboratory. The simulation results from cases a and b indicated that multiple spanwise actuators in series and at a voltage of 75 kVp-p could fully suppress the flow separation downstream of the shock. The simulation results from case c showed that the streamwise plasma actuators are highly effective in creating pairs of counter-rotating vortices, much like the mechanical vortex generators, and could also potentially have beneficial effects for SBLI control. However, to achieve these effects, the positioning and the quantity of the DBD actuators used must be optimized. The wind tunnel experiments mapped the baseline flow with good agreement to the numerical simulations. The experimental results were conducted with spanwise actuators for cases a and b, but were limited by the inability to generate a sufficiently high voltage due to arcing in the wind-tunnel test-section. The static pressure in the tunnel was lower than the static pressure in an inlet at flight conditions, promoting arching and degrading the actuator performance.
Shock-isolation material selection for electronic packages in hard-target environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stotts, Jarrett Eugene
High velocity munitions and kinetic penetrators experience monumental external forces, impulses, and accelerations. The hard target environment is immensely taxing on sophisticated electronic components and recorders designed to retrieve valuable data related to the systems performance and characteristics in the periods of flight, impact, and post-impact. Such electronic systems have upper limits of overall shock intensity which, if exceeded, will either shorten the operating life of the parts or risk destruction resulting in loss of both the data and the principal value of the recorder. The focus of this project was to refine the categorization of leading material types formore » encapsulation and passive shock isolation and implement them in a method useable for a wide variety of environments. Namely, a design methodology capable of being tailored to the specific impact conditions to maximize the lively hood of sensitive electronics and the information recorded. The results of the study concluded that the materials observed under consistent dynamic high strain rate tests, which include Conathane® EN-4/9, Slygard®-184, and Stycast™-2651, behaved well in certain aspects of energy transmission and shock when considering the frequency environment or package coupled with the isolation material’s application. Key points about the implementation of the materials in extreme shock environments is discussed with the connection to energy analysis, loss attributes, and pulse transmissibility modeling. However, attempts to model the materials solely based on energy transmissibility in the frequency domain using only external experimental data and simplified boundary conditions was not found to be consistent with that acquired from the pressure bar experiments. Further work will include the addition of further material experimentation of the encapsulants in other frequency and temperature states, confined and pre-load boundary states, and composite constructions.« less
DSMC Simulations of Hypersonic Flows With Shock Interactions and Validation With Experiments
NASA Technical Reports Server (NTRS)
Moss, James N.; Bird, Graeme A.
2004-01-01
The capabilities of a relatively new direct simulation Monte Carlo (DSMC) code are examined for the problem of hypersonic laminar shock/shock and shock/boundary layer interactions, where boundary layer separation is an important feature of the flow. Flow about two model configurations is considered, where both configurations (a biconic and a hollow cylinder-flare) have recent published experimental measurements. The computations are made by using the DS2V code of Bird, a general two-dimensional/axisymmetric time accurate code that incorporates many of the advances in DSMC over the past decade. The current focus is on flows produced in ground-based facilities at Mach 12 and 16 test conditions with nitrogen as the test gas and the test models at zero incidence. Results presented highlight the sensitivity of the calculations to grid resolutions, sensitivity to physical modeling parameters, and comparison with experimental measurements. Information is provided concerning the flow structure and surface results for the extent of separation, heating, pressure, and skin friction.
DSMC Simulations of Hypersonic Flows With Shock Interactions and Validation With Experiments
NASA Technical Reports Server (NTRS)
Moss, James N.; Bird, Graeme A.
2004-01-01
The capabilities of a relatively new direct simulation Monte Carlo (DSMC) code are examined for the problem of hypersonic laminar shock/shock and shock/boundary layer interactions, where boundary layer separation is an important feature of the flow. Flow about two model configurations is considered, where both configurations (a biconic and a hollow cylinder-flare) have recent published experimental measurements. The computations are made by using the DS2V code of Bird, a general two-dimensional/axisymmetric time accurate code that incorporates many of the advances in DSMC over the past decade. The current focus is on flows produced in ground-based facilities at Mach 12 and 16 test conditions with nitrogen as the test gas and the test models at zero incidence. Results presented highlight the sensitivity of the calculations to grid resolution, sensitivity to physical modeling parameters, and comparison with experimental measurements. Information is provided concerning the flow structure and surface results for the extent of separation, heating, pressure, and skin friction.
Ignition-and-Growth Modeling of NASA Standard Detonator and a Linear Shaped Charge
NASA Technical Reports Server (NTRS)
Oguz, Sirri
2010-01-01
The main objective of this study is to quantitatively investigate the ignition and shock sensitivity of NASA Standard Detonator (NSD) and the shock wave propagation of a linear shaped charge (LSC) after being shocked by NSD flyer plate. This combined explosive train was modeled as a coupled Arbitrary Lagrangian-Eulerian (ALE) model with LS-DYNA hydro code. An ignition-and-growth (I&G) reactive model based on unreacted and reacted Jones-Wilkins-Lee (JWL) equations of state was used to simulate the shock initiation. Various NSD-to-LSC stand-off distances were analyzed to calculate the shock initiation (or failure to initiate) and detonation wave propagation along the shaped charge. Simulation results were verified by experimental data which included VISAR tests for NSD flyer plate velocity measurement and an aluminum target severance test for LSC performance verification. Parameters used for the analysis were obtained from various published data or by using CHEETAH thermo-chemical code.
NASA Astrophysics Data System (ADS)
Alay, E.; Skotak, M.; Misistia, A.; Chandra, N.
2018-01-01
Dynamic loads on specimens in live-fire conditions as well as at different locations within and outside compressed-gas-driven shock tubes are determined by both static and total blast overpressure-time pressure pulses. The biomechanical loading on the specimen is determined by surface pressures that combine the effects of static, dynamic, and reflected pressures and specimen geometry. Surface pressure is both space and time dependent; it varies as a function of size, shape, and external contour of the specimens. In this work, we used two sets of specimens: (1) anthropometric dummy head and (2) a surrogate rodent headform instrumented with pressure sensors and subjected them to blast waves in the interior and at the exit of the shock tube. We demonstrate in this work that while inside the shock tube the biomechanical loading as determined by various pressure measures closely aligns with live-fire data and shock wave theory, significant deviations are found when tests are performed outside.
Test of a new heat-flow equation for dense-fluid shock waves.
Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon
2010-09-21
Using a recently proposed equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, we model shockwave propagation in the dense Lennard-Jones fluid. Disequilibrium among the three components of temperature, namely, the difference between the kinetic temperature in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, gives rise to a new transport (equilibration) mechanism not seen in usual one-dimensional heat-flow situations. The modification of the heat-flow equation was tested earlier for the case of strong shock waves in the ideal gas, which had been studied in the past and compared to Navier-Stokes-Fourier solutions. Now, the Lennard-Jones fluid, whose equation of state and transport properties have been determined from independent calculations, allows us to study the case where potential, as well as kinetic contributions are important. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations under strong shock wave conditions, compared to Navier-Stokes.
NASA Astrophysics Data System (ADS)
Xin, D. Y.; Komatsu, Keiji; Abe, Keita; Costa, Takashi; Ikeda, Yutaka; Nakamura, Atsushi; Ohshio, Shigeo; Saitoh, Hidetoshi
2017-03-01
Recently, a new deposition technique using a metal-ethylenediamine tetraacetic acid (EDTA) complex has been developed. In this study, the heat-shock properties of metal-oxide films synthesized from a metal-EDTA complex were investigated. Y2O3 films were synthesized on stainless-steel (SUS) substrate from EDTA•Y•H through the combustion of H2-O2 gas. A cyclic heat-shock test was conducted on the fabricated Y2O3 films through exposure to the H2-O2 flame. The existence of Y2O3 crystals was confirmed. Surface cracks or damages were not observed in the samples after the cyclic thermal test. Although the number of cross-sectional cracks, crack lengths, and cracks per unit area was increased by the heat shock, delaminations were not observed in the Y2O3 films. The results show that the prepared Y2O3 films have high thermal-shock resistance and are suitable for use as thermal barrier coatings.
Shock tube measurements of specific reaction rates in branched chain CH4-CO-O2 system
NASA Technical Reports Server (NTRS)
Brabbs, T. A.; Brokaw, R. S.
1974-01-01
Rate constants of two elementary bimolecular reactions involved in the oxidation of methane were determined by monitoring the exponential growth of CO flame band emission behind incident shocks in three suitably chosen gas mixtures.
Grillon, Christian; O'Connell, Katherine; Lieberman, Lynne; Alvarez, Gabriella; Geraci, Marilla; Pine, Daniel S; Ernst, Monique
2017-10-01
Delineating specific clinical phenotypes of anxiety disorders is a crucial step toward better classification and understanding of these conditions. The present study sought to identify differential aversive responses to predictable and unpredictable threat of shock in healthy comparisons and in non-medicated anxiety patients with and without a history of panic attacks (PAs). 143 adults (72 healthy controls; 71 patients with generalized anxiety disorder (GAD) or/and social anxiety disorder (SAD), 24 with and 47 without PAs) were exposed to three conditions: 1) predictable shocks signaled by a cue, 2) unpredictable shocks, and 3) no shock. Startle magnitude was used to assess aversive responses. Across disorders, a PA history was specifically associated with hypersensitivity to unpredictable threat. By disorder, SAD was associated with hypersensitivity to predictable threat, whereas GAD was associated with exaggerated baseline startle. These results identified three physiological patterns. The first is hypersensitivity to unpredictable threat in individuals with PAs. The second is hypersensitivity to predictable threat, which characterizes SAD. The third is enhanced baseline startle in GAD, which may reflect propensity for self-generated anxious thoughts in the absence of imminent danger. These results inform current thinking by linking specific clinical features to particular physiology profiles.
Experiments in a Combustion-Driven Shock Tube with an Area Change
NASA Astrophysics Data System (ADS)
Schmidt, B. E.; Bobbitt, B.; Parziale, N. J.; Shepherd, J. E.
Shock tubes are versatile and useful tools for studying high temperature gas dynamics and the production of hypervelocity flows. High shock speeds are desirable for creating higher enthalpy, pressure, and temperature in the test gas which makes the study of thermo-chemical effects on fluid dynamics possible. Independent of construction and operational cost, free-piston drivers, such as the one used in the T5 facility at Caltech, give the best performance [3]. The high operational cost and long turnaround time of such a facility make a more economical option desirable for smaller-scale testing.
NASA Astrophysics Data System (ADS)
Berg, Christopher; Lagutchev, Alexei; Fu, Yuanxi; Dlott, Dana
2012-03-01
Ultrafast shock compression vibrational spectroscopy experiments with molecular monolayers provide atomic-scale time and space resolution, which enables critical testing of reactive molecular simulations. Since the origination of this project, we have greatly improved the ability to detect shocked monolayers by nonlinear coherent vibrational spectroscopy with nonresonant suppression. In this study, we show new results on a nitroaromatic monolayer, where the nitro symmetric stretch is probed. A small frequency blue-shift under shock conditions compared to measurements with static high pressure shows the shock is ~1 GPa. The ability to flash-preheat the monolayer by several hundred K is demonstrated. In order to observe shock monolayer chemistry in real time, along with pre-heating, the shock pressure needs to be increased and methods to do so are described.
Note: A table-top blast driven shock tube
NASA Astrophysics Data System (ADS)
Courtney, Michael W.; Courtney, Amy C.
2010-12-01
The prevalence of blast-induced traumatic brain injury in conflicts in Iraq and Afghanistan has motivated laboratory scale experiments on biomedical effects of blast waves and studies of blast wave transmission properties of various materials in hopes of improving armor design to mitigate these injuries. This paper describes the design and performance of a table-top shock tube that is more convenient and widely accessible than traditional compression driven and blast driven shock tubes. The design is simple: it is an explosive driven shock tube employing a rifle primer that explodes when impacted by the firing pin. The firearm barrel acts as the shock tube, and the shock wave emerges from the muzzle. The small size of this shock tube can facilitate localized application of a blast wave to a subject, tissue, or material under test.
Note: A table-top blast driven shock tube.
Courtney, Michael W; Courtney, Amy C
2010-12-01
The prevalence of blast-induced traumatic brain injury in conflicts in Iraq and Afghanistan has motivated laboratory scale experiments on biomedical effects of blast waves and studies of blast wave transmission properties of various materials in hopes of improving armor design to mitigate these injuries. This paper describes the design and performance of a table-top shock tube that is more convenient and widely accessible than traditional compression driven and blast driven shock tubes. The design is simple: it is an explosive driven shock tube employing a rifle primer that explodes when impacted by the firing pin. The firearm barrel acts as the shock tube, and the shock wave emerges from the muzzle. The small size of this shock tube can facilitate localized application of a blast wave to a subject, tissue, or material under test.
Inferring Pre-shock Acoustic Field From Post-shock Pitot Pressure Measurement
NASA Astrophysics Data System (ADS)
Wang, Jian-Xun; Zhang, Chao; Duan, Lian; Xiao, Heng; Virginia Tech Team; Missouri Univ of Sci; Tech Team
2017-11-01
Linear interaction analysis (LIA) and iterative ensemble Kalman method are used to convert post-shock Pitot pressure fluctuations to static pressure fluctuations in front of the shock. The LIA is used as the forward model for the transfer function associated with a homogeneous field of acoustic waves passing through a nominally normal shock wave. The iterative ensemble Kalman method is then employed to infer the spectrum of upstream acoustic waves based on the post-shock Pitot pressure measured at a single point. Several test cases with synthetic and real measurement data are used to demonstrate the merits of the proposed inference scheme. The study provides the basis for measuring tunnel freestream noise with intrusive probes in noisy supersonic wind tunnels.
2017-12-01
description in Figure 9 below 2 Full or partial loss of test data due to instrumentation/triggering failures 3 Gages not included in these tests 4...Table 2. Sample properties. Test Description Dimensions Weight (lbs.) Strength (psi) Notes 17 Fully Tempered Glass Window 4-ft x 6-ft x...an estimate of prism strength for medium weight CMU. The reinforced concrete sample was a 5.5-in thick solid panel. To evaluate its strength
Molecular based equation of state for shocked liquid nitromethane.
Desbiens, Nicolas; Bourasseau, Emeric; Maillet, Jean-Bernard; Soulard, Laurent
2009-07-30
An approach is proposed to obtain the equation of state of unreactive shocked liquid nitromethane. Unlike previous major works, this equation of state is not based on extended integration schemes [P.C. Lysne, D.R. Hardesty, Fundamental equation of state of liquid nitromethane to 100 kbar, J. Chem. Phys. 59 (1973) 6512]. It does not follow the way proposed by Winey et al. [J.M. Winey, G.E. Duvall, M.D. Knudson, Y.M. Gupta, Equation of state and temperature measurements for shocked nitromethane, J. Chem. Phys. 113 (2000) 7492] where the specific heat C(v), the isothermal bulk modulus B(T) and the coefficient of thermal pressure (deltaP/deltaT)(v) are modeled as functions of temperature and volume using experimental data. In this work, we compute the complete equation of state by microscopic calculations. Indeed, by means of Monte Carlo molecular simulations, we have proposed a new force field for nitromethane that lead to a good description of shock properties [N. Desbiens, E. Bourasseau, J.-B. Maillet, Potential optimization for the calculation of shocked liquid nitromethane properties, Mol. Sim. 33 (2007) 1061; A. Hervouët, N. Desbiens, E. Bourasseau, J.-B. Maillet, Microscopic approaches to liquid nitromethane detonation properties, J. Phys. Chem. B 112 (2008) 5070]. Particularly, it has been shown that shock temperatures and second shock temperatures are accurately reproduced which is significative of the quality of the potential. Here, thermodynamic derivative properties are computed: specific heats, Grüneisen parameter, sound velocity among others, along the Hugoniot curve. This work constitutes to our knowledge the first determination of the equation of state of an unreactive shocked explosive by molecular simulations.
Shock Train/Boundary-Layer Interaction in Rectangular Scramjet Isolators
NASA Astrophysics Data System (ADS)
Geerts, Jonathan Simon
Numerous studies of the dual-mode scramjet isolator, a critical component in preventing inlet unstart and/or vehicle loss by containing a collection of flow disturbances called a shock train, have been performed since the dual-mode propulsion cycle was introduced in the 1960s. Low momentum corner flow and other three-dimensional effects inherent to rectangular isolators have, however, been largely ignored in experimental studies of the boundary layer separation driven isolator shock train dynamics. Furthermore, the use of two dimensional diagnostic techniques in past works, be it single-perspective line-of-sight schlieren/shadowgraphy or single axis wall pressure measurements, have been unable to resolve the three-dimensional flow features inside the rectangular isolator. These flow characteristics need to be thoroughly understood if robust dual-mode scramjet designs are to be fielded. The work presented in this thesis is focused on experimentally analyzing shock train/boundary layer interactions from multiple perspectives in aspect ratio 1.0, 3.0, and 6.0 rectangular isolators with inflow Mach numbers ranging from 2.4 to 2.7. Secondary steady-state Computational Fluid Dynamics studies are performed to compare to the experimental results and to provide additional perspectives of the flow field. Specific issues that remain unresolved after decades of isolator shock train studies that are addressed in this work include the three-dimensional formation of the isolator shock train front, the spatial and temporal low momentum corner flow separation scales, the transient behavior of shock train/boundary layer interaction at specific coordinates along the isolator's lateral axis, and effects of the rectangular geometry on semi-empirical relations for shock train length prediction. (Abstract shortened by ProQuest.).
Mei, R; Narihiro, T; Nobu, M K; Liu, W-T
2016-11-01
In anaerobic digesters, temperature fluctuation could lead to process instability and failure. It is still not well understood how digester microbiota as a whole respond to heat shock, and what specific organisms are vulnerable to perturbation or responsible for process recovery after perturbation. To address these questions, a mesophilic benzoate-degrading methanogenic culture enriched from digester was subjected to different levels of heat shock. Three types of methane production profiles after perturbation were observed in comparison to the control: uninhibited, inhibited with later recovery, and inhibited without recovery. These responses were correlated with the microbial community compositions based on the analyses of 16S rRNA and 16S rRNA gene. Specifically, the primary benzoate-degrading syntroph was highly affected by heat shock, and its abundance and activity were both crucial to the restoration of benzoate degradation after heat shock. In contrast, methanogens were stable regardless whether methane production was inhibited. Populations related to 'Candidatus Cloacimonetes' and Firmicutes showed stimulated growth. These observations indicated distinct physiological traits and ecological niches associated with individual microbial groups. The results obtained after exposure to heat shock can be critical to more comprehensive characterization of digester ecology under perturbations. Anaerobic digestion is an essential step in municipal wastewater treatment owing to its striking capacity of reducing wasted sludge and recovering energy. However, as an elaborate microbial process, it requires constant temperature control and is sensitive to heat shock. In this study, we explored the microbial response to heat shock of a methanogenic culture enriched from anaerobic digester sludge. Microorganisms that were vulnerable to perturbation or responsible for process recovery after perturbation were identified. © 2016 The Society for Applied Microbiology.
Nagendran, Myura; Maruthappu, Mahiben; Gordon, Anthony C; Gurusamy, Kurinchi S
2016-05-01
Septic shock is a life-threatening condition requiring vasopressor agents to support the circulatory system. Several agents exist with choice typically guided by the specific clinical scenario. We used a network meta-analysis approach to rate the comparative efficacy and safety of vasopressors for mortality and arrhythmia incidence in septic shock patients. We performed a comprehensive electronic database search including Medline, Embase, Science Citation Index Expanded and the Cochrane database. Randomised trials investigating vasopressor agents in septic shock patients and specifically assessing 28-day mortality or arrhythmia incidence were included. A Bayesian network meta-analysis was performed using Markov chain Monte Carlo methods. Thirteen trials of low to moderate risk of bias in which 3146 patients were randomised were included. There was no pairwise evidence to suggest one agent was superior over another for mortality. In the network meta-analysis, vasopressin was significantly superior to dopamine (OR 0.68 (95% CI 0.5 to 0.94)) for mortality. For arrhythmia incidence, standard pairwise meta-analyses confirmed that dopamine led to a higher incidence of arrhythmias than norepinephrine (OR 2.69 (95% CI 2.08 to 3.47)). In the network meta-analysis, there was no evidence of superiority of one agent over another. In this network meta-analysis, vasopressin was superior to dopamine for 28-day mortality in septic shock. Existing pairwise information supports the use of norepinephrine over dopamine. Our findings suggest that dopamine should be avoided in patients with septic shock and that other vasopressor agents should continue to be based on existing guidelines and clinical judgement of the specific presentation of the patient.
Testing and modeling of PBX-9591 shock initiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, Kim; Foley, Timothy; Novak, Alan
2010-01-01
This paper describes an ongoing effort to develop a detonation sensitivity test for PBX-9501 that is suitable for studying pristine and damaged HE. The approach involves testing and comparing the sensitivities of HE pressed to various densities and those of pre-damaged samples with similar porosities. The ultimate objectives are to understand the response of pre-damaged HE to shock impacts and to develop practical computational models for use in system analysis codes for HE safety studies. Computer simulation with the CTH shock physics code is used to aid the experimental design and analyze the test results. In the calculations, initiation andmore » growth or failure of detonation are modeled with the empirical HVRB model. The historical LANL SSGT and LSGT were reviewed and it was determined that a new, modified gap test be developed to satisfy the current requirements. In the new test, the donor/spacer/acceptor assembly is placed in a holder that is designed to work with fixtures for pre-damaging the acceptor sample. CTH simulations were made of the gap test with PBX-9501 samples pressed to three different densities. The calculated sensitivities were validated by test observations. The agreement between the computed and experimental critical gap thicknesses, ranging from 9 to 21 mm under various test conditions, is well within 1 mm. These results show that the numerical modeling is a valuable complement to the experimental efforts in studying and understanding shock initiation of PBX-9501.« less
Creation of a Data Base on Energetic Materials
1987-08-10
Examples of booster explosives are Tetryl, RDX , and HMX . Examples of bursting explosives are Amatols, TNT, Compositions A, B, & C, and Picatrol. Within...Test Thermal Shock Resistance Glass Transition Temperature Toxicity Grain Size Viscosity Hardness Volatility Heat Capacity Water Resistance Heat of...Tensile Strength Flammability Thermal Conductivity Flexural Strength Thermal Expansion Coefficient Gap Test Thermal Shock Resistance Glass Transition
Acoustic waves in shock tunnels and expansion tubes
NASA Technical Reports Server (NTRS)
Paull, A.; Stalker, R. J.
1992-01-01
It is shown that disturbances in shock and expansion tubes can be modelled as lateral acoustic waves. The ratio of sound speed across the driver-test gas interface is shown to govern the quantity of noise in the test gas. Frequency 'focusing' which is fundamental to centered unsteady expansions is discussed and displayed in centerline pitot pressure measurements.
Off-center blast in a shocked medium
Duncan-Miller, Gabrielle Christiane; Stone, William D.
2017-11-16
When multiple blasts occur at different times, the situation arises in which a blast wave is propagating into a medium that has already been shocked. Determining the evolution in shape of the second shock is not trivial, as it is propagating into air that is not only non-uniform, but also non-stationary. To accomplish this task, we employ the method of Kompaneets to determine the shape of a shock in a non-uniform media. We also draw from the work of Korycansky [1] on an off-center explosion in a medium with radially varying density. Extending this to treat non-stationary flow, and makingmore » use of approximations to the Sedov solution for the point blast problem, we are able to determine an analytic expression for the evolving shape of the second shock. Specifically, we consider the case of a shock in air at standard ambient temperature and pressure, with the second shock occurring shortly after the original blast wave reaches it, as in a sympathetic detonation.« less
Off-center blast in a shocked medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan-Miller, Gabrielle Christiane; Stone, William D.
When multiple blasts occur at different times, the situation arises in which a blast wave is propagating into a medium that has already been shocked. Determining the evolution in shape of the second shock is not trivial, as it is propagating into air that is not only non-uniform, but also non-stationary. To accomplish this task, we employ the method of Kompaneets to determine the shape of a shock in a non-uniform media. We also draw from the work of Korycansky [1] on an off-center explosion in a medium with radially varying density. Extending this to treat non-stationary flow, and makingmore » use of approximations to the Sedov solution for the point blast problem, we are able to determine an analytic expression for the evolving shape of the second shock. Specifically, we consider the case of a shock in air at standard ambient temperature and pressure, with the second shock occurring shortly after the original blast wave reaches it, as in a sympathetic detonation.« less
NASA Astrophysics Data System (ADS)
Mirshekari, Gholamreza
This project aims at the simulation, design, fabrication and testing of a microscale shock tube. A step by step procedure has been followed to develop the different components of the microscale shock tube and then combine them together to realize the final device. The document reports on the numerical simulation of flows in a microscale shock tube, the experimental study of gas flow in microchannels, the design, microfabrication, and the test of a microscale shock tube. In the first step, a one-dimensional numerical model for simulation of transport effects at small-scale, appeared in low Reynolds number shock tubes is developed. The conservation equations have been integrated in the lateral directions and three-dimensional effects have been introduced as carefully controlled sources of mass, momentum and energy, into the one-dimensional model. The unsteady flow of gas behind the shock wave is reduced to a quasi-steady laminar flow solution, similar to the Blasius solution. The resulting one-dimensional equations are solved numerically and the simulations are performed for previously reported low Reynolds number shock tube experiments. Good agreement between the shock structure simulation and the attenuation due to the boundary layers has been observed. The simulation for predicting the performance of a microscale shock tube shows the large attenuation of shock wave at low pressure ratios. In the next step the steady flow inside microchannels has been experimentally studied. A set of microchannels with different geometries were fabricated. These microchannels have been used to measure the pressure drop as a function of flow rate in a steady compressible flow. The results of the experiments confirm that the flow inside the microscale shock tube follows the laminar model over the experiment's range of Knudsen number. The microscale shock tube is fabricated by deposition and patterning of different thin layers of selected materials on the silicon substrate. The direct sensing piezoelectric sensors were fabricated and integrated with microchannels patterned on the substrate. The channels were then covered with another substrate. This shock tube is 2000 mum long and it has a 2000 mum wide and 17 mum high rectangular cross section equipped with 5 piezoelectric sensors along the tube. The packaged microscale shock tube was installed in an ordinary shock tube and shock waves with different Mach numbers were directed into the channel. A one-dimensional inviscid calculation as well as viscous simulation using the one-dimensional model have also been performed for the above mentioned geometry. The comparison of results with those of the same geometry for an inviscid flow shows the considerable attenuation of shock strength and deceleration of the shock wave for both incident and reflected shock waves in the channel. The comparison of results with numerically generated results with the one-dimensional model presents good agreement for incident shock waves. Keywords. Shock wave, Shock tube, MEMS, Microfluidic, Piezoelectric sensor, Microchannel, Transport phenomena.
Modeling multiscale evolution of numerous voids in shocked brittle material.
Yu, Yin; Wang, Wenqiang; He, Hongliang; Lu, Tiecheng
2014-04-01
The influence of the evolution of numerous voids on macroscopic properties of materials is a multiscale problem that challenges computational research. A shock-wave compression model for brittle material, which can obtain both microscopic evolution and macroscopic shock properties, was developed using discrete element methods (lattice model). Using a model interaction-parameter-mapping procedure, qualitative features, as well as trends in the calculated shock-wave profiles, are shown to agree with experimental results. The shock wave splits into an elastic wave and a deformation wave in porous brittle materials, indicating significant shock plasticity. Void collapses in the deformation wave were the natural reason for volume shrinkage and deformation. However, media slippage and rotation deformations indicated by complex vortex patterns composed of relative velocity vectors were also confirmed as an important source of shock plasticity. With increasing pressure, the contribution from slippage deformation to the final plastic strain increased. Porosity was found to determine the amplitude of the elastic wave; porosity and shock stress together determine propagation speed of the deformation wave, as well as stress and strain on the final equilibrium state. Thus, shock behaviors of porous brittle material can be systematically designed for specific applications.
NASA Technical Reports Server (NTRS)
Miller, C. G., III; Wilder, S. E.
1976-01-01
Equilibrium thermodynamic and flow properties are presented in tabulated and graphical form for moving, standing, and reflected normal shock waves in pure argon. Properties include pressure, temperature, density, enthalpy, speed of sound, entropy, molecular-weight ratio, isentropic exponent, velocity, and species mole fractions. Incident (moving) shock velocities are varied from 2 to 18 km/sec for a range of initial pressure of 5 N/sq m to 500 kN/sq m. Working charts illustrating shock tube performance with argon test gas and heated helium and hydrogen driver gases are also presented.
Turakhia, Mintu P; Zweibel, Steven; Swain, Andrea L; Mollenkopf, Sarah A; Reynolds, Matthew R
2017-02-01
In patients with implantable cardioverter-defibrillators, healthcare utilization (HCU) and expenditures related to shocks have not been quantified. We performed a retrospective cohort study of patients with implantable cardioverter-defibrillators identified from commercial and Medicare supplemental claims databases linked to adjudicated shock events from remote monitoring data. A shock event was defined as ≥1 spontaneous shocks delivered by an implanted device. Shock-related HCU was ascertained from inpatient and outpatient claims within 7 days following a shock event. Shock events were adjudicated and classified as inappropriate or appropriate, and HCU and expenditures, stratified by shock type, were quantified. Of 10 266 linked patients, 963 (9.4%) patients (61.3±13.6 years; 81% male) had 1885 shock events (56% appropriate, 38% inappropriate, and 6% indeterminate). Of these events, 867 (46%) had shock-related HCU (14% inpatient and 32% outpatient). After shocks, inpatient cardiovascular procedures were common, including echocardiography (59%), electrophysiology study or ablation (34%), stress testing (16%), and lead revision (11%). Cardiac catheterization was common (71% and 51%), but percutaneous coronary intervention was low (6.5% and 5.0%) after appropriate and inappropriate shocks. Expenditures related to appropriate and inappropriate shocks were not significantly different. After implantable cardioverter-defibrillator shock, related HCU was common, with 1 in 3 shock events followed by outpatient HCU and 1 in 7 followed by hospitalization. Use of invasive cardiovascular procedures was substantial, even after inappropriate shocks, which comprised 38% of all shocks. Implantable cardioverter-defibrillator shocks seem to trigger a cascade of health care. Strategies to reduce shocks could result in cost savings. © 2017 American Heart Association, Inc.
Electrical conductivity of aluminum hydride AlH3 at high pressure and temperature
NASA Astrophysics Data System (ADS)
Shakhray, Denis; Molodets, Alexander; Fortov, Vladimir; Khrapak, Aleksei
2009-06-01
A study of electrophysical and thermodynamic properties of alane AlH3 under multi shock compression has been carried out. The increase in specific electroconductivity of alane at shock compression up to pressure 100 GPa have been measured. High pressures and temperatures were obtained with explosive device, which accelerates the stainless impactor up to 3 km/sec. The impact shock is split into a shock wave reverberating in alane between two stiff metal anvils. The conductivity of shocked alane increases in the range up to 60-75 GPa and is about 30 1/Ohm*cm. In this region the semiconductor regime is true for shocked alane. The conductivity of alane achieves approximately 500 1/Ohm*cm at 80-90 GPa. In this region conductivity is interpreted in frames of the conception of the ``dielectric catastrophe'', taking into consideration significant difference between electronic states of isolated AlH3 molecule and condensed alane.
Hippocampal awake replay in fear memory retrieval
Wu, Chun-Ting; Haggerty, Daniel; Kemere, Caleb; Ji, Daoyun
2017-01-01
Hippocampal place cells are key to episodic memories. How these cells participate in memory retrieval remains unclear. Here, after rats acquired a fear memory by receiving mild foot-shocks at a shock zone of a track, we analyzed place cells when the animals were placed back to the track and displayed an apparent memory retrieval behavior: avoidance of the shock zone. We found that place cells representing the shock zone were reactivated, despite the fact that the animals did not enter the shock zone. This reactivation occurred in ripple-associated awake replay of place cell sequences encoding the paths from the animal’s current positions to the shock zone, but not in place cell sequences within individual cycles of theta oscillation. The result reveals a specific place cell pattern underlying the inhibitory avoidance behavior and provides strong evidence for the involvement of awake replay in fear memory retrieval. PMID:28218916
The Effect of Three-Dimensional Freestream Disturbances on the Supersonic Flow Past a Wedge
NASA Technical Reports Server (NTRS)
Duck, Peter W.; Lasseigne, D. Glenn; Hussaini, M. Y.
1997-01-01
The interaction between a shock wave (attached to a wedge) and small amplitude, three-dimensional disturbances of a uniform, supersonic, freestream flow are investigated. The paper extends the two-dimensional study of Duck et al, through the use of vector potentials, which render the problem tractable by the same techniques as in the two-dimensional case, in particular by expansion of the solution by means of a Fourier-Bessel series, in appropriately chosen coordinates. Results are presented for specific classes of freestream disturbances, and the study shows conclusively that the shock is stable to all classes of disturbances (i.e. time periodic perturbations to the shock do not grow downstream), provided the flow downstream of the shock is supersonic (loosely corresponding to the weak shock solution). This is shown from our numerical results and also by asymptotic analysis of the Fourier-Bessel series, valid far downstream of the shock.
The role of magnetic loops in particle acceleration at nearly perpendicular shocks
NASA Technical Reports Server (NTRS)
Decker, R. B.
1993-01-01
The acceleration of superthermal ions is investigated when a planar shock that is on average nearly perpendicular propagates through a plasma in which the magnetic field is the superposition of a constant uniform component plus a random field of transverse hydromagnetic fluctuations. The importance of the broadband nature of the transverse magnetic fluctuations in mediating ion acceleration at nearly perpendicular shocks is pointed out. Specifically, the fluctuations are composed of short-wavelength components which scatter ions in pitch angle and long-wavelength components which are responsible for a spatial meandering of field lines about the mean field. At nearly perpendicular shocks the field line meandering produces a distribution of transient loops along the shock. As an application of this model, the acceleration of a superthermal monoenergetic population of seed protons at a perpendicular shock is investigated by integrating along the exact phase-space orbits.
Study of Pressure Oscillations in Supersonic Parachute
NASA Astrophysics Data System (ADS)
Dahal, Nimesh; Fukiba, Katsuyoshi; Mizuta, Kazuki; Maru, Yusuke
2018-04-01
Supersonic parachutes are a critical element of planetary mission whose simple structure, light-weight characteristics together with high ratio of aerodynamic drag makes them the most suitable aerodynamic decelerators. The use of parachute in supersonic flow produces complex shock/shock and wake/shock interaction giving rise to dynamic pressure oscillations. The study of supersonic parachute is difficult, because parachute has very flexible structure which makes obtaining experimental pressure data difficult. In this study, a supersonic wind tunnel test using two rigid bodies is done. The wind tunnel test was done at Mach number 3 by varying the distance between the front and rear objects, and the distance of a bundle point which divides suspension lines and a riser. The analysis of Schlieren movies revealed shock wave oscillation which was repetitive and had large pressure variation. The pressure variation differed in each case of change in distance between the front and rear objects, and the change in distance between riser and the rear object. The causes of pressure oscillation are: interaction of wake caused by front object with the shock wave, fundamental harmonic vibration of suspension lines, interference between shock waves, and the boundary layer of suspension lines.
Shock Desensitization Effect in the STANAG 4363 Confined Explosive Component Water Gap Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lefrancois, A S; Lee, R S; Tarver, C M
2006-06-07
The Explosive Component Water Gap Test (ECWGT) in the Stanag 4363 has been recently investigated to assess the shock sensitivity of lead and booster components having a diameter less than 5 mm. For that purpose, Pentaerythritol Tetranitrate (PETN) based pellets having a height and diameter of 3 mm have been confined by a steel annulus of wall thickness 1-3.5 mm and with the same height as the pellet. 1-mm wall thickness makes the component more sensitive (larger gap). As the wall thickness is increased to 2-mm, the gap increases a lesser amount, but when the wall thickness is increased tomore » 3.5-mm a decrease in sensitivity is observed (smaller gap). This decrease of the water gap has been reproduced experimentally by many nations. Numerical simulations using Ignition and Growth model have been performed in this paper and have reproduced the experimental results for the steel confinement up to 2 mm thick and aluminum confinement. A stronger re-shock following the first input shock from the water is focusing on the axis due to the confinement. The double shock configuration is well-known to lead in some cases to shock desensitization.« less
McDonald, Louise M.; Griffin, Harry J.; Angeli, Aikaterini; Torkamani, Mariam; Georgiev, Dejan; Jahanshahi, Marjan
2015-01-01
Background Paradoxical kinesis has been observed in bradykinetic people with Parkinson’s disease. Paradoxical kinesis occurs in situations where an individual is strongly motivated or influenced by relevant external cues. Our aim was to induce paradoxical kinesis in the laboratory. We tested whether the motivation of avoiding a mild electric shock was sufficient to induce paradoxical kinesis in externally-triggered and self-initiated conditions in people with Parkinson’s disease tested on medication and in age-matched controls. Methods Participants completed a shock avoidance behavioural paradigm in which half of the trials could result in a mild electric shock if the participant did not move fast enough. Half of the trials of each type were self-initiated and half were externally-triggered. The criterion for avoiding shock was a maximum movement time, adjusted according to each participant’s performance on previous trials using a staircase tracking procedure. Results On trials with threat of shock, both patients with Parkinson’s disease and controls had faster movement times compared to no potential shock trials, in both self-initiated and externally-triggered conditions. The magnitude of improvement of movement time from no potential shock to potential shock trials was positively correlated with anxiety ratings. Conclusions When motivated to avoid mild electric shock, patients with Parkinson’s disease, similar to healthy controls, showed significant speeding of movement execution. This was observed in both self-initiated and externally-triggered versions of the task. Nevertheless, in the ET condition the improvement of reaction times induced by motivation to avoid shocks was greater for the PD patients than controls, highlighting the value of external cues for movement initiation in PD patients. The magnitude of improvement from the no potential shock to the potential shock trials was associated with the threat-induced anxiety. This demonstration of paradoxical kinesis in the laboratory under both self-initiated and externally-triggered conditions has implications for motivational and attentional enhancement of movement speed in Parkinson’s disease. PMID:26284366
Bedrov, Dmitry; Hooper, Justin B; Smith, Grant D; Sewell, Thomas D
2009-07-21
Molecular dynamics (MD) simulations of uniaxial shock compression along the [100] and [001] directions in the alpha polymorph of hexahydro-1,3,5-trinitro-1,3,5-triazine (alpha-RDX) have been conducted over a wide range of shock pressures using the uniaxial constant stress Hugoniostat method [Ravelo et al., Phys. Rev. B 70, 014103 (2004)]. We demonstrate that the Hugoniostat method is suitable for studying shock compression in atomic-scale models of energetic materials without the necessity to consider the extremely large simulation cells required for an explicit shock wave simulation. Specifically, direct comparison of results obtained using the Hugoniostat approach to those reported by Thompson and co-workers [Phys. Rev. B 78, 014107 (2008)] based on large-scale MD simulations of shocks using the shock front absorbing boundary condition (SFABC) approach indicates that Hugoniostat simulations of systems containing several thousand molecules reproduced the salient features observed in the SFABC simulations involving roughly a quarter-million molecules, namely, nucleation and growth of nanoscale shear bands for shocks propagating along the [100] direction and the polymorphic alpha-gamma phase transition for shocks directed along the [001] direction. The Hugoniostat simulations yielded predictions of the Hugoniot elastic limit for the [100] shock direction consistent with SFABC simulation results.
Determining the standoff distance of the bow shock: Mach number dependence and use of models
NASA Technical Reports Server (NTRS)
Farris, M. H.; Russell, C. T.
1994-01-01
We explore the factors that determine the bow shock standoff distance. These factors include the parameters of the solar wind, as well as the size and shape of the obstacle. In this report we develop a semiempirical Mach number relation for the bow shock standoff distance in order to take into account the shock's behavior at low Mach numbers. This is done by determining which properties of the shock are most important in controlling the standoff distance and using this knowledge to modify the current Mach number relation. While the present relation has proven useful at higher Mach numbers, it has lacked effectiveness at the low Mach number limit. We also analyze the bow shock dependence upon the size and shape of the obstacle, noting that it is most appropriate to compare the standoff distance of the bow shock to the radius of curvature of the obstacle, as opposed to the distance from the focus of the object to the nose. Last, we focus our attention on the use of bow shock models in determining the standoff distance. We note that the physical behavior of the shock must correctly be taken into account, specifically the behavior as a function of solar wind dynamic pressure; otherwise, erroneous results can be obtained for the bow shock standoff distance.
On sequential data assimilation for scalar macroscopic traffic flow models
NASA Astrophysics Data System (ADS)
Blandin, Sébastien; Couque, Adrien; Bayen, Alexandre; Work, Daniel
2012-09-01
We consider the problem of sequential data assimilation for transportation networks using optimal filtering with a scalar macroscopic traffic flow model. Properties of the distribution of the uncertainty on the true state related to the specific nonlinearity and non-differentiability inherent to macroscopic traffic flow models are investigated, derived analytically and analyzed. We show that nonlinear dynamics, by creating discontinuities in the traffic state, affect the performances of classical filters and in particular that the distribution of the uncertainty on the traffic state at shock waves is a mixture distribution. The non-differentiability of traffic dynamics around stationary shock waves is also proved and the resulting optimality loss of the estimates is quantified numerically. The properties of the estimates are explicitly studied for the Godunov scheme (and thus the Cell-Transmission Model), leading to specific conclusions about their use in the context of filtering, which is a significant contribution of this article. Analytical proofs and numerical tests are introduced to support the results presented. A Java implementation of the classical filters used in this work is available on-line at http://traffic.berkeley.edu for facilitating further efforts on this topic and fostering reproducible research.
Liu, W M; Chu, W M; Choudary, P V; Schmid, C W
1995-01-01
The abundance of Alu RNA is transiently increased by heat shock in human cell lines. This effect is specific to Alu repeats among Pol III transcribed genes, since the abundance of 7SL, 7SK, 5S and U6 RNAs is essentially unaffected by heat shock. The rapid induction of Alu expression precedes the heat shock induction of mRNAs for the ubiquitin and HSP 70 heat shock genes. Heat shock mimetics also transiently induce Alu expression indicating that increased Alu expression is a general cell-stress response. Cycloheximide treatment rapidly and transiently increases the abundance of Alu RNA. Again, compared with other genes transcribed by Pol III, this increase is specific to Alu. However, as distinguished from the cell stress response, cycloheximide does not induce expression of HSP 70 and ubiquitin mRNAs. Puromycin also increases Alu expression, suggesting that this response is generally caused by translational inhibition. The response of mammalian SINEs to cell stress and translational inhibition is not limited to SINEs which are Alu homologues. Heat shock and cycloheximide each transiently induce Pol III directed expression of B1 and B2 RNAs in mouse cells and C-element RNA in rabbit cells. Together, these three species exemplify the known SINE composition of placental mammals, suggesting that mammalian SINEs are similarly regulated and may serve a common function. Images PMID:7784180
Multi-Shock Shield Performance at 15 MJ for Catalogued Debris
NASA Technical Reports Server (NTRS)
Miller, J. E.; Davis, B. A.; Christiansen, E. L.; Lear, D. M.
2015-01-01
While orbital debris of ten centimeters or more are tracked and catalogued, the difficulty of finding and accurately accounting for forces acting on the objects near the ten centimeter threshold results in both uncertainty of their presence and location. These challenges result in difficult decisions for operators balancing potential costly operational approaches with system loss risk. In this paper, the assessment of the feasibility of protecting a spacecraft from this catalogued debris is described using numerical simulations and a test of a multi-shock shield system against a cylindrical projectile impacting normal to the surface with approximately 15 MJ of kinetic energy. The hypervelocity impact test has been conducted at the Arnold Engineering Development Complex (AEDC) with a 598 g projectile at 6.905 km/s on a NASA supplied multi-shock shield. The projectile used is a hollow aluminum and nylon cylinder with an outside diameter of 8.6 cm and length of 10.3 cm. Figure 1 illustrates the multi-shock shield test article, which consisted of five separate bumpers, four of which are fiberglass fabric and one of steel mesh, and two rear walls, each consisting of Kevlar fabric. The overall length of the test article was 2.65 m. The test article was a 5X scaled-up version of a smaller multi-shock shield previously tested using a 1.4 cm diameter aluminum projectile for an inflatable module project. The distances represented by S1 and S1/2 in the figure are 61 cm and 30.5 cm, respectively. Prior to the impact test, hydrodynamic simulations indicated that some enhancement to the standard multi-shock system is needed to address the effects of the cylindrical shape of the projectile. Based on the simulations, a steel mesh bumper has been added to the shield configuration to enhance the fragmentation of the projectile. The AEDC test occurred as planned, and the modified NASA multi-shock shield successfully stopped 598 g projectile using 85.6 kg/m(exp 2). The fifth bumper layer remained in tact, although it was torn free from its support structure and thrown into the first rear wall. The outer Kevlar layer of the first rear wall tore likely from the impact of the fifth bumper's support structure, but the back of the rear wall was intact. No damage occurred to the second rear wall, or to the witness plate behind the target.
NASA Astrophysics Data System (ADS)
Savoini, P.; Lembege, B.
2016-12-01
Backstreaming ion populations are observed upstream of the Terrestrial bow shock and form the ion foreshock. Two distinct populations have been firmly identified by spacecrafts within the quasi-perpendicular shock region (i.e. for 45° ≤ ΘBn ≤ 90°, where ΘBn is the angle between the shock normal and the upstream magnetostatic field): so called (i) field-aligned ion beams (« FAB ») characterized by a gyrotropic distribution, and (ii) gyro-phase bunched ions («GPB »), characterized by a NON gyrotropic distribution.The origin of these backstreaming ions is still an important unresolved question which can be partially analyzed with the help of 2D PIC simulation of a curved shock, where full curvature effects, time of flight effects and both electrons and ions dynamics are fully included by a self consistent approach. Our previous analysis (Savoini et Lembege, 2015) has evidenced that these two populations can be generated directly by the macroscopic fields at the shock front itself. Present results based on ion trajectories analysis confirm: (i) the importance of the interaction time ΔTinter spent by ions within the shock front. "GPB" population is characterized by a very short interaction time (ΔTinter = 1 to 2 tci) in comparison to the "FAB" population (ΔTinter = 2 tci to 10 tci), where tci is the upstream ion gyroperiod. (ii) the key role of the injection angle (i.e. defined between the normal of the shock front and the gyration velocity at the time incoming ions hit the shock front) which strongly differs between FAB and GPB ions. (iii) that "FAB" ions drift along the shock front and « scan » a large ΘBn range (up to 20°) which explains the loss of their initial gyro-phase, before being re-injected into the upstream region. Moreover, our test-particule simulations evidence the importance of the shock wave profile for both the « FAB » and « GPB » populations. Such results show that the reflection process is not continuous in time and in space, but strongly depends of the local shock front profile met by incoming ions at their hitting time. The same simulations also emphasize the slight decrease of backstreaming ions density when the electric field space charge effect present within the shock front is artificially canceled. A comparison between self-consistent and test-particles results will be presented in more details.
Behavioral technology and its application to fire toxicology research
NASA Technical Reports Server (NTRS)
Russo, D. M.
1978-01-01
The application of behavioral technology to the toxicity testing of pyrolysis/combustion (P/C) products is discussed and two categories of behavioral tests commonly employed in fire toxicology programs are reviewed. Data are presented from a comparison of carbon monoxide (CO) induced incapacitation in rats performing in a rotating wheel or under a Sidmon free-operant schedule of shock avoidance. Rats performing in the rotating wheel were behaviorally incapacitated at CO concentrations and carboxyhemoglobin levels significantly lower than those which incapacitated operant avoidance animals. It is concluded that different measures of behavioral incapacitation may vary since incapacitation is a function of the particular toxic mechanism at work and the behavioral requirements of the specific task employed in the test procedure.
Hwang, Gyo-Seung; Tang, Liang; Joung, Boyoung; Morita, Norishige; Hayashi, Hideki; Karagueuzian, Hrayr S; Weiss, James N; Lin, Shien-Fong; Chen, Peng-Sheng
2008-09-02
The purpose of this study was to test the hypothesis that superiority of biphasic waveform (BW) over monophasic waveform (MW) defibrillation shocks is attributable to less intracellular calcium (Ca(i)) transient heterogeneity. The mechanism by which BW shocks have a higher defibrillation efficacy than MW shocks remains unclear. We simultaneously mapped epicardial membrane potential (Vm) and Ca(i) during 6-ms MW and 3-ms/3-ms BW shocks in 19 Langendorff-perfused rabbit ventricles. After shock, the percentage of depolarized area was plotted over time. The maximum (peak) post-shock values (VmP and Ca(i)P, respectively) were used to measure heterogeneity. Higher VmP and Ca(i)P imply less heterogeneity. The defibrillation thresholds for BW and MW shocks were 288 +/- 99 V and 399 +/- 155 V, respectively (p = 0.0005). Successful BW shocks had higher VmP (88 +/- 9%) and Ca(i)P (70 +/- 13%) than unsuccessful MW shocks (VmP 76 +/- 10%, p < 0.001; Ca(i)P 57 +/- 8%, p < 0.001) of the same shock strength. In contrast, for unsuccessful BW and MW shocks of the same shock strengths, the VmP and Ca(i)P were not significantly different. The MW shocks more frequently created regions of low Ca(i) surrounded by regions of high Ca(i) (post-shock Ca(i) sinkholes). The defibrillation threshold for MW and BW shocks became similar after disabling the sarcoplasmic reticulum (SR) with thapsigargin and ryanodine. The greater efficacy of BW shocks is directly related to their less heterogeneous effects on shock-induced SR Ca release and Ca(i) transients. Less heterogeneous Ca(i) transients reduces the probability of Ca(i) sinkhole formation, thereby preventing the post-shock reinitiation of ventricular fibrillation.
mRNA quality control is bypassed for immediate export of stress-responsive transcripts.
Zander, Gesa; Hackmann, Alexandra; Bender, Lysann; Becker, Daniel; Lingner, Thomas; Salinas, Gabriela; Krebber, Heike
2016-12-12
Cells grow well only in a narrow range of physiological conditions. Surviving extreme conditions requires the instantaneous expression of chaperones that help to overcome stressful situations. To ensure the preferential synthesis of these heat-shock proteins, cells inhibit transcription, pre-mRNA processing and nuclear export of non-heat-shock transcripts, while stress-specific mRNAs are exclusively exported and translated. How cells manage the selective retention of regular transcripts and the simultaneous rapid export of heat-shock mRNAs is largely unknown. In Saccharomyces cerevisiae, the shuttling RNA adaptor proteins Npl3, Gbp2, Hrb1 and Nab2 are loaded co-transcriptionally onto growing pre-mRNAs. For nuclear export, they recruit the export-receptor heterodimer Mex67-Mtr2 (TAP-p15 in humans). Here we show that cellular stress induces the dissociation of Mex67 and its adaptor proteins from regular mRNAs to prevent general mRNA export. At the same time, heat-shock mRNAs are rapidly exported in association with Mex67, without the need for adapters. The immediate co-transcriptional loading of Mex67 onto heat-shock mRNAs involves Hsf1, a heat-shock transcription factor that binds to heat-shock-promoter elements in stress-responsive genes. An important difference between the export modes is that adaptor-protein-bound mRNAs undergo quality control, whereas stress-specific transcripts do not. In fact, regular mRNAs are converted into uncontrolled stress-responsive transcripts if expressed under the control of a heat-shock promoter, suggesting that whether an mRNA undergoes quality control is encrypted therein. Under normal conditions, Mex67 adaptor proteins are recruited for RNA surveillance, with only quality-controlled mRNAs allowed to associate with Mex67 and leave the nucleus. Thus, at the cost of error-free mRNA formation, heat-shock mRNAs are exported and translated without delay, allowing cells to survive extreme situations.
Qualification of oil-based tracer particles for heated Ludwieg tubes
NASA Astrophysics Data System (ADS)
Casper, Marcus; Stephan, Sören; Scholz, Peter; Radespiel, Rolf
2014-06-01
The generation, insertion, pressurization and use of oil-based tracer particles is qualified for the application in heated flow facilities, typically hypersonic facilities such as Ludwieg tubes. The operative challenges are to ensure a sub-critical amount of seeding material in the heated part, to qualify the methods that are used to generate the seeding, pressurize it to storage tube pressure, as well as to test specific oil types. The mass of the seeding material is held below the lower explosion limit such that operation is safe. The basis for the tracers is qualified in off-situ particle size measurements. In the main part different methods and operational procedures are tested with respect to their ability to generate a suitable amount of seeding in the test section. For the best method the relaxation time of the tracers is qualified by the oblique shock wave test. The results show that the use of a special temperature resistant lubricant oil "Plantfluid" is feasible under the conditions of a Mach-6 Ludwieg tube with heated storage tube. The method gives high-quality tracers with high seeding densities. Although the experimental results of the oblique shock wave test differ from theoretical predictions of relaxation time, still the relaxation time of 3.2 μs under the more dense tunnel conditions with 18 bar storage tube pressure is low enough to allow the use of the seeding for meaningful particle image velocimetry studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reaugh, J. E.
HE ignition caused by shear localization is the principal concern for safety analyses of postulated mechanical insults to explosive assemblies. Although prompt detonation from shock is certainly a concern, insults that lead to prompt detonation are associated with high velocity, and correspondingly rare. For high-density HMX assemblies, an impact speed (by a steel object) of 400 m/s is needed to develop a detonation in a run distance less than 30 mm. To achieve a steady plane shock, which results in the shortest run distance to detonation for a given peak pressure, the impactor diameter must exceed 60 mm, and thicknessmore » approach 20 mm. Thinner plates and/or smaller diameter ones require even higher impact velocity. Ignitions from shear localization, however, have been observed from impacts less than 50 m/s in Steven tests, less than 30 m/s from spigot impact tests, and less than 10 m/s from various drop tests. This lower velocity range is much frequent in postulated mechanical insults. Preliminary computer simulations and analyses of a variety of such tests have suggested that although each is accompanied by shear localization, there are differing detailed mechanisms at work that cause the ignitions. We identify those mechanisms that may be at work in a variety of such tests, and suggest how models of shear ignition, such as HERMES, may be revised and calibrated to conform to experiment. We suggest combining additional experiments with computer simulations and model development to begin confirm or uncover mechanisms that may be at work in a specific postulated event.« less
The Superorbital Expansion Tube concept, experiment and analysis
NASA Technical Reports Server (NTRS)
Neely, A. J.; Morgan, R. G.
1995-01-01
In response to the need for ground testing facilities for super orbital re-entry research, a small scale facility has been set up at the University of Queensland to demonstrate the superorbital expansion tube concept. This unique device is a free piston driven, triple diaphragm, impulse shock facility which uses the enthalpy multiplication mechanism of the unsteady expansion process and the addition of a secondary shock driver to further heat the driver gas. The pilot facility has been operated to produce quasi-steady test flows in air with shock velocities in excess of 13 km/s and with a usable test flow duration of the order of 15 micro sec. an experimental condition produced in the facility with total enthalpy of 108 MJ/kg and a total pressure of 335 MPa is reported. A simple analytical flow model which accounts for non-ideal rupture of the light tertiary diaphragm and the resulting entropy increase in the test gas is discussed. It is shown that equilibrium calculations more accurately model the unsteady expansion process than calculations assuming frozen chemistry. This is because the high enthalpy flows produced in the facility can only be achieved if the chemical energy stored in the test flow during shock heating of the test gas is partially returned to the flow during the process of unsteady expansion. Measurements of heat transfer rates to a flat plate demonstrate the usability of test flow for aerothermodynamic testing and comparison of these rates with empirical calculations confirms the usable accuracy of the flow model.
Use of ILTV Control Laws for LaNCETS Flight Research
NASA Technical Reports Server (NTRS)
Moua, Cheng
2010-01-01
A report discusses the Lift and Nozzle Change Effects on Tail Shock (LaNCETS) test to investigate the effects of lift distribution and nozzle-area ratio changes on tail shock strength of an F-15 aircraft. Specific research objectives are to obtain inflight shock strength for multiple combinations of nozzle-area ratio and lift distribution; compare results with preflight prediction tools; and update predictive tools with flight results. The objectives from a stability and control perspective are to ensure adequate aircraft stability for the changes in lift distribution and plume shape, and ensure manageable transient from engaging and disengaging the ILTV research control laws. In order to change the lift distribution and plume shape of the F-15 aircraft, a decade-old Inner Loop Thrust Vectoring (ILTV) research control law was used. Flight envelope expansion was performed for the test configuration and flight conditions prior to the probing test points. The approach for achieving the research objectives was to utilize the unique capabilities of NASA's NF-15B-837 aircraft to allow the adjustment of the nozzle-area ratio and/or canard positions by engaging the ILTV research control laws. The ILTV control laws provide the ability to add trim command biases to canard positions, nozzle area ratios, and thrust vectoring through the use of datasets. Datasets consist of programmed test inputs (PTIs) that define trims to change the nozzle-area ratio and/or canard positions. The trims are applied as increments to the normally commanded positions. A LaNCETS non-linear, six-degrees-of-freedom simulation capable of realtime pilot-in-the-loop, hardware-in-the-loop, and non-real-time batch support was developed and validated. Prior to first flight, extensive simulation analyses were performed to show adequate stability margins with the changes in lift distribution and plume shape. Additionally, engagement/disengagement transient analysis was also performed to show manageable transients.
Noninvasive optoacoustic system for rapid diagnosis and management of circulatory shock
NASA Astrophysics Data System (ADS)
Petrov, Irene Y.; Kinsky, Michael; Petrov, Yuriy; Petrov, Andrey; Henkel, S. N.; Seeton, Roger; Esenaliev, Rinat O.; Prough, Donald S.
2013-03-01
Circulatory shock can lead to death or severe complications, if not promptly diagnosed and effectively treated. Typically, diagnosis and management of circulatory shock are guided by blood pressure and heart rate. However, these variables have poor specificity, sensitivity, and predictive value. Early goal-directed therapy in septic shock patients, using central venous catheterization (CVC), reduced mortality from 46.5% to 30%. However, CVC is invasive and complication-prone. We proposed to use an optoacoustic technique for noninvasive, rapid assessment of peripheral and central venous oxygenation. In this work we used a medical grade optoacoustic system for noninvasive, ultrasound image-guided measurement of central and peripheral venous oxygenation. Venous oxygenation during shock declines more rapidly in the periphery than centrally. Ultrasound imaging of the axillary [peripheral] and internal jugular vein [central] was performed using the Vivid e (GE Healthcare). We built an optoacoustic interface incorporating an optoacoustic transducer and a standard ultrasound imaging probe. Central and peripheral venous oxygenations were measured continuously in healthy volunteers. To simulate shock-induced changes in central and peripheral oxygenation, we induced peripheral vasoconstriction in the upper extremity by using a cooling blanket. Central and peripheral venous oxygenations were measured before (baseline) and after cooling and after rewarming. During the entire experiment, central venous oxygenation was relatively stable, while peripheral venous oxygenation decreased by 5-10% due to cooling and recovered after rewarming. The obtained data indicate that noninvasive, optoacoustic measurements of central and peripheral venous oxygenation may be used for diagnosis and management of circulatory shock with high sensitivity and specificity.
NASA Astrophysics Data System (ADS)
Gedalin, M.; Liverts, M.; Balikhin, M. A.
2008-05-01
Field-aligned and gyrophase bunched ion beams are observed in the foreshock of the Earth bow shock. One of the mechanisms proposed for their production is non-specular reflection at the shock front. We study the distributions which are formed at the stationary quasi-perpendicular shock front within the same process which is responsible for the generation of reflected ions and transmitted gyrating ions. The test particle motion analysis in a model shock allows one to identify the parameters which control the efficiency of the process and the features of the escaping ion distribution. These parameters are: the angle between the shock normal and the upstream magnetic field, the ratio of the ion thermal velocity to the flow velocity upstream, and the cross-shock potential. A typical distribution of escaping ions exhibits a bimodal pitch angle distribution (in the plasma rest frame).
NASA Astrophysics Data System (ADS)
Demir, Ozgur; Sahin, Abdurrahman; Yilmaz, Tamer
2012-09-01
Underwater explosion induced shock loads are capable of causing considerable structural damage. Investigations of the underwater explosion (UNDEX) effects on structures have seen continuous developments because of security risks. Most of the earlier experimental investigations were performed by military since the World War I. Subsequently; Cole [1] established mathematical relations for modeling underwater explosion shock loading, which were the outcome of many experimental investigations This study predicts and establishes the transient responses of a panel structure to underwater explosion shock loads using non-linear finite element code Ls-Dyna. Accordingly, in this study a new MATLAB code has been developed for predicting shock loading profile for different weight of explosive and different shock factors. Numerical analysis was performed for various test conditions and results are compared with Ramajeyathilagam's experimental study [8].
Separation control by vortex generator devices in a transonic channel flow
NASA Astrophysics Data System (ADS)
Bur, Reynald; Coponet, Didier; Carpels, Yves
2009-12-01
An experimental study was conducted in a transonic channel to control by mechanical vortex generator devices the strong interaction between a shock wave and a separated turbulent boundary layer. Control devices—co-rotating and counter-rotating vane-type vortex generators—were implemented upstream of the shock foot region and tested both on a steady shock wave and on a forced shock oscillation configurations. The spanwise spacing of vortex generator devices along the channel appeared to be an important parameter to control the flow separation region. When the distance between each device is decreased, the vortices merging is more efficient to reduce the separation. Their placement upstream of the shock wave is determinant to ensure that vortices have mixed momentum all spanwise long before they reach the separation line, so as to avoid separation cells. Then, vortex generators slightly reduced the amplitude of the forced shock wave oscillation by delaying the upstream displacement of the leading shock.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bragard, Jean, E-mail: jbragard@unav.es; Simic, Ana; Elorza, Jorge
2013-12-15
In this article, we compare quantitatively the efficiency of three different protocols commonly used in commercial defibrillators. These are based on monophasic and both symmetric and asymmetric biphasic shocks. A numerical one–dimensional model of cardiac tissue using the bidomain formulation is used in order to test the different protocols. In particular, we performed a total of 4.8 × 10{sup 6} simulations by varying shock waveform, shock energy, initial conditions, and heterogeneity in internal electrical conductivity. Whenever the shock successfully removed the reentrant dynamics in the tissue, we classified the mechanism. The analysis of the numerical data shows that biphasic shocksmore » are significantly more efficient (by about 25%) than the corresponding monophasic ones. We determine that the increase in efficiency of the biphasic shocks can be explained by the higher proportion of newly excited tissue through the mechanism of direct activation.« less
Blunt-Body Aerothermodynamic Database from High-Enthalpy CO2 Testing in an Expansion Tunnel
NASA Technical Reports Server (NTRS)
Hollis, Brian R.; Prabhu, Dinesh K.; Maclean, Matthew; Dufrene, Aaron
2016-01-01
An extensive database of heating, pressure, and flow field measurements on a 70-deg sphere-cone blunt body geometry in high-enthalpy, CO2 flow has been generated through testing in an expansion tunnel. This database is intended to support development and validation of computational tools and methods to be employed in the design of future Mars missions. The test was conducted in an expansion tunnel in order to avoid uncertainties in the definition of free stream conditions noted in previous studies performed in reflected shock tunnels. Data were obtained across a wide range of test velocity/density conditions that produced various physical phenomena of interest, including laminar and transitional/turbulent boundary layers, non-reacting to completely dissociated post-shock gas composition and shock-layer radiation. Flow field computations were performed at the test conditions and comparisons were made with the experimental data. Based on these comparisons, it is recommended that computational uncertainties on surface heating and pressure, for laminar, reacting-gas environments can be reduced to +/-10% and +/-5%, respectively. However, for flows with turbulence and shock-layer radiation, there were not sufficient validation-quality data obtained in this study to make any conclusions with respect to uncertainties, which highlights the need for further research in these areas.
NASA Technical Reports Server (NTRS)
Miller, C. G., III; Wilder, S. E.
1976-01-01
Equilibrium thermodynamic and flow properties are presented in tabulated and graphical form for moving, standing, and reflected normal shock waves in pure CO2. Properties include pressure, temperature, density, enthalpy, speed of sound, entropy, molecular weight ratio, isentropic exponent, velocity, and species mole fractions. Incident (moving) shock velocities are varied from 1 to 16 km/sec for a range of initial pressure of 5 N/sq m to 500 kN/sq m. The present results are applicable to shock tube flows and to freeflight conditions for a blunt body at high velocities. Working charts illustrating idealized shock tube performance with CO2 test gas and heated helium and hydrogen driver gases are also presented.
Noncoplanar component of the magnetic field at low Mach number shocks
NASA Technical Reports Server (NTRS)
Friedman, M. A.; Russell, C. T.; Gosling, J. T.; Thomsen, M. F.
1990-01-01
The component of the magnetic field that deviates from the plane defined by the shock normal and the upstream magnetic field is examined for low Mach number bow shocks. The integrated value of this noncoplanar component is compared to the predictions of Jones and Ellison (1987). A test of this relationship was first reported by Gosling et al. (1988) who found good agreement only at the two low Mach number shocks that were included in their study. Analysis of a more extensive collection of low Mach number shocks confirms the Jones and Ellison relationship at very low Mach numbers as well as its deterioration for higher Mach numbers. However, there also is an indication that the relationship may break down for shocks that are nearly perpendicular.
Particle acceleration at shocks with surface ripples
NASA Technical Reports Server (NTRS)
Decker, R. B.
1990-01-01
The present treatment of superthermal-ion acceleration on the surface of a fast-mode hydromagnetic shock gives attention to (1) small-amplitude surface ripples characterized by width L and amplitude A that are large relative to the energetic-ion gyroradius, and (2) shocks which are on average quasi-perpendicular. An investigation is made of the effects of the confinement, evolving geometry, and finite shock curvature associated with the ripple, by integrating along the orbits of the proton test particles. As an upstream magnetic field line convects through the surface ripple, it intersects the shock at two points, thereby forming a temporary magnetic trap. Flux-line profiles and angular distributions in a given ripple differ substantially, depending on the path it takes through the ripple and its distance from the shock.
A facility for gas- and condensed-phase measurements behind shock waves
NASA Astrophysics Data System (ADS)
Petersen, Eric L.; Rickard, Matthew J. A.; Crofton, Mark W.; Abbey, Erin D.; Traum, Matthew J.; Kalitan, Danielle M.
2005-09-01
A shock-tube facility consisting of two, single-pulse shock tubes for the study of fundamental processes related to gas-phase chemical kinetics and the formation and reaction of solid and liquid aerosols at elevated temperatures is described. Recent upgrades and additions include a new high-vacuum system, a new gas-handling system, a new control system and electronics, an optimized velocity-detection scheme, a computer-based data acquisition system, several optical diagnostics, and new techniques and procedures for handling experiments involving gas/powder mixtures. Test times on the order of 3 ms are possible with reflected-shock pressures up to 100 atm and temperatures greater than 4000 K. Applications for the shock-tube facility include the study of ignition delay times of fuel/oxidizer mixtures, the measurement of chemical kinetic reaction rates, the study of fundamental particle formation from the gas phase, and solid-particle vaporization, among others. The diagnostic techniques include standard differential laser absorption, FM laser absorption spectroscopy, laser extinction for particle volume fraction and size, temporally and spectrally resolved emission from gas-phase species, and a scanning mobility particle sizer for particle size distributions. Details on the set-up and operation of the shock tube and diagnostics are given, the results of a detailed uncertainty analysis on the accuracy of the test temperature inferred from the incident-shock velocity are provided, and some recent results are presented.
Tehrani, Behnam; Truesdell, Alexander; Singh, Ramesh; Murphy, Charles; Saulino, Patricia
2018-06-28
The development and implementation of a Cardiogenic Shock initiative focused on increased disease awareness, early multidisciplinary team activation, rapid initiation of mechanical circulatory support, and hemodynamic-guided management and improvement of outcomes in cardiogenic shock. The objectives of this study are (1) to collect retrospective clinical outcomes for acute decompensated heart failure cardiogenic shock and acute myocardial infarction cardiogenic shock, and compare current versus historical survival rates and clinical outcomes; (2) to evaluate Inova Heart and Vascular Institute site specific outcomes before and after initiation of the Cardiogenic Shock team on January 1, 2017; (3) to compare outcomes related to early implementation of mechanical circulatory support and hemodynamic-guided management versus historical controls; (4) to assess survival to discharge rate in patients receiving intervention from the designated shock team and (5) create a clinical archive of Cardiogenic Shock patient characteristics for future analysis and the support of translational research studies. This is an observational, retrospective, single center study. Retrospective and prospective data will be collected in patients treated at the Inova Heart and Vascular Institute with documented cardiogenic shock as a result of acute decompensated heart failure or acute myocardial infarction. This registry will include data from patients prior to and after the initiation of the multidisciplinary Cardiogenic Shock team on January 1, 2017. Clinical outcomes associated with early multidisciplinary team intervention will be analyzed. In the study group, all patients evaluated for documented cardiogenic shock (acute decompensated heart failure cardiogenic shock, acute myocardial infarction cardiogenic shock) treated at the Inova Heart and Vascular Institute by the Cardiogenic Shock team will be included. An additional historical Inova Heart and Vascular Institute control group will be analyzed as a comparator. Means with standard deviations will be reported for outcomes. For categorical variables, frequencies and percentages will be presented. For continuous variables, the number of subjects, mean, standard deviation, minimum, 25th percentile, median, 75th percentile and maximum will be reported. Reported differences will include standard errors and 95% CI. Preliminary data analysis for the year 2017 has been completed. Compared to a baseline 2016 survival rate of 47.0%, from 2017 to 2018, CS survival rates were increased to 57.9% (58/110) and 81.3% (81/140), respectively (P=.01 for both). Study data will continue to be collected until December 31, 2018. The preliminary results of this study demonstrate that the INOVA SHOCK team approach to the treatment of Cardiogenic Shock with early team activation, rapid initiation of mechanical circulatory support, hemodynamic-guided management, and strict protocol adherence is associated with superior clinical outcomes: survival to discharge and overall survival when compared to 2015 and 2016 outcomes prior to Shock team initiation. What may limit the generalization of these results of this study to other populations are site specific; expertise of the team, strict algorithm adherence based on the INOVA SHOCK protocol, and staff commitment to timely team activation. Retrospective clinical outcomes (acute decompensated heart failure cardiogenic shock, acute myocardial infarction cardiogenic shock) demonstrated an increase in current survival rates when compared to pre-Cardiogenic Shock team initiation, rapid team activation and diagnosis and timely utilization of mechanical circulatory support. ClinicalTrials.gov NCT03378739; https://clinicaltrials.gov/ct2/show/NCT03378739 (Archived by WebCite at http://www.webcitation.org/701vstDGd). ©Behnam Tehrani, Alexander Truesdell, Ramesh Singh, Charles Murphy, Patricia Saulino. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 28.06.2018.
Comparing Numerical Spall Simulations with a Nonlinear Spall Formation Model
NASA Astrophysics Data System (ADS)
Ong, L.; Melosh, H. J.
2012-12-01
Spallation accelerates lightly shocked ejecta fragments to speeds that can exceed the escape velocity of the parent body. We present high-resolution simulations of nonlinear shock interactions in the near surface. Initial results show the acceleration of near-surface material to velocities up to 1.8 times greater than the peak particle velocity in the detached shock, while experiencing little to no shock pressure. These simulations suggest a possible nonlinear spallation mechanism to produce the high-velocity, low show pressure meteorites from other planets. Here we pre-sent the numerical simulations that test the production of spall through nonlinear shock interactions in the near sur-face, and compare the results with a model proposed by Kamegai (1986 Lawrence Livermore National Laboratory Report). We simulate near-surface shock interactions using the SALES_2 hydrocode and the Murnaghan equation of state. We model the shock interactions in two geometries: rectangular and spherical. In the rectangular case, we model a planar shock approaching the surface at a constant angle phi. In the spherical case, the shock originates at a point below the surface of the domain and radiates spherically from that point. The angle of the shock front with the surface is dependent on the radial distance of the surface point from the shock origin. We model the target as a solid with a nonlinear Murnaghan equation of state. This idealized equation of state supports nonlinear shocks but is tem-perature independent. We track the maximum pressure and maximum velocity attained in every cell in our simula-tions and compare them to the Hugoniot equations that describe the material conditions in front of and behind the shock. Our simulations demonstrate that nonlinear shock interactions in the near surface produce lightly shocked high-velocity material for both planar and cylindrical shocks. The spall is the result of the free surface boundary condi-tion, which forces a pressure gradient from the peak shock pressure to the zero pressure boundary. The nonlinear shock interactions occur where the pressure contours curve to accommodate the free surface. The material within this spall zone is ejected at speeds up to 1.8 km s-1 for an imposed pulse of 1 km s-1. Where the ejection velocities are highest, the maximum pressure attained in each cell is effectively zero. We compare our simulation results with a model for nonlinear shock interactions proposed by Kamegai (1986). This model recognizes that the material behind the shock is compressed and has a higher soundspeed than the mate-rial in front of the shock. As the rarefaction wave moves behind the shock, its increased velocity through the com-pressed material combines with the residual particle velocity behind the shock to "catch up" with the shock. This occurs in the near surface where the sum of the compressed sound speed and the residual particle velocity is greater than or equal to the shock velocity. Initial results for the spherical shocks qualitatively match the volume described by this model, but differ significantly in the quantitative slope of the curve defining the region of interaction. We continue to test the Kamegai model with high-resolution numerical simulations of shock interactions to determine its potential application to planetary spallation.
CFD Simulations of the IHF Arc-Jet Flow: Compression-Pad Separation Bolt Wedge Tests
NASA Technical Reports Server (NTRS)
Gokcen, Tahir; Skokova, Kristina A.
2017-01-01
This paper reports computational analyses in support of two wedge tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using two different wedge models, each placed in a free jet downstream of a corresponding different conical nozzle in the Ames 60-MW Interaction Heating Facility. Each panel test article included a metallic separation bolt imbedded in Orion compression-pad and heatshield materials, resulting in a circular protuberance over a flat plate. The protuberances produce complex model flowfields, containing shock-shock and shock-boundary layer interactions, and multiple augmented heating regions on the test plate. As part of the test calibration runs, surface pressure and heat flux measurements on water-cooled calibration plates integrated with the wedge models were also obtained. Surface heating distributions on the test articles as well as arc-jet test environment parameters for each test configuration are obtained through computational fluid dynamics simulations, consistent with the facility and calibration measurements. The present analysis comprises simulations of the non-equilibrium flow field in the facility nozzle, test box, and flow field over test articles, and comparisons with the measured calibration data.
CFD Simulations of the IHF Arc-Jet Flow: Compression-Pad/Separation Bolt Wedge Tests
NASA Technical Reports Server (NTRS)
Goekcen, Tahir; Skokova, Kristina A.
2017-01-01
This paper reports computational analyses in support of two wedge tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using two different wedge models, each placed in a free jet downstream of a corresponding different conical nozzle in the Ames 60-MW Interaction Heating Facility. Each panel test article included a metallic separation bolt imbedded in Orion compression-pad and heatshield materials, resulting in a circular protuberance over a flat plate. The protuberances produce complex model flowfields, containing shock-shock and shock-boundary layer interactions, and multiple augmented heating regions on the test plate. As part of the test calibration runs, surface pressure and heat flux measurements on water-cooled calibration plates integrated with the wedge models were also obtained. Surface heating distributions on the test articles as well as arc-jet test environment parameters for each test configuration are obtained through computational fluid dynamics simulations, consistent with the facility and calibration measurements. The present analysis comprises simulations of the nonequilibrium flowfield in the facility nozzle, test box, and flowfield over test articles, and comparisons with the measured calibration data.
Effect of environmental temperature on shock absorption properties of running shoes.
Dib, Mansour Y; Smith, Jay; Bernhardt, Kathie A; Kaufman, Kenton R; Miles, Kevin A
2005-05-01
To determine the effect of temperature changes on the shock attenuation of 4 running shoe shock absorption systems. Prospective. Motion analysis laboratory. The shock attenuation of 4 different running shoes representing common shock absorption systems (Nike Air Triax, Asics Gel Nimbus IV, Adidas a3 cushioning, Adidas Supernova cushion) was measured at ambient temperatures of -20 degrees C, -10 degrees C, 0 degrees C, +10 degrees C, +20 degrees C, +30 degrees C, +40 degrees C, and +50 degrees C. Repeated-measures analysis of variance was used to determine differences between shoes. Shock attenuation as indicated by peak deceleration (g) measured by a mechanical impactor following ASTM Standard F1614-99. Shock attenuation decreased significantly with reduced temperature for each shoe tested. The Adidas a3 shoe exhibited significantly higher peak decelerations (lower shock attenuation) at cold temperatures compared with the other shoes. Cold ambient temperatures significantly reduce the shock attenuation of commonly used running shoes. These findings have important clinical implications for individuals training in extreme weather environments, particularly those with a history of lower limb overuse injuries.
NASA Technical Reports Server (NTRS)
Anagnostopoulos, G. C.; Sarris, E. T.; Krimigis, S. M.
1988-01-01
The efficiency of proposed shock acceleration mechanisms as they operate at the bow shock in the presence of a seed energetic particle population was examined using data from simultaneous observations of energetic solar-origin protons, carried out by the IMP 7 and 8 spacecraft in the vicinity of the quasi-parallel (dawn) and quasi-perpendicular (dusk) regions of the earth's bow shock, respectively. The results of observations (which include acceleration effects in the intensities of the energetic protons with energies as high as 4 MeV observed at the vicinity of the dusk bow shock, but no evidence for any particle acceleration at the energy equal to or above 50 keV at the dawn side of the bow shock) indicate that the acceleration of a seed particle population occurs only at the quasi-perpendicular bow shock through shock drift acceleration and that the major source of observed upstream ion populations is the leakage of magnetospheric ions of energies not less than 50 keV, rather than in situ acceleration.
Gunderson, Bruce D; Gillberg, Jeffrey M; Wood, Mark A; Vijayaraman, Pugazhendhi; Shepard, Richard K; Ellenbogen, Kenneth A
2006-02-01
Implantable cardioverter-defibrillator (ICD) lead failures often present as inappropriate shock therapy. An algorithm that can reliably discriminate between ventricular tachyarrhythmias and noise due to lead failure may prevent patient discomfort and anxiety and avoid device-induced proarrhythmia by preventing inappropriate ICD shocks. The goal of this analysis was to test an ICD tachycardia detection algorithm that differentiates noise due to lead failure from ventricular tachyarrhythmias. We tested an algorithm that uses a measure of the ventricular intracardiac electrogram baseline to discriminate the sinus rhythm isoelectric line from the right ventricular coil-can (i.e., far-field) electrogram during oversensing of noise caused by a lead failure. The baseline measure was defined as the product of the sum (mV) and standard deviation (mV) of the voltage samples for a 188-ms window centered on each sensed electrogram. If the minimum baseline measure of the last 12 beats was <0.35 mV-mV, then the detected rhythm was considered noise due to a lead failure. The first ICD-detected episode of lead failure and inappropriate detection from 24 ICD patients with a pace/sense lead failure and all ventricular arrhythmias from 56 ICD patients without a lead failure were selected. The stored data were analyzed to determine the sensitivity and specificity of the algorithm to detect lead failures. The minimum baseline measure for the 24 lead failure episodes (0.28 +/- 0.34 mV-mV) was smaller than the 135 ventricular tachycardia (40.8 +/- 43.0 mV-mV, P <.0001) and 55 ventricular fibrillation episodes (19.1 +/- 22.8 mV-mV, P <.05). A minimum baseline <0.35 mV-mV threshold had a sensitivity of 83% (20/24) with a 100% (190/190) specificity. A baseline measure of the far-field electrogram had a high sensitivity and specificity to detect lead failure noise compared with ventricular tachycardia or fibrillation.
Mongardon, Nicolas; Savary, Guillaume; Geri, Guillaume; El Bejjani, Marie-Rose; Silvera, Stéphane; Dumas, Florence; Charpentier, Julien; Pène, Frédéric; Mira, Jean-Paul; Cariou, Alain
2018-05-28
Adrenal gland volume is associated with survival in septic shock. As sepsis and post-cardiac arrest syndrome share many pathophysiological features, we assessed the association between adrenal gland volume measured by computerized tomography (CT)-scan and post-cardiac arrest shock and intensive care unit (ICU) mortality, in a large cohort of out-of-hospital cardiac arrest (OHCA) patients. We also investigated the association between adrenal hormonal function and both adrenal gland volume and outcomes. Prospective analysis of CT-scan performed at hospital admission in patients admitted after OHCA (2007-2012). A pair of blinded radiologist calculated manually adrenal gland volume. In a subgroup of patients, plasma cortisol was measured at admission and 60 min after a cosyntropin test. Factors associated with post-cardiac arrest shock and ICU mortality were identified using multivariate logistic regression. Among 775 patients admitted during this period after OHCA, 138 patients were included: 72 patients (52.2%) developed a post-cardiac arrest shock, and 98 patients (71.1%) died. In univariate analysis, adrenal gland volume was not different between patients with and without post-cardiac arrest shock: 10.6 and 11.3 cm 3 , respectively (p = 0.9) and between patients discharged alive or dead: 10.2 and 11.8 cm 3 , respectively (p = 0.4). Multivariate analysis confirmed that total adrenal gland volume was associated neither with post-cardiac arrest shock nor mortality. Neither baseline cortisol level nor delta between baseline and after cosyntropin test cortisol levels were associated with adrenal volume, post-cardiac arrest shock onset or mortality. After OHCA, adrenal gland volume is not associated with post-cardiac arrest shock onset or ICU mortality. Adrenal gland volume does not predict adrenal gland hormonal response. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Kotch, M.
1975-01-01
Model information and data are presented from wind tunnel tests conducted on 0.01-scale models of the space shuttle orbiter and external tank. These tests were conducted in a hypersonic shock tunnel to determine heating rates on ascent and reentry configurations at various Reynolds numbers, Mach numbers, and angles of attack.
NASA Technical Reports Server (NTRS)
Zabel, P. H.
1979-01-01
A concept for containing the shock inputs due to hydrodynamic ram caused by an impacting projectile within a fuel cell is discussed. This is to provide a buffering layer of foam, flexible, rigid or a combination thereof, which is sealed from the liquid. A program is described in which this buffering concept was tested. The effectiveness of a novel muzzle-mounted, 'tumble', test device is shown.
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Stueber, Thomas J.
2013-01-01
A dual flow-path inlet system is being tested to evaluate methodologies for a Turbine Based Combined Cycle (TBCC) propulsion system to perform a controlled inlet mode transition. Prior to experimental testing, simulation models are used to test, debug, and validate potential control algorithms. One simulation package being used for testing is the High Mach Transient Engine Cycle Code simulation, known as HiTECC. This paper discusses the closed loop control system, which utilizes a shock location sensor to improve inlet performance and operability. Even though the shock location feedback has a coarse resolution, the feedback allows for a reduction in steady state error and, in some cases, better performance than with previous proposed pressure ratio based methods. This paper demonstrates the design and benefit with the implementation of a proportional-integral controller, an H-Infinity based controller, and a disturbance observer based controller.
Churgin, Matthew A.; He, Liping; Murray, John I.; Fang-Yen, Christopher
2014-01-01
The spatial and temporal control of transgene expression is an important tool in C. elegans biology. We previously described a method for evoking gene expression in arbitrary cells by using a focused pulsed infrared laser to induce a heat shock response (Churgin et al 2013). Here we describe detailed methods for building and testing a system for performing single-cell heat shock. Steps include setting up the laser and associated components, coupling the laser beam to a microscope, and testing heat shock protocols. All steps can be carried out using readily available off-the-shelf components. PMID:24835576
Thermal-stress fracture and fractography in UO/sub 2/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, C.R.; Bandyopadhyay, G.
1976-01-01
Pressed and sintered UO/sub 2/ pellets were thermally shocked by quenching into a water bath at room temperature. The cracking behavior and strength degradation, as measured by the diametral compression technique, in these quench tests are discussed. Fractography of the thermally shocked specimens by scanning-electron microscopy indicated predominantly intergranular fracture in UO/sub 2/ in severe thermal-shock tests. The implication of this observation is that intergranular cracking may occur during the initial heat up in a reactor. Because fission gas bubbles tend to migrate toward the grain boundary, preferential microcracking along the boundary may strongly affect subsequent fission gas release behavior.
Shot H3837: Darht's first dual-axis explosive experiment
NASA Astrophysics Data System (ADS)
Harsh, James F.; Hull, Lawrence; Mendez, Jacob; McNeil, Wendy Vogan
2012-03-01
Test H3837 was the first explosive shot performed in front of both flash x-ray axes at the Los Alamos Dual Axis Radiographic Hydrodynamic Test (DARHT) facility. Executed in November 2009, the shot was an explosively-driven metal flyer plate in a series of experiments designed to explore equation-of-state properties of shocked materials. Imaging the initial shock wave traveling through the flyer plate, DARHT Axis II captured the range of motion from the shock front emergence in the flyer to breakout at the free surface; the Axis I pulse provided a perpendicular perspective of the shot at a time coinciding with the third pulse of Axis II.
First-order shock acceleration in solar flares
NASA Technical Reports Server (NTRS)
Ellison, D. C.; Ramaty, R.
1985-01-01
The first order Fermi shock acceleration model is compared with specific observations where electron, proton, and alpha particle spectra are available. In all events, it is found that a single shock with a compression ratio as inferred from the low energy proton spectra can reasonably produce the full proton, electron, and alpha particle spectra. The model predicts that the acceleration time to a given energy will be approximately equal for electrons and protons and, for reasonable solar parameters, can be less than 1 sec to 100 MeV.
NASA Astrophysics Data System (ADS)
Auluck, S. K. H.
2017-11-01
This paper continues earlier discussion [S. K. H. Auluck, Phys. Plasmas 21, 102515 (2014)] concerning the formulation of conservation laws of mass, momentum, and energy in a local curvilinear coordinate system in the dense plasma focus. This formulation makes use of the revised Gratton-Vargas snowplow model [S. K. H. Auluck, Phys. Plasmas 20, 112501 (2013)], which provides an analytically defined imaginary surface in three dimensions which resembles the experimentally determined shape of the plasma. Unit vectors along the local tangent to this surface, along the azimuth, and along the local normal define a right-handed orthogonal local curvilinear coordinate system. The simplifying assumption that physical quantities have significant variation only along the normal enables writing laws of conservation of mass, momentum, and energy in the form of effectively one-dimensional hyperbolic conservation law equations using expressions for various differential operators derived for this coordinate system. This formulation demonstrates the highly non-trivial result that the axial magnetic field and toroidally streaming fast ions, experimentally observed by multiple prestigious laboratories, are natural consequences of conservation of mass, momentum, and energy in the curved geometry of the dense plasma focus current sheath. The present paper continues the discussion in the context of a 3-region shock structure similar to the one experimentally observed: an unperturbed region followed by a hydrodynamic shock containing some current followed by a magnetic piston. Rankine-Hugoniot conditions are derived, and expressions are obtained for the specific volumes and pressures using the mass-flux between the hydrodynamic shock and the magnetic piston and current fraction in the hydrodynamic shock as unknown parameters. For the special case of a magnetic piston that remains continuously in contact with the fluid being pushed, the theory gives closed form algebraic results for the fraction of current flowing in the hydrodynamic shock, specific volume, pressure, and fluid velocity of the hydrodynamic shock region, the tangential, normal, and azimuthal components of velocity in the magnetized plasma, the density of the magnetized plasma, the normal and tangential components of the magnetic field, and the tangential, normal, and azimuthal components of the electric field. This explains the occurrence of azimuthally streaming high energy deuterons experimentally observed by Frascati and Stuttgart. The expression derived for the azimuthal component of vector potential can serve as the basis for a proposed experimental test of the theory.
Farms, Families, and Markets: New Evidence on Completeness of Markets in Agricultural Settings
LaFave, Daniel; Thomas, Duncan
2016-01-01
The farm household model has played a central role in improving the understanding of small-scale agricultural households and non-farm enterprises. Under the assumptions that all current and future markets exist and that farmers treat all prices as given, the model simplifies households’ simultaneous production and consumption decisions into a recursive form in which production can be treated as independent of preferences of household members. These assumptions, which are the foundation of a large literature in labor and development, have been tested and not rejected in several important studies including Benjamin (1992). Using multiple waves of longitudinal survey data from Central Java, Indonesia, this paper tests a key prediction of the recursive model: demand for farm labor is unrelated to the demographic composition of the farm household. The prediction is unambiguously rejected. The rejection cannot be explained by contamination due to unobserved heterogeneity that is fixed at the farm level, local area shocks or farm-specific shocks that affect changes in household composition and farm labor demand. We conclude that the recursive form of the farm household model is not consistent with the data. Developing empirically tractable models of farm households when markets are incomplete remains an important challenge. PMID:27688430
NASA Astrophysics Data System (ADS)
Herbold, E. B.; Nesterenko, V. F.; Benson, D. J.; Cai, J.; Vecchio, K. S.; Jiang, F.; Addiss, J. W.; Walley, S. M.; Proud, W. G.
2008-11-01
The variation of metallic particle size and sample porosity significantly alters the dynamic mechanical properties of high density granular composite materials processed using a cold isostatically pressed mixture of polytetrafluoroethylene (PTFE), aluminum (Al), and tungsten (W) powders. Quasistatic and dynamic experiments are performed with identical constituent mass fractions with variations in the size of the W particles and pressing conditions. The relatively weak polymer matrix allows the strength and fracture modes of this material to be governed by the granular type behavior of agglomerated metal particles. A higher ultimate compressive strength was observed in relatively high porosity samples with small W particles compared to those with coarse W particles in all experiments. Mesoscale granular force chains of the metallic particles explain this unusual phenomenon as observed in hydrocode simulations of a drop-weight test. Macrocracks forming below the critical failure strain for the matrix and unusual behavior due to a competition between densification and fracture in dynamic tests of porous samples were also observed. Numerical modeling of shock loading of this granular composite material demonstrated that the internal energy, specifically thermal energy, of the soft PTFE matrix can be tailored by the W particle size distribution.
Annular arc accelerator shock tube
NASA Technical Reports Server (NTRS)
Leibowitz, L. P. (Inventor)
1976-01-01
An annular arc accelerator shock tube employs a cold gas driver to flow a stream of gas from an expansion section through a high voltage electrode section to a test section, thus driving a shock wave in front of it. A glow discharge detects the shock wave and actuates a trigger generator which in turn fires spark-gap switches to discharge a bank of capacitors across a centered cathode and an annular anode in tandem electrode sections. The initial shock wave passes through the anode section from the cathode section thereby depositing energy into the flow gas without the necessity of any diaphragm opening in the gas flow from the expansion section through the electrode sections.
Mineralogy and Microstructures of Shock-Induced Melt Veins in Chondrites
NASA Technical Reports Server (NTRS)
Sharp, Thomas G.
2000-01-01
The applicability of phase equilibrium data to the interpretation of shock-induced melt veins can only be tested by a detailed study of melt- vein mineralogy to see how high-pressure assemblages vary as a function of shock conditions inferred from other indicators. We have used transmission electron microscopy (TEM), analytical electron microscopy (AEM), scanning electron microscopy (SEM), electron microprobe analysis (EMA) and optical petrography to characterize the mineralogy, microstructures, and compositions of melt veins and associated high-pressure minerals in shocked chondrites and SNC meteorites. In the processes, we have gained a better understanding of what melt veining can tell us about shock conditions and we have discovered new mineral phases in chondritic and SNC meteorites.
In situ optical measurements of bacterial endospore breakdown in a shock tube
NASA Astrophysics Data System (ADS)
McCartt, A. D.; Gates, S.; Lappas, P.; Jeffries, J. B.; Hanson, R. K.
2012-03-01
The interaction of endospore-laden bioaerosols and shock waves is monitored with a combination of laser absorption and scattering. Tests are performed in the Stanford aerosol shock tube for post-shock temperatures ranging from 400-1100 K. In situ laser measurements at 266 and 665 nm provide a real-time monitor of endospore morphology. Scatter of visible light measures the integrity of endospore structure, while absorption of UV light provides a monitor of biochemicals released by endospore rupture. For post-shock temperatures greater than 750 K endospore morphological breakdown is observed. A simple theoretical model is employed to quantify the optical measurements, and mechanisms leading to the observed data are discussed.
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.
2016-01-01
Cracking of multilayer ceramic capacitors, MLCCs, remains a serious problem for space systems. This problem increases substantially for large size capacitors and in cases when manual soldering is involved or the system experiences mechanical shock or vibration. In any case, a fracture occurs when the sum of external and internal mechanical stresses exceeds the strength of the part. To reduce the probability of cracking, the level of stress should be reduced, e.g. by optimizing the assembly workmanship and rules for board design, and the strength of the parts increased by selecting the most mechanically robust capacitors. The latter might possibly be achieved by selecting MLCCs based on the in-situ measurements of mechanical characteristics using four types of tests: flexural strength, hardness, fracture toughness, and flex bend testing. Note that military specifications MIL-PRF-123 and MIL-PRF-55681 do not have requirements for mechanical testing of the parts. However, specifications for automotive industry components employ two types of mechanical tests: beam load (break strength) test per AEC-Q200-003 and board flex test per AEC-Q200-005. A recent military specification for thin dielectric capacitors, MIL-PRF-32535, has one mechanical test, board flex testing, that is similar to AEC-Q200-005. The purpose of this report was assessment of the efficiency of different mechanical tests for selection robust capacitors and comparison of mechanical characteristics of Base Metal Electrode (BME) and Precious Metal Electrode (PME) capacitors. The report has three parts related to the first three mechanical tests mentioned above.
Monte Carlo simulations of particle acceleration at oblique shocks
NASA Technical Reports Server (NTRS)
Baring, Matthew G.; Ellison, Donald C.; Jones, Frank C.
1994-01-01
The Fermi shock acceleration mechanism may be responsible for the production of high-energy cosmic rays in a wide variety of environments. Modeling of this phenomenon has largely focused on plane-parallel shocks, and one of the most promising techniques for its study is the Monte Carlo simulation of particle transport in shocked fluid flows. One of the principal problems in shock acceleration theory is the mechanism and efficiency of injection of particles from the thermal gas into the accelerated population. The Monte Carlo technique is ideally suited to addressing the injection problem directly, and previous applications of it to the quasi-parallel Earth bow shock led to very successful modeling of proton and heavy ion spectra, as well as other observed quantities. Recently this technique has been extended to oblique shock geometries, in which the upstream magnetic field makes a significant angle Theta(sub B1) to the shock normal. Spectral resutls from test particle Monte Carlo simulations of cosmic-ray acceleration at oblique, nonrelativistic shocks are presented. The results show that low Mach number shocks have injection efficiencies that are relatively insensitive to (though not independent of) the shock obliquity, but that there is a dramatic drop in efficiency for shocks of Mach number 30 or more as the obliquity increases above 15 deg. Cosmic-ray distributions just upstream of the shock reveal prominent bumps at energies below the thermal peak; these disappear far upstream but might be observable features close to astrophysical shocks.
Enhancing the Analysis of Rural Community Resilience: Evidence from Community land Ownership
ERIC Educational Resources Information Center
Skerratt, Sarah
2013-01-01
Resilience, and specifically the resilience of (rural) communities, is an increasingly-ubiquitous concept, particularly in the contexts of resistance to shocks, climate change, and environmental disasters. The dominant discourse concerning (community) resilience centres around bounce-back from external shocks. In this paper, I argue that it is…
Potential for the Vishniac instability in ionizing shock waves propagating into cold gases
NASA Astrophysics Data System (ADS)
Robinson, A. P. L.; Pasley, J.
2018-05-01
The Vishniac instability was posited as an instability that could affect supernova remnants in their late stage of evolution when subject to strong radiative cooling, which can drive the effective ratio of specific heats below 1.3. The potential importance of this instability to these astrophysical objects has motivated a number of laser-driven laboratory studies. However, the Vishniac instability is essentially a dynamical instability that should operate independently of whatever physical processes happen to reduce the ratio of specific heats. In this paper, we examine the possibility that ionization and molecular dissociation processes can achieve this, and we show that this is possible for a certain range of shock wave Mach numbers for ionizing/dissociating shock waves propagating into cold atomic and molecular gases.
NASA Astrophysics Data System (ADS)
Fustich, C. D.
1980-03-01
A series of transformer room fire tests are reported to demonstate the shock hazard present when automatic sprinklers operate over energized electrical equipment. Fire protection was provided by standard 0.5 inch pendent automatic sprinklers temperature rated at 135 F and installed to give approximately 150 sq ft per head coverage. A 480 v dry transformer was used in the room to provide a three phase, four wire distribution system. It is shown that the induced currents in the test room during the various tests are relatively small and pose no appreciable personnel shock hazard.
[Clinical evaluation of triage as drug-of-abuse test kit].
Yoshioka, Toshiharu; Kohriyama, Kazuaki; Kondo, Rumiko; Goto, Kyoko; Yashiki, Mikio
2003-01-01
There are about 60,000 chemical substances which may cause poisoning. Identifying the cause substances is, therefore, very important for patient at emergency department. Triage is an immunoassay kit for the qualitative test for the metabolites of 8 major abuse drugs in urine. We assessed the usefullness of Triage on two patient groups. The first Group consists of the patients considered having not taken substances at initial diagnosis; the second Group consists of the patients considered having taken substances. The result are as follows. 1) The rate of Triage positive patients in the first Group were: attempt-suicide 23%, coma 24%, shock 10%, trauma 7%, respectively. Except for the habitually used medicine, narcotic and stimulant drugs were detected. In the first Group, negative result of Triage was effective in diagnosing the patients as not poisoned, excluding the possitivity of 8 major drugs usage. 2) The rate of Triage positive patients in the second Group were very high: attempt-suicide 77%, coma 51%, shock 57%, trauma 30%, respectively, showing mostly any of 8 major drugs were the cause of poisoning. In the second Group, positive result of Triage was effective in diagnosing the patient as poisoning or as coexisting poisoning with other diseases. 3) The specificity of Triage diagnosis in the first Group was 80% (113/142). The specificity and the sensitivity in the second Group were 64% (50/78) and 97% (74/76), respectively. These results means that Triage is very useful for diagnosis on 8 major drugs poisoning. 4) Triage is efficient for identifying the cause substances in drug poisoning and, therefore, can save medical expense. Triage is a very useful test kit at emergency department.
Numerical and experimental investigation of VG flow control for a low-boom inlet
NASA Astrophysics Data System (ADS)
Rybalko, Michael
The application of vortex generators (VGs) for shock/boundary layer interaction flow control in a novel external compression, axisymmetric, low-boom concept inlet was studied using numerical and experimental methods. The low-boom inlet design features a zero-angle cowl and relaxed isentropic compression centerbody spike, resulting in defocused oblique shocks and a weak terminating normal shock. This allows reduced external gas dynamic waves at high mass flow rates but suffers from flow separation near the throat and a large hub-side boundary layer at the Aerodynamic Interface Plane (AIP), which marks the inflow to the jet engine turbo-machinery. Supersonic VGs were investigated to reduce the shock-induced flow separation near the throat while subsonic VGs were investigated to reduce boundary layer radial distortion at the AIP. To guide large-scale inlet experiments, Reynolds-Averaged Navier-Stokes (RANS) simulations using three-dimensional, structured, chimera (overset) grids and the WIND-US code were conducted. Flow control cases included conventional and novel types of vortex generators at positions both upstream of the terminating normal shock (supersonic VGs) and downstream (subsonic VGs). The performance parameters included incompressible axisymmetric shape factor, post-shock separation area, inlet pressure recovery, and mass flow ratio. The design of experiments (DOE) methodology was used to select device size and location, analyze the resulting data, and determine the optimal choice of device geometry. Based on the above studies, a test matrix of supersonic and subsonic VGs was adapted for a large-scale inlet test to be conducted at the 8'x6' supersonic wind tunnel at NASA Glenn Research Center (GRC). Comparisons of RANS simulations with data from the Fall 2010 8'x6' inlet test showed that predicted VG performance trends and case rankings for both supersonic and subsonic devices were consistent with experimental results. For example, experimental surface oil flow visualization revealed a significant post-shock separation bubble with flow recirculation for the baseline (no VG) case that was substantially broken up in the micro-ramp VG case, consistent with simulations. Furthermore, the predicted subsonic VG performance with respect to a reduction in radial distortion (quantified in terms of axisymmetric incompressible shape factor) was found to be consistent with boundary layer rake measurements. To investigate the unsteady turbulent flow features associated with the shock-induced flow separation and the hub-side boundary layer, a detached eddy simulation (DES) approach using the WIND-US code was employed to model the baseline inlet flow field. This approach yielded improved agreement with experimental data for time-averaged diffuser stagnation pressure profiles and allowed insight into the pressure fluctuations and turbulent kinetic energy distributions which may be present at the AIP. In addition, streamwise shock position statistics were obtained and compared with experimental Schlieren results. The predicted shock oscillations were much weaker than those seen experimentally (by a factor of four), which indicates that the mechanism for the experimental shock oscillations was not captured. In addition, the novel supersonic vortex generator geometries were investigated experimentally (prior to the large-scale inlet 8'x6' wind tunnel tests) in an inlet-relevant flow field containing a Mach 1.4 normal shock wave followed by a subsonic diffuser. A parametric study of device height and distance upstream of the normal shock was undertaken for split-ramp and ramped-vane geometries. Flow field diagnostics included high-speed Schlieren, oil flow visualization, and Pitot-static pressure measurements. Parameters including flow separation, pressure recovery, centerline incompressible boundary layer shape factor, and shock stability were analyzed and compared to the baseline uncontrolled case. While all vortex generators tested eliminated centerline flow separation, the presence of VGs also increased the significant three-dimensionality of the flow via increased side-wall interaction. The stronger streamwise vorticity generated by ramped-vanes also yielded improved pressure recovery and fuller boundary layer velocity profiles within the subsonic diffuser. (Abstract shortened by UMI.)
Experimental investigation of shock-cell noise reduction for dual-stream nozzles in simulated flight
NASA Technical Reports Server (NTRS)
Janardan, B. A.; Yamamoto, K.; Majjigi, R. K.; Brausch, J. F.
1984-01-01
Six scale-model nozzles were tested in an anechoic facility to evauate the effectiveness of convergent-divergent (C-D) terminations in reducing shock-cell noise of unsuppressed and mechanically suppressed coannular plug nozzles. One hundred fifty-three acoustic test points with inverted velocity profiles were conducted under static and simulated flight conditions. Diagnostic flow visualization with a shadowgraph and velocity measurements with a laser velocimeter were performed on selected plumes. Shock-cells were identified on the plug and downstream of the plug of the unsuppressed convergent coannular nozzle with truncated plug. Broadband peak frequencies predicted with the two shock-cell structures were correlated with the observed spectra using the measured shock-cell spacings. Relative to a convergent circular nozzle, the perceived noise level (PNL) data at an observer angle of 60 deg relative to inlet, indicated a reduction of (1) 6.5 dB and 9.2 dB with unsuppressed C-D coannular nozzle with truncated plug and (2) 7.7 dB and 8.3 dB with suppressed C-D coannular nozzle under static and simulated flight conditions, espectively. The unsuppressed C-D coannular nozzle with truncated plug, operating at the C-D design condition, had shock-cells downstream of the plug with no shock-cells on the plug. The downstream shock-cells were eliminated by replacing the truncated plug with a smooth extension to obtain an additional 2.4 dB and 3 dB front quadrant PNL reduction, under static and simulated flight conditions, respectively. Other results are discussed.
Shock characterization of TOAD pins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weirick, L.J.; Navarro, N.J.
1995-08-01
The purpose of this program was to characterize Time Of Arrival Detectors (TOAD) pins response to shock loading with respect to risetime, amplitude, repeatability and consistency. TOAD pins were subjected to impacts of 35 to 420 kilobars amplitude and approximately 1 ms pulse width to investigate the timing spread of four pins and the voltage output profile of the individual pins. Sets of pins were also aged at 45{degrees}, 60{degrees}, and 80{degrees}C for approximately nine weeks before shock testing at 315 kilobars impact stress. Four sets of pins were heated to 50.2{degrees}C (125{degrees}F) for approximately two hours and then impactedmore » at either 50 or 315 kilobars. Also, four sets of pins were aged at 60{degrees}C for nine weeks and then heated to 50.2{degrees}C before shock testing at 50 and 315 kilobars impact stress, respectively. Particle velocity measurements at the contact point between the stainless steel targets and TOAD pins were made using a Velocity Interferometer System for Any Reflector (VISAR) to monitor both the amplitude and profile of the shock waves.« less
NASA Technical Reports Server (NTRS)
Bogdanoff, David W.; Edwards, Thomas A. (Technical Monitor)
1995-01-01
This review is divided into two main sections. The first section described the various types of shock tunnel facilities - reflected shock tunnels, non-reflected shock tunnels and expansion tubes/tunnels. Driver technology is then described, followed by a discussion of the performance obtainable from various driver-driven combinations. A survey of a number of facilities is then presented. The second part of the review deals with details of the operation of the facilities. Operation of combustion drivers, electrically heated drivers and piston compression drivers is discussed in some detail. Main diaphragm break techniques are discussed, with particular attention being paid to maintaining the integrity of the diaphragm petals. Secondary diaphragm techniques are discussed. Phenomena which limit test time are discussed and a number of techniques to increase test time are presented. Contamination of the flow with material ablated from the wall is discussed along with the relative suitability of various materials for lining the tubes and nozzle. Finally, boundary layer effects in shock tunnels and expansion tubes are discussed.
Multiphase Modeling of Secondary Atomization in a Shock Environment
NASA Astrophysics Data System (ADS)
St. Clair, Jeffrey; McGrath, Thomas; Balachandar, Sivaramakrishnan
2017-06-01
Understanding and developing accurate modeling strategies for shock-particulate interaction remains a challenging and important topic, with application to energetic materials development, volcanic eruptions, and safety/risk assessment. This work presents computational modeling of compressible multiphase flows with shock-induced droplet atomization. Droplet size has a strong influence on the interphase momentum and heat transfer. A test case is presented that is sensitive to this, requiring the dynamic modeling of the secondary atomization process occurring when the shock impacts the droplets. An Eulerian-Eulerian computational model that treats all phases as compressible, is hyperbolic and satisfies the 2nd Law of Thermodynamics is applied. Four different breakup models are applied to the test case in which a planar shock wave encounters a cloud of water droplets. The numerical results are compared with both experimental and previously-generated modeling results. The effect of the drag relation used is also investigated. The computed results indicate the necessity of using a droplet breakup model for this application, and the relative accuracy of results obtained with the different droplet breakup and drag models is discussed.
A novel free floating accelerometer force balance system for shock tunnel applications
NASA Astrophysics Data System (ADS)
Joarder, R.; Mahaptra, D. R.; Jagadeesh, G.
In order to overcome the interference of the model mounting system with the external aerodynamics of the body during shock tunnel testing, a new free floating internally mountable balance system that ensures unrestrained model motion during testing has been designed, fabricated and tested. Minimal friction ball bearings are used for ensuring the free floating condition of the model during tunnel testing. The drag force acting on a blunt leading edge flat plate at hypersonic Mach number has been measured using the new balance system. Finite element model (FEM) and CFD are exhaustively used in the design as well as for calibrating the new balance system. The experimentally measured drag force on the blunt leading edge flat plate at stagnation enthalpy of 0.7 and 1.2 MJ/kg and nominal Mach number of 5.75 matches well with FEM results. The concept can also be extended for measuring all the three fundamental aerodynamic forces in short duration test facilities like free piston driven shock tunnels.
NASA Technical Reports Server (NTRS)
Erickson, G. J.
1964-01-01
The goal of this contract was to determine the g environment under which the GC159C Gas-Bearing Spinmotor (GBSM) could reliably operate. This was fulfilled by building and testing of four GBSM's, a test fixture, and a "dummy" gyro. The test program was divided into two phases when a gas bearing improvement was required to withstand JPL shock requirement of 200 g. Phase I determined existing g capabilities and performance of the GC159C GBSM and gimbal-case structure. Phase II increased GBSM capability to meet required JPL g environments. Life tests were run on two GBSM's which were shocked at a high level to obtain bearing contact while rotating at their operating speed of 23,000 rpm. A third (nonoperating) GBSM was exposed to JPL maximum shock levels, and a fourth (nonoperating) GBSM was exposed to random vibration. Both nonoperating GBSM's were then subjected to life testing.
Shell shock, trauma, and the First World War: the making of a diagnosis and its histories.
Loughran, Tracey
2012-01-01
During the First World War, thousands of soldiers were treated for "shell shock," a condition which encompassed a range of physical and psychological symptoms. Shell shock has most often been located within a "genealogy of trauma," and identified as an important marker in the gradual recognition of the psychological afflictions caused by combat. In recent years, shell shock has increasingly been viewed as a powerful emblem of the suffering of war. This article, which focuses on Britain, extends scholarly analyses which question characterizations of shell shock as an early form of post-traumatic stress disorder. It also considers some of the methodological problems raised by recasting shell shock as a wartime medical construction rather than an essentially timeless manifestation of trauma. It argues that shell shock must be analyzed as a diagnosis shaped by a specific set of contemporary concerns, knowledges, and practices. Such an analysis challenges accepted understandings of what shell shock "meant" in the First World War, and also offers new perspectives on the role of shell shock in shaping the emergence of psychology and psychiatry in the early part of the twentieth century. The article also considers what relation, if any, might exist between intellectual and other histories, literary approaches, and perceptions of trauma as timeless and unchanging.
Shock-induced perturbation evolution in planar laser targets
NASA Astrophysics Data System (ADS)
Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J. L.; Kessler, T. J.; Schmitt, A. J.; Obenschain, S. P.; Metzler, N.; Oh, J.
2013-10-01
Experimental studies of hydrodynamic perturbation evolution triggered by a laser-driven shock wave in a planar target done on the KrF Nike laser facility are reported. The targets were made of solid plastic and/or plastic foam with single mode sinusoidal perturbation on the front or back surface or plastic/foam interface. Two specific cases are discussed. When a planar solid plastic target rippled at the front side is irradiated with a 350 ps long laser pulse, ablative Richtmyer-Meshkov (RM) oscillation of its areal mass modulation amplitude is detected while the laser is on, followed by observed strong oscillations of the areal mass in the unsupported shock flow after the laser pulse ends. When the target is rippled at the rear side, the nature of the perturbation evolution after the shock breakout is determined by the strength of the laser-driven shock wave. At pressure below 1 Mbar shock interaction with rear-surface ripples produces planar collimated jets manifesting the development of a classical RM instability in a weakly compressible shocked fluid. At shock pressure ~ 8 Mbar sufficient for vaporizing the shocked target material we observed instead the strong areal mass oscillations characteristic of a rippled centered rarefaction wave. Work supported by US DOE, Defense Programs.
Odour intensity learning in fruit flies
Yarali, Ayse; Ehser, Sabrina; Hapil, Fatma Zehra; Huang, Ju; Gerber, Bertram
2009-01-01
Animals' behaviour towards odours depends on both odour quality and odour intensity. While neuronal coding of odour quality is fairly well studied, how odour intensity is treated by olfactory systems is less clear. Here we study odour intensity processing at the behavioural level, using the fruit fly Drosophila melanogaster. We trained flies by pairing a MEDIUM intensity of an odour with electric shock, and then, at a following test phase, measured flies' conditioned avoidance of either this previously trained MEDIUM intensity or a LOWer or a HIGHer intensity. With respect to 3-octanol, n-amylacetate and 4-methylcyclohexanol, we found that conditioned avoidance is strongest when training and test intensities match, speaking for intensity-specific memories. With respect to a fourth odour, benzaldehyde, on the other hand, we found no such intensity specificity. These results form the basis for further studies of odour intensity processing at the behavioural, neuronal and molecular level. PMID:19586944
Experimental Study of Shock Wave Interference Heating on a Cylindrical Leading Edge. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Wieting, Allan R.
1987-01-01
An experimental study of shock wave interference heating on a cylindrical leading edge representative of the cowl of a rectangular hypersonic engine inlet at Mach numbers of 6.3, 6.5, and 8.0 is presented. Stream Reynolds numbers ranged from 0.5 x 106 to 4.9 x 106 per ft. and stream total temperature ranged from 2100 to 3400 R. The model consisted of a 3" dia. cylinder and a shock generation wedge articulated to angles of 10, 12.5, and 15 deg. A fundamental understanding was obtained of the fluid mechanics of shock wave interference induced flow impingement on a cylindrical leading edge and the attendant surface pressure and heat flux distributions. The first detailed heat transfer rate and pressure distributions for two dimensional shock wave interference on a cylinder was provided along with insight into the effects of specific heat variation with temperature on the phenomena. Results show that the flow around a body in hypersonic flow is altered significantly by the shock wave interference pattern that is created by an oblique shock wave from an external source intersecting the bow shock wave produced in front of the body.
Extracorporeal shock wave therapy in orthopedics, basic research, and clinical implications
NASA Astrophysics Data System (ADS)
Hausdorf, Joerg; Jansson, Volkmar; Maier, Markus; Delius, Michael
2005-04-01
The molecular events following shock wave treatment of bone are widely unknown. Nevertheless patients with osteonecrosis and non unions are already treated partly successful with shock waves. Concerning the first indication, the question of the permeation of the shock wave into the bone was addressed. Therefore shockwaves were applied to porcine femoral heads and the intraosseous pressure was measured. A linear correlation of the pressure to the intraosseous distance was found. Approximately 50% of the pressure are still measurable 10 mm inside the femoral head. These findings should encourage continued shock wave research on this indication. Concerning the second indication (non union), osteoblasts were subjected to 250 or 500 shock waves at 25 kV. After 24, 48, and 72 h the levels of the bone and vascular growth factors bFGF, TGFbeta1, and VEGF were examined. After 24 h there was a significant increase in bFGF levels (p<0.05) with significant correlation (p<0.05) to the number of impulses. TGFbeta1, and VEGF showed no significant changes. This may be one piece in the cascade of new bone formation following shock wave treatment and may lead to a more specific application of shock waves in orthopedic surgery.
Experimental Investigation of Normal Shock Boundary-Layer Interaction with Hybrid Flow Control
NASA Technical Reports Server (NTRS)
Vyas, Manan A.; Hirt, Stefanie M.; Anderson, Bernhard H.
2012-01-01
Hybrid flow control, a combination of micro-ramps and micro-jets, was experimentally investigated in the 15x15 cm Supersonic Wind Tunnel (SWT) at the NASA Glenn Research Center. Full factorial, a design of experiments (DOE) method, was used to develop a test matrix with variables such as inter-ramp spacing, ramp height and chord length, and micro-jet injection flow ratio. A total of 17 configurations were tested with various parameters to meet the DOE criteria. In addition to boundary-layer measurements, oil flow visualization was used to qualitatively understand shock induced flow separation characteristics. The flow visualization showed the normal shock location, size of the separation, path of the downstream moving counter-rotating vortices, and corner flow effects. The results show that hybrid flow control demonstrates promise in reducing the size of shock boundary-layer interactions and resulting flow separation by means of energizing the boundary layer.
Dynamics of particles accelerated by head-on collisions of two magnetized plasma shocks
NASA Astrophysics Data System (ADS)
Takeuchi, Satoshi
2018-02-01
A kinetic model of the head-on collision of two magnetized plasma shocks is analyzed theoretically and in numerical calculations. When two plasmas with anti-parallel magnetic fields collide, they generate magnetic reconnection and form a motional electric field at the front of the collision region. This field accelerates the particles sandwiched between both shock fronts to extremely high energy. As they accelerate, the particles are bent by the transverse magnetic field crossing the magnetic neutral sheet, and their energy gains are reduced. In the numerical calculations, the dynamics of many test particles were modeled through the relativistic equations of motion. The attainable energy gain was obtained by multiplying three parameters: the propagation speed of the shock, the magnitude of the magnetic field, and the acceleration time of the test particle. This mechanism for generating high-energy particles is applicable over a wide range of spatial scales, from laboratory to interstellar plasmas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, R.D. Jr.; Mattsson, J.L.; Fischer, J.R.
1981-06-01
Several pairs of male Sprague-Dawley rats were exposed to either 0, 350, 700, 1400, or 2100 rads of Co60 radiation at 250 rads/min. Pairs were then tested for aggression at 20 min, 6 h, 72 h, and 7 d post irradiation. Each test session lasted for 5 min and consisted of 50 3-W shocks 0.5-s duration with a 5.5-s shock-shock interval. Scores indicated how many aggressive interactions took place during the 50 intershock intervals. Aggressive interactions in the 700-rad group increased (p <,025) at 72 h post irradiation. Secondarily, to validate the experimental procedure, a known aggression-reducing drug was testedmore » on a different set of rats. Chlorpromazine hydrochloride, 2 mg/kg, intramuscular, caused a decrease in aggression 120 min post injection (p <.01).« less
NASA Technical Reports Server (NTRS)
Gai, S. L.; Mudford, N. R.; Hackett, C.
1992-01-01
This paper describes measurements of heat flux and shock shapes made on a 2.08 percent scale model of the proposed Aeroassist Flight Experiment model in a high enthalpy free piston shock tunnel T3 at the Australian National University in Canberra, Australia. The enthalpy and Reynolds number range covered were 7.5 MJ/kg to 20 MJ/kg and 150,000 to 270,000 per meter respectively. The test Mach number varied between 7.5 and 8. Two test gases, air and nitrogen, were used and the model angle of attack varied from -10 deg to +10 deg to the free stream. The results are discussed and compared to the Mach 10 cold hypersonic air data as obtained in the Langley 31 inch Mach 10 Facility as well as the perfect gas CFD calculations of NASA LaRC.
Investigation of passive shock wave-boundary layer control for transonic airfoil drag reduction
NASA Technical Reports Server (NTRS)
Nagamatsu, H. T.; Brower, W. B., Jr.; Bahi, L.; Ross, J.
1982-01-01
The passive drag control concept, consisting of a porous surface with a cavity beneath it, was investigated with a 12-percent-thick circular arc and a 14-percent-thick supercritical airfoil mounted on the test section bottom wall. The porous surface was positioned in the shock wave/boundary layer interaction region. The flow circulating through the porous surface, from the downstream to the upstream of the terminating shock wave location, produced a lambda shock wave system and a pressure decrease in the downstream region minimizing the flow separation. The wake impact pressure data show an appreciably drag reduction with the porous surface at transonic speeds. To determine the optimum size of porosity and cavity, tunnel tests were conducted with different airfoil porosities, cavities and flow Mach numbers. A higher drag reduction was obtained by the 2.5 percent porosity and the 1/4-inch deep cavity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritchie, IAltenberger, RKNalla, YSano LWagner, RO
The effect of surface treatment on the stress/life fatigue behavior of a titanium Ti-6Al-4V turbine fan blade alloy is investigated in the regime of 102 to 106 cycles to failure under fully reversed stress-controlled isothermal push-pull loading between 25? and 550?C at a frequency of 5 Hz. Specifically, the fatigue behavior was examined in specimens in the deep-rolled and laser-shock peened surface conditions, and compared to results on samples in the untreated (machined and stress annealed) condition. Although the fatigue resistance of the Ti-6Al-4V alloy declined with increasing test temperature regardless of surface condition, deep-rolling and laser-shock peening surface treatmentsmore » were found to extend the fatigue lives by factors of more than 30 and 5-10, respectively, in the high-cycle and low-cycle fatigue regimes at temperatures as high as 550?C. At these temperatures, compressive residual stresses are essentially relaxed; however, it is the presence of near-surface work hardened layers, with a nanocystalline structure in the case of deep-rolling and dense dislocation tangles in the case of laser-shock peening, which remain fairly stable even after cycling at 450?-550?C, that provide the basis for the beneficial role of mechanical surface treatments on the fatigue strength of Ti-6Al-4V at elevated temperatures.« less
Yuan, Qifeng; Li, Lin; Pian, Yaya; Hao, Huaijie; Zheng, Yuling; Zang, Yating; Jiang, Hua; Jiang, Yongqiang
2016-04-01
Staphylococcus enterotoxin B (SEB) is a superantigen that can induce massive activation of T cells with specific Vβ and inflammatory cytokine cascades, which mediate shock. To date, no SEB vaccine has been developed for preventing toxic shock syndrome (TSS). Here, we evaluated the therapeutic effect of a fusion protein human serum albumin-Vβ (HSA-Vβ) on TSS induced by SEB. Compared with Vβ, the preparation of HSA-Vβ was much easier to handle owing to its solubility. Affinity testing showed that HSA-Vβ had high affinity for SEB. In vitro results showed that HSA-Vβ could effectively inhibit interferon (IFN)-γ and tumor necrosis factor (TNF)-α secretion by human peripheral blood mononuclear cells. Moreover, in vivo, HSA-Vβ reduced IFN-γ and TNF-α levels in the serum and protected mice from SEB lethal challenge when administered simultaneously with SEB or 30 min after SEB. In summary, we simplified the preparation of Vβ by fusion with HSA, creating the HSA-Vβ protein, which effectively inhibited cytokine production and protected mice from lethal challenge with SEB. These data indicated that HSA-Vβ may represent a novel therapeutic strategy for the treatment of SEB-induced TSS. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shock and Microstructural Characterization of the α-ω Phase Transition in Titanium Crystals
NASA Astrophysics Data System (ADS)
Morrow, Benjamin M.; Rigg, Paulo A.; Jones, David R.; Addessio, Francis L.; Trujillo, Carl P.; Saavedra, Ramon A.; Martinez, Daniel T.; Cerreta, Ellen K.
2017-12-01
A multicrystal comprised of a small number of large crystals of high-purity titanium and a [0001] oriented high-purity single crystal titanium sample were shock loaded using gas gun plate impact experiments. Tests were performed at stresses above the α {-}ω phase transition stress (for high-purity polycrystalline specimens) to observe the behavior of oriented crystals under similar conditions. Post-mortem characterization of the shocked microstructure was conducted on the single crystal sample to measure textures, and quantify phases and twinning. The apparent activation of plastic and transformation mechanisms was dependent upon crystal orientation. Specifically, the [0001] crystal showed a higher Hugoniot elastic limit than the [10\\bar{1}0] or [3\\bar{1}\\bar{4}4] orientations. The slope of velocity as a function of time was lower in the [0001] orientation than the other orientations during plastic deformation, indicating sluggish transformation kinetics for the α to ω phase transition for the [0001] oriented crystal. Microtexture measurements of a recovered [0001] oriented single crystal revealed the presence of retained ω phase after unloading, with orientations of the constituent phase fractions indicative of the forward α → ω transition, rather than the reverse ω → α transition, suggesting that the material never achieved a state of 100% ω phase.
Aerodynamic heating effects on wall-modeled large-eddy simulations of high-speed flows
NASA Astrophysics Data System (ADS)
Yang, Xiang; Urzay, Javier; Moin, Parviz
2017-11-01
Aerospace vehicles flying at high speeds are subject to increased wall-heating rates because of strong aerodynamic heating in the near-wall region. In wall-modeled large-eddy simulations (WMLES), this near-wall region is typically not resolved by the computational grid. As a result, the effects of aerodynamic heating need to be modeled using an LES wall model. In this investigation, WMLES of transitional and fully turbulent high-speed flows are conducted to address this issue. In particular, an equilibrium wall model is employed in high-speed turbulent Couette flows subject to different combinations of thermal boundary conditions and grid sizes, and in transitional hypersonic boundary layers interacting with incident shock waves. Specifically, the WMLES of the Couette-flow configuration demonstrate that the shear-stress and heat-flux predictions made by the wall model show only a small sensitivity to the grid resolution even in the most adverse case where aerodynamic heating prevails near the wall and generates a sharp temperature peak there. In the WMLES of shock-induced transition in boundary layers, the wall model is tested against DNS and experiments, and it is shown to capture the post-transition aerodynamic heating and the overall heat transfer rate around the shock-impingement zone. This work is supported by AFOSR.
Ikebe, T; Tominaga, K; Shima, T; Okuno, R; Kubota, H; Ogata, K; Chiba, K; Katsukawa, C; Ohya, H; Tada, Y; Okabe, N; Watanabe, H; Ogawa, M; Ohnishi, M
2015-03-01
Streptococcal toxic shock syndrome (STSS) is a severe invasive infection characterized by the sudden onset of shock, multi-organ failure, and high mortality. In Japan, appropriate notification measures based on the Infectious Disease Control law are mandatory for cases of STSS caused by β-haemolytic streptococcus. STSS is mainly caused by group A streptococcus (GAS). Although an average of 60-70 cases of GAS-induced STSS are reported annually, 143 cases were recorded in 2011. To determine the reason behind this marked increase, we characterized the emm genotype of 249 GAS isolates from STSS patients in Japan from 2010 to 2012 and performed antimicrobial susceptibility testing. The predominant genotype was found to be emm1, followed by emm89, emm12, emm28, emm3, and emm90. These six genotypes constituted more than 90% of the STSS isolates. The number of emm1, emm89, emm12, and emm28 isolates increased concomitantly with the increase in the total number of STSS cases. In particular, the number of mefA-positive emm1 isolates has escalated since 2011. Thus, the increase in the incidence of STSS can be attributed to an increase in the number of cases associated with specific genotypes.
Expansion tunnel characterization and development of non-intrusive microwave plasma diagnostics
NASA Astrophysics Data System (ADS)
Dufrene, Aaron T.
The focus of this research is the development of non-intrusive microwave diagnostics for characterization of expansion tunnels. The main objectives of this research are to accurately characterize the LENS XX expansion tunnel facility, develop non-intrusive RF diagnostics that will work in short-duration expansion tunnel testing, and to determine plasma properties and other information that might otherwise be unknown, less accurate, intrusive, or more difficult to determine through conventional methods. Testing was completed in LENS XX, a new large-scale expansion tunnel facility at CUBRC, Inc. This facility is the largest known expansion tunnel in the world with an inner diameter of 24 inches, a 96 inch test section, and an end-to-end length of more than 240 ft. Expansion tunnels are currently the only facilities capable of generating high-enthalpy test conditions with minimal or no freestream dissociation or ionization. However, short test times and freestream noise at some conditions have limited development of these facilities. To characterize the LENS XX facility, the first step is to evaluate the facility pressure, vacuum, temperature, and other mechanical restrictions to derive a theoretical testing parameter space. Test condition maps are presented for a variety of parameters and gases based on 1D perfect gas dynamics. Test conditions well beyond 10 km/s or 50 MJ/kg are identified with minimum test times of 200 us. Additionally, a four-chamber expansion tube configuration is considered for extending the stagnation enthalpy range of the facility even further. A microwave shock speed diagnostic measures primary and secondary shock speeds accurately every 30 in. down the entire length of the facility resulting in a more accurate determination of freestream conditions required for computational comparisons. The high resolution of this measurement is used to assess shock speed attenuation as well as secondary diaphragm performance. Negligible shock attenuation is reported over a large range of test conditions and gases, and this is attributed to the large diameter of the LENS XX driven and expansion tubes. Shock tube boundary layer growth solutions based on Mirels's theory confirm LENS XX test conditions should not be adversely affected by viscous effects. Mirels's theory is applied to both large- and small-scale expansion tube facilities to determine displacement thicknesses, and quasi one-dimensional solutions show how viscous effects become significant in long, smaller diameter facilities. In collaboration with ElectroDynamic Applications, Inc., (EDA) plasma frequency measurements are made in two different configurations using a swept microwave frequency power reflection measurement. Electric field characteristics of EDA's probe are presented and show current probe design is ideal for measuring properties of shock layers that are 1-2 cm thick. Electron density and radio frequency communication characteristics through a shock layer on the lee side of a capsule up to 8.9 km/s and in a stagnation configuration up to 5.4 km/s in air are reported.
Computational Analysis of the Effect of Porosity on Shock Cell Strength at Cruise
NASA Technical Reports Server (NTRS)
Massey, Steven J.; Elmiligui, Alaa A.; Pao, S. Paul; Abdol-Hamid, Khaled S.; Hunter, Craig A.
2006-01-01
A computational flow field analysis is presented of the effect of core cowl porosity on shock cell strength for a modern separate flow nozzle at cruise conditions. The goal of this study was to identify the primary physical mechanisms by which the application of porosity can reduce shock cell strength and hence the broadband shock associated noise. The flow is simulated by solving the asymptotically steady, compressible, Reynoldsaveraged Navier-Stokes equations on a structured grid using an implicit, up-wind, flux-difference splitting finite volume scheme. The standard two-equation k - epsilon turbulence model with a linear stress representation is used with the addition of a eddy viscosity dependence on total temperature gradient normalized by local turbulence length scale. Specific issues addressed in this study were the optimal area required to weaken a shock impinging on the core cowl surface and the optimal level of porosity and placement of porous areas for reduction of the overall shock cell strength downstream. Two configurations of porosity were found to reduce downstream shock strength by approximately 50%.
In situ insights into shock-driven reactive flow
NASA Astrophysics Data System (ADS)
Dattelbaum, Dana
2017-06-01
Shock-driven reactions are commonplace. Examples include the detonation of high explosives, shock-driven dissociation of polymers, and transformation of carbon from graphite to diamond phases. The study of shock-driven chemical reactions is important for understanding reaction thresholds, their mechanisms and rates, and associated state sensitivities under the extreme conditions generated by shock compression. Reactions are distinguished by their thermicity - e.g. the volume and enthalpy changes along the reaction coordinate. A survey of the hallmarks of shock-driven reactivity for a variety of simple molecules and polymers will be presented, including benzene, acetylenes and nitriles, and formic acid. Many of the examples will illustrate the nature of the reactive flow through particle velocity wave profiles measured by in situ electromagnetic gauging in gas gun-driven plate impact experiments. General trends will be presented linking molecular moieties, shock temperatures, and reaction state sensitivities. Progress in applying bond-specific diagnostics will also be presented, including time-resolved Raman spectroscopy, and recent results of in situ x-ray diffraction of carbon at the Linac Coherent Light Souce (LCLS) free electron laser.
NASA Astrophysics Data System (ADS)
Ruan, Wenzhi; Yan, Limei; He, Jiansen; Zhang, Lei; Wang, Linghua; Wei, Yong
2018-06-01
Shock waves are believed to play an important role in plasma heating. The shock-like temporal jumps in radiation intensity and Doppler shift have been identified in the solar atmosphere. However, a quantitative diagnosis of the shocks in the solar atmosphere is still lacking, seriously hindering the understanding of shock dissipative heating of the solar atmosphere. Here, we propose a new method to realize the goal of the shock quantitative diagnosis, based on Rankine–Hugoniot equations and taking the advantages of simultaneous imaging and spectroscopic observations from, e.g., IRIS (Interface Region Imaging Spectrograph). Because of this method, the key parameters of shock candidates can be derived, such as the bulk velocity and temperature of the plasma in the upstream and downstream, the propagation speed and direction. The method is applied to the shock candidates observed by IRIS, and the overall characteristics of the shocks are revealed quantitatively for the first time. This method is also tested with the help of forward modeling, i.e., virtual observations of simulated shocks. The parameters obtained from the method are consistent with the parameters of the shock formed in the model and are independent of the viewing direction. Therefore, the method we proposed here is applicable to the quantitative and comprehensive diagnosis of the observed shocks in the solar atmosphere.
The NOL Gap Test: Past, present, and future
NASA Technical Reports Server (NTRS)
Jacobs, S. J.; Price, D.
1980-01-01
A brief history of the development of the gap test is presented with emphasis on accumulated knowledge of how best to use it as a tool to assess relative shock sensitivity of explosives and propellants. Present information about the detonation process in build-up, steady state, and failure is used to show that failure diameter cannot give the desired shock sensitivity assessment. Suggestions are made for improving the test to an experiment. The use of spherical donors, water as attenuator, and camera instrumentation are briefly discussed.
Pyrotechnic shock: A literature survey of the Linear Shaped Charge (LSC)
NASA Technical Reports Server (NTRS)
Smith, J. L.
1984-01-01
Linear shaped charge (LSC) literature for the past 20 years is reviewed. The following topics are discussed: (1) LSC configuration; (2) LSC usage; (3) LSC induced pyroshock; (4) simulated pyrotechnic testing; (5) actual pyrotechnic testing; (6) data collection methods; (7) data analysis techniques; (8) shock reduction methods; and (9) design criteria. Although no new discoveries have been made in LSC research, charge shapes are improved to allow better cutting performance, testing instrumentation is refined, and some new explosives, for use in LSC, are formulated.
Hypervelocity Capability of the HYPULSE Shock-Expansion Tunnel for Scramjet Testing
NASA Technical Reports Server (NTRS)
Foelsche, Robert O.; Rogers, R. Clayton; Tsai, Ching-Yi; Bakos, Robert J.; Shih, Ann T.
2001-01-01
New hypervelocity capabilities for scramjet testing have recently been demonstrated in the HYPULSE Shock-Expansion Tunnel (SET). With NASA's continuing interests in scramjet testing at hypervelocity conditions (Mach 12 and above), a SET nozzle was designed and added to the HYPULSE facility. Results of tests conducted to establish SET operational conditions and facility nozzle calibration are presented and discussed for a Mach 15 (M15) flight enthalpy. The measurements and detailed computational fluid dynamics calculations (CFD) show the nozzle delivers a test gas with sufficiently wide core size to be suitable for free-jet testing of scramjet engine models of similar scale as, those tested in conventional low Mach number blow-down test facilities.
NASA Astrophysics Data System (ADS)
Faug, Thierry
2017-04-01
The Rankine-Hugoniot jump conditions traditionally describe the theoretical relationship between the equilibrium state on both sides of a shock-wave. They are based on the crucial assumption that the length-scale needed to adjust the equilibrium state upstream of the shock to downstream of it is too small to be of significance to the problem. They are often used with success to describe the shock-waves in a number of applications found in both fluid and solid mechanics. However, the relations based on jump conditions at singular surfaces may fail to capture some features of the shock-waves formed in complex materials, such as granular matter. This study addresses the particular problem of compressible shock-waves formed in flows of dry granular materials down a slope. This problem is for instance relevant to full-scale geophysical granular flows in interaction with natural obstacles or man-made structures, such as topographical obstacles or mitigation dams respectively. Steady-state jumps formed in granular flows and travelling shock-waves produced at the impact of a granular avalanche-flow with a rigid wall are considered. For both situations, new analytical relations which do not consider that the granular shock-wave shrinks into a singular surface are derived, by using balance equations in their depth-averaged forms for mass and momentum. However, these relations need additional inputs that are closure relations for the size and the shape of the shock-wave, and a relevant constitutive friction law. Small-scale laboratory tests and numerical simulations based on the discrete element method are shortly presented and used to infer crucial information needed for the closure relations. This allows testing some predictive aspects of the simple analytical approach proposed for both steady-state and travelling shock-waves formed in free-surface flows of dry granular materials down a slope.
Harpoon Pyrotechnic Shock Study
1979-09-01
Air Systems Command, was performed from July 1973 to July 1979. In the Interest of economy and timeliness in presenting the information, the report is...Both actual test data and predicted shock levey are presented. .L{U’Shock spectra environment predictions are made for several types of explosive ...mounting structure 5 to 10 inches (127 to 254 mm) from the explosive device. Attenuation across the component mounting interface is the only loss
The Shock Vibration Bulletin. Part 2. Instrumentation, Shock Analysis, and Shock Testing
1987-01-01
121 M. J. Evans and V. H. Neubert , The Pennsylvania State University, University Partk, PA, and L. 3...Research Laboratory, Washington, DC Wednesday Nondevelopment Mr. James W. Daniel, Mr. Paul Hahn, 15 October, A.M. Items Workshop, U.S. Army Missile Martin...Marietta Session I, Command, Orlando Aerospace, Methods Rcdstone Arsenal, AL Orlando, FL Wednesday Structural Mr. Stanley Barrett, Mr. W. Paul Dunn, 15
Investigation of Heat Transfer to a Flat Plate in a Shock Tube.
1987-12-01
2 Objectives and Scope . . . . . .. .. .. .... 5 11. Theory ............... ....... 7 Shock Tube Principles........... 7 Boundary Layer Theory ...in *excess of theory , but the rounded edge flat plate exhibited data which matched or was less than what theory predicted for each Mach number tested...normal shock advancing along an infinite flat plate. For x< Ugt there is a region of interaction between the downstream influence of the leading edge
NASA Technical Reports Server (NTRS)
Miller, C. G., III; Wilder, S. E.
1974-01-01
Equilibrium thermodynamic and flow properties are presented in tabulated and graphical form for moving, standing, and reflected normal shock waves in pure CO2, representative of Mars and Venus atmospheres. Properties include pressure, temperature, density, enthalpy, speed of sound, entropy, molecular weight ratio, isentropic exponent, velocity and species mole fractions. Incident (moving) shock velocities are varied from 1 to 16 km/sec for a range of initial pressure of 5 Newtons per square meter to 500 kilo Newtons per square meter. The present results are applicable to shock tube flows, and to free-flight conditions for a blunt body at high velocities. Working charts illustrating idealized shock-tube performance with CO2 test gas and heated helium and hydrogen driver gases are also presented.
Shock wave treatment improves nerve regeneration in the rat.
Mense, Siegfried; Hoheisel, Ulrich
2013-05-01
The aims of the experiments were to: (1) determine whether low-energy shock wave treatment accelerates the recovery of muscle sensitivity and functionality after a nerve lesion; and (2) assess the effect of shock waves on the regeneration of injured nerve fibers. After compression of a muscle nerve in rats the effects of shock wave treatment on the sequelae of the lesion were tested. In non-anesthetized animals, pressure pain thresholds and exploratory activity were determined. The influence of the treatment on the distance of nerve regeneration was studied in immunohistochemical experiments. Both behavioral and immunohistochemical data show that shock wave treatment accelerates the recovery of muscle sensitivity and functionality and promotes regeneration of injured nerve fibers. Treatment with focused shock waves induces an improvement of nerve regeneration in a rodent model of nerve compression. Copyright © 2012 Wiley Periodicals, Inc.
Biliary lithotripsy can be enhanced with proper ultrasound probe position.
Affronti, J; Flournoy, T; Akers, S; Baillie, J
1992-04-01
We have demonstrated in our in vitro system that an extracorporeal lithotripter utilizing a movable ultrasound probe can fragment gallstones more effectively when the ultrasound probe is not partially blocking shock waves. Using a pressure transducer we measured the pressures in the focal volume of a Wolf Piezolith 2300 lithotripter with the ultrasound probe fully extended and fully retracted. We also chose 12 pairs of twin gallstones, each taken from the same gallbladder. One stone from each pair was subjected to shock waves while the ultrasound probe was fully extended and the other treated while the probe was fully retracted. Shock wave pressures (which are converted to a measurable voltage output by our transducer) were clearly lower when the ultrasound probe was extended (5.45 volts; SEM = 0.10 volts) as compared to when the ultrasound scanner was retracted (6.7 volts: SEM = 0.08 volts). Significantly more shock waves were required to completely fragment stones when the ultrasound scanner was extended than when it was retracted (p = 0.01 using the nonparametric Wilcoxon's signed rank test). These results show that, in the lithotripter tested, an extended in-line ultrasound scanner can partially block shock waves. Retraction of an extendible ultrasound probe may enhance stone fragmentation when operating at the highest shock wave intensity.
Testing cosmic ray acceleration with radio relics: a high-resolution study using MHD and tracers
NASA Astrophysics Data System (ADS)
Wittor, D.; Vazza, F.; Brüggen, M.
2017-02-01
Weak shocks in the intracluster medium may accelerate cosmic-ray protons and cosmic-ray electrons differently depending on the angle between the upstream magnetic field and the shock normal. In this work, we investigate how shock obliquity affects the production of cosmic rays in high-resolution simulations of galaxy clusters. For this purpose, we performed a magnetohydrodynamical simulation of a galaxy cluster using the mesh refinement code ENZO. We use Lagrangian tracers to follow the properties of the thermal gas, the cosmic rays and the magnetic fields over time. We tested a number of different acceleration scenarios by varying the obliquity-dependent acceleration efficiencies of protons and electrons, and by examining the resulting hadronic γ-ray and radio emission. We find that the radio emission does not change significantly if only quasi-perpendicular shocks are able to accelerate cosmic-ray electrons. Our analysis suggests that radio-emitting electrons found in relics have been typically shocked many times before z = 0. On the other hand, the hadronic γ-ray emission from clusters is found to decrease significantly if only quasi-parallel shocks are allowed to accelerate cosmic ray protons. This might reduce the tension with the low upper limits on γ-ray emission from clusters set by the Fermi satellite.
Response Functions to Critical Shocks in Social Sciences:
NASA Astrophysics Data System (ADS)
Roehner, B. M.; Sornette, D.; Andersen, J. V.
We show that, provided one focuses on properly selected episodes, one can apply to the social sciences the same observational strategy that has proved successful in natural sciences such as astrophysics or geodynamics. For instance, in order to probe the cohesion of a society, one can, in different countries, study the reactions to some huge and sudden exogenous shocks, which we call Dirac shocks. This approach naturally leads to the notion of structural (as opposed or complementary to temporal) forecast. Although structural predictions are by far the most common way to test theories in the natural sciences, they have been much less used in the social sciences. The Dirac shock approach opens the way to testing structural predictions in the social sciences. The examples reported here suggest that critical events are able to reveal pre-existing "cracks" because they probe the social cohesion which is an indicator and predictor of future evolution of the system, and in some cases they foreshadow a bifurcation. We complement our empirical work with numerical simulations of the response function ("damage spreading") to Dirac shocks in the Sznajd model of consensus build-up. We quantify the slow relaxation of the difference between perturbed and unperturbed systems, the conditions under which the consensus is modified by the shock and the large variability from one realization to another.
A comparative review of bow shocks and magnetopauses
NASA Technical Reports Server (NTRS)
Lepping, R. P.
1984-01-01
Bow shock and magnetopauses formation is discussed. Plasma and magnetic field environments of all the planets from Mercury to Saturn were measured. It was found that all the planets have bow shocks and almost all have a magnetopause. Venus is the only planet with no measurable intrinsic magnetic field and the solar wind interacts directly with Venus' ionosphere. The bow shock characteristics depend on the changing solar wind conditions. The shape of a magnetopause or any obstacle to flow depends on the three dimensional pressure profile that it presents to the solar wind. Jupiter is unusual because of the considerable amount of plasma which is contained in its magnetosphere. Magnetopause boundaries in ecliptic plane projection are modelled by segments of ellipses, matched to straight lines for the magnetotool boundaries or parabolas. Specific properties of known planetary bow shocks and magnetopauses are reviewed.
Mineralogic evidence for an impact event at the cretaceous-tertiary boundary
Bohor, B.F.; Foord, E.E.; Modreski, P.J.; Triplehorn, Don M.
1984-01-01
A thin claystone layer found in nonmarine rocks at the palynological Cretaceous-Tertiary boundary in eastern Montana contains an anomalously high value of iridium. The nonclay fraction is mostly quartz with minor feldspar, and some of these grains display planar features. These planar features are related to specific crystallographic directions in the quartz lattice. The shocked quartz grains also exhibit asterism and have lowered refractive indices. All these mineralogical features are characteristic of shock metamorphism and are compelling evidence that the shocked grains are the product of a high velocity impact between a large extraterrestrial body and the earth. The shocked minerals represent silicic target material injected into the stratosphere by the impact of the projectile.
Recruitment of phosphorylated small heat shock protein Hsp27 to nuclear speckles without stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryantsev, A.L.; Chechenova, M.B.; Shelden, E.A.
During stress, the mammalian small heat shock protein Hsp27 enters cell nuclei. The present study examines the requirements for entry of Hsp27 into nuclei of normal rat kidney (NRK) renal epithelial cells, and for its interactions with specific nuclear structures. We find that phosphorylation of Hsp27 is necessary for the efficient entry into nuclei during heat shock but not sufficient for efficient nuclear entry under control conditions. We further report that Hsp27 is recruited to an RNAse sensitive fraction of SC35 positive nuclear speckles, but not other intranuclear structures, in response to heat shock. Intriguingly, Hsp27 phosphorylation, in the absencemore » of stress, is sufficient for recruitment to speckles found in post-anaphase stage mitotic cells. Additionally, pseudophosphorylated Hsp27 fused to a nuclear localization peptide (NLS) is recruited to nuclear speckles in unstressed interphase cells, but wildtype and nonphosphorylatable Hsp27 NLS fusion proteins are not. The expression of NLS-Hsp27 mutants does not enhance colony forming abilities of cells subjected to severe heat shock, but does regulate nuclear speckle morphology. These data demonstrate that phosphorylation, but not stress, mediates Hsp27 recruitment to an RNAse soluble fraction of nuclear speckles and support a site-specific role for Hsp27 within the nucleus.« less
Theory and Experiment on Radiative Shocks
NASA Astrophysics Data System (ADS)
Drake, R. Paul
2005-07-01
The current generation of high-energy-density research facilities has enabled the beginnings of experimental studies of radiation hydrodynamic systems, common in astrophysics but difficult to produce in the laboratory. Radiative shock experiments specifically have been a topic of increasing effort in recent years. Our group and collaborators [1] have emphasized the radiographic observation of structure in radiative shocks. These shocks have been produced on the Omega laser by driving a Be piston through Xenon at velocities above 100 km/s. The talk will summarize these experiments and their results. Interpreting these and other experiments is hampered by the limited range of assumptions used in published theories, and by the limitations in readily available simulation tools. This has motivated an examination of radiative shock theory [2]. The talk will summarize the key issues and present results for specific cases. [ 1 ] Gail Glendinning, Ted Perry, Bruce Remington, Jim Knauer, Tom Boehly, and other members of the NLUF Experimental Astrophysics Team. Publications: Reighard et al., Phys. Rev. Lett. submitted; Leibrandt, et al., Ap J., in press, Reighard et al., IFSA 03 Proceedings, Amer. Nucl. Soc. (2004). [2] Useful discussions with Dmitri Ryutov and Serge Bouquet. Supported by the NNSA programs via DOE Grants DE-FG52-03NA00064 and DE FG53 2005 NA26014
Experimental Shock Decomposition of Siderite to Magnetite
NASA Technical Reports Server (NTRS)
Bell, M. S.; Golden, D. C.; Zolensky, M. E.
2005-01-01
The debate about fossil life on Mars includes the origin of magnetites of specific sizes and habits in the siderite-rich portions of the carbonate spheres in ALH 84001 [1,2]. Specifically [2] were able to demonstrate that inorganic synthesis of these compositionally zoned spheres from aqueous solutions of variable ion-concentrations is possible. They further demonstrated the formation of magnetite from siderite upon heating at 550 C under a Mars-like CO2-rich atmosphere according to 3FeCO3 = Fe3O4 + 2CO2 + CO [3] and they postulated that the carbonates in ALH 84001 were heated to these temperatures by some shock event. The average shock pressure for ALH 84001, substantially based on the refractive index of diaplectic feldspar glasses [3,4,5] is some 35-40 GPa and associated temperatures are some 300-400 C [4]. However, some of the feldspar is melted [5], requiring local deviations from this average as high as 45-50 GPa. Indeed, [5] observes the carbonates in ALH 84001 to be melted locally, requiring pressures in excess of 60 GPa and temperatures > 600 C. Combining these shock studies with the above inorganic synthesis of zoned carbonates it seems possible to produce the ALH 84001 magnetites by the shock-induced decomposition of siderite.
NASA Astrophysics Data System (ADS)
Buică, G.; Beiu, C.; Antonov, A.; Dobra, R.; Păsculescu, D.
2017-06-01
The protecting electrical equipment in use are subject to various factors generated by the use, maintenance, storage and working environment, which may change the characteristics of protection against electric shock. The study presents the results of research on the behaviour over time of protective characteristics of insulating covers of material of work equipment in use, in order to determine the type and periodicity of safety tests. There were tested and evaluated safety equipment with plastic and insulating rubber covers used in operations of verifying functionality, safety and maintenance of machinery used in manufacturing industries and specific services from electric, energy and food sector.
Bernet, Patrick M; Getzen, Thomas E
2008-03-01
Not-for-profit hospitals rely heavily on tax-exempt debt. Investor confidence in such instruments was shaken by the 1998 bankruptcy of the Allegheny Health and Education Research Foundation (AHERF), which was the largest U.S. not-for-profit failure up to that date and whose default was accompanied by claims of accounting irregularities. Such shocks can result in contagion whereby all hospitals are viewed as riskier. We test for the significance and duration of resulting contagion using an industry-specific model of interest cost determinants. Empirical tests indicate that contagion does occur, resulting in higher interest on new debt issues from other hospitals.
General relativistic study of astrophysical jets with internal shocks
NASA Astrophysics Data System (ADS)
Vyas, Mukesh K.; Chattopadhyay, Indranil
2017-08-01
We explore the possibility of the formation of steady internal shocks in jets around black holes. We consider a fluid described by a relativistic equation of state, flowing about the axis of symmetry (θ = 0) in a Schwarzschild metric. We use two models for the jet geometry: (I) a conical geometry and (II) a geometry with non-conical cross-section. A jet with conical geometry has a smooth flow, while the jet with non-conical cross-section undergoes multiple sonic points and even standing shock. The jet shock becomes stronger, as the shock location is situated farther from the central black hole. Jets with very high energy and very low energy do not harbour shocks, but jets with intermediate energies do harbour shocks. One advantage of these shocks, as opposed to shocks mediated by external medium, is that these shocks have no effect on the jet terminal speed, but may act as possible sites for particle acceleration. Typically, a jet with specific energy 1.8c2 will achieve a terminal speed of v∞ = 0.813c for jet with any geometry, where, c is the speed of light in vacuum. But for a jet of non-conical cross-section for which the length scale of the inner torus of the accretion disc is 40rg, then, in addition, a steady shock will form at rsh ˜ 7.5rg and compression ratio of R ˜ 2.7. Moreover, electron-proton jet seems to harbour the strongest shock. We will discuss possible consequences of such a scenario.