Science.gov

Sample records for short-lived bromine nuclides

  1. Short-lived nuclides in hibonite grains from Murchison: evidence for solar system evolution.

    PubMed

    Marhas, K K; Goswami, J N; Davis, A M

    2002-12-13

    Records of now-extinct short-lived nuclides in meteorites provide information about the formation and evolution of the solar system. We have found excess 10B that we attribute to the decay of short-lived 10Be (half-life 1.5 million years) in hibonite grains from the Murchison meteorite. The grains show no evidence of decay of two other short-lived nuclides-26Al (half-life 700,000 years) and 41Ca (half-life 100,000 years)-that may be present in early solar system solids. One plausible source of the observed 10Be is energetic particle irradiation of material in the solar nebula. An effective irradiation dose of approximately 2 x 10(18) protons per square centimeter with a kinetic energy of >/=10 megaelectronvolts per atomic mass unit can explain our measurements. The presence of 10Be, coupled with the absence of 41Ca and 26Al, may rule out energetic particle irradiation as the primary source of 41Ca and 26Al present in some early solar system solids and strengthens the case of a stellar source for 41Ca and 26Al.

  2. Did Solar Energetic Particles Produce the Short-lived Nuclides Present in the Early Solar System?

    NASA Astrophysics Data System (ADS)

    Goswami, J. N.; Marhas, K. K.; Sahijpal, S.

    2001-03-01

    Production of the short-lived nuclides 41Ca, 36Cl, 26Al, and 53Mn by solar energetic particles (SEP) interacting with dust grains of chondritic (=solar) composition is estimated considering a broad range of spectral parameters for the SEP and appropriate nuclear reaction cross sections. The dust grains are assumed to follow a power-law size distribution and to range in size from 10 μm to 1 cm. The possibility that an enhanced flux of SEP from an active early (T Tauri) Sun could have been responsible for the production of these short-lived nuclides in the early solar system is investigated. SEP production of 41Ca and 36Cl will match their abundances in the early solar system inferred from meteorite data if the SEP irradiation duration was ~5×105-106 yr and the SEP flux was higher by a factor of more than 5×103 than the contemporary long-term averaged value of Nproton (E>10 MeV)~100 cm-2 s-1. However, corresponding production of 26Al will be much below the level needed to match its inferred abundance in the early solar system. SEP production, therefore, fails to explain the observed correlated presence of 41Ca and 26Al with canonical initial abundances in early solar system solids. The abundance of 53Mn in the early solar system is not tightly constrained by the meteorite data, and the various estimates differ by a factor of 5. Coproduction of 41Ca, 36Cl, and 53Mn that will match the meteorite data for the higher initial abundance of 53Mn is possible if the SEP irradiation persisted for about a million years or more with a flux enhancement factor of ~5000-10,000. On the other hand, the lower initial value of 53Mn can also be matched by a flux enhancement factor of ~1000 and an irradiation duration of a few million years; the corresponding production of the other nuclides will be <=10% of the level needed to match their abundances in the early solar system. Target abundance consideration rules out the possibility of SEP production of 60Fe, another short-lived

  3. Tantalum-178--a short-lived nuclide for nuclear medicine: development of a potential generator system.

    PubMed

    Neirinckx, R D; Jones, A G; Davis, M A; Harris, G I; Holman, B L

    1978-05-01

    We describe a chemical separation that may form the basis of a generator system for the short-lived radionuclide Ta-178 (T 1/2 = 9 min). The parent nuclide W-178 (T 1/2 = 21.7 days) is loaded on an anion-exchange column and the daughter eluted with a mixture of dilute hydrochloric acid and hydrogen peroxide. The yields of tantalum and the breakthrough of the tungsten parent as a function of the eluting conditions are discussed, and preliminary animal distribution data are presented for various treatments of the eluant solution. PMID:641574

  4. Long- and short-lived nuclide constraints on the recent evolution of permafrost soils

    NASA Astrophysics Data System (ADS)

    Bagard, M.; Chabaux, F. J.; Rihs, S.; Pokrovsky, O. S.; Prokushkin, A. S.; Viers, J.

    2011-12-01

    Frozen permafrost ecosystems are particularly sensitive to climate warming, which notably induces a deepening of the active layer (the maximum thawing depth during summer time). As a consequence, geochemical and hydrological fluxes within boreal areas are expected to be significantly affected in the future. Understanding the relationship between environmental changes and permafrost modifications is then a major challenge. This work aims to evaluate in a Siberian watershed the dynamics of the permafrost active layer and their recent modifications by combining a classic study of long-lived nuclides to the study of short-lived nuclides of U and Th decay series. Two soil profiles, located on opposite slopes (north- and south-facing slopes) of the Kulingdakan watershed (Putorana Plateau, Central Siberia), were sampled at several depths within the active layer and (238U), (234U), (232Th), (230Th), (226Ra), (228Ra), (228Th) and (210Pb) were measured on bulk soil samples by TIMS or gamma spectrometry. Our results show that south-facing and north-facing soil profiles are significantly different in terms of evolution of chemical concentrations and nuclide activities; north-facing soil profile is strongly affected by atmospheric inputs whereas long-lived nuclide dynamics within south-facing soil profile are dominated by weathering and exhibit more complex patterns. The amount of above-ground biomass being the single varying parameter between the two slopes of the watershed, we suggest that the structuring of permafrost active layer is very sensitive to vegetation activity and that the functioning of boreal soils will be significantly modified by its development due to more favorable climatic conditions. Moreover, the coupling of long and short-lived nuclides highlights the superimposition of a recent mobilization of chemical elements within soils (<10 years) over a much older soil structure (>8000 years), which can be observed for both soil profiles. The shallowest layer of

  5. Simulating the impact of emissions of brominated very short lived substances on past stratospheric ozone trends

    NASA Astrophysics Data System (ADS)

    Sinnhuber, Björn-Martin; Meul, Stefanie

    2015-04-01

    Bromine from very short lived substances (VSLS), primarily from natural oceanic sources, contributes substantially to the stratospheric bromine loading. This source of stratospheric bromine has so far been ignored in most chemistry climate model calculations of stratospheric ozone trends. Here we present a transient simulation with the chemistry climate model EMAC for the period 1960-2005 including emissions of the five brominated VSLS CHBr3, CH2Br2, CH2BrCl, CHBrCl2, and CHBr2Cl. The emissions lead to a realistic stratospheric bromine loading of about 20 pptv for present-day conditions. Comparison with a standard model simulation without VSLS shows large differences in modeled ozone in the extratropical lowermost stratosphere and in the troposphere. Differences in ozone maximize in the Antarctic Ozone Hole, resulting in more than 20% less ozone when VSLS are included. Even though the emissions of VSLS are assumed to be constant in time, the model simulation with VSLS included shows a much larger ozone decrease in the lowermost stratosphere during the 1979-1995 period and a faster ozone increase during 1996-2005, in better agreement with observed ozone trends than the standard simulation without VSLS emissions.

  6. First Use of High Charge States for Mass Measurements of Short-Lived Nuclides in a Penning Trap

    SciTech Connect

    Ettenauer, S.; Gallant, A. T.; Dilling, J.; Simon, M. C.; Chaudhuri, A.; Mane, E.; Delheij, P.; Pearson, M. R.; Brunner, T.; Chowdhury, U.; Simon, V. V.; Brodeur, M.; Andreoiu, C.; Audi, G.; Lopez-Urrutia, J. R. Crespo; Ullrich, J.; Gwinner, G.; Lapierre, A.; Lunney, D.; Ringle, R.

    2011-12-30

    Penning trap mass measurements of short-lived nuclides have been performed for the first time with highly charged ions, using the TITAN facility at TRIUMF. Compared to singly charged ions, this provides an improvement in experimental precision that scales with the charge state q. Neutron-deficient Rb isotopes have been charge bred in an electron beam ion trap to q=8-12+ prior to injection into the Penning trap. In combination with the Ramsey excitation scheme, this unique setup creating low energy, highly charged ions at a radioactive beam facility opens the door to unrivaled precision with gains of 1-2 orders of magnitude. The method is particularly suited for short-lived nuclides such as the superallowed {beta} emitter {sup 74}Rb (T{sub 1/2}=65 ms). The determination of its atomic mass and an improved Q{sub EC} value are presented.

  7. First use of high charge states for mass measurements of short-lived nuclides in a Penning trap.

    PubMed

    Ettenauer, S; Simon, M C; Gallant, A T; Brunner, T; Chowdhury, U; Simon, V V; Brodeur, M; Chaudhuri, A; Mané, E; Andreoiu, C; Audi, G; López-Urrutia, J R Crespo; Delheij, P; Gwinner, G; Lapierre, A; Lunney, D; Pearson, M R; Ringle, R; Ullrich, J; Dilling, J

    2011-12-30

    Penning trap mass measurements of short-lived nuclides have been performed for the first time with highly charged ions, using the TITAN facility at TRIUMF. Compared to singly charged ions, this provides an improvement in experimental precision that scales with the charge state q. Neutron-deficient Rb isotopes have been charge bred in an electron beam ion trap to q=8-12+ prior to injection into the Penning trap. In combination with the Ramsey excitation scheme, this unique setup creating low energy, highly charged ions at a radioactive beam facility opens the door to unrivaled precision with gains of 1-2 orders of magnitude. The method is particularly suited for short-lived nuclides such as the superallowed β emitter 74Rb (T(1/2)=65  ms). The determination of its atomic mass and an improved Q(EC) value are presented.

  8. A Reevaluation of the Contribution of Very Short Lived Bromocarbons to Stratospheric Bromine Loading

    NASA Astrophysics Data System (ADS)

    Wales, P.; Salawitch, R. J.; Canty, T. P.; Mount, G. H.; Spinei, E.; Suleiman, R. M.; Chance, K.; McPeters, R. D.; Bhartia, P. K.; Kurosu, T. P.; Simpson, W. R.; Donohoue, D.; Johnson, B. J.; Kinnison, D. E.; Tilmes, S.; Choi, S.; Joiner, J.

    2015-12-01

    The Aura Ozone Monitoring Instrument (OMI) has provided global measurements of total column BrO over the past decade. Interpreting the distribution of total column BrO between the stratosphere and troposphere depends strongly on the contribution of very short lived (VSL) bromocarbons to stratospheric inorganic bromine (Bry). Salawitch et al. (2010) suggested 7 to 12 ppt of Bry must be supplied to the lower stratosphere from the decomposition of VSL bromocarbons to accurately represent the variation of total column OMI BrO with total column O3. Here we will re-evaluate this recommendation in light of ground-based total column BrO measurements obtained over Fairbanks, Alaska using a multifunction differential optical absorption spectroscopy (MFDOAS) instrument during the spring of 2011. Additionally, we will assess how modifications to kinetics regulating the partitioning between BrO and BrONO2 proposed by Kreycy et al. (2013) affect the VSL Bry estimate as well as the modeled diurnal variation in BrO. ReferencesKreycy, S. et al. Atmos. Chem. Phys. 2013, 13, 6263-6274, doi:10.5194/acp-13-6263-2013. Salawitch, R.J. et al. Geophys. Res. Lett. 2010, 37, L21805, doi:10.1029/2010GL043798.

  9. Dissolved organic matter composition drives the marine production of brominated very short-lived substances.

    PubMed

    Liu, Yina; Thornton, Daniel C O; Bianchi, Thomas S; Arnold, William A; Shields, Michael R; Chen, Jie; Yvon-Lewis, Shari A

    2015-03-17

    Brominated very short-lived substances (BrVSLS), such as bromoform, are important trace gases for stratospheric ozone chemistry. These naturally derived trace gases are formed via bromoperoxidase-mediated halogenation of dissolved organic matter (DOM) in seawater. Information on DOM type in relation to the observed BrVSLS concentrations in seawater, however, is scarce. We examined the sensitivity of BrVSLS production in relation to the presence of specific DOM moieties. A total of 28 model DOM compounds in artificial seawater were treated with vanadium bromoperoxidase (V-BrPO). Our results show a clear dependence of BrVSLS production on DOM type. In general, molecules that comprise a large fraction of the bulk DOM pool did not noticeably affect BrVSLS production. Only specific cell metabolites and humic acid appeared to significantly enhance BrVSLS production. Amino acids and lignin phenols suppressed enzyme-mediated BrVSLS production and may instead have formed halogenated nonvolatile molecules. Dibromomethane production was not observed in any experiments, suggesting it is not produced by the same pathway as the other BrVSLS. Our results suggest that regional differences in DOM composition may explain the observed BrVSLS concentration variability in the global ocean. Ultimately, BrVSLS production and concentrations are likely affected by DOM composition, reactivity, and cycling in the ocean. PMID:25723123

  10. Determination of k0-factors of short-lived nuclides and application of k0-NAA to selected trace elements

    NASA Astrophysics Data System (ADS)

    Acharya, R.; Holzbecher, J.; Chatt, A.

    2012-07-01

    As part of the standardization program of k0-based NAA (k0-NAA) methods at the Dalhousie University SLOWPOKE-2 reactor (DUSR) facility, the k0-factors of 15 analytically important short-lived nuclides (half-life <65 s) were determined with respect to gold (197Au). The elemental standards used were prepared mostly from their primary standard solutions. The samples were irradiated in both inner and outer pneumatic sites of the DUSR facility and counted using an HPGe-detector coupled to an ORTEC's digital gamma-ray spectrometer. The k0-factors determined using both inner and outer irradiation sites were found to be within ±5% with respect to either recommended or literature values in most cases. The Z-score values at 95% confidence level were found to be in the range of ±0.03-1.6. The k0-NAA method was applied to three different NIST standard reference materials (SRMs) and concentrations of six elements, namely Ag, F, Hf, Rb, Sc, and Se were determined using their short-lived nuclides. The concentrations of these elements were also determined by relative NAA method for comparison purposes.

  11. Evolution of the Galaxy and the Birth of the Solar System: The Short-Lived Nuclides Connection

    NASA Astrophysics Data System (ADS)

    Sahijpal, S.

    2014-06-01

    An attempt is made, probably for the first time, to understand the origin of the solar system in context with the evolution of the galaxy as a natural consequence of the birth of several generations of stellar clusters. The galaxy is numerically simulated to deduce the inventories of the short-lived nuclides, 26Al, 36Cl, 41Ca, 53Mn and 60Fe, from the stellar nucleosynthetic contributions of the various stellar clusters using an N-body simulation with updated prescriptions of the astrophysical processes. The galaxy is evolved by considering the discreteness associated with the stellar clusters and individual stars. We estimate the steady state abundance of the radionuclides around 4.56 billion years ago at the time of formation of the solar system. Further, we also estimate the present 26Al/27Al and 60Fe/56Fe of the interstellar medium that match within a factor of two with the observed estimates. In contrary to the conventional Galactic Chemical Evolution (GCE) model, the present adopted numerical approach provides a natural framework to understand the astrophysical environment related with the origin of the solar system. We deduce the nature of the two stellar clusters; the one that formed and evolved prior to the solar system formation, and the other within which the solar system that was probably formed. The former could have contributed to the short-lived nuclides 129I and 53Mn, whereas, the supernova associated with the most massive star in the latter contributed 26Al and 60Fe to the solar system. The analysis was performed with the revised solar metallicity of 0.014.

  12. Atomic mass measurements of short-lived nuclides around the doubly-magic 208Pb

    NASA Astrophysics Data System (ADS)

    Weber, C.; Audi, G.; Beck, D.; Blaum, K.; Bollen, G.; Herfurth, F.; Kellerbauer, A.; Kluge, H.-J.; Lunney, D.; Schwarz, S.

    2008-04-01

    Accurate atomic mass measurements of neutron-deficient and neutron-rich nuclides around the doubly-magic 208Pb and of neutron-rich cesium isotopes were performed with the Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN. The masses of 145,147Cs, 181,183Tl, 186Tl m, 187Tl m, 196Tl m, 205Tl, 197Pb m, 208Pb, 190-197Bi, 209,215,216Bi, 203,205,229Fr, and 214,229,230Ra were determined. The obtained relative mass uncertainty in the range of 2×10 to 2×10 is not only required for safe identification of isomeric states but also allows mapping the detailed structure of the mass surface. A mass adjustment procedure was carried out and the results included into the Atomic Mass Evaluation. The resulting separation energies are discussed and the mass spectrometric and laser spectroscopic data are examined for possible correlations.

  13. First results using a new technology for measuring masses of very short-lived nuclides with very high accuracy: The MISTRAL program at ISOLDE

    SciTech Connect

    Monsanglant, C.; Audi, G.; Conreur, G.; Cousin, R.; Doubre, H.; Jacotin, M.; Henry, S.; Kepinski, J.-F.; Lunney, D.; Saint Simon, M. de; Thibault, C.; Toader, C.; Bollen, G.; Lebee, G.; Scheidenberger, C.; Borcea, C.; Duma, M.; Kluge, H.-J.; Le Scornet, G.

    1999-11-16

    MISTRAL is an experimental program to measure masses of very short-lived nuclides (T{sub 1/2} down to a few ms), with a very high accuracy (a few 10{sup -7}). There were three data taking periods with radioactive beams and 22 masses of isotopes of Ne, Na, Mg, Al, K, Ca, and Ti were measured. The systematic errors are now under control at the level of 8x10{sup -7}, allowing to come close to the expected accuracy. Even for the very weakly produced {sup 30}Na (1 ion at the detector per proton burst), the final accuracy is 7x10{sup -7}.

  14. On the Relation between Stratospheric Chlorine/Bromine Loading and Short-Lived Tropospheric Source Gases. Appendix D

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Sze, Nien-Dak; Scott, Courtney J.; Weisenstein, Debra K.

    1997-01-01

    Current methods for estimating the concentrations of inorganic chlorine/bromine species Cl(y)/Br(y) in the stratosphere due to decomposition of tropospheric source gases assume that the Cl(y)/Br(y) concentration in the stratosphere is determined mainly by the balance between production from in situ oxidation of the source gases in the stratosphere and removal by transport of Cl(y)/Br(y) out of the stratosphere. The rationale being that for source gases whose lifetimes are of the order of several months or longer the concentration of Cl(y)/Br(y) in the troposphere is small because they are produced at a relatively slow rate and also removed efficiently by washout processes. As a result of the small concentration, the rate at which Cl(y)/Br(y) is transported to the stratosphere is expected to be small compared to the in situ stratospheric production. Thus the transport of Cl(y)/Br(y) from the troposphere contributes little to the stratospheric concentration. In contrast, the origin of stratospheric Cl(y)/Br(y) from reactive source gases with tropospheric lifetimes comparable to the washout lifetime of Cl(y)/Br(y) (of the order of 10-30 days) in the troposphere is distinctly different. The in situ source in the stratosphere is expected to be significantly smaller because only a small portion of the source gas is expected to survive the troposphere to be transported into this region. At the same time these short-lived source gases produce appreciable amounts of Cl(y)/Br(y) in the troposphere such that transport to the stratosphere offers a larger source for stratospheric Cl(y)/Br(y) than in situ production. Thus, for reactive source species, simple methods of estimating the concentration of stratospheric Cl(y)/Br(y) that ignore the tropospheric contribution will seriously underestimate the loading. Therefore estimation of the stratospheric Cl(y)/Br(y) loading requires not only measurements of tropospheric source gases but also measurements of Cl(y)/Br(y) at the

  15. The Birth of the Solar System in a Molecular Cloud: Evidence from the Isotopic Pattern of Short-lived Nuclides in the Early Solar System

    NASA Astrophysics Data System (ADS)

    Jacobsen, S. B.

    2005-12-01

    A good positive correlation between the initial solar abundances of short-lived (now extinct) nuclides (when normalized to their nucleosynthetic production ratios) and their mean lifetimes on a logarithmic plot has been well known for some time. Here I show that: (i) the slope for short-lived nuclides in the average interstellar medium in such a diagram is always 1. (ii) for molecular clouds, the slope is expected to be 2 or slightly less than 2 for a model where the molecular clouds are at a steady state and slowly exchange matter with the remaining interstellar medium. The existing data suggest a residence time of ˜ 6 x107 yrs for the matter present in molecular clouds. (iii) the intercept depends on (1) the residence time of matter in molecular clouds, (2) the mass fraction of the interstellar medium that is in molecular clouds, (3) the age of the galaxy and (4) the ratio of the time-average nucleosynthtic production rate and the production rate at the time of solar system formation. (iv) the abundances of 53Mn, 182Hf, 244Pu and 146Sm in the early solar system are likely formed by the same type of supernova sources (SNII?) over the history of our galaxy, while 129I (and possibly 107Pd) were produced in a different type of supernova sources (SNIa?) with the production rate skewed toward the early history of our galaxy. The abundances of these nuclides most likely characterize the average ISM values modified during their residence in the molecular cloud complex where the solar system formed. The abundances of 26Al, 41 Ca and 60Fe are too high to be of galactic production; these must be a contamination from young stellar sources that formed within the proto-Solar molecular cloud. These young sources could not have contributed significant quantities of 53Mn, 182Hf, 244Pu and 146Sm or 129I and thus were dissimilar to typical supernova sources.

  16. Instrumental activation analysis of coal and fly ash with thermal and epithermal neutrons and short-lived nuclides

    USGS Publications Warehouse

    Steinnes, E.; Rowe, J.J.

    1976-01-01

    Instrumental neutron activation analysis is applied to the determination of about 25 elements in coals and fly ash by means of nuclides with half-lives of less than 48 h ; thermal and epithermal irradiations are used. The results indicate that epithermal activation is preferable for twelve of the elements (Ga, As, Br, Sr, In, Cs, Ba, La, Sm, Ho, W and U). Data for SRM 1632 (coal) and SRM 1633 (fly ash) compare favorably with the results obtained by other investigators. ?? 1976.

  17. [Bibliographic consideration of proper management of radioactive waste on short-lived period nuclides that are used in nuclear medicine].

    PubMed

    Kida, Tetsuo; Watanabe, Hiroshi; Yamaguchi, Ichirou; Nagaoka, Hiroaki; Fujibuchi, Toshioh; Tanaka, Shinji; Hayakawa, Toshio

    2009-05-20

    A rational clearance system for medical radioactive waste has not yet been established in Japan. As Europe and USA's ways, the establishment of DIS that medical radioactive waste what are kept in storage room for more than decided period each nuclide except from regulation of radiation's control. The purpose of this report is to clarify the problems with the establishment of DIS in Japan through a literature review of the experience in Europe and the USA and previous research that has been reported in Japan. To establish the DIS system, the radiation control system in nuclear medicine should be rebuilt and put into effect.

  18. [Bibliographic consideration of proper management of radioactive waste on short-lived period nuclides that are used in nuclear medicine].

    PubMed

    Kida, Tetsuo; Watanabe, Hiroshi; Yamaguchi, Ichirou; Nagaoka, Hiroaki; Fujibuchi, Toshioh; Tanaka, Shinji; Hayakawa, Toshio

    2009-05-20

    A rational clearance system for medical radioactive waste has not yet been established in Japan. As Europe and USA's ways, the establishment of DIS that medical radioactive waste what are kept in storage room for more than decided period each nuclide except from regulation of radiation's control. The purpose of this report is to clarify the problems with the establishment of DIS in Japan through a literature review of the experience in Europe and the USA and previous research that has been reported in Japan. To establish the DIS system, the radiation control system in nuclear medicine should be rebuilt and put into effect. PMID:19498253

  19. First Results Using a New Technology for Measuring Masses of Very Short-Lived Nuclides with Very High Accuracy: the MISTRAL Program at ISOLDE

    SciTech Connect

    C. Monsanglant; C. Toader; G. Audi; G. Bollen; C. Borcea; G. Conreur; R. Cousin; H. Doubre; M. Duma; M. Jacotin; S. Henry; J.-F. Kepinski; H.-J. Kluge; G. Lebee; G. Le Scornet; D. Lunney; M. de Saint Simon; C. Scheidenberger; C. Thibault

    1999-12-31

    MISTRAL is an experimental program to measure masses of very short-lived nuclides (T{sub 1/2} down to a few ms), with a very high accuracy (a few 10{sup -7}). There were three data taking periods with radioactive beams and 22 masses of isotopes of Ne, Na{clubsuit}, Mg, Al{clubsuit}, K, Ca, and Ti were measured. The systematic errors are now under control at the level of 8x10{sup -7}, allowing to come close to the expected accuracy. Even for the very weakly produced {sup 30}Na (1 ion at the detector per proton burst), the final accuracy is 7x10{sup -7}.

  20. Cross Sections Needed for the Interpretation of Long-Lived and Short-Lived Cosmogenic Nuclide Production in Extraterrestrial Materials

    NASA Astrophysics Data System (ADS)

    Sisterson, J. M.; Beverding, A.; Kim, K. J.; Englert, P. A. J.; Jull, A. J. T.; Donahue, D. J.; Cloudt, S.; Castaneda, C.; Vincent, J.; Caffee, M. W.; Osazuwa, C. O.; Reedy, R. C.

    1995-09-01

    Radionuclides produced by cosmic rays in extraterrestrial materials archive information that can be used to determine cosmic-ray fluxes and to study the history of the irradiated object. Long-lived radionuclides give information about the last ~5 Myr; short-lived radionuclides give information about recent events. To calculate the solar cosmic ray (SCR) flux from measured depth profiles for cosmogenic radionuclides produced in lunar rocks, accurate and precise cross section values for the production of these radionuclides from all relevant elements are needed. About 98% of SCR and ~87% of galactic cosmic rays (GCR) falling on extraterrestrial materials are protons. Cross section measurements were made using three proton accelerators to cover the energy range ~20 - 500 MeV. Thin target techniques used in the irradiations minimized the number of protons scattered out of the stack and the neutron production within the stack. After irradiation, the short-lived radionuclides e.g. 22Na, 7Be, 24Na, 54Mn, and 56Co were determined using gamma-ray spectroscopy. 14C, 10Be, and 26Al were determined using Accelerator Mass Spectrometry. Our main objective is to measure the production cross sections of long-lived radionuclides. We have reported new cross section values for making 10Be from O and 14C from O, Mg, Al, Si, Fe, and Ni [1,2]. Using these new results, better estimates for the solar proton flux over several time periods in the past were determined [3]. However, no single value for the SCR flux could explain the measured data from different time periods. Further cross section measurements are being made to verify that the values used in these estimates were accurate. Irradiations designed to give good cross section measurements for long-lived radionuclides also give good cross section measurements for short-lived radionuclides. Results will be presented for proton production cross sections of 22Na from Mg, Al and Si, and 54Mn and 56Co from Fe and Ni; some values at low

  1. Transfer time and source tracing in the soil - water- -plant system deciphered by the U-and Th-series short-lived nuclides

    NASA Astrophysics Data System (ADS)

    Rihs, S.; Pierret, M.; Chabaux, F.

    2011-12-01

    Because soils form at the critical interface between the lithosphere and the atmosphere, characterization of the dynamics occurring through this compartment represents an important goal for several scientific fields and/or human activities. However, this issue remains a challenge because soils are complex systems, where a continuous evolution of minerals and organic soil constituents occurs in response to interactions with waters and vegetation. This study aims to investigate the relevance of short-lived nuclides of U- and Th-series to quantify the transfer times and scheme of radionuclides through a soil - water - plant ecosystem. Activities of (226Ra), (228Ra) and (228Th), as well as the long-lived (232Th), were measured by TIMS and gamma-spectrometry in the major compartments of a forested soil section, i.e.: solid soil fractions (exchangeable fraction, secondary phases and inherited primary minerals), waters (seepage soil waters and a spring further down the watershed) and vegetation (fine and coarse roots of beech trees, young and mature leaves). The matching of these nuclides half-live to bio-geochemical processes time-scale and the relatively good chemical analogy of radium with calcium make these isotopes especially suitable to investigate either time or mechanism of transfers within a soil-water-plant system. Indeed, the (228Ra/226Ra) isotopic ratios strongly differ in the range of samples, allowing quantifying the source and duration transfers. Analyses of the various solid soil fractions demonstrate a full redistribution of Ra isotopes between the inherited minerals and secondary soil phases. However, the transfer of these isotopes to the seepage water or to the tree roots does not follow a simple and obvious scheme. Both primary and secondary phases show to contribute to the dissolved radium. However, depending on the season, the tree leaves degradation also produces up to 70% of dissolved radium. Immobilization of a large part of this radium occurs

  2. Using short-lived nuclides of the U- and Th-series to probe the kinetics of colloid migration in forested soils

    NASA Astrophysics Data System (ADS)

    Rihs, Sophie; Prunier, Jonathan; Thien, Bruno; Lemarchand, Damien; Pierret, Marie-Claire; Chabaux, François

    2011-12-01

    The recent chemical dynamics of a podzolic forest soil section (from the Strengbach watershed, France) was investigated using U- and Th-series nuclides. Analyses of ( 238U), ( 230Th), ( 226Ra), ( 232Th), ( 228Ra) and ( 228Th) activities in the soil particles, the seepage waters, and the mature leaves of the beech trees growing on this soil were performed by TIMS or gamma spectrometry. The simultaneous analysis of the different soil ( sl) compartments allows to demonstrate that a preferential Th leaching over Ra must be assumed to explain the ( 226Ra/ 230Th), ( 228Ra/ 232Th) and ( 228Th/ 228Ra) disequilibria recorded in the soil particles. The overall Ra- and Th- transfer schemes are entirely consistent with the prevailing acido-complexolysis weathering mechanism in podzols. Using a continuous open-system leaching model, the ( 226Ra/ 230Th) and ( 228Ra/ 232Th) disequilibria measured in the different soil layers enable dating of the contemporary processes occurring in this soil. In this way, we have determined that a preferential Th-leaching from the shallow Ah horizon, due to a strong complexation with organic colloids, began fairly recently (18 years ago at most). The continual increase in pH recorded in precipitations over the last 20 years is assumed to be the cause of this enhanced organic complexation. A lower soil horizon (50-60 cm) is also affected by preferential Th leaching, though lasting over several centuries at least, with a much smaller leaching rate. The migration of Th isotopes through this soil section might hence be used as a tracer for the organic colloids migration and the induced radioactive disequilibria demonstrate to be useful for assessing the colloidal migration kinetics in a forested soil. Ra and Th isotopic ratios also appear to be valuable tracers of some mineral-water-plant interactions occurring in soil. The ( 228Ra/ 226Ra) ratio enables discrimination of the Ra flux originating from leaf degradation from that originating from mineral

  3. Bromine

    USGS Publications Warehouse

    Ober, Joyce A.

    2011-01-01

    All U.S. production of bromine in 2010 came from underground brines in Arkansas. It was the leading mineral commodity produced in the state in terms of value. Albemarle Corp. and Chemtura Corp. recovered bromine.

  4. Bromine

    USGS Publications Warehouse

    Ober, Joyce A.

    2012-01-01

    The element bromine is found principally as a dissolved species in seawater, evaporitic (salt) lakes and underground brines associated with petroleum deposits. Seawater contains about 65 parts per million of bromine or an estimated 100 Tt (110 trillion st). In the Middle East, the highly saline waters of the Dead Sea are estimated to contain 1 Gt (1.1billion st) of bromine. Bromine is also recovered from seawater as a coproduct during evaporation to produce salt.

  5. Bromine

    USGS Publications Warehouse

    Ober, J.A.

    2013-01-01

    The element bromine is found principally as a dissolved species in seawater, evaporitic (salt) lakes and underground brines associated with petroleum deposits. Seawater contains about 65 parts per million of bromine or an estimated 907 Gt (100 trillion st). In the Middle East, the highly saline waters of the Dead Sea are estimated to contain 907 Mt (1 billion st) of bromine. Bromine also may be recovered from seawater as a coproduct during evaporation to produce salt.

  6. Bromine

    USGS Publications Warehouse

    Apodaca, Lori E.

    2010-01-01

    The entire U.S. production of bromine in 2009 came from underground brines in Arkansas, where it was the leading mineral commodity produced in terms of value. Two companies, Albermarle Corp. and Chemtura Corp., were responsible for bromine recovery. Worldwide, the United States is still the leading producer. However, U.S. dominance has decreased, as countries like China, Israel, Japan and Jordan have strengthened their positions as world producers of elemental bromine.

  7. A multi-model intercomparison of halogenated very short-lived substances (TransCom-VSLS): linking oceanic emissions and tropospheric transport for a reconciled estimate of the stratospheric source gas injection of bromine

    NASA Astrophysics Data System (ADS)

    Hossaini, R.; Patra, P. K.; Leeson, A. A.; Krysztofiak, G.; Abraham, N. L.; Andrews, S. J.; Archibald, A. T.; Aschmann, J.; Atlas, E. L.; Belikov, D. A.; Bönisch, H.; Carpenter, L. J.; Dhomse, S.; Dorf, M.; Engel, A.; Feng, W.; Fuhlbrügge, S.; Griffiths, P. T.; Harris, N. R. P.; Hommel, R.; Keber, T.; Krüger, K.; Lennartz, S. T.; Maksyutov, S.; Mantle, H.; Mills, G. P.; Miller, B.; Montzka, S. A.; Moore, F.; Navarro, M. A.; Oram, D. E.; Pfeilsticker, K.; Pyle, J. A.; Quack, B.; Robinson, A. D.; Saikawa, E.; Saiz-Lopez, A.; Sala, S.; Sinnhuber, B.-M.; Taguchi, S.; Tegtmeier, S.; Lidster, R. T.; Wilson, C.; Ziska, F.

    2016-07-01

    The first concerted multi-model intercomparison of halogenated very short-lived substances (VSLS) has been performed, within the framework of the ongoing Atmospheric Tracer Transport Model Intercomparison Project (TransCom). Eleven global models or model variants participated (nine chemical transport models and two chemistry-climate models) by simulating the major natural bromine VSLS, bromoform (CHBr3) and dibromomethane (CH2Br2), over a 20-year period (1993-2012). Except for three model simulations, all others were driven offline by (or nudged to) reanalysed meteorology. The overarching goal of TransCom-VSLS was to provide a reconciled model estimate of the stratospheric source gas injection (SGI) of bromine from these gases, to constrain the current measurement-derived range, and to investigate inter-model differences due to emissions and transport processes. Models ran with standardised idealised chemistry, to isolate differences due to transport, and we investigated the sensitivity of results to a range of VSLS emission inventories. Models were tested in their ability to reproduce the observed seasonal and spatial distribution of VSLS at the surface, using measurements from NOAA's long-term global monitoring network, and in the tropical troposphere, using recent aircraft measurements - including high-altitude observations from the NASA Global Hawk platform. The models generally capture the observed seasonal cycle of surface CHBr3 and CH2Br2 well, with a strong model-measurement correlation (r ≥ 0.7) at most sites. In a given model, the absolute model-measurement agreement at the surface is highly sensitive to the choice of emissions. Large inter-model differences are apparent when using the same emission inventory, highlighting the challenges faced in evaluating such inventories at the global scale. Across the ensemble, most consistency is found within the tropics where most of the models (8 out of 11) achieve best agreement to surface CHBr3 observations

  8. Direct mass measurements of short-lived A=2Z-1 nuclides (63)Ge, (65)As, (67)Se, and (71)Kr and their impact on nucleosynthesis in the rp process.

    PubMed

    Tu, X L; Xu, H S; Wang, M; Zhang, Y H; Litvinov, Yu A; Sun, Y; Schatz, H; Zhou, X H; Yuan, Y J; Xia, J W; Audi, G; Blaum, K; Du, C M; Geng, P; Hu, Z G; Huang, W X; Jin, S L; Liu, L X; Liu, Y; Ma, X; Mao, R S; Mei, B; Shuai, P; Sun, Z Y; Suzuki, H; Tang, S W; Wang, J S; Wang, S T; Xiao, G Q; Xu, X; Yamaguchi, T; Yamaguchi, Y; Yan, X L; Yang, J C; Ye, R P; Zang, Y D; Zhao, H W; Zhao, T C; Zhang, X Y; Zhan, W L

    2011-03-18

    Mass excesses of short-lived A=2Z-1 nuclei (63)Ge, (65)As, (67)Se, and (71)Kr have been directly measured to be -46,921(37), -46,937(85), -46,580(67), and -46,320(141)  keV, respectively. The deduced proton separation energy of -90(85)  keV for (65)As shows that this nucleus is only slightly proton unbound. X-ray burst model calculations with the new mass excess of (65)As suggest that the majority of the reaction flow passes through (64)Ge via proton capture, indicating that (64)Ge is not a significant rp-process waiting point. PMID:21469858

  9. Efficiency of short-lived halogens at influencing climate through depletion of stratospheric ozone

    NASA Astrophysics Data System (ADS)

    Hossaini, R.; Chipperfield, M. P.; Montzka, S. A.; Rap, A.; Dhomse, S.; Feng, W.

    2015-03-01

    Halogens released from long-lived anthropogenic substances, such as chlorofluorocarbons, are the principal cause of recent depletion of stratospheric ozone, a greenhouse gas. Recent observations show that very short-lived substances, with lifetimes generally under six months, are also an important source of stratospheric halogens. Short-lived bromine substances are produced naturally by seaweed and phytoplankton, whereas short-lived chlorine substances are primarily anthropogenic. Here we used a chemical transport model to quantify the depletion of ozone in the lower stratosphere from short-lived halogen substances, and a radiative transfer model to quantify the radiative effects of that ozone depletion. According to our simulations, ozone loss from short-lived substances had a radiative effect nearly half that from long-lived halocarbons in 2011 and, since pre-industrial times, has contributed a total of about -0.02 W m-2 to global radiative forcing. We find natural short-lived bromine substances exert a 3.6 times larger ozone radiative effect than long-lived halocarbons, normalized by halogen content, and show atmospheric levels of dichloromethane, a short-lived chlorine substance not controlled by the Montreal Protocol, are rapidly increasing. We conclude that potential further significant increases in the atmospheric abundance of short-lived halogen substances, through changing natural processes or continued anthropogenic emissions, could be important for future climate.

  10. Convective transport of very short lived bromocarbons to the stratosphere

    NASA Astrophysics Data System (ADS)

    Liang, Q.; Atlas, E.; Blake, D.; Dorf, M.; Pfeilsticker, K.; Schauffler, S.

    2014-06-01

    We use the NASA Goddard Earth Observing System (GEOS) Chemistry Climate Model (GEOSCCM) to quantify the contribution of the two most important brominated very short lived substances (VSLSs), bromoform (CHBr3) and dibromomethane (CH2Br2), to stratospheric bromine and its sensitivity to convection strength. Model simulations suggest that the most active transport of VSLSs from the marine boundary layer through the tropopause occurs over the tropical Indian Ocean, the tropical western Pacific, and off the Pacific coast of Mexico. Together, convective lofting of CHBr3 and CH2Br2 and their degradation products supplies ~8 ppt total bromine to the base of the tropical tropopause layer (TTL, ~150 hPa), similar to the amount of VSLS organic bromine available in the marine boundary layer (~7.8-8.4 ppt) in the active convective lofting regions mentioned above. Of the total ~8 ppt VSLS bromine that enters the base of the TTL at ~150 hPa, half is in the form of organic source gases and half in the form of inorganic product gases. Only a small portion (<10%) of the VSLS-originated bromine is removed via wet scavenging in the TTL before reaching the lower stratosphere. On average, globally, CHBr3 and CH2Br2 together contribute ~7.7 pptv to the present-day inorganic bromine in the stratosphere. However, varying model deep-convection strength between maximum (strongest) and minimum (weakest) convection conditions can introduce a ~2.6 pptv uncertainty in the contribution of VSLSs to inorganic bromine in the stratosphere (BryVSLS). Contrary to conventional wisdom, the minimum convection condition leads to a larger BryVSLS as the reduced scavenging in soluble product gases, and thus a significant increase in product gas injection (2-3 ppt), greatly exceeds the relatively minor decrease in source gas injection (a few 10ths ppt).

  11. Short-Lived Climate Pollution

    NASA Astrophysics Data System (ADS)

    Pierrehumbert, R. T.

    2014-05-01

    Although carbon dioxide emissions are by far the most important mediator of anthropogenic climate disruption, a number of shorter-lived substances with atmospheric lifetimes of under a few decades also contribute significantly to the radiative forcing that drives climate change. In recent years, the argument that early and aggressive mitigation of the emission of these substances or their precursors forms an essential part of any climate protection strategy has gained a considerable following. There is often an implication that such control can in some way make up for the current inaction on carbon dioxide emissions. The prime targets for mitigation, known collectively as short-lived climate pollution (SLCP), are methane, hydrofluo-rocarbons, black carbon, and ozone. A re-examination of the issues shows that the benefits of early SLCP mitigation have been greatly exaggerated, largely because of inadequacies in the methodologies used to compare the climate effects of short-lived substances with those of CO2, which causes nearly irreversible climate change persisting millennia after emissions cease. Eventual mitigation of SLCP can make a useful contribution to climate protection, but there is little to be gained by implementing SLCP mitigation before stringent carbon dioxide controls are in place and have caused annual emissions to approach zero. Any earlier implementation of SLCP mitigation that substitutes to any significant extent for carbon dioxide mitigation will lead to a climate irreversibly warmer than will a strategy with delayed SLCP mitigation. SLCP mitigation does not buy time for implementation of stringent controls on CO2 emissions.

  12. Inter-laboratory comparisons of short-lived gamma-emitting radionuclides in nuclear reactor water.

    PubMed

    Klemola, S K

    2008-01-01

    Inter-laboratory comparisons of gamma-emitting nuclides in nuclear power plant coolant water have been carried out in Finland since 1994. The reactor water samples are taken and prepared by one of the two nuclear power plants and delivered to the participants. Since all the participants get their sample within just a few hours it has been possible to analyse and compare results of nuclides with half-lives shorter than 1h. The total number of short-lived nuclides is 26. All the main nuclides are regularly identified and the activities have been obtained with reasonable accuracy throughout the years. The overall deviation of the results has decreased in 13 years. The effects of true coincidence summing and discrepancies in nuclear data have been identified as potential sources of remaining discrepancies. All the participants have found this type of comparison very useful.

  13. Skylab short-lived event alert program

    NASA Technical Reports Server (NTRS)

    Citron, R. A.

    1974-01-01

    During the three manned Skylab missions, the Center for Short-Lived Phenomena (CSLP) reported a total of 39 significant events to the Johnson Space Center (JSC) as part of the Skylab Short-Lived Event Alert Program. The telegraphed daily status reports included the names and locations of the events, the track number and revolution number during which the event could be observed, the time (GMT) to within plus or minus 2 sec when Skylab was closest to the event area, and the light condition (daylight or darkness) at that time and place. The messages sent to JSC during the Skylab 4 mission also included information pertaining to ground-truth studies and observations being conducted on the events. Photographic priorities were assigned for each event.

  14. Alchemy with short-lived radionuclides

    SciTech Connect

    Rubio, F.F.; Finn, R.D.; Gilson, A.J.

    1981-04-01

    A variety of short-lived radionuclides are produced and subsequently incorporated into radiopharmaceutical compounds in the radionuclide production program currently being conducted at the Cyclotron Facility of Mount Sinai Medical Center. The recovery of high specific activity oxygen-15 labelled water prepared by means of an inexpensive system operating in conjunction with an on-line radiogas target routinely utilized for oxygen-15 labelled carbon dioxide studies is currently receiving particular attention.

  15. Short-lived positron emitters in beam-on PET imaging during proton therapy

    NASA Astrophysics Data System (ADS)

    Dendooven, P.; Buitenhuis, H. J. T.; Diblen, F.; Heeres, P. N.; Biegun, A. K.; Fiedler, F.; van Goethem, M.-J.; van der Graaf, E. R.; Brandenburg, S.

    2015-12-01

    The only method for in vivo dose delivery verification in proton beam radiotherapy in clinical use today is positron emission tomography (PET) of the positron emitters produced in the patient during irradiation. PET imaging while the beam is on (so called beam-on PET) is an attractive option, providing the largest number of counts, the least biological washout and the fastest feedback. In this implementation, all nuclides, independent of their half-life, will contribute. As a first step towards assessing the relevance of short-lived nuclides (half-life shorter than that of 10C, T1/2  =  19 s) for in vivo dose delivery verification using beam-on PET, we measured their production in the stopping of 55 MeV protons in water, carbon, phosphorus and calcium The most copiously produced short-lived nuclides and their production rates relative to the relevant long-lived nuclides are: 12N (T1/2  =  11 ms) on carbon (9% of 11C), 29P (T1/2  =  4.1 s) on phosphorus (20% of 30P) and 38mK (T1/2  =  0.92 s) on calcium (113% of 38gK). No short-lived nuclides are produced on oxygen. The number of decays integrated from the start of an irradiation as a function of time during the irradiation of PMMA and 4 tissue materials has been determined. For (carbon-rich) adipose tissue, 12N dominates up to 70 s. On bone tissue, 12N dominates over 15O during the first 8-15 s (depending on carbon-to-oxygen ratio). The short-lived nuclides created on phosphorus and calcium provide 2.5 times more beam-on PET counts than the long-lived ones produced on these elements during a 70 s irradiation. From the estimated number of 12N PET counts, we conclude that, for any tissue, 12N PET imaging potentially provides equal to superior proton range information compared to prompt gamma imaging with an optimized knife-edge slit camera. The practical implementation of 12N PET imaging is discussed.

  16. Convective transport of very-short-lived bromocarbons to the stratosphere

    NASA Astrophysics Data System (ADS)

    Liang, Q.; Atlas, E.; Blake, D.; Dorf, M.; Pfeilsticker, K.; Schauffler, S.

    2014-01-01

    We use the NASA GEOS Chemistry Climate Model (GEOSCCM) to quantify the contribution of two most important brominated very short-lived substances (VSLS), bromoform (CHBr3) and dibromomethane (CH2Br2), to stratospheric bromine and its sensitivity to convection strength. Model simulations suggest that the most active transport of VSLS from the marine boundary layer through the tropopause occurs over the tropical Indian Ocean, the Western Pacific warm pool, and off the Pacific coast of Mexico. Together, convective lofting of CHBr3 and CH2Br2 and their degradation products supplies ∼8 ppt total bromine to the base of the Tropical Tropopause Layer (TTL, ∼150 hPa), similar to the amount of VSLS organic bromine available in the marine boundary layer (∼7.8-8.4 ppt) in the above active convective lofting regions. Of the total ∼8 ppt VSLS-originated bromine that enters the base of TTL at ∼150 hPa, half is in the form of source gas injection (SGI) and half as product gas injection (PGI). Only a small portion (< 10%) the VSLS-originated bromine is removed via wet scavenging in the TTL before reaching the lower stratosphere. On global and annual average, CHBr3 and CH2Br2, together, contribute ∼7.7 pptv to the present-day inorganic bromine in the stratosphere. However, varying model deep convection strength between maximum and minimum convection conditions can introduce a ∼2.6 pptv uncertainty in the contribution of VSLS to inorganic bromine in the stratosphere (BryVSLS). Contrary to the conventional wisdom, minimum convection condition leads to a larger BryVSLS as the reduced scavenging in soluble product gases, thus a significant increase in PGI (2-3 ppt), greatly exceeds the relative minor decrease in SGI (a few 10ths ppt).

  17. Convective Transport of Very-short-lived Bromocarbons to the Stratosphere

    NASA Technical Reports Server (NTRS)

    Liang, Qing; Atlas, Elliot Leonard; Blake, Donald Ray; Dorf, Marcel; Pfeilsticker, Klaus August; Schauffler, Sue Myhre

    2014-01-01

    We use the NASA GEOS Chemistry Climate Model (GEOSCCM) to quantify the contribution of two most important brominated very short-lived substances (VSLS), bromoform (CHBr3) and dibromomethane (CH2Br2), to stratospheric bromine and its sensitivity to convection strength. Model simulations suggest that the most active transport of VSLS from the marine boundary layer through the tropopause occurs over the tropical Indian Ocean, the Western Pacific warm pool, and off the Pacific coast of Mexico. Together, convective lofting of CHBr3 and CH2Br2 and their degradation products supplies 8 ppt total bromine to the base of the Tropical Tropopause Layer (TTL, 150 hPa), similar to the amount of VSLS organic bromine available in the marine boundary layer (7.8-8.4 ppt) in the above active convective lofting regions. Of the total 8 ppt VSLS-originated bromine that enters the base of TTL at 150 hPa, half is in the form of source gas injection (SGI) and half as product gas injection (PGI). Only a small portion (< 10%) the VSLS-originated bromine is removed via wet scavenging in the TTL before reaching the lower stratosphere. On global and annual average, CHBr3 and CH2Br2, together, contribute 7.7 pptv to the present-day inorganic bromine in the stratosphere. However, varying model deep convection strength between maximum and minimum convection conditions can introduce a 2.6 pptv uncertainty in the contribution of VSLS to inorganic bromine in the stratosphere (BryVSLS). Contrary to the conventional wisdom, minimum convection condition leads to a larger BryVSLS as the reduced scavenging in soluble product gases, thus a significant increase in PGI (2-3 ppt), greatly exceeds the relative minor decrease in SGI (a few 10ths ppt.

  18. Malaria Vaccine Protection Short-Lived in Young Children

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_159656.html Malaria Vaccine Protection Short-Lived in Young Children Kids ... 30, 2016 (HealthDay News) -- The world's most promising malaria vaccine appears to offer short-lived protection, fading ...

  19. Incorporation of short-lived (10)Be in a calcium-aluminum-rich inclusion from the allende meteorite

    PubMed

    McKeegan; Chaussidon; Robert

    2000-08-25

    Enrichments in boron-10/boron-11 in a calcium-aluminum-rich inclusion from the Allende carbonaceous chondrite are correlated with beryllium/boron in a manner indicative of the in situ decay of short-lived beryllium-10. Because this radionuclide is produced only by nuclear spallation reactions, its existence in early solar system materials attests to intense irradiation processes in the solar nebula. The particle fluence inferred from the initial beryllium-10/beryllium-9 is sufficient to produce other short-lived nuclides, calcium-41 and manganese-53, found in meteorites, but the high canonical abundance of aluminum-26 may still require seeding of the solar system by radioactive stellar debris.

  20. Have we underestimated the role of short-lived chlorine compounds in ozone depletion?

    NASA Astrophysics Data System (ADS)

    Oram, David; Laube, Johannes; Sturges, Bill; Gooch, Lauren; Leedham, Emma; Ashfold, Matthew; Pyle, John; Abu Samah, Azizan; Moi Phang, Siew; Ou-Yang, Chang-Feng; Lin, Neng-Huei; Wang, Jia-Lin; Brenninkmeijer, Carl

    2015-04-01

    In recent years much attention has been focussed on the potential of bromine-containing VSLS (very short lived substances) to contribute to stratospheric ozone depletion. This is primarily due to the large observed discrepancy between the measured inorganic bromine in the stratosphere and the amount of bromine available from known, longer lived sources gases (halons and CH3Br). In contrast, the role of very short-lived chlorine compounds (VSLS-CL) has been considered trivial because they contribute only a few percent to the total organic chlorine in the troposphere, the majority of which is supplied by long-lived compounds such as the CFCs, HCFCs, methyl chloroform and carbon tetrachloride. However recent evidence shows that one VSLS-Cl, dichloromethane (CH2Cl2) has increased by 60% over the past decade (WMO, 2014) and has already begun to offset the long-term decline in stratospheric chlorine loading caused by the reduction in emissions of substances controlled by the Montreal Protocol. We will present new VSLS-Cl measurements from recent ground-based and aircraft campaigns in SE Asia where we have observed dramatic enhancements in a number of VSLS-Cl, including CH2Cl2. Furthermore we will demonstrate how pollution from China and the surrounding region can rapidly, and regularly, be transported across the South China Sea and subsequently uplifted to altitudes of 11-12 km, the region close to the lower TTL. This process occurs frequently during the winter monsoon season and could represent a fast and efficient mechanism for transporting short-lived compounds, and other pollutants, to the lower stratosphere.

  1. Short-lived radioactivity and magma genesis

    NASA Astrophysics Data System (ADS)

    Gill, James; Condomines, Michel

    1992-09-01

    Short-lived decay products of uranium and thorium have half-lives and chemistries sensitive to the processes and time scales of magma genesis, including partial melting in the mantle and magmatic differentiation in the crust. Radioactive disequilibrium between U-238, Th-230, and Ra-226 is widespread in volcanic rocks. These disequilibria and the isotopic composition of thorium depend especially on the extent and rate of melting as well as the presence and composition of vapor during melting. The duration of mantle melting may be several hundred millennia, whereas ascent times are a few decades to thousands of years. Differentiation of most magmas commonly occurs within a few millennia, but felsic ones can be tens of millennia old upon eruption.

  2. Sinusoidal Regge Oscillations from Short Lived Resonances

    NASA Astrophysics Data System (ADS)

    Sokolovski, D.; Felfli, Z.; Msezane, A. Z.

    2007-06-01

    It is well known that a resonance with a large angular life can produce sharp Breit-Wigner peaks in the energy dependence of integral cross sections [1,2]. Here we show that a short-lived resonance whose angular life is of order of one full rotation may produce a different kind of contribution to the integral cross section. This contribution has a sinousoidal form and its frequency is determined by the rotational constant of the complex. As one of the examples, we analyze the Regge oscillations observed in numerical simulations of the F+H2(v=0,j=0,φ=0) ->FH(v'=2,j'=0,φ'=0) + H reaction. In particular, we show that these oscillations are produced by two overlapping resonances located near the transition state and the van der Waals well, respectively [3]. [1] J. H. Macek, et al., Phys. Rev. Lett., 93, 183202, (2004). [2] Z. Felfli et al., J. Phys. B 39, L353 (2006) [3] D. Sokolovski, D. De Fazio, S. Cavalli and V. Aquilanti, J. Chem. Phys. (2007) (submitted).

  3. SU-C-204-07: The Production of Short-Lived Positron Emitters in Proton Therapy

    SciTech Connect

    Buitenhuis, H J T; Dendooven, P; Biegun, A K; Goethem, M-J van; Graaf, E R van der; Brandenburg, S; Diblen, F

    2015-06-15

    Purpose: To investigate the production and effect of short-lived positron emitters when using PET for in-vivo range verification during a proton therapy irradiation. Methods: The integrated production of short-lived positron emitters in the stopping of 55 MeV protons was measured in water, carbon, phosphorus and calcium targets. The experimental production rates are used to calculate the production on PMMA and a representative set of 4 tissue materials. The number of decays integrated over an irradiation in these materials is calculated as function of the duration of the irradiation, considering irradiations with the same total number of protons. Results: The most copiously produced short-lived nuclides and their production rates relative to the relevant long-lived nuclides are: 12-N (T1/2 = 11 ms) on carbon (9.5% of the 11-C production), 29-P (T1/2 = 4.1 s) on phosphorus (20% of the 30-P production) and 38m-K (T1/2 = 0.92 s) on calcium (113% of the 38g-K production). No short-lived nuclides are produced on water. The most noticeable Result is that for an irradiation in (carbon-rich) adipose tissue, 12-N will dominate the PET image up to an irradiation duration of 70 s. On bone tissue, 15-O dominates over 12-N after 7–15 s (depending on the carbon-to-oxygen ratio). Conclusions: The presence of 12-N needs to be considered in PET imaging during proton beam irradiations as, depending on tissue composition and PET scanning protocol, it may noticeably deteriorate image quality due to the large positron range blurring. The results presented warrant investigations into the energy-dependent production of 12-N, 29-P and 38m-K and their effect on PET imaging during proton irradiations.

  4. Studies of images of short lived events using ERTS data

    NASA Technical Reports Server (NTRS)

    Deutschman, W. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The program to study short-lived events with the ERTS-1 satellite has evaluated 97 events reported by the Center for Short-Lived Phenomena. Forty-eight of these events were listed as candidates for ERTS-1 coverage and 8 of these were considered significant enough to immediately alert the ERTS operation staff by telephone. Studies of the images received from six events indicate that useful data on short-lived events can be obtained from ERTS-1 that would be difficult or impossible to obtain by other methods.

  5. Nuclides Economy

    SciTech Connect

    Ivanov, Evgeny; Subbotin, Stanislav

    2007-07-01

    Traditionally the subject of discussion about the nuclear technology development is focused on the conditions that facilitate the nuclear power deployment. The main objective of this work is seeking of methodological basis for analysis of the coupling consequences of nuclear development. Nuclide economy is the term, which defines a new kind of society relations, dependent on nuclear technology development. It is rather closed to the setting of problems then to the solving of them. Last year Dr. Jonathan Tennenbaum published in Executive Intelligence Review Vol. 33 no 40 the article entitled as 'The Isotope Economy' where main interconnections for nuclear energy technologies and their infrastructure had been explained on the popular level. There he has given several answers and, therefore, just here we will try to expand this concept. We were interested by this publication because of similarity of our vision of resource base of technologies development. The main paradigm of 'Isotope economy' was expresses by Lyndon H. LaRouche: 'Instead of viewing the relevant resources of the planet as if they were a fixed totality, we must now assume responsibility of man's creating the new resources which will be more than adequate to sustain a growing world population at a constantly improved standard of physical per-capita output, and personal consumption'. We also consider the needed resources as a dynamic category. Nuclide economy and nuclide logistics both are needed for identifying of the future development of nuclear power as far we follow the holistic analysis approach 'from cave to grave'. Thus here we try to reasoning of decision making procedures and factors required for it in frame of innovative proposals development and deployment. The nuclear power development is needed in humanitarian scientific support with maximally deep consideration of all inter-disciplinary aspects of the nuclear power and nuclear technologies implementation. The main objectives for such

  6. Caffeine's Jolt Can Sometimes Be Short-Lived

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_159413.html Caffeine's Jolt Can Sometimes Be Short-Lived Stimulant effect ... 17, 2016 THURSDAY, June 16, 2016 (HealthDay News) -- Caffeine no longer improves alertness or mental performance after ...

  7. Workshop on Cosmogenic Nuclides

    NASA Technical Reports Server (NTRS)

    Reedy, R. C. (Editor); Englert, P. (Editor)

    1986-01-01

    Abstracts of papers presented at the Workshop on Cosmogenic Nuclides are compiled. The major topic areas covered include: new techniques for measuring nuclides such as tandem accelerator and resonance mass spectrometry; solar modulation of cosmic rays; pre-irradiation histories of extraterrestrial materials; terrestrial studies; simulations and cross sections; nuclide production rate calculations; and meteoritic nuclides.

  8. Bayes’ Theorem and Early Solar Short-lived Radionuclides: The Case for an Unexceptional Origin for the Solar System

    NASA Astrophysics Data System (ADS)

    Young, Edward D.

    2016-08-01

    The presence of excesses of short-lived radionuclides in the early solar system evidenced in meteorites has been taken as testament to close encounters with exotic nucleosynthetic sources, including supernovae or AGB stars. An analysis of the likelihoods associated with different sources of these extinct nuclides in the early solar system indicates that, rather than being exotic, their abundances were typical of star-forming regions like those observed today in the Galaxy. The radiochemistry of the early solar system is therefore unexceptional, being the consequence of extensive averaging of solids from molecular clouds.

  9. Ozone Destruction in the Upper Troposphere/Lower Stratosphere from Short-Lived Halogens and Climate Impacts

    NASA Astrophysics Data System (ADS)

    Hossaini, Ryan; Chipperfield, Martyn; Montzka, Stephen; Rap, Alex; Dhomse, Sandip; Feng, Wuhu

    2014-05-01

    Halogens released from very short-lived substances (VSLS) can deplete ozone in the upper-troposphere and lower stratosphere where the perturbation can exert a large climate impact. In addition to the known ozone loss from natural biogenic bromine VSLS, such as bromoform (CHBr3), using a global atmospheric model we show that anthropogenic chlorine VSLS such as dichloromethane (CH2Cl2) - not regulated by the Montreal Protocol - also contribute. Although this impact is small compared to bromine VSLS at present, CH2Cl2 has industrial sources and observations show its atmospheric loading is increasing rapidly. We estimate a significant radiative effect of the bromine and chlorine VSLS-driven lower stratospheric ozone destruction of -0.11 Wm-2. The largest impact comes from ozone loss at high latitudes, where column ozone decreases due to VSLS are up to 6%. The trend in anthropogenic chlorine VSLS could cause a significant radiative forcing, especially if augmented by any trend in natural bromine VSLS. We also used the model to study the impact of iodine-containing VSLS such as methyl iodide (CH3I). Of the three halogens iodine has the largest leverage to destroy lower stratospheric ozone, but current limits based on IO observations indicate only a minor impact at present.

  10. Dehydration in the tropical tropopause layer: A possible sink of inorganic bromine?

    NASA Astrophysics Data System (ADS)

    Aschmann, J.; Sinnhuber, B.-M.

    2012-04-01

    Recent studies have shown the importance of bromine very short-lived substances (VSLS) for the stratospheric bromine budget and their potential impact on ozone depletion. In this study, bromine loading in the tropical upper troposphere/lower stratosphere (UTLS) due to VSLS is investigated with a 3D chemical transport model with a detailed chemistry scheme, including parametrizations of particle adsorption and scavenging as well as heterogeneous reactions on corresponding surfaces. On the source gas side, the long-lived halons and methyl bromide and the two most important bromine short-lived substances, bromoform and dibromomethane, are included. On the other hand, the partitioning of inorganic bromine product gases (Bry) is also explicitly calculated. Our results suggest that loss of soluble inorganic bromine in the tropical UTLS due to dehydration is negligible, in contrast to most earlier studies. The main reasons can be summarized as follows: The majority of bromine short-lived source gases is still intact at the UTLS and is therefore not susceptible to dehydration. Furthermore, the fraction of inorganic bromine which is actually adsorbed on ice particles is generally lower than 25%. Finally, the model shows that the small amount of adsorbed bromine that could be scavenged is released efficiently into gas phase by heterogeneous reactions.

  11. Soot and short-lived pollutants provide political opportunity

    NASA Astrophysics Data System (ADS)

    Victor, David G.; Zaelke, Durwood; Ramanathan, Veerabhadran

    2015-09-01

    Cutting levels of soot and other short-lived pollutants delivers tangible benefits and helps governments to build confidence that collective action on climate change is feasible. After the Paris climate meeting this December, actually reducing these pollutants will be essential to the credibility of the diplomatic process.

  12. CARIBIC observations of short-lived halocarbons and carbonyl sulphide over Asia

    NASA Astrophysics Data System (ADS)

    Leedham, E.; Wisher, A.; Oram, D.; Baker, A. K.; Brenninkmeijer, C. A.

    2013-12-01

    The CARIBIC project (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container, www.caribic-atmospheric.com) aims to investigate the spatial and temporal distribution of a wide-range of compounds, including those of marine origin/influence, via ~monthly flights to collect in situ data and whole air samples aboard a commercial Lufthansa aircraft. CARIBIC measures up to an altitude of 12 km, allowing the influence of marine compounds on the upper troposphere/lower stratosphere (UTLS) to be explored. In particular, CARIBIC is a useful tool for exploring the impact of very short lived halocarbons (e.g. CH2Br2, CHBr3), whose impact on stratospheric ozone is dependent on convective uplift to the UTLS, a process which is not yet fully quantified. As part of the suite of CARIBIC measurements, whole air samples are analysed at the University of East Anglia (UEA) via gas chromatography mass spectrometry for carbonyl sulphide (OCS) and up to 40 halocarbons (accounting for virtually 100% of organic chlorine, bromine and iodine in the UTLS). Here we present an overview of short-lived halocarbons and OCS measured by CARIBIC. We focus on two regions of particular interest. (1) measurements made in 2012 over the tropical west Pacific to link with UEA measurements made during the SHIVA campaign. (2) measurements made during a collection of flights over India in 2008. Flights over India investigated the impact of monsoon circulation on the distribution of these compounds; for example, elevated concentrations of OCS were seen in CARIBIC samples taken over India during the summer monsoon (July - September). These flights, along with a wider range of flights over Asia (from Frankfurt to Guangzhou, Manila, Bangkok and Kuala Lumpur) can provide unique information on the influence of tropical convection and monsoon circulation on halocarbon and OCS transport within this region.

  13. How sensitive is the recovery of stratospheric ozone to changes in concentrations of very short lived bromocarbons?

    NASA Astrophysics Data System (ADS)

    Yang, X.; Abraham, N. L.; Archibald, A. T.; Braesicke, P.; Keeble, J.; Telford, P.; Warwick, N. J.; Pyle, J. A.

    2014-04-01

    Naturally produced very short-lived substances (VSLS), like bromocarbons, account for almost a quarter of the current stratospheric inorganic bromine, Bry. Following VSLS oxidation, bromine radicals (Br and BrO) can catalytically destroy ozone. The extent to which possible increases in surface emissions or transport of these VSLS bromocarbons to the stratosphere could counteract the effect of halogen reductions under the Montreal Protocol is an important policy question. Here by using a chemistry-climate model, UM-UKCA, we investigate the impact of a hypothetical increase in VSLS on ozone and how that impact depends on the background concentrations of chlorine and bromine. Our model experiments indicate that for a ~5 ppt increase in Bry from VSLS, the local ozone loss in the lowermost stratosphere of the Southern Hemisphere (SH) may reach up to 10% in the annual mean; the ozone loss in the Northern Hemisphere (NH) is smaller (4-6%). There is more ozone loss following an increase in VSLS burden under a high stratospheric chlorine background than under a low chlorine background indicating the importance of the inter-halogen reactions. For example, the rate of decline of the stratospheric ozone concentration as a function of Bry is higher by about 30-40% when stratospheric Cly is ~3 ppb (present day) compared with Cly of ~0.8 ppb (apre-industrial or projected future situation). Although bromine plays an important role in destroying ozone, inorganic chlorine is the dominant halogen compound. Even if bromine levels from natural VSLS were to increase significantly later this century, changes in the concentration of ozone will be dominated by the recovery of anthropogenic chlorine. Our calculation suggests that for a 5 ppt increase in Bry from VSLS, the Antarctic ozone hole recover date could be delayed by approximately 7 years.

  14. How sensitive is the recovery of stratospheric ozone to changes in concentrations of very short-lived bromocarbons?

    NASA Astrophysics Data System (ADS)

    Yang, X.; Abraham, N. L.; Archibald, A. T.; Braesicke, P.; Keeble, J.; Telford, P. J.; Warwick, N. J.; Pyle, J. A.

    2014-10-01

    Naturally produced very short-lived substances (VSLS) account for almost a quarter of the current stratospheric inorganic bromine, Bry. Following VSLS oxidation, bromine radicals (Br and BrO) can catalytically destroy ozone. The extent to which possible increases in surface emissions or transport of these VSLS bromocarbons to the stratosphere could counteract the effect of halogen reductions under the Montreal Protocol is an important policy question. Here, by using a chemistry-climate model, UM-UKCA, we investigate the impact of a hypothetical doubling (an increase of 5 ppt Bry) of VSLS bromocarbons on ozone and how the resulting ozone changes depend on the background concentrations of chlorine and bromine. Our model experiments indicate that for the 5 ppt increase in Bry from VSLS, the ozone decrease in the lowermost stratosphere of the Southern Hemisphere (SH) may reach up to 10% in the annual mean; the ozone decrease in the Northern Hemisphere (NH) is smaller (4-6%). The largest impact on the ozone column is found in the Antarctic spring. There is a significantly larger ozone decrease following the doubling of the VSLS burden under a high stratospheric chlorine background than under a low chlorine background, indicating the importance of the inter-halogen reactions. For example, the decline in the high-latitude, lower-stratospheric ozone concentration as a function of Bry is higher by about 30-40% when stratospheric Cly is ~ 3 ppb (present day), compared with Cly of ~ 0.8 ppb (a pre-industrial or projected future situation). Bromine will play an important role in the future ozone layer. However, even if bromine levels from natural VSLS were to increase significantly later this century, changes in the concentration of ozone will likely be dominated by the decrease in anthropogenic chlorine. Our calculation suggests that for a 5 ppt increase in Bry from VSLS, the Antarctic ozone hole recovery date could be delayed by approximately 6-8 years, depending on Cly

  15. Short-lived positron emitter labeled radiotracers - present status

    SciTech Connect

    Fowler, J.S.; Wolf, A.P.

    1982-01-01

    The preparation of labelled compounds is important for the application of positron emission transaxial tomography (PETT) in biomedical sciences. This paper describes problems and progress in the synthesis of short-lived positron emitter (/sup 11/C, /sup 18/F, /sup 13/N) labelled tracers for PETT. Synthesis of labelled sugars, amino acids, and neurotransmitter receptors (pimozide and spiroperidol tagged with /sup 11/C) is discussed in particular. (DLC)

  16. Brominated dibenzofurans

    Integrated Risk Information System (IRIS)

    Brominated dibenzofurans ; no CASRN Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  17. Impact of deep convection and dehydration on bromine loading in the upper troposphere and lower stratosphere

    NASA Astrophysics Data System (ADS)

    Aschmann, J.; Sinnhuber, B.-M.; Chipperfield, M. P.; Hossaini, R.

    2011-03-01

    Stratospheric bromine loading due to very short-lived substances is investigated with a three-dimensional chemical transport model over a period of 21 years using meteorological input data from the European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis from 1989 to the end of 2009. Within this framework we analyze the impact of dehydration and deep convection on the amount of stratospheric bromine using an idealized and a detailed full chemistry approach. We model the two most important brominated short-lived substances, bromoform (CHBr3) and dibromomethane (CH2Br2), assuming a uniform convective detrainment mixing ratio of 1 part per trillion by volume (pptv) for both species. The contribution of very short-lived substances to stratospheric bromine varies drastically with the applied dehydration mechanism and the associated scavenging of soluble species ranging from 3.4 pptv in the idealized setup up to 5 pptv using the full chemistry scheme. In the latter case virtually the entire amount of bromine originating from very short-lived source gases is able to reach the stratosphere thus rendering the impact of dehydration and scavenging on inorganic bromine in the tropopause insignificant. Furthermore, our long-term calculations show that the mixing ratios of very short-lived substances are strongly correlated to convective activity, i.e. intensified convection leads to higher amounts of very short-lived substances in the upper troposphere/lower stratosphere especially under extreme conditions like El Niño seasons. However, this does not apply to the inorganic brominated product gases whose concentrations are anti-correlated to convective activity mainly due to convective dilution and possible scavenging, depending on the applied approach.

  18. Impact of deep convection and dehydration on bromine loading in the upper troposphere and lower stratosphere

    NASA Astrophysics Data System (ADS)

    Aschmann, J.; Sinnhuber, B.-M.; Chipperfield, M. P.; Hossaini, R.

    2011-01-01

    Stratospheric bromine loading due to very short-lived substances is investigated with a three-dimensional chemical transport model over a period of 21 years using meteorological input data from the European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis from 1989 to the end of 2009. Within this framework we analyze the impact of dehydration and deep convection on the amount of stratospheric bromine using an idealized and a detailed full chemistry approach. We model the two most important brominated short-lived substances, bromoform (CHBr3) and dibromomethane (CH2Br2), assuming a uniform detrainment mixing ratio of 1 part per trillion by volume (pptv) for both species. The contribution of very short-lived substances to stratospheric bromine varies drastically with the applied dehydration mechanism and the associated scavenging of soluble species ranging from 3.4 pptv in the idealized setup up to 5 pptv using the full chemistry scheme. In the latter case virtually the entire amount of bromine originating from very short-lived source gases is able to reach the stratosphere thus rendering the impact of dehydration and scavenging on inorganic bromine in the tropopause insignificant. Furthermore, our long-term calculations show that the mixing ratios of very short-lived substances are strongly correlated to convective activity, i.e. intensified convection leads to higher amounts of very short-lived substances in the upper troposphere/lower stratosphere especially under extreme conditions like El Niño seasons. However, this does not apply to the inorganic brominated product gases whose concentrations are anti-correlated to convective activity mainly due to convective dilution and possible scavenging, depending on the applied approach.

  19. Short-lived chlorine-36 in a Ca- and Al-rich inclusion from the Ningqiang carbonaceous chondrite

    PubMed Central

    Lin, Yangting; Guan, Yunbin; Leshin, Laurie A.; Ouyang, Ziyuan; Wang, Daode

    2005-01-01

    Excesses of sulfur-36 in sodalite, a chlorine-rich mineral, in a calcium- and aluminum-rich inclusion from the Ningqiang carbonaceous chondrite linearly correlate with chorine/sulfur ratios, providing direct evidence for the presence of short-lived chlorine-36 (with a half-life of 0.3 million years) in the early solar system. The best inferred (36Cl/35Cl)o ratios of the sodalite are ≈5 × 10-6. Different from other short-lived radionuclides, chlorine-36 was introduced into the inclusion by solid-gas reaction during secondary alteration. The alteration reaction probably took place at least 1.5 million years after the first formation of the inclusion, based on the correlated study of the 26Al-26Mg systems of the relict primary minerals and the alteration assemblages, from which we inferred an initial ratio of (36Cl/35Cl)o > 1.6 × 10-4 at the time when calcium- and aluminum-rich inclusions formed. This discovery supports a supernova origin of short-lived nuclides [Cameron, A. G. W., Hoeflich, P., Myers, P. C. & Clayton, D. D. (1995) Astrophys. J. 447, L53; Wasserburg, G. J., Gallino, R. & Busso, M. (1998) Astrophys. J. 500, L189–L193], but presents a serious challenge for local irradiation models [Shu, F. H., Shang, H., Glassgold, A. E. & Lee, T. (1997) Science 277, 1475–1479; Gounelle, M., Shu, F. H., Shang, H., Glassgold, A. E., Rehm, K. E. & Lee, T. (2001) Astrophys. J. 548, 1051–1070]. Furthermore, the short-lived 36Cl may serve as a unique fine-scale chronometer for volatile-rock interaction in the early solar system because of its close association with aqueous and/or anhydrous alteration processes. PMID:15671168

  20. Short-lived chlorine-36 in a Ca- and Al-rich inclusion from the Ningqiang carbonaceous chondrite.

    PubMed

    Lin, Yangting; Guan, Yunbin; Leshin, Laurie A; Ouyang, Ziyuan; Wang, Daode

    2005-02-01

    Excesses of sulfur-36 in sodalite, a chlorine-rich mineral, in a calcium- and aluminum-rich inclusion from the Ningqiang carbonaceous chondrite linearly correlate with chorine/sulfur ratios, providing direct evidence for the presence of short-lived chlorine-36 (with a half-life of 0.3 million years) in the early solar system. The best inferred (36Cl/35Cl)o ratios of the sodalite are approximately 5 x 10(-6). Different from other short-lived radionuclides, chlorine-36 was introduced into the inclusion by solid-gas reaction during secondary alteration. The alteration reaction probably took place at least 1.5 million years after the first formation of the inclusion, based on the correlated study of the 26Al-26Mg systems of the relict primary minerals and the alteration assemblages, from which we inferred an initial ratio of (36Cl/35Cl)o > or = 1.6 x 10(-4) at the time when calcium- and aluminum-rich inclusions formed. This discovery supports a supernova origin of short-lived nuclides [Cameron, A. G. W., Hoeflich, P., Myers, P. C. & Clayton, D. D. (1995) Astrophys. J. 447, L53; Wasserburg, G. J., Gallino, R. & Busso, M. (1998) Astrophys. J. 500, L189-L193], but presents a serious challenge for local irradiation models [Shu, F. H., Shang, H., Glassgold, A. E. & Lee, T. (1997) Science 277, 1475-1479; Gounelle, M., Shu, F. H., Shang, H., Glassgold, A. E., Rehm, K. E. & Lee, T. (2001) Astrophys. J. 548, 1051-1070]. Furthermore, the short-lived 36Cl may serve as a unique fine-scale chronometer for volatile-rock interaction in the early solar system because of its close association with aqueous and/or anhydrous alteration processes. PMID:15671168

  1. Higher Accuracy Measurements of Photochemical Properties of Very Short-Lived Substances.

    NASA Astrophysics Data System (ADS)

    Orkin, V. L.; Khamaganov, V. G.; Kurylo, M. J., III

    2015-12-01

    Despite the broad applicability of simple fully halogenated hydrocarbons in various industries, the production and use of bromo(chloro)fluorocarbons (Halons) and chlorofluorocarbons (CFCs) has been phased out because of the danger they pose to the Earth's stratospheric ozone layer. In addition, all halogen-containing hydrocarbons are infrared active gases because of their strong absorption bands in the region of the atmospheric transparency window between ca. 8 and 12 mm that can affect the Earth's radiation balance. However, the effort to find replacements continues to return to bromine (chlorine)-containing compounds because of their excellent properties as industrial solvents and cleaning agents and especially because of bromine efficiency as a chemically active flame suppressant. The primary approach to this problem has been to test candidate replacement compounds that have very short atmospheric lifetimes and therefore substantially reduced ozone depleting and radiative impacts. Reactions with hydroxyl radicals (OH) and photolysis are the main processes dictating the compound residence time in the atmosphere for a majority of trace gases. In case of very short-lived substances (VSLS) their reaction with OH dictates both the atmospheric lifetime and active halogen release. Therefore, the accuracy of OH kinetic data is of primary importance for the purpose of comprehensive atmospheric modeling of compound's impact on the atmosphere, such as in ozone depletion and climate change. We demonstrated the ability to determine the OH reaction rate constants over the temperature range of atmospheric interest with the total uncertainty of ~2-3%, thus making laboratory measurements a negligible source of uncertainty in atmospheric modeling. These studies revealed the different reactivity of molecular isomers toward OH and a non-Arrhenius behavior of the temperature dependence to be a rather common kinetic feature of the OH reactivity, which can be accounted for in

  2. Airborne measurements of organic bromine compounds in the Pacific tropical tropopause layer.

    PubMed

    Navarro, Maria A; Atlas, Elliot L; Saiz-Lopez, Alfonso; Rodriguez-Lloveras, Xavier; Kinnison, Douglas E; Lamarque, Jean-Francois; Tilmes, Simone; Filus, Michal; Harris, Neil R P; Meneguz, Elena; Ashfold, Matthew J; Manning, Alistair J; Cuevas, Carlos A; Schauffler, Sue M; Donets, Valeria

    2015-11-10

    Very short-lived brominated substances (VSLBr) are an important source of stratospheric bromine, an effective ozone destruction catalyst. However, the accurate estimation of the organic and inorganic partitioning of bromine and the input to the stratosphere remains uncertain. Here, we report near-tropopause measurements of organic brominated substances found over the tropical Pacific during the NASA Airborne Tropical Tropopause Experiment campaigns. We combine aircraft observations and a chemistry-climate model to quantify the total bromine loading injected to the stratosphere. Surprisingly, despite differences in vertical transport between the Eastern and Western Pacific, VSLBr (organic + inorganic) contribute approximately similar amounts of bromine [∼6 (4-9) parts per trillion] [corrected] to the stratospheric input at the tropical tropopause. These levels of bromine cause substantial ozone depletion in the lower stratosphere, and any increases in future abundances (e.g., as a result of aquaculture) will lead to larger depletions. PMID:26504212

  3. Airborne measurements of organic bromine compounds in the Pacific tropical tropopause layer.

    PubMed

    Navarro, Maria A; Atlas, Elliot L; Saiz-Lopez, Alfonso; Rodriguez-Lloveras, Xavier; Kinnison, Douglas E; Lamarque, Jean-Francois; Tilmes, Simone; Filus, Michal; Harris, Neil R P; Meneguz, Elena; Ashfold, Matthew J; Manning, Alistair J; Cuevas, Carlos A; Schauffler, Sue M; Donets, Valeria

    2015-11-10

    Very short-lived brominated substances (VSLBr) are an important source of stratospheric bromine, an effective ozone destruction catalyst. However, the accurate estimation of the organic and inorganic partitioning of bromine and the input to the stratosphere remains uncertain. Here, we report near-tropopause measurements of organic brominated substances found over the tropical Pacific during the NASA Airborne Tropical Tropopause Experiment campaigns. We combine aircraft observations and a chemistry-climate model to quantify the total bromine loading injected to the stratosphere. Surprisingly, despite differences in vertical transport between the Eastern and Western Pacific, VSLBr (organic + inorganic) contribute approximately similar amounts of bromine [∼6 (4-9) parts per trillion] [corrected] to the stratospheric input at the tropical tropopause. These levels of bromine cause substantial ozone depletion in the lower stratosphere, and any increases in future abundances (e.g., as a result of aquaculture) will lead to larger depletions.

  4. Airborne measurements of organic bromine compounds in the Pacific tropical tropopause layer

    PubMed Central

    Navarro, Maria A.; Atlas, Elliot L.; Saiz-Lopez, Alfonso; Rodriguez-Lloveras, Xavier; Kinnison, Douglas E.; Lamarque, Jean-Francois; Tilmes, Simone; Filus, Michal; Harris, Neil R. P.; Meneguz, Elena; Ashfold, Matthew J.; Manning, Alistair J.; Cuevas, Carlos A.; Schauffler, Sue M.; Donets, Valeria

    2015-01-01

    Very short-lived brominated substances (VSLBr) are an important source of stratospheric bromine, an effective ozone destruction catalyst. However, the accurate estimation of the organic and inorganic partitioning of bromine and the input to the stratosphere remains uncertain. Here, we report near-tropopause measurements of organic brominated substances found over the tropical Pacific during the NASA Airborne Tropical Tropopause Experiment campaigns. We combine aircraft observations and a chemistry−climate model to quantify the total bromine loading injected to the stratosphere. Surprisingly, despite differences in vertical transport between the Eastern and Western Pacific, VSLBr (organic + inorganic) contribute approximately similar amounts of bromine [∼6 (4−9) parts per thousand] to the stratospheric input at the tropical tropopause. These levels of bromine cause substantial ozone depletion in the lower stratosphere, and any increases in future abundances (e.g., as a result of aquaculture) will lead to larger depletions. PMID:26504212

  5. Measures Urged to Cut Short-Lived Climate Pollutants

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-03-01

    To produce significant near-term climate benefits, the Obama administration should take a series of actions under existing authorities to reduce greenhouse gases that have relatively short atmospheric lifetimes of weeks to a few decades, according to a 12 March study by the nonprofit Center for Climate and Energy Solutions (C2ES). The report, "Domestic Policies to Reduce the Near-Term Risks of Climate Change," notes that recent estimates suggest that about 30-40% of warming experienced to date can be attributed to these short-lived pollutants, which include black carbon, methane, and hydrofluorocarbons (HFCs).

  6. Rubberized, Brominated Epoxies

    NASA Technical Reports Server (NTRS)

    Gilwee, W.; Kourtides, D.; Parker, J.; Nir, Z.

    1985-01-01

    Graphite/epoxy composite materials made with resins containing bromine and rubber additives. New composites tougher and more resistant to fire. Flame resistance increased by introducing bromine via commercial brominated flame-retartant polymeric additives.

  7. Bromine Safety

    SciTech Connect

    Meyers, B

    2001-04-09

    The production and handling in 1999 of about 200 million kilograms of bromine plus substantial derivatives thereof by Great Lakes Chemical Corp. and Albemarle Corporation in their southern Arkansas refineries gave OSHA Occupational Injury/Illness Rates (OIIR) in the range of 0.74 to 1.60 reportable OIIRs per 200,000 man hours. OIIRs for similar industries and a wide selection of other U.S. industries range from 1.6 to 23.9 in the most recent OSHA report. Occupational fatalities for the two companies in 1999 were zero compared to a range in the U.S.of zero for all computer manufacturing to 0.0445 percent for all of agriculture, forestry and fishing in the most recent OSHA report. These results show that bromine and its compounds can be considered as safe chemicals as a result of the bromine safety standards and practices at the two companies. The use of hydrobromic acid as an electrical energy storage medium in reversible PEM fuel cells is discussed. A study in 1979 of 20 megawatt halogen working fluid power plants by Oronzio de Nora Group found such energy to cost 2 to 2.5 times the prevailing base rate at that time. New conditions may reduce this relative cost. The energy storage aspect allows energy delivery at maximum demand times where the energy commands premium rates. The study also found marginal cost and performance advantages for hydrobromic acid over hydrochloric acid working fluid. Separate studies in the late 70s by General Electric also showed marginal performance advantages for hydrobromic acid.

  8. SHORT-LIVED RADIO BURSTS FROM THE CRAB PULSAR

    SciTech Connect

    Crossley, J. H.; Eilek, J. A.; Hankins, T. H.; Kern, J. S.

    2010-10-20

    Our high-time-resolution observations reveal that individual main pulses from the Crab pulsar contain one or more short-lived microbursts. Both the energy and duration of bursts measured above 1 GHz can vary dramatically in less than a millisecond. These fluctuations are too rapid to be caused by propagation through turbulence in the Crab Nebula or in the interstellar medium; they must be intrinsic to the radio emission process in the pulsar. The mean duration of a burst varies with frequency as {nu}{sup -2}, significantly different from the broadening caused by interstellar scattering. We compare the properties of the bursts to some simple models of microstructure in the radio emission region.

  9. Nucleosynthesis of Short-lived Radioactivities in Massive Stars

    NASA Technical Reports Server (NTRS)

    Meyer, B. S.

    2004-01-01

    A leading model for the source of many of the short-lived radioactivities in the early solar nebula is direct incorporation from a massive star [1]. A recent and promising incarnation of this model includes an injection mass cut, which is a boundary between the stellar ejecta that become incorporated into the solar cloud and those ejecta that do not [2-4]. This model also includes a delay time between ejection from the star and incorporation into early solar system solid bodies. While largely successful, this model requires further validation and comparison against data. Such evaluation becomes easier if we have a better sense of the nature of the synthesis of the various radioactivities in the star. That is the goal of this brief abstract.

  10. Cosmogenic nuclides in football-sized rocks.

    NASA Technical Reports Server (NTRS)

    Wahlen, M.; Honda, M.; Imamura, M.; Fruchter, J. S.; Finkel, R. C.; Kohl, C. P.; Arnold, J. R.; Reedy, R. C.

    1972-01-01

    The activity of long- and short-lived isotopes in a series of samples from a vertical column through the center of rock 14321 was measured. Rock 14321 is a 9 kg fragmental rock whose orientation was photographically documented on the lunar surface. Also investigated was a sample from the lower portion of rock 14310, where, in order to study target effects, two different density fractions (mineral separates) were analyzed. A few nuclides in a sample from the comprehensive fines 14259 were measured. This material has been collected largely from the top centimeter of the lunar soil. The study of the deep samples of 14321 and 14310 provided values for the activity of isotopes at points where only effects produced by galactic cosmic rays are significant.

  11. Short-Lived Radioactivities and the Birth of the sun

    NASA Astrophysics Data System (ADS)

    Meyer, Bradley S.; Clayton, Donald D.

    2000-04-01

    Now extinct short-lived radioactive isotopes were apparently extant in the early solar system. Their abundances can be inferred from isotopic effects in their daughter nuclei in primitive meteorites, and the deviation of these abundances from expectations from continuous galactic nucleosynthesis yields important information on the last nucleosynthetic events that contributed new nuclei to the solar system and on the general circumstances of the Sun's birth. In this paper we present a rudimentary model that attempts to reconcile the abundances of ten short-lived radioactivities in the early solar system. In broad outlines, the picture requires 1) that Type Ia supernovae maintained a steady ISM supply of 53Mn and 146Sm, 2) that the r-process events that slowly admixed new 107Pd, 129I, 182Hf, and 244Pu nuclei to the solar system occurred over an interval of several hundred million years prior to solar system formation, and 3) that a massive star, by injecting only material outside its helium-exhausted core into the proto-solar nebula, contributed 26Al, 36Cl, 41Ca, 60Fe, and 182Hf no more than one million years prior to the Sun's birth. In this picture, the live 182Hf present in the early solar system was not due to r-process production but rather to a fast s-process in helium or carbon burning shell in the massive star. We conclude with a possible chemical-memory explanation for the putative 53Cr/52Cr gradient in the solar system.

  12. Bromination of Phenol

    ERIC Educational Resources Information Center

    Talbot, Christopher

    2013-01-01

    This "Science note" examines the bromination of phenol, a reaction that is commonly taught at A-level and IB (International Baccalaureate) as an example of electrophilic substitution. Phenol undergoes bromination with bromine or bromine water at room temperature. A white precipitate of 2,4,6-tribromophenol is rapidly formed. This…

  13. A generalized method for characterization of 235U and 239Pu content using short-lived fission product gamma spectroscopy

    NASA Astrophysics Data System (ADS)

    Knowles, Justin; Skutnik, Steven; Glasgow, David; Kapsimalis, Roger

    2016-10-01

    Rapid nondestructive assay methods for trace fissile material analysis are needed in both nuclear forensics and safeguards communities. To address these needs, research at the Oak Ridge National Laboratory High Flux Isotope Reactor Neutron Activation Analysis facility has developed a generalized nondestructive assay method to characterize materials containing fissile isotopes. This method relies on gamma-ray emissions from short-lived fission products and makes use of differences in fission product yields to identify fissile compositions of trace material samples. Although prior work has explored the use of short-lived fission product gamma-ray measurements, the proposed method is the first to provide a complete characterization of isotopic identification, mass ratios, and absolute mass determination. Successful single fissile isotope mass recoveries of less than 6% recovery bias have been conducted on standards of 235U and 239Pu as low as 12 ng in less than 10 minutes. Additionally, mixtures of fissile isotope standards containing 235U and 239Pu have been characterized as low as 198 ng of fissile mass with less than 7% recovery bias. The generalizability of this method is illustrated by evaluating different fissile isotopes, mixtures of fissile isotopes, and two different irradiation positions in the reactor. It is anticipated that this method will be expanded to characterize additional fissile nuclides, utilize various irradiation facilities, and account for increasingly complex sample matrices.

  14. A generalized method for characterization of 235U and 239Pu content using short-lived fission product gamma spectroscopy

    DOE PAGES

    Knowles, Justin R.; Skutnik, Steven E.; Glasgow, David C.; Kapsimalis, Roger J.

    2016-06-23

    Rapid non-destructive assay methods for trace fissile material analysis are needed in both nuclear forensics and safeguards communities. To address these needs, research at the High Flux Isotope Reactor Neutron Activation Analysis laboratory has developed a generalized non-destructive assay method to characterize materials containing fissile isotopes. This method relies on gamma-ray emissions from short-lived fission products and capitalizes off of differences in fission product yields to identify fissile compositions of trace material samples. Although prior work has explored the use of short-lived fission product gamma-ray measurements, the proposed method is the first to provide a holistic characterization of isotopic identification,more » mass ratios, and absolute mass determination. Successful single fissile isotope mass recoveries of less than 6% error have been conducted on standards of 235U and 239Pu as low as 12 nanograms in less than 10 minutes. Additionally, mixtures of fissile isotope standards containing 235U and 239Pu have been characterized as low as 229 nanograms of fissile mass with less than 12% error. The generalizability of this method is illustrated by evaluating different fissile isotopes, mixtures of fissile isotopes, and two different irradiation positions in the reactor. Furthermore, it is anticipated that this method will be expanded to characterize additional fissile nuclides, utilize various irradiation sources, and account for increasingly complex sample matrices.« less

  15. Disposal of BRC wastes containing short-lived radionuclides

    SciTech Connect

    Rogers, V.C.; Baird, R.D.

    1986-01-01

    As part of its responsibility for the safe disposal of low-level (radioactive) waste (LLW), the Texas Low-Level Radioactive Waste Disposal Authority sponsored an analysis of the use of permitted sanitary landfills for the disposal of wastes containing only low concentrations of radionuclides with half-lives of <300 days. Analyses have been performed giving limits on concentrations and total curies annually disposed for 56 short-lived radionuclides. The Low-Level Radioactive Waste Policy Amendments Act, enacted in December 1985, has directed the US Nuclear Regulatory Commission (NRC) to develop standards and procedures for considering and acting on petitions for below regulatory concern (BRC) radioactive waste disposal within 6 months. The NRC has developed a de minimis biomedical waste disposal rule for H-3 and C-14 that places limits on concentrations that can be disposed of without regard to radioactivity. Likewise, the US Environmental Protection Agency (EPA) is developing a regulation for the disposal of BRC radioactive wastes in a sanitary landfill as part of their LLW disposal rulemaking. The purpose of this study is to: 1) conduct multipathway risk assessments using the same methodology that is being used by the EPA for the technical support of their BRC rulemaking; 2) obtain radionuclide concentration and annual total curie limits from the results of the risk assessments by limiting the health impacts to guideline values used in this analysis; and 3) present other restrictions or conditions that emerge from the analysis.

  16. 49 CFR 173.228 - Bromine pentafluoride or bromine trifluoride.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Bromine pentafluoride or bromine trifluoride. 173... Class 1 and Class 7 § 173.228 Bromine pentafluoride or bromine trifluoride. (a) Bromine pentafluoride and bromine trifluoride are authorized in packagings as follows: (1) Specification 3A150,...

  17. 49 CFR 173.228 - Bromine pentafluoride or bromine trifluoride.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bromine pentafluoride or bromine trifluoride. 173... Class 1 and Class 7 § 173.228 Bromine pentafluoride or bromine trifluoride. (a) Bromine pentafluoride and bromine trifluoride are authorized in packagings as follows: (1) Specification 3A150,...

  18. 49 CFR 173.228 - Bromine pentafluoride or bromine trifluoride.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Bromine pentafluoride or bromine trifluoride. 173... Class 1 and Class 7 § 173.228 Bromine pentafluoride or bromine trifluoride. (a) Bromine pentafluoride and bromine trifluoride are authorized in packagings as follows: (1) Specification 3A150,...

  19. 49 CFR 173.228 - Bromine pentafluoride or bromine trifluoride.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Bromine pentafluoride or bromine trifluoride. 173... Class 1 and Class 7 § 173.228 Bromine pentafluoride or bromine trifluoride. (a) Bromine pentafluoride and bromine trifluoride are authorized in packagings as follows: (1) Specification 3A150,...

  20. 49 CFR 173.228 - Bromine pentafluoride or bromine trifluoride.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Bromine pentafluoride or bromine trifluoride. 173... Class 1 and Class 7 § 173.228 Bromine pentafluoride or bromine trifluoride. (a) Bromine pentafluoride and bromine trifluoride are authorized in packagings as follows: (1) Specification 3A150,...

  1. Penning trap mass measurements of nuclides along the astrophysical rp- and νp- process paths

    NASA Astrophysics Data System (ADS)

    Clark, Jason

    2009-10-01

    X-ray bursters and supernovae are examples of explosive stellar phenomena in which nuclides are quickly produced in great quantities. Observed as x-ray bursts, thermonuclear runaways on the surface of neutron stars accreting material from its binary star companion create elements by a nucleosynthetic procoess which involves a series of rapid proton-capture reactions, termed the rp process. The timescale, nuclides produced, and energy released during the rp process are very sensitive to delays encountered at waiting-point nuclides, nuclides in which their slow β decay is more probable than net proton capture. A possible mechanism to bypass the waiting-point nuclides is through the νp process, in which (n,p) and (n,γ) reactions on the waiting-point nuclides, in addition to the proton-capture reactions, are possible. Supernovae are possible sites for the νp process as the proton-rich ejecta can absorb antineutrinos to produce the required free neutrons. It is this νp process which may resolve the long-standing discrepancy between the observed and predicted abundances of ^92Mo and ^94Mo. Proton-capture Q values of nuclides along the rp- and νp- process paths are required to accurately model the nucleosynthesis, especially at the waiting-point nuclides. In recent years, Penning traps have become the preferred tool to make precise mass measurements of stable and unstable nuclides. To make the best use of these devices in measuring the masses of radioactive nuclides, systems have been developed to quickly, cleanly, and efficiently transport the short-lived, weakly produced nuclides to the Penning traps. This talk will discuss the rp and νp nucleosynthetic processes and will highlight the precise Penning trap mass measurements of nuclides along these process paths.

  2. Studies of images of short-lived events using ERTS data

    NASA Technical Reports Server (NTRS)

    Deutschman, W. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Significant results are the continued detection of short-lived events. The following have been detected and analyzed: forest fires, oil spills, vegetation damage, volcanoes, storm ridges, and earthquakes. It is hoped that the Mississippi River flood scenes will arrive shortly and then floods be added to the list of identified short-lived events.

  3. Very short-lived bromomethanes measured by the CARIBIC observatory over the North Atlantic, Africa and South-East Asia during 2009-2013

    NASA Astrophysics Data System (ADS)

    Wisher, A.; Oram, D. E.; Laube, J. C.; Mills, G. P.; van Velthoven, P.; Zahn, A.; Brenninkmeijer, C. A. M.

    2013-11-01

    Short-lived organic brominated compounds make up a significant part (~20%) of the organic bromine budget in the atmosphere. Emissions of these compounds are highly variable and there are limited measurements, particularly in the extra-tropical upper troposphere/lower stratosphere and tropical troposphere. Measurements of five short-lived bromomethanes (VSLB) were made in air samples collected on the CARIBIC project aircraft over three flight routes; Germany to Venezuela/Columbia during 2009-2011, Germany to South Africa during 2010 and 2011 and Germany to Thailand/Kuala Lumpur, Malaysia during 2012 and 2013. In the tropical troposphere, as the most important entrance region to the stratosphere, we observe a total mean organic bromine derived from these compounds across all flights at 10-12 km altitude of 3.4 ± 1.5 ppt. Individual mean tropical tropospheric mixing ratios across all flights were 0.43, 0.74, 0.14, 0.23 and 0.11 ppt for CHBr3, CH2Br2, CHBr2Cl, CHBrCl2 and CH2BrCl respectively. The highest levels of VSLS-derived bromine (4.20 ± 0.56 ppt) were observed in flights between Bangkok and Kuala Lumpur indicating that the South China Sea is an important source region for these compounds. Across all routes, CHBr3 and CH2Br2 accounted for 34% (4.7-71) and 48% (14-73) respectively of total bromine derived from the analysed VSLB in the tropical mid-upper troposphere totalling 82% (54-89). In samples collected between Germany and Venezuela/Columbia, we find decreasing mean mixing ratios with increasing potential temperature in the extra-tropics. Tropical mean mixing ratios are higher than extra-tropical values between 340-350 K indicating that rapid uplift is important in determining mixing ratios in the lower tropical tropopause layer in the West Atlantic tropics. O3 was used as a tracer for stratospherically influenced air and we detect rapidly decreasing mixing ratios for all VSLB above ~100 ppb O3 corresponding to the extra-tropical tropopause layer.

  4. Very short-lived bromomethanes measured by the CARIBIC observatory over the North Atlantic, Africa and Southeast Asia during 2009-2013

    NASA Astrophysics Data System (ADS)

    Wisher, A.; Oram, D. E.; Laube, J. C.; Mills, G. P.; van Velthoven, P.; Zahn, A.; Brenninkmeijer, C. A. M.

    2014-04-01

    Short-lived organic brominated compounds make up a significant part of the organic bromine budget in the atmosphere. Emissions of these compounds are highly variable and there are limited measurements, particularly in the extra-tropical upper troposphere/lower stratosphere and tropical troposphere. Measurements of five very short-lived bromomethanes (VSLB) were made in air samples collected on the CARIBIC project aircraft over three flight routes; Germany to Venezuela/Columbia during 2009-2011, Germany to South Africa during 2010 and 2011 and Germany to Thailand/Kuala Lumpur, Malaysia during 2012 and 2013. In the tropical troposphere, as the most important entrance region to the stratosphere, we observe a total mean organic bromine derived from these compounds across all flights at 10-12 km altitude of 3.4 ± 1.5 ppt. Individual mean tropical tropospheric mixing ratios across all flights were 0.43, 0.74, 0.14, 0.23 and 0.11 ppt for CHBr3, CH2Br2, CHBr2Cl, CHBrCl2 and CH2BrCl respectively. The highest levels of VSLB-derived bromine (4.20 ± 0.56 ppt) were observed in flights between Bangkok and Kuala Lumpur indicating that the South China Sea is an important source region for these compounds. Across all routes, CHBr3 and CH2Br2 accounted for 34% (4.7-71) and 48% (14-73) respectively of total bromine derived from the analysed VSLB in the tropical mid-upper troposphere totalling 82% (54-89). In samples collected between Germany and Venezuela/Columbia, we find decreasing mean mixing ratios with increasing potential temperature in the extra-tropics. Tropical mean mixing ratios are higher than extra-tropical values between 340-350 K indicating that rapid uplift is important in determining mixing ratios in the lower tropical tropopause layer in the West Atlantic tropics. O3 was used as a tracer for stratospherically influenced air and we detect rapidly decreasing mixing ratios for all VSLB above ∼100 ppb O3 corresponding to the extra-tropical tropopause layer.

  5. Short-lived halocarbons efficient at influencing climate through ozone loss in the upper troposphere-lower stratosphere

    NASA Astrophysics Data System (ADS)

    Hossaini, Ryan; Chipperfield, Martyn; Montzka, Steven; Rap, Alex; Dhomse, Sandip; Feng, Wuhu

    2015-04-01

    Halogenated very short-lived substances (VSLS) of both natural and anthropogenic origin are a significant source of atmospheric bromine, chlorine and iodine. Due to relatively short atmospheric lifetimes (typically <6 months), VSLS breakdown in the upper troposphere-lower stratosphere (UTLS), where ozone perturbations drive a disproportionately large climate impact compared to other altitudes. Here we present chemical transport model simulations that quantify VSLS-driven ozone loss in the UTLS and infer the climate relevance of these ozone perturbations using a radiative transfer model. Our results indicate that through their impact on UTLS ozone, VSLS are efficient at influencing climate. We calculate a whole atmosphere global mean radiative effect (RE) of -0.20 (-0.16 to -0.23) Wm-2 from natural and anthropogenic VSLS-driven ozone loss, including a tropospheric contribution of -0.12 Wm-2. In the stratosphere, the RE due to ozone loss from natural bromine-containing VSLS (e.g. CHBr3, CH2Br2) is almost half of that from long-lived anthropogenic compounds (e.g. CFCs) and normalized by equivalent chlorine is ~4 times larger. We show that the anthropogenic chlorine-containing VSLS, not regulated by the Montreal Protocol, also contribute to ozone loss in the UTLS and that the atmospheric concentration of dichloromethane (CH2Cl2), the most abundant of these, is increasing rapidly. Finally, we present evidence that VSLS have made a small yet previously unrecognized contribution to the ozone-driven radiative forcing of climate since pre-industrial times of -0.02 (-0.01 to -0.03) Wm-2. Given the climate leverage that VSLS possess, future increases to their emissions, either through continued industrial or altered natural processes, may be important for future climate forcing.

  6. Probing the tropical tropopause layer for organic and inorganic bromine

    NASA Astrophysics Data System (ADS)

    Werner, Bodo; Pfeilsticker, Klaus; Atlas, Elliot; Cheung, Ross; Chipperfield, Martyn; Colosimo, Fedele; Deutschmann, Tim; Elkins, Jim; Fahey, David; Feng, Wu; Festa, James; Gao, Ru-Shan; Hossaini, Ryan; Navarro, Maria; Raecke, Rasmus; Scalone, Lisa; Spolaor, Max; Thornberry, Troy; Tsai, Catalina; Stutz, Jochen

    2016-04-01

    Bromine chemistry impacts the levels of ozone in the upper troposphere and the stratosphere. An accurate quantitative understanding of the sources, sinks, and chemical transformation of bromine species is thus important to understand the photochemistry and budget of bromine in the tropical upper troposphere, tropopause layer and lowermost stratosphere (UT/TTL/LS). These regions are also known to serve as a gateway for delivery of ozone depleting gases to the stratosphere. CH3Br, halons, short-lived organic bromine precursors (VSLS), such as CHBr3, CH2Br2, and possibly inorganic product gases have been identified as the main bromine gases delivered to the stratosphere. However, many important details of the transport and delivery of VSLS and inorganic bromine compounds through the TTL are still uncertain. Moreover, a number of chemical processes, including the transformation of the source gases and cycling of inorganic bromine species at low ambient temperature and on ice particles are also poorly understood. The presentation reports measurements of CH4, O3, NO2, and BrO performed by different instruments and techniques during the 2013 NASA-ATTREX flights in the TTL and LS. The interpretation of our measurements is supported by chemical transport model (SLIMCAT) simulations. SLIMCAT results, in conjunction with extensive radiative transfer calculations using the Monte Carlo model McArtim, also are used to improve retrieval of O3, NO2, and BrO concentrations from limb scattered sunlight measurements made with the Differential Optical Absorption Spectroscopy (DOAS) technique during ATTREX. The chemical transport model also allows us to attribute observed concentration variations to transport and to photochemical processes. When properly accounting for the transport-related concentration variations in methane and ozone, we find that measured BrO mostly agrees with model simulations. An exception are regions where the contribution of the short-lived CH2Br2 or the

  7. Nuclide Guide and International Chart of Nuclides - 2008

    NASA Astrophysics Data System (ADS)

    Golashvili, T.

    2009-08-01

    New versions of Nuclide Guide and Chart of the Nuclides were developed as a result of Russian-Chinese collaboration. The Nuclide Guide contains the basic information on more than 3000 radioactive and stable nuclides. The characteristics of isomers with half-lives more than 1 ms are included. For each nuclide spin, parity, mass of nuclide, magnetic moment (if available), mass excess, half-life or abundance, decay modes, branching ratios, emitted particles, energies of most intense gamma-rays and their intensities, decay energies and mean values of radiation energy per decay are given. For stable and natural long-lived nuclides cross-sections of thermal neutron induced activation are indicated. The information presented in the Guide was compiled from 5 sources: 1) ENSDF-2008, 2) atomic mass evaluation-2005 by Audi and Wapstra, 3) interactive data bases at web-sites , , 4) original evaluations of authors, 5) recent publications. The International Chart ot Nuclides was developed on the basis of information presented in Nuclide Guide.

  8. Chart of the Nuclides

    1999-03-23

    Nucleus is an interactive PC-based graphical viewer of NUBASE nuclear property data. NUBASE contains experimentally known nuclear properties, together with some values that have been estimated from extrapolation of experimental data for 3010 nuclides. NUBASE also contains data on those isomeric states that have half-lives greater than 1 millisecond; there are 669 such nuclides of which 58 have more than one isomeric state. The latest version of NUCLEUS-CHART has been corrected to include the namesmore » and the chemical symbols of the elements 104 to 109 that have been finally adopted by the Commission on Nomenclature of Inorganic Chemistry (CNIC) of the International Union of Pure and Applied Chemistry (IUPAC). They differ from those recommended by the same commission a few years before and that were widely used in the evaluations AME''95 and NUBASE''97. It results in some shuffling of the names and symbols, that may cause confusion in the near future. At AMDC we''ll be as careful as possible to try to avoid such confusion. In advance we apologize if any will occur in the future and recommend the user to always double check these few names.« less

  9. Chart of the Nuclides

    SciTech Connect

    Sartori, Enrico

    1999-03-23

    Nucleus is an interactive PC-based graphical viewer of NUBASE nuclear property data. NUBASE contains experimentally known nuclear properties, together with some values that have been estimated from extrapolation of experimental data for 3010 nuclides. NUBASE also contains data on those isomeric states that have half-lives greater than 1 millisecond; there are 669 such nuclides of which 58 have more than one isomeric state. The latest version of NUCLEUS-CHART has been corrected to include the names and the chemical symbols of the elements 104 to 109 that have been finally adopted by the Commission on Nomenclature of Inorganic Chemistry (CNIC) of the International Union of Pure and Applied Chemistry (IUPAC). They differ from those recommended by the same commission a few years before and that were widely used in the evaluations AME''95 and NUBASE''97. It results in some shuffling of the names and symbols, that may cause confusion in the near future. At AMDC we''ll be as careful as possible to try to avoid such confusion. In advance we apologize if any will occur in the future and recommend the user to always double check these few names.

  10. Yields of short-lived fission products produced following {sup 235}U(n{sub th},f)

    SciTech Connect

    Tipnis, S.V.; Campbell, J.M.; Couchell, G.P.; Li, S.; Nguyen, H.V.; Pullen, D.J.; Schier, W.A.; Seabury, E.H.; England, T.R.

    1998-08-01

    Measurements of gamma-ray spectra, following the thermal neutron fission of {sup 235}U have been made using a high purity germanium detector at the University of Massachusetts Lowell (UML) Van de Graaff facility. The gamma spectra were measured at delay times ranging from 0.2 s to nearly 10thinsp000 s following the rapid transfer of the fission fragments with a helium-jet system. On the basis of the known gamma transitions, forty isotopes have been identified and studied. By measuring the relative intensities of these transitions, the relative yields of the various precursor nuclides have been calculated. The results are compared with the recommended values listed in the ENDF/B-VI fission product data base (for the lifetimes and the relative yields) and those published in the Nuclear Data Sheets (for the beta branching ratios). This information is particularly useful for the cases of short-lived fission products with lifetimes of the order of fractions of a second or a few seconds. Independent yields of many of these isotopes have rather large uncertainties, some of which have been reduced by the present study. {copyright} {ital 1998} {ital The American Physical Society}

  11. Constraints on the Origin of Chondrules and CAIs from Short-Lived and Long-Lived Radionuclides

    SciTech Connect

    Kita, N T; Huss, G R; Tachibana, S; Amelin, Y; Nyquist, L E; Hutcheon, I D

    2005-10-24

    The high time resolution Pb-Pb ages and short-lived nuclide based relative ages for CAIs and chondrules are reviewed. The solar system started at 4567.2 {+-} 0.6Ma inferred from the high precision Pb-Pb ages of CAIs. Time scales of CAIs ({le}0.1Myr), chondrules (1-3Myr), and early asteroidal differentiation ({ge}3Myr) inferred from {sup 26}Al relative ages are comparable to the time scale estimated from astronomical observations of young star; proto star, classical T Tauri star and week-lined T Tauri star, respectively. Pb-Pb ages of chondrules also indicate chondrule formation occur within 1-3 Myr after CAIs. Mn-Cr isochron ages of chondrules are similar to or within 2 Myr after CAI formation. Chondrules from different classes of chondrites show the same range of {sup 26}Al ages in spite of their different oxygen isotopes, indicating that chondrule formed in the localized environment. The {sup 26}Al ages of chondrules in each chondrite class show a hint of correlation with their chemical compositions, which implies the process of elemental fractionation during chondrule formation events.

  12. Studies of images of short-lived events using ERTS data

    NASA Technical Reports Server (NTRS)

    Deutschman, W. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Of significance are the continued detection and analysis of such short-lived events as forest fires, oil spills, vegetation damage, volcanoes, storm ridges, and earthquakes.

  13. Production of a short-lived filament by a surge. [in solar atmosphere

    NASA Technical Reports Server (NTRS)

    Zirin, H.

    1976-01-01

    An unusual solar event is investigated in which a short-lived cloud, very much like a filament, was formed by ejecta from a large surge. The temporal evolution of this surge is described, and evidence is presented which indicates that the short-lived cloud was a bona fide filament. The energetics of this event and the mass of the surge are estimated from radio and X-ray data obtained at the onset.

  14. Deriving an atmospheric budget of total organic bromine using airborne in-situ measurements of brominated hydrocarbons in the Western Pacific during SHIVA

    NASA Astrophysics Data System (ADS)

    Sala, Stephan; Bönisch, Harald; Keber, Timo; Oram, Dave; Mills, Graham; Engel, Andreas

    2014-05-01

    Halogenated hydrocarbons play a major role as precursors for stratospheric ozone depletion. Released from the surface in the troposphere, the halocarbons reach the stratosphere via transport through the tropical tropopause layer. The contribution of the so called very short lived species (VSLS), having atmospheric lifetimes of less than half a year as sources gases for stratospheric bromine is significant. Source gas observations of long-lived bromine compounds and VSLS have so far not been able to explain the amount of bromine derived in the stratosphere from observations of BrO and modeling of the ratio of BrO to total bromine. Due to the short lifetimes and the high atmospheric variability, the representativeness of the available observations of VSLS source gases remains unclear, as these may vary with region and display seasonal variability. During the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) project an extensive dataset with over 700 samples of ambient air of all halogen species relevant for the atmospheric budget of total organic bromine (long lived halocarbons: H-1301, H-1211, H-1202, H-2402 and CH3Br, very short lived substances: CHBr3, CH2Br2, CHBr2Cl, CHBrCl2 and CHBrCl) have been collected from onboard the FALCON aircraft in the West Pacific region. Measurements were performed with the newly developed fully-automated in-situ instrument GHOST-MS (Gas chromatograph for the Observation of Tracers - coupled with a Mass Spectrometer) by the Goethe University of Frankfurt and with the onboard whole-air sampler WASP with subsequent ground based state-of-the-art GC/MS analysis by the University of East Anglia. We will present the datasets, compare these to other observation, derive a bromine budget for the West Pacific and derive an estimate of the amount of bromine from VSLS reaching the stratosphere. Using the mean mixing ratios in the upper troposphere of the halocarbons mentioned above, the calculated budget of the total organic

  15. Measurements of stratospheric bromine

    NASA Technical Reports Server (NTRS)

    Sedlacek, W. A.; Lazrus, A. L.; Gandrud, B. W.

    1984-01-01

    From 1974 to 1977, molecules containing acidic bromine were sampled in the stratosphere by using tetrabutyl ammonium hydroxide impregnated filters. Sampling was accomplished by WB-57F aircraft and high-altitude balloons, spanning latitudes from the equator to 75 deg N and altitudes up to 36.6 km. Analytical results are reported for 4 years of measurements and for laboratory simulations that determined the filter collection efficiencies for a number of brominated species. Mass mixing ratios for the collected bromine species in air average about 27 pptm in the stratosphere. Seasonal variability seems to be small.

  16. Bromine Chemistry in the Tropical UTLS during the 2011, 2013 and 2014 ATTREX Experiments

    NASA Astrophysics Data System (ADS)

    Werner, Bodo; Stutz, Jochen; Spolaor, Max; Festa, James; Tsai, Catalina; Colosimo, Fedele; Cheung, Ross; Deutschmann, Tim; Raecke, Rasmus; Scalone, Lisa; Tricoli, Ugo; Pfeilsticker, Klaus; Navarro, Maria; Atlas, Elliot; Chipperfield, Martyn; Hossaini, Ryan

    2015-04-01

    Bromine plays an important role for the chemistry of ozone in the stratosphere and upper troposphere. An accurate quantitative understanding of the sources, sinks, and chemical transformation of bromine species is thus important to understand the bromine budget in the upper troposphere and lower stratosphere (UTLS), which also serves as a gate to the stratosphere. Vertical transport of very short-lived organic bromine precursors and inorganic product gases has been identified as the main source of bromine in the UTLS. However, the contribution of inorganic vs. organic compounds is not well quantified, particularly in the tropical UTLS. A limb scanning Differential Optical Absorption Spectroscopy instrument was deployed onboard NASA's UAV Global Hawk during the NASA Airborne Tropical TRopopause EXperiment (ATTREX) during a series of flights into the eastern and western Pacific tropopause layer (flight altitudes up to 18 km), which is a gateway to the stratosphere. The measurement methodology to retrieve vertical trace gas concentration profiles will be briefly presented. Observations of BrO, NO2 and O3 and of other trace species, in particular of brominated hydrocarbons are compared with simulations of the SLIMCAT CTM and interpreted with respect to photochemistry and the budget of bromine within the tropical tropopause layer (TTL).

  17. Bromine Chemistry in the Tropical UTLS during the 2011, 2013 and 2014 ATTREX Experiments

    NASA Astrophysics Data System (ADS)

    Stutz, J.; Spolaor, M.; Festa, J.; Tsai, J. Y.; Colosimo, S. F.; Cheung, R.; Werner, B.; Deutschmann, T.; Scalone, L.; Raecke, R.; Tricoli, U.; Pfeilsticker, K.; Navarro, M. A.; Atlas, E. L.

    2014-12-01

    Bromine chemistry impacts the levels of ozone in the upper troposphere and the stratosphere. An accurate quantitative understanding of the sources, sinks, and chemical transformation of bromine species is thus important to understand the bromine budget in the upper troposphere and lower stratosphere (UTLS), which also serves as a gate to the stratosphere. Vertical transport of very short-lived organic bromine precursors, such as CHBr3, CH2Br2 and inorganic product gases has been identified as the main source of bromine in the UTLS. However, the contribution of inorganic vs. organic compounds is not well quantified, particularly in the tropical UTLS. A number of chemical processes, including the role of ice particles for the transformation and cycling of inorganic bromine species are also poorly understood. A limb scanning Differential Optical Absorption Spectroscopy Instrument was deployed on-board NASA's unmanned high-altitude Global Hawk aircraft during the 2011, 2013, and 2014 NASA Airborne Tropical TRopopause EXperiment (ATTREX). Flights in the eastern and western Pacific were performed to study, among other topics, the chemistry of bromine and ozone in the subtropical and tropical UTLS. Here we will present observations of BrO, NO2 and other trace species made by this instrument at altitudes between 15 - 20 km. The measurement methodology as well as the procedure to retrieve vertical trace gas concentration profiles will be briefly presented. The combination of those observations with the measurements of organic bromine species from the University of Miami's Whole Air Sampler (GWAS) will be used to determine and interpret the bromine budget in the UTLS.

  18. Solid bromine complexers

    DOEpatents

    Grimes, Patrick G.

    1987-01-20

    The cell of the invention comprises a housing, a zinc or cadmium anode, a chemically non-reactive counterelectrode and cathodic halogen. The cathodic halogen is selected from chlorine and bromine, and preferably is bromine. The cell also is provided with an aqueous metal halide containing electrolyte in which the metal ions are of the same metal as the metal of the anode and halide anions are of the same halogen as the cathodic halogen material. Importantly, in the present invention, anion exchange resins provide a convenient means for storing the halogen generated during charging of the cell and providing a source of halogen to be used in the discharge of the cell.

  19. Experimental Measurements of Short-Lived Fission Products from Uranium, Neptunium, Plutonium and Americium

    SciTech Connect

    Metz, Lori A.; Payne, Rosara F.; Friese, Judah I.; Greenwood, Lawrence R.; Kephart, Jeremy D.; Pierson, Bruce D.

    2009-11-01

    Fission yields are especially well characterized for long-lived fission products. Modeling techniques incorporate numerous assumptions and can be used to deduce information about the distribution of short-lived fission products. This work is an attempt to gather experimental (model-independent) data on the short-lived fission products. Fissile isotopes of uranium, neptunium, plutonium and americium were irradiated under pulse conditions at the Washington State University 1 MW TRIGA reactor to achieve ~108 fissions. The samples were placed on a HPGe (high purity germanium) detector to begin counting in less than 3 minutes post irradiation. The samples were counted for various time intervals ranging from 5 minutes to 1 hour. The data was then analyzed to determine which radionuclides could be quantified and compared to the published fission yield data.

  20. Short-lived Extinct Radioactivities and the Birth of the Sun

    NASA Astrophysics Data System (ADS)

    Meyer, Bradley

    2002-10-01

    Extinct radioactivities are isotopes that were extant at the time of formation of the solar system but that have since decayed. Their abundances may be inferred from isotopic anomalies in the daughter isotopes, and these data provide valuable constraints on the circumstance of the birth of our Sun. Remarkably, among ten or so isotopes we are convinced were alive in the early solar nebula, only two or three agree with expectations from Galactic nucleosynthesis. The r-process isotopes tend to be lower in the meteorites than a naive Galactic nucleosynthesis would imply, and the short-lived species seem to have had extra production from either a nearby star or from energetic particles from the early Sun. This talk will review the data available and then will attempt to reconcile the abundances of the short-lived radioactivities with appropriate models for Galactic chemical evolution and the astrophysical setting of the Sun's birth.

  1. Efficient adsorption of waterborne short-lived radon decay products by glass fiber filters.

    PubMed

    von Philipsborn, H

    1997-02-01

    Glass fiber filters of a certain brand were found to be very efficient (retention > 95%) for adsorption of short-lived radon decay products during filtration of water. Carrier-free samples are obtained in a convenient geometry for efficient gross beta counting. Adsorption of "hot atoms" is not disturbed by the presence of "cold" lead ions. Approximate radioactive equilibrium between radon and its short-lived decay products may or may not exist in water at the source, but does exist after 3 h in PET bottles. These bottles are shown to be gas-tight for radon. Calibration of activity concentration in Bq L(-1) (radon gas concentration approximately equilibrium equivalent radon concentration) was performed by several standard procedures. Limit of detection is 2 Bq L(-1) within 10 min (total time) or 10 Bq L(-1) within 5 min for a net signal of 5 times standard deviation.

  2. Short-lived fluorescence component of DPH reports on lipid--water interface of biological membranes.

    PubMed

    Konopásek, Ivo; Vecer, Jaroslav; Strzalka, Kazimierz; Amler, Evzen

    2004-07-01

    Fluorescence measurements of 1,6-diphenyl-1,3,5-hexatriene (DPH) in large unilamellar phospholipid vesicles were performed to characterize the influence of the membrane physical properties on the short-lived lifetime component of the fluorescence decay. We have found that the short-lived component of DPH significantly shortens when the membrane undergoes a temperature-induced phase transition as it is known for the long-lived component of DPH. We induced membrane phase transitions also by alcohols, which are reported to be distributed different way in the membrane--ethanol close to the membrane-water interface and benzyl alcohol in the membrane core. A different effect of the respective alcohol on the short and long decay component was observed. Both the time-resolved fluorescence spectra of DPH taken during lipid vesicle staining and the lifetime dependences caused by changes of temperature and/or induced by the alcohols show that the short-lived fluorescence originates from the population of dye molecules distributed at the membrane-water interface.

  3. Short-lived K2S Molecules in Superionic Potassium Sulfide

    NASA Astrophysics Data System (ADS)

    Okeya, Yusuke; Tsumuraya, Kazuo

    2015-03-01

    The first principles molecular dynamics method allows us to elucidate the formation of short-lived K2S molecular states in superionic potassium sulfide. The covalent and the Coulomb bonds exist between the ionized mobile potassiums and the ionized immobile sulfurs. Both the bonds induces indirect covalent and indirect Coulomb attractions between the di-interstitial potassiums on the mid-sulfurs, which forms the short-lived K2S molecular states. The covalent electron density also exists between short-lived potassium dimers. The three attractions reduce Haven's ratios of the potassiums in the conductor. The molecule formation indicates the electronic state of the conductor is intermediate between the ionic and covalent crystals. The absence of the long-lived potassium dimers implies a failure of the caterpillar diffusion model or the Frenkel-Kontorova chain model for the superionic diffusion of the potassiums in the sulfide. The incompletely ionized cations and anions reduce the Coulomb attractions between them which induces the sublattice melting of smaller size of the potassiums than the sulfurs.

  4. Rate of resistance evolution and polymorphism in long- and short-lived hosts.

    PubMed

    Bruns, Emily; Hood, Michael E; Antonovics, Janis

    2015-02-01

    Recent theoretical work has shown that long-lived hosts are expected to evolve higher equilibrium levels of disease resistance than shorter-lived hosts, but questions of how longevity affects the rate of resistance evolution and the maintenance of polymorphism remain unanswered. Conventional wisdom suggests that adaptive evolution should occur more slowly in long-lived organisms than in short-lived organisms. However, the opposite may be true for the evolution of disease-resistance traits where exposure to disease, and therefore the strength of selection for resistance increases with longevity. In a single locus model of innate resistance to a frequency-dependent, sterilizing disease, longer lived hosts evolved resistance more rapidly than short-lived hosts. Moreover, resistance in long-lived hosts could only be polymorphic for more costly and more extreme resistance levels than short-lived hosts. The increased rate of evolution occurred in spite of longer generation times because longer-lived hosts had both a longer period of exposure to disease as well as higher disease prevalence. Qualitatively similar results were found when the model was extended to mortality-inducing diseases, or to density-dependent transmission modes. Our study shows that the evolutionary dynamics of host resistance is determined by more than just levels of resistance and cost, but is highly sensitive to the life-history traits of the host.

  5. Brominated Flame Retardants

    EPA Science Inventory

    Brominated flame retardants (BFRs) belong to a large class of compounds known as organohalogens. BFRs are currently the largest marketed flame retardant group due to their high performance efficiency and low cost. In the commercial market, more than 75 different BFRs are recogniz...

  6. Lithium/bromine cell systems

    SciTech Connect

    Howard, W.G.; Skarstad, P.M.; Hayes, T.G.; Owens, B.B.

    1980-01-01

    Bromine is attractive as a cathode material because cells with a high energy density and high cell voltage are theoretically possible. The addition of small amounts of certain salts or organic compounds results in bromine solutions of sufficient conductivity for cathode applications. However, given these highly conductive bromine cathodes, lithium/bromine cells are limited in rate and practical available capacity by the high resistivity of the discharge product. The rate of resistance increase for the best bromine cells in this study is more than one order of magnitude greater than that observed for corresponding lithium/iodine cells. Lithium/bromine cells can function at pacemaker rates and they may be superior to cells used in early pacemakers. However, the authors have not found the lithium/bromine cells described to be superior to existing lithium/iodine cells available for cardiac pacemakers. 17 refs.

  7. Sensitivity of Ozone to Bromine in the Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Salawitch, R. J.; Weisenstein, D. K.; Kovalenko, L. J.; Sioris, C. E.; Wennberg, P. O.; Chance, K.; Ko, M. K. W.; McLinden, C. A.

    2005-01-01

    Measurements of BrO suggest that inorganic bromine (Br(sub y)) at and above the tropopause is 4 to 8 ppt greater than assumed in models used in past ozone trend assessment studies. This additional bromine is likely carried to the stratosphere by short-lived biogenic compounds and their decomposition products, including tropospheric BrO. Including this additional bromine in an ozone trend simulation increases the computed ozone depletion over the past approx.25 years, leading to better agreement between measured and modeled ozone trends. This additional Br(sub y) (assumed constant over time) causes more ozone depletion because associated BrO provides a reaction partner for ClO, which increases due to anthropogenic sources. Enhanced Br(sub y) causes photochemical loss of ozone below approx.14 km to change from being controlled by HO(sub x) catalytic cycles (primarily HO2+O3) to a situation where loss by the BrO+HO2 cycle is also important.

  8. Classification of short-lived objects using an interactive adaptable assistance system

    NASA Astrophysics Data System (ADS)

    El Bekri, Nadia; Angele, Susanne; Peinsipp-Byma, Elisabeth

    2015-05-01

    "Although we know that it is not a familiar object, after a while we can say what it resembles". The core task of an aerial image analyst is to recognize different object types based on certain clearly classified characteristics from aerial or satellite images. An interactive recognition assistance system compares selected features with a fixed set of reference objects (core data set). Therefore it is mainly designed to evaluate durable single objects like a specific type of ship or vehicle. Aerial image analysts on missions realized a changed warfare over the time. The task was not anymore to classify and thereby recognize a single durable object. The problem was that they had to classify strong variable objects and the reference set did not match anymore. In order to approach this new scope we introduce a concept to a further development of the interactive assistance system to be able to handle also short-lived, not clearly classifiable and strong variable objects like for example dhows. Dhows are the type of ships that are often used during pirate attacks at the coast of West Africa. Often these ships were build or extended by the pirates themselves. They follow no particular pattern as the standard construction of a merchant ship. In this work we differ between short-lived and durable objects. The interactive adaptable assistance system is supposed to assist image analysts with the classification of objects, which are new and not listed in the reference set of objects yet. The human interaction and perception is an important factor in order to realize this task and achieve the goal of recognition. Therefore we had to model the possibility to classify short-lived objects with appropriate procedures taking into consideration all aspects of short-lived objects. In this paper we will outline suitable measures and the possibilities to categorize short-lived objects via simple basic shapes as well as a temporary data storage concept for shortlived objects. The

  9. ``Sleeping reactor`` irradiations: Shutdown reactor determination of short-lived activation products

    SciTech Connect

    Jerde, E.A.; Glasgow, D.C.

    1998-09-01

    At the High-Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory, the principal irradiation system has a thermal neutron flux ({phi}) of {approximately} 4 {times} 10{sup 14} n/cm{sup 2} {center_dot} s, permitting the detection of elements via irradiation of 60 s or less. Irradiations of 6 or 7 s are acceptable for detection of elements with half-lives of as little as 30 min. However, important elements such as Al, Mg, Ti, and V have half-lives of only a few minutes. At HFIR, these can be determined with irradiation times of {approximately} 6 s, but the requirement of immediate counting leads to increased exposure to the high activity produced by irradiation in the high flux. In addition, pneumatic system timing uncertainties (about {+-} 0.5 s) make irradiations of < 6 s less reliable. Therefore, the determination of these ultra-short-lived species in mixed matrices has not generally been made at HFIR. The authors have found that very short lived activation products can be produced easily during the period after reactor shutdown (SCRAM), but prior to the removal of spent fuel elements. During this 24- to 36-h period (dubbed the ``sleeping reactor``), neutrons are produced in the beryllium reflector by the reaction {sup 9}Be({gamma},n){sup 8}Be, the gamma rays principally originating in the spent fuel. Upon reactor SCRAM, the flux drops to {approximately} 1 {times} 10{sup 10} n/cm{sup 2} {center_dot} s within 1 h. By the time the fuel elements are removed, the flux has dropped to {approximately} 6 {times} 10{sup 8}. Such fluxes are ideal for the determination of short-lived elements such as Al, Ti, Mg, and V. An important feature of the sleeping reactor is a flux that is not constant.

  10. Health co-benefits of mitigating short-lived climate forcers

    NASA Astrophysics Data System (ADS)

    Anenberg, S.

    2011-12-01

    Tropospheric ozone and black carbon (BC), a component of fine particulate matter (PM2.5), are associated with premature mortality and disrupt global and regional climate. While attention to their impacts on climate is relatively new, these pollutants have been regulated under health-based standards in the US and elsewhere in the world for decades. Understanding the health benefits of reducing short-lived climate forcers may help inform mitigation strategies, since health will likely continue to drive concern over air quality in the future. Several recent studies have examined the health and climate co-benefits of control measures targeting BC and methane, an ozone precursor. This talk will highlight the health benefits of 14 presently available BC and methane mitigation measures examined in the United Nations Environment Programme/World Meteorological Organization Integrated Assessment of Black Carbon and Ozone. Fully implementing these specific measures is estimated to avoid 1-5 million annual ozone and PM2.5-related premature deaths globally in 2030, >80% of which occur in Asia. BC mitigation measures are estimated to achieve ~98% of the avoided deaths from all measures, due to associated reductions of non-methane ozone precursor and organic carbon emissions and stronger mortality relationships for PM2.5 relative to ozone. These substantial public health co-benefits of mitigating short-lived climate forcers are independent of whether CO2 measures are enacted. Further analyses are needed to improve economic valuation of the varied impacts of short-lived climate forcers and quantify the benefits and costs of these measures in individual countries or regions to support policy decisions made at the national level.

  11. Absence of replicative senescence in cultured cells from the short-lived killifish Nothobranchius furzeri.

    PubMed

    Graf, Michael; Hartmann, Nils; Reichwald, Kathrin; Englert, Christoph

    2013-01-01

    A major challenge in age research is the absence of short-lived vertebrate model organisms. The turquoise killifish Nothobranchius furzeri has the shortest known lifespan of a vertebrate that can be bred in captivity. The short lived GRZ strain only reaches a maximum age of 3-4 months, whereas other strains (MZM) reach 6-10 months. Most importantly, the short lifespan is associated with typical signs of ageing. To find out more about possible cellular factors that might contribute to the short lifespan and to the difference in lifespan between strains, we analyzed the expression of markers for cellular senescence. Expression of Tp53, Cdkn1a and Cdkn2a/b in skin revealed no change in the short-lived GRZ but increased expression of the cell cycle inhibitors Cdkn1a and Cdkn2a/b in the long-lived MZM strain with age. This suggests that expression of distinct cell cycle inhibitors reflects rather chronological than biological age in N. furzeri. To study the relationship of organismal life span and in vitro life span of cells, we established a primary cell culture model. For both strains we demonstrate here the absence of replicative senescence as analysed by morphology, expression of Cdkn1a and Cdkn2a/b, population doubling times and γH2AFX in long-term and short-term cultured cells. We reason this to be on account of sustained telomerase activity and maintained telomeric length. Hence, we propose that differences in maximum life span of different N. furzeri strains is not reflected by differences in proliferation speed or replicative potential of the respective cultured cells.

  12. Absence of replicative senescence in cultured cells from the short-lived killifish Nothobranchius furzeri.

    PubMed

    Graf, Michael; Hartmann, Nils; Reichwald, Kathrin; Englert, Christoph

    2013-01-01

    A major challenge in age research is the absence of short-lived vertebrate model organisms. The turquoise killifish Nothobranchius furzeri has the shortest known lifespan of a vertebrate that can be bred in captivity. The short lived GRZ strain only reaches a maximum age of 3-4 months, whereas other strains (MZM) reach 6-10 months. Most importantly, the short lifespan is associated with typical signs of ageing. To find out more about possible cellular factors that might contribute to the short lifespan and to the difference in lifespan between strains, we analyzed the expression of markers for cellular senescence. Expression of Tp53, Cdkn1a and Cdkn2a/b in skin revealed no change in the short-lived GRZ but increased expression of the cell cycle inhibitors Cdkn1a and Cdkn2a/b in the long-lived MZM strain with age. This suggests that expression of distinct cell cycle inhibitors reflects rather chronological than biological age in N. furzeri. To study the relationship of organismal life span and in vitro life span of cells, we established a primary cell culture model. For both strains we demonstrate here the absence of replicative senescence as analysed by morphology, expression of Cdkn1a and Cdkn2a/b, population doubling times and γH2AFX in long-term and short-term cultured cells. We reason this to be on account of sustained telomerase activity and maintained telomeric length. Hence, we propose that differences in maximum life span of different N. furzeri strains is not reflected by differences in proliferation speed or replicative potential of the respective cultured cells. PMID:22445733

  13. Accurate mass determination of short-lived isotopes by a tandem Penning-trap mass spectrometer

    SciTech Connect

    Stolzenberg, H.; Becker, S.; Bollen, G.; Kern, F.; Kluge, H.; Otto, T.; Savard, G.; Schweikhard, L. ); Audi, G. ); Moore, R.B. ); The ISOLDE Collaboration

    1990-12-17

    A mass spectrometer consisting of two Penning traps has been set up for short-lived isotopes at the on-line mass separator ISOLDE at CERN. The ion beam is collected and cooled in the first trap. After delivery to the second trap, high-accuracy direct mass measurements are made by determining the cyclotron frequency of the stored ions. Measurements have been performed for {sup 118}Cs--{sup 137}Cs. A resolving power of over 10{sup 6} and an accuracy of 1.4{times}10{sup {minus}7} have been achieved, corresponding to about 20 keV.

  14. Properties of short-living ball lightning produced in the laboratory

    NASA Astrophysics Data System (ADS)

    Egorov, A. I.; Stepanov, S. I.

    2008-06-01

    An experimental setup for highly reproducible generation of artificial ball lightnings is implemented. Thousands of floating glowing plasmoids 12-20 cm in diameter are produced. Research facilities for studying the plasmoids are developed. It is found that short-lived ball lightnings live for about 1 s and carry an electric charge. The lightnings are shown to have a complex structure: a central kernel containing a rich variety of hydrated ions and aerosol of decay products is surrounded by a thin negatively charged shell.

  15. Preparing isomerically pure beams of short-lived nuclei at JYFLTRAP

    NASA Astrophysics Data System (ADS)

    Eronen, T.; Elomaa, V.-V.; Hager, U.; Hakala, J.; Jokinen, A.; Kankainen, A.; Rahaman, S.; Rissanen, J.; Weber, C.; Äystö, J.

    2008-10-01

    A new procedure to prepare isomerically clean samples of short-lived ions with a mass resolving power of more than 1 × 105 has been developed at the JYFLTRAP tandem Penning trap system. The method utilises a dipolar rf-excitation of the ion motion with separated oscillatory fields in the precision trap. During a subsequent retransfer to the purification trap, the contaminants are rejected and as a consequence, the remaining bunch is isomerically cleaned. This newly-developed method is suitable for very high-resolution cleaning and is at least a factor of five faster than the methods used so far in Penning trap mass spectrometry.

  16. Inducible transgenic expression in the short-lived fish Nothobranchius furzeri.

    PubMed

    Allard, J B; Kamei, H; Duan, C

    2013-05-01

    This study demonstrates inducible transgenic expression in the exceptionally short-lived turquoise killifish Nothobranchius furzeri, which is a useful vertebrate model for ageing research. Transgenic N. furzeri bearing a green fluorescent protein (Gfp) containing construct under the control of a heat shock protein 70 promoter were generated, heat shock-induced and reversible Gfp expression was demonstrated and germline transmission of the transgene to the F1 and F2 generations was achieved. The availability of this inducible transgenic expression system will make the study of ageing-related antagonistically pleiotropic genes possible using this unique vertebrate model organism.

  17. Coupling a Knudsen reactor with the short lived radioactive tracer (13)N for atmospheric chemistry studies.

    PubMed

    Schreiber, S; Kerbrat, M; Huthwelker, T; Birrer, M; Ammann, M

    2013-03-01

    A Knudsen cell flow reactor was coupled to an online gas phase source of the short-lived radioactive tracer (13)N to study the adsorption of nitrogen oxides on ice at temperatures relevant for the upper troposphere. This novel approach has several benefits over the conventional coupling of a Knudsen cell with a mass spectrometer. Experiments at lower partial pressures close to atmospheric conditions are possible. The uptake to the substrate is a direct observable of the experiment. Operation of the experiment in continuous or pulse mode allows to retrieve steady state uptake kinetics and more details of adsorption and desorption kinetics.

  18. Mass Measurement of Short-lived Nuclei at HIRFL-CSR

    NASA Astrophysics Data System (ADS)

    Wang, M.; Xu, H. S.; Zhang, Y. H.; Tu, X. L.; Litvinov, Yu. A.

    2014-03-01

    Four campaigns of mass measurements for short-lived nuclei have been conducted using an isochronous mass spectrometry (IMS) technique at HIRFL-CSR(Cooler Storage Ring) in Lanzhou. The radioactive nuclei were produced by projectile fragmentation and injected into the experimental storage ring CSRe. Revolution times of the ions stored in the CSRe were measured from which masses of 78Kr, 58Ni, 86Kr and 112Sn fragments have been determined with a relative uncertainty of about 10-6-10-7. The experimental results are presented and their impacts on nucleosynthesis in the rp process and nuclear structure are discussed.

  19. An analysis of a short-lived outbreak of dengue fever in Mauritius.

    PubMed

    Ramchurn, S K; Moheeput, K; Goorah, S S

    2009-01-01

    During the month of June 2009, Mauritius experienced a short-lived outbreak of dengue fever localised in its capital city Port Louis. Aedes albopictus, a secondary vector of dengue viruses, was the probable vector. We introduce a method which combines Google Earth images, stochastic cellular automata and scale free network ideas to map this outbreak. The method could complement other techniques to forecast the evolution of potential localised mosquito-borne viral outbreaks in Mauritius and in at-risk locations elsewhere for public health planning purposes.

  20. Inducible transgenic expression in the short-lived fish Nothobranchius furzeri.

    PubMed

    Allard, J B; Kamei, H; Duan, C

    2013-05-01

    This study demonstrates inducible transgenic expression in the exceptionally short-lived turquoise killifish Nothobranchius furzeri, which is a useful vertebrate model for ageing research. Transgenic N. furzeri bearing a green fluorescent protein (Gfp) containing construct under the control of a heat shock protein 70 promoter were generated, heat shock-induced and reversible Gfp expression was demonstrated and germline transmission of the transgene to the F1 and F2 generations was achieved. The availability of this inducible transgenic expression system will make the study of ageing-related antagonistically pleiotropic genes possible using this unique vertebrate model organism. PMID:23639168

  1. An effective technique for the storage of short lived radioactive gaseous waste.

    PubMed

    Schweiger, Lutz

    2011-09-01

    An effective technique is described to deal with volatile, short lived radioactive waste generated as a result of the routinely produced positron emission tomography (PET) radiopharmaceutical 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG). All radioactive gases and aerosols created during the synthesis are collected and stored safely in commercially available TEDLAR gas sampling bags. Once these collected PET by-products decay, the TEDLAR gas bags can be easily emptied and reused. This improved technique is effective, safe, reliable and economical. PMID:21592805

  2. Short-lived pollutants in the Arctic: their climate impact and possible mitigation strategies

    SciTech Connect

    Menon, Surabi; Quinn, P.K.; Bates, T.S.; Baum, E.; Doubleday, N.; Fiore, A.M.; Flanner, M.; Fridlind, A.; Garrett, T.J.; Koch, D.; Menon, S.; Shindell, D.; Stohl, A.; Warren, S.G.

    2007-09-24

    Several short-lived pollutants known to impact Arctic climate may be contributing to the accelerated rates of warming observed in this region relative to the global annually averaged temperature increase. Here, we present a summary of the short-lived pollutants that impact Arctic climate including methane, tropospheric ozone, and tropospheric aerosols. For each pollutant, we provide a description of the major sources and the mechanism of forcing. We also provide the first seasonally averaged forcing and corresponding temperature response estimates focused specifically on the Arctic. The calculations indicate that the forcings due to black carbon, methane, and tropospheric ozone lead to a positive surface temperature response indicating the need to reduce emissions of these species within and outside the Arctic. Additional aerosol species may also lead to surface warming if the aerosol is coincident with thin, low lying clouds. We suggest strategies for reducing the warming based on current knowledge and discuss directions for future research to address the large remaining uncertainties.

  3. Cohort variation, climate effects and population dynamics in a short-lived lizard.

    PubMed

    Le Galliard, Jean François; Marquis, Olivier; Massot, Manuel

    2010-11-01

    1. Demographic theory and empirical studies indicate that cohort variation in demographic traits has substantial effects on population dynamics of long-lived vertebrates but cohort effects have been poorly investigated in short-lived species. 2. Cohort effects were quantified in the common lizard (Zootoca vivipara Jacquin 1787), a short-lived ectothermic vertebrate, for body size, reproductive traits and age-specific survival with mark-recapture data collected from 1989 to 2005 in two wetlands. We assessed cohort variation and covariation in demographic traits, tested the immediate and delayed effects of climate conditions (temperature and rainfall), and predicted consequences for population growth. 3. Most demographic traits exhibited cohort variation, but this variation was stronger for juvenile growth and survival, sub-adult survival and breeding phenology than for other traits. 4. Cohort variation was partly explained by a web of immediate and delayed effects of climate conditions. Rainfall and temperature influenced distinct life-history traits and the periods of gestation and early juvenile life were critical stages for climate effects. 5. Cohort covariation between demographic traits was usually weak, apart from a negative correlation between juvenile and sub-adult body growth suggesting compensatory responses. An age-structured population model shows that cohort variation influences population growth mainly through direct numerical effects of survival variation early in life. 6. An understanding of cohort effects is necessary to predict critical life stages and climatic determinants of population dynamics, and therefore demographic responses to future climate warming.

  4. A Simulation of Bromoform's Contribution to Stratospheric Bromine

    NASA Technical Reports Server (NTRS)

    Nielsen, J. Eric; Douglass, Anne R.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Many chlorinated and brominated compounds that are inert in the troposphere are destroyed in the stratosphere and act as an in-situ source of stratospheric reactive chlorine and bromine. Other halogenated compounds that are reactive in the troposphere might contribute to the stratosphere's halogen budget in two ways. First, like their unreactive companions, rapid convective transport might carry them to the upper troposphere and make them available for subsequent advection by the mean circulation into the stratosphere before they are oxidized or photolyzed. Second, it is more likely that they are destroyed in the troposphere, and the chlorine and bromine that is released might then be transported to the stratosphere. We evaluate the relative influence of these processes on stratospheric bromine in a three-dimensional chemistry and transport model which simulates the distribution of bromoform (CHBr3). CHBr3 is parameterized as a short-lived, ocean-surface source gas whose destruction by photolysis and reaction with hydroxyl (OH) in the troposphere and stratosphere yields inorganic bromine (Br(sub y)). Many of the observed features of CHBr3 are simulated well, and comparisons with observations are used to show that the model represents aspects of transport in the upper troposphere and lower stratosphere that are critical to the evaluation. In particular, the model maintains the observed troposphere-stratosphere distinctness in transport pathways and reproduces the observed seasonal dependence of the mixture of air in the middle- and high-latitude lowermost stratosphere. We estimate that adding CHBr3 to models which already include the long-lived organic brominated compounds (halons and methyl bromide) will increase the simulated stratospheric mass of Br(sub y) by about 15 percent. In-situ stratospheric destruction of CHBr3 produces Br(sub y) in amounts which are comparable to that transported into the stratosphere after photolysis and oxidation of CHBr3 in the

  5. A multi-proxy approach to identifying short-lived marine incursions in the Early Carboniferous

    NASA Astrophysics Data System (ADS)

    Bennett, Carys; Davies, Sarah; Leng, Melanie; Snelling, Andrea; Millward, David; Kearsey, Timothy; Marshall, John; Reves, Emma

    2015-04-01

    This study is a contribution to the TW:eed Project (Tetrapod World: early evolution and diversification), which examines the rebuilding of Carboniferous ecosystems following a mass extinction at the end of the Devonian. The project focuses on the Tournaisian Ballagan Formation of Scotland and the Borders, which contains rare fish and tetrapod material. The Ballagan Formation is characterised by sandstones, dolomitic cementstones, paleosols, siltstones and gypsum deposits. The depositional environment ranges from fluvial, alluvial-plain to marginal-marine environments, with fluvial, floodplain and lacustrine deposition dominant. A multi-proxy approach combining sedimentology, palaeontology, micropalaeontology, palynology and geochemistry is used to identify short-lived marine transgressions onto the floodplain environment. Rare marginal marine fossils are: Chondrites-Phycosiphon, Spirorbis, Serpula, certain ostracod species, rare orthocones, brachiopods and putative marine sharks. More common non-marine fauna include Leiocopida and Podocopida ostracods, Mytilida and Myalinida bivalves, plants, eurypterids, gastropods and fish. Thin carbonate-bearing dolomitic cementstones and siltstone contain are the sedimentary deposits of marine incursions and occur throughout the formation. Over 600 bulk carbon isotope samples were taken from the 500 metre thick Norham Core (located near Berwick-Upon-Tweed), encompassing a time interval of around 13 million years. The results range from -26o to -19 δ13Corg, with an average of -19o much lighter than the average value for Early Carboniferous marine bulk organic matter (δ13C of -28 to -30). The isotope results correspond to broad-scale changes in the depositional setting, with more positive δ13C in pedogenic sediments and more negative δ13C in un-altered grey siltstones. They may also relate to cryptic (short-lived) marine incursions. A comparison of δ13C values from specific plant/wood fragments, palynology and bulk

  6. Short-lived Isotopes from a Close-by AGB Star Triggering the Protosolar Nebula

    NASA Astrophysics Data System (ADS)

    Gallino, R.; Busso, M.; Wasserburg, G. J.; Straniero, O.

    The presence of short-lived isotopes in the early solar system, in particular 26Al, 41Ca, 60Fe, and 107Pd, point to a close-by and fresh nucleosynthesis source, possibly triggering the collapse of the protosolar nebula. We present the results of nucleosynthesis calculations based on an AGB polluting hypothesis. A general concordance of the predicted yields of the above radioactivities relative to 26Al can be obtained in the case of an intermediate mass AGB star with hot bottom burning in the envelope (thus producing 26Al), and mixing through a series of third dredge-up episodes a fraction of the C-rich and s-processed material from the He intershell with the extended envelope. Polution of the protosolar nebula with freshly synthesized material may derive from the efficient winds of the AGB star. In AGB stars, the s-process nucleosynthesis occurs both during the maximum phase of every thermal runaway, driven by the partial activation of the 22Ne(alpha,n)25Mg reaction, and in the interpulse phase, where the 13C nuclei are fully consumed in radiative conditions by the activation of the 13C(alpha,n)16O reaction. We have used different prescriptions for the amount of the 13C nuclei present in the intershell. A minimum amount of 13C is naturally expected in the ashes of H-shell burning. Possible formation of an extra "13C-pocket" derives from the injection of a small amount of protons from the envelope into the 12C-rich intershell during any third dredge-up episode, when the H-shell is inactivated. Prediction for other short-lived, 36Cl, 135Cs, and 205Pb, are given. General consequences for the pollution of the protosolar nebula with newly synthesized stable isotopes from the AGB winds are outlined. The origin of other detected short-lived nuclei, in particular 53Mn, 129I, and 182Hf, which cannot come from an AGB source, is analysed. The alternative trigger hypothesis by a close-by Supernova is discussed.

  7. Short-lived oxygen diffusion during hot, deep-seated meteoric alteration of anorthosite

    PubMed

    Mora; Riciputi; Cole

    1999-12-17

    Heterogeneous oxygen isotope compositions of plagioclase from the Boehls Butte anorthosite include some of the most oxygen-18-depleted values (to -16 per mil) reported for plagioclase in meta-igneous rocks and indicate high-temperature (T > 500 degrees C) isotopic exchange between plagioclase and nearly pristine meteoric fluid. Retrograde reaction-enhanced permeability assisted influx of meteoric-hydrothermal fluids into the deep-seated anorthosite. Isotopic gradients of about 14 per mil over 600 micrometers in single crystals require short-lived (about 10(4) years) diffusional exchange of oxygen and locally large effective water:rock ratios, followed by rapid loss of water and cessation of oxygen diffusion in the anorthosite. PMID:10600738

  8. Laser spectroscopy of trapped short-lived Ra{sup +} ions

    SciTech Connect

    Versolato, O. O.; Giri, G. S.; Wansbeek, L. W.; Berg, J. E. van den; Hoek, D. J. van der; Jungmann, K.; Kruithof, W. L.; Onderwater, C. J. G.; Sahoo, B. K.; Santra, B.; Shidling, P. D.; Timmermans, R. G. E.; Willmann, L.; Wilschut, H. W.

    2010-07-15

    As an important step toward an atomic parity violation experiment in one single trapped Ra{sup +} ion, laser spectroscopy on short-lived {sup 212,213,214}Ra{sup +} ions was conducted. The isotope shift of the 6 {sup 2}D{sub 3/2}-7 {sup 2}P{sub 1/2} and 6 {sup 2}D{sub 3/2}-7 {sup 2}P{sub 3/2} transitions and the hyperfine structure constants of the 7 {sup 2}P{sub 1/2} and 6 {sup 2}D{sub 3/2} states in {sup 213}Ra{sup +} were measured, which provides a benchmark for the required atomic theory. A lower limit of 232(4) ms for 6 {sup 2}D{sub 5/2} state lifetime was determined.

  9. Counteracting the climate effects of volcanic eruptions using short-lived greenhouse gases

    NASA Astrophysics Data System (ADS)

    Fuglestvedt, Jan S.; Samset, Bjørn H.; Shine, Keith P.

    2014-12-01

    A large volcanic eruption might constitute a climate emergency, significantly altering global temperature and precipitation for several years. Major future eruptions will occur, but their size or timing cannot be predicted. We show, for the first time, that it may be possible to counteract these climate effects through deliberate emissions of short-lived greenhouse gases, dampening the abrupt impact of an eruption. We estimate an emission pathway countering a hypothetical eruption 3 times the size of Mount Pinatubo in 1991. We use a global climate model to evaluate global and regional responses to the eruption, with and without counteremissions. We then raise practical, financial, and ethical questions related to such a strategy. Unlike the more commonly discussed geoengineering to mitigate warming from long-lived greenhouse gases, designed emissions to counter temporary cooling would not have the disadvantage of needing to be sustained over long periods. Nevertheless, implementation would still face significant challenges.

  10. Short-lived oxygen diffusion during hot, deep-seated meteoric alteration of anorthosite

    PubMed

    Mora; Riciputi; Cole

    1999-12-17

    Heterogeneous oxygen isotope compositions of plagioclase from the Boehls Butte anorthosite include some of the most oxygen-18-depleted values (to -16 per mil) reported for plagioclase in meta-igneous rocks and indicate high-temperature (T > 500 degrees C) isotopic exchange between plagioclase and nearly pristine meteoric fluid. Retrograde reaction-enhanced permeability assisted influx of meteoric-hydrothermal fluids into the deep-seated anorthosite. Isotopic gradients of about 14 per mil over 600 micrometers in single crystals require short-lived (about 10(4) years) diffusional exchange of oxygen and locally large effective water:rock ratios, followed by rapid loss of water and cessation of oxygen diffusion in the anorthosite.

  11. The short-lived African turquoise killifish: an emerging experimental model for ageing.

    PubMed

    Kim, Yumi; Nam, Hong Gil; Valenzano, Dario Riccardo

    2016-02-01

    Human ageing is a fundamental biological process that leads to functional decay, increased risk for various diseases and, ultimately, death. Some of the basic biological mechanisms underlying human ageing are shared with other organisms; thus, animal models have been invaluable in providing key mechanistic and molecular insights into the common bases of biological ageing. In this Review, we briefly summarise the major applications of the most commonly used model organisms adopted in ageing research and highlight their relevance in understanding human ageing. We compare the strengths and limitations of different model organisms and discuss in detail an emerging ageing model, the short-lived African turquoise killifish. We review the recent progress made in using the turquoise killifish to study the biology of ageing and discuss potential future applications of this promising animal model. PMID:26839399

  12. The short-lived African turquoise killifish: an emerging experimental model for ageing

    PubMed Central

    Kim, Yumi; Nam, Hong Gil; Valenzano, Dario Riccardo

    2016-01-01

    ABSTRACT Human ageing is a fundamental biological process that leads to functional decay, increased risk for various diseases and, ultimately, death. Some of the basic biological mechanisms underlying human ageing are shared with other organisms; thus, animal models have been invaluable in providing key mechanistic and molecular insights into the common bases of biological ageing. In this Review, we briefly summarise the major applications of the most commonly used model organisms adopted in ageing research and highlight their relevance in understanding human ageing. We compare the strengths and limitations of different model organisms and discuss in detail an emerging ageing model, the short-lived African turquoise killifish. We review the recent progress made in using the turquoise killifish to study the biology of ageing and discuss potential future applications of this promising animal model. PMID:26839399

  13. The short-lived African turquoise killifish: an emerging experimental model for ageing.

    PubMed

    Kim, Yumi; Nam, Hong Gil; Valenzano, Dario Riccardo

    2016-02-01

    Human ageing is a fundamental biological process that leads to functional decay, increased risk for various diseases and, ultimately, death. Some of the basic biological mechanisms underlying human ageing are shared with other organisms; thus, animal models have been invaluable in providing key mechanistic and molecular insights into the common bases of biological ageing. In this Review, we briefly summarise the major applications of the most commonly used model organisms adopted in ageing research and highlight their relevance in understanding human ageing. We compare the strengths and limitations of different model organisms and discuss in detail an emerging ageing model, the short-lived African turquoise killifish. We review the recent progress made in using the turquoise killifish to study the biology of ageing and discuss potential future applications of this promising animal model.

  14. The Irradiation Origin of Beryllium Radioisotopes and Other Short-lived Radionuclides

    NASA Astrophysics Data System (ADS)

    Gounelle, Matthieu; Shu, Frank H.; Shang, Hsien; Glassgold, A. E.; Rehm, K. E.; Lee, Typhoon

    2006-04-01

    Two explanations exist for the short-lived radionuclides (T1/2<=5 Myr) present in the solar system when the calcium-aluminum-rich inclusions (CAIs) first formed. They originated either from the ejecta of a supernova or by the in situ irradiation of nebular dust by energetic particles. With a half-life of only 53 days, 7Be is then the key discriminant, since it can be made only by irradiation. Using the same irradiation model developed earlier by our group, we calculate the yield of 7Be. Within model uncertainties associated mainly with nuclear cross sections, we obtain agreement with the experimental value. Moreover, if 7Be and 10Be have the same origin, the irradiation time must be short (a few to tens of years), and the proton flux must be of order F~2×1010 cm-2 s-1. The X-wind model provides a natural astrophysical setting that gives the requisite conditions. In the same irradiation environment, 26Al, 36Cl, and 53Mn are also generated at the measured levels within model uncertainties, provided that irradiation occurs under conditions reminiscent of solar impulsive events (steep energy spectra and high 3He abundance). The decoupling of the 26Al and 10Be observed in some rare CAIs receives a quantitative explanation when rare gradual events (shallow energy spectra and low 3He abundance) are considered. The yields of 41Ca are compatible with an initial solar system value inferred from the measured initial 41Ca/40Ca ratio and an estimate of the thermal metamorphism time (from Young et al.), alleviating the need for two-layer proto-CAIs. Finally, we show that the presence of supernova-produced 60Fe in the solar accretion disk does not necessarily mean that other short-lived radionuclides have a stellar origin.

  15. Seeds of alpine plants are short lived: implications for long-term conservation

    PubMed Central

    Mondoni, Andrea; Probert, Robin J.; Rossi, Graziano; Vegini, Emanuele; Hay, Fiona R.

    2011-01-01

    Background and Aims Alpine plants are considered one of the groups of species most sensitive to the direct and indirect threats to ecosystems caused by land use and climate change. Collecting and banking seeds of plant species is recognized as an effective tool for providing propagating material to re-establish wild plant populations and for habitat repair. However, seeds from cold wet environments have been shown to be relatively short lived in storage, and therefore successful long-term seed conservation for alpine plants may be difficult. Here, the life spans of 69 seed lots representing 63 related species from alpine and lowland locations from northern Italy are compared. Methods Seeds were placed into experimental storage at 45 °C and 60 % relative humidity (RH) and regularly sampled for germination. The time taken in storage for viability to fall to 50 % (p50) was determined using probit analysis and used as a measure of relative seed longevity between seed lots. Key Results Across species, p50 at 45 °C and 60 % RH varied from 4·7 to 95·5 d. Seed lots from alpine populations/species had significantly lower p50 values compared with those from lowland populations/species; the lowland seed lots showed a slower rate of loss of germinability, higher initial seed viability, or both. Seeds were progressively longer lived with increased temperature and decreased rainfall at the collecting site. Conclusions Seeds of alpine plants are short lived in storage compared with those from lowland populations/related taxa. The lower resistance to ageing in seeds of alpine plants may arise from low selection pressure for seed resistance to ageing and/or damage incurred during seed development due to the cool wet conditions of the alpine climate. Long-term seed conservation of several alpine species using conventional seed banking methods will be problematic. PMID:21081585

  16. Muscle senescence in short-lived wild mammals, the soricine shrews Blarina brevicauda and Sorex palustris.

    PubMed

    Hindle, Allyson G; Lawler, John M; Campbell, Kevin L; Horning, Markus

    2009-06-01

    Red-toothed (soricine) shrews are consummate predators exhibiting the highest energy turnovers and shortest life spans (ca. 18 months) of any mammal, yet virtually nothing is known regarding their physiological aging. We assessed the emerging pattern of skeletal muscle senescence (contractile/connective tissue components) in sympatric species, the semi-aquatic water shrew (WS), Sorex palustris, and the terrestrial short-tailed shrew (STS), Blarina brevicauda, to determine if muscle aging occurs in wild, short-lived mammals (H(0): shrews do not survive to an age where senescence occurs), and if so, whether these alterations are species-specific. Gracilis muscles were collected from first-year (n=17) and second-year (n=17) field-caught shrews. Consistent with typical mammalian aging, collagen content (% area) increased with age in both species (S. palustris: approximately 50%; B. brevicauda: approximately 60%). Muscle was dominated by stiffer Type I collagen, and the ratio of collagen Type I:Type III more than doubled with age. The area ratio of muscle:collagen decreased with age in both species, but was considerably lower in adult STS, suggesting species-specificity of senescence. Extracellular space was age-elevated in B. brevicauda, but was preserved in S. palustris ( approximately 50 vs. 10% elevation). Though juvenile interspecific comparisons revealed no significance, adult WS myocytes had 68% larger cross-sectional area and occurred at 28% lower fibers/area than those of adult STS. We demonstrate that age-related muscle senescence does occur in wild-caught, short-lived mammals, and we therefore reject this classic aging theory tenet. Our findings moreover illustrate that differential age adjustments in contractile/connective tissue components of muscle occur in the two species of wild-caught shrews. PMID:19296507

  17. Seasonal Short-Lived Radium Activity in the Venice Lagoon: The Role of Residence Time

    NASA Astrophysics Data System (ADS)

    Rapaglia, J.; Ferrarin, C.; Zaggia, L.; Umgiesser, G.; Zuppi, G.; Manfe', G.

    2008-12-01

    Radium is considered to be an excellent tracer of submarine groundwater discharge (SGD) and, therefore, has been used in many studies of this process in the past decade. Comprehensive surveys of excess 223,224Ra activity were completed in the surface waters of the Venice Lagoon over 6 seasons in order to quantify seasonal variation of SGD into the lagoon. The mass balance of radium found that SGD was 5-26 times greater than total river discharge (35.5 m3 s-1), and that total SGD could differ by almost an order of magnitude pending season. Several possible parameters, which may cause the seasonal variation, were tested. These included precipitation events, average tidal elevation, average tidal excursion, wind speed and direction, yet none provided a satisfactory explanation for the difference. Residence time based on a hydrodynamic model, however, was very strongly correlated with the observed variation. When the average residence time in the lagoon was low (5 days) the SGD was calculated to be 930 m3 s-1 and when the average residence time was high (9 days) the SGD was quantified as 160 m3 s-1. Radioactive decay is already accounted for in the mass balance model and therefore this correlation must be explained by another process. The Venice Lagoon is characterized by low residence time during periods of spring tides and bora or northerly winds, both of which create exceptionally strong currents in the Venice Lagoon. The currents as well as the large tidal excursion which occurs at spring tides drive a recirculation of seawater through the surface sediments, which greatly increases short-lived Ra activity in the surface waters. This evidence suggests, therefore, that short-lived Ra mass balance studies, which are based on a single survey, may under or overestimate the mean annual SGD pending the hydrodynamics of the investigated location.

  18. Global Air Quality and Climate Impacts of Mitigating Short-lived Climate Pollution in China

    NASA Astrophysics Data System (ADS)

    Harper, K.; Unger, N.; Heyes, C.; Kiesewetter, G.; Klimont, Z.; Schoepp, W.; Wagner, F.

    2014-12-01

    China is a major emitter of harmful air pollutants, including the short-lived climate pollutants (SLCPs) and their precursors. Implementation of pollution control technologies provides a mechanism for simultaneously protecting human and ecosystem health and achieving near-term climate co-benefits; however, predicting the outcomes of technical and policy interventions is challenging because the SLCPs participate in both climate warming and cooling and share many common emission sources. Here, we present the results of a combined regional integrated assessment and global climate modeling study aimed at quantifying the near-term climate and air quality co-benefits of selective control of Chinese air pollution emissions. Results from IIASA's Greenhouse Gas - Air Pollution Interactions and Synergies (GAINS) integrated assessment model indicate that methane emission reductions make up > 75% of possible CO2-equivalent emission reductions of the SLCPs and their precursors in China in 2030. A multi-pollutant emission reduction scenario incorporating the 2030 Chinese pollution control measures with the highest potential for future climate impact is applied to the NASA ModelE2 - Yale Interactive Terrestrial Biosphere (NASA ModelE2-YIBs) global carbon - chemistry - climate model to assess the regional and long-range impacts of Chinese SLCP mitigation measures. Using model simulations that incorporate dynamic methane emissions and photosynthesis-dependent isoprene emissions, we quantify the impacts of Chinese reductions of the short-lived air pollutants on radiative forcing and on surface ozone and particulate air pollution. Present-day modeled methane mole fractions are evaluated against SCIAMACHY methane columns and NOAA ESRL/GMD surface flask measurements.

  19. Recent evolution of permafrost soils: insight from U-Th series nuclides

    NASA Astrophysics Data System (ADS)

    Bagard, marie-laure; Chabaux, Francois; Rihs, Sophie; Pokrovsky, Oleg; Viers, Jérome

    2015-04-01

    Permafrost ecosystems are particularly sensitive to climate warming, which notably induces a deepening of the active layer (the maximum thawing depth during summer time). As a consequence, geochemical and hydrological fluxes within boreal areas are expected to be significantly affected in the future. Understanding the relationship between environmental changes and permafrost modifications is then a major challenge. This work aims to evaluate in a Siberian watershed the dynamics of the permafrost active layer and their recent modifications by combining a classic study of long-lived nuclides to the study of short-lived nuclides of U and Th decay series in two soil profiles. These profiles, located on opposite slopes (north- and south-facing slopes) of the Kulingdakan watershed (Putorana Plateau, Central Siberia), were sampled at several depths within the active layer and (238U), (230Th), (232Th), (226Ra), (228Ra), (228Th), (210Pb) were measured on bulk soil samples by TIMS or gamma spectrometry. Our results show that south-facing and north-facing soil profiles are significantly different in terms of evolution of chemical concentrations and nuclide activities; north-facing soil profile is strongly affected by atmospheric inputs whereas long-lived nuclide dynamics within south-facing soil profile are dominated by weathering and exhibit more complex patterns. The amount of above-ground biomass being the single varying parameter between the two slopes of the watershed, we suggest that the structuring of permafrost active layer is very sensitive to vegetation activity and that the functioning of boreal soils will be significantly modified by its development due to more favorable climatic conditions. Moreover, the coupling of long and short-lived nuclides highlights the superimposition of a recent mobilization of chemical elements within soils (<10 years) over a much older soil structuring (>8000 years), which can be observed for both soil profiles. The shallowest layer of

  20. Accurate mass measurements of short-lived isotopes with the MISTRAL* rf spectrometer

    SciTech Connect

    Toader, C.; Audi, G.; Doubre, H.; Jacotin, M.; Henry, S.; Kepinski, J.-F.; Le Scornet, G.; Lunney, D.; Monsanglant, C.; Saint Simon, M. de; Thibault, C.; Borcea, C.; Duma, M.; Lebee, G.

    1999-01-15

    The MISTRAL* experiment has measured its first masses at ISOLDE. Installed in May 1997, this radiofrequency transmission spectrometer is to concentrate on nuclides with particularly short half-lives. MISTRAL received its first stable beam in October and first radioactive beam in November 1997. These first tests, with a plasma ion source, resulted in excellent isobaric separation and reasonable transmission. Further testing and development enabled first data taking in July 1998 on neutron-rich Na isotopes having half-lives as short as 31 ms.

  1. Modeling the formation of tropical rings of atomic bromine and iodine

    NASA Astrophysics Data System (ADS)

    Saiz-Lopez, Alfonso; Fernandez, Rafael; Gomez Martin, Juan Carlos; Salawitch, Ross; Kinnison, Douglas; Lamarque, Jean-Francois; Tilmes, Simone

    2015-04-01

    Very short-lived (VSL) bromo- and iodocarbons are produced at a prodigious rate by ocean biology and these source compounds (SGVSL), together with their degradation inorganic products (PGVSL), are lofted by vigorous convection to the tropical tropopause layer (TTL). Using a state-of-the-art photochemical mechanism within a global model, we investigate the partitioning and loading of reactive inorganic halogens within the TTL. The specific low ozone and low temperature conditions of this region of the atmosphere changes the steady-state between halogen atoms and oxides, making the atoms the dominant species. We suggest that this leads to the formation of two daytime "tropical rings" of both atomic bromine and iodine that circle the tropics with the sun. In addition to a description of this photochemical phenomenon, this communication the partitioning of inorganic halogen reservoirs within the TTL and assess its relevance for the injection of bromine to stratosphere.

  2. The effect of representing bromine from VSLS on the simulation and evolution of Antarctic ozone

    NASA Astrophysics Data System (ADS)

    Oman, Luke D.; Douglass, Anne R.; Salawitch, Ross J.; Canty, Timothy P.; Ziemke, Jerald R.; Manyin, Michael

    2016-09-01

    We use the Goddard Earth Observing System Chemistry-Climate Model, a contributor to both the 2010 and 2014 World Meteorological Organization Ozone Assessment Reports, to show that inclusion of 5 parts per trillion (ppt) of stratospheric bromine (Bry) from very short lived substances (VSLS) is responsible for about a decade delay in ozone hole recovery. These results partially explain the significantly later recovery of Antarctic ozone noted in the 2014 report, as bromine from VSLS was not included in the 2010 Assessment. We show multiple lines of evidence that simulations that account for VSLS Bry are in better agreement with both total column BrO and the seasonal evolution of Antarctic ozone reported by the Ozone Monitoring Instrument on NASA's Aura satellite. In addition, the near-zero ozone levels observed in the deep Antarctic lower stratospheric polar vortex are only reproduced in a simulation that includes this Bry source from VSLS.

  3. Modeling the Formation of Tropical Rings of Atomic Bromine and Iodine

    NASA Astrophysics Data System (ADS)

    Saiz-Lopez, A.; Fernandez, R.; Salawitch, R. J.; Kinnison, D. E.; Lamarque, J. F.; Ordoñez, C.; Gomez Martin, J. C.; Tilmes, S.

    2014-12-01

    Very short-lived (VSL) bromo- and iodocarbons are produced at a prodigious rate by ocean biology and these source compounds (SGVSL), together with their degradation inorganic products (PGVSL), are lofted by vigorous convection to the tropical tropopause layer (TTL). Using a state-of-the-art photochemical mechanism within a global model, we investigate the partitioning and loading of reactive inorganic halogens within the TTL. The specific low ozone and low temperature conditions of this region of the atmosphere changes the steady-state between halogen atoms and oxides, making the atoms the dominant species. We suggest that this leads to the formation of two daytime "tropical rings" of both atomic bromine and iodine that circle the tropics with the sun. In addition to a description of this photochemical phenomenon, this communication the partitioning of inorganic halogen reservoirs within the TTL and assess its relevance for the injection of bromine to stratosphere.

  4. Increased Concentrations of Short-Lived Decay-Series Radionuclides in Groundwaters Underneath the Nopal I Uranium Deposit at Pena Blanca, Mexico

    NASA Astrophysics Data System (ADS)

    Luo, S.; Ku, T.; Todd, V.; Murrell, M. T.; Dinsmoor, J. C.

    2007-05-01

    The Nopal I uranium ore deposit at Pena Blanca, Mexico, located at > 200 meters above the groundwater table, provides an ideal natural analog for quantifying the effectiveness of geological barrier for isolation of radioactive waste nuclides from reaching the human environments through ground water transport. To fulfill such natural analog studies, three wells (PB1, PB2, and PB3 respectively) were drilled at the site from the land surface down to the saturated groundwater zone and ground waters were collected from each of these wells through large- volume sampling/in-situ Mn-filter filtration for analyses of short-lived uranium/thorium-series radionuclides. Our measurements from PB1 show that the groundwater standing in the hole has much lower 222Rn activity than the freshly pumped groundwater. From this change in 222Rn activity, we estimate the residence time of groundwater in PB1 to be about 20 days. Our measurements also show that the activities of short-lived radioisotopes of Th (234Th), Ra (228Ra, 224Ra, 223Ra), Rn (222Rn), Pb (210Pb), and Po (210Po) in PB1, PB2, and PB3 are all significantly higher than those from the other wells near the Nopal I site. These high activities provide evidence for the enrichment of long-lived U and Ra isotopes in the groundwater as well as in the associated adsorbed phases on the fractured aquifer rocks underneath the ore deposit. Such enrichment suggests a rapid dissolution of U and Ra isotopes from the uranium ore deposit in the vadose zone and the subsequent migration to the groundwater underneath. A reactive transport model can be established to characterize the in-situ transport of radionuclides at the site. The observed change of 222Rn activity at PB1 also suggests that the measured high radioactivityies in ground waters from the site isare not an artifact of drilling operations. However, further studies are needed to assess if or to what extent the radionuclide migration is affected by the previous mining activities at

  5. Bromine function in halite geochemistry

    SciTech Connect

    Billo, S.M. )

    1991-06-01

    Of the halogens or salt formers, bromine is the only nonmetal which occurs naturally as a poisonous liquid much denser than water. The power of its atoms, expressed by a valence of 1 and 5, makes it unite directly with a large number of metallic elements to form salts. As a rare and strongly electronegative element of group VII in the periodic table, bromine exists in seawater and evaporitic brines as bromide with a ratio to chlorinity of 0.00348. Most water detains only about 1 ppm bromide for each 300 ppm of chloride. The most abundant source of bromine is ocean water (65 ppm Br), but richer peps occur in salt deposits and primarily in mineral brines. Atomic absorption spectrophotometric resolutions of Permian Castile halites exposed low values of bromine compared with its higher quantities in modern oceans like the Mediterranean. Bromine analyses of the two petrographically distinct forms of halite that characterize many ancient evaporite deposits, as in the Elk Point basin fields of Alberta, imply they crystallized from brines of noticeably different concentrations. Bromine in halite has been used as a paleosalinity indicator and a stratigraphic marker. Bromine liquid, with an atomic weight of 79.904 and atomic number 35, is used in producing gasoline antiknock mixtures, fumigants, photographic chemicals, drilling fluids, and fire retardants. It is also highly toxic and corrosive as bromine gas. Bromine contents greater than 1 ppm may be unsafe in the atmosphere, and a dose of 500 ppm can lead to death in less than an hour.

  6. AGB stars as a source of short-lived radioactive nuclei in the solar nebula

    NASA Technical Reports Server (NTRS)

    Wasserburg, G. J.; Gallino, R.; Busso, M.; Raiteri, C. M.

    1993-01-01

    The purpose is to estimate the possible contribution of some short-lived nuclei to the early solar nebula from asymptotic giant branch (AGB) sources. Low mass (1 to 3 solar mass) AGB stars appear to provide a site for synthesis of the main s process component for solar system material with an exponential distribution of neutron irradiations varies as exp(-tau/tau(sub 0)) (where tau is the time integrated neutron flux with a mean neutron exposure tau(sub 0)) for solar abundances with tau(sub 0) = 0.28 mb(sup -1). Previous workers estimated the synthesis of key short-lived nuclei which might be produced in AGB stars. While these calculations exhibit the basic characteristics of nuclei production by neutron exposure, there is need for a self-consistent calculation that follows AGB evolution and takes into account the net production from a star and dilution with the cloud medium. Many of the general approaches and the conclusions arrived at were presented earlier by Cameron. The production of nuclei for a star of 1.5 solar mass during the thermal pulsing of the AGB phase was evaluated. Calculations were done for a series of thermal pulses with tau(sub 0) = 0.12 and 0.28 mb(sup -1). These pulses involve s nucleosynthesis in the burning shell at the base of the He zone followed by the ignition of the H burning shell at the top of the He zone. After about 10-15 cycles the abundances of the various nuclei in the He zone become constant. Computations of the abundances of all nuclei in the He zone were made following Gallino. The mass of the solar nebula was considered to consist of some initial material of approximately solar composition plus some contributions from AGB stars. The ratios of the masses required from the AGB He burning zone to the ISM necessary to produce the observed value of Pd-107/Pd-108 in the early solar system were calculated and this dilution factor was applied to all other relevant nuclei.

  7. Variation in the local population dynamics of the short-lived Opuntia macrorhiza (Cactaceae).

    PubMed

    Haridas, C V; Keeler, Kathleen H; Tenhumberg, Brigitte

    2015-03-01

    Spatiotemporal variation in demographic rates can have profound effects for population persistence, especially for dispersal-limited species living in fragmented landscapes. Long-term studies of plants in such habitats help with understanding the impacts of fragmentation on population persistence but such studies are rare. In this work, we reanalyzed demographic data from seven years of the short-lived cactus Opuntia macrorhiza var. macrorhiza at five plots in Boulder, Colorado. Previous work combining data from all years and all plots predicted a stable population (deterministic log lamda approximately 0). This approach assumed that all five plots were part of a single population. Since the plots were located in a suburban-agricultural interface separated by highways, grazing lands, and other barriers, and O. macrorhiza is likely dispersal limited, we analyzed the dynamics of each plot separately using stochastic matrix models assuming each plot represented a separate population. We found that the stochastic population growth rate log lamdaS varied widely between populations (log lamdaS = 0.1497, 0.0774, -0.0230, -0.2576, -0.4989). The three populations with the highest growth rates were located close together in space, while the two most isolated populations had the lowest growth rates suggesting that dispersal between populations is critical for the population viability of O. macrorhiza. With one exception, both our prospective (stochastic elasticity) and retrospective (stochastic life table response experiments) analysis suggested that means of stasis and growth, especially of smaller plants, were most important for population growth rate. This is surprising because recruitment is typically the most important vital rate in a short-lived species such as O. macrorhiza. We found that elasticity to the variance was mostly negligible, suggesting that O. macrorhiza populations are buffered against large temporal variation. Finally, single-year elasticities to means

  8. The impacts of short-lived ozone precursors on climate and air quality

    NASA Astrophysics Data System (ADS)

    Fry, Meridith McGee

    Human emissions of short-lived ozone precursors not only degrade air quality and health, but indirectly affect climate via chemical effects on ozone, methane, and aerosols. Some have advocated for short-lived air pollutants in near-term climate mitigation strategies, in addition to national air quality programs, but their radiative forcing (RF) impacts are uncertain and vary based on emission location. In this work, global chemical transport modeling is combined with radiative transfer modeling to study the impacts of regional ozone precursor emissions (NOx, CO, and NMVOCs) on climate, via changes in ozone, methane, and sulfate, and on regional and global air quality. The first study evaluates NOx, CO, and NMVOC emission reductions from four regions across an ensemble of models, finding that NMVOC and CO reductions from all four regions cool climate (negative RF) by decreasing ozone and methane, while improving air quality. NOx and NMVOC global warming potentials (GWPs), a measure of the relative radiative effects of individual climate forcers, vary strongly among regions, while CO GWPs show less variability. The second and third studies investigate further the RF and air quality impacts of CO and NMVOC emission reductions from 10 world regions. The greatest benefits to RF and air quality (per unit emissions) are achieved by CO reductions from the tropics, due to more active photochemistry and convection. CO GWPs are fairly independent of the reduction region (GWP20: 3.71 to 4.37; GWP100: 1.26 to 1.44), while NMVOC GWPs are more variable (GWP 20: -1.13 to 18.9; GWP100: 0.079 to 6.05). Accounting for additional forcings from CO and NMVOC emissions would likely change RF and GWP estimates. Regionally-specific GWPs for NOx and NMVOCs and a globally-uniform GWP for CO may allow these gases to be included in a multi-gas emissions trading framework, and enable comprehensive strategies for meeting climate and air quality goals simultaneously. Future research could

  9. Bromine partitioning in the tropical tropopause layer: implications for stratospheric injection

    NASA Astrophysics Data System (ADS)

    Fernandez, R. P.; Salawitch, R. J.; Kinnison, D. E.; Lamarque, J.-F.; Saiz-Lopez, A.

    2014-07-01

    Very short-lived (VSL) bromocarbons are produced at a prodigious rate by ocean biology and these source compounds (SGVSL), together with their degradation inorganic products (PGVSL), are lofted by vigorous convection to the tropical tropopause layer (TTL). Using a state-of-the-art photochemical mechanism within a global model, we calculate annual average stratospheric injection of total bromine due to VSL sources to be 5 pptv, with ~3 pptv entering the stratosphere as PGVSL and ~2 pptv as SGVSL. The geographic distribution and partitioning of VSL bromine within the TTL, and its consequent stratospheric injection, is highly dependent on the oceanic flux, the strength of convection and the occurrence of heterogeneous recycling reactions. Our calculations indicate atomic Br should be the dominant inorganic species in large regions of the TTL during daytime, due to the low ozone and cold conditions of this region. We propose the existence of a "tropical ring of atomic bromine" located approximately between 15 and 19 km and 30° N to 30° S. Daytime Br / BrO ratios of up to ~4 are predicted within the Br ring in regions of highly convective transport, such as the tropical Western Pacific. Then, we suggest experimental programs designed to quantify the bromine budget of the TTL and the stratospheric injection of VSL biogenic bromocarbons should include a strategy for the measurement of atomic Br during daytime and HOBr or BrCl during nighttime.

  10. Bromine partitioning in the tropical tropopause layer: implications for stratospheric injection

    NASA Astrophysics Data System (ADS)

    Fernandez, R. P.; Salawitch, R. J.; Kinnison, D. E.; Lamarque, J.-F.; Saiz-Lopez, A.

    2014-12-01

    Very short-lived (VSL) bromocarbons are produced at a prodigious rate by ocean biology and these source compounds (SGVSL), together with their inorganic degradation products (PGVSL), are lofted by vigorous convection to the tropical tropopause layer (TTL). Using a state-of-the-art photochemical mechanism within a global model, we calculate annual average stratospheric injection of total bromine due to VSL sources to be 5 pptv (parts per trillion by volume), with ~ 3 pptv entering the stratosphere as PGVSL and ~ 2 pptv as SGVSL. The geographic distribution and partitioning of VSL bromine within the TTL, and its consequent stratospheric injection, is highly dependent on the oceanic flux, the strength of convection and the occurrence of heterogeneous recycling reactions. Our calculations indicate atomic Br should be the dominant inorganic species in large regions of the TTL during daytime, due to the low ozone and cold conditions of this region. We propose the existence of a "tropical ring of atomic bromine" located approximately between 15 and 19 km and between 30° N and 30° S. Daytime Br / BrO ratios of up to ~ 4 are predicted within this inhomogeneous ring in regions of highly convective transport, such as the tropical Western Pacific. Therefore, we suggest that experimental programs designed to quantify the bromine budget of the TTL and the stratospheric injection of VSL biogenic bromocarbons should include a strategy for the measurement of atomic Br during daytime as well as HOBr and BrCl during nighttime.

  11. INTRODUCTION TO BROMINATED FLAME RETARDANTS

    EPA Science Inventory

    Brominated flame retardants (BFRs) are a large and diverse class of major industrial products used to provide fire safety. Tetrabromobisphenol A (TBBPA), Hexabromocylocodecane (HBCD), and Polybrominated Diphenyl Ethers (PBDEs) are the major commercial compounds. TBBPA is a react...

  12. Age-dependent decline in fin regenerative capacity in the short-lived fish Nothobranchius furzeri

    PubMed Central

    Wendler, Sebastian; Hartmann, Nils; Hoppe, Beate; Englert, Christoph

    2015-01-01

    The potential to regenerate declines with age in a wide range of organisms. A popular model system to study the mechanisms of regeneration is the fin of teleost fish, which has the ability to fully regrow upon amputation. Here, we used the short-lived killifish Nothobranchius furzeri to analyse the impact of aging on fin regeneration in more detail. We observed that young fish were able to nearly completely (98%) regenerate their amputated caudal fins within 4 weeks, whereas middle-aged fish reached 78%, old fish 57% and very old fish 46% of their original fin size. The difference in growth rate between young and old fish was already significant at 3 days post amputation (dpa) and increased with time. We therefore hypothesized that early events are crucial for the age-related differences in regenerative capacity. Indeed, we could observe a higher percentage of proliferating cells in early regenerating fin tissue of young fish compared with aged fish and larger fractions of apoptotic cells in aged fish. Furthermore, young fish showed peak upregulation of several genes involved in fgf and wnt/β-catenin signalling at an earlier time point than old fish. Our findings suggest that regenerative processes are initiated earlier and that regeneration overall is more efficient in younger fish. PMID:26121607

  13. Short-Lived Cages Restrict Protein Diffusion in the Plasma Membrane

    PubMed Central

    Goiko, Maria; de Bruyn, John R.; Heit, Bryan

    2016-01-01

    The plasma membrane is a heterogeneous environment characterized by anomalous diffusion and the presence of microdomains that are molecularly distinct from the bulk membrane. Using single particle tracking of the C-type lectin CD93, we have identified for the first time the transient trapping of transmembrane proteins in cage-like microdomains which restrict protein diffusion. These cages are stabilized by actin-dependent confinement regions, but are separate structures with sizes and lifespans uncorrelated to those of the underlying actin corral. These membrane cages require cholesterol for their strength and stability, with cholesterol depletion decreasing both. Despite this, cages are much larger in size and are longer lived than lipid rafts, suggesting instead that cholesterol-dependent effects on membrane fluidity or molecular packing play a role in cage formation. This diffusional compartment in the plasma membrane has characteristics of both a diffusional barrier and a membrane microdomain, with a size and lifespan intermediate between short-lived microdomains such as lipid rafts and long-lasting diffusional barriers created by the actin cytoskeleton. PMID:27725698

  14. Short-Lived Buildings in China: Impacts on Water, Energy, and Carbon Emissions.

    PubMed

    Cai, Wenjia; Wan, Liyang; Jiang, Yongkai; Wang, Can; Lin, Lishen

    2015-12-15

    This paper has changed the vague understanding that "the short-lived buildings have huge environmental footprints (EF)" into a concrete one. By estimating the annual floor space of buildings demolished and calibrating the average building lifetime in China, this paper compared the EF under various assumptive extended buildings' lifetime scenarios based on time-series environmental-extended input-output model. Results show that if the average buildings' lifetime in China can be extended from the current 23.2 years to their designed life expectancy, 50 years, in 2011, China can reduce 5.8 Gt of water withdrawal, 127.1 Mtce of energy consumption, and 426.0 Mt of carbon emissions, each of which is equivalent to the corresponding annual EF of Belgium, Mexico, and Italy. These findings will urge China to extend the lifetime of existing and new buildings, in order to reduce the EF from further urbanization. This paper also verifies that the lifetime of a product or the replacement rate of a sector is a very important factor that influences the cumulative EF. When making policies to reduce the EF, adjusting people's behaviors to extend the lifetime of products or reduce the replacement rate of sectors may be a very simple and cost-effective option.

  15. Short-Lived HF Molecules in Superionic Hydrogen Fluoride at Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Tsumuraya, Kazuo; Ohde, Yoshiyuki; Oshimi, Tadaaki

    2015-02-01

    The first principles molecular dynamics study enables us to elucidate the existence of short-lived HF molecules in the superionic hydrogen fluoride at an extreme high pressure and a temperature. Three fourth of the immobile fluorines constructs the molecules with lifetime of 8 fs. The ionized fluorines form weak HF bond with the proton in the nearest HF molecule of which the lifetime is 3 fs. The covalent and the Coulomb bonds between the fluorines and the protons form indirect covalent and indirect Coulomb attractions between the di-interstitial protons on the mid-fluorines. The attractions reduce the Haven's ratio of the protons. The absence of the proton dimers indicates a failure of the caterpillar diffusion model or the Frenkel-Kontorova chain model for the superionic diffusion of the protons. The incompletely ionized cations and anions reduce their Coulomb attractions which induce the sublattice melting of smaller size and smaller mass of the protons than the fluorines. The electronic states of the fluoride are intermediate between the ionic crystals and the covalent bonded molecular crystals. The superionic conductors are classified into three groups: they are molecular type, covalent metalloid type, and metallic type conductors.

  16. Short-Lived Buildings in China: Impacts on Water, Energy, and Carbon Emissions.

    PubMed

    Cai, Wenjia; Wan, Liyang; Jiang, Yongkai; Wang, Can; Lin, Lishen

    2015-12-15

    This paper has changed the vague understanding that "the short-lived buildings have huge environmental footprints (EF)" into a concrete one. By estimating the annual floor space of buildings demolished and calibrating the average building lifetime in China, this paper compared the EF under various assumptive extended buildings' lifetime scenarios based on time-series environmental-extended input-output model. Results show that if the average buildings' lifetime in China can be extended from the current 23.2 years to their designed life expectancy, 50 years, in 2011, China can reduce 5.8 Gt of water withdrawal, 127.1 Mtce of energy consumption, and 426.0 Mt of carbon emissions, each of which is equivalent to the corresponding annual EF of Belgium, Mexico, and Italy. These findings will urge China to extend the lifetime of existing and new buildings, in order to reduce the EF from further urbanization. This paper also verifies that the lifetime of a product or the replacement rate of a sector is a very important factor that influences the cumulative EF. When making policies to reduce the EF, adjusting people's behaviors to extend the lifetime of products or reduce the replacement rate of sectors may be a very simple and cost-effective option. PMID:26561867

  17. Climatologies Of Stratospheric Short-Lived Species From ODIN/SMR: Methodology For CLO

    NASA Astrophysics Data System (ADS)

    Khosravi, M.; Urban, J.; Murtah, D. P.; Brohede, S.

    2013-12-01

    The Sub-Millimetre Radiometer (SMR) on board the Odin satellite has been measuring short-lived stratospheric species such as chlorine monoxide (ClO) since Odin's launch in 2001. Odin/SMR at its sun-synchronous orbit measures at certain local times observations around sunrise and sunset at the equator. Due to the drift of Odin's orbit in local solar time and the fact that measurements are done at different local times, a correction is required before a monthly zonal mean climatology can be calculated and trends of ClO can be evaluated. To deal with this, scaling factors are calculated using a photo-chemical box model for correction of the mixing ratios respective to a reference time. The uncertainties and limitations of this method are estimated by checking the internal consistency of the results, so that comparing the scaled a.m. ClO time-series to p.m. scaled time- series should give the same results. We found out that scaling SMR ClO to the ascending time of Microwave Limb Sounder (MLS) as reference at about 1.30 a.m. at the equator gives better result compared to the scaling ClO to MLS descending node at about 1.30. p.m. The time series calculated for the morning SMR ClO scaled (to 1.30 a.m.) agrees with the evening ClO scaled.

  18. Magneto-photocurrent in organic photovoltaic cells; the effect of short-lived charge transfer states

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, Eitan; Devir-Wolfman, A.; Khachatryan, B.; Gautam, B.; Tessler, N.; Vardeny, Z. V.

    2014-03-01

    The spin degrees of freedom are responsible for the magnetic field effects in organic devices at low magnetic fields. The MFE is formed via a variety of spin-mixing mechanisms, such as the hyperfine (typical strength: Bhf<0.003 T), triplet-polaron or triplet-triplet (Btrip<0.1 T) interactions, that limit the response by their respective strength. We report on magneto-photocurrent (MPC) response of bulk hetero-junction organic photovoltaic cells in an extended field range B =0.00005 - 8 Tesla, and found that spin mixing mechanisms are still operative even at the highest fields. In fact, the response MPC(B) can be divided into three main regions, each with a different sign: sharp response that increases with B up to B1 ~ 0.04 T; broad response that decreases with B in the range from B1 to B2 ~ 0.3-0.7 T; and even broader response that increases above B2; this response does not saturate even at 8.5 T. We attribute the latter MPC component to short-lived charge transfer excitons (CTE) where spin-mixing is caused by the difference of the donor/acceptor g factors; a mechanism that is increasingly more effective at high magnetic field. Supported by the US-Israel BSF.

  19. Growth in stratospheric chlorine from short-lived chemicals not controlled by the Montreal Protocol

    NASA Astrophysics Data System (ADS)

    Hossaini, R.; Chipperfield, M. P.; Saiz-Lopez, A.; Harrison, J. J.; Glasow, R.; Sommariva, R.; Atlas, E.; Navarro, M.; Montzka, S. A.; Feng, W.; Dhomse, S.; Harth, C.; Mühle, J.; Lunder, C.; O'Doherty, S.; Young, D.; Reimann, S.; Vollmer, M. K.; Krummel, P. B.; Bernath, P. F.

    2015-06-01

    We have developed a chemical mechanism describing the tropospheric degradation of chlorine containing very short-lived substances (VSLS). The scheme was included in a global atmospheric model and used to quantify the stratospheric injection of chlorine from anthropogenic VSLS ( ClyVSLS) between 2005 and 2013. By constraining the model with surface measurements of chloroform (CHCl3), dichloromethane (CH2Cl2), tetrachloroethene (C2Cl4), trichloroethene (C2HCl3), and 1,2-dichloroethane (CH2ClCH2Cl), we infer a 2013 ClyVSLS mixing ratio of 123 parts per trillion (ppt). Stratospheric injection of source gases dominates this supply, accounting for ˜83% of the total. The remainder comes from VSLS-derived organic products, phosgene (COCl2, 7%) and formyl chloride (CHClO, 2%), and also hydrogen chloride (HCl, 8%). Stratospheric ClyVSLS increased by ˜52% between 2005 and 2013, with a mean growth rate of 3.7 ppt Cl/yr. This increase is due to recent and ongoing growth in anthropogenic CH2Cl2—the most abundant chlorinated VSLS not controlled by the Montreal Protocol.

  20. Seasonal assemblages and short-lived blooms in coastal north-west Atlantic Ocean bacterioplankton.

    PubMed

    El-Swais, Heba; Dunn, Katherine A; Bielawski, Joseph P; Li, William K W; Walsh, David A

    2015-10-01

    Temperate oceans are inhabited by diverse and temporally dynamic bacterioplankton communities. However, the role of the environment, resources and phytoplankton dynamics in shaping marine bacterioplankton communities at different time scales remains poorly constrained. Here, we combined time series observations (time scales of weeks to years) with molecular analysis of formalin-fixed samples from a coastal inlet of the north-west Atlantic Ocean to show that a combination of temperature, nitrate, small phytoplankton and Synechococcus abundances are best predictors for annual bacterioplankton community variability, explaining 38% of the variation. Using Bayesian mixed modelling, we identified assemblages of co-occurring bacteria associated with different seasonal periods, including the spring bloom (e.g. Polaribacter, Ulvibacter, Alteromonadales and ARCTIC96B-16) and the autumn bloom (e.g. OM42, OM25, OM38 and Arctic96A-1 clades of Alphaproteobacteria, and SAR86, OM60 and SAR92 clades of Gammaproteobacteria). Community variability over spring bloom development was best explained by silicate (32%)--an indication of rapid succession of bacterial taxa in response to diatom biomass--while nanophytoplankton as well as picophytoplankton abundance explained community variability (16-27%) over the transition into and out of the autumn bloom. Moreover, the seasonal structure was punctuated with short-lived blooms of rare bacteria including the KSA-1 clade of Sphingobacteria related to aromatic hydrocarbon-degrading bacteria.

  1. Harvard-MIT research program in short-lived radiopharmaceuticals. Final report

    SciTech Connect

    Adelstein, S.J.

    1995-02-01

    The Harvard-MIT Research Program in Short-lived Radiopharmaceuticals was established in 1977 to foster interaction among groups working in radiopharmaceutical chemistry at Harvard Medical School, the Massachusetts Institute of Technology, and the Massachusetts General Hospital. To this was added a group at The Childrens Hospital. From these collaborations and building upon the special strengths of the participating individuals, laboratories and institutions, it was hoped that original approaches would be found for the design of new, clinically useful, radiolabeled compounds. The original thrust of this proposal included: (a) examination of the coordination chemistry of technetium as a basis for rational radiopharmaceutical design, (b) development of an ultrashort-lived radionuclide generator for the diagnosis of congenital heart disease in newborns, (c) synthesis of receptor-site-directed halopharmaceuticals, (d) improved facile labeling of complex molecules with positron-emitting radionuclides. The authors` 1986 proposal was oriented toward organs and disease, emphasizing radiolabeled agents that delineate specific functions and the distribution of receptors in brain, heart, and tumors. In 1989, they further refined their purposes and focused on two major aims: (a) synthesis and utilization of neutral technetium and rhenium complexes of high specific activity, and (b) development of new approaches to the radiolabeling of proteins, peptides, immunoglobulins, and their fragments. In 1992, the authors amended this proposal to concentrate their efforts on biologically active peptides and proteins for targeted radiodiagnosis and therapy.

  2. Counteracting the climate effects of volcanic eruptions using short-lived greenhouse gases

    NASA Astrophysics Data System (ADS)

    Samset, B. H.; Fuglestvedt, J.; Shine, K. P.

    2014-12-01

    A large volcanic eruption might constitute a climate emergency, significantly altering global temperature and precipitation for several years. Major future eruptions will occur, but their size or timing cannot be predicted. How could global society prepare for, and react to, such emergencies? One possibility is deliberate, coordinated emissions of short-lived greenhouse gases, along a pathway designed to match the climate responses to the eruption. We estimate such an emission pathway, countering a hypothetical eruption three times the size of Mt Pinatubo in 1991. Using a global climate model to evaluate global and regional responses to the eruption, with and without counter emissions, we show that it may be possible to counteract its climate effects, significantly dampening the abrupt impact of the eruption. We then raise practical, financial and ethical aspects related to such a strategy. Designed emissions to counter temporary global cooling would not have the disadvantages associated with more commonly discussed geoengineering to avoid long-term warming. Nevertheless, implementation would still face significant challenges.

  3. A new approach for fluid dynamics simulation: The Short-lived Water Cuboid Particle model

    NASA Astrophysics Data System (ADS)

    Qiao, Changjian; Li, Jiansong; Tian, Zongshun

    2016-09-01

    There are many researches to simulate the fluid which adopt the traditional particle-based approach and the grid-based approach. However, it needs massive storage in the traditional particle-based approach and it is very complicated to design the grid-based approach with the Navier-Stokes Equations or the Shallow Water Equations (SWEs) because of the difficulty of solving equations. This paper presents a new model called the Short-lived Water Cuboid Particle model. It updates the fluid properties (mass and momentum) recorded in the fixed Cartesian grids by computing the weighted sum of the water cuboid particles with a time step life. Thus it is a two-type-based approach essentially, which not only owns efficient computation and manageable memory like the grid-based approach, but also deals with the discontinuous water surface (wet/dry fronts, boundary conditions, etc.) with high accuracy as well as the particle-based approach. The proposed model has been found capable to simulate the fluid excellently for three laboratory experimental cases and for the field case study of the Malpasset dam-break event occurred in France in 1959. The obtained results show that the model is proved to be an alternative approach to simulate the fluid dynamics with a fair accuracy.

  4. Multi-model evaluation of short-lived pollutant distributions over East Asia during summer 2008

    NASA Astrophysics Data System (ADS)

    Quennehen, B.; Raut, J.-C.; Law, K. S.; Ancellet, G.; Clerbaux, C.; Kim, S.-W.; Lund, M. T.; Myhre, G.; Olivié, D. J. L.; Safieddine, S.; Skeie, R. B.; Thomas, J. L.; Tsyro, S.; Bazureau, A.; Bellouin, N.; Daskalakis, N.; Hu, M.; Kanakidou, M.; Klimont, Z.; Kupiainen, K.; Myriokefalitakis, S.; Quaas, J.; Rumbold, S. T.; Schulz, M.; Cherian, R.; Shimizu, A.; Wang, J.; Yoon, S.-C.; Zhu, T.

    2015-04-01

    The ability of six global and one regional model to reproduce distributions of tropospheric ozone and its precursors, as well as aerosols over Asia in summer 2008 is evaluated using satellite and in-situ observations. Whilst ozone precursors (NO2 and CO) are generally underestimated by the models in the troposphere, surface NO2 concentrations are overestimated, suggesting that emissions of NOx are too high. Ozone integrated columns and vertical profiles are generally well modeled, but the global models face difficulties simulating the ozone gradient at the surface between urban and rural environments, pointing to the need to increase model resolution. The accuracy of simulated aerosol patterns over eastern China and northern India varies between the models, and although most of the models reproduce the observed pollution features over eastern China, significant biases are noted in the magnitude of optical properties (aerosol optical depth, aerosol backscatter). These results have important implications for accurate prediction of pollution episodes affecting air quality and the radiative effects of these short-lived climate pollutants over Asia.

  5. Age-dependent decline in fin regenerative capacity in the short-lived fish Nothobranchius furzeri.

    PubMed

    Wendler, Sebastian; Hartmann, Nils; Hoppe, Beate; Englert, Christoph

    2015-10-01

    The potential to regenerate declines with age in a wide range of organisms. A popular model system to study the mechanisms of regeneration is the fin of teleost fish, which has the ability to fully regrow upon amputation. Here, we used the short-lived killifish Nothobranchius furzeri to analyse the impact of aging on fin regeneration in more detail. We observed that young fish were able to nearly completely (98%) regenerate their amputated caudal fins within 4 weeks, whereas middle-aged fish reached 78%, old fish 57% and very old fish 46% of their original fin size. The difference in growth rate between young and old fish was already significant at 3 days post amputation (dpa) and increased with time. We therefore hypothesized that early events are crucial for the age-related differences in regenerative capacity. Indeed, we could observe a higher percentage of proliferating cells in early regenerating fin tissue of young fish compared with aged fish and larger fractions of apoptotic cells in aged fish. Furthermore, young fish showed peak upregulation of several genes involved in fgf and wnt/β-catenin signalling at an earlier time point than old fish. Our findings suggest that regenerative processes are initiated earlier and that regeneration overall is more efficient in younger fish. PMID:26121607

  6. Highlighting short-lived excited electronic states with pump-degenerate-four-wave-mixing.

    PubMed

    Marek, Marie S; Buckup, Tiago; Southall, June; Cogdell, Richard J; Motzkus, Marcus

    2013-08-21

    Detection of short-lived transient species is a major challenge in femtosecond spectroscopy, especially when third-order techniques like transient absorption are used. Higher order methods employ additional interactions between light and matter to highlight such transient species. In this work we address numerically and experimentally the detection of ultrafast species with pump-Degenerate Four Wave Mixing (pump-DFWM). In this respect, conclusive identification of ultrafast species requires the proper determination of time-zero between all four laser pulses (pump pulse and the DFWM sequence). This is addressed here under the light of experimental parameters as well as molecular properties: The role of pulse durations, amount of pulse chirp as well as excited state life time is investigated by measuring a row of natural pigments differing mainly in the number of conjugated double bonds (N = 9 to 13). A comparison of the different signals reveals a strikingly unusual behavior of spheroidene (N = 10). Complete analysis of the pump-DFWM signal illustrates the power of the method and clearly assigns the uniqueness of spheroidene to a mixing of the initially excited state with a dark excited electronic state.

  7. Multiple, short-lived ``stellar prominences'' on O stars: the supergiant λ Cephei

    NASA Astrophysics Data System (ADS)

    Henrichs, H. F.; Sudnik, N.

    2015-01-01

    Many OB stars show unexplained cyclical variability in their winds and in many optical lines, which are formed at the base of the wind. For these stars no dipolar magnetic fields have been detected. We propose that these cyclical variations are caused by the presence of multiple, transient, short-lived, corotating magnetic loops, which we call ``stellar prominences''. We present a simplified model representing these prominences as corotating spherical blobs and fit the rapid variability in the Heii λ4686 line of the O supergiant λ Cep for time-resolved spectra obtained in 1989. Our conclusions are: (1) From model fits we find that the life time of the prominences varies, and is between 2-7 h. (2) The adopted inclination angle is 68° with a rotation period of ~ 4.1 d (but not well constrained). (3) The contribution of non-radial pulsations is negligible (4) Similar behavior is observed in at least 4 other O stars. We propose that prominences are a common phenomenon among O stars.

  8. New use of global warming potentials to compare cumulative and short-lived climate pollutants

    NASA Astrophysics Data System (ADS)

    Allen, Myles R.; Fuglestvedt, Jan S.; Shine, Keith P.; Reisinger, Andy; Pierrehumbert, Raymond T.; Forster, Piers M.

    2016-08-01

    Parties to the United Nations Framework Convention on Climate Change (UNFCCC) have requested guidance on common greenhouse gas metrics in accounting for Nationally determined contributions (NDCs) to emission reductions. Metric choice can affect the relative emphasis placed on reductions of `cumulative climate pollutants' such as carbon dioxide versus `short-lived climate pollutants' (SLCPs), including methane and black carbon. Here we show that the widely used 100-year global warming potential (GWP100) effectively measures the relative impact of both cumulative pollutants and SLCPs on realized warming 20-40 years after the time of emission. If the overall goal of climate policy is to limit peak warming, GWP100 therefore overstates the importance of current SLCP emissions unless stringent and immediate reductions of all climate pollutants result in temperatures nearing their peak soon after mid-century, which may be necessary to limit warming to ``well below 2 °C'' (ref. ). The GWP100 can be used to approximately equate a one-off pulse emission of a cumulative pollutant and an indefinitely sustained change in the rate of emission of an SLCP. The climate implications of traditional CO2-equivalent targets are ambiguous unless contributions from cumulative pollutants and SLCPs are specified separately.

  9. Recovery of short-lived chemical species in a couette flow reactor

    SciTech Connect

    Ouyang, Q.; Swinney, H.L. ); Roux, J.C.; Kepper, P.; Boissonade, J. )

    1992-04-01

    This paper reports on a new technique for studying and recovering short-lived chemical intermediate species that has been developed using a Couette reactor, which is an open one-dimensional reaction-diffusion system. Reaction occurs in the annulus between concentric cylinders with the inner one rotating and the outer one at rest. Fresh reagents are in contact with the ends of the annulus, but there is no net axial flow. The axial transport arising from the hydrodynamic motion is effectively diffusive, but has a diffusion coefficient 3 to 5 order of magnitude larger than that of molecular diffusion. The oxidant (ClO{sub 2}{sup {minus}}) and reductant (I{sup {minus}}) of an autocatalytic reaction are fed at opposite ends of the reactor. The reactants diffuse toward each other and react, forming a steady, sharp chemical front and a stable spatial concentration band of unstable intermediate species (HOCl) in the front region. Unstable intermediate species are thus stabilized at a well-defined spatial position where they can be recovered and studied. The experiments and numerical simulations demonstrate that the faster the reaction rate, the stabler the chemical front and the more effective the recovery of unstable intermediate species.

  10. Short-Lived Climate Forcers - The Connections Between Emissions, Forcing, and Mitigation Potential (Invited)

    NASA Astrophysics Data System (ADS)

    Smith, S.

    2010-12-01

    Methane, tropospheric ozone, and aerosols have a substantial global and regional influence on climate in addition to the impact of ozone and aerosols on health and ecosystems. These climate forcing agents are linked both though common emissions sources and atmospheric chemical processes. The magnitude and regional distribution of these forcings have changed substantially over the past and is expected to continue to change into the future. While aerosols have had a substantial impact on climate over the past century, by the end of the 21st century aerosols will likely be only a minor contributor to radiative forcing. Overall, reductions in aerosol emissions lead to a net warming due to the net negative aerosol forcing, although some mitigation benefits may be possible in specific sub-sectors. While the emissions leading to enhanced tropospheric ozone levels are short-lived, mitigation has proved to be difficult due to the ubiquity of major emission sources, particularly surface transportation vehicles. From a mitigation standpoint, therefore, tropospheric ozone might be considered as more of a long-term pollutant. This presentation will review these links using historical data and future projections and discuss the implications for mitigation. The implications of these links for atmospheric chemistry analysis, and the potential for using ACC-MIP results to improve integrated assessment modeling and analysis, will be discussed.

  11. Highly heterogeneous, activated and short-lived regulatory T cells during chronic filarial infection

    PubMed Central

    Metenou, Simon; Coulibaly, Yaya I.; Sturdevant, Daniel; Dolo, Housseini; Diallo, Abdallah A.; Soumaoro, Lamine; Coulibaly, Michel E.; Kanakabandi, Kishore; Porcella, Stephen F.; Klion, Amy D.; Nutman, Thomas B.

    2016-01-01

    The mechanisms underlying the increase in the numbers of regulatory T (Treg) cells in chronic infection settings remain unclear. Here we have delineated the phenotype and transcriptional profiles of Treg cells from 18 filarial-infected (Fil+) and 19 filarial-uninfected (Fil-) subjects. We found that the frequencies of Foxp3+ Treg cells expressing CTLA-4, GITR, LAG-3 and IL-10 were significantly higher in Fil+ subjects compared with that in Fil- subjects. Foxp3-expressing Treg-cell populations in Fil+ subjects were also more heterogeneous and had higher expression of IL-10, CCL-4, IL-29, CTLA-4 and TGF-β than Fil- subjects, each of these cytokines having been implicated in immune suppression. Moreover, Foxp3-expressing Treg cells from Fil+ subjects had markedly upregulated expression of activation-induced apoptotic genes with concomitant downregulation of those involved in cell survival. To determine whether the expression of apoptotic genes was due to Treg-cell activation, we found that the expression of CTLA-4, CDk8, RAD50, TNFRSF1A, FOXO3 and RHOA were significantly upregulated in stimulated cells compared with unstimulated cells. Taken together, our results suggest that in patent filarial infection, the expanded Treg-cell populations are heterogeneous, short-lived, activated and express higher levels of molecules known to modulate immune responsiveness, suggesting that filarial infection is associated with high Treg-cell turnover. PMID:24737144

  12. Spin relaxation of a short-lived radical in zero magnetic field.

    PubMed

    McKenzie, Iain

    2011-01-21

    A short-lived radical containing only one I = 1/2 nucleus, the muoniated 1,2-dicarboxyvinyl radical dianion, was produced in an aqueous solution by the reaction of muonium with the dicarboxyacetylene dianion. The identity of the radical was confirmed by measuring the muon hyperfine coupling constant (hfcc) by transverse field muon spin rotation spectroscopy and comparing this value with the hfcc obtained from DFT calculations. The muon spin relaxation rate of this radical was measured as a function of temperature in zero magnetic field by the zero field muon spin relaxation technique. The results have been interpreted using the theoretical model of Fedin et al. (J. Chem. Phys., 2003, 118, 192). The muon spin polarization decreases exponentially with time after muon implantation and the temperature dependence of the spin relaxation rate indicates that the dominant relaxation mechanism is the modulation of the anisotropic hyperfine interaction due to molecular rotation. The effective radius of the radical in solution was determined to be 1.12 ± 0.04 nm from the dependence of the muon spin relaxation rate on the temperature and viscosity of the solution, and is approximately 3.6 times larger than the value obtained from DFT calculations.

  13. Simulating Supernova Injection of Short Lived Radionuclides with Consideration of the Solar Birth Environment

    NASA Astrophysics Data System (ADS)

    Davis, Keith W.; Leising, M. D.

    2006-12-01

    The existence of short-lived radionuclides (SLRNs) in the early solar system above their background galactic abundances is well accepted. Studies into the relative abundances and possible sources for radioisotopes indicate a model with three separate sources for the total abundance of SLRNs: the background galactic value, material from some nearby stellar source, and in-situ creation by the early active Sun. A type II SN may be the most likely source for the stellar component, specifically 60Fe. The geometric details of the stellar birth are largely unknown despite evidence that the presolar cloud was not isolated. From a hydrodynamic perspective, the injection of SLRNs may be difficult because of intervening material between the core and the explosion necessary to slow the shock speed enough that the core is compressed rather than shredded. For the SN component it is vital to understand how SN ejecta can reach a core and whether certain SN/cloud environments are precluded by the hydrodynamics. We present Zeus-2D simulations studying the possibility of SLRN injection into a presolar core that is part of a larger cloud complex.

  14. Preliminary results on the production of short-lived radioisotopes with a Plasma Focus device.

    PubMed

    Angeli, E; Tartari, A; Frignani, M; Mostacci, D; Rocchi, F; Sumini, M

    2005-01-01

    An experimental campaign was conducted to assess the feasibility of short-lived radioisotope (SLR) production within the pulsed discharges of a Plasma Focus (PF) device. This so-called "endogenous production" technique rests on the exploitation of nuclear reactions for the creation of SLR directly within the plasma, rather than on irradiating an external target. Until now only one research group has published data relevant to PF endogenous production of SLR, and the data seem to confirm that the PF has the capability to breed SLR. The campaign demonstrated production of (15)O, (17)F and (13)N from the (14)N(d,n)(15)O, (12)C(d,n)(13)N and (16)O(d,n)(17)F reactions. A 7kJ, 17kV Mather-type PF was operated with natural nitrogen, oxygen, CO(2) and deuterium in the vacuum chamber. Results to date confirm that, with a PF of this type, up to 1microCi of SLRs per discharge can be obtained. PMID:15985375

  15. Developments in precison mass measurements of short-lived r-process nuclei with CARIBU

    NASA Astrophysics Data System (ADS)

    Marley, S. T.; Aprahamian, A.; Mumpower, M.; Nystrom, A.; Paul, N.; Siegl, K.; Strauss, S.; Surman, R.; Clark, J. A.; Perez Galvan, A.; Savard, G.; Morgan, G.; Orford, R.

    2013-10-01

    The confluence of new radioactive beam facilities and modern precision mass spectrometry techniques now make it possible to measure masses of many neutron-rich nuclei important to nuclear structure and astrophysics. A recent mass sensitivity study (S. Brett et al., Eur. Phys. J., A 48, 184 (2012)) identified the nuclear masses that are the most influential to the final rapid-neutron capture process abundance distributions under various astrophysical scenarios. This work motivated a campaign of precision mass measurements using the Canadian Penning Trap (CPT) installed at the Californium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne National Laboratory. In order to measure the weakest and most short-lived (t1/2 < 150 ms) of these influential nuclei, a series of upgrades to the CARIBU and CPT systems have been developed. The implementation of these upgrades, the r-process mass measurements, and the status of CARIBU facilty will be discussed. This work performed under the auspices of NSERC, Canada, appl. # 216974, the U.S. DOE, Office of Nuclear Physics, under contracts DE-AC02-06CH11357, DE-FG02-91ER-40609, DE-FG02-98ER41086, & DE-AC52-07NA27344, and NSF Grants PHY08-22648 and PHY-106819.

  16. New Short-Lived Isotope ^{221}U and the Mass Surface Near N=126.

    PubMed

    Khuyagbaatar, J; Yakushev, A; Düllmann, Ch E; Ackermann, D; Andersson, L-L; Block, M; Brand, H; Cox, D M; Even, J; Forsberg, U; Golubev, P; Hartmann, W; Herzberg, R-D; Heßberger, F P; Hoffmann, J; Hübner, A; Jäger, E; Jeppsson, J; Kindler, B; Kratz, J V; Krier, J; Kurz, N; Lommel, B; Maiti, M; Minami, S; Mistry, A K; Mrosek, Ch M; Pysmenetska, I; Rudolph, D; Sarmiento, L G; Schaffner, H; Schädel, M; Schausten, B; Steiner, J; De Heidenreich, T Torres; Uusitalo, J; Wegrzecki, M; Wiehl, N; Yakusheva, V

    2015-12-11

    Two short-lived isotopes ^{221}U and ^{222}U were produced as evaporation residues in the fusion reaction ^{50}Ti+^{176}Yb at the gas-filled recoil separator TASCA. An α decay with an energy of E_{α}=9.31(5)  MeV and half-life T_{1/2}=4.7(7)  μs was attributed to ^{222}U. The new isotope ^{221}U was identified in α-decay chains starting with E_{α}=9.71(5)  MeV and T_{1/2}=0.66(14)  μs leading to known daughters. Synthesis and detection of these unstable heavy nuclei and their descendants were achieved thanks to a fast data readout system. The evolution of the N=126 shell closure and its influence on the stability of uranium isotopes are discussed within the framework of α-decay reduced width. PMID:26705628

  17. Consequences of extreme life history traits on population persistence: do short-lived gobies face demographic bottlenecks?

    NASA Astrophysics Data System (ADS)

    Lefèvre, Carine D.; Nash, Kirsty L.; González-Cabello, Alonso; Bellwood, David R.

    2016-06-01

    The majority of coral reef goby species are short-lived, with some highly abundant species living less than 100 d. To understand the role and consequences of this extreme life history in shaping coral reef fish populations, we quantitatively documented the structure of small reef fish populations over a 26-month period (>14 short-lived fish generations) at an inshore reef on the Great Barrier Reef, Australia. Most species with life spans >1 yr, such as pomacentrids, exhibited a peak in recruitment during the austral summer, driving seasonal changes in the small fish community composition. In contrast, there were no clear changes in goby community composition, despite the abundance of short-lived, high turnover species. Species of Eviota, the most abundant gobiid genus observed, showed remarkably similar demographic profiles year-round, with consistent densities of adults as well as recently recruited juveniles. Our results demonstrate ongoing recruitment of these small cryptic fishes, which appears to compensate for an exceptionally short life span on the reef. Our results suggest that gobiid populations are able to overcome demographic limitations, and by maintaining reproduction, larval survival and recruitment throughout the year, they may avoid population bottlenecks. These findings also underline the potential trophodynamic importance of these small species; because of this constant turnover, Eviota species and other short-lived fishes may be particularly valuable contributors to the flow of energy on coral reefs, underpinning the year-round trophic structure.

  18. Sizes and shapes of short-lived nuclei via laser spectroscopy. Progress report, May 1, 1980-January 31, 1981

    SciTech Connect

    Lewis, D.A.

    1981-02-01

    The first stage of the program to study the sizes and shapes of short-lived nuclei through their atomic hyperfine structure is to develop a movable laser spectroscopy system. This system is now almost complete and is described in this report along with plans for measurements at Argonne National Laboratory and Brookhaven National Laboratory.

  19. A proposal for assessing study quality: Biomonitoring, Environmental Epidemiology, and Short-lived Chemicals (BEES-C) instrument

    PubMed Central

    LaKind, Judy S.; Sobus, Jon R.; Goodman, Michael; Barr, Dana Boyd; Fürst, Peter; Albertini, Richard J.; Arbuckle, Tye E.; Schoeters, Greet; Tan, Yu-Mei; Teeguarden, Justin; Tornero-Velez, Rogelio; Weisel, Clifford P.

    2015-01-01

    The quality of exposure assessment is a major determinant of the overall quality of any environmental epidemiology study. The use of biomonitoring as a tool for assessing exposure to ubiquitous chemicals with short physiologic half-lives began relatively recently. These chemicals present several challenges, including their presence in analytical laboratories and sampling equipment, difficulty in establishing temporal order in cross-sectional studies, short- and long-term variability in exposures and biomarker concentrations, and a paucity of information on the number of measurements required for proper exposure classification. To date, the scientific community has not developed a set of systematic guidelines for designing, implementing and interpreting studies of short-lived chemicals that use biomonitoring as the exposure metric or for evaluating the quality of this type of research for WOE assessments or for peer review of grants or publications. We describe key issues that affect epidemiology studies using biomonitoring data on short-lived chemicals and propose a systematic instrument – the Biomonitoring, Environmental Epidemiology, and Short-lived Chemicals (BEES-C) instrument – for evaluating the quality of research proposals and studies that incorporate biomonitoring data on short-lived chemicals. Quality criteria for three areas considered fundamental to the evaluation of epidemiology studies that include biological measurements of short-lived chemicals are described: 1) biomarker selection and measurement, 2) study design and execution, and 3) general epidemiological study design considerations. We recognize that the development of an evaluative tool such as BEES-C is neither simple nor non-controversial. We hope and anticipate that the instrument will initiate further discussion/debate on this topic. PMID:25137624

  20. A proposal for assessing study quality: Biomonitoring, Environmental Epidemiology, and Short-lived Chemicals (BEES-C) instrument.

    PubMed

    LaKind, Judy S; Sobus, Jon R; Goodman, Michael; Barr, Dana Boyd; Fürst, Peter; Albertini, Richard J; Arbuckle, Tye E; Schoeters, Greet; Tan, Yu-Mei; Teeguarden, Justin; Tornero-Velez, Rogelio; Weisel, Clifford P

    2014-12-01

    The quality of exposure assessment is a major determinant of the overall quality of any environmental epidemiology study. The use of biomonitoring as a tool for assessing exposure to ubiquitous chemicals with short physiologic half-lives began relatively recently. These chemicals present several challenges, including their presence in analytical laboratories and sampling equipment, difficulty in establishing temporal order in cross-sectional studies, short- and long-term variability in exposures and biomarker concentrations, and a paucity of information on the number of measurements required for proper exposure classification. To date, the scientific community has not developed a set of systematic guidelines for designing, implementing and interpreting studies of short-lived chemicals that use biomonitoring as the exposure metric or for evaluating the quality of this type of research for WOE assessments or for peer review of grants or publications. We describe key issues that affect epidemiology studies using biomonitoring data on short-lived chemicals and propose a systematic instrument--the Biomonitoring, Environmental Epidemiology, and Short-lived Chemicals (BEES-C) instrument--for evaluating the quality of research proposals and studies that incorporate biomonitoring data on short-lived chemicals. Quality criteria for three areas considered fundamental to the evaluation of epidemiology studies that include biological measurements of short-lived chemicals are described: 1) biomarker selection and measurement, 2) study design and execution, and 3) general epidemiological study design considerations. We recognize that the development of an evaluative tool such as BEES-C is neither simple nor non-controversial. We hope and anticipate that the instrument will initiate further discussion/debate on this topic.

  1. MIXING AND TRANSPORT OF SHORT-LIVED AND STABLE ISOTOPES AND REFRACTORY GRAINS IN PROTOPLANETARY DISKS

    SciTech Connect

    Boss, Alan P.

    2013-08-10

    Analyses of primitive meteorites and cometary samples have shown that the solar nebula must have experienced a phase of large-scale outward transport of small refractory grains as well as homogenization of initially spatially heterogeneous short-lived isotopes. The stable oxygen isotopes, however, were able to remain spatially heterogeneous at the {approx}6% level. One promising mechanism for achieving these disparate goals is the mixing and transport associated with a marginally gravitationally unstable (MGU) disk, a likely cause of FU Orionis events in young low-mass stars. Several new sets of MGU models are presented that explore mixing and transport in disks with varied masses (0.016 to 0.13 M{sub Sun }) around stars with varied masses (0.1 to 1 M{sub Sun }) and varied initial Q stability minima (1.8 to 3.1). The results show that MGU disks are able to rapidly (within {approx}10{sup 4} yr) achieve large-scale transport and homogenization of initially spatially heterogeneous distributions of disk grains or gas. In addition, the models show that while single-shot injection heterogeneity is reduced to a relatively low level ({approx}1%), as required for early solar system chronometry, continuous injection of the sort associated with the generation of stable oxygen isotope fractionations by UV photolysis leads to a sustained, relatively high level ({approx}10%) of heterogeneity, in agreement with the oxygen isotope data. These models support the suggestion that the protosun may have experienced at least one FU Orionis-like outburst, which produced several of the signatures left behind in primitive chondrites and comets.

  2. Climate responses to anthropogenic emissions of short-lived climate pollutants

    NASA Astrophysics Data System (ADS)

    Baker, L. H.; Collins, W. J.; Olivié, D. J. L.; Cherian, R.; Hodnebrog, Ø.; Myhre, G.; Quaas, J.; Samset, B. H.

    2015-02-01

    Policies to control air quality focus on mitigating emissions of aerosols and their precursors, and other short-lived climate pollutants (SLCPs). On a local scale, these policies will have beneficial impacts on health and crop yields, by reducing particulate matter (PM) and surface ozone concentrations; however, the climate impacts of reducing emissions of SLCPs are less straightforward to predict. In this paper we consider a set of idealised, extreme mitigation strategies, in which the total anthropogenic emissions of individual SLCP emissions species are removed. This provides an upper bound on the potential climate impacts of such air quality strategies. We focus on evaluating the climate responses to changes in anthropogenic emissions of aerosol precursor species: black carbon (BC), organic carbon (OC) and sulphur dioxide (SO2). We perform climate integrations with four fully coupled atmosphere-ocean global climate models (AOGCMs), and examine the effects on global and regional climate of removing the total land-based anthropogenic emissions of each of the three aerosol precursor species. We find that the SO2 emissions reductions lead to the strongest response, with all three models showing an increase in surface temperature focussed in the northern hemisphere high latitudes, and a corresponding increase in global mean precipitation and run-off. Changes in precipitation and run-off patterns are driven mostly by a northward shift in the ITCZ, consistent with the hemispherically asymmetric warming pattern driven by the emissions changes. The BC and OC emissions reductions give a much weaker forcing signal, and there is some disagreement between models in the sign of the climate responses to these perturbations. These differences between models are due largely to natural variability in sea-ice extent, circulation patterns and cloud changes. This large natural variability component to the signal when the ocean circulation and sea-ice are free-running means that the

  3. Climate responses to anthropogenic emissions of short-lived climate pollutants

    NASA Astrophysics Data System (ADS)

    Baker, L. H.; Collins, W. J.; Olivié, D. J. L.; Cherian, R.; Hodnebrog, Ø.; Myhre, G.; Quaas, J.

    2015-07-01

    Policies to control air quality focus on mitigating emissions of aerosols and their precursors, and other short-lived climate pollutants (SLCPs). On a local scale, these policies will have beneficial impacts on health and crop yields, by reducing particulate matter (PM) and surface ozone concentrations; however, the climate impacts of reducing emissions of SLCPs are less straightforward to predict. In this paper we consider a set of idealized, extreme mitigation strategies, in which the total anthropogenic emissions of individual SLCP emissions species are removed. This provides an upper bound on the potential climate impacts of such air quality strategies. We focus on evaluating the climate responses to changes in anthropogenic emissions of aerosol precursor species: black carbon (BC), organic carbon (OC) and sulphur dioxide (SO2). We perform climate integrations with four fully coupled atmosphere-ocean global climate models (AOGCMs), and examine the effects on global and regional climate of removing the total land-based anthropogenic emissions of each of the three aerosol precursor species. We find that the SO2 emissions reductions lead to the strongest response, with all models showing an increase in surface temperature focussed in the Northern Hemisphere mid and (especially) high latitudes, and showing a corresponding increase in global mean precipitation. Changes in precipitation patterns are driven mostly by a northward shift in the ITCZ (Intertropical Convergence Zone), consistent with the hemispherically asymmetric warming pattern driven by the emissions changes. The BC and OC emissions reductions give a much weaker response, and there is some disagreement between models in the sign of the climate responses to these perturbations. These differences between models are due largely to natural variability in sea-ice extent, circulation patterns and cloud changes. This large natural variability component to the signal when the ocean circulation and sea-ice are

  4. Response of Arctic Temperature to Changes in Emissions of Short-Lived Climate Forcers

    NASA Astrophysics Data System (ADS)

    Sand, M.; Berntsen, T.; von Salzen, K.; Flanner, M.; Langner, J.; Victor, D. G.

    2015-12-01

    There is growing scientific and political interest in the impacts of climate change and anthropogenic emissions on the Arctic. Over recent decades temperatures in the Arctic have increased twice the global rate, largely due to ice albedo and temperature feedbacks. While deep cuts in global CO2 emissions are required to slow this warming, there is also growing interest in the potential for reducing short lived climate forcers (SLCFs). Politically, action on SLCFs may be particularly promising because the benefits of mitigation appear promptly and there are large co-benefits in terms of improved air quality. This study is the first to systematically quantify the Arctic climate impact of regional SLCF emissions, taking into account BC, sulphur dioxide (SO2), nitrogen oxides (NOx), volatile hydrocarbons (VOC), organic carbon (OC) and tropospheric ozone, their transport processes and transformations in the atmosphere. Using several chemical transport models we perform detailed radiative forcing calculations from emissions of these species. Geographically we separate emissions into seven source regions that correspond with the national groupings of the Arctic Council, the leading body organizing international policy in the region (the United States, Canada, the Nordic countries, the rest of Europe, Russia, East and South Asia, and the rest of the world). We look at six main sectors known to account for [nearly all] of these emissions: households (domestic), energy/industry/waste, transport, agricultural fires, grass/forest fires, and gas flaring. We find that the largest Arctic warming source is from emissions within the Asian nations. However, the Arctic is most sensitive, per unit mass emitted, to SLCFs emissions from a small number of activities within the Arctic nations themselves. A stringent, but technically feasible SLCFs mitigation scenario, phased in from 2015 through 2030, can cut warming by 0.2 K in 2050.

  5. Disentangling the effects of CO2 and short-lived climate forcer mitigation.

    PubMed

    Rogelj, Joeri; Schaeffer, Michiel; Meinshausen, Malte; Shindell, Drew T; Hare, William; Klimont, Zbigniew; Velders, Guus J M; Amann, Markus; Schellnhuber, Hans Joachim

    2014-11-18

    Anthropogenic global warming is driven by emissions of a wide variety of radiative forcers ranging from very short-lived climate forcers (SLCFs), like black carbon, to very long-lived, like CO2. These species are often released from common sources and are therefore intricately linked. However, for reasons of simplification, this CO2-SLCF linkage was often disregarded in long-term projections of earlier studies. Here we explicitly account for CO2-SLCF linkages and show that the short- and long-term climate effects of many SLCF measures consistently become smaller in scenarios that keep warming to below 2 °C relative to preindustrial levels. Although long-term mitigation of methane and hydrofluorocarbons are integral parts of 2 °C scenarios, early action on these species mainly influences near-term temperatures and brings small benefits for limiting maximum warming relative to comparable reductions taking place later. Furthermore, we find that maximum 21st-century warming in 2 °C-consistent scenarios is largely unaffected by additional black-carbon-related measures because key emission sources are already phased-out through CO2 mitigation. Our study demonstrates the importance of coherently considering CO2-SLCF coevolutions. Failing to do so leads to strongly and consistently overestimating the effect of SLCF measures in climate stabilization scenarios. Our results reinforce that SLCF measures are to be considered complementary rather than a substitute for early and stringent CO2 mitigation. Near-term SLCF measures do not allow for more time for CO2 mitigation. We disentangle and resolve the distinct benefits across different species and therewith facilitate an integrated strategy for mitigating both short and long-term climate change. PMID:25368182

  6. Response of Arctic temperature to changes in emissions of short-lived climate forcers

    NASA Astrophysics Data System (ADS)

    Sand, M.; Berntsen, T. K.; von Salzen, K.; Flanner, M. G.; Langner, J.; Victor, D. G.

    2016-03-01

    There is growing scientific and political interest in the impacts of climate change and anthropogenic emissions on the Arctic. Over recent decades temperatures in the Arctic have increased at twice the global rate, largely as a result of ice-albedo and temperature feedbacks. Although deep cuts in global CO2 emissions are required to slow this warming, there is also growing interest in the potential for reducing short-lived climate forcers (SLCFs; refs ,). Politically, action on SLCFs may be particularly promising because the benefits of mitigation are seen more quickly than for mitigation of CO2 and there are large co-benefits in terms of improved air quality. This Letter is one of the first to systematically quantify the Arctic climate impact of regional SLCFs emissions, taking into account black carbon (BC), sulphur dioxide (SO2), nitrogen oxides (NOx), volatile organic compounds (VOCs), organic carbon (OC) and tropospheric ozone (O3), and their transport processes and transformations in the atmosphere. This study extends the scope of previous works by including more detailed calculations of Arctic radiative forcing and quantifying the Arctic temperature response. We find that the largest Arctic warming source is from emissions within the Asian nations owing to the large absolute amount of emissions. However, the Arctic is most sensitive, per unit mass emitted, to SLCFs emissions from a small number of activities within the Arctic nations themselves. A stringent, but technically feasible mitigation scenario for SLCFs, phased in from 2015 to 2030, could cut warming by 0.2 (+/-0.17) K in 2050.

  7. Name Modelling Activities for the CAST/Contrast/Attrex Very Short Lived Species Measurements

    NASA Astrophysics Data System (ADS)

    Harris, N. R. P.; Filus, M. T.; Ashfold, M.; Pyle, J. A.; Atlas, E. L.; Manning, A.; Meneguz, E.

    2014-12-01

    The UK Met Office Numerical Atmospheric dispersion Modeling Environment (NAME) is used to assess the spatial and temporal variability of transport of very short-lived halogenated organic species (VSLS), in particular bromoform, dibromomethane and methyl iodide, within the West Pacific tropical region. The NAME modelling results are compared with airborne measurements of VSLS taken during NASA ATTREX, NCAR CONTRAST and NERC CAST campaigns in January-March, 2014. In this work, the NAME model is used to link the aircraft measurements to examine the vertical distribution of VSLS in the West Pacific troposphere. The major focus will be on assessing vertical transport in deep convection which is one of the crucial factors in redistributing chemicals within the tropical troposphere. The work presented shows the analysis of NAME runs made from the ATTREX flights over the East Pacific in January-February, 2013 and the ATTREX and CONTRAST flight tracks over the West Pacific in January-March, 2014. Each ATTREX 2013 and 2014 flight track is divided into segments, from which particles are released and followed backward to identify the low-level sources of air. Particles (10,000 per single point along the flight track) are released from the flight tracks and followed 12-days backwards. Fractions of trajectories are calculated according to particles which crossed below 5 and 1 km (corresponding to low troposphere and oceanic boundary layer, respectively). Then, initial concentrations for VSLS are assigned to particles which originated from below 5/1 km and final concentrations at flight altitudes are determined based on e-folding equations. Results, obtained by running NAME, are compared with ATTREX VSLS flight measurements.

  8. Response of Arctic Temperature to Changes in Emissions of Short-Lived Climate Forcers

    NASA Astrophysics Data System (ADS)

    Sand, M.; Berntsen, T.; von Salzen, K.; Flanner, M.; Langner, J.; Victor, D. G.

    2014-12-01

    There is growing scientific and political interest in the impacts of climate change and anthropogenic emissions on the Arctic. Over recent decades temperatures in the Arctic have increased twice the global rate, largely due to ice albedo and temperature feedbacks. While deep cuts in global CO2 emissions are required to slow this warming, there is also growing interest in the potential for reducing short lived climate forcers (SLCFs). Politically, action on SLCFs may be particularly promising because the benefits of mitigation appear promptly and there are large co-benefits in terms of improved air quality. This study is the first to systematically quantify the Arctic climate impact of regional SLCF emissions, taking into account BC, sulphur dioxide (SO2), nitrogen oxides (NOx), volatile hydrocarbons (VOC), organic carbon (OC) and tropospheric ozone, their transport processes and transformations in the atmosphere. Using several chemical transport models we perform detailed radiative forcing calculations from emissions of these species. Geographically we separate emissions into seven source regions that correspond with the national groupings of the Arctic Council, the leading body organizing international policy in the region (the United States, Canada, the Nordic countries, the rest of Europe, Russia, East and South Asia, and the rest of the world). We look at six main sectors known to account for [nearly all] of these emissions: households (domestic), energy/industry/waste, transport, agricultural fires, grass/forest fires, and gas flaring. We find that the largest Arctic warming source is from emissions within the Asian nations. However, the Arctic is most sensitive, per unit mass emitted, to SLCFs emissions from a small number of activities within the Arctic nations themselves. A stringent, but technically feasible SLCFs mitigation scenario, phased in from 2015 through 2030, can cut warming by 0.2 K in 2050.

  9. Disentangling the effects of CO2 and short-lived climate forcer mitigation.

    PubMed

    Rogelj, Joeri; Schaeffer, Michiel; Meinshausen, Malte; Shindell, Drew T; Hare, William; Klimont, Zbigniew; Velders, Guus J M; Amann, Markus; Schellnhuber, Hans Joachim

    2014-11-18

    Anthropogenic global warming is driven by emissions of a wide variety of radiative forcers ranging from very short-lived climate forcers (SLCFs), like black carbon, to very long-lived, like CO2. These species are often released from common sources and are therefore intricately linked. However, for reasons of simplification, this CO2-SLCF linkage was often disregarded in long-term projections of earlier studies. Here we explicitly account for CO2-SLCF linkages and show that the short- and long-term climate effects of many SLCF measures consistently become smaller in scenarios that keep warming to below 2 °C relative to preindustrial levels. Although long-term mitigation of methane and hydrofluorocarbons are integral parts of 2 °C scenarios, early action on these species mainly influences near-term temperatures and brings small benefits for limiting maximum warming relative to comparable reductions taking place later. Furthermore, we find that maximum 21st-century warming in 2 °C-consistent scenarios is largely unaffected by additional black-carbon-related measures because key emission sources are already phased-out through CO2 mitigation. Our study demonstrates the importance of coherently considering CO2-SLCF coevolutions. Failing to do so leads to strongly and consistently overestimating the effect of SLCF measures in climate stabilization scenarios. Our results reinforce that SLCF measures are to be considered complementary rather than a substitute for early and stringent CO2 mitigation. Near-term SLCF measures do not allow for more time for CO2 mitigation. We disentangle and resolve the distinct benefits across different species and therewith facilitate an integrated strategy for mitigating both short and long-term climate change.

  10. Bromine heterogenous chemistry in the troposhere

    SciTech Connect

    Abbatt, J.P.D.

    1996-10-01

    Motivated by the observations of boundary layer ozone loss which is correlated with high levels of bromine in the Arctic springtime, we have studied a number of heterogeneous interactions of tropospheric bromine species. The goal of this work is both to better define the source of inorganic bromine during this time of year and to determine the primary mechanism which keeps bromine in a photochemically active form.

  11. 49 CFR 173.249 - Bromine.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Bromine. 173.249 Section 173.249 Transportation... PACKAGINGS Bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.249 Bromine. When... bromine service built prior to August 31, 1991, may continue in service under the requirements...

  12. Distributions of short-lived radioactive nuclei produced by young embedded star clusters

    SciTech Connect

    Adams, Fred C.; Fatuzzo, Marco; Holden, Lisa

    2014-07-01

    Most star formation in the Galaxy takes place in clusters, where the most massive members can affect the properties of other constituent solar systems. This paper considers how clusters influence star formation and forming planetary systems through nuclear enrichment from supernova explosions, where massive stars deliver short-lived radioactive nuclei (SLRs) to their local environment. The decay of these nuclei leads to both heating and ionization, and thereby affects disk evolution, disk chemistry, and the accompanying process of planet formation. Nuclear enrichment can take place on two spatial scales: (1) within the cluster itself (ℓ ∼ 1 pc), the SLRs are delivered to the circumstellar disks associated with other cluster members. (2) On the next larger scale (ℓ ∼ 2-10 pc), SLRs are injected into the background molecular cloud; these nuclei provide heating and ionization to nearby star-forming regions and to the next generation of disks. For the first scenario, we construct the expected distributions of radioactive enrichment levels provided by embedded clusters. Clusters can account for the SLR mass fractions inferred for the early Solar Nebula, but typical SLR abundances are lower by a factor of ∼10. For the second scenario, we find that distributed enrichment of SLRs in molecular clouds leads to comparable abundances. For both the direct and distributed enrichment processes, the masses of {sup 26}Al and {sup 60}Fe delivered to individual circumstellar disks typically fall in the range 10-100 pM {sub ☉} (where 1 pM {sub ☉} = 10{sup –12} M {sub ☉}). The corresponding ionization rate due to SLRs typically falls in the range ζ{sub SLR} ∼ 1-5 × 10{sup –19} s{sup –1}. This ionization rate is smaller than that due to cosmic rays, ζ{sub CR} ∼ 10{sup –17} s{sup –1}, but will be important in regions where cosmic rays are attenuated (e.g., disk mid-planes).

  13. Multimodel emission metrics for regional emissions of short lived climate forcers

    NASA Astrophysics Data System (ADS)

    Aamaas, B.; Berntsen, T. K.; Fuglestvedt, J. S.; Shine, K. P.; Bellouin, N.

    2015-09-01

    For short lived climate forcers (SLCFs), the impact of emissions depends on where and when the emissions take place. Comprehensive new calculations of various emission metrics for SLCFs are presented based on radiative forcing (RF) values calculated in four different (chemistry-transport or coupled-chemistry climate) models. We distinguish between emissions during summer (May-October) and winter season (November-April) for emissions from Europe, East Asia, as well as the global shipping sector. The species included in this study are aerosols and aerosols precursors (BC, OC, SO2, NH3), and ozone precursors (NOx, CO, VOC), which also influence aerosols, to a lesser degree. Emission metrics for global climate responses of these emissions, as well as for CH4, have been calculated relative to CO2, using Global Warming Potential (GWP) and Global Temperature change Potential (GTP), based on dedicated RF simulations by four global models. The emission metrics include indirect cloud effects of aerosols and the semi-direct forcing for BC. In addition to the standard emission metrics for pulse and sustained emissions, we have also calculated a new emission metric designed for an emission profile consisting of a ramp up period of 15 years followed by sustained emissions, which is more appropriate for a gradual implementation of mitigation policies. For the aerosols, the emission metric values are larger in magnitude for Europe than East Asia and for summer than winter. A variation is also observed for the ozone precursors, with largest values in East Asia and winter for CO and in Europe and summer for VOC. In general, the variations between the emission metrics derived from different models are larger than the variations between regions and seasons, but the regional and seasonal variations for the best estimate also hold for most of the models individually. Further, the estimated climate impact of a mitigation policy package is robust even when accounting for correlations. For

  14. Regional emission metrics for short-lived climate forcers from multiple models

    NASA Astrophysics Data System (ADS)

    Aamaas, Borgar; Berntsen, Terje K.; Fuglestvedt, Jan S.; Shine, Keith P.; Bellouin, Nicolas

    2016-06-01

    For short-lived climate forcers (SLCFs), the impact of emissions depends on where and when the emissions take place. Comprehensive new calculations of various emission metrics for SLCFs are presented based on radiative forcing (RF) values calculated in four different (chemical-transport or coupled chemistry-climate) models. We distinguish between emissions during summer (May-October) and winter (November-April) for emissions in Europe and East Asia, as well as from the global shipping sector and global emissions. The species included in this study are aerosols and aerosol precursors (BC, OC, SO2, NH3), as well as ozone precursors (NOx, CO, VOCs), which also influence aerosols to a lesser degree. Emission metrics for global climate responses of these emissions, as well as for CH4, have been calculated using global warming potential (GWP) and global temperature change potential (GTP), based on dedicated RF simulations by four global models. The emission metrics include indirect cloud effects of aerosols and the semi-direct forcing for BC. In addition to the standard emission metrics for pulse and sustained emissions, we have also calculated a new emission metric designed for an emission profile consisting of a ramping period of 15 years followed by sustained emissions, which is more appropriate for a gradual implementation of mitigation policies.For the aerosols, the emission metric values are larger in magnitude for emissions in Europe than East Asia and for summer than winter. A variation is also observed for the ozone precursors, with largest values for emissions in East Asia and winter for CO and in Europe and summer for VOCs. In general, the variations between the emission metrics derived from different models are larger than the variations between regions and seasons, but the regional and seasonal variations for the best estimate also hold for most of the models individually. Further, the estimated climate impact of an illustrative mitigation policy package is

  15. Evaluating the climate and air quality impacts of short-lived pollutants

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Aamaas, B.; Amann, M.; Baker, L. H.; Bellouin, N.; Berntsen, T. K.; Boucher, O.; Cherian, R.; Collins, W.; Daskalakis, N.; Dusinska, M.; Eckhardt, S.; Fuglestvedt, J. S.; Harju, M.; Heyes, C.; Hodnebrog, Ø.; Hao, J.; Im, U.; Kanakidou, M.; Klimont, Z.; Kupiainen, K.; Law, K. S.; Lund, M. T.; Maas, R.; MacIntosh, C. R.; Myhre, G.; Myriokefalitakis, S.; Olivié, D.; Quaas, J.; Quennehen, B.; Raut, J.-C.; Rumbold, S. T.; Samset, B. H.; Schulz, M.; Seland, Ø.; Shine, K. P.; Skeie, R. B.; Wang, S.; Yttri, K. E.; Zhu, T.

    2015-06-01

    This paper presents a summary of the work done within the European Union's Seventh Framework Programme project ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants). ECLIPSE had a unique systematic concept for designing a realistic and effective mitigation scenario for short-lived climate pollutants (SLCPs: methane, aerosols and ozone, and their precursor species) and quantifying its climate and air quality impacts, and this paper presents the results in the context of this overarching strategy. The first step in ECLIPSE was to create a new emission inventory based on current legislation (CLE) for the recent past and until 2050. Substantial progress compared to previous work was made by including previously unaccounted types of sources such as flaring of gas associated with oil production, and wick lamps. These emission data were used for present-day reference simulations with four advanced Earth system models (ESMs) and six chemistry transport models (CTMs). The model simulations were compared with a variety of ground-based and satellite observational data sets from Asia, Europe and the Arctic. It was found that the models still underestimate the measured seasonality of aerosols in the Arctic but to a lesser extent than in previous studies. Problems likely related to the emissions were identified for Northern Russia and India, in particular. To estimate the climate impacts of SLCPs, ECLIPSE followed two paths of research: the first path calculated radiative forcing (RF) values for a large matrix of SLCP species emissions, for different seasons and regions independently. Based on these RF calculations, the Global Temperature change Potential metric for a time horizon of 20 years (GTP20) was calculated for each SLCP emission type. This climate metric was then used in an integrated assessment model to identify all emission mitigation measures with a beneficial air quality and short-term (20 year) climate impact. These measures together

  16. Evaluating the climate and air quality impacts of short-lived pollutants

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Aamaas, B.; Amann, M.; Baker, L. H.; Bellouin, N.; Berntsen, T. K.; Boucher, O.; Cherian, R.; Collins, W.; Daskalakis, N.; Dusinska, M.; Eckhardt, S.; Fuglestvedt, J. S.; Harju, M.; Heyes, C.; Hodnebrog, Ø.; Hao, J.; Im, U.; Kanakidou, M.; Klimont, Z.; Kupiainen, K.; Law, K. S.; Lund, M. T.; Maas, R.; MacIntosh, C. R.; Myhre, G.; Myriokefalitakis, S.; Olivié, D.; Quaas, J.; Quennehen, B.; Raut, J.-C.; Rumbold, S. T.; Samset, B. H.; Schulz, M.; Seland, Ø.; Shine, K. P.; Skeie, R. B.; Wang, S.; Yttri, K. E.; Zhu, T.

    2015-09-01

    This paper presents a summary of the work done within the European Union's Seventh Framework Programme project ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants). ECLIPSE had a unique systematic concept for designing a realistic and effective mitigation scenario for short-lived climate pollutants (SLCPs; methane, aerosols and ozone, and their precursor species) and quantifying its climate and air quality impacts, and this paper presents the results in the context of this overarching strategy. The first step in ECLIPSE was to create a new emission inventory based on current legislation (CLE) for the recent past and until 2050. Substantial progress compared to previous work was made by including previously unaccounted types of sources such as flaring of gas associated with oil production, and wick lamps. These emission data were used for present-day reference simulations with four advanced Earth system models (ESMs) and six chemistry transport models (CTMs). The model simulations were compared with a variety of ground-based and satellite observational data sets from Asia, Europe and the Arctic. It was found that the models still underestimate the measured seasonality of aerosols in the Arctic but to a lesser extent than in previous studies. Problems likely related to the emissions were identified for northern Russia and India, in particular. To estimate the climate impacts of SLCPs, ECLIPSE followed two paths of research: the first path calculated radiative forcing (RF) values for a large matrix of SLCP species emissions, for different seasons and regions independently. Based on these RF calculations, the Global Temperature change Potential metric for a time horizon of 20 years (GTP20) was calculated for each SLCP emission type. This climate metric was then used in an integrated assessment model to identify all emission mitigation measures with a beneficial air quality and short-term (20-year) climate impact. These measures together

  17. Short-lived radionuclides and early solar system chronology -- A hibonite perspective

    NASA Astrophysics Data System (ADS)

    Liu, Ming-Chang

    Examination of the 41 Ca- 41 K, 26 Al- 26 Mg, 10 Be- 10 B, oxygen and titanium iso-topic systems in 26 hibonite-bearing inclusions extracted from the CM meteorite Murchison provide important constraints for origins of short-lived radionuclides, early solar system chronology, and chemical evolution. Magnesium isotopic compositions divide these hibonite grains into two distinct populations which correlate perfectly with their mineralogy and morphology, as previously discovered by Ireland (1988): Spinel-HIBonite spherules (SHIBs) bear evidence of in-situ decay of 26 Al, whereas PLAty hibonite Crystals (PLACs) and Blue AGgregates (BAGs) either lack resolvable D 26 Mg* excesses or exhibit 26 Mg deficits by up to ~4[per thousand]. High precision, multiple collector SIMS analyses show that 6 of 7 SHIBs investigated fall on a single correlation line implying 26 Al/ 27 Al = (4.4±0.2) × 10 -5 (2s) at the time of isotopic closure, consistent with the "canonical" 26 Al abundance characteristic of internal isochrons in many calcium-aluminum-rich inclusions (CAIs). One SHIB sample exhibits D 26 Mg* corresponding to a "supra-canonical" 26 Al/ 27 Al ratio 6.3 × 10 -5 which is close to the highest ratios observed in solar system materials. Eight out of 11 26 Al-free PLAC hibonite grains record excesses of radiogenic 10 B which correlate with Be/B; the inferred initial 10 Be/ 9 Be ratio of (5.1 ± 1.4) × 10 -4 is substantially lower than the best-constrained 10 Be/ 9 Be of (8.8±0.6) × 10 -4 in a CV CAI. The data demonstrate that 10 Be cannot be used as a relative chronometer for these objects and that most of the 10 Be observed in CAIs must be produced by energetic particle irradiation of refractory dust precursors in the early solar system. The lack of 26 Al in PLAC hibonites containing Mg isotope anomalies and 10 Be indicates that significant amounts of 26 Al was not formed in the same spallogenic processes that made 10 Be in PLAC precursors. Except for few hibonite grains

  18. Evaluating the climate and air quality impacts of short-lived pollutants

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Aamaas, B.; Amann, M.; Baker, L. H.; Bellouin, N.; Berntsen, T. K.; Boucher, O.; Cherian, R.; Collins, W.; Daskalakis, N.; Dusinska, M.; Eckhardt, S.; Fuglestvedt, J. S.; Harju, M.; Heyes, C.; Hodnebrog, Ø.; Hao, J.; Im, U.; Kanakidou, M.; Klimont, Z.; Kupiainen, K.; Law, K. S.; Lund, M. T.; Maas, R.; MacIntosh, C. R.; Myhre, G.; Myriokefalitakis, S.; Olivié, D.; Quaas, J.; Quennehen, B.; Raut, J.-C.; Rumbold, S. T.; Samset, B. H.; Schulz, M.; Seland, Ø.; Shine, K. P.; Skeie, R. B.; Wang, S.; Yttri, K. E.; Zhu, T.

    2015-09-01

    This paper presents a summary of the work done within the European Union's Seventh Framework Programme project ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants). ECLIPSE had a unique systematic concept for designing a realistic and effective mitigation scenario for short-lived climate pollutants (SLCPs; methane, aerosols and ozone, and their precursor species) and quantifying its climate and air quality impacts, and this paper presents the results in the context of this overarching strategy. The first step in ECLIPSE was to create a new emission inventory based on current legislation (CLE) for the recent past and until 2050. Substantial progress compared to previous work was made by including previously unaccounted types of sources such as flaring of gas associated with oil production, and wick lamps. These emission data were used for present-day reference simulations with four advanced Earth system models (ESMs) and six chemistry transport models (CTMs). The model simulations were compared with a variety of ground-based and satellite observational data sets from Asia, Europe and the Arctic. It was found that the models still underestimate the measured seasonality of aerosols in the Arctic but to a lesser extent than in previous studies. Problems likely related to the emissions were identified for northern Russia and India, in particular. To estimate the climate impacts of SLCPs, ECLIPSE followed two paths of research: the first path calculated radiative forcing (RF) values for a large matrix of SLCP species emissions, for different seasons and regions independently. Based on these RF calculations, the Global Temperature change Potential metric for a time horizon of 20 years (GTP20) was calculated for each SLCP emission type. This climate metric was then used in an integrated assessment model to identify all emission mitigation measures with a beneficial air quality and short-term (20-year) climate impact. These measures together

  19. Evaluating the climate and air quality impacts of short-lived pollutants

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Aamaas, B.; Amann, M.; Baker, L. H.; Bellouin, N.; Berntsen, T. K.; Boucher, O.; Cherian, R.; Collins, W.; Daskalakis, N.; Dusinska, M.; Eckhardt, S.; Fuglestvedt, J. S.; Harju, M.; Heyes, C.; Hodnebrog, Ø.; Hao, J.; Im, U.; Kanakidou, M.; Klimont, Z.; Kupiainen, K.; Law, K. S.; Lund, M. T.; Maas, R.; MacIntosh, C. R.; Myhre, G.; Myriokefalitakis, S.; Olivié, D.; Quaas, J.; Quennehen, B.; Raut, J.-C.; Rumbold, S. T.; Samset, B. H.; Schulz, M.; Seland, Ø.; Shine, K. P.; Skeie, R. B.; Wang, S.; Yttri, K. E.; Zhu, T.

    2015-06-01

    This paper presents a summary of the work done within the European Union's Seventh Framework Programme project ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants). ECLIPSE had a unique systematic concept for designing a realistic and effective mitigation scenario for short-lived climate pollutants (SLCPs: methane, aerosols and ozone, and their precursor species) and quantifying its climate and air quality impacts, and this paper presents the results in the context of this overarching strategy. The first step in ECLIPSE was to create a new emission inventory based on current legislation (CLE) for the recent past and until 2050. Substantial progress compared to previous work was made by including previously unaccounted types of sources such as flaring of gas associated with oil production, and wick lamps. These emission data were used for present-day reference simulations with four advanced Earth system models (ESMs) and six chemistry transport models (CTMs). The model simulations were compared with a variety of ground-based and satellite observational data sets from Asia, Europe and the Arctic. It was found that the models still underestimate the measured seasonality of aerosols in the Arctic but to a lesser extent than in previous studies. Problems likely related to the emissions were identified for Northern Russia and India, in particular. To estimate the climate impacts of SLCPs, ECLIPSE followed two paths of research: the first path calculated radiative forcing (RF) values for a large matrix of SLCP species emissions, for different seasons and regions independently. Based on these RF calculations, the Global Temperature change Potential metric for a time horizon of 20 years (GTP20) was calculated for each SLCP emission type. This climate metric was then used in an integrated assessment model to identify all emission mitigation measures with a beneficial air quality and short-term (20 year) climate impact. These measures together

  20. Bromine and carbon isotope effects during photolysis of brominated phenols.

    PubMed

    Zakon, Yevgeni; Halicz, Ludwik; Gelman, Faina

    2013-12-17

    In the present study, carbon and bromine isotope effects during UV-photodegradation of bromophenols in aqueous and ethanolic solutions were determined. An anomalous relatively high inverse bromine isotope fractionation (εreactive position up to +5.1‰) along with normal carbon isotope effect (εreactive position of -12.6‰ to -23.4‰) observed in our study may be attributed to coexistence of both mass-dependent and mass-independent isotope fractionation of C-Br bond cleavage. Isotope effects of a similar scale were observed for all the studied reactions in ethanol, and for 4-bromophenol in aqueous solution. This may point out related radical mechanism for these processes. The lack of any carbon and bromine isotope effects during photodegradation of 2-bromophenol in aqueous solution possibly indicates that C-Br bond cleavage is not a rate-limiting step in the reaction. The bromine isotope fractionation, without any detectable carbon isotope effect, that was observed for 3-bromophenol photolysis in aqueous solution probably originates from mass-independent fractionation.

  1. Surficial Studies of Mars Using Cosmogenic Nuclides

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.

    2001-01-01

    Cosmogenic nuclides (CNs) are produced by cosmic-ray nuclear interactions with target nuclei in rocks, soils, ice, and the atmosphere. Cosmogenic nuclides have been widely used for investigation of solar system matter for several decades. Stable nuclides, such as He-3, Ne-21, and Ar-38, are built up over time as the surface is exposed to cosmic rays. The concentrations of cosmogenic radionuclides, such as Be-10, Al-26, and C-14 also build up with exposure time but reach saturation values after several half-lives. Especially since the development of accelerator mass spectrometry (AMS), CNs in terrestrial samples have been routinely used for geomorphic studies such as glaciation, surface erosion, and tectonics, and studies of atmospheric and ocean circulation. Cosmogenic nuclides on Mars will be able to answer questions of exposure ages, erosion rates, tectonic events, and deposition rates of sediments and/or volatiles. The concentrations of cosmogenic stable nuclides give the integrated exposure time of the rock/mineral, and the activities of radionuclides give recent records for times back as long as a few half-lives.

  2. Global Modeling and Projection of Short-Lived Climate Pollutants in an Earth System Model

    NASA Astrophysics Data System (ADS)

    Sudo, K.; Takemura, T.; Klimont, Z.; Kurokawa, J.; Akimoto, H.

    2013-12-01

    In predicting and mitigating future global warming, short-lived climate pollutants (SLCPs) such as tropospheric ozone (O3), black carbon (BC), and other related components including CH4/VOCs and aerosols play crucial roles as well as long-lived species like CO2 or N2O. Several recent studies suggests that reduction of heating SLCPs (i.e., O3 and black carbon) together with CH4 can decrease and delay the expected future warming, and can be an alternative to CO2 mitigation (Shindell et al., 2012). However it should be noted that there are still large uncertainties in simulating SLCPs and their climate impacts. For instance, present global models generally have a severe tendency to underestimate BC especially in remote areas like the polar regions as shown by the recent model intercomparison project under the IPCC (ACCMIP/AeroCOM). This problem in global BC modeling, basically coming from aging and removal processes of BC, causes still a large uncertainty in the estimate of BC's atmospheric heating and climate impacts (Bond et al., 2013; Kerr et al., 2013). This study attempted to improve global simulation of BC by developing a new scheme for simulating aging process of BC and re-evaluate radiative forcing of BC in the framework of a chemistry-aerosol coupled climate model (Earth system model) MIROC-ESM-CHEM. Our improved model with the new aging scheme appears to relatively well reproduce the observed BC concentrations and seasonality in the Arctic/Antarctic region. The new model estimates radiative forcing of BC to be 0.83 W m-2 which is about two times larger than the estimate by our original model with no aging scheme (0.41 W m-2), or the model ensemble mean in the IPCC report. Using this model, future projection of SLCPs and their climate impacts is conducted following the recent IIASA emission scenarios for the year 2030 (Klimont et al., 2006; Cofala et al., 2007). Our simulation suggests that heating SLCPs components (O3, BC, and CH4) are significantly reduced

  3. Short-lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism?

    NASA Astrophysics Data System (ADS)

    Koppers, Anthony A. P.; Staudigel, Hubert; Pringle, Malcolm S.; Wijbrans, Jan R.

    2003-10-01

    plumes cannot explain the intraplate volcanism of the South Pacific region. We argue that the observed short-lived and discontinuous intraplate volcanism has been produced by another type of hot spot-related volcanism, as opposed to the strong and continuous Hawaiian-type hot spots. Our results also indicate that other geological processes (plate tension, hotlines, faulting, wetspots, self-propagating volcanoes) may act in conjunction with hot spot volcanism in the South Pacific. In all these scenarios, intraplate volcanism has to be controlled by "broad-scale" events giving rise to multiple closely-spaced mantle plumelets, each with a distinct isotopic signature, but only briefly active and stable over geological time. It seems most likely that these plumelets originate and dissipate at very shallow mantle depths, where they may shoot off as thin plumes from the top of a "superplume" that is present in the South Pacific mantle. The absence of clear age progressions in most seamount trails and periodic flare-ups of massive intraplate volcanism in the South Pacific (such as the one in the Cretaceous and one starting 30 Myr ago) show that regional extension (caused by changes in the global plate circuit and/or the rise-and-fall of an oscillating superplume) may be driving the waxing and waning of intraplate volcanism in the South Pacific.

  4. Multi-model evaluation of short-lived pollutant distributions over east Asia during summer 2008

    NASA Astrophysics Data System (ADS)

    Quennehen, B.; Raut, J.-C.; Law, K. S.; Daskalakis, N.; Ancellet, G.; Clerbaux, C.; Kim, S.-W.; Lund, M. T.; Myhre, G.; Olivié, D. J. L.; Safieddine, S.; Skeie, R. B.; Thomas, J. L.; Tsyro, S.; Bazureau, A.; Bellouin, N.; Hu, M.; Kanakidou, M.; Klimont, Z.; Kupiainen, K.; Myriokefalitakis, S.; Quaas, J.; Rumbold, S. T.; Schulz, M.; Cherian, R.; Shimizu, A.; Wang, J.; Yoon, S.-C.; Zhu, T.

    2016-08-01

    is too weak to explain the differences between the models. Our results rather point to an overestimation of SO2 emissions, in particular, close to the surface in Chinese urban areas. However, we also identify a clear underestimation of aerosol concentrations over northern India, suggesting that the rapid recent growth of emissions in India, as well as their spatial extension, is underestimated in emission inventories. Model deficiencies in the representation of pollution accumulation due to the Indian monsoon may also be playing a role. Comparison with vertical aerosol lidar measurements highlights a general underestimation of scattering aerosols in the boundary layer associated with overestimation in the free troposphere pointing to modelled aerosol lifetimes that are too long. This is likely linked to too strong vertical transport and/or insufficient deposition efficiency during transport or export from the boundary layer, rather than chemical processing (in the case of sulphate aerosols). Underestimation of sulphate in the boundary layer implies potentially large errors in simulated aerosol-cloud interactions, via impacts on boundary-layer clouds.This evaluation has important implications for accurate assessment of air pollutants on regional air quality and global climate based on global model calculations. Ideally, models should be run at higher resolution over source regions to better simulate urban-rural pollutant gradients and/or chemical regimes, and also to better resolve pollutant processing and loss by wet deposition as well as vertical transport. Discrepancies in vertical distributions require further quantification and improvement since these are a key factor in the determination of radiative forcing from short-lived pollutants.

  5. Constraining the Time-Scale of Interaction of Sea Ice Sediments and Surface Sea Water in the Arctic Ocean Using Short-Lived Radionuclide Tracers

    NASA Astrophysics Data System (ADS)

    Baskaran, M.; Andersson, P. S.; Jweda, J.; Dahlqvist, R.; Ketterer, M. E.

    2007-12-01

    We measured the activities of short-lived radionuclides (Th-234, Be-7, Po-210, Pb-210, Cs-137, Th-234, Ra-226 and Ra-228) and concentrations of several elements (Be, Pb, Fe, Al, Co, Ni, Cu and Zn) on a suite of ice-rafted sediments (IRS) collected during BERINGIA-2005 in the Western Arctic Ocean. A suite of water samples were also collected and analyzed for particulate and dissolved Be-7, Po-210, Pb-210, Th-234, Ra-226 and Ra-228. The activities of Be-7 and Pb-210 in the IRS are 1-2 orders of magnitude higher than those reported in the source sediments. Presence of excess Th-234 in the IRS indicates that the removal of Th-234 from surface seawater took place on time scales comparable to the mean-life of Th-234. While the Po-210/Pb-210 activity ratios in the source sediments (1.0) and the atmospheric depositional input (~0.1) are known, varying ratios of 0.78 to 1.0 were found in the IRS. This ratio can be utilized to obtain the residence time of the IRS in sea ice. The activity of Ra-226 and Ra-228 in all the IRS is nearly constant (within a factor of 1.6) and are comparable to the benthic sediments in the source region. The activities of atmospherically-delivered radionuclides, Be-7 and Pb-210, in IRS varied by factors of ~4.5 and 9, respectively, and this variation is attributed to differences in the extent of interaction of surface water with IRS and differences in the mean-lives of these nuclides. While significant enrichment of Be-7 and Pb-210 has been found, there is no enrichment of stable Pb or Be. The Al-normalized enrichment factor for elements measured (Co, Ni, Cu, Zn, Pb and Be) indicate that there is no significant enrichment of these elements, with Al-normalized enrichment factors less than 1.3.

  6. Cosmogenic nuclide budgeting of floodplain sediment transfer

    NASA Astrophysics Data System (ADS)

    Wittmann, H.; von Blanckenburg, F.

    2009-08-01

    Cosmogenic nuclides produced in quartz may either decay or accumulate while sediment is moved through a river basin. A change in nuclide concentration resulting from storage in a floodplain is potentially important in large drainage basins in which sediment is prone to repeated burial and remobilization as a river migrates through its floodplain. We have modeled depth- and time-dependent cosmogenic nuclide concentration changes for 10Be, 26Al, and 14C during sediment storage and mixing in various active floodplain settings ranging from confined, shallow rivers with small floodplains to foreland-basin scale floodplains traversed by deep rivers. Floodplain storage time, estimated from channel migration rates, ranges from 0.4 kyr for the Beni River basin (Bolivia) to 7 kyr for the Amazon River basin, while floodplain storage depth, estimated from channel depth, ranges from 1 to 25 m. For all modeled active floodplain settings, the long-lived nuclides 10Be and 26Al show neither significant increase in nuclide concentration from irradiation nor decrease from decay. We predict a hypothetical response time after which changes in 10Be or 26Al concentrations become analytically resolvable. This interval ranges from 0.07 to 2 Myr and exceeds in all cases the typical residence time of sediment in a floodplain. Due to the much shorter half life of 14C, nuclide concentrations modeled for the in situ-produced variety of this nuclide are, however, sensitive to floodplain storage on residence times of < 20 kyr. The cosmogenic nuclide composition of old deposits in currently inactive floodplains that have been isolated for periods of millions of years from the river that once deposited them is predicted to either increase or decrease in 10Be and 26Al concentration, depending on the depositional depth. These conditions can be evaluated using the 26Al/ 10Be ratio that readily discloses the depth and duration of storage. We illustrate these models with examples from the Amazon basin

  7. Electronic properties of bromine-doped carbon nanotubes

    SciTech Connect

    Jhi, Seung-Hoon; Louie, Steven G.; Cohen, Marvin L.

    2002-07-15

    Intercalation of bromine molecules (Br2) into single-wall carbon nanotube (SWNT) ropes is studied using the ab initio pseudopotential density functional method. Electronic and vibrational properties of the SWNT and Br2 are studied for various bromine concentrations. A drastic change in the charge transfer, bromine stretching-mode, and bromine bond-length is observed when the bromine-bromine distance decreases. Calculated electronic structures show that, at high bromine concentrations, the bromine ppsigma level broadens due to the interbromine interaction. These states overlap with the electronic bands of the SWNT near the Fermi level which results in a substantial charge transfer from carbon to bromine.

  8. VLA Observations Confirm Origin of Gamma Ray Bursts in Short-Lived Stars

    NASA Astrophysics Data System (ADS)

    1998-06-01

    Radio telescope studies of the fiery afterglow of a Gamma Ray Burst have provided astronomers with the best clues yet about the origins of these tremendous cosmic cataclysms since their discovery more than 30 years ago. Observations with the National Science Foundation's (NSF) Very Large Array (VLA) radio telescope confirm that a blast seen to occur on March 29 had its origin in a star-forming region in a distant galaxy. "There are two leading theories for the causes of Gamma Ray Bursts," said Dale Frail of the NSF National Radio Astronomy Observatory (NRAO) in Socorro, NM. "According to one theory, the blasts occur in the death throes of pairs of old stars. The other requires them to arise from exploding, massive, short-lived stars that still reside within the star-forming gas and dust from which they formed. The VLA studies of the burst show that at least this one almost certainly occurred within a star-forming region. This result also explains why half of the Gamma Ray Burst afterglows are not detected by optical telescopes." Frail heads a VLA observing team including Greg Taylor, also of NRAO, and Shri Kulkarni of Caltech, that reported its findings to the American Astronomical Society meeting in San Diego, CA. The March 29 burst was seen clearly by radio telescopes (the accompanying image is GRB 980329 as seen by the VLA) but only very faintly with optical instruments. "That is extremely important," said Taylor. "This burst was very faint at visible wavelengths, brighter at infrared wavelengths and brighter still at radio wavelengths. This is a clear indication that the exploding object was surrounded by dust. Dust is most commonly found in star-forming regions." This strongly favors one of the two leading theories about Gamma Ray Bursts over the other. One explanation for these tremendously energetic fireballs is that a pair of superdense neutron stars collides. The other is that a single, very massive star explodes in a "hypernova," more powerful than a

  9. Age-dependent inhalation doses to members of the public from indoor short-lived radon progeny.

    PubMed

    Brudecki, K; Li, W B; Meisenberg, O; Tschiersch, J; Hoeschen, C; Oeh, U

    2014-08-01

    The main contribution of radiation dose to the human lungs from natural exposure originates from short-lived radon progeny. In the present work, the inhalation doses from indoor short-lived radon progeny, i.e., (218)Po, (214)Pb, (214)Bi, and (214)Po, to different age groups of members of the public were calculated. In the calculations, the age-dependent systemic biokinetic models of polonium, bismuth, and lead published by the International Commission on Radiological Protection (ICRP) were adopted. In addition, the ICRP human respiratory tract and gastrointestinal tract models were applied to determine the deposition fractions in different regions of the lungs during inhalation and exhalation, and the absorption fractions of radon progeny in the alimentary tract. Based on the calculated contribution of each progeny to equivalent dose and effective dose, the dose conversion factor was estimated, taking into account the unattached fraction of aerosols, attached aerosols in the nucleation, accumulation and coarse modes, and the potential alpha energy concentration fraction in indoor air. It turned out that for each progeny, the equivalent doses to extrathoracic airways and the lungs are greater than those to other organs. The contribution of (214)Po to effective dose is much smaller compared to that of the other short-lived radon progeny and can thus be neglected in the dose assessment. In fact, 90 % of the effective dose from short-lived radon progeny arises from (214)Pb and (214)Bi, while the rest is from (218)Po. The dose conversion factors obtained in the present study are 17 and 18 mSv per working level month (WLM) for adult female and male, respectively. This compares to values ranging from 6 to 20 mSv WLM(-1) calculated by other investigators. The dose coefficients of each radon progeny calculated in the present study can be used to estimate the radiation doses for the population, especially for small children and women, in specific regions of the world

  10. Design Study for a Multi-Reflection Time-of-Flight Mass Spectrograph for Very Short Lived Nuclei

    NASA Astrophysics Data System (ADS)

    Yoon, Jin Woo; Park, Young-Ho; Im, Kang-Bin; Kim, Gi Dong; Kim, Yong Kyun

    The multi-reflection time-of-flight mass spectrometer (MR-TOF-MS) has been designed for the high precision mass measurement system in RAON accelerator facility, which will be constructed in Korea. Mirror-electrode potentials were numerically optimized by Nelder-Mead algorithm. The temporal spread and the mass-resolving power were calculated for the 132Sn+ ions with an energy spread of 20 eV and an emittance of 3 π mm mrad; the mass resolving power over 105 was achieved. MR-TOF-MS will be used for the isobar separation and the mass measurement for very short-lived isotopes.

  11. Hydrogen-Bromine Secondary Battery

    NASA Technical Reports Server (NTRS)

    England, C. (Inventor)

    1975-01-01

    A secondary battery is described utilizing hydrogen and halogen as primary reactants. It comprises inert anode and cathode initially contacting an aqueous solution of an acid and an alkali metal bromide. The hydrogen generated during charging of the cell is stored as gas, while the bromine becomes dissolved predominantly in the lower layers of the acid electrolyte. Preferred components are phosphoric acid and lithium bromide.

  12. Tropospheric Bromine Chemistry: Implications for Present and Pre-industrial Ozone and Mercury

    NASA Technical Reports Server (NTRS)

    Parella, J. P.; Jacob, D. J.; Liang, Q.; Zhang, Y.; Mickley, L. J.; Miller, B.; Evans, M. J.; Yang, X.; Pyle, J. A.; Theys, N.; VanRoozendael, M.

    2012-01-01

    We present a new model for the global tropospheric chemistry of inorganic bromine (Bry) coupled to oxidant-aerosol chemistry in the GEOS-Chem chemical transport model (CTM). Sources of tropospheric Bry include debromination of sea-salt aerosol, photolysis and oxidation of short-lived bromocarbons, and transport from the stratosphere. Comparison to a GOME-2 satellite climatology of tropospheric BrO columns shows that the model can reproduce the observed increase of BrO with latitude, the northern mid-latitudes maximum in winter, and the Arctic maximum in spring. This successful simulation is contingent on the HOBr + HBr reaction taking place in aqueous aerosols and ice clouds. Bromine chemistry in the model decreases tropospheric ozone mixing ratios by <1-8 nmol/mol (6.5% globally), with the largest effects in the northern extratropics in spring. The global mean tropospheric OH concentration decreases by 4 %. Inclusion of bromine chemistry improves the ability of global models (GEOS-Chem and p-TOMCAT) to simulate observed 19th-century ozone and its seasonality. Bromine effects on tropospheric ozone are comparable in the present-day and pre-industrial atmospheres so that estimates of anthropogenic radiative forcing are minimally affected. Br atom concentrations are 40% higher in the pre-industrial atmosphere due to lower ozone, which would decrease by a factor of 2 the atmospheric lifetime of elemental mercury against oxidation by Br. This suggests that historical anthropogenic mercury emissions may have mostly deposited to northern mid-latitudes, enriching the corresponding surface reservoirs. The persistent rise in background surface ozone at northern mid-latitudes during the past decades could possibly contribute to the observations of elevated mercury in subsurface waters of the North Atlantic.

  13. Stability of Bromine Intercalated Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Gaier, J. R.

    1984-01-01

    Previous evidence suggested that bromine intercalation compounds of crystalline graphite spontaneously deintercalate when the bromine atmosphere is removed. However, results show that bromine intercalated P-100 graphite fibers are stable for long periods of time. They are stable under vacuum conditions, high humidity, and current densities up to 24,000 A/sq cm. They are thermally stable to 200 C, and at temperatures as high as 400 C still retain 80 percent of the conductivity gained by intercalation. At temperatures greater than 300 C, there is significant oxidative degradation of the fibers. The environmental stability shown by the bromine compound makes it a promising candidate for practical applications in aerospace technology.

  14. Studies of images of short-lived events using ERTS data. [forest fires, oil spills, vegetation damage, volcanoes, storm ridges, earthquakes, and floods

    NASA Technical Reports Server (NTRS)

    Deutschman, W. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Detection of short-lived events has continued. Forest fires, oil spills, vegetation damage, volcanoes, storm ridges, earthquakes, and floods have been detected and analyzed.

  15. Overview of the methods for the measurement and interpretation of short-lived radioisotopes and their limits

    NASA Astrophysics Data System (ADS)

    Ghaleb, B.

    2009-01-01

    The daughter products of the uranium and thorium series consist of several radioactive isotopes with half-lives varying from less than a second to 105 years. Combining their half-live with their geochemical behaviour some of these radioisotopes could be used as tracers and/or chronometers of sedimentary processes. For example, thorium isotopes, and to a lesser extent polonium isotopes are characterized by very low solubility and very high affinity for the surface of particles. Consequently, thorium isotopes can be used to document scavenging and adsorption processes. On the other hand, radium isotopes tend to remain in solution and can be used to document diffusion processes. In the following, we present the analytical methods for the measurement and analysis of the most common short-lived isotopes and throughout their utility in studying sedimentary processes will be illustrated by a few examples of applications. These examples will focus essentially on the applications of short lived thorium isotopes (notably 234Th) and the use of 210Pb as chronometer for recent sedimentary accumulation.

  16. The production of short-lived radionuclides by new non-rotating and rotating Wolf-Rayet model stars

    NASA Astrophysics Data System (ADS)

    Arnould, M.; Goriely, S.; Meynet, G.

    2006-07-01

    Context.It has been speculated that WR winds may have contaminated the forming solar system, in particular with short-lived radionuclides (half-lives in the approximate 10^5{-}108 y range) that are responsible for a class of isotopic anomalies found in some meteoritic materials.Aims.We revisit the capability of the WR winds to eject these radionuclides using new models of single non-exploding WR stars with metallicity Z = 0.02.Methods. The earlier predictions for non-rotating WR stars are updated, and models for rotating such stars are used for the first time in this context.Results. We find that (1) rotation has no significant influence on the short-lived radionuclide production by neutron capture during the core He-burning phase, and (2) {}26{Al},{}36{Cl}, {}41{Ca}, and {}107{Pd} can be wind-ejected by a variety of WR stars at relative levels that are compatible with the meteoritic analyses for a period of free decay of around 105 y between production and incorporation into the forming solar system solid bodies.Conclusions.We confirm the previously published conclusions that the winds of WR stars have a radionuclide composition that can meet the necessary condition for them to be a possible contaminating agent of the forming solar system. Still, it remains to be demonstrated from detailed models that this is a sufficient condition for these winds to have provided a level of pollution that is compatible with the observations.

  17. Measurement of short-lived radon progenies by simultaneous αγ-spectrometry at the German radon reference chamber

    NASA Astrophysics Data System (ADS)

    Paul, A.; Röttger, S.; Honig, A.; Sulima, T.; Buchholz, A.; Keyser, Uwe

    1999-02-01

    In the German radon reference chamber, the short-lived radon progenies are separated by a sample tube according to the attached or unattached fraction, while their activity concentration is afterwards measured by simultaneous α- and γ-spectrometry. The results are expressed by the equilibrium factor F and the unattached fraction fp (International Commission on Radiological Protection, ICRP Publication 50, Ann. ICRP 17 (1987) 1). Both F and fp, can be therefore studied with respect to the full set of environmental parameters, e.g. temperature, humidity, air pressure and aerosol concentration (Honig et al., Nucl. Instr. and Meth. A 416 (1998) 525). Up to now, well-defined and stable equilibrium factors in the interval from 0.1 to 1.0 have been established. In correlation with this, the unattached fraction can be varied from 0.01 to 0.9. The sample and measuring technique for the short-lived radon progenies described in this work is the basis for fundamental studies with regard to the equilibrium factor and the unattached fraction as well as for application as a calibration facility.

  18. Short-lived mammals (shrew, mouse) have a less robust metal-responsive transcription factor than humans and bats.

    PubMed

    Schmidt, Katharina; Steiner, Kurt; Petrov, Boyan; Georgiev, Oleg; Schaffner, Walter

    2016-06-01

    Non-essential "heavy" metals such as cadmium tend to accumulate in an organism and thus are a particular threat for long-lived animals. Here we show that two unrelated, short-lived groups of mammals (rodents and shrews, separated by 100 Mio years of evolution) each have independently acquired mutations in their metal-responsive transcription factor (MTF-1) in a domain relevant for robust transcriptional induction by zinc and cadmium. While key amino acids are mutated in rodents, in shrews an entire exon is skipped. Rodents and especially shrews are unique regarding the alterations of this region. To investigate the biological relevance of these alterations, MTF-1s from the common shrew (Sorex araneus), the mouse, humans and a bat (Myotis blythii), were tested by cotransfection with a reporter gene into cells lacking MTF-1. Whereas shrews only live for 1.5-2.5 years, bats, although living on a very similar insect diet, have a lifespan of several decades. We find that bat MTF-1 is similarly metal-responsive as its human counterpart, while shrew MTF-1 is less responsive, similar to mouse MTF-1. We propose that in comparison to most other mammals, the short-lived shrews and rodents can afford a "lower-quality" system for heavy metal homeostasis and detoxification. PMID:27067444

  19. Alterations in oxidative, inflammatory and apoptotic events in short-lived and long-lived mice testes

    PubMed Central

    Matzkin, María Eugenia; Miquet, Johanna Gabriela; Fang, Yimin; Hill, Cristal Monique; Turyn, Daniel; Calandra, Ricardo Saúl; Bartke, Andrzej; Frungieri, Mónica Beatriz

    2016-01-01

    Aged testes undergo profound histological and morphological alterations leading to a reduced functionality. Here, we investigated whether variations in longevity affect the development of local inflammatory processes, the oxidative state and the occurrence of apoptotic events in the testis. To this aim, well-established mouse models with delayed (growth hormone releasing hormone-knockout and Ames dwarf mice) or accelerated (growth hormone-transgenic mice) aging were used. We hereby show that the testes of short-lived mice show a significant increase in cyclooxygenase 2 expression, PGD2 production, lipid peroxidation, antioxidant enzymes expression, local macrophages and TUNEL-positive germ cells numbers, and the levels of both pro-caspase-3 and cleaved caspase-3. In contrast, although the expression of antioxidant enzymes remained unchanged in testes of long-lived mice, the remainder of the parameters assessed showed a significant reduction. This study provides novel evidence that longevity confers anti-inflammatory, anti-oxidant and anti-apoptotic capacities to the adult testis. Oppositely, short-lived mice suffer testicular inflammatory, oxidative and apoptotic processes. PMID:26805572

  20. Sediment Dating With Short-Lived Radioisotopes In Monterey Canyon, California Imply Episodes Of Rapid Deposition And Erosion

    NASA Astrophysics Data System (ADS)

    Lorenson, T. D.; Swarzenski, P. W.; Maier, K. L.; Gwiazda, R.; Paull, C. K.; Sumner, E.; Symons, W. O.

    2015-12-01

    Submarine canyons are a major conduit for terrestrial material to the deep sea. To better constrain the timing and rates in which sediment is transported down-canyon, we collected a series of sediment cores along the axis of Monterey Canyon, and quantified mass accumulation rates using short-lived radio-isotopes. A suite of sediment cores were carefully collected perpendicular to the canyon thalweg in water depths of approximately 300m, 500m, 800m, and 1500m using a remotely operated vehicle (ROV). We choose cores that were between 60m and 75m above the canyon thalweg on canyon side bench features for correlation with moored instrument deployments. The sediment cores reveal a complex stratigraphy that includes copious bioturbation features, sand lenses, subtle erosional surfaces, subtle graded bedding, and abrupt changes sediment texture and color. Downcore excess 210Pb and 137Cs profiles imply episodic deposition and remobilization cycles on the canyon benches. Excess 210Pb activities in cores reach depths of up to 1m, implying very rapid sedimentation. Sedimentation rates vary with water depth, generally with the highest sedimentation rate in closest to land, but vary substantially on adjacent canyon benches. Preliminary results demonstrate that sediment movement within Monterey Canyon is both dynamic and episodic on human time-scales and can be reconstructed used short-lived radio-isotopes.

  1. Corrosion Tests of LWR Fuels - Nuclide Release

    SciTech Connect

    P.A. Finn; Y. Tsai; J.C. Cunnane

    2001-12-14

    Two BWR fuels [64 and 71 (MWd)/kgU], one of which contained 2% Gd, and two PWR fuels [30 and 45 (MWd)/kgU], are tested by dripping groundwater on the fuels under oxidizing and hydrologically unsaturated conditions for times ranging from 2.4 to 8.2 yr at 90 C. The {sup 99}Tc, {sup 129}I, {sup 137}Cs, {sup 97}Mo, and {sup 90}Sr releases are presented to show the effects of long reaction times and of gadolinium on nuclide release. This investigation showed that the five nuclides at long reaction times have similar fractional release rates and that the presence of 2% Gd reduced the {sup 99}Tc cumulative release fraction by about an order of magnitude over that of a fuel with a similar burnup.

  2. Neutron multiplicities for the transplutonium nuclides

    SciTech Connect

    Holden, N.E.; Zucker, M.S.

    1985-01-01

    This paper continues, with respect to the transplutonium nuclides, earlier efforts to collate and evaluate data from the scientific literature on the prompt neutron multiplicity distribution from fission and its first moment = ..sigma..nuPnu. The isotopes considered here for which P/sub nu/ and or data (or both) were found in the literature are of americium (Am), curium (Cm), berkelium (Bk), californium (Cf), einsteinium (Es), fermium (Fm), and nobelium (No).

  3. Deriving an atmospheric budget of total organic bromine using airborne in-situ measurements of brominated hydrocarbons in the Western Pacific during SHIVA.

    NASA Astrophysics Data System (ADS)

    Sala, Stephan; Bönisch, Harald; Keber, Timo; Engel, Andreas

    2013-04-01

    Halogenated hydrocarbons play a major role as precursors for stratospheric ozone depletion. Released from the surface in the troposphere, the halocarbons reach the stratosphere via transport through the tropical tropopause layer. Measurements of stratospheric BrO indicate an existing gap between the abundance of long lived brominated halocarbons, such as Halons and methyl bromide (CH3Br), and the abundance of inorganic bromine in the stratosphere. Recently, it has been realized that in addition to these long-lived substances so called very short-lived substances (VSLS) can also contribute significantly to the stratospheric halogen loading. The VSLS have lifetimes less than half a year and are predominantly emitted from climate-sensitive natural sources, e.g. marine macro-algae. A main source region for those emissions is the Western Pacific where sea surface temperatures are high and air masses from the surface can be transported rapidly into the TTL (Tropical Tropopause Layer) by deep convective systems. In this work, we present results derived by our measurement data from the field campaign which was part of the SHIVA (Stratospheric Halogens in a Varying Atmosphere) Project. One aspect of this campaign, which took place in November and December 2011, was the deployment of the German research aircraft "Falcon" in the Western Pacific at Miri in Malaysia. From there we performed sixteen local flights in total; these flights covered a spatial range from the boundary layer up to 11km altitude around the area of Borneo. Our contribution to the campaign was the deployment of a newly developed GC/MS system operated in negative chemical ionization mode for the fast analysis of halogenated hydrocarbons in ambient air onboard the aircraft. The long lived halocarbons H1301, H1211, H1202, H2402 as well as CH3Br and the very short lived substances CHBr3, CH2Br2, CHBr2Cl, CHBrCl2 and CHBrCl were be analyzed with the instrument. We derive a detailed budget of total organic

  4. Origin and Evolution of the Light Nuclides

    NASA Astrophysics Data System (ADS)

    Prantzos, N.

    2007-06-01

    After a short historical (and highly subjective) introduction to the field, I discuss our current understanding of the origin and evolution of the light nuclides D, 3He, 4He, 6Li, 7Li, 9Be, 10B and 11B. Despite considerable observational and theoretical progress, important uncertainties still persist for each and every one of those nuclides. The present-day abundance of D in the local interstellar medium is currently uncertain, making it difficult to infer the recent chemical evolution of the solar neighborhood. To account for the observed quasi-constancy of 3He abundance from the Big Bang to our days, the stellar production of that nuclide must be negligible; however, the scarce observations of its abundance in planetary nebulae seem to contradict this idea. The observed Be and B evolution as primaries suggests that the source composition of cosmic rays has remained ˜constant since the early days of the Galaxy, a suggestion with far reaching implications for the origin of cosmic rays; however, the main idea proposed to account for that constancy, namely that superbubbles are at the source of cosmic rays, encounters some serious difficulties. The best explanation for the mismatch between primordial Li and the observed “Spite-plateau” in halo stars appears to be depletion of Li in stellar envelopes, by some yet poorly understood mechanism. But this explanation impacts on the level of the recently discovered early “6Li plateau”, which (if confirmed), seriously challenges current ideas of cosmic ray nucleosynthesis.

  5. Origin and Evolution of the Light Nuclides

    NASA Astrophysics Data System (ADS)

    Prantzos, N.

    After a short historical (and highly subjective) introduction to the field, I discuss our current understanding of the origin and evolution of the light nuclides D, 3He, 4He, 6Li, 7Li, 9Be, 10B and 11B. Despite considerable observational and theoretical progress, important uncertainties still persist for each and every one of those nuclides. The present-day abundance of D in the local interstellar medium is currently uncertain, making it difficult to infer the recent chemical evolution of the solar neighborhood. To account for the observed quasi-constancy of 3He abundance from the Big Bang to our days, the stellar production of that nuclide must be negligible; however, the scarce observations of its abundance in planetary nebulae seem to contradict this idea. The observed Be and B evolution as primaries suggests that the source composition of cosmic rays has remained ˜constant since the early days of the Galaxy, a suggestion with far reaching implications for the origin of cosmic rays; however, the main idea proposed to account for that constancy, namely that superbubbles are at the source of cosmic rays, encounters some serious difficulties. The best explanation for the mismatch between primordial Li and the observed "Spite-plateau" in halo stars appears to be depletion of Li in stellar envelopes, by some yet poorly understood mechanism. But this explanation impacts on the level of the recently discovered early "6Li plateau", which (if confirmed), seriously challenges current ideas of cosmic ray nucleosynthesis.

  6. Mineral resource of the month: bromine

    USGS Publications Warehouse

    ,

    2009-01-01

    The article offers information on bromine, a natural element considered as a dissolved species in seawater, saltwater lakes and underground brines linked with petroleum deposits. Bromine belongs to the halogen group of elements and is characterized with brownish-red color and beach-like odor. It is commonly used in flame retardants, agriculture and drilling.

  7. Brominated carbon black: An EDXD study

    SciTech Connect

    Carbone, Marilena; Gontrani, Lorenzo

    2014-06-19

    An energy dispersive X-Ray study of pure and brominated carbon black was carried out. The analysis of the diffraction patterns reveals that the low bromine load (ca.1% mol) is trapped into the structure, without significantly modifying it. This allows the application of the difference methods, widely tested for electrolyte solutions, inorganic matrices containing metals and isomorphic substitutions.

  8. Calcium influx through TRP channels induced by short-lived reactive species in plasma-irradiated solution

    PubMed Central

    Sasaki, Shota; Kanzaki, Makoto; Kaneko, Toshiro

    2016-01-01

    Non-equilibrium helium atmospheric-pressure plasma (He-APP), which allows for a strong non-equilibrium chemical reaction of O2 and N2 in ambient air, uniquely produces multiple extremely reactive products, such as reactive oxygen species (ROS), in plasma-irradiated solution. We herein show that relatively short-lived unclassified reactive species (i.e., deactivated within approximately 10 min) generated by the He-APP irradiation can trigger physiologically relevant Ca2+ influx through ruthenium red- and SKF 96365-sensitive Ca2+-permeable channel(s), possibly transient receptor potential channel family member(s). Our results provide novel insight into understanding of the interactions between cells and plasmas and the mechanism by which cells detect plasma-induced chemically reactive species, in addition to facilitating development of plasma applications in medicine. PMID:27169489

  9. Rituximab ameliorates anti-N-methyl-D-aspartate receptor encephalitis by removal of short-lived plasmablasts.

    PubMed

    Hachiya, Yasuo; Uruha, Akinori; Kasai-Yoshida, Emi; Shimoda, Konomi; Satoh-Shirai, Ikuko; Kumada, Satoko; Kurihara, Eiji; Suzuki, Kotoko; Ohba, Atsuko; Hamano, Shin-ichiro; Sakuma, Hiroshi

    2013-12-15

    We measured anti-N-methyl-D-aspartate receptor (NMDAR) autoantibody levels and assessed B cell subsets using multicolor flow cytometry of peripheral blood mononuclear cells (PBMCs) from a recurrent anti-NMDAR encephalitis case to evaluate the effectiveness of rituximab treatment. Rituximab depleted CD20(+) fractions of naïve and memory B cell subsets and reduced the number of CD20(-) plasmablasts. This study suggests that short-lived plasmablasts are removed by rituximab-induced depletion of the CD20(+) B cell population. Increased numbers of plasmablasts in PBMCs may be a candidate predictive factor for unfavorable prognosis of anti-NMDAR encephalitis and an indication of when to commence second-line immunotherapy. PMID:24183642

  10. Identifying and quantifying short-lived fission products from thermal fission of HEU using portable HPGe detectors

    SciTech Connect

    Pierson, Bruce D.; Finn, Erin C.; Friese, Judah I.; Greenwood, Lawrence R.; Kephart, Jeremy D.; Kephart, Rosara F.; Metz, Lori A.

    2013-03-01

    Due to the emerging potential for trafficking of special nuclear material, research programs are investigating current capabilities of commercially available portable gamma ray detection systems. Presented in this paper are the results of three different portable high-purity germanium (HPGe) detectors used to identify short-lived fission products generated from thermal neutron interrogation of small samples of highly enriched uranium. Samples were irradiated at the Washington State University (WSU) Nuclear Radiation Center’s 1MW TRIGA reactor. The three portable, HPGe detectors used were the ORTEC MicroDetective, the ORTEC Detective, and the Canberra Falcon. Canberra’s GENIE-2000 software was used to analyze the spectral data collected from each detector. Ultimately, these three portable detectors were able to identify a large range of fission products showing potential for material discrimination.

  11. First Isochronous Time-of-Flight Mass Measurements of Short-Lived Projectile Fragments in the ESR

    SciTech Connect

    Stadlmann, J.; Geissel, H.; Hausmann, M.; Nolden, F.; Radon, T.; Schatz, H.; Scheidenberger, C.; Attallah, F.; Beckert, K.; Bosch, F.; Falch, M.; Franczak, B.; Franzke, B.; Kerscher, Th.; Klepper, O.; Kluge, H.J.; Kozhuharov, C.; Loebner, K.E.G.; Muenzenberg, G.; Novikov, Yu.N.; Steck, M.; Sun, Z.; Suemmerer, K.; Weick, H.; Wollnik, H.

    2000-12-31

    A new method for precise mass measurements of short-lived hot nuclei is presented. These nuclei were produced via projectile fragmentation, separated with the FRS and injected into the storage ring ESR being operated in the isochronous mode. The revolution time of the ions is measured with a time-of-flight detector sensitive to single particles. This new method allows access to exotic nuclei with half-lives in the microsecond region. First results from this novel method obtained with measurements on neutron-deficient fragments of a chromium primary beam with half-lives down to 50 ms are reported. A precision of {delta}m/m {<=} 5 {center_dot} 10{sup -6} has been achieved.

  12. Using Atmospheric Dispersion Theory to Inform the Design of a Short-lived Radioactive Particle Release Experiment.

    PubMed

    Rishel, Jeremy P; Keillor, Martin E; Arrigo, Leah M; Baciak, James E; Detwiler, Rebecca S; Kernan, Warnick J; Kirkham, Randy R; Milbrath, Brian D; Seifert, Allen; Seifert, Carolyn E; Smart, John E

    2016-05-01

    Atmospheric dispersion theory can be used to predict ground deposition of particulates downwind of a radionuclide release. This paper uses standard formulations found in Gaussian plume models to inform the design of an experimental release of short-lived radioactive particles into the atmosphere. Specifically, a source depletion algorithm is used to determine the optimum particle size and release height that maximizes the near-field deposition while minimizing both the required source activity and the fraction of activity lost to long-distance transport. The purpose of the release is to provide a realistic deposition pattern that might be observed downwind of a small-scale vent from an underground nuclear explosion. The deposition field will be used, in part, to study several techniques of gamma radiation survey and spectrometry that could be used by an On-Site Inspection team investigating such an event. PMID:27023039

  13. Corrections for the combined effects of decay and dead time in live-timed counting of short-lived radionuclides.

    PubMed

    Fitzgerald, R

    2016-03-01

    Studies and calibrations of short-lived radionuclides, for example (15)O, are of particular interest in nuclear medicine. Yet counting experiments on such species are vulnerable to an error due to the combined effect of decay and dead time. Separate decay corrections and dead-time corrections do not account for this issue. Usually counting data are decay-corrected to the start time of the count period, or else instead of correcting the count rate, the mid-time of the measurement is used as the reference time. Correction factors are derived for both those methods, considering both extending and non-extending dead time. Series approximations are derived here and the accuracy of those approximations are discussed. PMID:26682893

  14. Corrections for the combined effects of decay and dead time in live-timed counting of short-lived radionuclides.

    PubMed

    Fitzgerald, R

    2016-03-01

    Studies and calibrations of short-lived radionuclides, for example (15)O, are of particular interest in nuclear medicine. Yet counting experiments on such species are vulnerable to an error due to the combined effect of decay and dead time. Separate decay corrections and dead-time corrections do not account for this issue. Usually counting data are decay-corrected to the start time of the count period, or else instead of correcting the count rate, the mid-time of the measurement is used as the reference time. Correction factors are derived for both those methods, considering both extending and non-extending dead time. Series approximations are derived here and the accuracy of those approximations are discussed.

  15. Memory inflation during chronic viral infection is maintained by continuous production of short-lived, functional T cells.

    PubMed

    Snyder, Christopher M; Cho, Kathy S; Bonnett, Elizabeth L; van Dommelen, Serani; Shellam, Geoffrey R; Hill, Ann B

    2008-10-17

    During persistent murine cytomegalovirus (MCMV) infection, the T cell response is maintained at extremely high intensity for the life of the host. These cells closely resemble human CMV-specific cells, which compose a major component of the peripheral T cell compartment in most people. Despite a phenotype that suggests extensive antigen-driven differentiation, MCMV-specific T cells remain functional and respond vigorously to viral challenge. We hypothesized that a low rate of antigen-driven proliferation would account for the maintenance of this population. Instead, we found that most of these cells divided only sporadically in chronically infected hosts and had a short half-life in circulation. The overall population was supported, at least in part, by memory T cells primed early in infection, as well as by recruitment of naive T cells at late times. Thus, these data show that memory inflation is maintained by a continuous replacement of short-lived, functional cells during chronic MCMV infection.

  16. ON THE INJECTION OF SHORT-LIVED RADIONUCLIDES FROM A SUPERNOVA INTO THE SOLAR NEBULA: CONSTRAINTS FROM THE OXYGEN ISOTOPES

    SciTech Connect

    Liu, Ming-Chang

    2014-02-01

    Injection of short-lived radionuclides from a nearby core-collapse Type II supernova into the already-formed solar protoplanetary disk was proposed to account for the former presence of {sup 26}Al, {sup 41}Ca, and {sup 60}Fe in the early solar system inferred from isotopic analysis of meteoritic samples. One potential corollary of this ''late-injection'' scenario is that the disk's initial (pre-injection) oxygen isotopic composition could be significantly altered, as supernova material that carried the short-lived radionuclides would also deliver oxygen components synthesized in that given star. Therefore, the change in the oxygen isotopic composition of the disk caused by injection could in principle be used to constrain the supernova injection models. Previous studies showed that although supernova oxygen could result in a wide range of shifts in {sup 17}O/{sup 16}O and {sup 18}O/{sup 16}O of the disk, a couple of cases existed where the calculated oxygen changes in the disk would be compatible with the meteoritic and solar wind data. Recently, the initial abundances of {sup 41}Ca and {sup 60}Fe in the solar system were revised to lower values, and the feasibility of supernova injection as a source for the three radionuclides was called into question. In this study, supernova parameters needed for matching {sup 26}Al, {sup 41}Ca, and {sup 60}Fe to their early solar system abundances were reinvestigated and then were used to infer the pre-injection O-isotope composition of the disk. The result suggested that a supernova undergoing mixing fallback might be a viable source for the three radionuclides.

  17. Dicer Regulates the Balance of Short-Lived Effector and Long-Lived Memory CD8 T Cell Lineages

    PubMed Central

    Baumann, Florian M.; Yuzefpolskiy, Yevgeniy; Sarkar, Surojit; Kalia, Vandana

    2016-01-01

    MicroRNAs constitute a major post-transcriptional mechanism for controlling protein expression, and are emerging as key regulators during T cell development and function. Recent reports of augmented CD8 T cell activation and effector differentiation, and aberrant migratory properties upon ablation of Dicer/miRNAs in naïve cells have established a regulatory role of miRNAs during priming. Whether miRNAs continue to exert similar functions or are dispensable during later stages of CD8 T cell expansion and memory differentiation remains unclear. Here, we report a critical role of Dicer/miRNAs in regulating the balance of long-lived memory and short-lived terminal effector fates during the post-priming stages when CD8 T cells undergo clonal expansion to generate a large cytotoxic T lymphocyte (CTL) pool and subsequently differentiate into a quiescent memory state. Conditional ablation of Dicer/miRNAs in early effector CD8 T cells following optimal activation and expression of granzyme B, using unique dicerfl/fl gzmb-cre mice, led to a strikingly diminished peak effector size relative to wild-type antigen-specific cells in the same infectious milieu. Diminished expansion of Dicer-ablated CD8 T cells was associated with lack of sustained antigen-driven proliferation and reduced accumulation of short-lived effector cells. Additionally, Dicer-ablated CD8 T cells exhibited more pronounced contraction after pathogen clearance and comprised a significantly smaller proportion of the memory pool, despite significantly higher proportions of CD127Hi memory precursors at the effector peak. Combined with previous reports of dynamic changes in miRNA expression as CD8 T cells differentiate from naïve to effector and memory states, these findings support distinct stage-specific roles of miRNA-dependent gene regulation during CD8 T cell differentiation. PMID:27627450

  18. On the Injection of Short-lived Radionuclides from a Supernova into the Solar Nebula: Constraints from the Oxygen Isotopes

    NASA Astrophysics Data System (ADS)

    Liu, Ming-Chang

    2014-02-01

    Injection of short-lived radionuclides from a nearby core-collapse Type II supernova into the already-formed solar protoplanetary disk was proposed to account for the former presence of 26Al, 41Ca, and 60Fe in the early solar system inferred from isotopic analysis of meteoritic samples. One potential corollary of this "late-injection" scenario is that the disk's initial (pre-injection) oxygen isotopic composition could be significantly altered, as supernova material that carried the short-lived radionuclides would also deliver oxygen components synthesized in that given star. Therefore, the change in the oxygen isotopic composition of the disk caused by injection could in principle be used to constrain the supernova injection models. Previous studies showed that although supernova oxygen could result in a wide range of shifts in 17O/16O and 18O/16O of the disk, a couple of cases existed where the calculated oxygen changes in the disk would be compatible with the meteoritic and solar wind data. Recently, the initial abundances of 41Ca and 60Fe in the solar system were revised to lower values, and the feasibility of supernova injection as a source for the three radionuclides was called into question. In this study, supernova parameters needed for matching 26Al, 41Ca, and 60Fe to their early solar system abundances were reinvestigated and then were used to infer the pre-injection O-isotope composition of the disk. The result suggested that a supernova undergoing mixing fallback might be a viable source for the three radionuclides.

  19. Thyroid cancer in the Marshallese: relative risk of short-lived internal emitters and external radiation exposure

    SciTech Connect

    Lessard, E.T.; Brill, A.B.; Adams, W.H.

    1985-01-01

    In a study of the comparative effects of internal versus external irradiation of the thyroid in young people, we determined that the dose from internal irradiation of the thyroid with short-lived internal emitters produced several times less thyroid cancer than did the same dose of radiation given externally. We determined this finding for a group of 85 Marshall Islands children, who were less than 10 years of age at the time of exposure and who were accidentially exposed to internal and external thyroid radiation at an average level of 1400 rad. The external risk coefficient ranged between 2.5 and 4.9 cancers per million person-rad-years at risk, and thus, from our computations, the internal risk coefficient for the Marshallese children was estimated to range between 1.0 and 1.4 cancers per million person-rad-years at risk. In contrast, for individual more than 10 years of age at the time of exposure, the dose from internal irradiation of the thyroid with short-lived internal emitters produced several times more thyroid cancer than did the same dose of radiation given externally. The external risk coefficients for the older age groups were reported in the literature to be in the range of 1.0 to 3.3 cancers per million person-rad-years-at risk. We computed internal risk coefficients of 3.3 to 8.1 cancers per million person-rad-years at risk for adolescent and adult groups. This higher sensitivity to cancer induction in the exposed adolescents and adults, is different from that seen in other exposed groups. 14 refs., 8 tabs.

  20. Dicer Regulates the Balance of Short-Lived Effector and Long-Lived Memory CD8 T Cell Lineages.

    PubMed

    Baumann, Florian M; Yuzefpolskiy, Yevgeniy; Sarkar, Surojit; Kalia, Vandana

    2016-01-01

    MicroRNAs constitute a major post-transcriptional mechanism for controlling protein expression, and are emerging as key regulators during T cell development and function. Recent reports of augmented CD8 T cell activation and effector differentiation, and aberrant migratory properties upon ablation of Dicer/miRNAs in naïve cells have established a regulatory role of miRNAs during priming. Whether miRNAs continue to exert similar functions or are dispensable during later stages of CD8 T cell expansion and memory differentiation remains unclear. Here, we report a critical role of Dicer/miRNAs in regulating the balance of long-lived memory and short-lived terminal effector fates during the post-priming stages when CD8 T cells undergo clonal expansion to generate a large cytotoxic T lymphocyte (CTL) pool and subsequently differentiate into a quiescent memory state. Conditional ablation of Dicer/miRNAs in early effector CD8 T cells following optimal activation and expression of granzyme B, using unique dicerfl/fl gzmb-cre mice, led to a strikingly diminished peak effector size relative to wild-type antigen-specific cells in the same infectious milieu. Diminished expansion of Dicer-ablated CD8 T cells was associated with lack of sustained antigen-driven proliferation and reduced accumulation of short-lived effector cells. Additionally, Dicer-ablated CD8 T cells exhibited more pronounced contraction after pathogen clearance and comprised a significantly smaller proportion of the memory pool, despite significantly higher proportions of CD127Hi memory precursors at the effector peak. Combined with previous reports of dynamic changes in miRNA expression as CD8 T cells differentiate from naïve to effector and memory states, these findings support distinct stage-specific roles of miRNA-dependent gene regulation during CD8 T cell differentiation. PMID:27627450

  1. Oxidation of lactose with bromine.

    PubMed

    Yang, Byung Y; Montgomery, Rex

    2005-12-12

    Oxidation of lactose by bromine in an aqueous buffered solution was conducted as a model experiment to examine the glycosidic linkage cleavage occurring during the oxidation of oligosaccharides and polysaccharides. The resulting oxidation products, after reduction with sodium borodeuteride, were characterized by GLC-MS analyses of the per-O-methyl or per-O-Me3Si derivatives. Most of the products were carboxylic acids, of which lactobionic acid was major. Minor products, identified after partial fractionation on a BioGel P-2 column, comprised oxalic acid; glyceric acid; threonic and erythronic acids; tartaric acid; lyxonic, arabinonic, and xylonic acids; galactonic and gluconic acids; galactosylerythronic acid; galactosylarabinonic acid; galactosylarabinaric acid; galacturonosylarabinonic acid; and galactosylglucaric acid. No keto acids were identified. Galactose was detected as 1-deuteriogalactitol, the presence of which, together with the C6 aldonic acids, supported a galactosidic bond cleavage. Galactosylarabinonic acid was the major constituent (7.5%) among minors, and others constituted 0.2-3.7% of the principal lactobionic acid. These products together comprised 29% of the lactobionic acid, more than half (17%) of which were accounted for by the galactosidic linkage cleavage, supporting the significant decrease in molecular weight seen earlier in the bromine-oxidized polysaccharides by glycosidic cleavage.

  2. Mass Evaluation for Proton Rich Nuclides

    SciTech Connect

    Wang, M.; Audi, G.; Xu, X.; Pfeiffer, B.; Kondev, F. G.

    2011-11-30

    The Atomic mass evaluation (AME) provides the reliable resource for the values related to atomic masses. Since the publication of the latest version of AME in 2003, many developments for atomic mass determination have been done and important results changed significantly our knowledge. A preliminary version of AME was released in April 2011, and an official version is foreseen to be published in early 2013. The general status of AME is presented and some specific features of AME for proton-rich nuclides are discussed.

  3. Mass measurements of exotic nuclides at SHIPTRAP

    SciTech Connect

    Block, M.; Ackermann, D.; Eliseev, S.; Herfurth, F.; Hessberger, F. P.; Hofmann, S.; Kluge, H.-J.; Maero, G.; Martin, A.; Mazzocco, M.; Mukherjee, M.; Quint, W.; Rahaman, S.; Rauth, C.; Rodriguez, D.; Scheidenberger, C.; Vorobjev, G.; Blaum, K.; Ferrer, R.; Weber, C.

    2007-05-22

    The Penning trap mass spectrometer SHIPTRAP is installed behind the velocity-filter SHIP at GSI for high-precision mass measurements of fusion-evaporation residues. To facilitate an efficient stopping of the reaction products a buffer gas stopping cell is utilized. In an investigation of neutron-deficient nuclides in the terbium-to-thulium region around A {approx_equal} 146, 18 new or improved mass values have been obtained, resulting in a more accurate determination of the proton drip line for holmium and thulium. With the present performance of SHIPTRAP, a first direct mass measurement of transuranium elements in the nobelium region is within reach.

  4. Chart of Nuclides from the National Nuclear Data Center (NNDC)

    DOE Data Explorer

    The Chart of Nuclides is a software product that allows users to search and plot nuclear structure and nuclear decay data interactively. The Chart of Nuclides was developed by the National Nuclear Data Center (NNDC). It provides an interface between web users and several databases containing nuclear structure, nuclear decay and some neutron-induced nuclear reaction information. Using the Chart of Nuclides, it is possible to search for nuclear level properties (energy, half-life, spin-parity), gamma-ray information (energy, intensity, multipolarity, coincidences),radiation information following nuclear decay (energy, intensity, dose), and neutron-induced reaction data from the BNL-325 book (thermal cross section and resonance integral). The information provided by the Chart of Nuclides can be seen in tables, level schemes and an interactive chart of nuclides. (From the Chart of Nuclides Description at http://www.nndc.bnl.gov/chart/help/index.jsp?product=chart)

  5. Modeling of radon and its short-lived decay products emanating from tap water used inside a house: dose to adult members of the public.

    PubMed

    Ouabi, H

    2009-01-01

    Radon concentrations are measured in the tap water collected in different areas in Marrakech (Morocco) by using liquid scintillation techniques. The concentrations due to radon and its short-lived decay products emanating from the tap water used inside different compartments of the house were determined. Alpha activities due to the (218)Po and (214)Po short-lived radon decay products were evaluated in various compartments of the respiratory tract of adult members of the public. The committed equivalent doses due to the (218)Po and (214)Po short-lived progeny of radon were evaluated in different tissues of the respiratory tract by the frequencies of using the various parts of the house. PMID:18789711

  6. The adaptive significance of temperature-dependent sex determination: experimental tests with a short-lived lizard.

    PubMed

    Warner, Daniel A; Shine, Richard

    2005-10-01

    Why is the sex of many reptiles determined by the temperatures that these animals experience during embryogenesis, rather than by their genes? The Charnov-Bull model suggests that temperature-dependent sex determination (TSD) can enhance maternal fitness relative to genotypic sex determination (GSD) if offspring traits affect fitness differently for sons versus daughters and nest temperatures either determine or predict those offspring traits. Although potential pathways for such effects have attracted much speculation, empirical tests largely have been precluded by logistical constraints (i.e., long life spans and late maturation of most TSD reptiles). We experimentally tested four differential fitness models within the Charnov-Bull framework, using a short-lived, early-maturing Australian lizard (Amphibolurus muricatus) with TSD. Eggs from wild-caught females were incubated at a range of thermal regimes, and the resultant hatchlings raised in large outdoor enclosures. We applied an aromatase inhibitor to half the eggs to override thermal effects on sex determination, thus decoupling sex and incubation temperature. Based on relationships between incubation temperatures, hatching dates, morphology, growth, and survival of hatchlings in their first season, we were able to reject three of the four differential fitness models. First, matching offspring sex to egg size was not plausible because the relationship between egg (offspring) size and fitness was similar in the two sexes. Second, sex differences in optimal incubation temperatures were not evident, because (1) although incubation temperature influenced offspring phenotypes and growth, it did so in similar ways in sons versus daughters, and (2) the relationship between phenotypic traits and fitness was similar in the two sexes, at least during preadult life. We were unable to reject a fourth model, in which TSD enhances offspring fitness by generating seasonal shifts in offspring sex ratio: that is, TSD allows

  7. PCBs, PBBs and Brominated Flame Retardants

    EPA Science Inventory

    This chapter introduces selected organohalogen chemicals such as polychlorinated biphenyls (PCB5), polychiorinated biphenyls (PBBs), and brominated flame retardants (BFRs) with emphasis on the background, physicochemical properties, environmental levels, health effects and possib...

  8. Brominated Flame Retardants and Perfluorinated Chemicals

    EPA Science Inventory

    Brominated flame retardants (BFRs) and perfluorinated chemicals (PFCs) belong to a large class of chemicals known as organohalogens. It is believed that both BFRs and PFCs saved lives by reducing flammability of materials commonly used and bactericidal (biocidal) properties. Thes...

  9. Stability and metastability of bromine clathrate polymorphs.

    PubMed

    Nguyen, Andrew H; Molinero, Valeria

    2013-05-23

    Clathrate hydrates are crystals in which water forms a network of fully hydrogen-bonded polyhedral cages that contain small guests. Clathrate hydrates occur mostly in two cubic crystal polymorphs, sI and sII. Bromine is one of two guests that yield a hydrate with the tetragonal structure (TS), the topological dual of the Frank-Kasper σ phase. There has been a long-standing disagreement on whether bromine hydrate also forms metastable sI and sII crystals. To date there are no data on the thermodynamic range of stability (e.g., the melting temperatures) of the metastable polymorphs. Here we use molecular dynamics simulations with the coarse-grained model of water mW to (i) investigate the thermodynamic stability of the empty and guest-filled the sI, sII, TS, and HS-I hydrate polymorphs, (ii) develop a coarse-grained model of bromine compatible with mW water, and (iii) evaluate the stability of the bromine hydrate polymorphs. The mW model predicts the same relative energy of the empty clathrate polymorphs and the same phase diagram as a function of water-guest interaction than the fully atomistic TIP4P water model. There is a narrow region in water-guest parameter space for which TS is marginally more stable than sI or sII. We parametrize a coarse-grained model of bromine compatible with mW water and use it to determine the order of stability of the bromine hydrate polymorphs. The melting temperatures of the bromine hydrate polymorphs predicted by the coarse-grained model are 281 ± 1 K for TS, 279 ± 1 K for sII, and 276 ± 1 K for sI. The closeness of the melting temperatures supports the plausibility of formation of metastable sII and sI bromine hydrates.

  10. Public health benefits of strategies to reduce greenhouse-gas emissions: health implications of short-lived greenhouse pollutants

    PubMed Central

    Smith, Kirk R.; Jerrett, Michael; Anderson, H Ross; Burnett, Richard T.; Stone, Vicki; Derwent, Richard; Atkinson, Richard W.; Cohen, Aaron; Shonkoff, Seth B.; Krewski, Daniel; Pope, C. Arden; Thun, Michael J.; Thurston, George

    2014-01-01

    In this report we review the health effects of three short-lived greenhouse pollutants—black carbon, ozone, and sulphates. We undertook new meta-analyses of existing time-series studies and an analysis of a cohort of 352 000 people in 66 US cities during 18 years of follow-up. This cohort study provides estimates of mortality effects from long-term exposure to elemental carbon, an indicator of black carbon mass, and evidence that ozone exerts an independent risk of mortality. Associations among these pollutants make drawing conclusions about their individual health effects difficult at present, but sulphate seems to have the most robust effects in multiple-pollutant models. Generally, the toxicology of the pure compounds and their epidemiology diverge because atmospheric black carbon, ozone, and sulphate are associated and could interact with related toxic species. Although sulphate is a cooling agent, black carbon and ozone could together exert nearly half as much global warming as carbon dioxide. The complexity of these health and climate effects needs to be recognised in mitigation policies. PMID:19942276

  11. Comparison of short-lived medical isotopes activation by laser thin target induced protons and conventional cyclotron proton beams

    NASA Astrophysics Data System (ADS)

    Murray, Joseph; Dudnikova, Galina; Liu, Tung-Chang; Papadopoulos, Dennis; Sagdeev, Roald; Su, J. J.; UMD MicroPET Team

    2014-10-01

    Production diagnostic or therapeutic nuclear medicines are either by nuclear reactors or by ion accelerators. In general, diagnostic nuclear radioisotopes have a very short half-life varying from tens of minutes for PET tracers and few hours for SPECT tracers. Thus supplies of PET and SPECT radiotracers are limited by regional production facilities. For example 18F-fluorodeoxyglucose (FDG) is the most desired tracer for positron emission tomography because its 110 minutes half-life is sufficient long for transport from production facilities to nearby users. From nuclear activation to completing image taking must be done within 4 hours. Decentralized production of diagnostic radioisotopes will be idea to make high specific activity radiotracers available to researches and clinicians. 11 C, 13 N, 15 O and 18 F can be produced in the energy range from 10-20 MeV by protons. Protons of energies up to tens of MeV generated by intense laser interacting with hydrogen containing targets have been demonstrated by many groups in the past decade. We use 2D PIC code for proton acceleration, Geant4 Monte Carlo code for nuclei activation to compare the yields and specific activities of short-lived isotopes produced by cyclotron proton beams and laser driven protons.

  12. Fecal cortisol levels predict breeding but not survival of females in the short-lived rodent, Octodon degus.

    PubMed

    Ebensperger, Luis A; Tapia, Diego; Ramírez-Estrada, Juan; León, Cecilia; Soto-Gamboa, Mauricio; Hayes, Loren D

    2013-06-01

    The cort-adaptation hypothesis indicates that an association between glucocorticoid (cort) levels and fitness may vary with the extent to which reproduction or breeding effort is a major determinant of cort levels. Support for a context dependent association between cort and fitness comes mostly from relatively long-lived, bird species. We tested the hypothesis that there are gender and context (life-history) specific cort-fitness relationships in degus, a short-lived and generally semelparous social rodent. In particular, we used demographical records on a natural population to estimate adult survival through seasons and years and linked that to records of baseline cort (based on fecal cortisol metabolites). We found no evidence for a direct relationship between baseline cort and adult survival across seasons, and this lack of association was recorded irrespective of sex and life history stage. Yet, cort levels during early lactation predicted the probability that females produce a second litter during the same breeding season, supporting a connection between baseline cort levels and breeding effort. Overall, the differential effects of cort on survival and breeding supported that the extent of cort-fitness relationships depends on the fitness component examined.

  13. Targeted alpha therapy using short-lived alpha-particles and the promise of nanobodies as targeting vehicle

    PubMed Central

    Dekempeneer, Yana; Keyaerts, Marleen; Krasniqi, Ahmet; Puttemans, Janik; Muyldermans, Serge; Lahoutte, Tony; D’huyvetter, Matthias; Devoogdt, Nick

    2016-01-01

    ABSTRACT Introduction: The combination of a targeted biomolecule that specifically defines the target and a radionuclide that delivers a cytotoxic payload offers a specific way to destroy cancer cells. Targeted radionuclide therapy (TRNT) aims to deliver cytotoxic radiation to cancer cells and causes minimal toxicity to surrounding healthy tissues. Recent advances using α-particle radiation emphasizes their potential to generate radiation in a highly localized and toxic manner because of their high level of ionization and short range in tissue. Areas covered: We review the importance of targeted alpha therapy (TAT) and focus on nanobodies as potential beneficial vehicles. In recent years, nanobodies have been evaluated intensively as unique antigen-specific vehicles for molecular imaging and TRNT. Expert opinion: We expect that the efficient targeting capacity and fast clearance of nanobodies offer a high potential for TAT. More particularly, we argue that the nanobodies’ pharmacokinetic properties match perfectly with the interesting decay properties of the short-lived α-particle emitting radionuclides Astatine-211 and Bismuth-213 and offer an interesting treatment option particularly for micrometastatic cancer and residual disease. PMID:27145158

  14. Mapping loci associated with tail color and sex determination in the short-lived fish Nothobranchius furzeri.

    PubMed

    Valenzano, Dario Riccardo; Kirschner, Jeanette; Kamber, Roarke A; Zhang, Elisa; Weber, David; Cellerino, Alessandro; Englert, Christoph; Platzer, Matthias; Reichwald, Kathrin; Brunet, Anne

    2009-12-01

    The African fish Nothobranchius furzeri is the shortest-lived vertebrate species that can reproduce in captivity, with a median life span of 9-11 weeks for the shortest-lived strain. Natural populations of N. furzeri display differences in life span, aging biomarkers, behavior, and color, which make N. furzeri a unique vertebrate system for studying the genetic basis of these traits. We mapped regions of the genome involved in sex determination and tail color by genotyping microsatellite markers in the F(2) progeny of a cross between a short-lived, yellow-tailed strain and a long-lived, red-tailed strain of N. furzeri. We identified one region linked with the yellow/red tail color that maps close to melanocortin 1 receptor (mc1r), a gene involved in pigmentation in several vertebrate species. Analysis of the segregation of sex-linked markers revealed that N. furzeri has a genetic sex determination system with males as the heterogametic sex and markedly reduced recombination in the male sex-determining region. Our results demonstrate that both naturally-evolved pigmentation differences and sex determination in N. furzeri are controlled by simple genetic mechanisms and set the stage for the molecular genetic dissection of factors underlying such traits. The microsatellite-based linkage map we developed for N. furzeri will also facilitate analysis of the genetic architecture of traits that characterize this group of vertebrates, including short life span and adaptation to extreme environmental conditions.

  15. Public health benefits of strategies to reduce greenhouse-gas emissions: health implications of short-lived greenhouse pollutants.

    PubMed

    Smith, Kirk R; Jerrett, Michael; Anderson, H Ross; Burnett, Richard T; Stone, Vicki; Derwent, Richard; Atkinson, Richard W; Cohen, Aaron; Shonkoff, Seth B; Krewski, Daniel; Pope, C Arden; Thun, Michael J; Thurston, George

    2009-12-19

    In this report we review the health effects of three short-lived greenhouse pollutants-black carbon, ozone, and sulphates. We undertook new meta-analyses of existing time-series studies and an analysis of a cohort of 352,000 people in 66 US cities during 18 years of follow-up. This cohort study provides estimates of mortality effects from long-term exposure to elemental carbon, an indicator of black carbon mass, and evidence that ozone exerts an independent risk of mortality. Associations among these pollutants make drawing conclusions about their individual health effects difficult at present, but sulphate seems to have the most robust effects in multiple-pollutant models. Generally, the toxicology of the pure compounds and their epidemiology diverge because atmospheric black carbon, ozone, and sulphate are associated and could interact with related toxic species. Although sulphate is a cooling agent, black carbon and ozone could together exert nearly half as much global warming as carbon dioxide. The complexity of these health and climate effects needs to be recognised in mitigation policies.

  16. SOLAR COSMIC-RAY INTERACTION WITH PROTOPLANETARY DISKS: PRODUCTION OF SHORT-LIVED RADIONUCLIDES AND AMORPHIZATION OF CRYSTALLINE MATERIAL

    SciTech Connect

    Trappitsch, R.; Ciesla, F. J.

    2015-05-20

    Solar cosmic-ray (SCR) interactions with a protoplanetary disk have been invoked to explain several observations of primitive planetary materials. In our own Solar System, the presence of short-lived radionuclides (SLRs) in the oldest materials has been attributed to spallation reactions induced in phases that were irradiated by energetic particles in the solar nebula. Furthermore, observations of other protoplanetary disks show a mixture of crystalline and amorphous grains, though no correlation between grain crystallinity and disk or stellar properties have been identified. As most models for the origin of crystalline grains would predict such correlations, it was suggested that amorphization by stellar cosmic-rays may be masking or erasing such correlations. Here we quantitatively investigate these possibilities by modeling the interaction of energetic particles emitted by a young star with the surrounding protoplanetary disk. We do this by tracing the energy evolution of SCRs emitted from the young star through the disk and model the amount of time that dust grains would spend in regions where they would be exposed to these particles. We find that this irradiation scenario cannot explain the total SLR content of the solar nebula; however, this scenario could play a role in the amorphization of crystalline material at different locations or epochs of the disk over the course of its evolution.

  17. Plasmacytoid dendritic cells are short-lived: reappraising the influence of migration, genetic factors and activation on estimation of lifespan

    PubMed Central

    Zhan, Yifan; Chow, Kevin V.; Soo, Priscilla; Xu, Zhen; Brady, Jamie L.; Lawlor, Kate E.; Masters, Seth L.; O’keeffe, Meredith; Shortman, Ken; Zhang, Jian-Guo; Lew, Andrew M.

    2016-01-01

    Plasmacytoid dendritic cells (pDCs) play an important role in immunity to certain pathogens and immunopathology in some autoimmune diseases. They are thought to have a longer lifespan than conventional DCs (cDCs), largely based on a slower rate of BrdU labeling by splenic pDCs. Here we demonstrated that pDC expansion and therefore BrdU labeling by pDCs occurs in bone marrow (BM). The rate of labeling was similar between BM pDCs and spleen cDCs. Therefore, slower BrdU labeling of spleen pDCs likely reflects the “migration time” (∼2 days) for BrdU labeled pDCs to traffic to the spleen, not necessarily reflecting longer life span. Tracking the decay of differentiated DCs showed that splenic pDCs and cDCs decayed at a similar rate. We suggest that spleen pDCs have a shorter in vivo lifespan than estimated utilizing some of the previous approaches. Nevertheless, pDC lifespan varies between mouse strains. pDCs from lupus-prone NZB mice survived longer than C57BL/6 pDCs. We also demonstrated that activation either positively or negatively impacted on the survival of pDCs via different cell-death mechanisms. Thus, pDCs are also short-lived. However, the pDC lifespan is regulated by genetic and environmental factors that may have pathological consequence. PMID:27112985

  18. Estimating surface fluxes of very short-lived halogens from aircraft measurements over the tropical Western Pacific

    NASA Astrophysics Data System (ADS)

    Feng, Liang; Palmer, Paul I.; Butler, Robyn; Harris, Neil; Carpenter, Lucy; Andrews, Steve; Atlas, Elliot; Pan, Laura; Salawitch, Ross; Donets, Valeria; Schauffler, Sue

    2016-04-01

    We use an inverse model approach to quantitatively understand the ocean flux and atmospheric transport of very short-lived halogenated species (VSLS) measured during the coordinated NERC CAST and NCAR CONTRAST aircraft campaigns over the Western Pacific during January/February 2014. To achieve this we have developed a nested GEOS-Chem chemistry transport model simulation of bromoform (CHBr3) and dibromomethane (CH2Br2), which has a spatial resolution of 0.25° (latitude) × 0.3125° (longitude) over the tropical Western Pacific region, and fed by boundary conditions from a coarser version of the model. We use archived 3-hourly 3-D fields of OH and j-values for CHBr3 photolysis, allowing us to linearly decompose these gases into tagged contributions from different geographical regions. Using these tagged tracers, we are able to use the maximum a posteriori probability (MAP) approach to estimate the VSLS sources by fitting the model to observations. We find that the resulting VSLS fluxes are significantly different from some previous studies. To interpret the results, we describe several observation system simulation experiments to understand the sensitivity of these flux estimates to observation errors as well as to the uncertainty in the boundary condition imposed around the nested grid.

  19. Attached and unattached fractions of short-lived radon decay products in outdoor environments: effect on the human respiratory system.

    PubMed

    Amrane, M; Oufni, L; Misdaq, M A

    2014-12-01

    The authors developed a model for determining the alpha- and beta-activities per unit volume of air due to radon ((222)Rn), thoron ((220)Rn) and their decay products attached and unattached to the aerosol in the outdoor air at the workplace in natural conditions at different locations in Morocco by using both CR-39 and LR-115 type II solid-state nuclear track detectors. In addition, the percentage of (218)Po, (214)Pb and (214)Po radionuclides attached to the aerosols and the unattached fraction f(j) for different values of the attachment rate were evaluated. Radon and thoron concentrations in outdoor air of the studied different locations were found to vary from 9.20±0.8 to 16.30±1.50 Bq m(-3) and 0.22±0.02 to 1.80±0.20 Bq m(-3), respectively. The committed equivalent doses due to the radon short-lived progeny (218)Po and (214)Po attached and unattached to the aerosol air were evaluated in different tissues of the respiratory tract of the members of the public from the inhalation of outdoor air.

  20. Time-resolved absorption and resonance Raman investigations of short-lived intermediates in solution or occluded in zeolites

    NASA Astrophysics Data System (ADS)

    Brémard, C.; Buntinx, G.; De Waele, V.; Didierjean, C.; Gener, I.; Poizat, O.

    1999-05-01

    Two examples of structural investigation of photogenerated short-lived transient species of aromatic compounds, by using time-resolved electronic absorption and resonance Raman spectroscopy are provided. The picosecond Raman spectra of the lowest excited singlet state (S 1) of 4,4'-bipyridine and 2,2'-bipyridine in solution are discussed first. The results provide strong evidence for a surprising asymmetric S 1 structure in which the electronic excitation and the consequent structural distortion are localized in one of the pyridyl rings, the other ring being almost unaffected. The laser photolysis of biphenyl occluded in the pores and cavities of ZSM-5 and faujasitic zeolites have been investigated in the nanosecond time-scale as functions of aluminium content, the extraframework cations, sample loading and intensity of photolysis. At low pump power and low aluminium content the triplet state of biphenyl is observed. At higher pump power and in aluminated zeolites, biphotonic ionization was observed to generate the cation radical. As the loading increased, the anion radical yield increased. This is characteristic of faujasitic zeolites in which scavenger molecules with restricted diffusional motions are confined in the vicinity of photoionized molecules. The lifetimes of cation radical were particularly long in aluminated ZSM-5 zeolites with efficient trapping sites of the photoejected electron.

  1. Short-lived charge-transfer excitons in organic photovoltaic cells studied by high-field magneto-photocurrent.

    PubMed

    Devir-Wolfman, Ayeleth H; Khachatryan, Bagrat; Gautam, Bhoj R; Tzabary, Lior; Keren, Amit; Tessler, Nir; Vardeny, Z Valy; Ehrenfreund, Eitan

    2014-07-29

    The main route of charge photogeneration in efficient organic photovoltaic cells based on bulk hetero-junction donor-acceptor blends involves short-lived charge-transfer excitons at the donor-acceptor interfaces. The cell efficiency is critically affected by the charge-transfer exciton recombination and dissociation processes. By measuring the magneto-photocurrent under ambient conditions at room temperature, we show here that magnetic field-induced spin-mixing among the charge-transfer exciton spin sublevels occurs in fields up to at least 8.5 Tesla. The resulting magneto-photocurrent increases at high fields showing non-saturating behaviour up to the highest applied field. We attribute the observed high-field spin-mixing mechanism to the difference in the donor-acceptor g-factors. The non-saturating magneto-photocurrent response at high field indicates that there exist charge-transfer excitons with lifetime in the sub-nanosecond time domain. The non-Lorentzian high-field magneto-photocurrent response indicates a dispersive decay mechanism that originates due to a broad distribution of charge-transfer exciton lifetimes.

  2. Solar Cosmic-ray Interaction with Protoplanetary Disks: Production of Short-lived Radionuclides and Amorphization of Crystalline Material

    NASA Astrophysics Data System (ADS)

    Trappitsch, R.; Ciesla, F. J.

    2015-05-01

    Solar cosmic-ray (SCR) interactions with a protoplanetary disk have been invoked to explain several observations of primitive planetary materials. In our own Solar System, the presence of short-lived radionuclides (SLRs) in the oldest materials has been attributed to spallation reactions induced in phases that were irradiated by energetic particles in the solar nebula. Furthermore, observations of other protoplanetary disks show a mixture of crystalline and amorphous grains, though no correlation between grain crystallinity and disk or stellar properties have been identified. As most models for the origin of crystalline grains would predict such correlations, it was suggested that amorphization by stellar cosmic-rays may be masking or erasing such correlations. Here we quantitatively investigate these possibilities by modeling the interaction of energetic particles emitted by a young star with the surrounding protoplanetary disk. We do this by tracing the energy evolution of SCRs emitted from the young star through the disk and model the amount of time that dust grains would spend in regions where they would be exposed to these particles. We find that this irradiation scenario cannot explain the total SLR content of the solar nebula; however, this scenario could play a role in the amorphization of crystalline material at different locations or epochs of the disk over the course of its evolution.

  3. Impact of short-lived non-CO2 mitigation on carbon budgets for stabilizing global warming

    NASA Astrophysics Data System (ADS)

    Rogelj, Joeri; Meinshausen, Malte; Schaeffer, Michiel; Knutti, Reto; Riahi, Keywan

    2015-07-01

    Limiting global warming to any level requires limiting the total amount of CO2 emissions, or staying within a CO2 budget. Here we assess how emissions from short-lived non-CO2 species like methane, hydrofluorocarbons (HFCs), black-carbon, and sulphates influence these CO2 budgets. Our default case, which assumes mitigation in all sectors and of all gases, results in a CO2 budget between 2011-2100 of 340 PgC for a >66% chance of staying below 2°C, consistent with the assessment of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Extreme variations of air-pollutant emissions from black-carbon and sulphates influence this budget by about ±5%. In the hypothetical case of no methane or HFCs mitigation—which is unlikely when CO2 is stringently reduced—the budgets would be much smaller (40% or up to 60%, respectively). However, assuming very stringent CH4 mitigation as a sensitivity case, CO2 budgets could be 25% higher. A limit on cumulative CO2 emissions remains critical for temperature targets. Even a 25% higher CO2 budget still means peaking global emissions in the next two decades, and achieving net zero CO2 emissions during the third quarter of the 21st century. The leverage we have to affect the CO2 budget by targeting non-CO2 diminishes strongly along with CO2 mitigation, because these are partly linked through economic and technological factors.

  4. Manganese-52m, a new short-lived, generator-produced radionuclide: a potential tracer for positron tomography.

    PubMed

    Atcher, R W; Friedman, A M; Huizenga, J R; Rayudu, G V; Silverstein, E A; Turner, D A

    1980-06-01

    A new generator system has been developed using the Fe-52 leads to Mn-52m parent-daughter pair. Fe-52, half-life 8.3 hr, is isolated on an anion-exchange column, and Mn-52m is eluted in hydrochloric acid. Breakthrough is less than 0.01% and the yield is 75%. The 21.1-min half life of Mn-52m is ideal for use in sequential studies, but is long enough to permit radiochemical manipulations to control biodistribution. Animal studies indicate that Mn-52m is an ideal nuclide for myocardial imaging, combining rapid blood clearance and high concentration in the myocardium. An added advantage is that Mn-52m decays 98% by positron emission and is useful for positron computer tomography. PMID:6966681

  5. Nuclear-physics characteristics of short-lived odd-odd {sup 232}Pa, {sup 238}Np and {sup 242g}Am nuclides (measurement results and prospects for further researches)

    SciTech Connect

    Fomushkin, Eduard F.; Abramovich, Sergei N.; Andreev, Mikhail F.

    1998-10-26

    In VNIIEF there were measured cross-sections of {sup 232}Pa and {sup 238}Np fission caused by thermal neutrons. The obtained data do not agree with the results of measurements carried out in Los Alamos National Laboratory (USA). Possible reasons of the result divergence are discussed. There are considered the measurement prospects for fission and radiation capture cross-sections of thermal neutrons by the nuclei of {sup 232}Pa, {sup 238}Np and {sup 242g}Am, including the measurements performed with the aid of ILL (Grenoble, France) reactor and some devices for neutron researches.

  6. Prompt neutron multiplicities for the transplutonium nuclides

    SciTech Connect

    Holden, N.E.; Zucker, M.S.

    1985-01-01

    The direct determination of the average prompt neutron emission values is reviewed, and a method of comparing different sites of neutron emission multiplicity distribution values is described. Measured and recommended values are tabulated for these nuclides: /sup 241/Am, /sup 242/Am, /sup 242/Cm, /sup 243/Cm, /sup 244/Cm, /sup 246/Cm, /sup 247/Cm, /sup 248/Cm, /sup 250/Cm, /sup 245/Cm, /sup 249/Bk, /sup 246/Cf, /sup 249/Cf, /sup 250/Cf, /sup 252/Cf, /sup 254/Cf, /sup 251/Cf, /sup 253/Es, /sup 254/Es, /sup 244/Fm, /sup 246/Fm, /sup 255/Fm, /sup 252/No, /sup 254/Fm, /sup 256/Fm, /sup 257/Fm. 59 refs., 24 tabs. (LEW)

  7. Nuclide production in (very) small meteorites

    NASA Technical Reports Server (NTRS)

    Arnold, J. R.; Nishiizumi, K.

    1986-01-01

    One of the most interesting open questions in the study of cosmic-ray effects in meteorites is the expected behavior of objects which are very small compared to the mean interaction length of primary galactic cosmic ray (GCR) particles. A reasonable limit might be a pre-atmospheric radius of 5 gram/cm(2), or 1.5 cm for chondrites. These are interesting for at least three reasons: (1) this is a limiting case for large objects, and can help us make better models; (2) this size is intermediate between usual meteorites and irradiated grams (spherules); and (3) these are the most likely objects to show solar cosmic ray (SCR) effects. Reedy (1984) has recently proposed a model for production by GCR of radioactive and stable nuclides in spherical meteorites. Very small objects are expected to deviate from this model in the direction of fewer secondary particles (larger spectral shape parameter), at all depths. The net effect will be significantly lower production of such low-energy products as Mn-53 and Al-26. The SCR production of these and other nuclides will be lower, too, because meteorite orbits extend typically out into the asteroid belt, and the mean SCR flux must fall off approximately as r(-2) with distance from the Sun. Kepler's laws insure that for such orbits most of the exposure time is spent near aphelion. None the less the equivalent mean exposure distance, R(exp), is slightly less than the semimajor axis A because of the weighting by R(-2). For the three meteorite orbits we have, R(exp) has a narrow range, from about 1.6 to 2.1 a.u. This is probably true for the great majority of meteorites.

  8. The short-lived (<2 minutes) acceleration of protons to >13 GeV in association with solar flares.

    NASA Astrophysics Data System (ADS)

    McCracken, Ken; Shea, Margaret Ann; Smart, Don

    2016-04-01

    release) mechanism must then decrease greatly in efficiency abruptly ~3 minutes after it started. We note that this is not a unique example; the >10GeV particle pulse in the GLE of 20 January 2005 persisted for only 3 minutes; and a >4.5 GeV pulse at the commencement of the GLE of 7 December, 1982, only lasted one minute. We conclude with a comparison between these observations and the predictions of several proposed acceleration models. We conclude that these short-lived bursts of highly relativistic cosmic rays have been accelerated in the reconnection regions associated with large solar flares. In the greater majority of cases, the short-lived, high energy cosmic ray pulse at the commencement of a GLE is followed by a slowly rising component accelerated in the CME generated shock.

  9. Short-lived Radium Isotopes in the Hawaiian Margin: Evidence for Large Fluid Fluxes Through the Puna Ridge

    NASA Astrophysics Data System (ADS)

    Moore, W. S.; Paull, C. K.; Ussler, W.

    2001-12-01

    Techniques to sample and measure short-lived radium isotopes have significantly advanced understanding of groundwater-seawater exchange in coastal areas. The established sampling protocol utilizes traditional wire-line samplers from surface vessels to recover large (200 L) seawater samples. These samples are subsequently passed through Mn-fiber columns at a slow rate (100 L per hour) to assure high radium stripping efficiency. But, sampling near-bottom waters in areas of complicated bathymetry represents a technical challenge for traditional wire-line water sampling equipment. For MBARI's 2001 Hawaii expedition, we built a simple sampler to extract Ra from seawater surrounding the ROV Tiburon. The system uses a variable-flow electric pump to provide 1-2 L/min flow through one of 12 Mn-fiber-filled Ra-stripping canisters mounted on the ROV Tiburon. Values allow the flow to be directed to specific canisters. A flow meter allows the operator to control the flow and compute the volume sampled. The fibers are counted shipboard shortly after vehicle recovery. The ROV proved to be an ideal platform for Ra-sampling because it is able to slowly pump considerable volumes of seawater through the Ra-stripping columns while maintaining close contact with the bottom. Because the manifold was mounted on the ROV's side arm, its interference with other research objectives was minimal. Most of our sampling in Hawaii was conducted as a piggyback effort. We were able to collect 167 radium samples on 37 ROV dives with an average of 206 liters of seawater passing through the stripping canisters. Moreover, we are confident that the sampled waters come from 1-3 above the bottom. We measured significant activities of short-lived radium isotopes, 223Ra (half-life = 11 days) and 224Ra (half-life = 3.7 days), around the margins of the Hawaiian Islands to depths of 3100 m. These measurements suggest numerous groundwater or pore fluid inputs to the surrounding ocean. In general 223Ra activities

  10. Bromine accumulation in acidic black colluvial soils

    NASA Astrophysics Data System (ADS)

    Cortizas, Antonio Martínez; Vázquez, Cruz Ferro; Kaal, Joeri; Biester, Harald; Casais, Manuela Costa; Rodríguez, Teresa Taboada; Lado, Luis Rodríguez

    2016-02-01

    Recent investigations showed that bromine is incorporated to soil organic matter (SOM), its content increasing with humification. But few research was done on its long-term accumulation and the role played by pedogenetic processes, as those involved in organic matter stabilization. We investigated bromine content and distribution in four deep, acidic, organic-rich, Holocene soils from an oceanic area of Western Europe. Bromine concentrations (93-778 μg g-1) in the silt + clay (<50 μm) fraction were on average 3-times higher than those (17-250 μg g-1) in the fine earth (<2 mm), the former containing almost all bromine (90 ± 5%). Inventories were between 148 and 314 g m-2, indicating a rather large variability in a small area, and total estimated retention was low (6-16%). The degree of SOM bromination, expressed as the Br/C molar ratio, varied between 0.03 and 1.20 mmol Br/mol C. The ratio was highly correlated (n = 23, r2 0.88, p < 0.01) with the age of the SOM for the last ∼12 ka. Partial least squares modeling indicates that bromine concentration depends on the amount of organic matter stabilized as aluminium-OM associations, and to a lesser extent on soil acidity (pH) and iron-OM associations. Thus, at scales of thousands of years, bromine accumulation in acidic soils is linked to the pool of metal-clay-stabilized organic matter.

  11. Current and future contributions of local emissions from shipping and hydrocarbon extraction flaring to short lived pollutants in the Arctic

    NASA Astrophysics Data System (ADS)

    Marelle, L.; Raut, J. C.; Law, K.; Thomas, J. L.; Fast, J. D.; Berg, L. K.; Shrivastava, M. B.; Easter, R. C.; Herber, A. B.

    2015-12-01

    The Arctic is increasingly open to human activity due to rapid Arctic warming, associated with decreased sea ice extent and snow cover. While pollution from in-Arctic sources is currently low, oil and gas extraction and marine traffic could become a significant future source of short-lived pollutants (aerosols, ozone) in the Arctic. It is currently unclear if these local sources might become significant compared to the long-range transport of anthropogenic pollution from the midlatitudes, which is currently the main source of Arctic pollution. Here, we investigate the current (2012) and future (2050) impact of emissions from shipping and oil and gas extraction on Arctic aerosols and ozone, in relation to emissions from long-range transport. These impacts are determined by performing 6-month long, quasi-hemispheric simulations over the Arctic region with the WRF-Chem model. Our regional simulations include up-to-date representations of cloud/aerosol interactions and secondary organic aerosol formation developed recently for WRF-Chem. In order to determine the impact of Arctic shipping and oil and gas extraction, we use recent emission inventories by Winther et al., 2014 for local shipping and ECLIPSEv5 for oil and gas flaring. Both inventories suggest that current and future emissions from these sources are higher than previous estimates. Simulations are evaluated using measurements at Arctic surface sites and aircraft campaigns (ACCESS, YAK) in 2012. Model results are then used to assess the impact of Arctic shipping and oil and gas flaring on modeled surface aerosol and ozone concentrations, direct aerosol and ozone radiative effects, indirect aerosol radiative effects, and aerosol deposition. Results are used to determine if these local emissions are expected to have a significant influence on these quantities at the local or the regional scale, compared to emissions transported from the midlatitudes and to other emission sources, including boreal fires.

  12. Sediment fingerprinting with long- and short-lived radionuclide tracers in the Root River watershed, southeastern Minnesota

    NASA Astrophysics Data System (ADS)

    Belmont, P.; Stout, J. C.

    2015-12-01

    The field of sediment fingerprinting has evolved rapidly over the past decade and is poised to improve our understanding not only of sediment sources, but also the routing of sediment through watersheds. Such information is essential for understanding and modeling human impacts on erosion and sediment routing at the watershed scale. In this study we use long- (Beryllium-10, 10Be) and short-lived (Lead-210 and Cesium-137, 210Pb and 137Cs, respectively) radionuclide tracers associated with suspended sediment to quantify sediment sources and channel-floodplain exchange across a range of watershed scales from 10 km2 to 4500 km2 in in the Root River, southeastern Minnesota, USA. The uppermost quarter of the Root River watershed was glaciated repeatedly during the late Pleistocene and is characterized by low relief agricultural fields and fine textured soils. The remainder of the watershed lies within the driftless area of the upper Midwestern US, which has not been glaciated in at least the past 500,000 years, and is characterized by karst topography, relatively steep hillslopes and bedrock channels that debouch into a wide, aggrading alluvial valley. The structure of the landscape exerts strong control on sediment generation and transport. Geochemical results indicate a highly variable erosion history, with significant variability of 10Be concentrations in source areas (agricultural fields, forested hillslopes, and alluvial floodplains and terraces) and inverted 10Be depth profiles (higher concentrations at depth) in floodplains, suggesting unsteady erosion and significant storage of legacy sediment. Concentrations of 10Be and 210Pb associated with suspended sediment show a systematic disparity in normalized concentrations, indicating that significant storage and re-suspension occurs in both systems as the sediment is routed through the channel-floodplain complex.

  13. Using daily satellite observations to estimate emissions of short-lived air pollutants on a mesoscopic scale

    NASA Astrophysics Data System (ADS)

    Mijling, B.; van der A, R. J.

    2012-09-01

    Emission inventories of air pollutants are crucial information for policy makers and form important input data for air quality models. Using satellite observations for emission estimates has important advantages over bottom-up emission inventories: they are spatially consistent, have high temporal resolution, and enable updates shortly after the satellite data become available. We present a new algorithm specifically designed to use daily satellite observations of column concentrations for fast updates of emission estimates of short-lived atmospheric constituents on a mesoscopic scale (˜25 × 25 km2). The algorithm needs only one forward model run from a chemical transport model to calculate the sensitivity of concentration to emission, using trajectory analysis to account for transport away from the source. By using a Kalman filter in the inverse step, optimal use of the a priori knowledge and the newly observed data is made. We apply the algorithm for NOx emission estimates of East China, using the CHIMERE model on a 0.25 degree resolution together with tropospheric NO2column retrievals of the OMI and GOME-2 satellite instruments. Closed loop tests show that the algorithm is capable of reproducing new emission scenarios. Applied with real satellite data, the algorithm is able to detect emerging sources (e.g., new power plants), and improves emission information for areas where proxy data are not or badly known (e.g., shipping emissions). Chemical transport model runs with the daily updated emission estimates provide better spatial and temporal agreement between observed and simulated concentrations, facilitating improved air quality forecasts.

  14. Identifying emission source regions and transport pathways of very short-lived halogens over the Western Pacific

    NASA Astrophysics Data System (ADS)

    Butler, Robyn; Palmer, Paul; Feng, Liang; Harris, Neil; Carpenter, Lucy; Andrews, Steve; Atlas, Elliot; Salawitch, Ross; Pan, Laura; Donets, Valeria; Schauffler, Sue

    2016-04-01

    Deep, tropical convective systems lead to the rapid transport of very short-lived halogenated substances (VSLS) to the tropical tropopause layer (TTL). They are then subsequently transported to the lower stratosphere and chemically broken down to release the constituent halogens that catalytically destroy ozone. Although the oceans are known to represent the largest VSLS source, the relative contribution of geographical regions through emission and transport is poorly understood. We present a study on the origin and variability of VSLS over the Western Pacific using data collected during the CAST and CONTRAST measurement campaigns, January/February 2014. We have developed a version of the GEOS-Chem atmospheric chemistry transport model that tags emissions of bromoform (CHBr3) and dibromomethane (CH2Br2) from different geographical regions. We focus the source regions on land and (coastal and open) oceanic emissions. We have also developed a similar tagged method to calculate the physical age of air parcels from these source regions to quantify the speed of vertical transport. Using this approach we have quantified relative contributions of source regions and show that open oceanic emission regions are the dominant source of VSLS gases during the measurement campaigns. By looking at variability over the region, we see that this is caused by direct convection of marine emissions over the open ocean leading to increased contribution to CHBr3 and CH2Br2 mixing ratios from this source region. Open oceanic emissions are transported to the TTL within the average atmospheric lifetime of CHBr3, the shorter lived species, whereas emissions from coastal ocean and land source regions have an older physical age at the TTL. The relative contribution from island land masses in the campaign region have no impact over the vertical profile but does impact local mixing ratios.

  15. Automated system for neutron activation analysis determination of short lived isotopes at The DOW Chemical Company's TRIGA research reactor

    NASA Astrophysics Data System (ADS)

    Zieman, J. J.; Rigot, W. L.; Romick, J. D.; Quinn, T. J.; Kocher, C. W.

    1994-12-01

    An automated neutron activation analysis (NAA) system for the determination of short lived isotopes was constructed at The DOW Chemical Company's TRIGA Research Reactor in 1993. The NAA group of the Analytical Sciences Laboratory uses the reactor for thousands of analyses each year and therefore automation is important to achieve and maintain high throughput and precision (productivity). This project is complementary to automation of the long-lived counting facilities (see Romick et al., these Proceedings). Canberra/Nuclear Data Systems DEC-based software and electronics modules and an I/O mounting board are the basic commercial components. A Fortran program on a VAX computer controls I/O via ethernet to an Acquisition Interface Module (AIM). The AIM controls the γ spectrometer modules and is interfaced to a Remote Parallel Interface (RPI) module which controls the pneumatic transfer apparatus with TTL signals to the I/O mounting board. Near-infrared sensors are used to monitor key points in the transfer system. Spectra are acquired by a single HPGe detector mounted on a sliding rail to allow flexible and more reproducible counting geometries than with manual sample handling. The maximum sample size is 8 ml in a heat-sealed two dram vial. The sample vial is nested into a "rabbit" vial for irradiation which can be automatically removed prior to spectrum collection. The system was designed to be used by the reactor operator at the control console without the aid of an additional experimenter. Applications include the determination of selenium and silver in coal and water, fluorine in tetra-fluoro ethylene (TFE) coated membranes, aluminum and titanium in composite materials and trace fluorine in non-chlorinated cleaning solvents. Variable dead time software allows analysis for 77mSe despite high dead times from 16N encountered in samples.

  16. Dealing with uncertainty: Response-resilient climate change mitigation polices for long-lived and short-lived climate pollutants

    NASA Astrophysics Data System (ADS)

    Millar, R.; Boneham, J.; Hepburn, C.; Allen, M. R.

    2015-12-01

    Climate change solutions are subject to many inherent uncertainties. One of the most important is the uncertainty over the magnitude of the physical response of the climate system to external forcing. The risk of extremely large responses to forcing, so called "fat-tail" outcomes, cannot be ruled out from the latest science and offer profound challenges when creating policies that aim to meet a specific target of global temperature change. This study offers examples of how mitigation policies can be made resilient to this uncertainty in the physical climate response via indexing policies against an attributable anthropogenic warming index (the magnitude of the observed global mean warming that is can be traced to human activities), the AWI, instead of against time directly. We show that indexing policy measures that influence the total stock of carbon in the atmosphere (such as the fraction of extracted carbon sequestered) against the AWI can largely eliminate the risk of missing the specified warming goal due to unexpectedly large climate responses as well as the risk of costly over-mitigation if the physical response turned out to be lower than expected. We offer further examples of how this methodology can be expanded to include short-lived climate pollutants as well as long-lived carbon dioxide. Indexing policies against the AWI can have important consequences for the actions of governments acting to design national climate mitigation policies as well as private sector investors looking to incentivise the transition to a climate-stable economy. We conclude with some thoughts on how these indexes can help focus attention on the long-term perspective that is consistent with the conclusions of the latest climate science on what is required to ultimately stabilise the global climate system.

  17. The effects of short-lived radionuclides and porosity on the early thermo-mechanical evolution of planetesimals

    NASA Astrophysics Data System (ADS)

    Lichtenberg, Tim; Golabek, Gregor J.; Gerya, Taras V.; Meyer, Michael R.

    2016-08-01

    The thermal history and internal structure of chondritic planetesimals, assembled before the giant impact phase of chaotic growth, potentially yield important implications for the final composition and evolution of terrestrial planets. These parameters critically depend on the internal balance of heating versus cooling, which is mostly determined by the presence of short-lived radionuclides (SLRs), such as 26Al and 60Fe, as well as the heat conductivity of the material. The heating by SLRs depends on their initial abundances, the formation time of the planetesimal and its size. It has been argued that the cooling history is determined by the porosity of the granular material, which undergoes dramatic changes via compaction processes and tends to decrease with time. In this study we assess the influence of these parameters on the thermo-mechanical evolution of young planetesimals with both 2D and 3D simulations. Using the code family I2ELVIS/I3ELVIS we have run numerous 2D and 3D numerical finite-difference fluid dynamic models with varying planetesimal radius, formation time and initial porosity. Our results indicate that powdery materials lowered the threshold for melting and convection in planetesimals, depending on the amount of SLRs present. A subset of planetesimals retained a powdery surface layer which lowered the thermal conductivity and hindered cooling. The effect of initial porosity was small, however, compared to those of planetesimal size and formation time, which dominated the thermo-mechanical evolution and were the primary factors for the onset of melting and differentiation. We comment on the implications of this work concerning the structure and evolution of these planetesimals, as well as their behavior as possible building blocks of terrestrial planets.

  18. Integrated Assessment on Effects of Short-Lived Climate Pollutants (SLCPs) in Asia based on Numerical Models

    NASA Astrophysics Data System (ADS)

    Takemura, T.; Sudo, K.; Ueda, K.; Masutomi, Y.; Watanabe, S.; Nakata, M.; Takahashi, H. G.; Goto, D.

    2015-12-01

    Air pollution over the Asian region is a serious social problem. For example, activities of the Climate and Clean Air Coalition (CCAC) under the UNFCCC focus on raising awareness and improving scientific understanding of short-lived climate pollutant (SLCP) impacts and mitigation strategies. Our Japanese research project is searching an optimum reduction path of SLCPs considering climate change, health impacts, and agricultural damages. For this purpose, we use aerosol and chemistry models, SPRINTARS and CHASER, respectively, which have been developed by our group, coupled with a general circulation model, MIROC. In the phase 1 of this project, changes in concentrations and radiative forcing of each major SLCPs originating from China, east Asia, southeast Asia, and south Asia in the last 30 years are estimated with the models. Transient simulations along the new emission scenario, SSPs (Shared Socio-economic Pathways) are executed using the MIROC-SPRINTARS/CHASER with ocean circulation in the phase 2 to analyze full feedbacks including hydrological cycle affected by SLCPs. These simulated results will be utilized to estimate health and agricultural impacts of SLCPs. In this presentation, we discuss the optimum reduction path of SLCPs taking both mitigation of global warming and air pollution into consideration. Acknowledgements: Simulations in this study were executed with the supercomputer system of the National Institute for Environmental Studies, Japan. This study is partly supported by the Environment Research and Technology Development Fund (S-12-3) of the Ministry of the Environment, Japan and JSPS KAKENHI Grant Number 15H01728 and 15K12190.

  19. Transport of very short-lived halocarbons from the Indian Ocean to the stratosphere through the Asian monsoon circulation

    NASA Astrophysics Data System (ADS)

    Fiehn, Alina; Hepach, Helmke; Atlas, Elliot; Quack, Birgit; Tegtmeier, Susann; Krüger, Kirstin

    2016-04-01

    Halogenated organic compounds are naturally produced in the ocean and emitted to the atmosphere. The halogenated very short-lived substances (VSLS), such as bromoform, have atmospheric lifetimes of less than half a year. When VSLS reach the stratosphere, they enhance ozone depletion and thus impact the climate. During boreal summer, the Asian monsoon circulation transfers air masses from the Asian troposphere to the global stratosphere. Still, the extent to which VSLS from the Indian Ocean contribute to the stratospheric halogen burden and their exact origin is unclear. Here we show that the monsoon circulation transports VSLS from the Indian Ocean to the stratosphere. During the research cruises SO234-2 and SO235 in July-August 2014 onboard RV SONNE, we measured oceanic and atmospheric concentrations of bromoform (tropical lifetime at 10 km = 17 days), dibromomethane (150 days) and methyl iodide (3.5 days) in the subtropical and tropical West Indian Ocean and calculated their emission strengths. We use the Langrangian transport model FLEXPART driven by ERA-Interim meteorological fields to investigate the transport of oceanic emissions in the atmosphere. We analyze the direct contribution of observed bromoform emissions to the stratospheric halogen budget with forward trajectories. Furthermore, we investigate the connection between the Asian monsoon anticyclone and the oceanic source regions using backward trajectories. The West Indian Ocean is a strong source region of VSLS to the atmosphere and the monsoon transport is fast enough for bromoform to reach the stratosphere. However, the main source regions for the entrainment of oceanic air masses through the Asian monsoon anticyclone are the West Pacific and Bay of Bengal as well as the Arabian Sea. Our findings indicate that changes in emission or circulation in this area due to climate change can directly affect the stratospheric halogen burden and thus the ozone layer.

  20. SMA observations towards the compact, short-lived bipolar water maser outflow in the LkHα234 region

    NASA Astrophysics Data System (ADS)

    Girart, J. M.; Torrelles, J. M.; Estalella, R.; Curiel, S.; Anglada, G.; Gómez, J. F.; Carrasco-González, C.; Cantó, J.; Rodríguez, L. F.; Patel, N. A.; Trinidad, M. A.

    2016-10-01

    We present Submillimeter Array (SMA) 1.35 mm subarcsecond angular resolution observations towards the LkHα234 intermediate-mass star-forming region. The dust emission arises from a filamentary structure of ˜5 arcsec (˜4500 au) enclosing VLA 1-3 and MM 1, perpendicular to the different outflows detected in the region. The most evolved objects are located at the southeastern edge of the dust filamentary structure and the youngest ones at the northeastern edge. The circumstellar structures around VLA 1, VLA 3, and MM 1 have radii between ˜200 and ˜375 au and masses in the ˜0.08-0.3 M⊙ range. The 1.35 mm emission of VLA 2 arises from an unresolved (r ≲ 135 au) circumstellar disc with a mass of ˜0.02 M⊙. This source is powering a compact (˜4000 au), low radial velocity (˜7 km s-1) SiO bipolar outflow, close to the plane of the sky. We conclude that this outflow is the `large-scale' counterpart of the short-lived, episodic, bipolar outflow observed through H2O masers at much smaller scales (˜180 au), and that has been created by the accumulation of the ejection of several episodic collimated events of material. The circumstellar gas around VLA 2 and VLA 3 is hot (˜130 K) and exhibits velocity gradients that could trace rotation. There is a bridge of warm and dense molecular gas connecting VLA 2 and VLA 3. We discuss the possibility that this bridge could trace a stream of gas between VLA 3 and VLA 2, increasing the accretion rate on to VLA 2 to explain why this source has an important outflow activity.

  1. Alpha-emitting nuclides in the marine environment

    NASA Astrophysics Data System (ADS)

    Pentreath, R. J.

    1984-06-01

    The occurrence of alpha-emitting nuclides and their daughter products in the marine environment continues to be a subject of study for many reasons. Those nuclides which occur naturally, in the uranium, thorium and actinium series, are of interest because of their value in determining the rates of geological and geochemical processes in the oceans. Studies of them address such problems as the determination of rates of transfer of particulate matter, deposition rates, bioturbation rates, and so on. Two of the natural alpha-series nuclides in which a different interest has been expressed are 210Po and 226Ra, because their concentrations in marine organisms are such that they contribute to a significant fraction of the background dose rates sustained both by the organisms themselves and by consumers of marine fish and shellfish. To this pool of naturally-occurring nuclides, human activities have added the transuranium nuclides, both from the atmospheric testing of nuclear devices and from the authorized discharges of radioactive wastes into coastal waters and the deep sea. Studies have therefore been made to understand the chemistry of these radionuclides in sea water, their association with sedimentary materials, and their accumulation by marine organisms, the last of these being of particular interest because the transuranics are essentially "novel" elements to the marine fauna and flora. The need to predict the long-term behaviour of these nuclides has, in turn, stimulated research on those naturally-occurring nuclides which may behave in a similar manner.

  2. Abiotic Bromination of Soil Organic Matter.

    PubMed

    Leri, Alessandra C; Ravel, Bruce

    2015-11-17

    Biogeochemical transformations of plant-derived soil organic matter (SOM) involve complex abiotic and microbially mediated reactions. One such reaction is halogenation, which occurs naturally in the soil environment and has been associated with enzymatic activity of decomposer organisms. Building on a recent finding that naturally produced organobromine is ubiquitous in SOM, we hypothesized that inorganic bromide could be subject to abiotic oxidations resulting in bromination of SOM. Through lab-based degradation treatments of plant material and soil humus, we have shown that abiotic bromination of particulate organic matter occurs in the presence of a range of inorganic oxidants, including hydrogen peroxide and assorted forms of ferric iron, producing both aliphatic and aromatic forms of organobromine. Bromination of oak and pine litter is limited primarily by bromide concentration. Fresh plant material is more susceptible to bromination than decayed litter and soil humus, due to a labile pool of mainly aliphatic compounds that break down during early stages of SOM formation. As the first evidence of abiotic bromination of particulate SOM, this study identifies a mechanistic source of the natural organobromine in humic substances and the soil organic horizon. Formation of organobromine through oxidative treatments of plant material also provides insights into the relative stability of aromatic and aliphatic components of SOM.

  3. Radioactive Nuclides and the Astrophysical P Process

    NASA Astrophysics Data System (ADS)

    Howard, W. M.

    1993-07-01

    The astrophysical p-process is the conversion via photodisintegration reactions and proton-capture reactions of a solar-system-like distribution of s- and r-process nuclei into the proton-rich p-nuclei [1,3]. This conversion can only take place on a hydrodynamical timescale when the radiation temperature is extremely high (T > 10^9 K). Type II supernovae are probably major contributors to the bulk of the solar-system p-nuclei because they contain zones with enrichments of s-process elements that are heated to such high temperatures by the expanding supernova shock wave. Type Ia supernovae may also contribute [1,2] if the surface composition of the exploding white dwarf is enriched in s-process elements. The p-processs produces in significant quantity several interesting radioactive nuclides with relatively long half-lives, including ^92Nb (tau(sub)1/2: 3.6 10^7 yr), ^97Tc (tau(sub)1/2: 2.6 10^6 yr), ^98Tc (tau(sub)1/2 4.2 10^6 yr) and ^146Sm (tau(sub)1/2: 1.08 10^8 yr). In principle, if the production rates of these radioactive nuclides are known, the measurement of their extinct radioactivity in meteorities can have them serve as chronometers for the astrophysical p-process and for supernovae nucleosynthesis. We will discuss the details of the production of these radionuclides in the astrophysical p-process and the implications for obeservation of their extinction in meteorites. Of all the possible p-process chronometers, ^146Sm is the most interesting, since evidence for its decay has been observed in meteorites. We will discuss in detail the production of ^146Sm and its dependence on the astrophysical environment and on nuclear physics quantities. For example, the production of ^146Sm critically depends on the competition between (gamma,alpha) and (gamma,n) reactions on ^148Gd and ^150Gd. We will discuss the implications of the measurements of the extinct ^146Sm in meteorites for the astrophysical p-process. This work was performed under the auspices of the U

  4. The milling of pristine and brominated P-100 graphite fibers

    NASA Technical Reports Server (NTRS)

    Dillehay, M. E.; Gaier, J. R.

    1986-01-01

    Techniques were developed for the ball milling of pristine and brominated P-100 graphite fibers. Because of the lubrication properties of graphite, large ball loads (50 percent by volume) were required. Use of 2-propanol as a milling medium enhanced the efficiency of the process. Milled brominated P-100 fibers had resistivities which were indistinguishable from milled pristine P-100 fibers. Apparent loss of bromine from the brominated fibers suggests that bromine would not be the intercalate of choice in applications where milled fibers of this type are required. Other intercalates which do not degas may be more appropriate for a milled fiber application. These same results, however, do provide evidence that bromine molecules leave the fiber surface when removed from overpressure of bromine. While exploring possible solvent media for milling purposes, it was found that brominated fibers are stable in a wide variety of organic solvents.

  5. Tryptophan octyl ester in detergent micelles of dodecylmaltoside: fluorescence properties and quenching by brominated detergent analogs.

    PubMed Central

    de Foresta, B; Gallay, J; Sopkova, J; Champeil, P; Vincent, M

    1999-01-01

    The fluorescence properties of tryptophan octyl ester (TOE), a hydrophobic model of Trp in proteins, were investigated in various mixed micelles of dodecylmaltoside (DM) and 7,8-dibromododecyl beta-maltoside (BrDM) or 10,11-dibromoundecanoyl beta-maltoside (BrUM). This study focuses on the mechanism via which these brominated detergents quench the fluorescence of TOE in a micellar system. The experiments were performed at a pH at which TOE is uncharged and almost completely bound to detergent micelles. TOE binding was monitored by its enhanced fluorescence in pure DM micelles or its quenched fluorescence in pure BrUM or BrDM micelles. In DM/BrUM and DM/BrDM mixed micelles, the fluorescence intensity of TOE decreased, as a nonlinear function of the molar fraction of brominated detergent, to almost zero in pure brominated detergent. The indole moiety of TOE is therefore highly accessible to the bromine atoms located on the detergent alkyl chain because quenching by bromines occurs by direct contact with the fluorophore. TOE is simultaneously poorly accessible to iodide (I(-)), a water-soluble collisional quencher. TOE time-resolved fluorescence intensity decay is heterogeneous in pure DM micelles, with four lifetimes (from 0.2 to 4.4 ns) at the maximum emission wavelength. Such heterogeneity may arise from dipolar relaxation processes in a motionally restricted medium, as suggested by the time-dependent (nanoseconds) red shift (11 nm) of the TOE emission spectrum, and from the existence of various TOE conformations. Time-resolved quenching experiments for TOE in mixed micelles showed that the excited-state lifetime values decreased only slightly with increases in the proportion of BrDM or BrUM. In contrast, the relative amplitude of the component with the longest lifetime decreased significantly relative to that of the short-lived species. This is consistent with a mainly static mechanism for the quenching of TOE by brominated detergents. Molecular modeling of TOE

  6. Development of a Fourier-Transform Ion-Cyclotron-Resonance detection for short-lived radionuclides at SHIPTRAP

    NASA Astrophysics Data System (ADS)

    Ferrer, R.; Blaum, K.; Block, M.; Herfurth, F.; Ketelaer, J.; Nagy, Sz.; Neidherr, D.; Weber, C.; Shiptrap Collaboration

    2007-11-01

    The Penning-trap mass spectrometer SHIPTRAP at GSI is designed to provide clean and cooled beams of singly charged radioactive ions produced in fusion-evaporation reactions and separated in-flight by the velocity filter SHIP. The scientific goals include mass spectrometry, atomic and nuclear spectroscopy, and chemistry of transuranium species which are not available at ISOL- or fragmentation facilities Penning-trap based mass measurements on radionuclides relies up to now on the destructive time-of-flight ion-cyclotron-resonance method. One of the main limitations to the experimental investigations is the low production rate of most of these exotic nuclides, for which the use of this detection scheme is not applicable. A sensitive and non-destructive method, like the narrow-band Fourier Transform ion-cyclotron-resonance technique, is ideally suited for the identification and characterization of these species. A new cryogenic trap setup for SHIPTRAP exploiting this detection technique as well as some results of first preparatory tests are presented.

  7. Multi-nuclide AMS performances at MALT

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Hiroyuki; Nakano, Chuichiro; Tsuchiya, Yoko (Sunohara); Kato, Kazuhiro; Maejima, Yuji; Miyairi, Yosuke; Wakasa, Sachi; Aze, Takahiro

    2007-06-01

    MALT (Micro Analysis Laboratory, Tandem accelerator, The University of Tokyo) is a service and research facility for elemental and isotopic micro-analysis using a tandem accelerator, which was constructed in 1991-1993 and has been in operation since 1994. Since then, AMS, NRA and PIXE systems have been developed and highly refined. The accelerator of MALT is a 5UD Pelletron™ tandem van de Graaf (produced by National Electrostatics Corporation, USA) and maximum 5 MV voltage is available. MALT is equipped with two MC-SNICS ion sources (one of them dedicated for 14C-AMS), a sequential injection system and multi-Faraday cup systems. These equipment are all indispensable for a high precision and high efficiency AMS system. At MALT, high quality AMS of 7Be, 10Be, 14C, 26Al has been available. Recently, a 36Cl-AMS system using a gas-filled magnet was also greatly refined, and a new 129I-AMS system was developed and shows good performance. Now MALT is the only facility with multi-nuclide AMS in the Asian area. Over 40 projects are running at MALT every year. The total accelerator operation time in the 2004 season was 6363 h. In November 2004, the total operation time of the pelletron chain system since the construction of MALT went over 40,000 h without replacement.

  8. 40 CFR 721.10124 - Brominated polyaromatic compound (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Brominated polyaromatic compound... Specific Chemical Substances § 721.10124 Brominated polyaromatic compound (generic). (a) Chemical substance... brominated polyaromatic compound (PMN P-06-617) is subject to reporting under this section for...

  9. 40 CFR 721.10124 - Brominated polyaromatic compound (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Brominated polyaromatic compound... Specific Chemical Substances § 721.10124 Brominated polyaromatic compound (generic). (a) Chemical substance... brominated polyaromatic compound (PMN P-06-617) is subject to reporting under this section for...

  10. 40 CFR 721.10124 - Brominated polyaromatic compound (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Brominated polyaromatic compound... Specific Chemical Substances § 721.10124 Brominated polyaromatic compound (generic). (a) Chemical substance... brominated polyaromatic compound (PMN P-06-617) is subject to reporting under this section for...

  11. 40 CFR 721.10124 - Brominated polyaromatic compound (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Brominated polyaromatic compound... Specific Chemical Substances § 721.10124 Brominated polyaromatic compound (generic). (a) Chemical substance... brominated polyaromatic compound (PMN P-06-617) is subject to reporting under this section for...

  12. 40 CFR 721.10124 - Brominated polyaromatic compound (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Brominated polyaromatic compound... Specific Chemical Substances § 721.10124 Brominated polyaromatic compound (generic). (a) Chemical substance... brominated polyaromatic compound (PMN P-06-617) is subject to reporting under this section for...

  13. 21 CFR 180.30 - Brominated vegetable oil.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Brominated vegetable oil. 180.30 Section 180.30... Brominated vegetable oil. The food additive brominated vegetable oil may be safely used in accordance with... used on an interim basis as a stabilizer for flavoring oils used in fruit-flavored beverages, for...

  14. 21 CFR 180.30 - Brominated vegetable oil.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Brominated vegetable oil. 180.30 Section 180.30... Brominated vegetable oil. The food additive brominated vegetable oil may be safely used in accordance with... used on an interim basis as a stabilizer for flavoring oils used in fruit-flavored beverages, for...

  15. 21 CFR 180.30 - Brominated vegetable oil.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Brominated vegetable oil. 180.30 Section 180.30... Brominated vegetable oil. The food additive brominated vegetable oil may be safely used in accordance with... used on an interim basis as a stabilizer for flavoring oils used in fruit-flavored beverages, for...

  16. 21 CFR 180.30 - Brominated vegetable oil.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Brominated vegetable oil. 180.30 Section 180.30... Brominated vegetable oil. The food additive brominated vegetable oil may be safely used in accordance with... used on an interim basis as a stabilizer for flavoring oils used in fruit-flavored beverages, for...

  17. 21 CFR 180.30 - Brominated vegetable oil.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Brominated vegetable oil. 180.30 Section 180.30... Requirements for Certain Food Additives § 180.30 Brominated vegetable oil. The food additive brominated vegetable oil may be safely used in accordance with the following prescribed conditions: (a) The...

  18. 40 CFR 721.2925 - Brominated aromatic ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Brominated aromatic ester. 721.2925... Substances § 721.2925 Brominated aromatic ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a brominated aromatic ester (PMN...

  19. 40 CFR 721.2925 - Brominated aromatic ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Brominated aromatic ester. 721.2925... Substances § 721.2925 Brominated aromatic ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a brominated aromatic ester (PMN...

  20. 40 CFR 721.2925 - Brominated aromatic ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Brominated aromatic ester. 721.2925... Substances § 721.2925 Brominated aromatic ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a brominated aromatic ester (PMN...

  1. 40 CFR 721.2925 - Brominated aromatic ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Brominated aromatic ester. 721.2925... Substances § 721.2925 Brominated aromatic ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a brominated aromatic ester (PMN...

  2. 40 CFR 721.2925 - Brominated aromatic ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Brominated aromatic ester. 721.2925... Substances § 721.2925 Brominated aromatic ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a brominated aromatic ester (PMN...

  3. 40 CFR 721.3420 - Brominated arylalkyl ether.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Brominated arylalkyl ether. 721.3420... Substances § 721.3420 Brominated arylalkyl ether. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as brominated arylalkyl ether (P-83-906)...

  4. 40 CFR 721.3420 - Brominated arylalkyl ether.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Brominated arylalkyl ether. 721.3420... Substances § 721.3420 Brominated arylalkyl ether. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as brominated arylalkyl ether (P-83-906)...

  5. 40 CFR 721.3085 - Brominated phthalate ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Brominated phthalate ester. 721.3085... Substances § 721.3085 Brominated phthalate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as brominated phthalate ester (PMN P-90-581)...

  6. Application of mass spectrometric techniques for the trace analysis of short-lived iodine-containing volatiles emitted by seaweed.

    PubMed

    Kundel, Michael; Thorenz, Ute R; Petersen, Jan H; Huang, Ru-Jin; Bings, Nicolas H; Hoffmann, Thorsten

    2012-04-01

    Knowledge of the composition and emission rates of iodine-containing volatiles from major widespread seaweed species is important for modeling the impact of halogens on gas-phase atmospheric chemistry, new particle formation, and climate. In this work, we present the application of mass spectrometric techniques for the quantification of short-lived iodine-containing volatiles emitted by eight different seaweeds from the intertidal zone of Helgoland, Germany. A previously developed online time-of-flight aerosol mass spectrometric method was used to determine I(2) emission rates and investigate temporally resolved emission profiles. Simultaneously, iodocarbons were preconcentrated on solid adsorbent tubes and quantified offline using thermodesorption-gas chromatography-mass spectrometry. The total iodine content of the seaweeds was determined using microwave-assisted tetramethylammonium hydroxide extraction followed by inductively coupled-plasma mass spectrometry analysis. The highest total iodine content was found in the Laminariales, followed by the brown algae Ascophyllum nodosum, Fucus vesiculosus, Fucus serratus, and both red algae Chondrus crispus and Delesseria sanguinea. Laminariales were found to be the strongest I(2) emitters. Time series of the iodine release of Laminaria digitata and Laminaria hyperborea showed a strong initial I(2) emission when first exposed to air followed by an exponential decline of the release rate. For both species, I(2) emission bursts were observed. For Laminaria saccharina und F. serratus, a more continuous I(2) release profile was detected, however, F. serratus released much less I(2). A. nodosum and F. vesiculosus showed a completely different emission behavior. The I(2) emission rates of these species were slowly increasing with time during the first 1 to 2 h until a more or less stable I(2) emission rate was reached. The lowest I(2) emission rates were detected for the red algae C. crispus and D. sanguinea. Total iodocarbon

  7. Biodegradation of brominated and organophosphorus flame retardants.

    PubMed

    Waaijers, Susanne L; Parsons, John R

    2016-04-01

    Brominated flame retardants account for about 21% of the total production of flame retardants and many of these have been identified as persistent, bioaccumulative and toxic. Nevertheless, debromination of these chemicals under anaerobic conditions is well established, although this can increase their toxicity. Consequently, the production and use of these chemicals has been restricted and alternative products have been developed. Many of these are brominated compounds and share some of the disadvantages of the chemicals they are meant to replace. Therefore, other, nonbrominated, flame retardants such as organophosphorus compounds are also being used in increasing quantities, despite the fact that knowledge of their biodegradation and environmental fate is often lacking.

  8. Bromine and Chlorine Go Separate Ways

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This graph shows the relative concentrations of bromine and chlorine at various locations on Earth and Mars. Typically, bromine and chlorine stick together in a fixed ratio, as in martian meteorites and Earth seawater. But sometimes the elements split apart and their relative quantities diverge. This separation is usually caused by evaporation processes, as in the Dead Sea on Earth. On Mars, at Meridiani Planum and Gusev Crater, this split has been observed to an even greater degree than seen on Earth. This puzzling result is currently being further explored by Mars Exploration Rover scientists. Data for the Mars locations were taken by the rover's alpha particle X-ray spectrometer.

  9. NEW ACTIVE MEDIA AND ELEMENTS OF LASER SYSTEMS: Influence of short-lived color centers on the lifetime of a metastable level of neodymium in silicate glasses

    NASA Astrophysics Data System (ADS)

    Dzhibladze, M. I.; Lazarev, L. E.

    1987-11-01

    It was found that the short-lived color centers formed in neodymium-activated silicate glasses under the action of the violet part of the pump spectrum increased the lifetime of a neodymium metastable level by more than an order of magnitude in needle-shaped waveguide lasers. The highly efficient suppression of superradiance and a strong increase in the gain of the active element were due to stimulated decay of the color centers accompanying absorption of photons emitted by the neodymium.

  10. (The fate of nuclides in natural water systems)

    SciTech Connect

    Turekian, K.K. . Dept. of Geology and Geophysics)

    1989-01-01

    Our research at Yale on the fate of nuclides in natural water systems has three components to it: the study of the atmospheric precipitation of radionuclides and other chemical species; the study of the behavior of natural radionuclides in groundwater and hydrothermal systems; and understanding the controls on the distribution of radionuclides and stable nuclides in the marine realm. In this section a review of our progress in each of these areas is presented.

  11. PRODUCTION CONSIDERATIONS FOR THE CLASSICAL PET NUCLIDES.

    SciTech Connect

    FINN,R.; SCHLYER,D.

    2001-06-25

    Nuclear Medicine is the specialty of medical imaging, which utilizes a variety of radionuclides incorporated into specific compounds for diagnostic imaging and therapeutic applications. During recent years, research efforts associated with this discipline have concentrated on the decay characteristics of particular radionuclides and the design of unique radiolabeled tracers necessary to achieve time-dependent molecular images. The specialty is expanding with specific Positron emission tomography (PET) and SPECT radiopharmaceuticals allowing for an extension from functional process imaging in tissue to pathologic processes and nuclide directed treatments. PET is an example of a technique that has been shown to yield the physiologic information necessary for clinical oncology diagnoses based upon altered tissue metabolism. Most PET drugs are currently produced using a cyclotron at locations that are in close proximity to the hospital or academic center at which the radiopharmaceutical will be administered. In November 1997, a law was enacted called the Food and Drug Administration Modernization Act of 1997 which directed the Food and Drug Administration (FDA) to establish appropriate procedures for the approval of PET drugs in accordance with section 505 of the Federal Food, Drug, and Cosmetic Act and to establish current good manufacturing practice requirements for such drugs. At this time the FDA is considering adopting special approval procedures and cGMP requirements for PET drugs. The evolution of PET radiopharmaceuticals has introduced a new class of ''drugs'' requiring production facilities and product formulations that must be closely aligned with the scheduled clinical utilization. The production of the radionuclide in the appropriate synthetic form is but one critical component in the manufacture of the finished radiopharmaceutical.

  12. Pd0-mediated rapid cross-coupling reactions, the rapid C-[11C]methylations, revolutionarily advancing the syntheses of short-lived PET molecular probes.

    PubMed

    Suzuki, Masaaki; Doi, Hisashi; Koyama, Hiroko; Zhang, Zhouen; Hosoya, Takamitsu; Onoe, Hirotaka; Watanabe, Yasuyoshi

    2014-06-01

    Positron emission tomography is a noninvasive method for monitoring drug (or diagnostic) behavior and its localization on the target molecules in the living systems, including the human body, using a short-lived positron-emitting radionuclide. New methodologies for introducing representative short-lived radionuclides, (11)C and (18)F, into the carbon frameworks of biologically active organic compounds have been established by developing rapid C-[(11)C]methylations and C-[(18)F]fluoromethylations using rapid Pd(0)-mediated cross-coupling reactions between [(11)C]methyl iodide (sp(3)-hybridized carbon) and an excess amount of organotributylstannane or organoboronic acid ester having sp(2) (phenyl, heteroaromatic, or alkenyl), sp(alkynyl), or sp(3) (benzyl and cinnamyl)-hybridized carbons; and [(18)F]fluoromethyl halide (iodide or bromide) and an organoboronic acid ester, respectively. These rapid reactions provide a firm foundation for an efficient and general synthesis of short-lived (11)C- or (18)F-labeled PET molecular probes to promote in vivo molecular imaging studies.

  13. Russian policy on methane emissions in the oil and gas sector: A case study in opportunities and challenges in reducing short-lived forcers

    NASA Astrophysics Data System (ADS)

    Evans, Meredydd; Roshchanka, Volha

    2014-08-01

    Methane is a potent greenhouse gas, 21 times as powerful as carbon dioxide in contributing to climate change on a ton-for-ton basis. Methane, along with other short-lived forcers such as black carbon and tropospheric ozone, could play an important role in addressing global climate change. This stems both from their overall effect on climate systems, and from their concentrated impact in the short term. Because reducing emissions of such short-lived pollutants may have a large near-term impact in slowing climate change, the United States and other countries have come together to cooperate under the Climate and Clean Air Coalition to Reduce Short-Lived Climate Pollutants, and other partnerships such as the Global Methane Initiative. For global impact, the success of such partnerships depends on their ability to scale up project-specific emission reductions. This paper assesses options and challenges for scaling based on a case study of Russia's oil and gas sector. We examine the challenges to achieving far-reaching emission reductions, successes of companies to date, how Russia has sought to influence methane emissions through its environmental fine system, and options for helping companies achieve large-scale emission reductions in the future through simpler and clearer incentives.

  14. Nuclear Properties and Decay Data Chart of Nuclides.

    2008-04-04

    Version 00 NUCHART displays nuclear decay data graphically on a PC and, includes a search routine for assigning gamma-ray energies to radionuclides. The numerical data included in NUCHART were taken from the online database "NUDAT" Version of March 1994. The following information is presented: (1) Nuclide information: for each nuclide, abundance, mass excess, (main) decay mode, half-life and uncertainty, branching ratio, decay Q; (2) decay radiation: for each nuclide, tables of radiation energy, intensity andmore » equivalent dose for the 5 most intense decay radiations of beta+, beta-, conversion electrons, gammas, alphas and x-rays, including electron Augers; (3) adopted gammas: for each nuclide, table containing energy, relative intensity, energy level of the main gamma lines and year of publication in Nuclear Data Sheets; (4) search gamma energies: for a specified interval of gamma energies all know gamma lines and their nuclides are displayed; the database contains 132,000 gamma lines; (5) a search mode by specific nuclide is also available. For the latest data and online tools for viewing the data, see NuDat 2.4 on the NNDC and IAEA NDS websites: http://www.nndc.bnl.gov/ and http://www-nds.iaea.org/.« less

  15. Solar-Cosmic-Ray-Produced Nuclides in Extraterrestrial Matter

    NASA Technical Reports Server (NTRS)

    Reedy, Robert C.

    2000-01-01

    There are two main types of cosmic rays that have sufficient energy to induce nuclear reactions -- the galactic cosmic rays (GCR) and solar cosmic rays (also called solar energetic particles). Both types of particles can have production rates and production ratios in the small objects often found in cold and hot deserts that are different from those seen for most meteorites, which typically have radii of approx.10-100 centimeters. GCR production rates are often lower than those for most meteorites. GCR production ratios, such as Ne-22/Ne-21, are also often different in small objects. Smaller meteoroids also are more likely to have nuclides made by solar-cosmic-ray (SCR) particles than typically-sized meteorites. The very small meteorite Salem had large amounts of SCR-produced radionuclides. Meteorites recovered in Antarctica are more likely to contain SCR-produced nuclides than other meteorites. Martian and lunar meteorites are also likely to have SCR-produced nuclides. Production rates and profiles for SCR-produced nuclides in meteoroids have been calculated previously. However, the cross sections for the nuclear reactions making many SCR-produced nuclides, such as Be-10, were not well measured then. New rates and profiles are calculated here using good cross sections for the reactions making these nuclides.

  16. Solar-Cosmic-Ray-Produced Nuclides in Extraterrestrial Matter

    NASA Technical Reports Server (NTRS)

    Reedy, Robert C.

    1999-01-01

    There are two main types of cosmic rays that have sufficient energy to induce nuclear reactions -- the galactic cosmic rays (GCR) and solar cosmic rays (also called solar energetic particles). Both types of particles can have production rates and production ratios in the small objects often found in cold and hot deserts that are different from those seen for most meteorites, which typically have radii of approx. 10-100 centimeters. GCR production rates are often lower than those for most meteorites. GCR production ratios, such as Ne-22/Ne-21, are also often different in small objects. Smaller meteoroids also are more likely to have nuclides made by solar-cosmic-ray (SCR) particles than typically-sized meteorites. The very small meteorite Salem had large amounts of SCR-produced radionuclides. Meteorites recovered in Antarctica are more likely to contain SCR-produced nuclides than other meteorites. Martian and lunar meteorites are also likely to have SCR-produced nuclides. Production rates and profiles for SCR-produced nuclides in meteoroids have been calculated previously. However, the cross sections for the nuclear reactions making many SCR-produced nuclides, such as Be-10 were not well measured then. New rates and profiles are calculated here using good cross sections for the reactions making these nuclides.

  17. Nuclear Properties and Decay Data Chart of Nuclides.

    SciTech Connect

    OSORIO, V. B.

    2008-04-04

    Version 00 NUCHART displays nuclear decay data graphically on a PC and, includes a search routine for assigning gamma-ray energies to radionuclides. The numerical data included in NUCHART were taken from the online database "NUDAT" Version of March 1994. The following information is presented: (1) Nuclide information: for each nuclide, abundance, mass excess, (main) decay mode, half-life and uncertainty, branching ratio, decay Q; (2) decay radiation: for each nuclide, tables of radiation energy, intensity and equivalent dose for the 5 most intense decay radiations of beta+, beta-, conversion electrons, gammas, alphas and x-rays, including electron Augers; (3) adopted gammas: for each nuclide, table containing energy, relative intensity, energy level of the main gamma lines and year of publication in Nuclear Data Sheets; (4) search gamma energies: for a specified interval of gamma energies all know gamma lines and their nuclides are displayed; the database contains 132,000 gamma lines; (5) a search mode by specific nuclide is also available. For the latest data and online tools for viewing the data, see NuDat 2.4 on the NNDC and IAEA NDS websites: http://www.nndc.bnl.gov/ and http://www-nds.iaea.org/.

  18. Asymptotic Giant Branch stars as a source of short-lived radioactive nuclei in the solar nebula

    NASA Technical Reports Server (NTRS)

    Wasserburg, G. J.; Busso, M.; Gallino, R.; Raiteri, C. M.

    1994-01-01

    We carried out a theoretical evaluation of the contribution of Asymptotic Giant Branch (AGB) stars to some short-lived (10(exp 6) less than or equal to Tau-bar less than or equal to 2 x 10(exp 7) yr) isotopes in the Interstellar Medium (ISM) and in the early solar system using stellar model calculations for thermally pulsing evolutionary phases of low-mass stars. The yields of s-process nuclei in the convective He-shell for different neutron exposures tau(sub 0) were obtained, and AGB stars were shown to produce several radioactive nuclei (especially Pd-107, Pb-205, Fe-60, Zr-93, Tc-99, Cs-135, and Hf-182) in diferent amounts. Assuming either contamination of the solar nebula from a single AGB star or models for continuous injection and mixing from many stars into the ISM, we calculate the ratios of radioactive to stable nuclei at the epoch of the Sun's formation. The dilution factor between the AGB ejecta and the early solar system matter is obtained by matching the observed Pd-107/Pd-108 and depends on the value of tau(sub 0). It is found that small masses M(sub He) of He-shell material (10(exp -4)-10(exp -7) solar mass) enriched in s-process nuclei are sufficient to contaminate 1 solar mass of the ISM to produce the Pd-107 found in the early solar system. Predictions are made for all of the other radioactive isotopes. The optimal model to explain several observed radioactive species at different states of the proto-solar nebula involves a single AGB star with a low neutron exposure (tau(sub 0) = 0.03 mbarn(sup -1)) which contaminated the cloud with a dilution factor of M(sub He)/solar mass approximately 1.5 x 10(exp -4). This will also contribute newly synthesized stable s-process nuclei in the amount of approximately 10(exp -4) of their abundances already present in the proto-solar cloud. Variations in the degree of homogenization (approximately 30%) of the injected material may account for some of the small general isotopic anomalies found in meteorites. It is

  19. Structure and functionality of bromine doped graphite.

    PubMed

    Hamdan, Rashid; Kemper, A F; Cao, Chao; Cheng, H P

    2013-04-28

    First-principles calculations are used to study the enhanced in-plane conductivity observed experimentally in Br-doped graphite, and to study the effect of external stress on the structure and functionality of such systems. The model used in the numerical calculations is that of stage two doped graphite. The band structure near the Fermi surface of the doped systems with different bromine concentrations is compared to that of pure graphite, and the charge transfer between carbon and bromine atoms is analyzed to understand the conductivity change along different high symmetry directions. Our calculations show that, for large interlayer separation between doped graphite layers, bromine is stable in the molecular form (Br2). However, with increased compression (decreased layer-layer separation) Br2 molecules tend to dissociate. While in both forms, bromine is an electron acceptor. The charge exchange between the graphite layers and Br atoms is higher than that with Br2 molecules. Electron transfer to the Br atoms increases the number of hole carriers in the graphite sheets, resulting in an increase of conductivity. PMID:23635160

  20. A Substitute Foe "Bromine in Carbon Tetrachloride"

    ERIC Educational Resources Information Center

    Daley, Joshua M.; Landolt, Robert G.

    2005-01-01

    The addition of a dilute solution of bromine in carbon tetrachloride to a compound to test for carbon-carbon multiple bonds, which is one of the widely cited qualitative tests employed in organic chemistry is presented. Major advantages of this approach include the ease and rapidness of the procedure, the stability of the test solution over time,…

  1. Brominated organic species in the arctic atmosphere

    NASA Technical Reports Server (NTRS)

    Berg, W. W.; Heidt, L. E.; Pollock, W.; Sperry, P. D.; Cicerone, R. J.; Gladney, E. S.

    1984-01-01

    Measurements are reported of four gas-phase, brominated organic species found in the Arctic atmosphere during March and April 1983. Volume mixing ratios for CH3Br, CH2BrCH2Br, CHBr3, and CH2Br2 were determined by gas chromatography/mass spectrometry analysis from samples taken Arctic wide, including at the geographic North Pole and during a tropopause folding event over Baffin Bay near Thule, Greenland. Methyl bromide mixing ratios were reasonably constant at 11 plus or minus 4 pptv, while the other three brominated organics showed a high degree of variability. Bromoform (2 to 46 pptv) was found to be the dominant contributor to gaseous organic bromine to the Arctic troposphere at 38 plus or minus 10 percent followed by CH2Br2 (3 to 60 pptv) at 29 plus or minus 6 percent. Both CH3Br and CH2BrCH2Br (1 to 37 pptv) reservoirs contained less than 20 percent of the organically bound bromine. Stratospheric samples, taken during a tropopause folding event, showed mixing ratios for all four species at levels high enough to support a stratospheric total volume mixing ratio of 249 pptv Br (888 ngBr/SCM).

  2. BROMINATED FLAME RETARDANTS: CAUSE FOR CONCERN?

    EPA Science Inventory

    Brominated flame retardants (BFRs) have routinely been added to consumer products for several decades in a successful effort to reduce fire-related injury and property damage. Recently, concern for this emerging class of chemicals has risen due to the occurrence of several class...

  3. HEALTH EFFECTS OF BROMINATED FLAME RETARDANTS (BFRS)

    EPA Science Inventory

    Abstract Brominated flame retardant use has increased dramatically in order to provide fire safety to consumers. However, there is growing concern about widespread environmental contamination and potential health risks from some of these products. The most used products...

  4. Bromination of selected pharmaceuticals in water matrices.

    PubMed

    Benitez, F Javier; Acero, Juan L; Real, Francisco J; Roldan, Gloria; Casas, Francisco

    2011-11-01

    The bromination of five selected pharmaceuticals (metoprolol, naproxen, amoxicillin, phenacetin, and hydrochlorothiazide) was studied with these compounds individually dissolved in ultra-pure water. The apparent rate constants for the bromination reaction were determined as a function of the pH, obtaining the sequence amoxicillin>naproxen>hydrochlorothiazide≈phenacetin≈metoprolol. A kinetic mechanism specifying the dissociation reactions and the species formed for each compound according to its pK(a) value and the pH allowed the intrinsic rate constants to be determined for each elementary reaction. There was fairly good agreement between the experimental and calculated values of the apparent rate constants, confirming the goodness of the proposed reaction mechanism. In a second stage, the bromination of the selected pharmaceuticals simultaneously dissolved in three water matrices (a groundwater, a surface water from a public reservoir, and a secondary effluent from a WWTP) was investigated. The pharmaceutical elimination trend agreed with the previously determined rate constants. The influence of the main operating conditions (pH, initial bromine dose, and characteristics of the water matrix) on the degradation of the pharmaceuticals was established. An elimination concentration profile for each pharmaceutical in the water matrices was proposed based on the use of the previously evaluated apparent rate constants, and the theoretical results agreed satisfactorily with experiment. Finally, chlorination experiments performed in the presence of bromide showed that low bromide concentrations slightly accelerate the oxidation of the selected pharmaceuticals during chlorine disinfection.

  5. BROMINATED FLAME RETARDANTS: WHY DO WE CARE?

    EPA Science Inventory

    Brominated flame retardants (BFRs) save lives and property by preventing the spread of fires or delaying the time of flashover, enhancing the time people have to escape. The worldwide production of BFRs exceeded 200,000 metric tons in 2003 placing them in the high production vol...

  6. Structure and functionality of bromine doped graphite

    SciTech Connect

    Hamdan, Rashid; Kemper, A. F.; Cao Chao; Cheng, H. P.

    2013-04-28

    First-principles calculations are used to study the enhanced in-plane conductivity observed experimentally in Br-doped graphite, and to study the effect of external stress on the structure and functionality of such systems. The model used in the numerical calculations is that of stage two doped graphite. The band structure near the Fermi surface of the doped systems with different bromine concentrations is compared to that of pure graphite, and the charge transfer between carbon and bromine atoms is analyzed to understand the conductivity change along different high symmetry directions. Our calculations show that, for large interlayer separation between doped graphite layers, bromine is stable in the molecular form (Br{sub 2}). However, with increased compression (decreased layer-layer separation) Br{sub 2} molecules tend to dissociate. While in both forms, bromine is an electron acceptor. The charge exchange between the graphite layers and Br atoms is higher than that with Br{sub 2} molecules. Electron transfer to the Br atoms increases the number of hole carriers in the graphite sheets, resulting in an increase of conductivity.

  7. HEALTH ASPECTS OF BROMINATED FLAME RETARDANTS (BFRS)

    EPA Science Inventory

    In order to reduce the societal costs of fires, flammability standards have been set for consumer products and equipment. Flame retardants containing bromine have constituted the largest share of this market due both to their efficiency and cost. While there are at least 75 dif...

  8. Structure and functionality of bromine doped graphite.

    PubMed

    Hamdan, Rashid; Kemper, A F; Cao, Chao; Cheng, H P

    2013-04-28

    First-principles calculations are used to study the enhanced in-plane conductivity observed experimentally in Br-doped graphite, and to study the effect of external stress on the structure and functionality of such systems. The model used in the numerical calculations is that of stage two doped graphite. The band structure near the Fermi surface of the doped systems with different bromine concentrations is compared to that of pure graphite, and the charge transfer between carbon and bromine atoms is analyzed to understand the conductivity change along different high symmetry directions. Our calculations show that, for large interlayer separation between doped graphite layers, bromine is stable in the molecular form (Br2). However, with increased compression (decreased layer-layer separation) Br2 molecules tend to dissociate. While in both forms, bromine is an electron acceptor. The charge exchange between the graphite layers and Br atoms is higher than that with Br2 molecules. Electron transfer to the Br atoms increases the number of hole carriers in the graphite sheets, resulting in an increase of conductivity.

  9. Brominated flame retardants as food contaminants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter reviews analytical methods for the three major brominated flame retardant (BFR) classes in use today, tetrabromobisphenol-A (TBBP-A), hexabromocyclododecanes (HBCDs), and polybrominated diphenyl ethers (PBDEs), a "legacy" BFR no longer in use, polybrominated biphenyls (PBBs), and a...

  10. Preparation of ionic membranes for zinc/bromine storage batteries

    NASA Astrophysics Data System (ADS)

    Assink, R. A.; Arnold, C., Jr.

    Zinc/bromine flow batteries are being developed for vehicular and utility load leveling applications. During charge, an aqueous zinc bromide salt is electrolyzed to zinc metal and molecular bromine. During discharge, the zinc and bromine react to again form the zinc bromide salt. One serious disadvantage of the microporous separators presently used in the zinc/bromine battery is that modest amounts of bromine and negatively charged bromine moieties permeate through these materials and react with the zinc anode. This results in partial self-discharge of the battery and low coulombic efficiencies. Our approach to this problem is to impregnate the microporous separators with a soluble cationic polyelectrolyte. In laboratory screening tests a sulfonated polysulfone resin and fully fluorinated sulfonic acid polymer substantially reduced bromine permeation with only modest increases in the area resistance.

  11. Graphite fiber intercalation: Dynamics of the bromine intercalation process

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Zinolabedini, R.

    1985-01-01

    The resistance of pitch-based graphite fibers was monitored, in situ, during a series of bromine intercalation experiments. The threshold pressure for the bromine intercalation of pitch-based fibers was estimated to be 102 torr. When the bromine atmosphere was removed from the reaction chamber, the resistivity of the intercalated graphite fibers increased consistently. This increase was attributed to loss of bromine from the perimeter of the fiber. The loss was confirmed by mapping the bromine concentration across the diameter of single intercalated fibers with either energy dispersive spectroscopy or scanning Auger microscopy. A statistical study comparing fibers intercalated in bromine vapor with fibers intercalated in bromine liquid showed that similar products were obtained with both methods of intercalation.

  12. Search for Possible Stratospheric Bromine Reservoir Species: Theoretical Study of the Photostability of Mono-, Tri-, and Pentacoordinated Bromine Compounds

    NASA Technical Reports Server (NTRS)

    Lee, TImothy J.; Mejia, Cesar N.; Beran, J. O.; Head-Gordon, Martin

    2004-01-01

    Previous work has shown that pentacoordinated bromine compounds have their lowest excited electronic states shifted to the blue relative to monocoordinated bromine molecules, and that this shift may be large enough to render them photostable in the lower stratosphere. Our earlier work has also shown that certain pentacoordinated bromine compounds are thermodynamically stable relative to their mono- or tricoordinated isomers, suggesting that if a bromine stratospheric reservoir species exists, then it is most likely a pentacoordinated compound. In this study we have examined the singlet excited electronic states of several bromine compounds in order to assess their photostability excited states in mono-, tri-, and pentacoordinated bromine molecules. Due to the strong spin-orbit mixing in bromine, we have also examined the lowest triplet excited state.

  13. Initial Test Determination of Cosmogenic Nuclides in Magnetite

    NASA Astrophysics Data System (ADS)

    Matsumura, H.; Caffee, M. W.; Nagao, K.; Nishiizumi, K.

    2014-12-01

    Long-lived radionuclides, such as 10Be, 26Al, and 36Cl, are produced by cosmic rays in surficial materials on Earth, and used for determinations of cosmic-ray exposure ages and erosion rates. Quartz and limestone are routinely used as the target minerals for these geomorphological studies. Magnetite also contains target elements that produce abundant cosmogenic nuclides when exposed to the cosmic rays. Magnetite has several notable merits that enable the measurement of cosmogenic nuclides: (1) the target elements for production of cosmogenic nuclides in magnetite comprise the dominant mineral form of magnetite, Fe3O4; (2) magnetite can be easily isolated, using a magnet, after rock milling; (3) multiple cosmogenic nuclides are produced by exposure of magnetite to cosmic-ray secondaries; and (4) cosmogenic nuclides produced in the rock containing the magnetite, but not within the magnetite itself, can be separated using nitric acid and sodium hydroxide leaches. As part of this initial study, magnetite was separated from a basaltic sample collected from the Atacama Desert in Chili (2,995 m). Then Be, Al, Cl, Ca, and Mn were separated from ~2 g of the purified magnetite. We measured cosmogenic 10Be, 26Al, and 36Cl concentrations in the magnetite by accelerator mass spectrometry at PRIME Lab, Purdue University. Cosmogenic 3He and 21Ne concentrations of aliquot of the magnetite were measured by mass spectrometry at the University of Tokyo. We also measured the nuclide concentrations from magnetite collected from a mine at Ishpeming, Michigan as a blank. The 10Be and 36Cl concentrations as well as 3He concentration produce concordant cosmic ray exposure ages of ~0.4 Myr for the Atacama basalt. However, observed high 26Al and 21Ne concentrations attribute to those nuclides incorporation from silicate impurity.

  14. Deriving an atmospheric budget of total organic bromine using airborne in-situ measurements from the Western Pacific during SHIVA

    NASA Astrophysics Data System (ADS)

    Sala, S.; Bönisch, H.; Keber, T.; Oram, D. E.; Mills, G.; Engel, A.

    2014-02-01

    During the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) project an extensive dataset of all halogen species relevant for the atmospheric budget of total organic bromine has been collected in the West Pacific region using the FALCON aircraft operated by the German Aerospace agency DLR (Deutsches Zentrum für Luft- und Raumfahrt) covering a vertical range from the planetary boundary layer up to the ceiling altitude of the aircraft of 13 km. In total, more than 700 measurements were performed with the newly developed fully-automated in-situ instrument GHOST-MS (Gas cHromatograph for the Observation of Tracers - coupled with a Mass Spectrometer) by the Goethe University of Frankfurt (GUF) and with the onboard whole-air sampler WASP with subsequent ground based state-of-the-art GC/MS analysis by the University of East Anglia (UEA). Both instruments yield good agreement for all major (CHBr3 and CH2Br2) and minor (CHBrCl, CHBrCl2 and CHBr2Cl) VSLS (very short-lived substances), at least at the level of their 2 σ measurement uncertainties. In contrast to the suggestion that the Western Pacific could be a major source region for VSLS (Pyle et al., 2011), we found only slightly enhanced mixing ratios of brominated halogen source gases relative to the levels reported in Montzka et al. (2011) for other tropical regions. A budget for total organic bromine, including all four halons,CH3Br and the VSLS, is derived for the upper troposphere, the input region for the TTL and thus also for the stratosphere, compiled from the SHIVA dataset. With exception of the two minor VSLS CHBrCl2 and CHBr2Cl, excellent agreement with the values reported in Montzka et al. (2011) is found, while being slightly higher than previous studies from our group based on balloon-borne measurements.

  15. Constraining local subglacial bedrock erosion rates with cosmogenic nuclides

    NASA Astrophysics Data System (ADS)

    Wirsig, Christian; Ivy-Ochs, Susan; Christl, Marcus; Reitner, Jürgen; Reindl, Martin; Bichler, Mathias; Vockenhuber, Christof; Akcar, Naki; Schlüchter, Christian

    2014-05-01

    The constant buildup of cosmogenic nuclides, most prominently 10Be, in exposed rock surfaces is routinely employed for dating various landforms such as landslides or glacial moraines. One fundamental assumption is that no cosmogenic nuclides were initially present in the rock, before the event to be dated. In the context of glacially formed landscapes it is commonly assumed that subglacial erosion of at least a few meters of bedrock during the period of ice coverage is sufficient to remove any previously accumulated nuclides, since the production of 10Be ceases at a depth of 2-3 m. Insufficient subglacial erosion leads to overestimation of surface exposure ages. If the time since the retreat of the glacier is known, however, a discordant concentration of cosmogenic nuclides delivers information about the depth of subglacial erosion. Here we present data from proglacial bedrock at two sites in the Alps. Goldbergkees in the Hohe Tauern National Park in Austria and Gruebengletscher in the Grimsel Pass area in Switzerland. Samples were taken inside as well as outside of the glaciers' Little Ice Age extent. Measured nuclide concentrations are analyzed with the help of a MATLAB model simulating periods of exposure or glacial cover of user-definable length and erosion rates.

  16. Predicting the production rates of cosmogenic nuclides in extraterrestrial matter

    SciTech Connect

    Reedy, R.C.

    1987-01-01

    The production rates of nuclides made by the galactic and solar cosmic rays are important in the interpretations of measurements made with lunar samples, meteorites, and cosmic spherules. Production rates of cosmogenic nuclides have been predicted by a variety of methods that are reviewed in this paper, ranging from systematic studies of one or a group of meteorites to purely theoretical calculations. Production rates can vary with the chemical composition and the preatmospheric depth of the sample and with the size and shape of the object. While the production systematics for cosmogenic nuclides are fairly well known, our ability to predict their production rates can be improved, with a corresponding increase in the scientific return. Additional detailed studies of cosmogenic nuclides in extraterrestrial objects are needed, especially for fairly small and very large objects. Nuclides made in simulation experiments and cross sections for many major nuclear reactions should be measured. Such studies are especially needed for the long-lived radionuclides that have only recently become readily measurable by accelerator mass spectrometry. 34 refs., 5 figs.

  17. 182Hf–182W age dating of a 26Al-poor inclusion and implications for the origin of short-lived radioisotopes in the early Solar System

    PubMed Central

    Holst, Jesper C.; Olsen, Mia B.; Paton, Chad; Nagashima, Kazuhide; Schiller, Martin; Wielandt, Daniel; Larsen, Kirsten K.; Connelly, James N.; Jørgensen, Jes K.; Krot, Alexander N.; Nordlund, Åke; Bizzarro, Martin

    2013-01-01

    Refractory inclusions [calcium–aluminum-rich inclusions, (CAIs)] represent the oldest Solar System solids and provide information regarding the formation of the Sun and its protoplanetary disk. CAIs contain evidence of now extinct short-lived radioisotopes (e.g., 26Al, 41Ca, and 182Hf) synthesized in one or multiple stars and added to the protosolar molecular cloud before or during its collapse. Understanding how and when short-lived radioisotopes were added to the Solar System is necessary to assess their validity as chronometers and constrain the birthplace of the Sun. Whereas most CAIs formed with the canonical abundance of 26Al corresponding to 26Al/27Al of ∼5 × 10−5, rare CAIs with fractionation and unidentified nuclear isotope effects (FUN CAIs) record nucleosynthetic isotopic heterogeneity and 26Al/27Al of <5 × 10−6, possibly reflecting their formation before canonical CAIs. Thus, FUN CAIs may provide a unique window into the earliest Solar System, including the origin of short-lived radioisotopes. However, their chronology is unknown. Using the 182Hf–182W chronometer, we show that a FUN CAI recording a condensation origin from a solar gas formed coevally with canonical CAIs, but with 26Al/27Al of ∼3 × 10−6. The decoupling between 182Hf and 26Al requires distinct stellar origins: steady-state galactic stellar nucleosynthesis for 182Hf and late-stage contamination of the protosolar molecular cloud by a massive star(s) for 26Al. Admixing of stellar-derived 26Al to the protoplanetary disk occurred during the epoch of CAI formation and, therefore, the 26Al–26Mg systematics of CAIs cannot be used to define their formation interval. In contrast, our results support 182Hf homogeneity and chronological significance of the 182Hf–182W clock. PMID:23671077

  18. 182Hf-182W age dating of a 26Al-poor inclusion and implications for the origin of short-lived radioisotopes in the early Solar System.

    PubMed

    Holst, Jesper C; Olsen, Mia B; Paton, Chad; Nagashima, Kazuhide; Schiller, Martin; Wielandt, Daniel; Larsen, Kirsten K; Connelly, James N; Jørgensen, Jes K; Krot, Alexander N; Nordlund, Ake; Bizzarro, Martin

    2013-05-28

    Refractory inclusions [calcium-aluminum-rich inclusions, (CAIs)] represent the oldest Solar System solids and provide information regarding the formation of the Sun and its protoplanetary disk. CAIs contain evidence of now extinct short-lived radioisotopes (e.g., (26)Al, (41)Ca, and (182)Hf) synthesized in one or multiple stars and added to the protosolar molecular cloud before or during its collapse. Understanding how and when short-lived radioisotopes were added to the Solar System is necessary to assess their validity as chronometers and constrain the birthplace of the Sun. Whereas most CAIs formed with the canonical abundance of (26)Al corresponding to (26)Al/(27)Al of ∼5 × 10(-5), rare CAIs with fractionation and unidentified nuclear isotope effects (FUN CAIs) record nucleosynthetic isotopic heterogeneity and (26)Al/(27)Al of <5 × 10(-6), possibly reflecting their formation before canonical CAIs. Thus, FUN CAIs may provide a unique window into the earliest Solar System, including the origin of short-lived radioisotopes. However, their chronology is unknown. Using the (182)Hf-(182)W chronometer, we show that a FUN CAI recording a condensation origin from a solar gas formed coevally with canonical CAIs, but with (26)Al/(27)Al of ∼3 × 10(-6). The decoupling between (182)Hf and (26)Al requires distinct stellar origins: steady-state galactic stellar nucleosynthesis for (182)Hf and late-stage contamination of the protosolar molecular cloud by a massive star(s) for (26)Al. Admixing of stellar-derived (26)Al to the protoplanetary disk occurred during the epoch of CAI formation and, therefore, the (26)Al-(26)Mg systematics of CAIs cannot be used to define their formation interval. In contrast, our results support (182)Hf homogeneity and chronological significance of the (182)Hf-(182)W clock. PMID:23671077

  19. Daily variation of radon gas and its short-lived progeny concentration near ground level and estimation of aerosol residence time

    NASA Astrophysics Data System (ADS)

    M, Mohery; A, M. Abdallah; A, Ali; S, S. Baz

    2016-05-01

    Atmospheric concentrations of radon (222Rn) gas and its short-lived progenies 218Po, 214Pb, and 214Po were continuously monitored every four hours at the ground level in Jeddah city, Kingdom of Saudi Arabia. The measurements were performed three times every week, starting from November 2014 to October 2015. A method of electrostatic precipitation of positively charged 218Po and 214Po by a positive voltage was applied for determining 222Rn gas concentration. The short-lived 222Rn progeny concentration was determined by using a filter holder connected with the alpha-spectrometric technique. The meteorological parameters (relative air humidity, air temperature, and wind speed) were determined during the measurements of 222Rn and its progeny concentrations. 222Rn gas as well as its short-lived progeny concentration display a daily and seasonal variation with high values in the night and early morning hours as compared to low values at noon and in the afternoon. The observed monthly atmospheric concentrations showed a seasonal trend with the highest values in the autumn/winter season and the lowest values in the spring/summer season. Moreover, and in parallel with alpha-spectrometric measurements, a single filter-holder was used to collect air samples. The deposited activities of 214Pb and the long-lived 222Rn daughter 210Pb on the filter were measured with the gamma spectrometric technique. The measured activity concentrations of 214Pb by both techniques were found to be relatively equal largely. The highest mean seasonally activity concentrations of 210Pb were observed in the autumn/winter season while the lowest mean were observed in the spring/summer season. The mean residence time (MRT) of aerosol particles in the atmospheric air could be estimated from the activity ratios of 210Pb/214Pb. Project supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah (Grant No. 291/965/1434).

  20. Climate response to projected changes in short-lived species under an A1B scenario from 2000-2050 in the GISS climate model

    SciTech Connect

    Menon, Surabi; Shindell, Drew T.; Faluvegi, Greg; Bauer, Susanne E.; Koch, Dorothy M.; Unger, Nadine; Menon, Surabi; Miller, Ron L.; Schmidt, Gavin A.; Streets, David G.

    2007-03-26

    We investigate the climate forcing from and response to projected changes in short-lived species and methane under the A1B scenario from 2000-2050 in the GISS climate model. We present a meta-analysis of new simulations of the full evolution of gas and aerosol species and other existing experiments with variations of the same model. The comparison highlights the importance of several physical processes in determining radiative forcing, especially the effect of climate change on stratosphere-troposphere exchange, heterogeneous sulfate-nitrate-dust chemistry, and changes in methane oxidation and natural emissions. However, the impact of these fairly uncertain physical effects is substantially less than the difference between alternative emission scenarios for all short-lived species. The net global mean annual average direct radiative forcing from the short-lived species is .02 W/m{sup 2} or less in our projections, as substantial positive ozone forcing is largely offset by negative aerosol direct forcing. Since aerosol reductions also lead to a reduced indirect effect, the global mean surface temperature warms by {approx}0.07 C by 2030 and {approx}0.13 C by 2050, adding 19% and 17%, respectively, to the warming induced by long-lived greenhouse gases. Regional direct forcings are large, up to 3.8 W/m{sup 2}. The ensemble-mean climate response shows little regional correlation with the spatial pattern of the forcing, however, suggesting that oceanic and atmospheric mixing generally overwhelms the effect of even large localized forcings. Exceptions are the polar regions, where ozone and aerosols may induce substantial seasonal climate changes.

  1. 182Hf-182W age dating of a 26Al-poor inclusion and implications for the origin of short-lived radioisotopes in the early Solar System.

    PubMed

    Holst, Jesper C; Olsen, Mia B; Paton, Chad; Nagashima, Kazuhide; Schiller, Martin; Wielandt, Daniel; Larsen, Kirsten K; Connelly, James N; Jørgensen, Jes K; Krot, Alexander N; Nordlund, Ake; Bizzarro, Martin

    2013-05-28

    Refractory inclusions [calcium-aluminum-rich inclusions, (CAIs)] represent the oldest Solar System solids and provide information regarding the formation of the Sun and its protoplanetary disk. CAIs contain evidence of now extinct short-lived radioisotopes (e.g., (26)Al, (41)Ca, and (182)Hf) synthesized in one or multiple stars and added to the protosolar molecular cloud before or during its collapse. Understanding how and when short-lived radioisotopes were added to the Solar System is necessary to assess their validity as chronometers and constrain the birthplace of the Sun. Whereas most CAIs formed with the canonical abundance of (26)Al corresponding to (26)Al/(27)Al of ∼5 × 10(-5), rare CAIs with fractionation and unidentified nuclear isotope effects (FUN CAIs) record nucleosynthetic isotopic heterogeneity and (26)Al/(27)Al of <5 × 10(-6), possibly reflecting their formation before canonical CAIs. Thus, FUN CAIs may provide a unique window into the earliest Solar System, including the origin of short-lived radioisotopes. However, their chronology is unknown. Using the (182)Hf-(182)W chronometer, we show that a FUN CAI recording a condensation origin from a solar gas formed coevally with canonical CAIs, but with (26)Al/(27)Al of ∼3 × 10(-6). The decoupling between (182)Hf and (26)Al requires distinct stellar origins: steady-state galactic stellar nucleosynthesis for (182)Hf and late-stage contamination of the protosolar molecular cloud by a massive star(s) for (26)Al. Admixing of stellar-derived (26)Al to the protoplanetary disk occurred during the epoch of CAI formation and, therefore, the (26)Al-(26)Mg systematics of CAIs cannot be used to define their formation interval. In contrast, our results support (182)Hf homogeneity and chronological significance of the (182)Hf-(182)W clock.

  2. Kinetic bromine isotope effect: example from the microbial debromination of brominated phenols.

    PubMed

    Bernstein, Anat; Ronen, Zeev; Levin, Elena; Halicz, Ludwik; Gelman, Faina

    2013-03-01

    The increasing use of kinetic isotope effects for environmental studies has motivated the development of new compound-specific isotope analysis techniques for emerging pollutants. Recently, high-precision bromine isotope analysis in individual brominated organic compounds was proposed, by the coupling of gas chromatography to a multi-collector inductively coupled plasma mass spectrometer using strontium as an external spike for instrumental bias correction. The present study, for the first time, demonstrates an application of this technique for determining bromine kinetic isotope effects during biological reaction, focusing on the reductive debromination of brominated phenols under anaerobic conditions. Results show bromine isotope enrichment factors (ε) of -0.76 ± 0.08, -0.46 ± 0.19, and -0.20 ± 0.06 ‰ for the debromination of 4-bromophenol, 2,4-dibromophenol, and 2,4,6-tribromophenol, respectively. These values are rather low, yet still high enough to be obtained with satisfying certainty. This further implies that the analytical method may be also appropriate for future environmental applications.

  3. Variable temperature effects on release rates of readily soluble nuclides

    SciTech Connect

    Kim, C.L.; Chambre, P.L.; Lee, W.W.L.; Pigford, T.H.

    1988-02-01

    In this paper we study the effect of temperature on the release rate of readily soluble nuclides, as affected by a time-temperature-dependent diffusion coefficient. In this analysis ground water fills the voids in the waste package at t=0 and one percent of the inventories of cesium and iodine are immediately dissolved into the void water. Mass transfer resistance of partly failed container and cladding is conservatively neglected. The nuclides move through the void space into the surrounding rock under a concentration gradient. We use an analytic solution to compute the nuclide concentration in the gap or void, and the mass flux rate into the porous rock. 8 refs., 4 figs.

  4. Bromine-containing source gases during EASOE

    SciTech Connect

    Fabian, P. ); Borchers, R.; Kourtidis, K. )

    1994-06-22

    The authors report three different vertical profile measurements of three bromine containing gases which are thought to be the major sources of active bromine in the stratosphere. These gases are CBrClF[sub 2] (Halon-1211), CBrF[sub 3] (Halon-1301) and methyl bromide (CH[sub 3]Br). They were sampled using cryogenic samplers from balloon borne flights from Kiruna during January, February and March 1992. The two halons are of anthropogenic origin, while methyl bromide is thought to have a relatively large natural origin. Consistent with the decrease in concentration of these gases with altitude was an increase in the density of BrO[sub x] with altitude.

  5. Brominated flame retardants: cause for concern?

    PubMed Central

    Birnbaum, Linda S; Staskal, Daniele F

    2004-01-01

    Brominated flame retardants (BFRs) have routinely been added to consumer products for several decades in a successful effort to reduce fire-related injury and property damage. Recently, concern for this emerging class of chemicals has risen because of the occurrence of several classes of BFRs in the environment and in human biota. The widespread production and use of BFRs; strong evidence of increasing contamination of the environment, wildlife, and people; and limited knowledge of potential effects heighten the importance of identifying emerging issues associated with the use of BFRs. In this article, we briefly review scientific issues associated with the use of tetrabromobisphenol A, hexabromocyclododecane, and three commercial mixtures of polybrominated diphenyl ethers and discuss data gaps. Overall, the toxicology database is very limited; the current literature is incomplete and often conflicting. Available data, however, raise concern over the use of certain classes of brominated flame retardants. PMID:14698924

  6. Marine bacterial degradation of brominated methanes

    USGS Publications Warehouse

    Goodwin, K.D.; Lidstrom, M.E.; Oremland, R.S.

    1997-01-01

    Brominated methanes are ozone-depleting compounds whose natural sources include marine algae such as kelp. Brominated methane degradation by bacteria was investigated to address whether bacterial processes might effect net emission of these compounds to the atmosphere. Bacteria in seawater collected from California kelp beds degraded CH2Br2 but not CHBr3. Specific inhibitors showed that methanotrophs and nitrifiers did not significantly contribute to CH2Br2 removal. A seawater enrichment culture oxidized 14CH2Br2 to 14CO2 as well as 14CH3Br to 14CO2. The rates of CH2Br2 degradation in laboratory experiments suggest that bacterial degradation of CH2Br2 in a kelp bed accounts for <1% of the CH2Br2 produced by the kelp. However, the half-life of CH2Br2 due to bacterial removal appears faster than hydrolysis and within an order of magnitude of volatilization to the atmosphere.Brominated methanes are ozone-depleting compounds whose natural sources include marine algae such as kelp. Brominated methane degradation by bacteria was investigated to address whether bacterial processes might effect net emission of these compounds to the atmosphere. Bacteria in seawater collected from California kelp beds degraded CH2Br2 but not CHBr3. Specific inhibitors showed that methanotrophs and nitrifiers did not significantly contribute to CH2Br2 removal. A seawater enrichment culture oxidized 14CH2Br2 to 14CO2 as well as 14CH3Br to 14CO2. The rates of CH2Br2 degradation in laboratory experiments suggest that bacterial degradation of CH2Br2 in a kelp bed accounts for <1% of the CH2Br2 produced by the kelp. However, the half-life of CH2Br2 due to bacterial removal appears faster than hydrolysis and within an order of magnitude of volatilization to the atmosphere.

  7. Global inorganic source of atmospheric bromine.

    PubMed

    Enami, S; Vecitis, C D; Cheng, J; Hoffmann, M R; Colussi, A J

    2007-09-13

    A few bromine molecules per trillion (ppt) causes the complete destruction of ozone in the lower troposphere during polar spring and about half of the losses associated with the "ozone hole" in the stratosphere. Recent field and aerial measurements of the proxy BrO in the free troposphere suggest an even more pervasive global role for bromine. Models, which quantify ozone trends by assuming atmospheric inorganic bromine (Bry) stems exclusively from long-lived bromoalkane gases, significantly underpredict BrO measurements. This discrepancy effectively implies a ubiquitous tropospheric background level of approximately 4 ppt Bry of unknown origin. Here, we report that I- efficiently catalyzes the oxidation of Br- and Cl- in aqueous nanodroplets exposed to ozone, the everpresent atmospheric oxidizer, under conditions resembling those encountered in marine aerosols. Br- and Cl-, which are rather unreactive toward O3 and were previously deemed unlikely direct precursors of atmospheric halogens, are readily converted into IBr2- and ICl2- en route to Br2(g) and Cl2(g) in the presence of I-. Fine sea salt aerosol particles, which are predictably and demonstrably enriched in I- and Br-, are thus expected to globally release photoactive halogen compounds into the atmosphere, even in the absence of sunlight. PMID:17713895

  8. Hydrogen-bromine fuel cell advance component development

    NASA Technical Reports Server (NTRS)

    Charleston, Joann; Reed, James

    1988-01-01

    Advanced cell component development is performed by NASA Lewis to achieve improved performance and longer life for the hydrogen-bromine fuel cells system. The state-of-the-art hydrogen-bromine system utilizes the solid polymer electrolyte (SPE) technology, similar to the SPE technology developed for the hydrogen-oxygen fuel cell system. These studies are directed at exploring the potential for this system by assessing and evaluating various types of materials for cell parts and electrode materials for Bromine-hydrogen bromine environment and fabricating experimental membrane/electrode-catalysts by chemical deposition.

  9. Triggering Collapse of the Presolar Dense Cloud Core and Injecting Short-lived Radioisotopes with a Shock Wave. III. Rotating Three-dimensional Cloud Cores

    NASA Astrophysics Data System (ADS)

    Boss, Alan P.; Keiser, Sandra A.

    2014-06-01

    A key test of the supernova triggering and injection hypothesis for the origin of the solar system's short-lived radioisotopes is to reproduce the inferred initial abundances of these isotopes. We present here the most detailed models to date of the shock wave triggering and injection process, where shock waves with varied properties strike fully three-dimensional, rotating, dense cloud cores. The models are calculated with the FLASH adaptive mesh hydrodynamics code. Three different outcomes can result: triggered collapse leading to fragmentation into a multiple protostar system; triggered collapse leading to a single protostar embedded in a protostellar disk; or failure to undergo dynamic collapse. Shock wave material is injected into the collapsing clouds through Rayleigh-Taylor fingers, resulting in initially inhomogeneous distributions in the protostars and protostellar disks. Cloud rotation about an axis aligned with the shock propagation direction does not increase the injection efficiency appreciably, as the shock parameters were chosen to be optimal for injection even in the absence of rotation. For a shock wave from a core-collapse supernova, the dilution factors for supernova material are in the range of ~10-4 to ~3 × 10-4, in agreement with recent laboratory estimates of the required amount of dilution for 60Fe and 26Al. We conclude that a type II supernova remains as a promising candidate for synthesizing the solar system's short-lived radioisotopes shortly before their injection into the presolar cloud core by the supernova's remnant shock wave.

  10. Shielding and activity estimator for template-based nuclide identification methods

    DOEpatents

    Nelson, Karl Einar

    2013-04-09

    According to one embodiment, a method for estimating an activity of one or more radio-nuclides includes receiving one or more templates, the one or more templates corresponding to one or more radio-nuclides which contribute to a probable solution, receiving one or more weighting factors, each weighting factor representing a contribution of one radio-nuclide to the probable solution, computing an effective areal density for each of the one more radio-nuclides, computing an effective atomic number (Z) for each of the one more radio-nuclides, computing an effective metric for each of the one or more radio-nuclides, and computing an estimated activity for each of the one or more radio-nuclides. In other embodiments, computer program products, systems, and other methods are presented for estimating an activity of one or more radio-nuclides.

  11. Development of a system for real-time measurements of metabolite transport in plants using short-lived positron-emitting radiotracers

    NASA Astrophysics Data System (ADS)

    Kiser, Matthew R.

    Over the past 200 years, the Earth's atmospheric carbon dioxide (CO 2) concentration has increased by more than 35%, and climate experts predict that CO2 levels may double by the end of this century. Understanding the mechanisms of resource management in plants is fundamental for predicting how plants will respond to the increase in atmospheric CO 2. Plant productivity sustains life on Earth and is a principal component of the planet's system that regulates atmospheric CO2 concentration. As such, one of the central goals of plant science is to understand the regulatory mechanisms of plant growth in a changing environment. Short-lived positron-emitting radiotracer techniques provide time-dependent data that are critical for developing models of metabolite transport and resource distribution in plants and their microenvironments. To better understand the effects of environmental changes on resource transport and allocation in plants, we have developed a system for real-time measurements of rnetabolite transport in plants using short-lived positron-emitting radio-tracers. This thesis project includes the design, construction, and demonstration of the capabilities of this system for performing real-time measurements of metabolite transport in plants. The short-lived radiotracer system described in this dissertation takes advantage of the combined capabilities and close proximity of two research facilities at. Duke University: the Triangle Universities Nuclear Laboratory (TUNL) and the Duke University Phytotron, which are separated by approximately 100 meters. The short-lived positron-emitting radioisotopes are generated using the 10-MV tandem Van de Graaff accelerator located in the main TUNL building, which provides the capability of producing short-lived positron-emitting isotopes such as carbon-11 (11C: 20 minute half-life), nitrogen-13 (13N; 10 minute half-life), fluorine-18 (18F; 110 minute half-life), and oxygen-15 (15O; 2 minute half-life). The radioisotopes may

  12. Development of a system for real-time measurements of metabolite transport in plants using short-lived positron-emitting radiotracers

    NASA Astrophysics Data System (ADS)

    Kiser, Matthew R.

    Over the past 200 years, the Earth's atmospheric carbon dioxide (CO 2) concentration has increased by more than 35%, and climate experts predict that CO2 levels may double by the end of this century. Understanding the mechanisms of resource management in plants is fundamental for predicting how plants will respond to the increase in atmospheric CO 2. Plant productivity sustains life on Earth and is a principal component of the planet's system that regulates atmospheric CO2 concentration. As such, one of the central goals of plant science is to understand the regulatory mechanisms of plant growth in a changing environment. Short-lived positron-emitting radiotracer techniques provide time-dependent data that are critical for developing models of metabolite transport and resource distribution in plants and their microenvironments. To better understand the effects of environmental changes on resource transport and allocation in plants, we have developed a system for real-time measurements of rnetabolite transport in plants using short-lived positron-emitting radio-tracers. This thesis project includes the design, construction, and demonstration of the capabilities of this system for performing real-time measurements of metabolite transport in plants. The short-lived radiotracer system described in this dissertation takes advantage of the combined capabilities and close proximity of two research facilities at. Duke University: the Triangle Universities Nuclear Laboratory (TUNL) and the Duke University Phytotron, which are separated by approximately 100 meters. The short-lived positron-emitting radioisotopes are generated using the 10-MV tandem Van de Graaff accelerator located in the main TUNL building, which provides the capability of producing short-lived positron-emitting isotopes such as carbon-11 (11C: 20 minute half-life), nitrogen-13 (13N; 10 minute half-life), fluorine-18 (18F; 110 minute half-life), and oxygen-15 (15O; 2 minute half-life). The radioisotopes may

  13. Detection of 210Po on filter papers 16 years after use for the collection of short-lived radon progeny in a room.

    PubMed

    Abu-Jarad, F; Fazal-ur-Rehman

    2003-01-01

    Radon gas was allowed to accumulate in its radium source and then injected into a 36 m(3) test room, resulting in an initial radon concentration of 15 kBq m(-3). Filter papers were used to collect the short-lived radon progeny and thus to measure the Potential Alpha Energy Concentration (PAEC) in-situ in the year 1984 at different times and conditions according to the experimental design. The radon progeny collected on the filter papers were studied as a function of aerosol particle concentration ranging from 10(2)-10(5) particles cm(-3) in three different experiments. The highest aerosol particle concentration was generated by indoor cigarette smoking. Those filters were stored after the experiment, and were used after 16 years to study the activity of the radon long-lived alpha emitter progeny, (210)Po (T(1/2)=138 days). This isotope is separated from the short-lived progeny by (210)Pb beta emitter with 22.3 years half-life. After 16 years' storage of these filters, each filter paper was sandwiched and wrapped between two CR-39 nuclear track detectors, to put the detectors in contact with the surfaces of different filters, for 337 days. Correlation between the PAEC measured using filter papers in the year 1984 and the activity of long-lived alpha emitter (210)Po on the same filter papers measured in the year 2000 were studied. The results of the (210)Po activity showed a very good correlation of 0.92 with the PAEC 16 years ago. The results also depict that the PAEC and (210)Po activity in indoor air increased with the increase of aerosol particle concentration, which shows the attachment of short-lived radon progeny with the aerosol particles. The experiment proves that indoor cigarette smoking is a major source of aerosol particles carrying radon progeny and, thus, indoor cigarette smoking is an additional source of internal radiation hazard to the occupants whether smoker or non-smoker.

  14. The Addition of Bromine to 1,2-Diphenylethene

    ERIC Educational Resources Information Center

    Amburgey-Peters, Judith C.; Haynes, Leroy W.

    2005-01-01

    The bromination of 1,2-diphenylethene, using a variety of solvents and brominating agents, can be used in both introductory and advanced organic chemistry courses. The reactions can be used to illustrate the effects of changing solvents and reagents, as well as to reveal interesting aspects of organic reaction mechanisms.

  15. 40 CFR 721.3085 - Brominated phthalate ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Brominated phthalate ester. 721.3085 Section 721.3085 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES... Substances § 721.3085 Brominated phthalate ester. (a) Chemical substance and significant new uses subject...

  16. 40 CFR 721.3085 - Brominated phthalate ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Brominated phthalate ester. 721.3085 Section 721.3085 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES... Substances § 721.3085 Brominated phthalate ester. (a) Chemical substance and significant new uses subject...

  17. 40 CFR 721.3085 - Brominated phthalate ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Brominated phthalate ester. 721.3085 Section 721.3085 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES... Substances § 721.3085 Brominated phthalate ester. (a) Chemical substance and significant new uses subject...

  18. 40 CFR 721.3085 - Brominated phthalate ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Brominated phthalate ester. 721.3085 Section 721.3085 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES... Substances § 721.3085 Brominated phthalate ester. (a) Chemical substance and significant new uses subject...

  19. Photochemical production of molecular bromine in Arctic surface snowpacks

    NASA Astrophysics Data System (ADS)

    Pratt, Kerri A.; Custard, Kyle D.; Shepson, Paul B.; Douglas, Thomas A.; Pöhler, Denis; Stephan, General; Zielcke, Johannes; Simpson, William R.; Platt, Ulrich; Tanner, David J.; Gregory Huey, L.; Carlsen, Mark; Stirm, Brian H.

    2013-05-01

    Following the springtime polar sunrise, ozone concentrations in the lower troposphere episodically decline to near-zero levels. These ozone depletion events are initiated by an increase in reactive bromine levels in the atmosphere. Under these conditions, the oxidative capacity of the Arctic troposphere is altered, leading to the removal of numerous transported trace gas pollutants, including mercury. However, the sources and mechanisms leading to increased atmospheric reactive bromine levels have remained uncertain, limiting simulations of Arctic atmospheric chemistry with the rapidly transforming sea-ice landscape. Here, we examine the potential for molecular bromine production in various samples of saline snow and sea ice, in the presence and absence of sunlight and ozone, in an outdoor snow chamber in Alaska. Molecular bromine was detected only on exposure of surface snow (collected above tundra and first-year sea ice) to sunlight. This suggests that the oxidation of bromide is facilitated by a photochemical mechanism, which was most efficient for more acidic samples characterized by enhanced bromide to chloride ratios. Molecular bromine concentrations increased significantly when the snow was exposed to ozone, consistent with an interstitial air amplification mechanism. Aircraft-based observations confirm that bromine oxide levels were enhanced near the snow surface. We suggest that the photochemical production of molecular bromine in surface snow serves as a major source of reactive bromine, which leads to the episodic depletion of tropospheric ozone in the Arctic springtime.

  20. 40 CFR 721.10534 - Brominated aliphatic alcohol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Brominated aliphatic alcohol (generic... Specific Chemical Substances § 721.10534 Brominated aliphatic alcohol (generic). (a) Chemical substance and... aliphatic alcohol (PMN P-12-260) is subject to reporting under this section for the significant new...

  1. 40 CFR 721.10534 - Brominated aliphatic alcohol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Brominated aliphatic alcohol (generic... Specific Chemical Substances § 721.10534 Brominated aliphatic alcohol (generic). (a) Chemical substance and... aliphatic alcohol (PMN P-12-260) is subject to reporting under this section for the significant new...

  2. Potential hazards of brominated carbon sorbents for mercury emission control.

    PubMed

    Bisson, Teresa M; Xu, Zhenghe

    2015-02-17

    Mercury is a toxic air pollutant, emitted from the combustion of coal. Activated Carbon (AC) or other carbon sorbent (CS) injection into coal combustion flue gases can remove elemental mercury through an adsorption process. Recently, a brominated CS with biomass ash as the carbon source (Br-Ash) was developed as an alternative for costly AC-based sorbent for mercury capture. After mercury capture, these sorbents are disposed in landfill, and the stability of bromine and captured mercury is of paramount importance. The objective of this study is to determine the fate of mercury and bromine from Br-Ash and brominated AC after their service. Mercury and bromine leaching tests were conducted using the standard toxicity characteristic leaching procedure (TCLP). The mercury was found to be stable on both the Br-Ash and commercial brominated AC sorbents, while the bromine leached into the aqueous phase considerably. Mercury pulse injection tests on the sorbent material after leaching indicate that both sorbents retain significant mercury capture capability even after the majority of bromine was removed. Testing of the Br-Ash sorbent over a wider range of pH and liquid:solid ratios resulted in leaching of <5% of mercury adsorbed on the Br-Ash. XPS analysis indicated more organically bound Br and less metal-Br bonds after leaching.

  3. Fire-retardant coatings based on organic bromine/phenoxy or brominated epoxy systems

    SciTech Connect

    Hoffman, D.M.; Chiu, Ing L.

    1989-06-01

    Thin phenoxy and brominated epoxy/curing agent films were prepared by solvent casting on Mylar and Kapton. Thicknesses were approximated assuming volume additivity. Important parameters were uniformity of thickness, distribution of the bromine-containing fire retardant, adhesion to carrier substrate (either Mylar or Kapton), and uniformity of the coating, i.e., absence of pinholes, blush, blistering, etc. Wetting behavior was modified using fluoro, silicone or polyurea surfactants. Several solvent systems were examined and a ternary solvent system was ultimately used. Distribution of fire-retardant bromine was analyzed using electron microprobe, x-ray fluorescence and wet chemical methods. Significant discrepancies in the /mu/m-scale analyses of the microprobe measurements have not been resolved. Some of the brominated fire retardants were insoluble in the resin systems and the phase separation was immediately obvious. Similarly, some of the crystallizable epoxies could not be cast easily into homogeneous, amorphous films. Castings were made on a standard 8'' /times/ 10'' aluminum vacuum plate polished with jeweler's rouge prior to every casting. Solvent was removed in a forced air or vacuum oven. Removal and/or curing was accelerated with temperature. The fire-retardant bromine was required to be stable in alcohol/salt solutions. Final formulation used after a significant amount of testing was phenoxy resin PKHC in a ternary solvent system composed of methylethyl ketone, cellosolve acetate and toluene. Tetrabromobisphenol A was used as the flame retardant with FC-430 as surfactant. The dying schedule was 30 minutes at 150/degree/C. 4 refs., 6 figs., 3 tabs.

  4. The BRomine, Ozone, and Mercury EXperiment (BROMEX)

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.; Shepson, P. B.; Simpson, W. R.; Perovich, D. K.; Sturm, M.; Douglas, T. A.; Rigor, I. G.; Clemente-Colon, P.; Burrows, J. P.; Richter, A.; Bottenheim, J. W.; Steffen, A.; Barber, D. G.; Kaleschke, L.; Hall, D. K.; Markus, T.; Eicken, H.; Neumann, G.

    2011-12-01

    In the decade of the 2000s, Arctic perennial (multi-year) sea ice has diminished drastically, whereas seasonal (first-year) sea ice has become the dominant ice class. This change effectively increases the overall surface salinity of the sea ice cover and in the overlying snowpack. Satellite results in 2010 and 2011 show the extent of perennial sea ice remains minimal with significant bromine explosions in the springtime. Key science questions still remain to be answered to understand the impact of the Arctic perennial sea ice reduction on low-atmospheric physical and chemical processes. Of the highest priority is to investigate the impact on bromine explosion events that lead to depletion of ozone and gaseous elementary mercury in the atmosphere. With that objective, we present the development of the BRomine, Ozone, and Mercury EXperiment in (BROMEX) in spring 2012 around Barrow, extending out to 200 km offshore and inland. In BROMEX, chemical, sea ice, snow, and ocean measurements will be made across sea ice leads both upwind and downwind areas of newly opened leads. Chemical-measurement buoys and other types of buoys will be deployed with helicopter flights to both sides of the leads. Various flight patterns of aircraft carrying ozone and bromine-measuring sensors will be used to characterize the chemical distribution over sea ice, land, and mountainous regions. Our approach will use data from multiple satellite instruments including MODIS, AMSR-E, QuikSCAT, GOME-2, SCIAMACHY, OMI, RADARSAT-2, Envisat ASAR, TerraSAR-X, TanDEM-X, SMOS, CryoSat-2 altimeter, and Oceansat-2 scatterometer. Moreover, results from recent field campaigns such as the IPY OASIS, INCATPA, CFL, SALT, and IceBridge, from sea ice and snow products generated by the U.S. Naval and National Ice Center, from NASA cryospheric observations, and from surface observation networks such as SIZONet will be utilized together with new measurements from BROMEX. Further collaborations with the international

  5. International intercomparison of measuring instruments for radon/thoron gas and radon short-lived daughter products in the NRPI Prague.

    PubMed

    Jílek, K; Hýža, M; Kotík, L; Thomas, J; Tomášek, L

    2014-07-01

    During the 7th European Conference on Protection Against Radon at Home and at Work held in the autumn of 2013 in Prague, the second intercomparison of measuring instruments for radon and its short-lived decay products and the first intercomparison of radon/thoron gas discriminative passive detectors in mix field of radon/thoron were organised by and held at the Natural Radiation Division of the National Radiation Protection Institute (NRPI) in Prague. In total, 14 laboratories from 11 different countries took part in the 2013 NRPI intercomparison. They submitted both continuous monitors for the measurement of radon gas and equivalent equilibrium radon concentration in a big NRPI chamber (48 m3) and sets of passive detectors including radon/thoron discriminative for the measurement of radon gas in the big chamber and thoron gas in a small thoron chamber (150 dm3).

  6. Osteosarcoma risk after simultaneous incorporation of the long-lived radionuclide 227Ac and the short-lived radionuclide 227Th.

    PubMed

    Müller, W A; Murray, A B; Linzner, U; Luz, A

    1990-01-01

    The effect of injection of 1.85 kBq/kg of the long-lived radionuclide 227Ac on the induction of osteosarcomas in female NMRI mice by different dose levels (18.5, 74, and 185 kBq/kg) of the short-lived radionuclide 227Th was investigated. The highest absolute osteosarcoma incidence was observed with the highest doses of 227Th. Addition of 227Ac resulted in an additional osteosarcoma incidence only at the lowest dose of 227Th and did not affect the osteosarcoma incidence resulting from higher doses of 227Th. The longest times to tumor appearance were observed with 227Ac alone. The latent period in two different age groups (4 weeks and 10-12 weeks) appeared to be similar following injection with combined doses of 227Th and 227Ac but different after injection of each radionuclide alone.

  7. Design a 10 kJ IS Mather Type Plasma Focus for Solid Target Activation to Produce Short-Lived Radioisotopes 12C(d,n)13N

    NASA Astrophysics Data System (ADS)

    Sadat Kiai, S. M.; Adlparvar, S.; Sheibani, S.; Elahi, M.; Safarien, A.; Farhangi, S.; Zirak, A. R.; Alhooie, S.; Mortazavi, B. N.; Khalaj, M. M.; Khanchi, A. R.; Dabirzadeh, A. A.; Kashani, A.; Zahedi, F.

    2010-10-01

    A 10 kJ (15 kV, 88 μF) IS (Iranian Sun) Mather type plasma focus device has been studied to determine the activity of a compound exogenous carbon solid target through 12C(d,n)13N nuclear reaction. The produced 13N is a short-lived radioisotope with a half-life of 9.97 min and threshold energy of 0.28 MeV. The results indicate that energetic deuterons impinging on the solid target can produce yield of = 6.7 × 10-5 with an activity of A = 6.8 × 104 Bq for one plasma focus shut and A ν = 4 × 105 Bq for 6 shut per mint when the projectile maximum deuterons energy is E max = 3 MeV.

  8. Osteosarcoma risk after simultaneous incorporation of the long-lived radionuclide sup 227 Ac and the short-lived radionuclide sup 227 Th

    SciTech Connect

    Mueller, W.A.M.; Murray, A.B.; Linzner, U.; Luz, A. )

    1990-01-01

    The effect of injection of 1.85 kBq/kg of the long-lived radionuclide {sup 227}Ac on the induction of osteosarcomas in female NMRI mice by different dose levels (18.5, 74, and 185 kBq/kg) of the short-lived radionuclide {sup 227}Th was investigated. The highest absolute osteosarcoma incidence was observed with the highest doses of {sup 227}Th. Addition of {sup 227}Ac resulted in an additional osteosarcoma incidence only at the lowest dose of {sup 227}Th and did not affect the osteosarcoma incidence resulting from higher doses of {sup 227}Th. The longest times to tumor appearance were observed with {sup 227}Ac alone. The latent period in two different age groups (4 weeks and 10-12 weeks) appeared to be similar following injection with combined doses of {sup 227}Th and {sup 227}Ac but different after injection of each radionuclide alone.

  9. Regular Cosmogenic Nuclide Dosing of Sediment Moving Down Desert Piedmonts

    NASA Astrophysics Data System (ADS)

    Nichols, K. K.; Bierman, P. R.; Hooke, R. L.; Eppes, M. C.; Persico, L.; Caffee, M.; Finkel, R.

    2001-12-01

    Low-gradient alluvial piedmonts are common in desert areas throughout the world; however, long-term rates of processes that modify these landscapes are poorly understood. Using cosmogenic 10Be and 26Al, we attempt to quantify the long-term (>103 y) behavior of desert piedmonts in Southern California. We measured the activity of 10Be and 26Al in three samples of drainage basin alluvium and six amalgamated samples from transects spaced at 1-km intervals down a piedmont in Fort Irwin, Mojave Desert, California. Each transect sample consists of sediment from 21 collection sites spaced at 150 m intervals. Such sampling averages the variability of nuclide activity between sub-sample locations and thus gives a long-term dosing history of sediment as it is transported from uplands to the distal piedmont. The piedmont is heavily used during military training exercises during which hundreds of wheeled and tracked vehicles traverse the surface. The piedmont surface is planar, and fan-head incision is minimal at the rangefront decreasing to zero between the first and second transects, 1.5 km from the rangefront. 10Be activity increases steadily from 5.87 X 105 atoms g-1 at the rangefront to 1.02 X 6 atoms g-1 at the piedmont bottom. Nuclide activity and distance are well correlated (r2 = 0.95) suggesting that sediment is dosed uniformly as it is transported down piedmont. We have measured similar increases in nuclide activity in transect samples collected from two other Mojave Desert piedmonts, those fringing the Iron and Granite Mountains (Nichols et al, in press, Geomorphology). These piedmonts have nuclide activities that also correlate well with distance (r2 = 0.98 and 0.96, respectively) from their rangefronts, but nuclides increase at a lower rate down piedmont. Modeled sediment transport speeds for the Iron and Granite Mountain piedmonts are decimeters per year. The regular increase in nuclide activities down three different Mojave Desert piedmonts suggests that

  10. Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy

    SciTech Connect

    Yi, Hongming; Maamary, Rabih; Fertein, Eric; Chen, Weidong; Gao, Xiaoming; Sigrist, Markus W.

    2015-03-09

    Spectroscopic detection of short-lived gaseous nitrous acid (HONO) at 1254.85 cm{sup −1} was realized by off-beam coupled quartz-enhanced photoacoustic spectroscopy (QEPAS) in conjunction with an external cavity quantum cascade lasers (EC-QCL). High sensitivity monitoring of HONO was performed within a very small gas-sample volume (of ∼40 mm{sup 3}) allowing a significant reduction (of about 4 orders of magnitude) of air sampling residence time which is highly desired for accurate quantification of chemically reactive short-lived species. Calibration of the developed QEPAS-based HONO sensor was carried out by means of lab-generated HONO samples whose concentrations were determined by direct absorption spectroscopy involving a ∼109.5 m multipass cell and a distributed feedback QCL. A minimum detection limit (MDL) of 66 ppbv (1 σ) HONO was achieved at 70 mbar using a laser output power of 50 mW and 1 s integration time, which corresponded to a normalized noise equivalent absorption coefficient of 3.6 × 10{sup −8 }cm{sup −1} W/Hz{sup 1/2}. This MDL was down to 7 ppbv at the optimal integration time of 150 s. The corresponding 1σ minimum detected absorption coefficient is ∼1.1 × 10{sup −7 }cm{sup −1} (MDL ∼ 3 ppbv) in 1 s and ∼1.1 × 10{sup −8 }cm{sup −1} (MDL ∼ 330 pptv) in 150 s, respectively, with 1 W laser power.

  11. Triggering collapse of the presolar dense cloud core and injecting short-lived radioisotopes with a shock wave. III. Rotating three-dimensional cloud cores

    SciTech Connect

    Boss, Alan P.; Keiser, Sandra A.

    2014-06-10

    A key test of the supernova triggering and injection hypothesis for the origin of the solar system's short-lived radioisotopes is to reproduce the inferred initial abundances of these isotopes. We present here the most detailed models to date of the shock wave triggering and injection process, where shock waves with varied properties strike fully three-dimensional, rotating, dense cloud cores. The models are calculated with the FLASH adaptive mesh hydrodynamics code. Three different outcomes can result: triggered collapse leading to fragmentation into a multiple protostar system; triggered collapse leading to a single protostar embedded in a protostellar disk; or failure to undergo dynamic collapse. Shock wave material is injected into the collapsing clouds through Rayleigh-Taylor fingers, resulting in initially inhomogeneous distributions in the protostars and protostellar disks. Cloud rotation about an axis aligned with the shock propagation direction does not increase the injection efficiency appreciably, as the shock parameters were chosen to be optimal for injection even in the absence of rotation. For a shock wave from a core-collapse supernova, the dilution factors for supernova material are in the range of ∼10{sup –4} to ∼3 × 10{sup –4}, in agreement with recent laboratory estimates of the required amount of dilution for {sup 60}Fe and {sup 26}Al. We conclude that a type II supernova remains as a promising candidate for synthesizing the solar system's short-lived radioisotopes shortly before their injection into the presolar cloud core by the supernova's remnant shock wave.

  12. New infrared spectroscopic database for bromine nitrate

    NASA Astrophysics Data System (ADS)

    Wagner, Georg; Birk, Manfred

    2016-08-01

    Fourier transform infrared measurements of bromine nitrate have been performed in the spectral region 675-1400 cm-1 at 0.014 cm-1 spectral resolution. Absorption cross sections were derived from 38 spectra covering the temperature range from 203 to 296 K and air pressure range from 0 to 190 mbar. For line-by-line analysis, further spectra were recorded at 0.00094 cm-1 spectral resolution at 223 and 293 K. The sample was synthesized from ClONO2 and Br2. Band strengths of the bands ν3 around 803 cm-1 and ν2 around 1286 cm-1 were determined from three pure BrONO2 measurements at different temperatures and pressures. Number densities in the absorption cell were derived from pressure measurements of the purified sample taking into account small amounts of impurities determined spectroscopically. Resulting band strengths are Sν3 = 2.872(52) × 10-17 cm2 molec-1 cm-1 and Sν2 = 3.63(15) × 10-17 cm2 molec-1 cm-1. Absorption cross sections of all measurements were scaled to these band strengths. Further data reduction was achieved with an interpolation scheme based on two-dimensional polynomials in ln(pressure) and temperature. The database is well-suited for remote-sensing application and should reduce the atmospheric bromine nitrate error budget substantially.

  13. Radio-nuclide mixture identification using medium energy resolution detectors

    DOEpatents

    Nelson, Karl Einar

    2013-09-17

    According to one embodiment, a method for identifying radio-nuclides includes receiving spectral data, extracting a feature set from the spectral data comparable to a plurality of templates in a template library, and using a branch and bound method to determine a probable template match based on the feature set and templates in the template library. In another embodiment, a device for identifying unknown radio-nuclides includes a processor, a multi-channel analyzer, and a memory operatively coupled to the processor, the memory having computer readable code stored thereon. The computer readable code is configured, when executed by the processor, to receive spectral data, to extract a feature set from the spectral data comparable to a plurality of templates in a template library, and to use a branch and bound method to determine a probable template match based on the feature set and templates in the template library.

  14. Measurements of cosmogenic nuclides in lunar rock 64455

    NASA Technical Reports Server (NTRS)

    Arnold, J. R.; Kohl, C. P.; Nishiizumi, K.; Caffee, M. W.; Finkel, R. C.; Southon, J. R.

    1993-01-01

    Eleven samples were ground from the glass coated surface of lunar rock 64455,82 with an average depth resolution of 50 microns and were measured for Be-10, Al-26, and Cl-36 using AMS (accelerator mass spectrometry). Results show no evidence of SCR (solar cosmic ray) effects. The flat cosmogenic nuclide profiles and activity levels are consistent with a 2 My exposure history for the rock and a sample location on the bottom of the rock. These AMS measurements are some of the most precise ever obtained for these three nuclides. This precision and the demonstrated fine depth resolution will enable us to conduct a number of detailed studies of depth effects in lunar and meteoritic samples, including investigating SCR effects in the surface exposed top of the glass coating of 64455 and possibly in the underlying rock.

  15. Production rates of terrestrial in-situ-produced cosmogenic nuclides

    SciTech Connect

    Reedy, R.C.; Tuniz, C.; Fink, D.

    1993-12-31

    Production rates of cosmogenic nuclides made in situ in terrestrial samples and how they are applied to the interpretation of measured radionuclide concentrations were discussed at a one-day Workshop held 2 October 1993 in Sydney, Australia. The status of terrestrial in-situ studies using the long-lived radionuclides {sup 10}Be, {sup 14}C, {sup 26}Al, {sup 36}Cl, and {sup 41}Ca and of various modeling and related studies were presented. The relative uncertainties in the various factors that go into the interpretation of these terrestrial in-situ cosmogenic nuclides were discussed. The magnitudes of the errors for these factors were estimated and none dominated the final uncertainty.

  16. Cosmogenic nuclide-derived sediment budget of the Amazon basin

    NASA Astrophysics Data System (ADS)

    Wittmann, Dr.; von Blanckenburg, Dr.; Guyot, Dr.; Maurice, Dr.; Kubik, Dr.

    2009-04-01

    Sediment gauging suggests that the annual sediment mass discharged into the main Amazon basin from the Andes and the cratonic shields is not in steady state with the mass discharged to the Atlantic Ocean. Here we use sediment production rates from cosmogenic 10Be in sediment to compare these with transport rates from river load gauging. About 1 million km2 or 95% of the total Andean area draining to the Amazon provide sediment to the central Amazon river with an averaged 10Be nuclide concentration of 5.0 +- 0.5x1e4 at/g(Qz). Average nuclide concentrations for Brazilian shield headwaters amount to 15.3 +- 1.2x1e4 at/g(Qz), and to 38.6 +- 2.4x1e4 at/g(Qz) for the Guyana shield headwaters, respectively. For the Andes, nuclide concentrations translate to an integrated Andean denudation rate of 0.35 ± 0.05 mm/yr. Sediment from the headwaters of the Brazilian and Guyana shields translate into very low denudation rates (0.02 and 0.01 mm/yr, respectively), as is expected for tectonically stable tropical highlands. These headwater 10Be nuclide concentrations and derived denudation rates can now be compared with those derived from central Amazon stream sediment including the main Amazon, which was sampled over ~1000 km from Manaus to Óbidos. Cosmogenic nuclide concentration analyses of several grain sizes (from 125 up to 800 µm) show large variations; we found that coarse-grained material records the nuclide signal of the cratonic shield areas, whereas the Andean signal is best represented by the fine sand fraction, which is preserved virtually unaltered over 1000s of km of sediment transport. In all central Amazon trunk stream samples and tributaries, the fine grain size fraction (125-250 µm) contains 10Be at 6.5 +- 1.2x1e4 at/g(Qz), which is similar to that of the Andean source areas. The integrated denudation rate from this fraction is 0.23 +- 0.04 mm/yr for the entire Amazon basin at Óbidos, which compares well with the mean Andean denudation rate of 0.35 +- 0.05 mm

  17. 40 CFR 415.290 - Applicability; description of the bromine production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... bromine production subcategory. 415.290 Section 415.290 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Bromine Production Subcategory § 415.290 Applicability; description of the bromine production... bromine by the brine-mining process and by the Trona process....

  18. 40 CFR 415.290 - Applicability; description of the bromine production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... bromine production subcategory. 415.290 Section 415.290 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Bromine Production Subcategory § 415.290 Applicability; description of the bromine production... bromine by the brine-mining process and by the Trona process....

  19. 40 CFR 415.290 - Applicability; description of the bromine production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... bromine production subcategory. 415.290 Section 415.290 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Bromine Production Subcategory § 415.290 Applicability; description of the bromine production... bromine by the brine-mining process and by the Trona process....

  20. 40 CFR 415.290 - Applicability; description of the bromine production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... bromine production subcategory. 415.290 Section 415.290 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Bromine Production Subcategory § 415.290 Applicability; description of the bromine production... bromine by the brine-mining process and by the Trona process....

  1. 40 CFR 415.290 - Applicability; description of the bromine production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... bromine production subcategory. 415.290 Section 415.290 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Bromine Production Subcategory § 415.290 Applicability; description of the bromine production... bromine by the brine-mining process and by the Trona process....

  2. Simulations of Terrestrial in-situ Cosmogenic-Nuclide Production

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.; Nishiizumi, K.; Lal, D.; Arnold, J. R.; Englert, P. A. J.; Klein, J.; Middleton, R.; Jull, A. J. T.; Donahue, D. J.

    1994-01-01

    Targets of silicon and silicon dioxide were irradiated with spallation neutrons to simulate the production of long-lived radionuclides in the surface of the Earth. Gamma-ray spectroscopy was used to measure Be-7 and Na-22, and accelerator mass spectrometry was used to measure Be-10, C-14, and Al-26. The measured ratios of these nuclides are compared with calculated ratios and with ratios from other simulations and agree well with ratios inferred from terrestrial samples.

  3. Hot demonstration of proposed commercial nuclide removal technology

    SciTech Connect

    Lee, D.

    1996-10-01

    This task covers the development and operation of an experimental test unit located in a Building 4501 hot cell within Building 4501 at Oak Ridge National Laboratory (ORNL). This equipment is designed to test radionuclides removal technologies under continuous operatoin on actual ORNL Melton Valley Storage Tank (MVST) supernatant, Savannah River high-level waste supernatant, and Hanford supernatant. The latter two may be simulated by adding the appropriate chemicals and/or nuclides to the MVST supernatant.

  4. Nuclear fission of neutron-deficient protactinium nuclides

    SciTech Connect

    Nishinaka, I.; Nagame, Y.; Tsukada, K.; Ikezoe, H.; Sueki, K.; Nakahara, H.; Tanikawa, M.; Ohtsuki, T.

    1997-08-01

    Fragment velocity, kinetic energy, mass yield, and element yield distributions in the fission of neutron-deficient Pa isotopes produced in the reactions of {sup 16}O and {sup 18}O on {sup 209}Bi have been measured at incident beam energies near and above the Coulomb barriers by the time-of-flight and radiochemical methods. An asymmetric mass-division component has been observed. Measured fission cross sections were compared with the results of statistical model calculations which take into account two fission barrier heights for symmetric and asymmetric yields. The fission barrier height deduced for the asymmetric fission is found slightly lower than that for the symmetric one. The difference between the two barrier heights in the fission of the present protactinium nuclides (N{approximately}135) is considerably smaller than that in the neutron-rich nuclide of {sup 233}Pa (N{approximately}142), indicating that the difference sensitively depends on the neutron number of the fissioning nuclide. {copyright} {ital 1997} {ital The American Physical Society}

  5. Identification of Heavy and Superheavy Nuclides Using Chemical Separator Systems

    SciTech Connect

    Turler, Andreas

    1999-12-31

    With the recent synthesis of superheavy nuclides produced in the reactions {sup 48}Ca+{sup 238}U and {sup 48}Ca+{sup 242,244}Pu, much longer-lived nuclei than the previously known neutron-deficient isotopes of the heaviest elements have been identified. Half-lives of several hours and up to several years have been predicted for the longest-lived isotopes of these elements. Thus, the sensitivity of radiochemical separation techniques may present a viable alternative to physical separator systems for the discovery of some of the predicted longer-lived heavy and superheavy nuclides. The advantages of chemical separator systems in comparison to kinematic separators lie in the possibility of using thick targets, high beam intensities spread over larger target areas and in providing access to nuclides emitted under large angles and low velocities. Thus, chemical separator systems are ideally suited to study also transfer and (HI, axn) reaction products. In the following, a study of (HI, axn) reactions will be presented and prospects to chemically identify heavy and superheavy elements discussed.

  6. Factors affecting production rates of cosmogenic nuclides in extraterrestrial matter

    NASA Astrophysics Data System (ADS)

    Reedy, R. C.

    2015-10-01

    Good production rates are needed for cosmic-ray-produced nuclides to interpret their measurements. Rates depend on many factors, especially the pre-atmospheric object's size, the location of the sample in that object (such as near surface or deep inside), and the object's bulk composition. The bulk composition affects rates, especially in objects with very low and very high iron contents. Extraterrestrial materials with high iron contents usually have higher rates for making nuclides made by reactions with energetic particles and lower rates for the capture of thermal neutrons. In small objects and near the surface of objects, the cascade of secondary neutrons is being developed as primary particles are being removed. Deep in large objects, that secondary cascade is fully developed and the fluxes of primary particles are low. Recent work shows that even the shape of an object in space has a small but measureable effect. Work has been done and continues to be done on better understanding those and other factors. More good sets of measurements in meteorites with known exposure geometries in space are needed. With the use of modern Monte Carlo codes for the production and transport of particles, the nature of these effects have been and is being studied. Work needs to be done to improve the results of these calculations, especially the cross sections for making spallogenic nuclides.

  7. Recent developments in cosmogenic nuclide production rate scaling

    NASA Astrophysics Data System (ADS)

    Lifton, N. A.

    2013-12-01

    A new cosmogenic nuclide production rate scaling model based on analytical fits to Monte Carlo simulations of atmospheric cosmic ray flux spectra (both of which agree well with measured spectra) enables identification and quantification of the biases in previously published models (Lifton, N., Sato, T., Dunai, T., in review, Earth and Planet. Sci. Lett.). Scaling predictions derived from the new model (termed LSD) suggest two potential sources of bias in the previous models: different energy responses of the secondary neutron detectors used in developing the models, and different geomagnetic parameterizations. In addition, the particle flux spectra generated by the LSD model allow one to generate nuclide-specific scaling factors that reflect the influences of the flux energy distribution and the relevant excitation functions (probability of nuclide production in a given nuclear reaction as a function of energy). Resulting scaling factors indicate 3He shows the strongest positive deviation from the flux-based scaling, while 14C exhibits a negative deviation. These results are consistent with previous studies showing an increasing 3He/10Be ratio with altitude in the Himalayas, but with a much lower magnitude for the effect. Furthermore, the new model provides a flexible framework for exploring the implications of future advances in model inputs. For example, the effects of recently updated paleomagnetic models (e.g. Korte et al., 2011, Earth and Planet Sci. Lett. 312, 497-505) on scaling predictions will also be presented.

  8. Use of Bromine and Bromo-Organic Compounds in Organic Synthesis.

    PubMed

    Saikia, Indranirekha; Borah, Arun Jyoti; Phukan, Prodeep

    2016-06-22

    Bromination is one of the most important transformations in organic synthesis and can be carried out using bromine and many other bromo compounds. Use of molecular bromine in organic synthesis is well-known. However, due to the hazardous nature of bromine, enormous growth has been witnessed in the past several decades for the development of solid bromine carriers. This review outlines the use of bromine and different bromo-organic compounds in organic synthesis. The applications of bromine, a total of 107 bromo-organic compounds, 11 other brominating agents, and a few natural bromine sources were incorporated. The scope of these reagents for various organic transformations such as bromination, cohalogenation, oxidation, cyclization, ring-opening reactions, substitution, rearrangement, hydrolysis, catalysis, etc. has been described briefly to highlight important aspects of the bromo-organic compounds in organic synthesis. PMID:27199233

  9. Use of Bromine and Bromo-Organic Compounds in Organic Synthesis.

    PubMed

    Saikia, Indranirekha; Borah, Arun Jyoti; Phukan, Prodeep

    2016-06-22

    Bromination is one of the most important transformations in organic synthesis and can be carried out using bromine and many other bromo compounds. Use of molecular bromine in organic synthesis is well-known. However, due to the hazardous nature of bromine, enormous growth has been witnessed in the past several decades for the development of solid bromine carriers. This review outlines the use of bromine and different bromo-organic compounds in organic synthesis. The applications of bromine, a total of 107 bromo-organic compounds, 11 other brominating agents, and a few natural bromine sources were incorporated. The scope of these reagents for various organic transformations such as bromination, cohalogenation, oxidation, cyclization, ring-opening reactions, substitution, rearrangement, hydrolysis, catalysis, etc. has been described briefly to highlight important aspects of the bromo-organic compounds in organic synthesis.

  10. Hydrogen-Bromine Flow Battery: Hydrogen Bromine Flow Batteries for Grid Scale Energy Storage

    SciTech Connect

    2010-10-01

    GRIDS Project: LBNL is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer and cost less than today’s lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.

  11. Bromine-Chlorine Coupling in the Antarctic Ozone Hole

    NASA Technical Reports Server (NTRS)

    Danilin, Michael Y.; Sze, Nien-Dak; Ko, Malcolm K. W.; Rodriquez, Jose M.; Prather, Michael J.

    1996-01-01

    The contribution from the chlorine and bromine species in the formation of the Antarctic ozone hole is evaluated. Since chlorine and bromine compounds are of different industrial origin, it is desirable, from a policy point of view, to be able to attribute chlorine-catalyzed loss of ozone with those reactions directly involving chlorine species, and likewise for bromine-catalyzed loss. In the stratosphere, however, most of the chemical families are highly coupled, and, for example, changes in the chlorine abundance will alter the partitioninig in other families and thus the rate of ozone loss. This modeling study examines formation of the Antarctic ozone hole for a wide range of bromine concentrations (5 - 25 pptv) and for chlorine concentrations typical of the last two decades (1.5, 2.5 and 3.5 ppbv). We follow the photochemical evolution of a single parcel of air, typical of the inner Antarctic vortex (50 mbar, 70 deg. S, NO(sub y) = 2 ppbv, with Polar Stratospheric Clouds(PSC)) from August 1 to November 1. For all of these ranges of chlorine and bromine loading, we would predict a substantial ozone hole (local depletion greater than 90%) within the de-nitrified, PSC- perturbed vortex. The contributions of the different catalytic cycles responsible for ozone loss are tabulated. The deep minimum in ozone is driven primarily by the chlorine abundance. As bromine levels decrease, the magnitude of the chlorine-catalyzed ozone loss increases to take up the slack. This is because bromine suppresses ClO by accelerating the conversion of ClO an Cl2O2 back to HCI. For this range of conditions, the local relative efficiency of ozone destruction per bromine atom to that per chlorine atom (alpha-factor) ranges from 33 to 55, decreasing with increase of bromine.

  12. Bromine content and brominated flame retardants in food and animal feed from the UK.

    PubMed

    Fernandes, A R; Mortimer, D; Rose, M; Smith, F; Panton, S; Garcia-Lopez, M

    2016-05-01

    Current occurrence data for polybrominated diphenyl ethers (PBDE) and hexa-bromocyclododecane (HBCD) measured in most commonly consumed foods (n = 156) and animal feeds (n = 51) sampled in the UK, demonstrates an ongoing ubiquity of these contaminants in human and animal diets. PBDE concentrations for the sum of 17 measured congeners ranged from 0.02 ng/g to 8.91 ng/g whole weight for food, and 0.11 ng/g to 9.63 ng/g whole weight for animal feeds. The highest concentration ranges, and mean values were detected in fish, processed foods and fish feeds. HBCD diastereomers (alpha-HBCD was the most commonly detected) generally occurred at lower concentrations (from <0.01 ng/g to 10.1 ng/g for food and <0.01 ng/g to 0.66 ng/g for animal feed) and less frequently than PBDEs, but tetrabromobisphenol A which was also measured, was rarely detected. The total bromine content of the samples was also determined in an attempt to use a mass balance approach to investigate some of these samples for the occurrence of novel and emerging BFRs. Although the approach was further refined by measuring organic bromine content, the concentrations of bromine were too high (in most cases by orders of magnitude) to allow use of the approach. A selected sub-set of samples was screened by GC-MS, for the presence of novel/emerging brominated flame retardants (PBT, TBX, PBEB, DBHCTD, HCTBPH and OBTMPI) but these were not detected at the higher limits of detection that result from full scan (GC-MS) screening. This data will contribute to the EU wide risk assessment on these contaminants.

  13. Ruthenium-Catalyzed meta-Selective C—H Bromination

    PubMed Central

    Teskey, Christopher J; Lui, Andrew Y W; Greaney, Michael F

    2015-01-01

    The first example of a transition-metal-catalyzed, meta-selective C–H bromination procedure is reported. In the presence of catalytic [{Ru(p-cymene)Cl2}2], tetrabutylammonium tribromide can be used to functionalize the meta C–H bond of 2-phenylpyridine derivatives, thus affording difficult to access products which are highly predisposed to further derivatization. We demonstrate this utility with one-pot bromination/arylation and bromination/alkenylation procedures to deliver meta-arylated and meta-alkenylated products, respectively, in a single step. PMID:26288217

  14. Observations and modeling of bromine induced mercury oxidation in the tropical free troposphere during TORERO

    NASA Astrophysics Data System (ADS)

    Coburn, Sean; Wang, Siyuan; terSchure, Arnout; Evans, Matt; Volkamer, Rainer

    2013-04-01

    The Tropical Ocean tRoposphere Exchange experiment TORERO (Jan/Feb 2012) probed air-sea exchange of very short lived halogens and organic carbon species over the full tropospheric air column above the eastern tropical Pacific Ocean. It is well known that halogens influence the oxidative capacity in the marine boundary layer, but their distribution and abundance is less clear in the tropical free troposphere, where most of tropospheric ozone mass resides, and about 80% of the global methane destruction occurs. The oxidation of elemental mercury (GEM) by halogens (i.e., bromine) further forms gaseous oxidized mercury (GOM), and this oxidation is accelerated at the low temperatures in the free troposphere compared to the boundary layer. Free tropospheric halogen radical abundances are thus of particular importance to understand the entry pathways for GOM deposition from the free troposphere to ecosystem, and the subsequent bio-accumulation of this neurotoxin. This presentation summarizes new observational evidence for halogen vertical distributions over the full tropospheric air column, and their abundance in the tropical troposphere, at mid-latitudes in the Northern and Southern hemisphere. BrO and IO were measured simultaneously by the CU Airborne MAX-DOAS instrument, and organic halogen precursors were measured by online GC-MS (TOGA) during 22 research flights aboard the NSF/NCAR GV aircraft. We employ atmospheric box modeling constrained by observations of gas-phase hydrocarbons, aerosols, photolysis frequencies, and meterological parameters measured aboard the plane to test the observed BrO and IO abundances, and evaluate the rate of GEM oxidation in light of recent updates about the stability of the Hg-Br adduct, and it's fate (Goodsite et al., 2012; Dibble et al., 2012). Finally, we compare our measurements with output from the GEOS-Chem model for selected case studies.

  15. Short Lived Climate Pollutants cause a Long Lived Effect on Sea-level Rise: Analyzing climate metrics for sea-level rise

    NASA Astrophysics Data System (ADS)

    Sterner, E.; Johansson, D. J.

    2013-12-01

    Climate change depends on the increase of several different atmospheric pollutants. While long term global warming will be determined mainly by carbon dioxide, warming in the next few decades will depend to a large extent on short lived climate pollutants (SLCP). Reducing emissions of SLCPs could contribute to lower the global mean surface temperature by 0.5 °C already by 2050 (Shindell et al. 2012). Furthermore, the warming effect of one of the most potent SLCPs, black carbon (BC), may have been underestimated in the past. Bond et al. (2013) presents a new best estimate of the total BC radiative forcing (RF) of 1.1 W/m2 (90 % uncertainty bounds of 0.17 to 2.1 W/m2) since the beginning of the industrial era. BC is however never emitted alone and cooling aerosols from the same sources offset a majority of this RF. In the wake of calls for mitigation of SLCPs it is important to study other aspects of the climate effect of SLCPs. One key impact of climate change is sea-level rise (SLR). In a recent study, the effect of SLCP mitigation scenarios on SLR is examined. Hu et al (2013) find a substantial effect on SLR from mitigating SLCPs sharply, reducing SLR by 22-42% by 2100. We choose a different approach focusing on emission pulses and analyse a metric based on sea level rise so as to further enlighten the SLR consequences of SLCPs. We want in particular to understand the time dynamics of SLR impacts caused by SLCPs compared to other greenhouse gases. The most commonly used physical based metrics are GWP and GTP. We propose and evaluate an additional metric: The global sea-level rise potential (GSP). The GSP is defined as the sea level rise after a time horizon caused by an emissions pulse of a forcer to the sea level rise after a time horizon caused by an emissions pulse of a CO2. GSP is evaluated and compared to GWP and GTP using a set of climate forcers chosen to cover the whole scale of atmospheric perturbation life times (BC, CH4, N2O, CO2 and SF6). The study

  16. Existence state of bromine as an indicator of the source of brominated flame retardants in indoor dust.

    PubMed

    Suzuki, Go; Kida, Akiko; Sakai, Shin-ichi; Takigami, Hidetaka

    2009-03-01

    Indoor dust is an important medium for human exposure to brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs). In this study, we used micro X-ray fluorescence spectrometry (XRFS), digital optical microscopy, and gas chromatography-high resolution mass spectrometry to investigate the existence state of bromine as an indicator of the source of BFRs in indoor dusts and in dusts from the interior of televisions collected in Japan. By means of micro XRFS bromine mapping conducted at a 0.5-s dwell time, we were able to detect bromine levels as low as about 0.1% at each point of about a beam diameter of 50 microm across. The presence of fragments containing 1.0% or more bromine was confirmed in 27 of the 48 dust samples tested. Using magnified images of the fragments, we classified them roughly into particulates and fibrous substances. We analyzed PBDEs in the fragments containing high concentrations of bromine (> or = 0.1%) and confirmed that the fragments contained PBDEs, mainly BDE 209. Furthermore, to detect bromine concentrations < or = 0.1% in the dust samples, we analyzed the samples at a dwell time of 100 s to enhance the detection sensitivity of mapping; atthis dwell time, we confirmed the presence of bromine in the dust coating. Our results suggest that bromine is transferred from products to dust matrixes not only through miniaturization and subsequent direct migration into dust as plastic and textile fragments but also through other pathways such as vaporization and airborne transfer of microparticulates. PMID:19350916

  17. Relevance of BFRs and thermal conditions on the formation pathways of brominated and brominated-chlorinated dibenzodioxins and dibenzofurans.

    PubMed

    Weber, Roland; Kuch, Bertram

    2003-09-01

    The widespread use of brominated flame-retarded products in the last two decades has resulted in an increasing presence of bromine in thermal processes such as waste combustion and accidental fires. Brominated and brominated-chlorinated dibenzodioxins and dibenzofurans (PBDDs/PBDFs, PXDDs/PXDFs) are micropollutants of concern arising from such processes. The present review aims to evaluate the relevance of these compound classes in actual thermal processes. Four categories of thermal processes are discussed in this respect according to their potential for PBDD/PBDF and PXDD/PXDF generation: thermal stress, pyrolysis/gasification, insufficient combustion conditions and controlled combustion conditions. Under thermal stress situations, as they may occur in production or recycling processes, PBDDs/PBDFs precursors like polybrominated diphenylethers (PBDE) can have a relevant potential for PBDD/PBDF formation via a simple elimination. Under insufficient combustion conditions as they are present in, e.g. accidental fires and uncontrolled burning as well as gasification/pyrolysis processes, considerable amounts of PBDDs/PBDFs can be formed from BFRs, preferably via the precursor pathway. In contrast, under controlled combustion conditions, BFRs and PBDDs/PBDFs can be destroyed with high efficiency. The relevance of de novo synthesis of PXDDs/PXDFs is discussed for this condition. Providing a basis for the understanding of PXDD/PXDF formation in actual thermal processes, the present paper also summarises the formation pathways of brominated and brominated-chlorinated PXDDs/PXDFs from brominated flame retardants (BFRs) investigated during laboratory thermolysis experiments. Relevant mechanistic steps for PBDD/PBDF formation from brominated precursors are discussed including elimination reactions, condensation steps and debromination/hydrogenation reactions. In addition, chlorination/bromination and halogen exchange reactions are briefly discussed with respect for their

  18. Magnetic trapping of cold bromine atoms.

    PubMed

    Rennick, C J; Lam, J; Doherty, W G; Softley, T P

    2014-01-17

    Magnetic trapping of bromine atoms at temperatures in the millikelvin regime is demonstrated for the first time. The atoms are produced by photodissociation of Br2 molecules in a molecular beam. The lab-frame velocity of Br atoms is controlled by the wavelength and polarization of the photodissociation laser. Careful selection of the wavelength results in one of the pair of atoms having sufficient velocity to exactly cancel that of the parent molecule, and it remains stationary in the lab frame. A trap is formed at the null point between two opposing neodymium permanent magnets. Dissociation of molecules at the field minimum results in the slowest fraction of photofragments remaining trapped. After the ballistic escape of the fastest atoms, the trapped slow atoms are lost only by elastic collisions with the chamber background gas. The measured loss rate is consistent with estimates of the total cross section for only those collisions transferring sufficient kinetic energy to overcome the trapping potential.

  19. In search of stratospheric bromine oxide

    NASA Technical Reports Server (NTRS)

    Lestrade, John Patrick

    1986-01-01

    The Imaging Spectrometric Observatory (ISO) is capable of recording spectra in the wavelength range of 200 to 12000 Angstroms. Data from a recent Spacelab 1 ATLAS mission has imaged the terrestrial airglow at tangent ray heights of 90 and 150 km. These data contain information about trace atmospheric constituents such as bromine oxide (BrO), hydroxyl (OH), and chlorine dioxide (OClO). The abundances of these species are critical to stratospheric models of catalytic ozone destruction. Heretofore, very few observations were made especially for BrO. Software was developed to purge unwanted solar features from the airglow spectra. The next step is a measure of the strength of the emission features for BrO. The final analysis will yield the scale height of this important compound.

  20. Short-lived Supershear Rupture

    NASA Astrophysics Data System (ADS)

    Fukuyama, E.; Xu, S.; Yamashita, F.; Mizoguchi, K.; Takizawa, S.; Kawakata, H.

    2015-12-01

    Fukuyama and Olsen (2002) computed the supershear rupture initiation, propagation and termination process due to a passage of high stress drop area (called asperity) using a boundary integral equation method. They found that supershear rupture continued to propagate after the passage through high stress drop area but it died after a certain propagation distance, which depends on the elastic energy released at the high stress drop area. Here, we could reproduce a similar phenomenon in the laboratory. We conducted large-scale biaxial friction experiments using a pair of meter-scaled metagabbro rock specimens (VP=6.9km/s, VS=3.6km/s) at the National Research institute for Earth Science and Disaster Prevention (NIED). We observed several stick slip rupture events that initiated close to an asperity and immediately became supershear ruptures. But after propagating certain distance they died out and co-existing subshear ruptures became prominent. If we look into details, during the supershear rupture, we could see a sequence of rupture acceleration, its short rest and re-acceleration. This feature reminds us of a sequential breakage of small high stress patches as predicted by Fukuyama and Madariaga (2000). These observations might be interpreted under a concept of energy balance where the energy transmission from strain energy released by the asperity to fracture energy consumed at the crack tip was not instantaneously balanced in space. This could be related to the fact that earthquake rupture velocity is rather smooth reported from the finite fault analysis of large earthquakes with seismic waveforms. References Fukuyama, E. and R. Madariaga (2000) Dynamic propagation and interaction of a rupture front on a planar fault, PAGEOPH, 257, 1959-1979. Fukuyama, E. and K.B. Olsen (2002) A condition for super-shear rupture propagation in a heterogeneous stress field, PAGEOPH, 159, 2047-2056.

  1. Evidencing lead deposition at the urban scale using "short-lived" isotopic signatures of the source term (Pb-Zn refinery)

    NASA Astrophysics Data System (ADS)

    Franssens, Matthias; Flament, Pascal; Deboudt, Karine; Weis, Dominique; Perdrix, Espéranza

    2004-09-01

    To demonstrate the ability of the lead isotope signature technique to evidence the spatial extent of an industrial Pb deposition plume at a local scale, dry deposition of lead in the urban environment of a Pb-Zn refinery was investigated, as a study case, using transient ("short-lived") isotopic signatures of the industrial source. Sampling campaigns were achieved in representative weather conditions, on an 8-h basis. Dry deposition rates measured downwind from refinery emissions (≈102-103 μg Pb m-2 h-1), cross-sectionally in a 3-5 km radius area around the plant, represent 10-100 times the urban background dry fallout, measured upwind, as well as fallout measured near other potential sources of anthropogenic Pb. The Pb-Zn refinery isotopic signature (approx. 1.100<206Pb/207Pb<1.135) is made identifiable, using the same set of Pb and Zn ores for 2 days before sampling and during field experiments, by agreement with the executive staff of the plant. This source signature is less radiogenic than signatures of urban background Pb aerosols (1.155<206Pb/207Pb<1.165) and minor sources of Pb aerosols (1.147<206Pb/207Pb<1.165). By a simple binary mixing model calculation, we established the extension of the industrial Pb deposition plume. Fifty to eighty percents of total lead settled by the dry deposition mode, 3-4 km away from the refinery, still have an industrial origin. That represents from 40 to 80 μg Pb m-2 h-1, in an area where the blood lead level exceeds 100 μg Pb l-1 for 30% of men and 12% of women living there. We demonstrate here that stable Pb isotope analysis is able to evidence the Pb dry deposition plume in stabilised aerodynamic conditions, using a short-lived source term, suggesting that this methodology is able to furnish valuable data to validate industrial Pb aerosols dispersion models, at the urban scale.

  2. Composition and Trends of Short-Lived Trace Gases in the UT/LS over Europe Observed by the CARIBIC Aircraft

    NASA Astrophysics Data System (ADS)

    Baker, A. K.; Brenninkmeijer, C. A.; Oram, D. E.; O'Sullivan, D. A.; Slemr, F.; Schuck, T. J.

    2009-12-01

    The CARIBIC project (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) involves the monthly deployment of an instrument container equipped to make atmospheric measurements from aboard a commercial airliner, and has operated since 2005 from aboard a Lufthansa Airbus 340-600 . Measurements from the container include in-situ trace gas and aerosol analyses and the collection of aerosol and whole air samples for post-flight laboratory analysis. Measurements made from the sampling flasks include greenhouse gas (GHG), halocarbon and nonmethane hydrocarbon (NMHC) analysis. CARIBIC flights originate in Frankfurt, Germany with routes to India, East Asia, South America, North America and Africa, and typical aircraft cruising altitudes of 10-12km allow for the monitoring of the upper troposphere/lower stratosphere (UT/LS) along these routes. Data collected during the aircraft’s departure from and return to Frankfurt provide a 4 year time series of near-monthly measurements of the composition of the UT/LS above Europe. Here we present a discussion of the composition of short-lived trace gases in the whole air samples collected above Europe during CARIBIC flights. Over 150 air samples were collected between May 2005 and July 2009, or about 4 samples per month. Of the whole air samples collected, about 45% showed influence by stratospheric air (i.e. very low values of GHG, NMHC and halocarbons, elevated O3, high potential vorticity). The remaining samples were representative of the upper troposphere; back trajectories for these samples indicate that a little over half were collected in air masses that had been in the boundary layer within the previous 8 days. The predominant source regions for these samples were the Gulf of Mexico and continental North America. Owing to their wide range of chemical lifetimes and the varying composition of emissions, short-lived trace gases transported to the UT/LS can be useful indicators of source

  3. The possibility to measure the magnetic moments of short-lived particles (charm and beauty baryons) at LHC and FCC energies using the phenomenon of spin rotation in crystals

    NASA Astrophysics Data System (ADS)

    Baryshevsky, V. G.

    2016-06-01

    The use of spin rotation effect in bent crystals for measuring the magnetic moment of short-lived particles in the range of LHC and FCC energies is considered. It is shown that the estimated number of produced baryons that are captured into a bent crystal grows as ∼γ 3 / 2 with increasing particle energy. Hence it may be concluded that the experimental measurement of magnetic moments of short-lived particles using the spin rotation effect is feasible at LHC and higher energies (for LHC energies, e.g., the running time required for measuring the magnetic moment of Λc+ is 2 ÷ 16 hours).

  4. Development of Bromine-77 from the LAMPF facility

    SciTech Connect

    Mettler, F.A. Jr.

    1982-01-01

    The objective of the work is to conduct the necessary studies required to evaluate the efficacy, potential benefit and role of bromine-77 labelled steroids in the detection and evaluation of treatment for hormone-dependent tumors. The synthetic goals of the project are to prepose estradiol derivatives which are labelled with bromine-77 at specific positions in the steroid nucleus. In addition, animal studies imaging studies, and cooperative studies are being conducted. (KJD)

  5. Climate impacts of short-lived climate forcers versus CO2 from biodiesel: a case of the EU on-road sector.

    PubMed

    Lund, Marianne T; Berntsen, Terje K; Fuglestvedt, Jan S

    2014-12-16

    Biofuels are proposed to play an important role in several mitigation strategies to meet future CO2 emission targets for the transport sector but remain controversial due to significant uncertainties in net impacts on environment, society, and climate. A switch to biofuels can also affect short-lived climate forcers (SLCFs), which provide significant contributions to the net climate impact of transportation. We quantify the radiative forcing (RF) and global-mean temperature response over time to EU on-road fossil diesel SLCFs and the impact of 20% (B20) and 100% (B100) replacement of fossil diesel by biodiesel. SLCFs are compared to impacts of on-road CO2 using different approaches from existing literature to account for biodiesel CO2. Given the best estimates for changes in emissions when replacing fossil diesel with biodiesel, the net positive RF from EU on-road fossil diesel SLCFs of 3.4 mW/m(2) is reduced by 15% and 80% in B20 and B100, respectively. Over time the warming of SLCFs is likely small compared to biodiesel CO2 impacts. However, SLCFs may be relatively more important for the total warming than in the fossil fuel case if biodiesel from feedstock with very short rotation periods and low land-use-change impacts replaces a high fraction of fossil diesel.

  6. Kinetics and Mechanism of the Chlorite-Periodate System: Formation of a Short-Lived Key Intermediate OClOIO3 and Its Subsequent Reactions.

    PubMed

    Baranyi, Nóra; Csekő, György; Valkai, László; Xu, Li; Horváth, Attila K

    2016-03-01

    The chlorite-periodate reaction has been studied spectrophotometrically in acidic medium at 25.0 ± 0.1 °C, monitoring the absorbance at 400 nm in acetate/acetic acid buffer at constant ionic strength (I = 0.5 M). We have shown that periodate was exclusively reduced to iodate, but chlorite ion was oxidized to chlorate and chlorine dioxide via branching pathways. The stoichiometry of the reaction can be described as a linear combination of two limiting stoichiometries under our experimental conditions. Detailed initial rate studies have clearly revealed that the formal kinetic orders of hydrogen ion, chlorite ion, and periodate ion are all strictly one, establishing an empirical rate law to be d[ClO2]/dt = kobs[ClO2(-)][IO4(-)][H(+)], where the apparent rate coefficient (kobs) was found to be 70 ± 13 M(-2) s(-1). On the basis of the experiments, a simple four-step kinetic model with three fitted kinetic parameters is proposed by nonlinear parameter estimation. The reaction was found to proceed via a parallel oxygen transfer reaction leading to the exclusive formation of chlorate and iodate as well as via the formation of a short-lived key intermediate OClOIO3 followed by its further transformations by a sequence of branching pathways. PMID:26849795

  7. Kinetics and Mechanism of the Chlorite-Periodate System: Formation of a Short-Lived Key Intermediate OClOIO3 and Its Subsequent Reactions.

    PubMed

    Baranyi, Nóra; Csekő, György; Valkai, László; Xu, Li; Horváth, Attila K

    2016-03-01

    The chlorite-periodate reaction has been studied spectrophotometrically in acidic medium at 25.0 ± 0.1 °C, monitoring the absorbance at 400 nm in acetate/acetic acid buffer at constant ionic strength (I = 0.5 M). We have shown that periodate was exclusively reduced to iodate, but chlorite ion was oxidized to chlorate and chlorine dioxide via branching pathways. The stoichiometry of the reaction can be described as a linear combination of two limiting stoichiometries under our experimental conditions. Detailed initial rate studies have clearly revealed that the formal kinetic orders of hydrogen ion, chlorite ion, and periodate ion are all strictly one, establishing an empirical rate law to be d[ClO2]/dt = kobs[ClO2(-)][IO4(-)][H(+)], where the apparent rate coefficient (kobs) was found to be 70 ± 13 M(-2) s(-1). On the basis of the experiments, a simple four-step kinetic model with three fitted kinetic parameters is proposed by nonlinear parameter estimation. The reaction was found to proceed via a parallel oxygen transfer reaction leading to the exclusive formation of chlorate and iodate as well as via the formation of a short-lived key intermediate OClOIO3 followed by its further transformations by a sequence of branching pathways.

  8. The origin and disappearance of the late Pleistocene-early Holocene short-lived coastal wetlands along the Carmel coast, Israel

    NASA Astrophysics Data System (ADS)

    Sivan, Dorit; Greenbaum, Noam; Cohen-Seffer, Ronit; Sisma-Ventura, Guy; Almogi-Labin, Ahuva

    The formation of short-lived backswamps along the Carmel coast of Israel coincides with the rapid global sea-level rise during the late Pleistocene-early Holocene transition. The current study shows that the wetland phenomena originated around 10,000 yr ago and dried up shortly before the local Pre-Pottery Neolithic humans settled on the wetland dark clay sediments 9430 cal yr BP. Palaeontological and stable-isotope data were used in this study to elucidate previously published sedimentological reconstruction obtained from a core drilled into the western trough of the Carmel coastal plain. The water body contained typical brackish calcareous fauna, with variable numerical abundance and low species richness of ostracods and foraminifera. The δ 18O and δ 13C of the ostracod Cyprideis torosa show close similarity to the present Pleistocene coastal aquifer isotopic values. This study therefore concludes that the wetlands were shallow-water bodies fed by groundwater, with no evidence of sea-water mixing. It seems that they developed as the result of high groundwater levels, transportation of sediments landward, and deposition of sand bars at the paleo-river mouths. It is still not fully understood why these wetlands deteriorated abruptly and disappeared within less than 1000 yr.

  9. Metabolic rate and membrane fatty acid composition in birds: a comparison between long-living parrots and short-living fowl.

    PubMed

    Montgomery, Magdalene K; Hulbert, A J; Buttemer, William A

    2012-01-01

    Both basal metabolic rate (BMR) and maximum lifespan potential (MLSP) vary with body size in mammals and birds and it has been suggested that these are mediated through size-related variation in membrane fatty acid composition. Whereas the physical properties of membrane fatty acids affect the activity of membrane proteins and, indirectly, an animal's BMR, it is the susceptibility of those fatty acids to peroxidation which influence MLSP. Although there is a correlation between body size and MLSP, there is considerable MLSP variation independent of body size. For example, among bird families, Galliformes (fowl) are relatively short-living and Psittaciformes (parrots) are unusually long-living, with some parrot species reaching maximum lifespans of more than 100 years. We determined BMR and tissue phospholipid fatty acid composition in seven tissues from three species of parrots with an average MLSP of 27 years and from two species of quails with an average MLSP of 5.5 years. We also characterised mitochondrial phospholipids in two of these tissues. Neither BMR nor membrane susceptibility to peroxidation corresponded with differences in MLSP among the birds we measured. We did find that (1) all birds had lower n-3 polyunsaturated fatty acid content in mitochondrial membranes compared to those of the corresponding tissue, and that (2) irrespective of reliance on flight for locomotion, both pectoral and leg muscle had an almost identical membrane fatty acid composition in all birds.

  10. Quantification of regional ventilation in humans using a short-lived radiotracer--theoretical evaluation of the steady-state model

    SciTech Connect

    Valind, S.O.; Rhodes, C.G.; Jonson, B.

    1987-07-01

    The accuracy of the steady-state measurement of ventilation by means of a short-lived insoluble inert gas tracer rests with the validity of the steady-state flow equation. This has previously been applied to the qualitative assessment of regional ventilation using krypton-81m, but may potentially be used for the calculation of regional alveolar ventilation per unit alveolar gas volume--(VA/VA)cal--from measurements of the alveolar concentration of the tracer. The steady-state alveolar tracer concentration was calculated for the course of a breathing cycle, using a lung model featuring airways dead space and tidal gas flow. The calculations were made by computer simulations of a lung, characterized by predefined values of parameters describing the lung structure and the mode of ventilation. In the normal lung of supine man at rest (specific alveolar ventilation, ranging from 1.0 to 3.5 min-1) the errors of (VA/VA)cal relative to the predefined true values range from an overestimation by some 3% in the low ventilation regions to an underestimation by 8% in the best ventilated regions. The errors mainly result from ventilation of the airways dead space, which will influence the distribution of tracer in the lung by the transfer of tracer between regions by way of the common dead space and by the decay of tracer during its transport through the bronchial tree.

  11. Reaction dynamics. Extremely short-lived reaction resonances in Cl + HD (v = 1) → DCl + H due to chemical bond softening.

    PubMed

    Yang, Tiangang; Chen, Jun; Huang, Long; Wang, Tao; Xiao, Chunlei; Sun, Zhigang; Dai, Dongxu; Yang, Xueming; Zhang, Dong H

    2015-01-01

    The Cl + H2 reaction is an important benchmark system in the study of chemical reaction dynamics that has always appeared to proceed via a direct abstraction mechanism, with no clear signature of reaction resonances. Here we report a high-resolution crossed-molecular beam study on the Cl + HD (v = 1, j = 0) → DCl + H reaction (where v is the vibrational quantum number and j is the rotational quantum number). Very few forward scattered products were observed. However, two distinctive peaks at collision energies of 2.4 and 4.3 kilocalories per mole for the DCl (v' = 1) product were detected in the backward scattering direction. Detailed quantum dynamics calculations on a highly accurate potential energy surface suggested that these features originate from two very short-lived dynamical resonances trapped in the peculiar H-DCl (v' = 2) vibrational adiabatic potential wells that result from chemical bond softening. We anticipate that dynamical resonances trapped in such wells exist in many reactions involving vibrationally excited molecules.

  12. Combining radon, short-lived radium isotopes and hydrodynamic modeling to assess submarine groundwater discharge from an anthropized semiarid watershed to a Mediterranean lagoon (Mar Menor, SE Spain)

    NASA Astrophysics Data System (ADS)

    Baudron, Paul; Cockenpot, Sabine; Lopez-Castejon, Francisco; Radakovitch, Olivier; Gilabert, Javier; Mayer, Adriano; Garcia-Arostegui, José Luis; Martinez-Vicente, David; Leduc, Christian; Claude, Christelle

    2015-06-01

    In highly anthropized watersheds, surface water tributaries may carry unexpected high quantities of radon and radium to coastal lagoons. Investigating submarine groundwater discharge (SGD) with radionuclide tracers is therefore a complex task. In order to quantify SGD and decipher the influence of the different water sources, we combined a radon (222Rn) and short-lived radium (223Ra, 224Ra) survey with the hydrodynamic modeling of a lagoon. We applied it to the Mar Menor lagoon (SE Spain) where surface water tributaries and undocumented emissaries carry water from groundwater drainage and brines from groundwater desalinization. We identified the areas of influence of the plume of radionuclides from the river, located major areas of SGD and proposed a location for two submarine emissaries. Porewater, i.e. interstitial water from underlying sediments, was found to be the most representative SGD end member, compared to continental groundwater collected from piezometers. Mass balances in winter and summer seasons provided yearly SGD fluxes of water of 0.4-2.2 ṡ 108 m3/y (222Rn), 4.4-19.0 ṡ 108 m3/y (224Ra) and 1.3 ṡ 108 m3/y (223Ra, measured in winter only). Tidal pumping was identified as a main driver for recirculated saline groundwater, while fresh submarine groundwater discharge from the aquifer ranged between 2% and 23% of total SGD.

  13. Determination of water ages and flushing rates using short-lived radium isotopes in large estuarine system, the Yangtze River Estuary, China

    NASA Astrophysics Data System (ADS)

    Xu, Bo-Chao; Dimova, Natasha T.; Zhao, Liang; Jiang, Xue-Yan; Yu, Zhi-Gang

    2013-04-01

    We investigated the spatial and temporal distribution of naturally-occurring short-lived radium isotopes (224Ra, t1/2 = 3.6 d and 223Ra, t1/2 = 11 d) to examine coastal water mixing dynamics of the third world largest estuary, Yangtze River Estuary (YRE) during two field trips in April 2010 and May 2011. Distributions of the 224Ra/223Ra activity ratios within the YRE area were used to calculate apparent estuarine water ages. Field-derived results were then compared to hydrodynamic assessments obtained by a Lagrangian particle tracking simulation experiment performed using the Princeton Ocean Model (POM). Water ages obtained via both geotracers and particle tracking agree very well. During both field trips an anomalously "younger" water mass (low salinity and higher radium activities) was observed at about 90-170 km offshore distance from the mouth of the river, suggesting an additional terrestrial water source influenced this area. The temporal distribution of the radium isotopes indicated a semi-diurnal tidal pattern in the YRE with relatively constant isotopic composition of less than a 20% variation during our observations. An integrated water flushing rate based on our observations (excluding the additional anomalous source area) was 8.4 km day-1.

  14. Triggering Collapse of the Presolar Dense Cloud Core and Injecting Short-lived Radioisotopes with a Shock Wave. IV. Effects of Rotational Axis Orientation

    NASA Astrophysics Data System (ADS)

    Boss, Alan P.; Keiser, Sandra A.

    2015-08-01

    Both astronomical observations of the interaction of Type II supernova remnants (SNRs) with dense interstellar clouds as well as cosmochemical studies of the abundances of daughter products of short-lived radioisotopes (SLRIs) formed by supernova nucleosynthesis support the hypothesis that the Solar System's SLRIs may have been derived from a supernova. This paper continues a series devoted to examining whether or not such a shock wave could have triggered the dynamical collapse of a dense, presolar cloud core and simultaneously injected sufficient abundances of SLRIs to explain the cosmochemical evidence. Here, we examine the effects of shock waves striking clouds whose spin axes are oriented perpendicular, rather than parallel, to the direction of propagation of the shock front. The models start with 2.2 {M}⊙ cloud cores and shock speeds of 20 or 40 km s-1. Central protostars and protoplanetary disks form in all models, although with their disk spin axes aligned somewhat randomly. The disks derive most of their angular momentum not from the initial cloud rotation, but from the Rayleigh-Taylor fingers that also inject shock wave SLRIs. Injection efficiencies, fi, the fraction of the incident shock wave material injected into the collapsing cloud core, are ˜0.04-0.1 in these models, similar to when the rotation axis is parallel to the shock propagation direction. Evidently, altering the rotation axis orientation has only a minor effect on the outcome, strengthening the case for this scenario as an explanation for the Solar System's SLRIs.

  15. Notre Dame Nuclear Database: A New Chart of Nuclides

    NASA Astrophysics Data System (ADS)

    Lee, Kevin; Khouw, Timothy; Fasano, Patrick; Mumpower, Matthew; Aprahamian, Ani

    2014-09-01

    Nuclear data is critical to research fields from medicine to astrophysics. We are creating a database, the Notre Dame Nuclear Database, which can store theoretical and experimental datasets. We place emphasis on storing metadata and user interaction with the database. Users are able to search in addition to the specific nuclear datum, the author(s), the facility where the measurements were made, the institution of the facility, and device or method/technique used. We also allow users to interact with the database by providing online search, an interactive nuclide chart, and a command line interface. The nuclide chart is a more descriptive version of the periodic table that can be used to visualize nuclear properties such as half-lives and mass. We achieve this by using D3 (Data Driven Documents), HTML, and CSS3 to plot the nuclides and color them accordingly. Search capabilities can be applied dynamically to the chart by using Python to communicate with MySQL, allowing for customization. Users can save the customized chart they create to any image format. These features provide a unique approach for researchers to interface with nuclear data. We report on the current progress of this project and will present a working demo that highlights each aspect of the aforementioned features. This is the first time that all available technologies are put to use to make nuclear data more accessible than ever before in a manner that is much easier and fully detailed. This is a first and we will make it available as open source ware.

  16. Deriving an atmospheric budget of total organic bromine using airborne in situ measurements from the western Pacific area during SHIVA

    NASA Astrophysics Data System (ADS)

    Sala, S.; Bönisch, H.; Keber, T.; Oram, D. E.; Mills, G.; Engel, A.

    2014-07-01

    During the recent SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) project an extensive data set of all halogen species relevant for the atmospheric budget of total organic bromine was collected in the western Pacific region using the Falcon aircraft operated by the German Aerospace agency DLR (Deutsches Zentrum für Luft- und Raumfahrt) covering a vertical range from the planetary boundary layer up to the ceiling altitude of the aircraft of 13 km. In total, more than 700 measurements were performed with the newly developed fully automated in situ instrument GHOST-MS (Gas chromatograph for the Observation of Tracers - coupled with a Mass Spectrometer) by the Goethe University of Frankfurt (GUF) and with the onboard whole-air sampler WASP with subsequent ground-based state-of-the-art GC / MS analysis by the University of East Anglia (UEA). Both instruments yield good agreement for all major (CHBr3 and CH2Br2) and minor (CH2BrCl, CHBrCl2 and CHBr2Cl) VSLS (very short-lived substances), at least at the level of their 2σ measurement uncertainties. In contrast to the suggestion that the western Pacific could be a region of strongly increased atmospheric VSLS abundance (Pyle et al., 2011), we found only in the upper troposphere a slightly enhanced amount of total organic bromine from VSLS relative to the levels reported in Montzka and Reimann et al. (2011) for other tropical regions. From the SHIVA observations in the upper troposphere, a budget for total organic bromine, including four halons (H-1301, H-1211, H-1202, H-2402), CH3Br and the VSLS, is derived for the level of zero radiative heating (LZRH), the input region for the tropical tropopause layer (TTL) and thus also for the stratosphere. With the exception of the two minor VSLS CHBrCl2 and CHBr2Cl, excellent agreement with the values reported in Montzka and Reimann et al. (2011) is found, while being slightly higher than previous studies from our group based on balloon-borne measurements.

  17. Bromine and iodine in 1997 UK total diet study samples.

    PubMed

    Rose, M; Miller, P; Baxter, M; Appleton, G; Crews, H; Croasdale, M

    2001-08-01

    Concentrations of bromine and iodine were analysed in samples from the 1997 UK Total Diet Study (TDS) using ICP-MS. The data has been used to estimate dietary exposures of UK consumers to these elements from the typical UK diet. Samples for the 20 TDS food groups were obtained from 20 towns in the UK in 1997 and analysed in 1998/99 for total bromine and total iodine concentrations. These samples were also analysed for 12 other elements. The UK regulatory authority had considered iodine recently, but had not considered bromine before. This survey provides up-to-data baseline data for those two elements. Iodine concentrations are similar to those found in recent surveys. Levels of bromine were consistent with previous data where available. Dietary exposures to bromine and iodine were calculated to see if there were any risks to health from the levels of these elements found in the UK diet. The estimated population average exposure to iodine was 0.25 mg d-1, which is within the range of previous estimates (1995, 0.21 mg d-1; 1991, 0.17 mg d-1; 1985, 0.28 mg d-1). The estimated population average exposure to bromine was 3.6 mg d-1.

  18. Atmospheric bromine and ozone perturbations in the lower stratosphere

    NASA Technical Reports Server (NTRS)

    Yung, Y. L.; Pinto, J. P.; Watson, R. T.; Sander, S. P.

    1980-01-01

    The role of bromine compounds in the photochemistry of the natural and perturbed stratosphere has been reexamined using an expanded reaction scheme and the results of recent laboratory studies of several key reactions. The most important finding is that through the reaction BrO + ClO yielding Br + Cl + O2 there is a synergistic effect between bromine and chlorine which results in an efficient catalytic destruction of ozone in the lower stratosphere. One-dimensional photochemical model results indicate that BrO is the major bromine species throughout the stratosphere, followed by BrONO2, HBr, HOBr and Br. It is shown from the foregoing that bromine is more efficient than chlorine as a catalyst for destroying ozone, and the implications for stratospheric ozone of possible future growth in the industrial and agricultural use of bromine are discussed. Bromine concentrations of 20 pptv (2 x 10 to the -11th power), as suggested by recent observations, can decrease the present-day integrated ozone column density by 2.4%, and can enhance ozone depletion from steady-state chlorofluoromethane release at 1973 rates by a factor of 1.1-1.2.

  19. Natural production of organic bromine compounds in Berlin Lakes.

    PubMed

    Hütteroth, Alexandra; Putschew, Anke; Jekel, Martin

    2007-05-15

    Berlin surface waters are characterized by elevated concentrations of organic bound bromine (up to 35 microg/L) in late summer. Organic bromine compounds in lakes are of significant importance because human life is closely connected to fresh water. Apart from recreational use, fresh water is frequently used for the production of drinking water, e.g., after bank filtration. Therefore the source, particularly the mechanism responsible for the formation is studied. Field studies indicate that the organic bromine compounds, measured as adsorbable organic bromine (AOBr), are autochthonous. Staggered maxima concentrations of chlorophyll-a, DOC and AOBr indicate that phototrophic organisms might contribute to the AOBr after death. The involvement of phototrophic organisms was established in the laboratory using surface water and/or cultures of organisms. Light and the presence of phototrophic organisms are essential for an AOBr production. Phototrophic organisms incorporate bromide, which is released randomly and after cell death. A part of the incorporated bromide is used for the formation of organic bromine compounds in the cell. After death of the organisms the brominated compounds and the incorporated bromide are released into the water phase, and an extracellular AOBr production can lead to a further formation of AOBr, most probably due to the parallel release of haloperoxidases.

  20. Saline Snow Surfaces and Arctic Bromine Activation

    NASA Astrophysics Data System (ADS)

    Pratt, K. A.; Custard, K. D.; Shepson, P.; Douglas, T. A.; Pöhler, D.; General, S.; Zielcke, J.; Platt, U.; Carlsen, M. S.; Tanner, D.; Huey, L. G.; Stirm, B.

    2012-12-01

    Following polar sunrise, tropospheric ozone levels often decrease rapidly to near zero, concurrent with mercury depletion and deposition. Despite our increasing understanding of the spatial variability of BrO and possible mechanisms based on laboratory studies, important questions remain regarding the most efficient sources of and mechanisms for Arctic halogen activation, leading to tropospheric ozone depletion. Rapid sea ice decline in the Arctic is expected to influence halogen activation and corresponding ozone and mercury depletion events. Therefore, an improved understanding of halogen activation is necessary to predict future changes in atmospheric chemical composition. During the March-April 2012 BRomine, Ozone, and Mercury EXperiment (BROMEX) in Barrow, Alaska, outdoor chamber experiments with snow and ice samples were conducted. Ozone was added as the precursor oxidant, and the samples were investigated with and without ambient sunlight. Samples included first-year sea ice, brine icicles, several layers of snow above first-year sea ice, and seasonal snow above the tundra. Chemical ionization mass spectrometry was utilized to monitor Br2 production, and ion chromatography was utilized to measure the bromide, chloride, nitrate, and sulfate content of the melted snow/ice samples. Surprisingly, tundra snow and drifting snow above sea ice produced the most Br2, with no production resulting from sea ice and basal snow directly above sea ice, suggesting more efficient production from samples characterized by greater acidity and lower chloride/bromide ratios. In addition, Br2 was only observed in the presence of sunlight, indicating the role of snowpack photolysis and the hydroxyl radical in its production. The observed trends in Br2 production may also help explain observations of inland hotspots in measured BrO by aircraft-based nadir MAX-DOAS (Multi Axis-Differential Optical Absorption Spectroscopy) measurements, conducted during the same field campaign. The

  1. ICoN, the Interactive Chart of Nuclides

    NASA Astrophysics Data System (ADS)

    Lee, Kevin; Mumpower, Matthew; Aprahamian, Ani

    2015-10-01

    Nuclear data is critical to research fields from medicine to astrophysics. The chart of nuclides is a more descriptive version of the periodic table that can be used to visualize nuclear properties such as half-lives and mass. We have created ICoN (simply short for Interactive Chart of Nuclides), an API which can be used to visualize theoretical and experimental datasets. This visualization is achieved by using D3 (Data Driven Documents), HTML, and CSS3 to plot the elements and color them accordingly. ICoN features many customization options that users can access that are dynamically applied to the chart without reloading the page. Users can save the customized chart they create to various formats. We have constructed these features in order to provide a unique approach for researchers to interface with nuclear data. ICoN can also be used on all electronic devices without loss of support. We report on the current progress of this project and will present a working demo that highlights each aspect of the aforementioned features. This is the first time that all available technologies are put to use to make nuclear data more accessible than ever before. This is a first and we will make it available as open source ware.

  2. Forbush decreases geomagnetic and atmospheric effects cosmogenic nuclides

    NASA Technical Reports Server (NTRS)

    Flueckiger, E. O.

    1986-01-01

    An overview and synthesis is given of recent developments that have occurred in the areas of Forbush decreases, geomagnetic and atmospheric effects, and cosmogenic nuclides. Experimental evidence has been found for substantial differences in the effects of the various types of interplanetary perturbations on cosmic rays, and for a dependence of these effects on the three-dimensional configuration of the interplanetary medium. In order to fully understand and to be able to simulate the solar cosmic ray particle access to the polar regions of the earth we need accurate models of the magnetospheric magnetic field. These models must include all major magnetospheric current systems (in particular the field aligned currents), and they should represent magnetically quiet time periods as well as different levels of geomagnetic activity. In the evolution of magnetospheric magnetic field models, cosmic ray and magnetospheric physicists should work closely together since cosmic ray measurements are a powerful additional tool in the study of the perturbed magnetosphere. In the field of cosmogenic nuclides, finally, exciting new results and developments follow in rapid succession. Thanks to new techniques and new isotopes the analysis of cosmic ray history has entered into a new dimension.

  3. Bridging the timescales between thermochronological and cosmogenic nuclide data

    NASA Astrophysics Data System (ADS)

    Glotzbach, Christoph

    2015-04-01

    Reconstructing the evolution of Earth's landscape is a key to understand its future evolution and to identify the driving forces that shape Earth's surface. Cosmogenic nuclide and thermochronological methods are routinely used to quantify Earth surface processes over 102-104 yr and 106-107 yr, respectively (e.g. Lal 1991; Reiners and Ehlers 2005; von Blanckenburg 2006). A comparison of the rates of surface processes derived from these methods is, however, hampered by the large difference in their timescales. For instance, a constant erosion rate of 0.1 mm/yr yield an apatite (U-Th)/He age of ~24 Ma and a 10Be age of ~6 ka, respectively. Analytical methods that bridge this time gap are on the way, but are not yet fully established (e.g. Herman et al. 2010). A ready to use alternative are river profiles, which record the regional uplift history over 102-107 yr (e.g. Pritchard et al. 2009). Changes in uplift are retained in knickzones that propagate with a distinct velocity upstream, and therefore the time of an uplift event can be estimated. Here I present an integrative inverse modelling approach to simultaneously reconstruct river profiles, model thermochronological and cosmogenic nuclide data and to derive robust information about landscape evolution over thousands to millions of years. An efficient inversion routine is used to solve the forward problem and find the best uplift history and erosional parameters that reproduce the observed data. I test the performance of the algorithm by inverting a synthetic dataset and a dataset from the Sila massif (Italy). Results show that even complicated uplift histories can be reliably retrieved by the combined interpretation of river profiles, thermochronological and cosmogenic nuclide data. References Gallagher, K., Brown, R. & Johnson, C. (1998): Fission track analysis and its applications to geological problems. - Annu. Rev. Earth Planet., 26: 519-572. Herman, F., Rhodes, E.J., Braun, J. & Heiniger, L. (2010): Uniform

  4. Dating the Laschamp Excursion: Why Speleothems are Valuable Tools for Constraining the Timing and Duration of Short-Lived Geomagnetic Events

    NASA Astrophysics Data System (ADS)

    Lascu, I.; Feinberg, J. M.; Dorale, J. A.; Cheng, H.; Edwards, R. L.

    2015-12-01

    Short-lived geomagnetic events are reflections of geodynamo behavior at small length scales. A rigorous documentation of the anatomy, timing, duration, and frequency of centennial-to-millennial scale geomagnetic events can be invaluable for theoretical and numerical geodynamo models, and for the understanding the finer dynamics of the Earth's core. A critical ingredient for characterizing such geomagnetic instabilities are tightly constrained age models that enable high-resolution magnetostratigraphies. Here we focus on a North American speleothem geomagnetic record of the Laschamp excursion, which was the first geomagnetic excursion recognized and described in the paleomagnetic record, and remains the most studied event of its kind. The geological significance of the Laschamp lies chiefly in the fact that it constitutes a global time-synchronous geochronological marker. The Laschamp excursion occurred around the time of the demise of Homo neanderthalensis, in conjunction with high-amplitude, rapid climatic oscillations leading into the Last Glacial Maximum, and precedes a major supervolcano eruption in the Mediterranean. Thus, the precise determination of the timing and duration of the Laschamp would help in elucidating major scientific questions situated at the intersection of geology, paleoclimatology, and anthropology. Here we present a geomagnetic record from a stalagmite collected in Crevice Cave, Missouri, which we have dated using a combination of high-precision 230Th ages and annual layer counting using confocal microscopy. We have found a maximum duration for the Laschamp that spans the interval 42,250-39,700 years BP, and an age of 41,100 ± 350 years BP for the height of the excursion. During this period relative paleointensity decreased by an order of magnitude and the virtual geomagnetic pole was located at southerly latitudes. Our chronology provides the first robust bracketing for the Laschamp excursion, and improves on previous age determinations

  5. TRIGGERING COLLAPSE OF THE PRESOLAR DENSE CLOUD CORE AND INJECTING SHORT-LIVED RADIOISOTOPES WITH A SHOCK WAVE. I. VARIED SHOCK SPEEDS

    SciTech Connect

    Boss, Alan P.; Keiser, Sandra A.; Ipatov, Sergei I.; Myhill, Elizabeth A.; Vanhala, Harri A. T. E-mail: keiser@dtm.ciw.ed E-mail: elizabeth.myhill@marymount.ed

    2010-01-10

    The discovery of decay products of a short-lived radioisotope (SLRI) in the Allende meteorite led to the hypothesis that a supernova shock wave transported freshly synthesized SLRI to the presolar dense cloud core, triggered its self-gravitational collapse, and injected the SLRI into the core. Previous multidimensional numerical calculations of the shock-cloud collision process showed that this hypothesis is plausible when the shock wave and dense cloud core are assumed to remain isothermal at approx10 K, but not when compressional heating to approx1000 K is assumed. Our two-dimensional models with the FLASH2.5 adaptive mesh refinement hydrodynamics code have shown that a 20 km s{sup -1} shock front can simultaneously trigger collapse of a 1 M{sub sun} core and inject shock wave material, provided that cooling by molecular species such as H{sub 2}O, CO, and H{sub 2} is included. Here, we present the results for similar calculations with shock speeds ranging from 1 km s{sup -1} to 100 km s{sup -1}. We find that shock speeds in the range from 5 km s{sup -1} to 70 km s{sup -1} are able to trigger the collapse of a 2.2 M{sub sun} cloud while simultaneously injecting shock wave material: lower speed shocks do not achieve injection, while higher speed shocks do not trigger sustained collapse. The calculations continue to support the shock-wave trigger hypothesis for the formation of the solar system, though the injection efficiencies in the present models are lower than desired.

  6. RNA-seq of the aging brain in the short-lived fish N. furzeri – conserved pathways and novel genes associated with neurogenesis

    PubMed Central

    Baumgart, Mario; Groth, Marco; Priebe, Steffen; Savino, Aurora; Testa, Giovanna; Dix, Andreas; Ripa, Roberto; Spallotta, Francesco; Gaetano, Carlo; Ori, Michela; Terzibasi Tozzini, Eva; Guthke, Reinhard; Platzer, Matthias; Cellerino, Alessandro

    2014-01-01

    The brains of teleost fish show extensive adult neurogenesis and neuronal regeneration. The patterns of gene regulation during fish brain aging are unknown. The short-lived teleost fish Nothobranchius furzeri shows markers of brain aging including reduced learning performances, gliosis, and reduced adult neurogenesis. We used RNA-seq to quantify genome-wide transcript regulation and sampled five different time points to characterize whole-genome transcript regulation during brain aging of N. furzeri. Comparison with human datasets revealed conserved up-regulation of ribosome, lysosome, and complement activation and conserved down-regulation of synapse, mitochondrion, proteasome, and spliceosome. Down-regulated genes differ in their temporal profiles: neurogenesis and extracellular matrix genes showed rapid decay, synaptic and axonal genes a progressive decay. A substantial proportion of differentially expressed genes (∼40%) showed inversion of their temporal profiles in the last time point: spliceosome and proteasome showed initial down-regulation and stress-response genes initial up-regulation. Extensive regulation was detected for chromatin remodelers of the DNMT and CBX families as well as members of the polycomb complex and was mirrored by an up-regulation of the H3K27me3 epigenetic mark. Network analysis showed extensive coregulation of cell cycle/DNA synthesis genes with the uncharacterized zinc-finger protein ZNF367 as central hub. In situ hybridization showed that ZNF367 is expressed in neuronal stem cell niches of both embryonic zebrafish and adult N. furzeri. Other genes down-regulated with age, not previously associated with adult neurogenesis and with similar patterns of expression are AGR2, DNMT3A, KRCP, MEX3A, SCML4, and CBX1. CBX7, on the other hand, was up-regulated with age. PMID:25059688

  7. Stepwise Catalytic Mechanism via Short-Lived Intermediate Inferred from Combined QM/MM MERP and PES Calculations on Retaining Glycosyltransferase ppGalNAcT2

    PubMed Central

    Trnka, Tomáš; Kozmon, Stanislav; Tvaroška, Igor; Koča, Jaroslav

    2015-01-01

    The glycosylation of cell surface proteins plays a crucial role in a multitude of biological processes, such as cell adhesion and recognition. To understand the process of protein glycosylation, the reaction mechanisms of the participating enzymes need to be known. However, the reaction mechanism of retaining glycosyltransferases has not yet been sufficiently explained. Here we investigated the catalytic mechanism of human isoform 2 of the retaining glycosyltransferase polypeptide UDP-GalNAc transferase by coupling two different QM/MM-based approaches, namely a potential energy surface scan in two distance difference dimensions and a minimum energy reaction path optimisation using the Nudged Elastic Band method. Potential energy scan studies often suffer from inadequate sampling of reactive processes due to a predefined scan coordinate system. At the same time, path optimisation methods enable the sampling of a virtually unlimited number of dimensions, but their results cannot be unambiguously interpreted without knowledge of the potential energy surface. By combining these methods, we have been able to eliminate the most significant sources of potential errors inherent to each of these approaches. The structural model is based on the crystal structure of human isoform 2. In the QM/MM method, the QM region consists of 275 atoms, the remaining 5776 atoms were in the MM region. We found that ppGalNAcT2 catalyzes a same-face nucleophilic substitution with internal return (SNi). The optimized transition state for the reaction is 13.8 kcal/mol higher in energy than the reactant while the energy of the product complex is 6.7 kcal/mol lower. During the process of nucleophilic attack, a proton is synchronously transferred to the leaving phosphate. The presence of a short-lived metastable oxocarbenium intermediate is likely, as indicated by the reaction energy profiles obtained using high-level density functionals. PMID:25849117

  8. Stepwise catalytic mechanism via short-lived intermediate inferred from combined QM/MM MERP and PES calculations on retaining glycosyltransferase ppGalNAcT2.

    PubMed

    Trnka, Tomáš; Kozmon, Stanislav; Tvaroška, Igor; Koča, Jaroslav

    2015-04-01

    The glycosylation of cell surface proteins plays a crucial role in a multitude of biological processes, such as cell adhesion and recognition. To understand the process of protein glycosylation, the reaction mechanisms of the participating enzymes need to be known. However, the reaction mechanism of retaining glycosyltransferases has not yet been sufficiently explained. Here we investigated the catalytic mechanism of human isoform 2 of the retaining glycosyltransferase polypeptide UDP-GalNAc transferase by coupling two different QM/MM-based approaches, namely a potential energy surface scan in two distance difference dimensions and a minimum energy reaction path optimisation using the Nudged Elastic Band method. Potential energy scan studies often suffer from inadequate sampling of reactive processes due to a predefined scan coordinate system. At the same time, path optimisation methods enable the sampling of a virtually unlimited number of dimensions, but their results cannot be unambiguously interpreted without knowledge of the potential energy surface. By combining these methods, we have been able to eliminate the most significant sources of potential errors inherent to each of these approaches. The structural model is based on the crystal structure of human isoform 2. In the QM/MM method, the QM region consists of 275 atoms, the remaining 5776 atoms were in the MM region. We found that ppGalNAcT2 catalyzes a same-face nucleophilic substitution with internal return (SNi). The optimized transition state for the reaction is 13.8 kcal/mol higher in energy than the reactant while the energy of the product complex is 6.7 kcal/mol lower. During the process of nucleophilic attack, a proton is synchronously transferred to the leaving phosphate. The presence of a short-lived metastable oxocarbenium intermediate is likely, as indicated by the reaction energy profiles obtained using high-level density functionals.

  9. Formation of the Short-lived Radionuclide 36Cl in the Protoplanetary Disk During Late-stage Irradiation of a Volatile-rich Reservoir

    NASA Astrophysics Data System (ADS)

    Jacobsen, Benjamin; Matzel, Jennifer; Hutcheon, Ian D.; Krot, Alexander N.; Yin, Qing-Zhu; Nagashima, Kazuhide; Ramon, Erick C.; Weber, Peter K.; Ishii, Hope A.; Ciesla, Fred J.

    2011-04-01

    Short-lived radionuclides (SLRs) in the early solar system provide fundamental insight into protoplanetary disk evolution. We measured the 36Cl-36S-isotope abundance in wadalite (<15 μm), a secondary chlorine-bearing mineral found in calcium-aluminum-rich inclusions (CAIs) in the Allende CV chondrite, to decipher the origin of the SLR 36Cl (τ 1/2 ~ 3 × 105 yr) in the early solar system. Its presence, initial abundance, and the noticeable decoupling from 26Al raise serious questions about the origin of SLRs. The inferred initial 36Cl abundance for wadalite, corresponding to a 36Cl/35Cl ratio of (1.81 ± 0.13) × 10-5, is the highest 36Cl abundance ever reported in any early solar system material. The high level of 36Cl in wadalite and the absence of 26Al (26Al/27Al <= 3.9 × 10-6) in co-existing grossular (1) unequivocally support the production of 36Cl by late-stage solar energetic particle irradiation in the protoplanetary disk and (2) indicates that the production of 36Cl, recorded by wadalite, is unrelated to the origin of 26Al and other SLRs (10Be, 53Mn) recorded by primary minerals of CAIs and chondrules. We infer that 36Cl was largely produced by irradiation of a volatile-rich reservoir in an optically thin protoplanetary disk adjacent to the region in which the CV chondrite parent asteroid accreted while the Sun was a weak T Tauri star. Subsequently, 36Cl accreted into the Allende CV chondrite together with condensed water ices.

  10. A LOWER INITIAL ABUNDANCE OF SHORT-LIVED {sup 41}Ca IN THE EARLY SOLAR SYSTEM AND ITS IMPLICATIONS FOR SOLAR SYSTEM FORMATION

    SciTech Connect

    Liu, Ming-Chang; Chaussidon, Marc; Srinivasan, Gopalan; McKeegan, Kevin D.

    2012-12-20

    The short-lived radionuclide {sup 41}Ca plays an important role in constraining the immediate astrophysical environment and the formation timescale of the nascent solar system due to its extremely short half-life (0.1 Myr). Nearly 20 years ago, the initial ratio of {sup 41}Ca/{sup 40}Ca in the solar system was determined to be (1.41 {+-} 0.14) Multiplication-Sign 10{sup -8}, primarily based on two Ca-Al-rich Inclusions (CAIs) from the CV chondrite Efremovka. With an advanced analytical technique for isotopic measurements, we reanalyzed the potassium isotopic compositions of the two Efremovka CAIs and inferred the initial ratios of {sup 41}Ca/{sup 40}Ca to be (2.6 {+-} 0.9) Multiplication-Sign 10{sup -9} and (1.4 {+-} 0.6) Multiplication-Sign 10{sup -9} (2{sigma}), a factor of 7-10 lower than the previously inferred value. Considering possible thermal processing that led to lower {sup 26}Al/{sup 27}Al ratios in the two CAIs, we propose that the true solar system initial value of {sup 41}Ca/{sup 40}Ca should have been {approx}4.2 Multiplication-Sign 10{sup -9}. Synchronicity could have existed between {sup 26}Al and {sup 41}Ca, indicating a uniform distribution of the two radionuclides at the time of CAI formation. The new initial {sup 41}Ca abundance is 4-16 times lower than the calculated value for steady-state galactic nucleosynthesis. Therefore, {sup 41}Ca could have originated as part of molecular cloud materials with a free decay time of 0.2-0.4 Myr. Alternative possibilities, such as a last-minute input from a stellar source and early solar system irradiation, could not be definitively ruled out. This underscores the need for more data from diverse CAIs to determine the true astrophysical origin of {sup 41}Ca.

  11. The Multi-Temporal Database of Planetary Image Data (MUTED): A database to support the identification of surface changes and short-lived surface processes

    NASA Astrophysics Data System (ADS)

    Erkeling, G.; Luesebrink, D.; Hiesinger, H.; Reiss, D.; Heyer, T.; Jaumann, R.

    2016-06-01

    Images of Mars taken by spacecraft in the last few decades indicate that the landscape has changed and that current processes are continuously changing the surface. The modifications of the landscape are caused by exogenic processes including eolian activity, mass movement, the growth and retreat of the polar caps, glacial processes and crater-forming impacts. In particular the High Resolution Stereo Camera (HRSC) on board Mars Express (MEx) and the Context Camera (CTX) on board the Mars Reconnaissance Orbiter (MRO) cover large areas at high resolution and thus are particularly well-suited to detect the extent and origin of surface changes on Mars. Multi-temporal observations of variable features on Mars became possible by the increasing number of repeated image acquisitions of the same surface areas. To support the investigation of surface changes that represents a key element in martian research, we developed MUTED, the "Multi-Temporal Database of Planetary Image Data", which is a tool for the identification of the spatial and multi-temporal coverage of planetary image data from Mars. Using MUTED, scientists are able to identify the location, number, and time range of acquisitions of overlapping images from, for example, HRSC and CTX. MUTED also includes images from other planetary datasets such as those of the Mars Orbiter Camera (MOC), the Thermal Emission Imaging System (THEMIS), and the High Resolution Imaging Science Experiment (HiRISE). The database supports the identification and analysis of surface changes and short-lived surface processes on Mars based on fast automatic planetary image database queries. From the multi-temporal planetary image database and investigations based on multi-temporal observations we will better understand the interactions between the surface of Mars and external forces, including the atmosphere. MUTED is available for the planetary scientific community via the webpage of the Institut für Planetologie (IfP) Muenster.

  12. Time-series variations of the short-lived Ra in coastal waters: implying input of SGD to the coastal zone of Da-Chia River, Taichung, Taiwan

    NASA Astrophysics Data System (ADS)

    Hsu, Feng-Hsin; Su, Chih-Chieh; Lin, In-Tain; Huh, Chih-An

    2015-04-01

    Submarine groundwater discharge (SGD) has been recognized as an important pathway for materials exchanging between land and sea. Input of SGD carries the associated nutrients, trace metals, and inorganic carbon that may makes great impacts on ecosystem in the coastal zone. Due to the variability of SGD magnitude, it is difficult to estimate the flux of those associated materials around the world. Even in the same area, SGD magnitude also varies in response to tide fluctuation and seasonal change on hydraulic gradient. Thus, long-term investigation is in need. In Taiwan, the SGD study is rare and the intrusion of seawater in the coastal aquifer is emphasized in previous studies. According to the information from Hydrogeological Data Bank (Central Geological Survey, MOEA), some areas still show potentiality of SGD. Here, we report the preliminary investigation result of SGD at Gaomei Wildlife Conservation Area which located at the south of the Da-Chia River mouth. This study area is characterized by a great tidal rang and a shallow aquifer with high groundwater recharge rate. Time-series measurement of the short-lived Ra in surface water was done in both dry and wet seasons at a tidal flat site and shows different trends of excess Ra-224 between dry and wet seasons. High excess Ra-224 activities (>20 dpm/100L) occurred at high tide in dry season but at low tide in wet season. The plot of salinity versus excess Ra-224, showing non-conservative curve, suggests that high excess Ra-224 activities derive from desorption in dry season but from SGD input in wet season.

  13. FORMATION OF THE SHORT-LIVED RADIONUCLIDE {sup 36}Cl IN THE PROTOPLANETARY DISK DURING LATE-STAGE IRRADIATION OF A VOLATILE-RICH RESERVOIR

    SciTech Connect

    Jacobsen, Benjamin; Yin Qingzhu; Matzel, Jennifer; Hutcheon, Ian D.; Ramon, Erick C.; Weber, Peter K.; Krot, Alexander N.; Nagashima, Kazuhide; Ishii, Hope A.; Ciesla, Fred J.

    2011-04-20

    Short-lived radionuclides (SLRs) in the early solar system provide fundamental insight into protoplanetary disk evolution. We measured the {sup 36}Cl-{sup 36}S-isotope abundance in wadalite (<15 {mu}m), a secondary chlorine-bearing mineral found in calcium-aluminum-rich inclusions (CAIs) in the Allende CV chondrite, to decipher the origin of the SLR {sup 36}Cl ({tau}{sub 1/2} {approx} 3 x 10{sup 5} yr) in the early solar system. Its presence, initial abundance, and the noticeable decoupling from {sup 26}Al raise serious questions about the origin of SLRs. The inferred initial {sup 36}Cl abundance for wadalite, corresponding to a {sup 36}Cl/{sup 35}Cl ratio of (1.81 {+-} 0.13) x 10{sup -5}, is the highest {sup 36}Cl abundance ever reported in any early solar system material. The high level of {sup 36}Cl in wadalite and the absence of {sup 26}Al ({sup 26}Al/{sup 27}Al {<=} 3.9 x 10{sup -6}) in co-existing grossular (1) unequivocally support the production of {sup 36}Cl by late-stage solar energetic particle irradiation in the protoplanetary disk and (2) indicates that the production of {sup 36}Cl, recorded by wadalite, is unrelated to the origin of {sup 26}Al and other SLRs ({sup 10}Be, {sup 53}Mn) recorded by primary minerals of CAIs and chondrules. We infer that {sup 36}Cl was largely produced by irradiation of a volatile-rich reservoir in an optically thin protoplanetary disk adjacent to the region in which the CV chondrite parent asteroid accreted while the Sun was a weak T Tauri star. Subsequently, {sup 36}Cl accreted into the Allende CV chondrite together with condensed water ices.

  14. TRIGGERING COLLAPSE OF THE PRESOLAR DENSE CLOUD CORE AND INJECTING SHORT-LIVED RADIOISOTOPES WITH A SHOCK WAVE. II. VARIED SHOCK WAVE AND CLOUD CORE PARAMETERS

    SciTech Connect

    Boss, Alan P.; Keiser, Sandra A. E-mail: keiser@dtm.ciw.edu

    2013-06-10

    A variety of stellar sources have been proposed for the origin of the short-lived radioisotopes that existed at the time of the formation of the earliest solar system solids, including Type II supernovae (SNe), asymptotic giant branch (AGB) and super-AGB stars, and Wolf-Rayet star winds. Our previous adaptive mesh hydrodynamics models with the FLASH2.5 code have shown which combinations of shock wave parameters are able to simultaneously trigger the gravitational collapse of a target dense cloud core and inject significant amounts of shock wave gas and dust, showing that thin SN shocks may be uniquely suited for the task. However, recent meteoritical studies have weakened the case for a direct SN injection to the presolar cloud, motivating us to re-examine a wider range of shock wave and cloud core parameters, including rotation, in order to better estimate the injection efficiencies for a variety of stellar sources. We find that SN shocks remain as the most promising stellar source, though planetary nebulae resulting from AGB star evolution cannot be conclusively ruled out. Wolf-Rayet (WR) star winds, however, are likely to lead to cloud core shredding, rather than to collapse. Injection efficiencies can be increased when the cloud is rotating about an axis aligned with the direction of the shock wave, by as much as a factor of {approx}10. The amount of gas and dust accreted from the post-shock wind can exceed that injected from the shock wave, with implications for the isotopic abundances expected for a SN source.

  15. The prolactin response to an acute stressor in relation to parental care and corticosterone in a short-lived bird, the Eurasian hoopoe.

    PubMed

    Schmid, Baptiste; Chastel, Olivier; Jenni, Lukas

    2011-10-01

    Prolactin plays an important role in mediating parental care in birds, but little is known about changes in prolactin levels when animals disrupt their reproductive behaviour during emergency life-history stages. We investigated the variation of prolactin levels with breeding stage, sex, body condition and as a response to a standardized acute stressor in a small short-lived bird, the Eurasian hoopoe Upupa epops under natural field conditions. We found higher baseline levels of prolactin in females during the brooding phase than in their mates which feed them and their chicks at this stage. Moreover, this is the first report of a differential prolactin stress-response between sexes with contrasting parental care within a breeding phase. Capture, handling and restraint induced a clear decrease of prolactin levels which was less pronounced in females at the very early stage of brooding compared to females in later stages. In contrast, the prolactin stress response in males remained nearly constant over the breeding stages and was stronger than in females. Baseline levels of prolactin, but not handling-induced levels, were positively correlated with body condition. We found a weak relationship between the decrease in prolactin due to acute handling stress and handling-induced levels of corticosterone. Taken together, both baseline and stress response levels of prolactin were related to the amount of parental care, although we found no relationship with reproductive success. It appears that the response to an acute stressor in prolactin levels is finely tuned to parental duties and investment. Hence, prolactin appears to be involved in mediating the trade-off between current reproduction versus self-maintenance and future reproduction.

  16. Brick Kiln Emissions Quantified with the Aerodyne Mobile Laboratory During the Short Lived Climate Forcing (SLCF) 2013 Campaign in Guanajuato Mexico

    NASA Astrophysics Data System (ADS)

    Fortner, E.; Knighton, W. B.; Herndon, S.; Roscioli, J. R.; Zavala, M.; Onasch, T. B.; Jayne, J. T.; Worsnop, D. R.; Kolb, C. E.; Molina, L. T.

    2013-12-01

    Brick kiln emissions are suspected to be a major source of atmospheric black carbon (BC) in developing countries; and black carbon's role as a short lived climate forcing (SLCF) pollutant is widely recognized. The SLCF-Mexico brick kiln study was conducted from 12-17 March 2013 in Mexico's Guanajuato state. Three different types of brick kilns were investigated (MK2, traditional, and traditional three tier) providing data on the effects of different kiln designs on particle and gas phase emissions. The BC and gaseous combustion emissions from these kilns were measured during both the fire stage and the subsequent smoldering stage with real-time instruments deployed on the Aerodyne Mobile Laboratory, and quantified utilizing flux tracer gases released adjacent to the brick kiln. This method allows examination of the brick kiln plume's evolution as it transits downwind from the source. Particulate measurements conducted by the mobile laboratory included the multi angle absorption photometer (MAAP) to measure black carbon mass, cavity attenuated phase shift (CAPSext) monitor to measure extinction and soot particle aerosol mass spectrometer (SP-AMS) measurements of black carbon. The SP-AMS instrument combines the ability to measure black carbon with the ability to determine the chemical composition of the other particulate matter (PM) components associated with black carbon particles. The variance of PM chemical composition will be examined as a function of burning stage and kiln type and compared to other black carbon PM sources. Gas phase exhaust species measured included CO, CO2, NOx, SO2, CH4, C2H6, as well as a variety of VOCs (acetonitrile, benzene etc.) measured with a PTR-MS instrument. All of these measurements will be examined to construct emission ratios evaluating how these vary with different kiln types and different firing conditions. The evolution of particulate matter and gas phase species as they transit away from the source will also be examined.

  17. Synthesis of Trace Gas and Aerosol Observations and Evaluation of Modelled Short-lived Climate Pollutants Across the Pan-Eurasian High Latitudes

    NASA Astrophysics Data System (ADS)

    Arnold, S.; Nieminen, T.

    2015-12-01

    Model calculations suggest that changes in short-lived climate pollutants (SLCPs) such as ozone and aerosol may have contributed significantly to rapid Arctic warming over the past century. Arctic tropospheric budgets of SLCPs are impacted by long-range transport of trace gases and aerosols from Europe, Asia and N. America, but also by local sources such as gas flaring, shipping and boreal fires. Recently, the POLARCAT Model Intercomparison Project (POLMIP) showed that significant model biases persist through the depth of the European and North American high latitude troposphere in modelled trace-gas abundances. Evaluation of models over the Siberian high latitudes is challenging due to a severe paucity of available observations, despite the potential importance of this region as a route for European pollution export to the Arctic. Despite the existence of a number of limited datasets, which could be used for model evaluation in this region, until now no effort has been made to synthesise and exploit these observations to evaluate modelled abundances of SLCPs such as tropospheric ozone & aerosol. In this presentation, we will show evaluation of simulated aerosol, tropospheric ozone, and precursor species in several global chemical transport models, using a synthesis of available surface, aircraft and satellite observations over the high latitude pan-Eurasian region. We use models and observations to investigate source regions contributing to remote Siberian SLCP abundances over the annual cycle, and show substantial biases in simulated aerosol and trace gas concentrations that are consistent across a suite of different models. These comparisons constitute the first multi-model evaluation of tropospheric composition in the pan-Eurasin region using observations from across the broad region. Finally, we use the model simulations to determine optimum locations for the development of future monitoring activities in high latitude Eurasia with an aim of better

  18. 2014 ICHLNRRA intercomparison of radon/thoron gas and radon short-lived decay products measuring instruments in the NRPI Prague.

    PubMed

    Jílek, K; Timková, J

    2015-06-01

    During the Eighth International Conference on High Levels of Natural Radiation and Radon Areas held in autumn 2014 at Prague, the third intercomparison of radon/thoron gas and radon short-lived decay products measurement instruments was organised by and held at the Natural Radiation Division of the National Radiation Protection Institute (NRPI; SÚRO v.v.i.) in Prague. The intercomparison was newly focussed also on continuous monitors with active sampling adapters capable to distinguish radon/thoron gas in their mix field.The results of radon gas measurements carried out in the big NRPI radon chamber indicated very well an average deviation of up to 5 % from the reference NRPI value for 80 % of all the exposed instruments. The results of equilibrium equivalent concentration continuous monitors indicated an average deviation of up to 5 % from the reference NRPI value for 40 % of all the exposed instruments and their ~8-10 % shift compared with the NRPI. The results of investigated ambient conditions upon response of exposed continuous monitors indicated influence of aerosol changes upon response of radon monitors with an active air sampling adapters through the filter, only. The exposures of both radon/thoron gas discriminative continuous monitors and passive detectors have been indicated inconsistent results: on one hand, their excellent agreement up to several per cent for both the gases, and on the other hand, systematic unsatisfactory differences up to 40 %. Additional radon/thoron exercises are recommended to improve both the instruments themselves and quality of their operators.

  19. Chronic parasitic infection maintains high frequencies of short-lived Ly6C+CD4+ effector T cells that are required for protection against re-infection.

    PubMed

    Peters, Nathan C; Pagán, Antonio J; Lawyer, Phillip G; Hand, Timothy W; Henrique Roma, Eric; Stamper, Lisa W; Romano, Audrey; Sacks, David L

    2014-12-01

    In contrast to the ability of long-lived CD8(+) memory T cells to mediate protection against systemic viral infections, the relationship between CD4(+) T cell memory and acquired resistance against infectious pathogens remains poorly defined. This is especially true for T helper 1 (Th1) concomitant immunity, in which protection against reinfection coincides with a persisting primary infection. In these situations, pre-existing effector CD4 T cells generated by ongoing chronic infection, not memory cells, may be essential for protection against reinfection. We present a systematic study of the tissue homing properties, functionality, and life span of subsets of memory and effector CD4 T cells activated in the setting of chronic Leishmania major infection in resistant C57Bl/6 mice. We found that pre-existing, CD44(+)CD62L(-)T-bet(+)Ly6C+ effector (T(EFF)) cells that are short-lived in the absence of infection and are not derived from memory cells reactivated by secondary challenge, mediate concomitant immunity. Upon adoptive transfer and challenge, non-dividing Ly6C(+) T(EFF) cells preferentially homed to the skin, released IFN-γ, and conferred protection as compared to CD44(+)CD62L(-)Ly6C(-) effector memory or CD44(+)CD62L(+)Ly6C(-) central memory cells. During chronic infection, Ly6C(+) T(EFF) cells were maintained at high frequencies via reactivation of T(CM) and the T(EFF) themselves. The lack of effective vaccines for many chronic diseases may be because protection against infectious challenge requires the maintenance of pre-existing T(EFF) cells, and is therefore not amenable to conventional, memory inducing, vaccination strategies.

  20. Brominated flame retardant exposure of aircraft personnel.

    PubMed

    Strid, Anna; Smedje, Greta; Athanassiadis, Ioannis; Lindgren, Torsten; Lundgren, Håkan; Jakobsson, Kristina; Bergman, Åke

    2014-12-01

    The use of brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) in aircraft is the result of high fire safety demands. Personnel working in or with aircraft might therefore be exposed to several BFRs. Previous studies have reported PBDE exposure in flight attendants and in passengers. One other group that may be subjected to significant BFR exposure via inhalation, are the aircraft maintenance workers. Personnel exposure both during flights and maintenance of aircraft, are investigated in the present study. Several BFRs were present in air and dust sampled during both the exposure scenarios; PBDEs, hexabromocyclododecane (HBCDD), decabromodiphenyl ethane (DBDPE) and 1,2-bis (2,4,6-tribromophenoxy) ethane. PBDEs were also analyzed in serum from pilots/cabin crew, maintenance workers and from a control group of individuals without any occupational aircraft exposure. Significantly higher concentrations of PBDEs were found in maintenance workers compared to pilots/cabin crew and control subjects with median total PBDE concentrations of 19, 6.8 and 6.6 pmol g(-1) lipids, respectively. Pilots and cabin crew had similar concentrations of most PBDEs as the control group, except for BDE-153 and BDE-154 which were significantly higher. Results indicate higher concentrations among some of the pilots compared to the cabin crew. It is however, evident that the cabin personnel have lower BFR exposures compared to maintenance workers that are exposed to such a degree that their blood levels are significantly different from the control group. PMID:24745557

  1. Brominated flame retardant exposure of aircraft personnel.

    PubMed

    Strid, Anna; Smedje, Greta; Athanassiadis, Ioannis; Lindgren, Torsten; Lundgren, Håkan; Jakobsson, Kristina; Bergman, Åke

    2014-12-01

    The use of brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) in aircraft is the result of high fire safety demands. Personnel working in or with aircraft might therefore be exposed to several BFRs. Previous studies have reported PBDE exposure in flight attendants and in passengers. One other group that may be subjected to significant BFR exposure via inhalation, are the aircraft maintenance workers. Personnel exposure both during flights and maintenance of aircraft, are investigated in the present study. Several BFRs were present in air and dust sampled during both the exposure scenarios; PBDEs, hexabromocyclododecane (HBCDD), decabromodiphenyl ethane (DBDPE) and 1,2-bis (2,4,6-tribromophenoxy) ethane. PBDEs were also analyzed in serum from pilots/cabin crew, maintenance workers and from a control group of individuals without any occupational aircraft exposure. Significantly higher concentrations of PBDEs were found in maintenance workers compared to pilots/cabin crew and control subjects with median total PBDE concentrations of 19, 6.8 and 6.6 pmol g(-1) lipids, respectively. Pilots and cabin crew had similar concentrations of most PBDEs as the control group, except for BDE-153 and BDE-154 which were significantly higher. Results indicate higher concentrations among some of the pilots compared to the cabin crew. It is however, evident that the cabin personnel have lower BFR exposures compared to maintenance workers that are exposed to such a degree that their blood levels are significantly different from the control group.

  2. Copper-67 as a therapeutic nuclide for radioimmunotherapy.

    PubMed

    Novak-Hofer, Ilse; Schubiger, P August

    2002-06-01

    The application of the beta particle-emitting nuclide 67Cu in radioimmunotherapy is reviewed. The production of the nuclide is outlined, and different production modes are discussed with an emphasis on cyclotron production. A short survey of copper chelators currently used for antibody labelling and their impact on the pharmacokinetics of 67Cu-labelled immunoconjugates is provided. Protocols for antibody labelling with 67Cu as well as quality control procedures for 67Cu-labelled antibodies are described. Preclinical data on the biological properties of 67Cu-labelled immunoconjugates are reported and discussed. 67Cu-labelled antibodies show higher and more persistent tumour uptake than their radioiodinated counterparts due to accumulation of labelled metabolites in tumour cells. Biodistribution of 67Cu-labelled antibody fragments has been improved by selection of negatively charged chelators and peptide linkers. Pharmacokinetic analysis of the accumulated dose in tumour and critical organs such as the kidney and liver indicates that, despite this improvement, intact 67Cu-labelled antibodies achieve higher tumour uptake and better therapeutic ratios than 67Cu-labelled antibody fragments and that they are at present the logical choice for clinical studies. Clinical studies using 67Cu-labelled antibodies in lymphoma, colon carcinoma and bladder cancer patients are reviewed. Some of the advantages over radioiodinated antibodies found in the preclinical work, such as higher tumour uptake and better tumour/blood ratios, have also been found with systemic application in lymphoma and colon carcinoma. However, in both lymphoma and colon carcinoma patients, the radiation dose to the liver has been found to be higher from 67Cu- than from 131I-labelled antibodies. The intravesical application of 67Cu-labelled antibody has been shown to be a promising approach for targetting cytotoxic radiation to superficial bladder tumours, without detectable systemic absorption. Given the

  3. What can bromine in ice cores tell us about Arctic sea ice in the past?

    NASA Astrophysics Data System (ADS)

    Vallelonga, Paul; Spolaor, Andrea; Maffazzoli, Niccolo; Kjær, Helle; Barbante, Carlo; Saiz-Lopez, Alfonso

    2016-04-01

    Bromine is of interest as a potential sea ice proxy due to its role in polar atmospheric chemistry, particularly the photochemical "bromine explosion" events which occur over the seasonal sea ice surface. A growing body of literature has demonstrated that bromine is reliably deposited and preserved in polar ice caps and can be used to investigate variability over timescales varying from seasonal to multimillenial. For sea ice reconstructions, bromine and sodium are usually evaluated with respect to their relative abundances in seawater. Competing processes of bromine enrichment due to the bromine explosion, and bromine depletion due to scavenging and deposition, must be taken into account when comparing results from coastal and inland sampling sites. We will review existing bromine-based sea ice reconstructions and present new data for locations from Svalbard, Severnaya Zemlya, Northwest Greenland (NEEM ice core) and central East Greenland (Renland ice core).

  4. Excited states in the heavy nuclide {sup 254}No

    SciTech Connect

    Kankaanpaeae, H.; Leino, M.; Cocks, J. F. C.; Dorvaux, O.; Helariutta, K.; Jones, P.; Julin, R.; Juutinen, S.; Kettunen, H.; Kuusiniemi, P.; Muikku, M.; Nieminen, P.; Rahkila, P.; Savelius, A.; Trzaska, W. H.; Herzberg, R.-D.; Chewter, A. J.; Butler, P. A.; Greenlees, P. T.; Jones, G. D.

    1999-11-16

    In-beam {gamma}-ray spectroscopy of the excited states in the heavy nuclide {sup 254}No have been studied in the reaction {sup 208}Pb({sup 48}Ca,2n){sup 254}No. The techniques of recoil-gating and recoil-decay-tagging were needed due to the dominant fission background. Prompt {gamma}-rays were detected with a Ge detector array, consisting of four clover detectors in close geometry, and a gas-filled recoil separator (RITU) was used for detecting recoils and their {alpha}-decays. The observed six {gamma}-rays were associated with E2-transitions in the ground state rotational band of {sup 254}No. The value {beta}{sub 2}=0.27{+-}0.03 was extracted for the quadrupole deformation from the extrapolated 2{sup +} excitation energy.

  5. The Chondrite Neagari: Petrography, Mineralogy, Chemical Compositions, and Cosmogenic Nuclides

    NASA Astrophysics Data System (ADS)

    Okada, A.; Komura, K.; Nagao, K.; Nishiizumi, K.; Miyamoto, Y.; Sakamoto, K.; Ebihara, M.; Shima, M.

    1995-09-01

    The Neagari meteorite fell on Feb. 18, 1995 at Neagari-machi, Nomi-gun, Ishikawa-ken, Japan (geographical coordinate: 36 degrees 26.9'N, 136 degrees 27.9'E). It was broken into several pieces when it hit a car upon falling. The largest piece weighing about 325 g and a small piece weighing 39 g were brought to the Kanazawa University for the measurements of gamma-rays emitted by cosmogenic nuclides only 2.7 days after the fall. Thereafter, the measurement was repeated several times. Other small pieces were used for petrographic, mineralogical and chemical studies. Noble gas mass spectrometry and AMS were also conducted. The Neagari meteorite shows a distinct, recrystallized structure under the microscopic observation of the thin section. Chondrules, 0.6 to 1.0 mm in diameter, are all present as relicts, buried in the well-recrystallized matrix. The chondrule-matrix boundaries are scarcely discernible in the granulated matrix. Olivine (Fa: 25.3 +/- 0.6 mole%) and orthopyroxene (Fs: 20.6 +/- 0.6 mole%) are the most abundant minerals both in matrix and in the chondrule relicts. Diopside is present as individual grains in the granular matrix. Interstitial feldspar crystal (Or(sub)6.3Ab (sub)88.0 An(sub)5.8) are common in the matrix and chondrule relicts, and often enclose minute pyroxene grains. Main opaque minerals are kamacite, taenite, troilite and chromite, and the metal phase is more abundant than the sulfide phase in the section. Both Fa and Fs values indicate that the Neagari meteorite is an L chondrite. The well-crystallized structure of the matrix, poorly defined outline of relict chondrules in the matrix, the prevalence of clear and well-developed plagioclase grains in the matrix and chondrule relicts and the absence of glass and monoclinic low-Ca pyroxene indicate the petrologic type to be 6. By the non-destructive gamma-ray measurement of the meteorite, eleven cosmogenic nuclides (^44mSc, ^52Mn, ^48V, ^51Cr, ^7Be, ^56Co, ^46Sc, ^57Co, ^54Mn, ^22Na, and ^26Al

  6. Environmental monitoring of brominated flame retardants

    NASA Astrophysics Data System (ADS)

    Vagula, Mary C.; Kubeldis, Nathan; Nelatury, Charles F.

    2011-06-01

    Brominated flame retardants (BFRs) are synthetic organobromide compounds which inhibit ignition and combustion processes. Because of their immense ability to retard fire and save life and property, they have been extensively used in many products such as TVs, computers, foam, plastics etc. The five major classes of BFRs are tetrabromobisphenol-A (TBBPA), hexabromocyclododecane (HBCD), pentabromodiphenyl ether, octabromodiphenyl ether, and decabromodiphenyl ether. The last three are also commonly called PBDEs. BDE-85 and BDE-209 are the two prominent congeners of PBDEs and this study reports the adverse effects of these congeners in rodents. Exposure of rat sciatic nerves to 5 μg/mL and 20 μg/mL of BDE-85 and BDE-209 respectively lead to significant, concentration dependent reduction in nerve conduction function. Glucose absorption in the rat intestinal segments exposed to 5 μg/mL of BDE-85 and BDE-209 was significantly reduced for both the compounds tested. Lastly, mice when exposed to 0.25 mg/kg body weight for four days showed a disruption in oxidant and antioxidant equilibrium. The tissues namely liver and brain have shown increase in the levels of lipid hydroperoxides indicating oxidative stress. Moreover, all the protective enzymes namely superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase, and glutathione S transferase (GST) have shown tissue specific alterations indicating the induction of damaging oxidative stress and setting in of lipid peroxidation in exposed animals. The results indicate monitoring of PBDEs in the environment is essential because levels as low as 5 μg/mL and 0.25 mg/kg body weight were able to cause damage to the functions of rodents.

  7. A background simulation method for cosmogenic nuclides inside HPGe detectors for rare event experiments

    NASA Astrophysics Data System (ADS)

    Su, Jian; Zeng, Zhi; Ma, Hao; Yue, Qian; Cheng, Jianping; Li, Jin

    2014-11-01

    Cosmogenic nuclides inside germanium detectors contribute background noise spectra quite different from ordinary external sources. We propose and discuss a nuclide decay and level transition model based on graph theory to understand the background contribution of the decay of cosmogenic nuclides inside a germanium crystal. In this work, not only the level transition process, but the detector response time was also taken into consideration to decide whether or not to apply coincidence summing-up. We simulated the background spectrum of the internal cosmogenic nuclides in a germanium detector, and found some unique phenomena caused by the coincidence summing-up effect in the simulated spectrum. Thus, the background spectrum of each cosmogenic nuclide can be quantitatively obtained.

  8. The bromine content of micrometeorites - Arguments for stratospheric contamination

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1993-01-01

    Bromine-salt nanocrystals are associated with a porous chondritic micrometeorite (W7029E5) that was collected in the lower stratosphere. These salt nanocrystals occur together with volcanic Na and K salt nanocrystals embedded in sulfuric acid droplets that were originally adhered to the particle. These materials were concentrated during hexane rinsing as part of routine curation procedures at the NASA Johnson Space Center Cosmic Dust Curatorial Facility. This observation is fortuitous to the extent that the concentration of nanocrystals and sulfuric acid is an experimental artifact of curation. If bromine is a stratospheric contaminant due to surface adsorption, there should be a positive linear relationship between the mass-normalized residence time and bromine content of individual micrometeorites. I show that the predicted correlation exists using a new model to calculate the stratospheric residence time of individual nonspherical micrometeorites in the slow-settling Wilson-Huang regime of the stratosphere.

  9. The chemistry of atmospheric bromine. [catalyst for ozone destruction

    NASA Technical Reports Server (NTRS)

    Wofsy, S. C.; Mcelroy, M. B.; Yung, Y. L.

    1975-01-01

    Bromine may act as a catalyst for recombination of ozone and could be more efficient than either nitric oxide or chlorine. The lower atmosphere contains small concentrations of gaseous bromine produced in part by marine activity and volatilization of particulate material released during the combustion of leaded gasoline, with an additional contribution due to the use of methyl bromide as an agricultural fumigant. Observations by Lazrus et al., (1975) indicate small concentrations of bromine, about 10 to the -11th power (v/v), in the contemporary stratosphere and appear to imply a reduction of approximately 0.3% in the global budget of O3. Estimates are given for future reductions in O3 which might occur if the use of CH3Br as an agricultural fumigant were to continue to grow at present rates.

  10. Formation of short-lived radionuclides in the protoplanetary disk during late-stage irradiation of a volatile-rich reservoir

    SciTech Connect

    Jacobsen, B; Matzel, J; Hutcheon, I D; Krot, A N; Yin, Q -; Nagashima, K; Ramon, E; Weber, P; Ishii, H; Ciesla, F

    2010-11-30

    The origin of short-lived (t{sub 1/2} < 5 Myr) and now extinct radionuclides ({sup 10}Be, {sup 26}Al, {sup 36}Cl, {sup 41}Ca, {sup 53}Mn, {sup 60}Fe; hereafter SLRs) is fundamental to understanding the formation of the early solar system. Two distinct classes of models have been proposed to explain the origin of SLRs: (1) injection from a nearby stellar source (e.g., supernova, asymptotic giant branch star or Wolf-Rayet star) and (2) solar energetic particle irradiation of dust and gas near the proto-Sun. Recent studies have demonstrated that {sup 36}Cl was extant in the early solar system. However, its presence, initial abundance and the noticeable decoupling from {sup 26}Al raise serious questions about the origin of SLRs. Here we report {sup 36}Cl-{sup 36}S and {sup 26}Al-{sup 26}Mg systematics for wadalite and grossular, secondary minerals in a calcium-aluminum-rich inclusion (CAI) from the CV chondrite Allende that allow us to reassess the origin of SLRs. The inferred abundance of {sup 36}Cl in wadalite, corresponding to a {sup 36}Cl/{sup 35}Cl ratio of (1.81 {+-} 0.13) x 10{sup -5}, is the highest {sup 36}Cl abundance reported in any early solar system material. The high level of {sup 36}Cl in wadalite and the absence of {sup 26}Al ({sup 26}Al/{sup 27}Al {le} 3.9 x 10{sup -6}) in co-existing grossular indicates that (1) {sup 36}Cl formed by late-stage solar energetic particle irradiation and (2) the production of {sup 36}Cl, recorded by secondary minerals, is unrelated to the origin of {sup 26}Al and other SLRs ({sup 10}Be, {sup 53}Mn) recorded by primary minerals of CAIs and chondrules. We conclude that 36Cl was produced by solar energetic particle irradiation of a volatile-rich reservoir in an optically thin protoplanetary disk adjacent to the accretion region of the CV chondrite parent asteroid.

  11. 40 CFR 180.519 - Bromide ion and residual bromine; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Bromide ion and residual bromine... Tolerances § 180.519 Bromide ion and residual bromine; tolerances for residues. (a) General. The food additives, bromide ion and residual bromine, may be present in water, potable in accordance with...

  12. 40 CFR 180.519 - Bromide ion and residual bromine; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Bromide ion and residual bromine... Tolerances § 180.519 Bromide ion and residual bromine; tolerances for residues. (a) General. The food additives, bromide ion and residual bromine, may be present in water, potable in accordance with...

  13. 40 CFR 180.519 - Bromide ion and residual bromine; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Bromide ion and residual bromine... Tolerances § 180.519 Bromide ion and residual bromine; tolerances for residues. (a) General. The food additives, bromide ion and residual bromine, may be present in water, potable in accordance with...

  14. 40 CFR 180.519 - Bromide ion and residual bromine; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Bromide ion and residual bromine... Tolerances § 180.519 Bromide ion and residual bromine; tolerances for residues. (a) General. The food additives, bromide ion and residual bromine, may be present in water, potable in accordance with...

  15. Method and apparatus for maintaining the pH in zinc-bromine battery systems

    DOEpatents

    Grimes, Patrick G.

    1985-09-10

    A method and apparatus for maintaining the pH level in a zinc-bromine battery features reacting decomposition hydrogen with bromine in the presence of a catalyst. The catalyst encourages the formation of hydrogen and bromine ions. The decomposition hydrogen is therefore consumed, alloying the pH of the system to remain substantially at a given value.

  16. 40 CFR 721.775 - Brominated aromatic com-pound (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... as a brominated aromatic compound (PMN P-84-824) is subject to reporting under this section for the... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Brominated aromatic com-pound (generic... Specific Chemical Substances § 721.775 Brominated aromatic com-pound (generic name). (a)...

  17. Metabolic products of microorganisms. 258. Enzymatic bromination of nikkomycin Z.

    PubMed

    Decker, H; Pfefferle, U; Bormann, C; Zähner, H; Fiedler, H P; Van Pée, K H; Rieck, M; König, W A

    1991-06-01

    Two brominated nikkomycins were produced by enzymatic halogenation of nikkomycin Z in the presence of a nonheme bromoperoxidase isolated from Streptomyces aureofaciens Tü 24. The monobrominated and dibrominated nikkomycin Z derivatives were substituted at the hydroxypyridyl moiety of the N-terminal amino acid of nikkomycin Z at position C-6"' (ZBr) or C-4"' and C-6"' (ZBr2). The brominated nikkomycin Z derivatives had a decreased affinity to chitin synthase of Coprinus cinereus as compared to nikkomycin Z and exhibited a low inhibitory activity towards various fungi and yeasts.

  18. The metabolism and de-bromination of bromotyrosine in vivo

    PubMed Central

    Mani, Ali R.; Moreno, José C.; Visser, Theo J.; Moore, Kevin P.

    2016-01-01

    During inflammation, leukocyte-derived eosinophil peroxidase catalyses the formation of hypobromous acid, which can brominate tyrosine residues in proteins to form bromotyrosine. Since eosinophils are involved in the pathogenesis of allergic reactions, such as asthma, urinary bromotyrosine level has been used for the assessment of children with asthma. However, little is known about the metabolism and disposition of bromotyrosine in vivo. The aim of this study was to identify the major urinary metabolites formed during bromotyrosine metabolism and to develop mass spectrometric methods for their quantitation. Deuterium-labeled bromotyrosine was synthesized by deuterium exchange. [D3]bromotyrosine (500 nmole) was injected intraperitoneally into Sprague-Dawley rats and urine was collected for 24 h in a metabolic cage. 13C-labeled derivatives of bromotyrosine and its major urinary metabolite were synthesized and used as internal standards for quantitation. Following solid phase extraction, urine samples were derivatized to the pentafluorobenzyl ester, and analyzed using isotope dilution gas chromatography and negative-ion chemical ionization mass spectrometry. A novel brominated metabolite, 3-bromo-4-hydroxyphenylacetic acid (bromo-HPA), was identified as the major brominated metabolite of bromotyrosine. Bromo-HPA only accounted for 0.43±0.04% of infused [D3]bromotyrosine and 0.12±0.02% of infused [D3]bromotyrosine was excreted in the urine unchanged. However, ~1.3% (6.66±1.33 nmole) of infused [D3]bromotyrosine was excreted in the urine as the de-brominated metabolite, [D3]4-hydroxyphenylacetic acid, which is also a urinary metabolite of tyrosine in mammals. We also tested whether or not iodotyrosine dehalogenase can catalyse de-bromination of bromotyrosine and showed that iodotyrosine dehalogenase is able to de-brominate free bromotyrosine in vitro. We identified bromo-HPA as the main brominated urinary metabolite of bromotyrosine in rats. However, de

  19. Sensing and inactivation of Bacillus anthracis Sterne by polymer-bromine complexes.

    PubMed

    D'Angelo, Paola A; Bromberg, Lev; Hatton, T Alan; Wilusz, Eugene

    2016-08-01

    We report on the performance of brominated poly(N-vinylpyrrolidone) (PVP-Br), brominated poly(ethylene glycol) (PEG-Br), and brominated poly(allylamine-co-4-aminopyridine) (PAAm-APy-Br) for their ability to decontaminate Bacillus anthracis Sterne spores in solution while also allowing for the sensing of the spores. The polymers were brominated by bromine using carbon tetrachloride or potassium tribromide as solvents, with bromine loadings ranging from 1.6 to 4.2 mEq/g of polymer. B. anthracis Sterne spores were exposed to increasing concentrations of brominated polymers for 5 min, while the kinetics of the sporicidal activity was assessed. All brominated polymers demonstrated spore log-kills of 8 within 5 min of exposure at 12 mg/mL aqueous polymer concentration. Sensing of spores was accomplished by measuring the release of dipicolinic acid (DPA) from the spore using time-resolved fluorescence. Parent, non-brominated polymers did not cause any release of DPA and the spores remained viable. In contrast, spores exposed to the brominated polymers were inactivated and the release of DPA was observed within minutes of exposure. Also, this release of DPA continued for a long time after spore inactivation as in a controlled release process. The DPA release was more pronounced for spores exposed to brominated PVP and brominated PEG-8000 compared to brominated PAAm-APy and brominated PEG-400. Using time-resolved fluorescence, we detected as low as 2500 B. anthracis spores, with PEG-8000 being more sensitive to low spore numbers. Our results suggest that the brominated polymers may be used effectively as decontamination agents against bacterial spores while also providing the sensing capability. PMID:27087522

  20. Sensing and inactivation of Bacillus anthracis Sterne by polymer-bromine complexes.

    PubMed

    D'Angelo, Paola A; Bromberg, Lev; Hatton, T Alan; Wilusz, Eugene

    2016-08-01

    We report on the performance of brominated poly(N-vinylpyrrolidone) (PVP-Br), brominated poly(ethylene glycol) (PEG-Br), and brominated poly(allylamine-co-4-aminopyridine) (PAAm-APy-Br) for their ability to decontaminate Bacillus anthracis Sterne spores in solution while also allowing for the sensing of the spores. The polymers were brominated by bromine using carbon tetrachloride or potassium tribromide as solvents, with bromine loadings ranging from 1.6 to 4.2 mEq/g of polymer. B. anthracis Sterne spores were exposed to increasing concentrations of brominated polymers for 5 min, while the kinetics of the sporicidal activity was assessed. All brominated polymers demonstrated spore log-kills of 8 within 5 min of exposure at 12 mg/mL aqueous polymer concentration. Sensing of spores was accomplished by measuring the release of dipicolinic acid (DPA) from the spore using time-resolved fluorescence. Parent, non-brominated polymers did not cause any release of DPA and the spores remained viable. In contrast, spores exposed to the brominated polymers were inactivated and the release of DPA was observed within minutes of exposure. Also, this release of DPA continued for a long time after spore inactivation as in a controlled release process. The DPA release was more pronounced for spores exposed to brominated PVP and brominated PEG-8000 compared to brominated PAAm-APy and brominated PEG-400. Using time-resolved fluorescence, we detected as low as 2500 B. anthracis spores, with PEG-8000 being more sensitive to low spore numbers. Our results suggest that the brominated polymers may be used effectively as decontamination agents against bacterial spores while also providing the sensing capability.

  1. Cosmic-ray interactions and dating of meteorite stranding surfaces with cosmogenic nuclides

    SciTech Connect

    Reedy, R.C.

    1988-01-01

    A wide variety of products from cosmic-ray interactions have been measured in terrestrial or extraterrestrial samples. These ''cosmogenic'' products include radiation damage tracks and rare nuclides that are made by nuclear reactions. They often have been used to determine the fluxes and composition of cosmic-ray particles in the past, but they are usually used to study the history of the ''target'' (such as the time period that it was exposed to cosmic-ray particles). Products made by both the high-energy galactic cosmic rays and energetic particles emitted irregularly from the Sun have been extensively studied. Some of these cosmogenic products, especially nuclides, have been or can be applied to studies of Antarctic meteorite stranding surfaces, the ice surfaces in Antarctica where meteorites have been found. Cosmogenic nuclides studied in samples from Antarctica and reported by others elsewhere in this volume include those in meteorites, especially radionuclides used to determine terrestrial ages, and those made in situ in terrestrial rocks. Cosmogenic nuclides made in the Earth's atmosphere or brought in with cosmic dust have also been studied in polar ice, and it should also be possible to measure nuclides made in situ in ice. As an introduction to cosmogenic nuclides and their applications, cosmic rays and their interactions will be presented below and production systematics of cosmogenic nuclides in these various media will be discussed later. 20 refs., 2 tabs.

  2. Oxygen isotopic and geochemical evidence for a short-lived, high-temperature hydrothermal event in the Chegem caldera, Caucasus Mountains, Russia

    NASA Astrophysics Data System (ADS)

    Gazis, Carey; Taylor, Hugh P.; Hon, Ken; Tsvetkov, Andrei

    1996-10-01

    Within the 2.8 Ma Chegem ash-flow caldera (11 × 15 km), a single cooling unit of rhyolitic to dacitic welded tuff more than 2 km thick is exposed in deep valleys incised during recent rapid uplift of the Caucasus Mountains. The intracaldera tuff is mineralogically fresh and unaltered, and is overlain by andesite lavas and cut by a resurgent granodiorite intrusion. Major- and trace-element compositions for a 1405-m stratigraphic section of intracaldera tuff display trends of upwardly increasing Na 2O, CaO, A1 2O 3, total Fe, MgO, TiO 2, Sr and Zr and decreasing SiO 2, K 2O and Rb. This mafic-upward zoning (from 76.1 to 69.9% SiO 2) reflects an inverted view of the upper part of the source magma chamber. Oxygen isotope studies of 35 samples from this 1405-m section define a striking profile with "normal" igneous δ18O values (+7.0 to +8.5) in the lower 600 m of tuff, much lower δ18O values (-4.0 to +4.3) in a 700-m zone above that and a shift to high δ18O values (+4.4 to +10.9) in the upper 100 m of caldera-fill exposure. Data from two other partial stratigraphic sections indicate that these oxygen isotope systematics are probably a caldera-wide phenomenon. Quartz and feldspar phenocrysts everywhere have "normal" igneous δ18O values of about +8.5 and +7.5, respectively, whereas groundmass and glass δ18O values range from -7.7 to +12.3. Consequently, the δ18O values of coexisting feldspar, groundmass and glass form a steep array in a plot of δfeldspar vs. δgroundmss/glass. Such pronounced disequilibrium between coexisting feldspar and groundmass or glass has never before been observed on this scale. It requires a hydrothermal event involving large amounts of low- 18O H 2O at sufficiently high temperatures and short enough time (tens of years or less) that glass exchanges thoroughly but feldspar does not. The most likely process responsible for the 18O depletions at Chegem is a very high temperature (500-600 °C), short-lived, vigorous meteoric

  3. Assessing and modeling sediment mobility in estuarine and coastal settings due to extreme climate events from natural short-lived isotope distribution

    NASA Astrophysics Data System (ADS)

    Ghaleb, Bassam; Hillaire-Marcel, Claude; Ruiz Fernandez, Ana-Carolina; Sanchez Cabeza, Joan-Albert

    2016-04-01

    Climatic events (e.g. floods, storminess) and management activities (e.g. dredging) may result in the burial or removal and re-suspension of sediments in estuaries and coastal areas. When such sediments are contaminated, such processes may either help restoring better chemical environments or lead to their long-term contamination. Geochemical signatures in surface sediments may help identifying such sedimentological events. However, short-lived isotope data are generally required to set time-constraints on their occurrence. Whereas 210Pb and radioactive fallout isotope contents can help setting time constraints at ~50 to ~100 yr-time scales, natural disequilibria in the 232Th-228Ra-228Th sequence do provide information on processes which occurred within the last 30 yrs, as illustrated in the present study. Box-cored sediments from the Saguenay Fjord and lower estuary of the St. Lawrence (Canada) as well as from estuaries and lagoons from the Sinaloa Coast (Mexico) are used to document the behavior of these isotopes either under relatively steady conditions (St. Lawrence estuary) or under high-frequency extreme climate events (storms and floods; Saguenay Fjord, Coastal Sinaloa). 228Th/232Th activity ratios were determined by chemical extraction of Th and alpha counting of unspiked samples, rapidly after sampling (228Th/232Th). The activity of the intermediate isotope 228Ra was then estimated based on replicate measurements on aliquot samples made a few years later. Under steady conditions, core-top sediment shows an excess in 228Th vs 232Th (AR ~ 1.6), whereas the intermediate 228Ra depicts a deficit vs its parent 232Th (AR ~0.6). Downcore, radioactive decay carries rapidly 228Th-activities to those of the parent 228Ra within about 10 yrs (i.e., ~ 5 half-lives of 228Th), then both move during the next ~20 yrs (~ i.e., ~ 5 half-lives of 228Ra, when added to the 10 yrs of 228Th-excess) towards secular equilibrium with the parent long-lived 232Th. A few algorithms

  4. Oxygen isotopic and geochemical evidence for a short-lived, high-temperature hydrothermal event in the Chegem caldera, Caucasus Mountains, Russia

    USGS Publications Warehouse

    Gazis, C.; Taylor, H.P.; Hon, K.; Tsvetkov, A.

    1996-01-01

    Within the 2.8 Ma Chegem ash-flow caldera (11 ?? 15 km), a single cooling unit of rhyolitic to dacitic welded tuff more than 2 km thick is exposed in deep valleys incised during recent rapid uplift of the Caucasus Mountains. The intracaldera tuff is mineralogically fresh and unaltered, and is overlain by andesite lavas and cut by a resurgent granodiorite intrusion. Major- and trace-element compositions for a 1405-m stratigraphic section of intracaldera tuff display trends of upwardly increasing Na2O, CaO, Al2O3, total Fe, MgO, TiO2, Sr and Zr and decreasing SiO2, K2O and Rb. This mafic-upward zoning (from 76.1 to 69.9% SiO2) reflects an inverted view of the upper part of the source magma chamber. Oxygen isotope studies of 35 samples from this 1405-m section define a striking profile with "normal" igneous ??18O values (+7.0 to +8.5) in the lower 600 m of tuff, much lower ??18O values (-4.0 to +4.3) in a 700-m zone above that and a shift to high ??18O values (+4.4 to -10.9) in the upper 100 m of caldera-fill exposure. Data from two other partial stratigraphic sections indicate that these oxygen isotope systematics are probably a caldera-wide phenomenon. Quartz and feldspar phenocrysts everywhere have "normal" igneous ??18O values of about +8.5 and +7.5, respectively, whereas groundmass and glass ??18O values range from -7.7 to +12.3. Consequently, the ??18O values of coexisting feldspar, groundmass and glass form a steep array in a plot of ??feldspar vs. ??groundmass/glass. Such pronounced disequilibrium between coexisting feldspar and groundmass or glass has never before been observed on this scale. It requires a hydrothermal event involving large amounts of low-18O H2O at sufficiently high temperatures and short enough time (tens of years or less) that glass exchanges thoroughly but feldspar does not. The most likely process responsible for the O depletions at Chegem is a very high temperature (500-600??C), short-lived, vigorous meteoric-hydrothermal event that was

  5. Synthesis and Antiviral Activity of Quercetin Brominated Derivatives.

    PubMed

    Karimova, Elza; Baltina, Lidia; Spirikhin, Leonid; Gabbasov, Tagir; Orshanskaya, Yana; Zarubaev, Vladimir

    2015-09-01

    Reaction of quercetin (QR) (1) with bromine under various conditions was studied. Interaction of QR with 2-3 equiv. of bromine in glacial acetic acid at 35-40°C for 2-4 h and 20-22°C for 24 h led to the formation of QR 6,8-dibromide (2) (52-54% yields, 96-98% purity by HPLC). Interaction of QR with 2-5 equiv. bromine in absolute ethanol at 0-5°C and 20-22°C for 24 h led to the formation of 3-O-ethyl-QR-2,3,6,8,5'-pentabromide (3) (95-97% purity by HPLC) the output of which depends on the quantity of bromine. It was shown in MDCK cell culture that compound 2 exhibits a moderate inhibitory activity against pandemic influenza virus A/H1N1/pdm09 (EC50 6.0 µg/mL, CTD50 97.7 µg/mL, SI 16). Compound 3 was inactive.

  6. Regiodefined synthesis of brominated hydroxyanthraquinones related to proisocrinins

    PubMed Central

    Roy, Joyeeta; Mal, Tanushree; Jana, Supriti

    2016-01-01

    Summary Dibromobenzoisofuranone 12, synthesized in six steps, was regiospecifically annulated with 5-substituted cyclohexenones 13/36 in the presence of LiOt-Bu to give brominated anthraquinones 14/38 in good yields. Darzens condensation of 30 was shown to give chain-elongated anthraquinone 32. Alkaline hydrolysis of 38 furnished 39 representing desulfoproisocrinin F. PMID:27340445

  7. ENHANCED FORMATION OF CHLORINATED PICS BY THE ADDITION OF BROMINE

    EPA Science Inventory

    A systematic series of experiments were performed on a pilot-scale rotary kiln incinerator simulator in which liquid surrogate wastes containing varied levels of chlorine and bromine were burned. The surrogate wastes used were a series of mixtures of methylene chloride and methyl...

  8. Estimation of the residual bromine concentration after disinfection of cooling water by statistical evaluation.

    PubMed

    Megalopoulos, Fivos A; Ochsenkuehn-Petropoulou, Maria T

    2015-01-01

    A statistical model based on multiple linear regression is developed, to estimate the bromine residual that can be expected after the bromination of cooling water. Make-up water sampled from a power plant in the Greek territory was used for the creation of the various cooling water matrices under investigation. The amount of bromine fed to the circuit, as well as other important operational parameters such as concentration at the cooling tower, temperature, organic load and contact time are taken as the independent variables. It is found that the highest contribution to the model's predictive ability comes from cooling water's organic load concentration, followed by the amount of bromine fed to the circuit, the water's mean temperature, the duration of the bromination period and finally its conductivity. Comparison of the model results with the experimental data confirms its ability to predict residual bromine given specific bromination conditions.

  9. Estimation of the residual bromine concentration after disinfection of cooling water by statistical evaluation.

    PubMed

    Megalopoulos, Fivos A; Ochsenkuehn-Petropoulou, Maria T

    2015-01-01

    A statistical model based on multiple linear regression is developed, to estimate the bromine residual that can be expected after the bromination of cooling water. Make-up water sampled from a power plant in the Greek territory was used for the creation of the various cooling water matrices under investigation. The amount of bromine fed to the circuit, as well as other important operational parameters such as concentration at the cooling tower, temperature, organic load and contact time are taken as the independent variables. It is found that the highest contribution to the model's predictive ability comes from cooling water's organic load concentration, followed by the amount of bromine fed to the circuit, the water's mean temperature, the duration of the bromination period and finally its conductivity. Comparison of the model results with the experimental data confirms its ability to predict residual bromine given specific bromination conditions. PMID:25560260

  10. Emissions of Bromine and Iodine from the Marine Environment in New Zealand

    NASA Astrophysics Data System (ADS)

    Martinez-Aviles, M.; Kreher, K.; Johnston, P. V.; Hay, T.; Thomas, A.; Schofield, R.

    2009-12-01

    As noted in the WMO/UNEP Scientific Assessment of Ozone Depletion: 2006, halogenated very short-lived substances (VSLS) contribute to the atmospheric budget of halogens and thereby lead to substantial decreases in ozone and increases in surface UV radiation in the tropics and mid-latitudes. Halogenated VSLS are primarily of natural origin; oceanic emissions constitute the largest source providing 90-95% of the total global flux to the atmosphere. Macro algae in the ocean appear to be an important source of polyhalogenated VSLS. Oxidation of halogenated VSLS in the atmosphere (i.e. photolysis and reactions with OH) produces halogen oxide radicals (e.g. ClO, BrO, IO) which have been suggested as the main component of gas-phase halogens. Countries with long coastlines and little land suitable for forestation are investigating the possibility of industrial scale marine kelp farming as a means of carbon sequestration. This marine analogy of the Kyoto Protocol forest has been thought as a means to contribute to climate change mitigation. Knowledge of how natural emissions of VSLS will respond to both the drivers of climate change (e.g. changes in CO2 and land use) and to the consequences of climate change (e.g. changes in sea surface temperature and wind stress) is very limited. As a result, it is imperative that observational studies are performed to quantify the contributions of these natural VSLS to halogen loading in the troposphere and, subsequently, in the stratosphere. For this, transport and degradation processes of the source gases and product gases need to be studied and quantified. A key question surfacing from the WMO Assessment is to what extent halogenated VSLS contribute to atmospheric Bry and Iy. During a field campaign conducted during the spring of 2009, measurements of BrO and IO were made along the coastline of the South Island of New Zealand using a portable Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) spectrometer with the aim

  11. Regolith history from cosmic-ray-produced nuclides

    NASA Technical Reports Server (NTRS)

    Fireman, E. L.

    1974-01-01

    A model is given for regolith development by which the meteoroid impact parameters (time of last major impact, soil escape rate, and soil turnover depths) are determined from the Gd isotope data for the Apollo 15 and 16 drill stems. The time of the last major impact, cosmic-ray-produced-nuclide-clock reset time, at the Apollo 15 site is 0.6-1.3 aeon. The reset time at the Apollo 16 site is between 1.54 plus or minus 0.14 and 3.3-4.0 aeon. The average soil escape rate from the moon corresponding to the 1.54 plus or minus 0.14 aeon reset time is between 70 and 110 cm/aeon and corresponding to the 3.3 and 4.0 aeon reset time is between 36 and 56 cm/aeon. The soil turnover depth for the 1.54 plus or minus 0.14 aeon reset time is 250 cm and for the 3.3-4.0 aeon reset time is 750 cm. The Gd data restrict the change with time of the meteoroid flux during the past 1.4 aeon.

  12. Production and Recoil Loss of Cosmogenic Nuclides in Presolar Grains

    NASA Astrophysics Data System (ADS)

    Trappitsch, Reto; Leya, Ingo

    2016-05-01

    Presolar grains are small particles that condensed in the vicinity of dying stars. Some of these grains survived the voyage through the interstellar medium (ISM) and were incorporated into meteorite parent bodies at the formation of the Solar System. An important question is when these stellar processes happened, i.e., how long presolar grains were drifting through the ISM. While conventional radiometric dating of such small grains is very difficult, presolar grains are irradiated with galactic cosmic rays (GCRs) in the ISM, which induce the production of cosmogenic nuclides. This opens the possibility to determine cosmic-ray exposure (CRE) ages, i.e., how long presolar grains were irradiated in the ISM. Here, we present a new model for the production and loss of cosmogenic 3He, 6,7Li, and 21,22Ne in presolar SiC grains. The cosmogenic production rates are calculated using a state-of-the-art nuclear cross-section database and a GCR spectrum in the ISM consistent with recent Voyager data. Our findings are that previously measured 3He and 21Ne CRE ages agree within the (sometimes large) 2σ uncertainties and that the CRE ages for most presolar grains are smaller than the predicted survival times. The obtained results are relatively robust since interferences from implanted low-energy GCRs into the presolar SiC grains and/or from cosmogenic production within the meteoroid can be neglected.

  13. Detection of landscape transience using cosmogenic nuclides and topography

    NASA Astrophysics Data System (ADS)

    Mudd, S. M.

    2015-12-01

    Upland landscapes are frequently perturbed by changing tectonics and climate, which can lead to temporally and spatially varying erosion rates. Hillslopes and channels respond to these changes with different rates, and the dissonance between hillslope and channel response times can be exploited to gain information about the nature and timing of landscape transience. I explore the limits to which differences between channel and hillslope processes can be used to detect transience. Slowing channel erosion rates are difficult to detect, whereas increased erosion rates can be detected if erosion rates more than double. Signals of transient erosion driven by upslope propagation of channel incision can persist for thousands to tens of thousands of years; the time perturbations can be detected is proportional to the square of the hillslope length and the inverse of the hillslope sediment transport coefficient. Climate driven ("top down") and tectonic driven ("bottom up") have different responses to transient perturbation, and lead to different sediment flux responses that are reflected in basinwide cosmogenic nuclide concentrations. Climate driven perturbations are mirrored in cosmogenic concentrations leaving basins whereas tectonic perturbations tend to be averaged when estimated from basinwide cosmogenics.

  14. Modified microspheres for cleaning liquid wastes from radioactive nuclides

    SciTech Connect

    Danilin, Lev; Drozhzhin, Valery

    2007-07-01

    An effective solution of nuclear industry problems related to deactivation of technological and natural waters polluted with toxic and radioactive elements is the development of inorganic sorbents capable of not only withdrawing radioactive nuclides, but also of providing their subsequent conservation under conditions of long-term storage. A successful technical approach to creation of sorbents can be the use of hollow aluminosilicate microspheres. Such microspheres are formed from mineral additives during coal burning in furnaces of boiler units of electric power stations. Despite some reduction in exchange capacity per a mass unit of sorbents the latter have high kinetic characteristics that makes it possible to carry out the sorption process both in static and dynamic modes. Taking into account large industrial resources of microspheres as by-products of electric power stations, a comparative simplicity of the modification process, as well as good kinetic and capacitor characteristics, this class of sorbents can be considered promising enough for solving the problems of cleaning liquid radioactive wastes of various pollution levels. (authors)

  15. Analysis of nuclide production in the MEGAPIE target

    NASA Astrophysics Data System (ADS)

    Konobeyev, A. Yu.; Fischer, U.; Zanini, L.

    2009-07-01

    MEGAPIE, the first liquid metal target irradiated by a proton beam at the MW power level, was successfully operated in 2006. A continuous beam of 575 MeV protons with a current up to 1.35 mA irradiated the liquid lead-bismuth target placed in the SINQ target location at PSI (Switzerland) for a period of 4 months. The activation of the lead-bismuth irradiated in MEGAPIE has been investigated. Experimental cross-sections and evaluated data available for neutron- and proton-induced reaction cross-sections at incident energies from 10 -5 eV to 600 MeV, and results of nuclear model calculations have been used to obtain nuclear reaction rates. Calculated nuclide and gas production rates are compared with calculations using the MCNPX and FLUKA Monte Carlo codes. The total activation of the LBE agrees well with the other codes. Discrepancies with FLUKA and MCNPX are mainly in two mass regions, where experimental data are scarce: the region 30< A<50, and the region 140< A<170. The results obtained can be used for the further study of the safe operation of liquid heavy metal targets of Accelerator-Driven Systems and spallation neutron sources and for the definition of the priorities in the development of evaluated nuclear data libraries at intermediate nucleon energies.

  16. Engineering refinements to overcome default nuclide regulatory constraints

    NASA Astrophysics Data System (ADS)

    Finn, R.; Capitelli, P.; Sheh, Y.; Lom, C.; Graham, M.; Germain, J. St.

    2005-12-01

    The "classical" positron emitting radionuclides include oxygen-15, nitrogen-13 and carbon-11 which possess unique properties for medical imaging. They are radionuclides of the fundamental elements of biological matter. They each possess short half-lives which allow their use in designed radiotracers for clinical investigations with minimal risk and they are readily able to be produced in sufficient activities by low energy nuclear reactions. At present several accelerator manufacturers offer production packages for these radionuclides emphasizing targetry with consideration of the cyclotron extracted energies for nuclide production and on-line chemistry systems for the continuous production of specific precursors or radiotracers. Following the installation and acceptance of the MSKCC TR 19/9 Cyclotron, our experience with the procured chemistry module for the preparation of oxygen-15 labeled water has forced us to examine the design and the operation of the synthetic unit with a view toward the state of New York's regulations addressing the environmental pollution from radioactive materials. The chemistry module was refined with subtle modifications to the chemistry procedure/unit and our experience with the unit is presented as an example of our approach to insure regulatory compliance.

  17. Environmental release and behavior of brominated flame retardants.

    PubMed

    Watanabe, Isao; Sakai, Shin-ichi

    2003-09-01

    Recently, environmental problems relating to brominated flame retardants (BFRs) have become a matter of greater concern than ever before, because of the recent marked increase in levels of polybrominated diphenyl ethers (PBDEs) found in human milk in Sweden and North America. The question that arises is whether environmental levels of PBDEs and other BFRs will continue to increase, causing toxic effects to humans. In an attempt to elucidate the current state of the science of BFRs, we review the consumer demand for BFRs (mainly in Japan), the characteristics of waste flame-retarded products, sources of emission, environmental behavior, routes of exposure of humans, temporal trends, and thermal-breakdown products of BFRs. At present, flame-retarded consumer products manufactured 10-20 years ago, when PBDEs were frequently used, are being dumped. The possible major sources of emission of BFRs into the environment are effluent and flue gases from BFR factories and other facilities processing BFRs. With respect to the environmental behavior of BFRs, the lower brominated compounds are, on the whole, predicted to be more volatile, more water soluble, and more bioaccumulative than the higher brominated compounds. The most probable route for exposure of the general human population to PBDEs, especially the lower brominated congeners, is through the diet. The release of BFRs from consumer products treated with these compounds could also lead to human exposure. Temporal trends in PBDE levels in the environment and in humans worldwide seem to vary considerably, depending on the regions or country, with possible reflections of the historic and current use of PBDEs. The environment and the general human population are also exposed to the thermal-breakdown products of PBDEs, such as polybrominated and mixed brominated/chlorinated dibenzo-p-dioxins and dibenzofurans (PBDDs/DFs and mixed PXDDs/DFs).

  18. Brominated and chlorinated dioxins, PCBs and brominated flame retardants in Scottish shellfish: methodology, occurrence and human dietary exposure.

    PubMed

    Fernandes, Alwyn; Dicks, Pamela; Mortimer, David; Gem, Martin; Smith, Frankie; Driffield, Malcolm; White, Shaun; Rose, Martin

    2008-02-01

    The most commonly consumed shellfish species produced in Scotland - mussels, oysters and scallops - were investigated for the occurrence of a range of brominated and chlorinated contaminants in order to establish current levels and estimate human dietary exposure. Flesh from individual sub-samples was representatively pooled and 35 composites were analysed for brominated and chlorinated dioxins (PBDD/Fs, PCDD/Fs), brominated and chlorinated biphenyls (PBBs, PCBs), polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDs) and tetrabromobisphenol A (TBBPA). The analytical methodology used (13)C(12) labelled surrogates of the target compounds, with GC coupled to (usually) high resolution MS, and LC-MS/MS for HBCD and TBBPA analysis. Positive identifications were made in the majority of samples for most analytes with the exception of TBBPA and most PBDD congeners measured. None of the levels detected for PCDD/F and PCB were above the maximum permitted levels specified in European Union regulations. The levels of brominated furans predominated over brominated dioxins, reflecting the environmental distribution and source emission profiles of these contaminants, and relatively high levels of the tri-brominated congeners were observed. Levels of the flame retardant chemicals reflected current and legacy use, with appreciable concentrations of PBDEs and HBCDs (predominantly alpha-HBCD) but far lower levels of PBBs. TBBPA was not detected in any of the species. In general, mussels and oysters displayed relatively higher levels of contamination than scallops, although the gonad tissue of the latter showed significant levels of brominated dioxins. The estimated adult dietary intakes of PCDD/Fs and PCBs arising from the consumption of a typical portion of these foods in combination with an otherwise average UK diet were in the range 0.5-0.6 pg World Health Organisation (WHO)-toxic equivalent (TEQ)(2005)/kg bodyweight per day. These estimated dietary intakes are

  19. Phase II Nuclide Partition Laboratory Study Influence of Cellulose Degradation Products on the Transport of Nuclides from SRS Shallow Land Burial Facilities

    SciTech Connect

    Serkiz, S.M.

    1999-10-04

    Degradation products of cellulosic materials (e.g., paper and wood products) can significantly influence the subsurface transport of metals and radionuclides. Codisposal of radionuclides with cellulosic materials in the E-Area slit trenches at the Savannah River Site (SRS) is, therefore, expected to influence nuclide fate and transport in the subsurface. Due to the complexities of these systems and the scarcity of site-specific data, the effects of cellulose waste loading and its subsequent influence on nuclide transport are not well established.

  20. Recommended Partition Coefficient (Kd) Values for Nuclide Partitioning in the Presence of Cellulose Degradation Products

    SciTech Connect

    Serkiz, S.M.

    2001-02-23

    This report documents the data analysis of the results of the described laboratory studies in order to recommend Kd values for use in Performance Assessment modeling of nuclide transport in the presence of CDP.

  1. "Sand bar" of actinoid and neighboring elements in a chart of nuclides.

    PubMed

    Yoshihara, K; Sekine, T

    1982-03-01

    Inspection of a chart of nuclides reveals a "sand bar" of actinoid and neighboring elements when a suitable half-life level is chosen. A bay of alpha-instability lying between the nuclides of neutron magic number 126 and the beta-stability line in the actinoid group is a characteristic feature in this area. Calculation shows that fairly good agreement is obtained between the measured half-lives and those derived theoretically.

  2. Measurements of Cosmogenic Nuclides in and their Significance for Samples Returned from Asteroids

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Herzog, G. F.; Reedy, R. C.

    2000-01-01

    Nuclear interactions of cosmic rays with matter produce cosmogenic nuclides (CNs). Ever since they were first measured nearly 50 years ago, cosmogenic nuclides have been used to infer the irradiation histories of terrestrial and extraterrestrial materials. Here we call for an extension of such measurements to samples returned from an asteroidal surface. The information gained in this way will be important for elucidating the evolution of the asteroidal surface. Additional information is contained in the original extended abstract.

  3. Investigation of Naturally Occurring Radio Nuclides in Shir-kuh Granites

    SciTech Connect

    Mazarei, Mohammad Mehdi; Zarei, Mojtaba

    2011-12-26

    One of the principle natural radiation resources is Granite which can be dangerous for human because of its radiations. Based on this fact, in this research we attempt to specify the activity amount of these natural radio nuclides, existing in Shir-kuh Granite of Yazd state. To specify the activity amount of this natural radio nuclides, it has been applied the measurement method of Gamma spectroscopy using high purity Germanium (HPGe) detector.

  4. Addressing nuclides not in the CAP88-PC Version-3 library.

    PubMed

    McNaughton, Michael; Brock, Burgandy; Eisele, William; Fuehne, David; Green, Andrew; Whicker, Jeffrey

    2013-08-01

    Versions of the computer program, CAP88, are widely used to calculate the radiological doses from radionuclides emitted into the air. CAP88-PC Version-3 includes an extensive library of radionuclides, but there are many more that are not included. Surrogates are often used to substitute for nuclides not in the library, though the results are usually overestimates. This paper addresses nuclides that are not in the library and describes methods to obtain more accurate results.

  5. Using airborne in-situ measurements of brominated hydrocarbons in the Western Pacific to improve the understanding of atmospheric halogen loading.

    NASA Astrophysics Data System (ADS)

    Sala, S.; Bönisch, H.; Keber, T.; Engel, A.

    2012-04-01

    In this work, we present measurement data from the field campaign "SHIVA - Stratospheric Halogens in a Varying Atmosphere". One part of this campaign was the deployment of the German research aircraft "Falcon" in the Western Pacific at Miri/Malaysia, performing research flights from the boundary layer up to 11km altitude. The dataset we present was obtained by a total amount of sixteen local flights in the area of Borneo in November and December 2011. Onboard the aircraft we used a sophisticated in-situ GC/MS system operated in negative chemical ionization mode for the fast analysis of halogenated hydrocarbons in ambient air. Halogenated hydrocarbons play a major role as precursors for stratospheric ozone depletion. Released from the surface in the troposphere, the halocarbons reach the stratosphere via transport through the Tropical Tropopause Layer (TTL). Measurements of stratospheric BrO indicate an existing gap between the abundance of long lived brominated halocarbons, such as Halons and methyl bromide (CH3Br), and the abundance of inorganic bromine in the stratosphere. Recently, it has been realized that in addition to these long-lived substances so called very short-lived substances (VSLS) can also contribute significantly to the stratospheric halogen loading. The VSLS have lifetimes less than half a year and are predominantly emitted from climate-sensitive natural sources, e.g. marine macro-algae. A main source region for those emissions is the Western Pacific where sea surface temperatures are high and air masses from the surface can be transported rapidly into the TTL by deep convective systems. Our main goal during SHIVA was to improve the understanding of emissions, atmospheric transport and the chemical degradation of halogenated VSLS. Detailed measurements in the boundary layer as well as data from survey flights in the free upper troposphere are used to deflect a local budget bromine species in this tropical region. Measurements in areas of

  6. Substrate Directed Regioselective Monobromination of Aralkyl Ketones Using N-Bromosuccinimide Catalysed by Active Aluminium Oxide: α-Bromination versus Ring Bromination

    PubMed Central

    Mohan, Reddy Bodireddy; Reddy, G. Trivikram; Gangi Reddy, N. C.

    2014-01-01

    Bromination of aralkyl ketones using N-bromosuccinimide in presence of active Al2O3 provided either α-monobrominated products in methanol at reflux or mononuclear brominated products in acetonitrile at reflux temperature with excellent isolated yields depending on the nature of substrate employed. The α-bromination was an exclusive process when aralkyl ketones containing moderate activating/deactivating groups were subjected to bromination under acidic Al2O3 conditions in methanol at reflux while nuclear functionalization was predominant when aralkyl ketones containing high activating groups were utilized for bromination in presence of neutral Al2O3 conditions in acetonitrile at reflux temperature. In addition, easy isolation of products, use of inexpensive catalyst, short reaction time (10–20 min), and safe operational practice are the major benefits in the present protocol. PMID:24955257

  7. The Effects of Acute Restraint Stress on Plasma Levels of Prolactin and Corticosterone across Life-History Stages in a Short-Lived Bird: Gambel's White-Crowned Sparrow (Zonotrichia leucophrys gambelii).

    PubMed

    Krause, Jesse S; Meddle, Simone L; Wingfield, John C

    2015-01-01

    The general reproductive effort model attempts to predict the resources that will be allocated to a current reproductive bout or to future survival by aborting the current reproductive attempt. Life-history theory predicts that short-lived species should devote more resources toward a reproductive event because brood value is far greater compared with that of long-lived species that have multiple breeding opportunities. Previous bird studies have used patterns of hormone secretion to understand the regulation of parental investment in response to environmental challenges, such as stress. The two key hormones investigated have been prolactin, which promotes parental investment, and corticosterone, which can reduce parental investment. Research on long-lived seabirds showed that prolactin levels decrease in response to a stressor, but the magnitude of the decline was positively correlated with future reproductive potential. However, little is known about the role of prolactin in short-lived species. Here we present prolactin and corticosterone data from a short-lived Arctic breeding, migratory songbird-the white-crowned sparrow, Zonotrichia leucophrys gambelii-at multiple stages of the breeding and nonbreeding seasons following standardized acute restraint stress. These data show that both prolactin and corticosterone are modulated seasonally. Corticosterone levels increased significantly in response to acute restraint stress during the breeding season in both sexes, but prolactin levels did not change in response to acute restraint stress at any stage of the annual cycle. We found no relationship between corticosterone or prolactin at either baseline or peak induced levels during any stage of breeding.

  8. Isotope shifts of the 6d{sup 2} D{sub 3/2}-7 p{sup 2} P{sub 1/2} transition in trapped short-lived {sup 209-214}Ra{sup +}

    SciTech Connect

    Giri, G. S.; Versolato, O. O.; Berg, J. E. van den; Boell, O.; Dammalapati, U.; Hoek, D. J. van der; Jungmann, K.; Kruithof, W. L.; Mueller, S.; Nunez Portela, M.; Onderwater, C. J. G.; Santra, B.; Timmermans, R. G. E.; Wansbeek, L. W.; Willmann, L.; Wilschut, H. W.

    2011-08-15

    Laser spectroscopy of short-lived radium isotopes in a linear Paul trap has been performed. The isotope shifts of the 6d{sup 2} D{sub 3/2} -7 p{sup 2} P{sub 1/2} transition in {sup 209-214}Ra{sup +}, which are sensitive to the short-range part of the atomic wave functions, were measured. The results are essential experimental input for improving the precision of atomic structure calculations. This is indispensable for parity violation in Ra{sup +} aiming at the determination of the weak mixing angle.

  9. Anion binding, electrochemistry and solvatochromism of β-brominated oxoporphyrinogens.

    PubMed

    Webre, Whitney A; Hill, Jonathan P; Matsushita, Yoshitaka; Karr, Paul A; Ariga, Katsuhiko; D'Souza, Francis

    2016-03-01

    Effects of macrocycle bromination on the structural, electrochemical and anion binding properties of 5,10,15,20-tetrakis(3,5-di-t-butyl-4-oxo-cyclohexa-2,5-dienylidene)porphyrinogen, OxP, are reported. Bromination of 5,10,15,20-tetrakis(3,5-di-t-butyl-4-hydroxyphenyl)-porphinatocopper(II), [T(DtBHP)P]Cu(II) yielded β-Br8OxP, which was N-alkylated to β-Br8OxPBz2 and β-Br8OxPBz4 (where Bz = 4-bromobenzyl). β-Br8OxPBz2 crystallizes in orthorhombic space group Pccn [a = 23.5535(17) Å, b = 19.3587(14) Å c = 20.9760(15) Å, V = 9564.3(12) Å3]. It has a calix[4]pyrrole-like structure with a saddle conformation and two molecules of methanol occupy a central binding site made up of the non-alkylated pyrrole N–H groups. Computational and electrochemical studies revealed widening HOMO–LUMO band gaps for the brominated compounds over the non-brominated analogues consistent with the observed hypsochromic shifts in electronic absorption spectra. Solvatochromic and chromogenic effects on anion binding were both observed for β-Br8OxP and β-Br8OxPBz2 with binding affinities of anions being greater than those observed for the corresponding OxP and OxPBz2. Colorimetric sensor studies suggest that the OxP compounds reported here are possible candidates for use in the design of optoelectronic noses for detection of anions and anionic analyte species of biological interest. PMID:26841138

  10. Eosinophils generate brominating oxidants in allergen-induced asthma

    PubMed Central

    Wu, Weijia; Samoszuk, Michael K.; Comhair, Suzy A.A.; Thomassen, Mary Jane; Farver, Carol F.; Dweik, Raed A.; Kavuru, Mani S.; Erzurum, Serpil C.; Hazen, Stanley L.

    2000-01-01

    Eosinophils promote tissue injury and contribute to the pathogenesis of allergen-triggered diseases like asthma, but the chemical basis of damage to eosinophil targets is unknown. We now demonstrate that eosinophil activation in vivo results in oxidative damage of proteins through bromination of tyrosine residues, a heretofore unrecognized pathway for covalent modification of biologic targets in human tissues. Mass spectrometric studies demonstrated that 3-bromotyrosine serves as a specific “molecular fingerprint” for proteins modified through the eosinophil peroxidase-H2O2 system in the presence of plasma levels of halides. We applied a localized allergen challenge to model the effects of eosinophils and brominating oxidants in human lung injury. Endobronchial biopsy specimens from allergen-challenged lung segments of asthmatic, but not healthy control, subjects demonstrated significant enrichments in eosinophils and eosinophil peroxidase. Baseline levels of 3-bromotyrosine in bronchoalveolar lavage (BAL) proteins from mildly allergic asthmatic individuals were modestly but not statistically significantly elevated over those in control subjects. After exposure to segmental allergen challenge, lung segments of asthmatics, but not healthy control subjects, exhibited a >10-fold increase in BAL 3-bromotyrosine content, but only two- to threefold increases in 3-chlorotyrosine, a specific oxidation product formed by neutrophil- and monocyte-derived myeloperoxidase. These results identify reactive brominating species produced by eosinophils as a distinct class of oxidants formed in vivo. They also reveal eosinophil peroxidase as a potential therapeutic target for allergen-triggered inflammatory tissue injury in humans. PMID:10811853

  11. Elemental Bromine Production by TiO2 Photocatalysis and/or Ozonation.

    PubMed

    Parrino, Francesco; Camera Roda, Giovanni; Loddo, Vittorio; Palmisano, Leonardo

    2016-08-22

    Significant production of elemental bromine (Br2 ) was observed for the first time when treating bromide containing solutions at acidic pH, with TiO2 photocatalyst, ozone, or a combination thereof. Br2 selectivities up to approximately 85 % were obtained and the corresponding bromine mass balance values satisfied. The process is general and may be applied at a laboratory scale for green bromination reactions, or industrially as a cheap, safe, and environmentally sustainable alternative to the currently applied bromine production methods. PMID:27461437

  12. Bromination of hydrocarbons with CBr4, initiated by light-emitting diode irradiation

    PubMed Central

    Ohtani, Bunsho; Kikushima, Kotaro

    2013-01-01

    Summary The bromination of hydrocarbons with CBr4 as a bromine source, induced by light-emitting diode (LED) irradiation, has been developed. Monobromides were synthesized with high efficiency without the need for any additives, catalysts, heating, or inert conditions. Action and absorption spectra suggest that CBr4 absorbs light to give active species for the bromination. The generation of CHBr3 was confirmed by NMR spectroscopy and GC–MS spectrometry analysis, indicating that the present bromination involves the homolytic cleavage of a C–Br bond in CBr4 followed by radical abstraction of a hydrogen atom from a hydrocarbon. PMID:24062826

  13. Specific heat of pristine and brominated graphite fibers, composites and HOPG. [Highly Oriented Pyrolytic Graphite

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Chen; Maciag, Carolyn

    1987-01-01

    Differential scanning calorimetry was used to obtain specific heat values of pristine and brominated P-100 graphite fibers and brominated P-100/epoxy composite as well as pristine and brominated highly oriented pyrolytic graphite (HOPG) for comparison. Based on the experimental results obtained, specific heat values are calculated for several different temperatures, with a standard deviation estimated at 1.4 percent of the average values. The data presented here are useful in designing heat transfer devices (such as airplane de-icing heaters) from bromine fibers.

  14. Elemental Bromine Production by TiO2 Photocatalysis and/or Ozonation.

    PubMed

    Parrino, Francesco; Camera Roda, Giovanni; Loddo, Vittorio; Palmisano, Leonardo

    2016-08-22

    Significant production of elemental bromine (Br2 ) was observed for the first time when treating bromide containing solutions at acidic pH, with TiO2 photocatalyst, ozone, or a combination thereof. Br2 selectivities up to approximately 85 % were obtained and the corresponding bromine mass balance values satisfied. The process is general and may be applied at a laboratory scale for green bromination reactions, or industrially as a cheap, safe, and environmentally sustainable alternative to the currently applied bromine production methods.

  15. Characterization of nuclide inventories in waste streams from nuclear power plants

    SciTech Connect

    Oppermann, U.; Mueller, W.

    1993-12-31

    Producers of radioactive waste are increasingly required to characterize the nuclide specific activity inventory of their wastes to demonstrate compliance with the acceptance criteria of interim storages or repositories for the final disposal of radioactive wastes. Nuclide specific characterization of activity inventories for nuclides that are hard to measure in nuclear power plant wastes in general is based on calculations by fixed correlations to easy measurable intense {gamma}-emitters (key nuclides). This method is establish within a CEC project for LWR waste streams from four European countries. First experiences from this project in comparison to data from the US and to earlier evaluations for German LWRs are presented. The applicability of the method is discussed with regard to the measurability of radiologically relevant nuclides comparability between different reactor systems and waste streams, and the availability of the necessary data. All topics are illustrated by examples for individual correlations. Conclusions are drawn for the degree of necessary differentiation and the main factors responsible for these differences.

  16. Extinct nuclides - much ado about nothing. [Abundance in early solar system

    SciTech Connect

    Wasserburg, G.J.

    1985-06-01

    Attention is given to the status of research on short lived nuclei, whose importance is considerable despite their essential absence (outside cosmic ray products) in virtue of their place in the theoretical understanding of broader cosmological problems. It is presently suggested that they are a key to the earliest processes in solar system formation, and may furnish a link with presolar processes in the interstellar medium or in the intense activity of the early sun. 71 references.

  17. Accelerator experiments on the contribution of secondary particles to the production of cosmogenic nuclides in meteorites

    NASA Technical Reports Server (NTRS)

    Dragovitsch, P.; Englert, P.

    1985-01-01

    Through the interaction of galactic cosmic particle radiation (GCR) a wide variety of cosmogenic nuclides is produced in meteorites. They provide historical information about the cosmic radiation and the bombarded meteorites. An important way to understand the production mechanisms of cosmogenic nuclides in meteorites is to gather information about the depth and size dependence of the build-up of Galactic Rays Cosmic-secondary particles within meteorites of different sizes and chemical compositions. Simulation experiments with meteorite models offer an alternative to direct observation providing a data basis to describe the development and action of the secondary cascade induced by the GCR in meteorites.

  18. Applications of in situ cosmogenic nuclides in the geologic site characterization of Yucca Mountain, Nevada

    SciTech Connect

    Gosse, J.C.; Harrington, C.D.; Whitney, J.W.

    1995-12-31

    The gradual buildup of rare isotopes from interactions between cosmic rays and atoms in an exposed rock provides a new method of directly determining the exposure age of rock surfaces. The cosmogenic nuclide method can also provide constraints on erosion rates and the length of time surface exposure was interrupted by burial. Numerous successful applications of the technique have been imperative to the complete surface geologic characterization of Yucca Mountain, Nevada, a potential high level nuclear waste repository. In this short paper, we summarize the cosmogenic nuclide method and describe with examples some the utility of the technique in geologic site characterization. We report preliminary results from our ongoing work at Yucca Mountain.

  19. Reprocessing system with nuclide separation based on chromatography in hydrochloric acid solution

    SciTech Connect

    Suzuki, Tatsuya; Tachibana, Yu; Koyama, Shi-ichi

    2013-07-01

    We have proposed the reprocessing system with nuclide separation processes based on the chromatographic technique in the hydrochloric acid solution system. Our proposed system consists of the dissolution process, the reprocessing process, the minor actinide separation process, and nuclide separation processes. In the reprocessing and separation processes, the pyridine resin is used as a main separation media. It was confirmed that the dissolution in the hydrochloric acid solution is easily achieved by the plasma voloxidation and by the addition of oxygen peroxide into the hydrochloric acid solution.

  20. Apparatus and method for quantitatively evaluating total fissile and total fertile nuclide content in samples

    DOEpatents

    Caldwell, John T.; Kunz, Walter E.; Cates, Michael R.; Franks, Larry A.

    1985-01-01

    Simultaneous photon and neutron interrogation of samples for the quantitative determination of total fissile nuclide and total fertile nuclide material present is made possible by the use of an electron accelerator. Prompt and delayed neutrons produced from resulting induced fissions are counted using a single detection system and allow the resolution of the contributions from each interrogating flux leading in turn to the quantitative determination sought. Detection limits for .sup.239 Pu are estimated to be about 3 mg using prompt fission neutrons and about 6 mg using delayed neutrons.