Science.gov

Sample records for short-pulse excited dielectric

  1. Theory of suppressing avalanche process of carrier in short pulse laser irradiated dielectrics

    SciTech Connect

    Deng, Hongxiang; Zu, Xiaotao; Zheng, WG; Yuan, XD; Xiang, Xia; Sun, Kai; Gao, Fei

    2014-05-28

    A theory for controlling avalanche process of carrier during short pulse laser irradiation is proposed. We show that avalanche process of conduction band electrons (CBEs) is determined by the occupation number of phonons in dielectrics. The theory provides a way to suppress avalanche process and a direct judgment for the contribution of avalanche process and photon ionization process to the generation of CBEs. The obtained temperature dependent rate equation shows that the laser induced damage threshold of dielectrics, e.g., fused silica, increase nonlinearly with the decreases of temperature. Present theory predicts a new approach to improve the laser induced damage threshold of dielectrics.

  2. Time of flight emission spectroscopy of laser produced nickel plasma: Short-pulse and ultrafast excitations

    SciTech Connect

    Smijesh, N.; Chandrasekharan, K.; Joshi, Jagdish C.; Philip, Reji

    2014-07-07

    We report the experimental investigation and comparison of the temporal features of short-pulse (7 ns) and ultrafast (100 fs) laser produced plasmas generated from a solid nickel target, expanding into a nitrogen background. When the ambient pressure is varied in a large range of 10⁻⁶Torr to 10²Torr, the plume intensity is found to increase rapidly as the pressure crosses 1 Torr. Time of flight (TOF) spectroscopy of emission from neutral nickel (Ni I) at 361.9 nm (3d⁹(²D) 4p → 3d⁹(²D) 4s transition) reveals two peaks (fast and slow species) in short-pulse excitation and a single peak in ultrafast excitation. The fast and slow peaks represent recombined neutrals and un-ionized neutrals, respectively. TOF emission from singly ionized nickel (Ni II) studied using the 428.5 nm (3p⁶3d⁸(³P) 4s→ 3p⁶3d⁹ 4s) transition shows only a single peak for either excitation. Velocities of the neutral and ionic species are determined from TOF measurements carried out at different positions (i.e., at distances of 2 mm and 4 mm, respectively, from the target surface) on the plume axis. Measured velocities indicate acceleration of neutrals and ions, which is caused by the Coulomb pull of the electrons enveloping the plume front in the case of ultrafast excitation. Both Coulomb pull and laser-plasma interaction contribute to the acceleration in the case of short-pulse excitation. These investigations provide new information on the pressure dependent temporal behavior of nickel plasmas produced by short-pulse and ultrafast laser pulses, which have potential uses in applications such as pulsed laser deposition and laser-induced nanoparticle generation.

  3. Method to produce a short pulse on rf discharge excitation slab-type carbon dioxide laser

    NASA Astrophysics Data System (ADS)

    Mori, Akira; Suzuki, Kaoru; Nakata, Junji

    1998-10-01

    We propose a novel system to produce the short pulse using a halved confocal of the unstable concave-convex resonator on radio frequency discharge excitation slab type carbon dioxide laser. This method is provided a full reflection concave mirror to have a function of variable curvature which can control using a piezo electric device (PZT). Generally, the slab type laser is directly modulated by applying pulse voltage for pulsation of laser. There is a large capacity and fluctuation of plasma at the transition of pulsation. Consequently, the pulse width is longer than 1.0 micro second and repetitive frequency is less than 10 kilo Hertz. On the other hand, the pulse oscillation by our proposed method has the short pulse width which is 300 nano second and maximum repetitive frequency is about 100 kilo Hertz. We can choose the pulse oscillation or the continuous wave (CW) oscillation at the each condition on same resonator. The peak power at the pulse oscillation is about 12 times as high as that at the CW oscillation.

  4. Aperture excited dielectric antennas

    NASA Technical Reports Server (NTRS)

    Crosswell, W. F.; Chatterjee, J. S.; Mason, V. B.; Tai, C. T.

    1974-01-01

    The results of a comprehensive experimental and theoretical study of the effect of placing dielectric objects over the aperture of waveguide antennas are presented. Experimental measurements of the radiation patterns, gain, impedance, near-field amplitude, and pattern and impedance coupling between pairs of antennas are given for various Plexiglas shapes, including the sphere and the cube, excited by rectangular, circular, and square waveguide feed apertures. The waveguide excitation of a dielectric sphere is modeled using the Huygens' source, and expressions for the resulting electric fields, directivity, and efficiency are derived. Calculations using this model show good overall agreement with experimental patterns and directivity measurements. The waveguide under an infinite dielectric slab is used as an impedance model. Calculations using this model agree qualitatively with the measured impedance data. It is concluded that dielectric loaded antennas such as the waveguide excited sphere, cube, or sphere-cylinder can produce directivities in excess of that obtained by a uniformly illuminated aperture of the same cross section, particularly for dielectric objects with dimensions of 2 wavelengths or less. It is also shown that for certain configurations coupling between two antennas of this type is less than that for the same antennas without dielectric loading.

  5. Optical damage performance measurements of multilayer dielectric gratings for high energy short pulse lasers

    NASA Astrophysics Data System (ADS)

    Alessi, D.; Carr, C. W.; Negres, R. A.; Hackel, R. P.; Stanion, K. A.; Cross, D. A.; Guss, G.; Nissen, J. D.; Luthi, R.; Fair, J. E.; Britten, J. A.; Haefner, C.

    2015-02-01

    We investigate the laser damage resistance of multilayer dielectric (MLD) diffraction gratings used in the pulse compressors for high energy, high peak power laser systems such as the Advanced Radiographic Capability (ARC) Petawatt laser on the National Ignition Facility (NIF). Our study includes measurements of damage threshold and damage density (ρ(Φ)) with picosecond laser pulses at 1053 nm under relevant operational conditions. Initial results indicate that sparse defects present on the optic surface from the manufacturing processes are responsible for damage initiation at laser fluences below the damage threshold indicated by the standard R-on-1 test methods, as is the case for laser damage with nanosecond pulse durations. As such, this study supports the development of damage density measurements for more accurate predictions on the damage performance of large area optics.

  6. Longitudinally excited CO2 laser with tail-free short pulse

    NASA Astrophysics Data System (ADS)

    Uno, Kazuyuki; Dobashi, Kazuma; Akitsu, Tetsuya; Jitsuno, Takahisa

    2014-11-01

    We developed a longitudinally excited CO2 laser with a tail-free short laser pulse. In a discharge tube, two structures were researched. One is a shingle scheme that is constituted of a 45 cm-long discharge tube. Another is a tandem that is constituted of two 30 cm-long discharge tubes connected with an intermediate electrode were used. In gas media, CO2- rich mixture (CO2: N2= 20: 1) was used to reduce a laser pulse tail. The laser system did not require expensive and scarce helium. A fast discharge (<1 μs) in a low gas pressure (<1.8 kPa) produced a tail-free laser pulse with the pulse width of about 100 ns. The single scheme produced an output energy of 4.7 mJ by a charging voltage of -36.3 kV, and the tandem scheme produced an output energy of 9.3 mJ by a charging voltage of -25.2 kV. The tandem scheme produced higher spike pulse by lower voltage than the single scheme. Therefore, the tandem scheme will be effective in longitudinally excited CO2 lasers with simple and compact designs.

  7. Short pulse neutron generator

    DOEpatents

    Elizondo-Decanini, Juan M.

    2016-08-02

    Short pulse neutron generators are described herein. In a general embodiment, the short pulse neutron generator includes a Blumlein structure. The Blumlein structure includes a first conductive plate, a second conductive plate, a third conductive plate, at least one of an inductor or a resistor, a switch, and a dielectric material. The first conductive plate is positioned relative to the second conductive plate such that a gap separates these plates. A vacuum chamber is positioned in the gap, and an ion source is positioned to emit ions in the vacuum chamber. The third conductive plate is electrically grounded, and the switch is operable to electrically connect and disconnect the second conductive plate and the third conductive plate. The at least one of the resistor or the inductor is coupled to the first conductive plate and the second conductive plate.

  8. SHORT PULSE STRETCHER

    DOEpatents

    Branum, D.R.; Cummins, W.F.

    1962-12-01

    >A short pulse stretching circuit capable of stretching a short puise to enable it to be displayed on a relatively slow sweeping oscilloscope is described. Moreover, the duration of the pulse is increased by charging a capacitor through a diode and thereafter discharging the capacitor at such time as is desired. In the circuit the trigger pulse alone passes through a delay line, whereas the main signal passes through the diode only, and results in over-all circuit losses which are proportional to the low losses of the diode only. (AEC)

  9. Short-pulse laser materials processing

    SciTech Connect

    Stuart, B.C.; Perry, M.D.; Myers, B.R.; Banks, P.S.; Honea, E.C.

    1997-06-18

    While there is much that we have learned about materials processing in the ultrashort-pulse regime, there is an enormous amount that we don`t know. How short does the pulse have to be to achieve a particular cut (depth, material, quality)? How deep can you cut? What is the surface roughness? These questions are clearly dependent upon the properties of the material of interest along with the short-pulse interaction physics. From a technology standpoint, we are asked: Can you build a 100 W average power system ? A 1000 W average power system? This proposal seeks to address these questions with a combined experimental and theoretical program of study. Specifically, To develop an empirical database for both metals and dielectrics which can be used to determine the pulse duration and wavelength necessary to achieve a specific machining requirement. To investigate Yb:YAG as a potential laser material for high average power short-pulse systems both directly and in combination with titanium doped sapphire. To develop a conceptual design for a lOOW and eventually 5OOW average power short-pulse system.

  10. Emission Behavior of Crystalline 1,4-Bis(4-phenylthiophene-2-yl)benzene Film Under Optical Excitation with Ultra Short Pulses.

    PubMed

    Mochizuki, Hiroyuki; Kawaguchi, Yoshizo; Sasaki, Fumio; Hotta, Shu

    2016-04-01

    We evaluated emission behaviors of crystallized films of 1,4-bis(5-phenylthiophene-2-yl)benzene (AC5) in detail which was a representative thiophene/phenylene co-oligomer. The crystallized AC5 films were prepared by vapor deposition onto a substrate and thermal treatment. The AC5 films consisted of a crystalline domain with the size of several tens of micrometers. We used femtosecond laser pulses for the excitation of the AC5 films. As a result, the femtosecond laser pulses did not induce re-absorption above excitation energy densities of their laser threshold. The obtained gain value for AC5 crystallized film was large, over 150 cm-1. Furthermore, the emission cross section of the crystallized AC5 film was nearly 10(-16) cm2. PMID:27451614

  11. Electromagnetic Pulses at Short-Pulse Laser Facilities

    SciTech Connect

    Brown, Jr., C G; Throop, A; Eder, D; Kimbrough, J

    2007-08-28

    Electromagnetic Pulse (EMP) is a known issue for short-pulse laser facilities, and will also be an issue for experiments using the advanced radiographic capability (ARC) at the National Ignition Facility (NIF). The ARC diagnostic uses four NIF beams that are compressed to picosecond durations for backlighting ignition capsules and other applications. Consequently, we are working to understand the EMP due to high-energy (MeV) electrons escaping from targets heated by short-pulse lasers. Our approach is to measure EMP in the Titan short-pulse laser at Lawrence Livermore National Laboratory (LLNL) and to employ that data to establish analysis and simulation capabilities. We have installed a wide variety of probes inside and outside the Titan laser chamber. We have high-frequency B-dots and D-dots, a photodiode, and fast current-viewing and integrating current transformers. The probe outputs are digitized by 10 and 20 Gsample/s oscilloscopes. The cables and oscilloscopes are well shielded to reduce noise. Our initial measurement campaign has yielded data useful mainly from hundreds of MHz to several GHz. We currently are supplementing our high-frequency probes with lower-frequency ones to obtain better low-frequency data. In order to establish analysis and simulation capabilities we are modeling the Titan facility using various commercial and LLNL numerical electromagnetic codes. We have simulated EMP generation by having a specified number of electrons leave the target and strike the chamber wall and other components in the chamber. This short impulse of electrons has a corresponding broad spectrum, exciting high-frequency structure in the resulting EMP. In this paper, we present results of our initial measurement campaign and comparisons between the measurements and simulations.

  12. Electromagnetic Pulses at Short-Pulse Laser Facilities

    SciTech Connect

    Brown, C G; Throop, A; Eder, D; Kimbrough, J

    2008-02-04

    Electromagnetic Pulse (EMP) is a known issue for short-pulse laser facilities, and will also be an issue for experiments using the advanced radiographic capability (ARC) at the National Ignition Facility (NIF). The ARC diagnostic uses four NIF beams that are compressed to picosecond durations for backlighting ignition capsules and other applications. Consequently, we are working to understand the EMP due to high-energy (MeV) electrons escaping from targets heated by short-pulse lasers. Our approach is to measure EMP in the Titan short-pulse laser at Lawrence Livermore National Laboratory (LLNL) and to employ that data to establish analysis and simulation capabilities. We have installed a wide variety of probes inside and outside the Titan laser chamber. We have high-frequency B-dot and D-dot probes, a photodiode, and fast current-viewing and integrating current transformers. The probe outputs are digitized by 10 and 20 Gsample/s oscilloscopes. The cables and oscilloscopes are well shielded to reduce noise. Our initial measurement campaign has yielded data useful mainly from several hundreds of MHz to several GHz. We currently are supplementing our high-frequency probes with lower-frequency ones to obtain better low-frequency data. In order to establish analysis and simulation capabilities we are modeling the Titan facility using various commercial and LLNL numerical electromagnetics codes. We have simulated EMP generation by having a specified number of electrons leave the target and strike the chamber wall and other components in the chamber. This short impulse of electrons has a correspondingly broad spectrum, exciting high-frequency structure in the resulting EMP. In this paper, we present results of our initial measurement campaign and comparisons between the measurements and simulations.

  13. Precision short-pulse damage test station utilizing optical parametric chirped-pulse amplification

    SciTech Connect

    Jovanovic, I; Brown, C; Wattellier, B; Nielsen, N; Molander, W; Stuart, B; Pennington, D; Barty, C J

    2004-03-22

    The next generation of high-energy petawatt (HEPW)-class lasers will utilize multilayer dielectric diffraction gratings for pulse compression, due to their high efficiency and high damage threshold for picosecond pulses. The peak power of HEPW lasers will be determined by the aperture and damage threshold of the final dielectric grating in the pulse compressor and final focusing optics. We have developed a short-pulse damage test station for accurate determination of the damage threshold of the optics used on future HEPW lasers. Our damage test station is based on a highly stable, high-beam-quality optical parametric chirped-pulse amplifier (OPCPA) operating at 1053 nm at a repetition rate of 10 Hz. We present the design of our OPCPA system pumped by a commercial Q-switched pump laser and the results of the full system characterization. Initial short-pulse damage experiments in the far field using our system have been performed.

  14. Excitation of Bloch-like surface waves in quasi-crystals and aperiodic dielectric multilayers.

    PubMed

    Koju, Vijay; Robertson, William M

    2016-07-01

    The existence of Bloch surface waves in periodic dielectric multilayer structures with a surface defect is well known. Not yet recognized is that quasi-crystals and aperiodic dielectric multilayers can also support Bloch-like surface waves. In this work, we numerically show the excitation of Bloch-like surface waves in Fibonacci quasi-crystals and Thue-Morse aperiodic dielectric multilayers using the prism coupling method. We report improved surface electric field intensity and penetration depth of Bloch-like surface waves in the air side in such structures compared to their periodic counterparts. PMID:27367064

  15. Short-pulse laser interactions with disordered materials and liquids

    SciTech Connect

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.; Tien, C.L.

    1995-12-31

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regime in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.

  16. Studying the mechanism of micromachining by short pulsed laser

    NASA Astrophysics Data System (ADS)

    Gadag, Shiva

    The semiconductor materials like Si and the transparent dielectric materials like glass and quartz are extensively used in optoelectronics, microelectronics, and microelectromechanical systems (MEMS) industries. The combination of these materials often go hand in hand for applications in MEMS such as in chips for pressure sensors, charge coupled devices (CCD), and photovoltaic (PV) cells for solar energy generation. The transparent negative terminal of the solar cell is made of glass on one surface of the PV cell. The positive terminal (cathode) on the other surface of the solar cell is made of silicon with a glass negative terminal (anode). The digital watches and cell phones, LEDs, micro-lens, optical components, and laser optics are other examples for the application of silicon and or glass. The Si and quartz are materials extensively used in CCD and LED for digital cameras and CD players respectively. Hence, three materials: (1) a semiconductor silicon and transparent dielectrics,- (2) glass, and (3) quartz are chosen for laser micromachining as they have wide spread applications in microelectronics industry. The Q-switched, nanosecond pulsed lasers are most extensively used for micro-machining. The nanosecond type of short pulsed laser is less expensive for the end users than the second type, pico or femto, ultra-short pulsed lasers. The majority of the research work done on these materials (Si, SiO 2, and glass) is based on the ultra-short pulsed lasers. This is because of the cut quality, pin point precision of the drilled holes, formation of the nanometer size microstructures and fine features, and minimally invasive heat affected zone. However, there are many applications such as large surface area dicing, cutting, surface cleaning of Si wafers by ablation, and drilling of relatively large-sized holes where some associated heat affected zone due to melting can be tolerated. In such applications the nanosecond pulsed laser ablation of materials is very

  17. Studying the mechanism of micromachining by short pulsed laser

    NASA Astrophysics Data System (ADS)

    Gadag, Shiva

    The semiconductor materials like Si and the transparent dielectric materials like glass and quartz are extensively used in optoelectronics, microelectronics, and microelectromechanical systems (MEMS) industries. The combination of these materials often go hand in hand for applications in MEMS such as in chips for pressure sensors, charge coupled devices (CCD), and photovoltaic (PV) cells for solar energy generation. The transparent negative terminal of the solar cell is made of glass on one surface of the PV cell. The positive terminal (cathode) on the other surface of the solar cell is made of silicon with a glass negative terminal (anode). The digital watches and cell phones, LEDs, micro-lens, optical components, and laser optics are other examples for the application of silicon and or glass. The Si and quartz are materials extensively used in CCD and LED for digital cameras and CD players respectively. Hence, three materials: (1) a semiconductor silicon and transparent dielectrics,- (2) glass, and (3) quartz are chosen for laser micromachining as they have wide spread applications in microelectronics industry. The Q-switched, nanosecond pulsed lasers are most extensively used for micro-machining. The nanosecond type of short pulsed laser is less expensive for the end users than the second type, pico or femto, ultra-short pulsed lasers. The majority of the research work done on these materials (Si, SiO 2, and glass) is based on the ultra-short pulsed lasers. This is because of the cut quality, pin point precision of the drilled holes, formation of the nanometer size microstructures and fine features, and minimally invasive heat affected zone. However, there are many applications such as large surface area dicing, cutting, surface cleaning of Si wafers by ablation, and drilling of relatively large-sized holes where some associated heat affected zone due to melting can be tolerated. In such applications the nanosecond pulsed laser ablation of materials is very

  18. Status Of The Dielectric Wall Accelerator For Proton Therapy

    SciTech Connect

    Caporaso, George J.; Chen Yujiuan; Watson, James A.; Blackfield, Don T.; Nelson, Scott D.; Poole, Brian R.; Stanley, Joel R.; Sullivan, James S.

    2011-06-01

    The Dielectric Wall Accelerator (DWA) offers the potential to produce a high gradient linear accelerator for proton therapy and other applications. The current status of the DWA for proton therapy will be reviewed. Recent progress in SiC photoconductive switch development will be presented. There are serious beam transport challenges in the DWA arising from short pulse excitation of the wall. Solutions to these transport difficulties will be discussed.

  19. The diagnostics of ultra-short pulse laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Roth, Markus

    2011-09-01

    Since the invention of the laser, coherent light has been used to break down solid or gaseous material and transform it into a plasma. Over the last three decades two things have changed. Due to multiple advancements and design of high power lasers it is now possible to increase the electric and magnetic field strength that pushed the electron motion towards the regime of relativistic plasma physics. Moreover, due to the short pulse duration of the driving laser the underlying physics has become so transient that concepts like thermal equilibrium (even a local one) or spatial isotropy start to fail. Consequently short pulse laser-driven plasmas have become a rich source of new phenomena that we are just about beginning to explore. Such phenomena, like particle acceleration, nuclear laser-induced reactions, the generation of coherent secondary radiation ranging from THz to high harmonics and the production of attosecond pulses have excited an enormous interest in the study of short pulse laser plasmas. The diagnostics of such ultra-short pulse laser plasmas is a challenging task that involves many and different techniques compared to conventional laser-produced plasmas. While this review cannot cover the entire field of diagnostics that has been developed over the last years, we will try to give a summarizing description of the most important techniques that are currently being used.

  20. Mixing Layer Excitation by Dielectric Barrier Discharge Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Ely, Richard; Little, Jesse

    2012-11-01

    The response of a mixing layer with velocity ratio 0.28 to perturbations near the high-speed side (U2=11 m/s, ReL = 0.26 × 106) of its origin from dielectric barrier discharge plasma actuators is studied experimentally. Both alternating current (ac) and nanosecond (ns) pulse driven plasma are investigated in an effort to clarify the mechanisms associated with each technique as well as the more general physics associated with flow control via momentum-based versus thermal actuation. Ac-DBD plasma actuators, which function through electrohydrodynamic effects, are found to generate an increase in mixing layer momentum thickness that is strongly dependent on forcing frequency. Results are qualitatively similar to previous archival literature on the topic employing oscillating flaps. Ns-DBD plasma, which is believed to function through thermal effects, has no measureable influence on the mixing layer profile at similar forcing conditions. In the context of previous archival literature, these results suggest different physical mechanisms govern active control via ac- and ns-DBD plasma actuation and more generally, momentum versus thermal perturbations. Further investigation of these phenomena will be provided through variation of the boundary/mixing layer properties and forcing parameters in the context of spatially and temporally resolved experimental data. Supported by: AFOSR and Raytheon Missile Systems.

  1. The source of THz radiation based on dielectric waveguide excited by sequence of electron bunches

    NASA Astrophysics Data System (ADS)

    Altmark, A. M.; Kanareykin, A. D.

    2016-07-01

    We present a new method for excitation of THz Cherenkov radiation in a dielectric waveguide by relativistic electron bunches. A sequence of bunches generates monochromatic radiation. The frequency of radiation is defined by the distance between the bunches. The studies were carried by using the newly updated BBU-3000 code which permits taking into account a number of additional options: an external quadrupole focusing system, group velocity of the wakefield, and the dielectric material loss factor. In this paper, we present our algorithm for optimizing the number and sequential positions of bunches for generation of narrow band high power THz radiation.

  2. Wakefield Excitation by a Sequence of Electron Bunches in a Rectangular Waveguide Lined with Dielectric Slabs

    NASA Astrophysics Data System (ADS)

    Kiselev, V. A.; Linnik, A. F.; Marshall, T. C.; Onishchenko, I. N.; Onishchenko, N. I.; Sotnikov, G. V.; Uskov, V. V.

    2006-11-01

    A rectangular dielectric-lined metallic structure was studied that has an advantage over a cylindrical structure from the possibility of exciting by a sequence of bunches many equally-spaced modes, thereby building up a larger mode-locked wakefield. A rectangular vacuum copper waveguide was lined with two dielectric slabs, the size of which was calculated to provide resonant excitation of the fundamental LSM mode by a sequence of bunches with repetition frequency f0=2805 MHz, produced by linear resonant electron accelerator (4.5 MeV, number of bunches 6.103, diameter 1cm, duration 60 ps each, distance between bunches 300 ps, number of electrons in each bunch 109). The waveguide has cross section 85 mm × 180 mm, and Teflon (ɛ = 2.1) plates were placed along the smaller sides of the waveguide, their thickness from the calculation being 22 mm. In experiments, the length of the resonator was 535mm. We found that the total wakefield is three times larger than the fundamental mode; thus a greater number of excited modes was excited compared with the cylindrical case, for which this ratio was only 1.5. We found considerably more energy loss of electron bunches for the resonator case compared with the waveguide case.

  3. Long pulse production from short pulses

    DOEpatents

    Toeppen, John S.

    1994-01-01

    A method of producing a long output pulse (SA) from a short pump pulse (P), using an elongated amplified fiber (11) having a doped core (12) that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding 13. A seed beam (S) of the longer wavelength is injected into the core (12) at one end of the fiber (11) and a pump pulse (P) of the shorter wavelength is injected into the cladding (13) at the other end of the fiber (11). The counter-propagating seed beam (S) and pump pulse (P) will produce an amplified output pulse (SA) having a time duration equal to twice the transit time of the pump pulse (P) through the fiber (11) plus the length of the pump pulse (P).

  4. Long pulse production from short pulses

    DOEpatents

    Toeppen, J.S.

    1994-08-02

    A method of producing a long output pulse from a short pump pulse is disclosed, using an elongated amplified fiber having a doped core that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding. A seed beam of the longer wavelength is injected into the core at one end of the fiber and a pump pulse of the shorter wavelength is injected into the cladding at the other end of the fiber. The counter-propagating seed beam and pump pulse will produce an amplified output pulse having a time duration equal to twice the transit time of the pump pulse through the fiber plus the length of the pump pulse. 3 figs.

  5. Cholesteric liquid crystal laser in a dielectric mirror cavity upon band-edge excitation

    NASA Astrophysics Data System (ADS)

    Matsuhisa, Yuko; Huang, Yuhua; Zhou, Ying; Wu, Shin-Tson; Takao, Yuuki; Fujii, Akihiko; Ozaki, Masanori

    2007-01-01

    Low threshold laser action of dye-doped cholesteric liquid crystals (CLCs) is demonstrated using an input circularly polarized light whose handedness is the same as the cholesteric helix of the sample at the high-energy band edge of the reflection band. The mechanism originates from the dramatic increase of the photon density of state at the band edges. We also demonstrate an enhanced laser action of a CLC in a dielectric multilayer cavity. In such a device configuration, the band-edge excitation at high-energy band edge improves the lasing performance not only for the same handedness circularly polarized pump beam as the cholesteric helix but also for the opposite one. It stems from the polarization independence of the dielectric multilayers.

  6. Medical applications of ultra-short pulse lasers

    SciTech Connect

    Kim, B M; Marion, J E

    1999-06-08

    The medical applications for ultra short pulse lasers (USPLs) and their associated commercial potential are reviewed. Short pulse lasers offer the surgeon the possibility of precision cutting or disruption of tissue with virtually no thermal or mechanical damage to the surrounding areas. Therefore the USPL offers potential improvement to numerous existing medical procedures. Secondly, when USPLs are combined with advanced tissue diagnostics, there are possibilities for tissue-selective precision ablation that may allow for new surgeries that cannot at present be performed. Here we briefly review the advantages of short pulse lasers, examine the potential markets both from an investment community perspective, and from the view. of the technology provider. Finally nominal performance and cost requirements for the lasers, delivery systems and diagnostics and the present state of development will be addressed.

  7. Cylindrical short-pulse Child-Langmuir law

    NASA Astrophysics Data System (ADS)

    Koh, Wee Shing

    2005-10-01

    Laser-driven short pulses have been prevalently used in photo-injectors to produce extremely high current densities. If the pulse length of the short-pulse current is less than the transit time across the gap, the space-charge-limiting (SCL) current density of the electron beam exceeds that of the classical long-pulse limit as given by the Child-Langmuir (CL) Law. The 1D short-pulse CL law for a planar electrode has been derived with verification from PIC simulation [1]. The extension to the 2D and 3D models of the short-pulse CL law has also been presented recently [2]. In the long pulse limit, the 2D and 3D CL laws for both planar and cylindrical diodes have also been developed [3]. In this paper, we will present the 1D and 2D short-pulse CL law in the coaxial cylinder configuration for both convergent and divergent flows. The analytical results will be compared with 2D PIC simulation results. [1] 'Ag'ust Valfells et. al. , ``Effects of pulse-length and emitter area in virtual cathode formation in electron guns'', Phys. Plasmas 9, 2377 (2002). [2] W. S. Koh and L. K. Ang, "Two-dimensional Short-Pulse Chid-Langmuir Law", The 32nd International Conference on Plasma Science (ICOPS), N05CH37707, 3P38, pp. 298 (2005).[3] W. S. Koh, et. al., Three-dimensional Child-Langmuir law for hot electron emission, Phys. Plasmas 12, 053107 (2005). Email: elkang@ntu.edu.sg

  8. Electronic excitations in a dielectric continuum solvent with quantum Monte Carlo: Acrolein in water

    NASA Astrophysics Data System (ADS)

    Floris, Franca Maria; Filippi, Claudia; Amovilli, Claudio

    2014-01-01

    We investigate here the vertical n → π* and π → π* transitions of s-trans-acrolein in aqueous solution by means of a polarizable continuum model (PCM) we have developed for the treatment of the solute at the quantum Monte Carlo (QMC) level of the theory. We employ the QMC approach which allows us to work with highly correlated electronic wave functions for both the solute ground and excited states and, to study the vertical transitions in the solvent, adopt the commonly used scheme of considering fast and slow dielectric polarization. To perform calculations in a non-equilibrium solvation regime for the solute excited state, we add a correction to the global dielectric polarization charge density, obtained self consistently with the solute ground-state wave function by assuming a linear-response scheme. For the solvent polarization in the field of the solute in the ground state, we use the static dielectric constant while, for the electronic dielectric polarization, we employ the solvent refractive index evaluated at the same frequency of the photon absorbed by the solute for the transition. This choice is shown to be better than adopting the most commonly used value of refractive index measured in the region of visible radiation. Our QMC calculations show that, for standard cavities, the solvatochromic shifts obtained with the PCM are underestimated, even though of the correct sign, for both transitions of acrolein in water. Only by reducing the size of the cavity to values where more than one electron is escaped to the solvent region, we regain the experimental shift for the n → π* case and also improve considerably the shift for the π → π* transition.

  9. Electronic excitations in a dielectric continuum solvent with quantum Monte Carlo: Acrolein in water

    SciTech Connect

    Floris, Franca Maria Amovilli, Claudio; Filippi, Claudia

    2014-01-21

    We investigate here the vertical n → π{sup *} and π → π{sup *} transitions of s-trans-acrolein in aqueous solution by means of a polarizable continuum model (PCM) we have developed for the treatment of the solute at the quantum Monte Carlo (QMC) level of the theory. We employ the QMC approach which allows us to work with highly correlated electronic wave functions for both the solute ground and excited states and, to study the vertical transitions in the solvent, adopt the commonly used scheme of considering fast and slow dielectric polarization. To perform calculations in a non-equilibrium solvation regime for the solute excited state, we add a correction to the global dielectric polarization charge density, obtained self consistently with the solute ground-state wave function by assuming a linear-response scheme. For the solvent polarization in the field of the solute in the ground state, we use the static dielectric constant while, for the electronic dielectric polarization, we employ the solvent refractive index evaluated at the same frequency of the photon absorbed by the solute for the transition. This choice is shown to be better than adopting the most commonly used value of refractive index measured in the region of visible radiation. Our QMC calculations show that, for standard cavities, the solvatochromic shifts obtained with the PCM are underestimated, even though of the correct sign, for both transitions of acrolein in water. Only by reducing the size of the cavity to values where more than one electron is escaped to the solvent region, we regain the experimental shift for the n → π{sup *} case and also improve considerably the shift for the π → π{sup *} transition.

  10. Electronic excitations in a dielectric continuum solvent with quantum Monte Carlo: acrolein in water.

    PubMed

    Floris, Franca Maria; Filippi, Claudia; Amovilli, Claudio

    2014-01-21

    We investigate here the vertical n → π(*) and π → π(*) transitions of s-trans-acrolein in aqueous solution by means of a polarizable continuum model (PCM) we have developed for the treatment of the solute at the quantum Monte Carlo (QMC) level of the theory. We employ the QMC approach which allows us to work with highly correlated electronic wave functions for both the solute ground and excited states and, to study the vertical transitions in the solvent, adopt the commonly used scheme of considering fast and slow dielectric polarization. To perform calculations in a non-equilibrium solvation regime for the solute excited state, we add a correction to the global dielectric polarization charge density, obtained self consistently with the solute ground-state wave function by assuming a linear-response scheme. For the solvent polarization in the field of the solute in the ground state, we use the static dielectric constant while, for the electronic dielectric polarization, we employ the solvent refractive index evaluated at the same frequency of the photon absorbed by the solute for the transition. This choice is shown to be better than adopting the most commonly used value of refractive index measured in the region of visible radiation. Our QMC calculations show that, for standard cavities, the solvatochromic shifts obtained with the PCM are underestimated, even though of the correct sign, for both transitions of acrolein in water. Only by reducing the size of the cavity to values where more than one electron is escaped to the solvent region, we regain the experimental shift for the n → π(*) case and also improve considerably the shift for the π → π(*) transition.

  11. Unusual magneto-optical behavior induced by local dielectric variations under localized surface plasmon excitations

    NASA Astrophysics Data System (ADS)

    González-Díaz, Juan B.; García-Martín, Antonio; Armelles Reig, Gaspar

    2011-06-01

    We study the effect of global and local dielectric variations on the polarization conversion r ps response of ordered nickel nanowires embedded in an alumina matrix. When considering local changes, we observe a non-monotonous behavior of the r ps, its intensity unusually modified far beyond to what it is expected for a monotonous change of the whole refractive index of the embedding medium. This is related to the local redistribution of the electromagnetic field when a localized surface plasmon is excited. This finding may be employed to develop and improve new biosensing magnetoplasmonic devices.

  12. Unusual magneto-optical behavior induced by local dielectric variations under localized surface plasmon excitations.

    PubMed

    González-Díaz, Juan B; García-Martín, Antonio; Reig, Gaspar Armelles

    2011-01-01

    We study the effect of global and local dielectric variations on the polarization conversion rps response of ordered nickel nanowires embedded in an alumina matrix. When considering local changes, we observe a non-monotonous behavior of the rps, its intensity unusually modified far beyond to what it is expected for a monotonous change of the whole refractive index of the embedding medium. This is related to the local redistribution of the electromagnetic field when a localized surface plasmon is excited. This finding may be employed to develop and improve new biosensing magnetoplasmonic devices.

  13. Oscillatory penetration of near-fields in plasmonic excitation at metal-dielectric interfaces

    PubMed Central

    Lee, S. C.; Kang, J. H.; Park, Q-H.; Krishna, S.; Brueck, S. R. J.

    2016-01-01

    The electric field immediately below an illuminated metal-film that is perforated with a hole array on a dielectric consists of direct transmission and scattering of the incident light through the holes and evanescent near-field from plasmonic excitations. Depending on the size and shape of the hole apertures, it exhibits an oscillatory decay in the propagation direction. This unusual field penetration is explained by the interference between these contributions, and is experimentally confirmed through an aperture which is engineered with four arms stretched out from a simple circle to manipulate a specific plasmonic excitation available in the metal film. A numerical simulation quantitatively supports the experiment. This fundamental characteristic will impact plasmonics with the near-fields designed by aperture engineering for practical applications. PMID:27090841

  14. Fiber Laser Front Ends for High Energy, Short Pulse Lasers

    SciTech Connect

    Dawson, J; Messerly, M; Phan, H; Siders, C; Beach, R; Barty, C

    2007-06-21

    We are developing a fiber laser system for short pulse (1-10ps), high energy ({approx}1kJ) glass laser systems. Fiber lasers are ideal for these systems as they are highly reliable and enable long term stable operation.

  15. Electron current extraction from radio frequency excited micro-dielectric barrier discharges

    SciTech Connect

    Wang, Jun-Chieh; Kushner, Mark J.; Leoni, Napoleon; Birecki, Henryk; Gila, Omer

    2013-01-21

    Micro dielectric barrier discharges (mDBDs) consist of micro-plasma devices (10-100 {mu}m diameter) in which the electrodes are fully or partially covered by dielectrics, and often operate at atmospheric pressure driven with radio frequency (rf) waveforms. In certain applications, it may be desirable to extract electron current out of the mDBD plasma, which necessitates a third electrode. As a result, the physical structure of the m-DBD and the electron emitting properties of its materials are important to its operation. In this paper, results from a two-dimensional computer simulation of current extraction from mDBDs sustained in atmospheric pressure N{sub 2} will be discussed. The mDBDs are sandwich structures with an opening of tens-of-microns excited with rf voltage waveforms of up to 25 MHz. Following avalanche by electron impact ionization in the mDBD cavity, the plasma can be expelled from the cavity towards the extraction electrode during the part of the rf cycle when the extraction electrode appears anodic. The electron current extraction can be enhanced by biasing this electrode. The charge collection can be controlled by choice of rf frequency, rf driving voltage, and permittivity of the dielectric barrier.

  16. Theoretical investigation on nonlinear optical effects in laser trapping of dielectric nanoparticles with ultrafast pulsed excitation.

    PubMed

    Devi, Anita; De, Arijit K

    2016-09-19

    The use of low-power high-repetition-rate ultrafast pulsed excitation in stable optical trapping of dielectric nanoparticles has been demonstrated in the recent past; the high peak power of each pulse leads to instantaneous trapping of a nanoparticle with fast inertial response and the high repetition-rate ensures repetitive trapping by successive pulses However, with such high peak power pulsed excitation under a tight focusing condition, nonlinear optical effects on trapping efficiency also become significant and cannot be ignored. Thus, in addition to the above mentioned repetitive instantaneous trapping, trapping efficiency under pulsed excitation is also influenced by the optical Kerr effect, which we theoretically investigate here. Using dipole approximation we show that with an increase in laser power the radial component of the trapping potential becomes progressively more stable but the axial component is dramatically modulated due to increased Kerr nonlinearity. We justify that the relevant parameter to quantify the trapping efficiency is not the absolute depth of the highly asymmetric axial trapping potential but the height of the potential barrier along the beam propagation direction. We also discuss the optimal excitation parameters leading to the most stable dipole trap. Our results show excellent agreement with previous experiments.

  17. Theoretical investigation on nonlinear optical effects in laser trapping of dielectric nanoparticles with ultrafast pulsed excitation.

    PubMed

    Devi, Anita; De, Arijit K

    2016-09-19

    The use of low-power high-repetition-rate ultrafast pulsed excitation in stable optical trapping of dielectric nanoparticles has been demonstrated in the recent past; the high peak power of each pulse leads to instantaneous trapping of a nanoparticle with fast inertial response and the high repetition-rate ensures repetitive trapping by successive pulses However, with such high peak power pulsed excitation under a tight focusing condition, nonlinear optical effects on trapping efficiency also become significant and cannot be ignored. Thus, in addition to the above mentioned repetitive instantaneous trapping, trapping efficiency under pulsed excitation is also influenced by the optical Kerr effect, which we theoretically investigate here. Using dipole approximation we show that with an increase in laser power the radial component of the trapping potential becomes progressively more stable but the axial component is dramatically modulated due to increased Kerr nonlinearity. We justify that the relevant parameter to quantify the trapping efficiency is not the absolute depth of the highly asymmetric axial trapping potential but the height of the potential barrier along the beam propagation direction. We also discuss the optimal excitation parameters leading to the most stable dipole trap. Our results show excellent agreement with previous experiments. PMID:27661888

  18. Approximate analytical solution for waveguide excitation of a plane dielectric layer by a Gaussian beam at frustrated total internal reflection.

    PubMed

    Serdyuk, Vladimir; Rudnitsky, Anton

    2015-05-01

    We present an approximate 2D asymptotic analytic theory of light field excitation in a plane thin dielectric layer under conditions of frustrated total internal reflection, when an inclined Gaussian beam, falling from a triangular prism, excites a decaying field in air spacing between a prism and a plane dielectric. Ignoring the radiation scattering on the sharp edges of a prism, we have obtained the formulas that allow us to compute spatial structures of an electromagnetic field in every point of space and to estimate the integral efficiency of waveguide mode excitation in a plane dielectric layer and the total energy of a reflected beam. It is shown that the width of an initial Gaussian beam has an effect on waveguide mode intensity. PMID:26366908

  19. Approximate analytical solution for waveguide excitation of a plane dielectric layer by a Gaussian beam at frustrated total internal reflection.

    PubMed

    Serdyuk, Vladimir; Rudnitsky, Anton

    2015-05-01

    We present an approximate 2D asymptotic analytic theory of light field excitation in a plane thin dielectric layer under conditions of frustrated total internal reflection, when an inclined Gaussian beam, falling from a triangular prism, excites a decaying field in air spacing between a prism and a plane dielectric. Ignoring the radiation scattering on the sharp edges of a prism, we have obtained the formulas that allow us to compute spatial structures of an electromagnetic field in every point of space and to estimate the integral efficiency of waveguide mode excitation in a plane dielectric layer and the total energy of a reflected beam. It is shown that the width of an initial Gaussian beam has an effect on waveguide mode intensity.

  20. Microwave short-pulse bed-level detector. Annual report, January 1-December 31, 1981

    SciTech Connect

    Balanis, C.A.; Delauder, D.M.

    1981-01-01

    A short-pulse microwave system for measuring the bed-level within a fluidized-bed combustor, has been designed, built, and laboratory tested on static beds. The system is a short-pulse radar which operates in the frequency region of 6.75 to 10.95 GHz as a time-domain measurement system. Laboratory measurements of static bed-levels, for smooth and corrugated surfaces of metal plates and limestone sand, agree to an average of 2.0% of the actual heights. Additionally, the system was tested with a dielectric thermal protector, which did not compromise the accuracy of the measurements. Analytical models have been formulated to provide insight into the operation of the system on a wide range of simulated targets without the necessity of performing expensive and difficult laboratory experiments. Two formulations have been used to describe electromagnetic scattering by a rough surface as a function of frequency: the space harmonic model and the physical optics model. A reconstruction technique has been devised which uses the scattering models and the spectrum of the transmitted pulse to synthesize the reflected pulse. The data generated by the models compare well to previously published data and to experimental results.

  1. Dynamic analysis of a tunable viscoelastic dielectric elastomer oscillator under external excitation

    NASA Astrophysics Data System (ADS)

    Zhou, Jianyou; Jiang, Liying; Khayat, Roger E.

    2016-02-01

    As a category of soft electroactive materials, dielectric elastomers (DEs) show great potential for the development of tunable oscillators and resonators for actuating and sensing purposes. However, the dynamic performance of these DE-based vibration devices could be very susceptible to external environment (external loads and excitations) and material viscoelasticity of the DEs. Based on the finite-deformation viscoelasticity theory, this work first investigates the frequency tuning process of a viscoelastic DE membrane oscillator. A comparison of the frequency tuning process and the tunable frequency range between a viscoelastic and a purely elastic DE oscillator is presented. Moreover, particular considerations have been given to the nonlinear response of the oscillator to external harmonic excitation. It is found that the displacement transmissibility of the oscillator can also be actively tuned by changing the static voltage applied to the DE membrane. Under harmonic excitation, various vibration patterns of the oscillator could be actively achieved with the application of both static and alternating electric voltage. Simulation results in this work demonstrate that the material viscoelasticity has a significant effect on the electromechanical coupling and the dynamic performance of the DE-based vibration devices.

  2. Transient thermal and nonthermal electron and phonon relaxation after short-pulsed laser heating of metals

    SciTech Connect

    Giri, Ashutosh; Hopkins, Patrick E.

    2015-12-07

    Several dynamic thermal and nonthermal scattering processes affect ultrafast heat transfer in metals after short-pulsed laser heating. Even with decades of measurements of electron-phonon relaxation, the role of thermal vs. nonthermal electron and phonon scattering on overall electron energy transfer to the phonons remains unclear. In this work, we derive an analytical expression for the electron-phonon coupling factor in a metal that includes contributions from equilibrium and nonequilibrium distributions of electrons. While the contribution from the nonthermal electrons to electron-phonon coupling is non-negligible, the increase in the electron relaxation rates with increasing laser fluence measured by thermoreflectance techniques cannot be accounted for by only considering electron-phonon relaxations. We conclude that electron-electron scattering along with electron-phonon scattering have to be considered simultaneously to correctly predict the transient nature of electron relaxation during and after short-pulsed heating of metals at elevated electron temperatures. Furthermore, for high electron temperature perturbations achieved at high absorbed laser fluences, we show good agreement between our model, which accounts for d-band excitations, and previous experimental data. Our model can be extended to other free electron metals with the knowledge of the density of states of electrons in the metals and considering electronic excitations from non-Fermi surface states.

  3. Transient thermal and nonthermal electron and phonon relaxation after short-pulsed laser heating of metals

    NASA Astrophysics Data System (ADS)

    Giri, Ashutosh; Hopkins, Patrick E.

    2015-12-01

    Several dynamic thermal and nonthermal scattering processes affect ultrafast heat transfer in metals after short-pulsed laser heating. Even with decades of measurements of electron-phonon relaxation, the role of thermal vs. nonthermal electron and phonon scattering on overall electron energy transfer to the phonons remains unclear. In this work, we derive an analytical expression for the electron-phonon coupling factor in a metal that includes contributions from equilibrium and nonequilibrium distributions of electrons. While the contribution from the nonthermal electrons to electron-phonon coupling is non-negligible, the increase in the electron relaxation rates with increasing laser fluence measured by thermoreflectance techniques cannot be accounted for by only considering electron-phonon relaxations. We conclude that electron-electron scattering along with electron-phonon scattering have to be considered simultaneously to correctly predict the transient nature of electron relaxation during and after short-pulsed heating of metals at elevated electron temperatures. Furthermore, for high electron temperature perturbations achieved at high absorbed laser fluences, we show good agreement between our model, which accounts for d-band excitations, and previous experimental data. Our model can be extended to other free electron metals with the knowledge of the density of states of electrons in the metals and considering electronic excitations from non-Fermi surface states.

  4. Application of Yb:YAG short pulse laser system

    DOEpatents

    Erbert, Gaylen V.; Biswal, Subrat; Bartolick, Joseph M.; Stuart, Brent C.; Crane, John K.; Telford, Steve; Perry, Michael D.

    2004-07-06

    A diode pumped, high power (at least 20W), short pulse (up to 2 ps), chirped pulse amplified laser using Yb:YAG as the gain material is employed for material processing. Yb:YAG is used as the gain medium for both a regenerative amplifier and a high power 4-pass amplifier. A single common reflective grating optical device is used to both stretch pulses for amplification purposes and to recompress amplified pulses before being directed to a workpiece.

  5. Modeling and simulation of ultra-short pulse amplification

    NASA Astrophysics Data System (ADS)

    Pflaum, Christoph; Hartmann, Rainer; Rahimi, Zhabiz

    2016-03-01

    Ultra-short pulses with high average power are required for a variety of technical and medical applications. Single, multi-pass, and regenerative amplifiers are used, in order to increase the power of ultra-short lasers. Typical laser crystals for such amplifiers include Ti:Sapphire or Yb:YAG laser crystals. Difficulties in the amplification of ultra-short pulses include gain narrowing effects and dispersion effects in the laser crystal. In particular, these complications arise, when a pulse stretcher is needed before amplification of the laser beam. We present a technique to model and simulate the amplification of ultra-short pulses. This technique allows to model both gain narrowing effects and decrease of beam quality caused by amplification of the laser beam. This requires a detailed 3-dimensional simulation of population inversion. Gain narrowing effects are taken into account by analyzing the gain of the spectrum of the laser beam. It is important to distinguish amplifiers with one or only two passes and a regenerative amplifier. These two different kind of amplifiers are modeled by different approaches. A regenerative amplifier is modeled by a set of time dependent rate equations. However, a single pass amplifier is modeled by a set of spatial dependent rate equations. In both cases, a system of rate equations arises from spectral discretization of the laser beam. Detailed simulation results are presented.

  6. Short-pulsed, electric-discharge degradation of toxic and sludge wastes

    SciTech Connect

    Rosocha, L.A.; Bystritskii, V.M.; Wessel, F.J.

    1998-12-01

    This is the final report of a three-year, Directed Research and Development (LDRD) project funded by the Los Alamos National Laboratory (LANL). The project was a collaborative effort with the University of California at Irvine (UCI), which was the lead project performer. Short-pulse, electric-discharge streamers were used to degrade aromatic and chlorinated compounds in water aerosols. An atomizer supplies 10--50 {micro}m aerosol droplets to a discharge chamber containing thin wires that are driven by electric pulses of 50--90 kV amplitude, 50--150 ns pulse duration, and 100 Hz repetition rate. The combination of a high electric field, large H{sub 2}O dielectric constant and atomization provide efficient degradation of organic molecules including: paranitrophenol, di-chlorophenol and perchloroethylene. The specific energy input for degradation of a pollutant molecule depends on the particular compound, its concentration, and the operational parameters of the discharge.

  7. Tunable THz radiation source from dielectric loaded waveguide excited by nonrelativistic electron bunch trains

    NASA Astrophysics Data System (ADS)

    Li, Weiwei; He, Zhigang; Lu, Yalin; Huang, Ruixuan; Liu, Weihao; Jia, Qika; Wang, Lin

    2016-10-01

    We propose a novel scheme to generate a tunable narrow-band THz radiation. In this scheme, a train of laser pulses with THz repetition rate is used to drive a photocathode direct current (DC) gun, leading to the emission of a train of electron bunches. The electron bunch train is subsequently accelerated by the gun field and applied to selectively excite one of the modes in the dielectric loaded waveguide (DLW) structure, which is located downstream the DC gun. Thanks to the tunability of the repetition rate of laser pulses and the gun voltage, a tunable narrow-band THz radiation source can be obtained. This proposed source has the advantages of compactness, robustness and relatively high power.

  8. Exact theory and numeric results for short pulse ionization of simple model atom in one dimension

    NASA Astrophysics Data System (ADS)

    Rokhlenko, A.

    2016-10-01

    Our exact theory for continuous harmonic perturbation of a one dimensional model atom by parametric variations of its potential is generalized for the cases when (a) the atom is exposed to short pulses of an external harmonic electric field and (b) the forcing is represented by short bursts of different shape changing the strength of the binding potential. This work is motivated not only by the wide use of laser pulses for atomic ionization, but also by our earlier study of the same model which successfully described the ionization dynamics in all orders, i.e., the multi-photon processes, though being treated by the non-relativistic Schrödinger equation. In particular, it was shown that the bound atom cannot survive the excitation of its potential caused by any non-zero frequency and amplitude of the continuous harmonic forcing. Our present analysis found important laws of the atomic ionization by short pulses, in particular the efficiency of ionizing this model system and presumably real ones as well.

  9. Short-Pulse Laser-Matter Computational Workshop Proceedings

    SciTech Connect

    Town, R; Tabak, M

    2004-11-02

    For three days at the end of August 2004, 55 plasma scientists met at the Four Points by Sheraton in Pleasanton to discuss some of the critical issues associated with the computational aspects of the interaction of short-pulse high-intensity lasers with matter. The workshop was organized around the following six key areas: (1) Laser propagation/interaction through various density plasmas: micro scale; (2) Anomalous electron transport effects: From micro to meso scale; (3) Electron transport through plasmas: From meso to macro scale; (4) Ion beam generation, transport, and focusing; (5) ''Atomic-scale'' electron and proton stopping powers; and (6) K{alpha} diagnostics.

  10. Short pulse generation by laser slicing at NSLSII

    SciTech Connect

    Yu, L.; Blednykh, A.; Guo, W.; Krinsky, S.; Li, Y.; Shaftan, T.; Tchoubar, O.; Wang, G.; Willeke, F.; Yang, L.

    2011-03-28

    We discuss an upgrade R&D project for NSLSII to generate sub-pico-second short x-ray pulses using laser slicing. We discuss its basic parameters and present a specific example for a viable design and its performance. Since the installation of the laser slicing system into the storage ring will break the symmetry of the lattice, we demonstrate it is possible to recover the dynamical aperture to the original design goal of the ring. There is a rapid growth of ultrafast user community interested in science using sub-pico-second x-ray pulses. In BNL's Short Pulse Workshop, the discussion from users shows clearly the need for a sub-pico-second pulse source using laser slicing method. In the proposal submitted following this workshop, NSLS team proposed both hard x-ray and soft x-ray beamlines using laser slicing pulses. Hence there is clearly a need to consider the R&D efforts of laser slicing short pulse generation at NSLSII to meet these goals.

  11. Making Relativistic Positrons Using Ultra-Intense Short Pulse Lasers

    SciTech Connect

    Chen, H; Wilks, S; Bonlie, J; Chen, C; Chen, S; Cone, K; Elberson, L; Gregori, G; Liang, E; Price, D; Van Maren, R; Meyerhofer, D D; Mithen, J; Murphy, C V; Myatt, J; Schneider, M; Shepherd, R; Stafford, D; Tommasini, R; Beiersdorfer, P

    2009-08-24

    This paper describes a new positron source produced using ultra-intense short pulse lasers. Although it has been studied in theory since as early as the 1970s, the use of lasers as a valuable new positron source was not demonstrated experimentally until recent years, when the petawatt-class short pulse lasers were developed. In 2008 and 2009, in a series of experiments performed at Lawrence Livermore National Laboratory, a large number of positrons were observed after shooting a millimeter thick solid gold target. Up to 2 x 10{sup 10} positrons per steradian ejected out the back of {approx}mm thick gold targets were detected. The targets were illuminated with short ({approx}1 ps) ultra-intense ({approx}1 x 10{sup 20} W/cm{sup 2}) laser pulses. These positrons are produced predominantly by the Bethe-Heitler process, and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. For a wide range of applications, this new laser based positron source with its unique characteristics may complements the existing sources using radioactive isotopes and accelerators.

  12. An integrated CMOS detection system for optical short-pulse

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Gun; Hong, Nam-Pyo; Choi, Young-Wan

    2014-03-01

    We present design of a front-end readout system consisting of charge sensitive amplifier (CSA) and pulse shaper for detection of stochastic and ultra-small semiconductor scintillator signal. The semiconductor scintillator is double sided silicon detector (DSSD) or avalanche photo detector (APD) for high resolution and peak signal reliability of γ-ray or X-ray spectroscopy. Such system commonly uses low noise multichannel CSA. Each CSA in multichannel includes continuous reset system based on tens of MΩ and charge-integrating capacitor in feedback loop. The high value feedback resistor requires large area and huge power consumption for integrated circuits. In this paper, we analyze these problems and propose a CMOS short pulse detection system with a novel CSA. The novel CSA is composed of continuous reset system with combination of diode connected PMOS and 100 fF. This structure has linearity with increased input charge quantity from tens of femto-coulomb to pico-coulomb. Also, the front-end readout system includes both slow and fast shapers for detecting CSA output and preventing pile-up distortion. Shaping times of fast and slow shapers are 150 ns and 1.4 μs, respectively. Simulation results of the CMOS detection system for optical short-pulse implemented in 0.18 μm CMOS technology are presented.

  13. Making relativistic positrons using ultraintense short pulse lasers

    SciTech Connect

    Chen Hui; Wilks, S. C.; Bonlie, J. D.; Chen, S. N.; Cone, K. V.; Elberson, L. N.; Price, D. F.; Schneider, M. B.; Shepherd, R.; Stafford, D. C.; Tommasini, R.; Van Maren, R.; Beiersdorfer, P.; Gregori, G.; Meyerhofer, D. D.; Myatt, J.

    2009-12-15

    This paper describes a new positron source using ultraintense short pulse lasers. Although it has been theoretically studied since the 1970s, the use of lasers as a valuable new positron source was not demonstrated experimentally until recent years, when the petawatt-class short pulse lasers were developed. In 2008 and 2009, in a series of experiments performed at the Lawrence Livermore National Laboratory, a large number of positrons were observed after shooting a millimeter thick solid gold target. Up to 2x10{sup 10} positrons/s ejected at the back of approximately millimeter thick gold targets were detected. The targets were illuminated with short (approx1 ps) ultraintense (approx1x10{sup 20} W/cm{sup 2}) laser pulses. These positrons are produced predominantly by the Bethe-Heitler process and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. For a wide range of applications, this new laser-based positron source with its unique characteristics may complement the existing sources based on radioactive isotopes and accelerators.

  14. Transient Self-Amplified Cerenkov Radiation with a Short Pulse Electron Beam

    SciTech Connect

    Poole, B R; Blackfield, D T; Camacho, J F

    2009-01-22

    An analytic and numerical examination of the slow wave Cerenkov free electron maser is presented. We consider the steady state amplifier configuration as well as operation in the selfamplified spontaneous emission (SASE) regime. The linear theory is extended to include electron beams that have a parabolic radial density inhomogeneity. Closed form solutions for the dispersion relation and modal structure of the electromagnetic field are determined in this inhomogeneous case. To determine the steady state response, a macro-particle approach is used to develop a set of coupled nonlinear ordinary differential equations for the amplitude and phase of the electromagnetic wave, which are solved in conjunction with the particle dynamical equations to determine the response when the system is driven as an amplifier with a time harmonic source. We then consider the case in which a fast rise time electron beam is injected into a dielectric loaded waveguide. In this case, radiation is generated by SASE, with the instability seeded by the leading edge of the electron beam. A pulse of radiation is produced, slipping behind the leading edge of the beam due to the disparity between the group velocity of the radiation and the beam velocity. Short pulses of microwave radiation are generated in the SASE regime and are investigated using particle-in-cell (PIC) simulations. The nonlinear dynamics are significantly more complicated in the transient SASE regime when compared with the steady state amplifier model due to the slippage of the radiation with respect to the beam. As strong self-bunching of the electron beam develops due to SASE, short pulses of superradiant emission develop with peak powers significantly larger than the predicted saturated power based on the steady state amplifier model. As these superradiant pulses grow, their pulse length decreases and forms a series of soliton-like pulses. Comparisons between the linear theory, macro-particle model, and PIC simulations are

  15. Modelling hot electron generation in short pulse target heating experiments

    NASA Astrophysics Data System (ADS)

    Sircombe, N. J.; Hughes, S. J.

    2013-11-01

    Target heating experiments planned for the Orion laser facility, and electron beam driven fast ignition schemes, rely on the interaction of a short pulse high intensity laser with dense material to generate a flux of energetic electrons. It is essential that the characteristics of this electron source are well known in order to inform transport models in radiation hydrodynamics codes and allow effective evaluation of experimental results and forward modelling of future campaigns. We present results obtained with the particle in cell (PIC) code EPOCH for realistic target and laser parameters, including first and second harmonic light. The hot electron distributions are characterised and their implications for onward transport and target heating are considered with the aid of the Monte-Carlo transport code THOR.

  16. Stimulated brillouin backscatter of a short-pulse laser

    SciTech Connect

    Hinkel, D.E.; Williams, E.A.; Berger, R.L.

    1994-11-03

    Stimulated Brillouin backscattering (SBBS) from a short-pulse laser, where the pulse length is short compared to the plasma length, is found to be qualitatively different than in the long pulse regime, where the pulse length is long compared to the plasma length. We find that after an initial transient of order the laser pulse length transit time, the instability reaches a steady state in the variables x{prime} = x {minus} V{sub g}t, t{prime} = t, where V{sub g} is the pulse group velocity. In contrast, SBBS in a long pulse can be absolutely unstable and grows indefinitely, or until nonlinearities intervene. We find that the motion of the laser pulse induces Doppler related effects that substantially modify the backscattered spectrum at higher intensities, where the instability is strongly coupled (i.e. , has a growth rate large compared to the ion acoustic frequency).

  17. Dielectric barrier discharge non-thermal micro-plasma for the excitation and emission spectrometric detection of ammonia.

    PubMed

    Wu, Zhongchen; Chen, Mingli; Li, Ping; Zhu, Qianqian; Wang, Jianhua

    2011-06-21

    Dielectric-barrier discharge (DBD) in argon as a cold source is used for the excitation of gaseous inorganic small molecules at atmospheric pressure. By choosing ammonia as a model molecule, the excitation process and the characteristics of the emission spectra are investigated. The emission spectra are recorded by designing either an open-end or an enclosed DBD excitation/emission source. The enclosed excitation mode effectively eliminates the background emissions arising from the ambient air components, especially those from nitrogen. Two emission lines attributed to the excitation of ammonia, i.e., 326.2 and 336.5 nm, are clearly isolated from the background emission spectra of argon, providing the basis for quantitative analysis. A detection limit of 0.37 ppm is achieved within a linear range of 1.2-35 ppm by monitoring at 326.2 nm. In practice, gaseous samples containing ammonia collected in a public toilet are excited in an enclosed excitation source and the emission at 326.2 nm is monitored for quantitative analysis. An ammonia concentration of 2.4 ppm is derived in the original atmospheric sample, and a spiking recovery of 94.7% is achieved at a 10 ppm ammonia level. This study shows that DBD cold excitation in combination with optical emission spectrometry (OES) offers a promising approach for the detection of ammonia pollution.

  18. Ultra-Short Pulsed Laser Engineered Metal-Glass Nanocomposites

    NASA Astrophysics Data System (ADS)

    Stalmashonak, Andrei; Seifert, Gerhard; Abdolvand, Amin

    Glasses and other dielectrics containing metallic nanoparticles are very promising materials for applications in optoelectronics due to their unique linear and non-linear optical properties. These properties are dominated by the strong surface plasmon resonance (SPR) of the metal nanoparticles. The SPR occurs when the electron and light waves couple with each other at a metal-dielectric interface. These are regarded as the collective oscillation of the nanoparticle (NP) electrons.

  19. New constraints for low-momentum electronic excitations in condensed matter: fundamental consequences from classical and quantum dielectric theory.

    PubMed

    Chantler, C T; Bourke, J D

    2015-11-18

    We present new constraints for the transportation behaviour of low-momentum electronic excitations in condensed matter systems, and demonstrate that these have both a fundamental physical interpretation and a significant impact on the description of low-energy inelastic electron scattering. The dispersion behaviour and characteristic lifetime properties of plasmon and single-electron excitations are investigated using popular classical, semi-classical and quantum dielectric models. We find that, irrespective of constrained agreement to the well known high-momentum and high-energy Bethe ridge limit, standard descriptions of low-momentum electron excitations are inconsistent and unphysical. These observations have direct impact on calculations of transport properties such as inelastic mean free paths, stopping powers and escape depths of charged particles in condensed matter systems. PMID:26490726

  20. New constraints for low-momentum electronic excitations in condensed matter: fundamental consequences from classical and quantum dielectric theory

    NASA Astrophysics Data System (ADS)

    Chantler, C. T.; Bourke, J. D.

    2015-11-01

    We present new constraints for the transportation behaviour of low-momentum electronic excitations in condensed matter systems, and demonstrate that these have both a fundamental physical interpretation and a significant impact on the description of low-energy inelastic electron scattering. The dispersion behaviour and characteristic lifetime properties of plasmon and single-electron excitations are investigated using popular classical, semi-classical and quantum dielectric models. We find that, irrespective of constrained agreement to the well known high-momentum and high-energy Bethe ridge limit, standard descriptions of low-momentum electron excitations are inconsistent and unphysical. These observations have direct impact on calculations of transport properties such as inelastic mean free paths, stopping powers and escape depths of charged particles in condensed matter systems.

  1. Photoconductive Semiconductor Switch Technology for Short Pulse Electromagnetics and Lasers

    SciTech Connect

    Denison, Gary J.; Helgeson, Wesley D.; Hjalmarson, Harold P.; Loubriel, Guillermo M.; Mar, Alan; O'Malley, Martin W.; Zutavern, Fred J.

    1999-08-05

    High gain photoconductive semiconductor switches (PCSS) are being used to produce high power electromagnetic pulses foc (1) compact, repetitive accelerators, (2) ultra-wide band impulse sources, (3) precision gas switch triggers, (4) optically-activated firesets, and (5) high power optical pulse generation and control. High power, sub-nanosecond optical pulses are used for active optical sensors such as compact optical radars and range-gated hallistic imaging systems. Following a brief introduction to high gain PCSS and its general applications, this paper will focus on PCSS for optical pulse generation and control. PCSS technology can be employed in three distinct approaches to optical pulse generation and control: (1) short pulse carrier injection to induce gain-switching in semiconductor lasers, (2) electro-optical Q-switching, and (3) optically activated Q-switching. The most significant PCSS issues for these applications are switch rise time, jitter, and longevity. This paper will describe both the requirements of these applications and the most recent results from PCSS technology. Experiments to understand and expand the limitations of high gain PCSS will also be described.

  2. Airborne profiling of ice thickness using a short pulse radar

    NASA Technical Reports Server (NTRS)

    Vickers, R. S.; Heighway, J. E.; Gedney, R.

    1973-01-01

    The acquisition and interpretation of ice thickness data from a mobile platform has for some time been a goal of the remote sensing community. Such data, once obtainable, is of value in monitoring the changes in ice thickness over large areas, and in mapping the potential hazards to traffic in shipping lanes. Measurements made from a helicopter-borne ice thickness profiler of ice in Lake Superior, Lake St. Clair and the St. Clair river as part of NASA's program to develop an ice information system are described. The profiler described is a high resolution, non-imaging, short pulse radar, operating at a carrier frequency of 2.7 GHz. The system can resolve reflective surfaces separated by as little as 10 cm. and permits measurement of the distance between resolvable surfaces with an accuracy of about 1 cm. Data samples are given for measurements both in a static (helicopter hovering), and a traverse mode. Ground truth measurements taken by an ice auger team traveling with the helicopter are compared with the remotely sensed data and the accuracy of the profiler is discussed based on these measurements.

  3. A high current, short pulse electron source for wakefield accelerators

    SciTech Connect

    Ho, Ching-Hung

    1992-12-31

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed.

  4. A high current, short pulse electron source for wakefield accelerators

    SciTech Connect

    Ho, Ching-Hung.

    1992-01-01

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed.

  5. Adaptive optics for ultra short pulsed lasers in UHV environment

    NASA Astrophysics Data System (ADS)

    Deneuville, Francois; Ropert, Laurent; Sauvageot, Paul; Theis, Sébastien

    2015-02-01

    ISP SYSTEM has developed an electro-mechanical deformable mirror compatible with Ultra High Vacuum environment, suitable for ultra short pulsed lasers. The design of the MD-AME deformable mirror is based on force application on numerous locations. μ-AME actuators are driven by stepper motors, and their patented special design allows controlling the force with a very high accuracy. Materials and assembly method have been adapted to UHV constraints and the performances were evaluated on a first application for a beam with a diameter of 250mm. A Strehl ratio above 0.9 was reached for this application. Optical aberrations up to Zernike order 5 can be corrected with a very low residual error as for standard MD-AME mirror. Amplitude can reach up to several hundreds of μm for low order corrections. Hysteresis is lower than 0.1% and linearity better than 99%. Contrary to piezo-electric actuators, the μ-AME actuators avoid print-through effects and they permit to keep the mirror shape stable even unpowered, providing a high resistance to electro-magnetic pulses. The deformable mirror design allows changing easily an actuator or even the membrane if needed, in order to improve the facility availability. They are designed for circular, square or elliptical aperture from 30mm up to 500mm or more, with incidence angle from 0° to 45°. They can be equipped with passive or active cooling for high power lasers with high repetition rate.

  6. Extending ultra-short pulse laser texturing over large area

    NASA Astrophysics Data System (ADS)

    Mincuzzi, G.; Gemini, L.; Faucon, M.; Kling, R.

    2016-11-01

    Surface texturing by Ultra-Short Pulses Laser (UPL) for industrial applications passes through the use of both fast beam scanning systems and high repetition rate, high average power P, UPL. Nevertheless unwanted thermal effects are expected when P exceeds some tens of W. An interesting strategy for a reliable heat management would consists in texturing with a low fluence values (slightly higher than the ablation threshold) and utilising a Polygon Scanner Heads delivering laser pulses with unrepeated speed. Here we show for the first time that with relatively low fluence it is possible over stainless steel, to obtain surface texturing by utilising a 2 MHz femtosecond laser jointly with a polygonal scanner head in a relatively low fluence regime (0.11 J cm-2). Different surface textures (Ripples, micro grooves and spikes) can be obtained varying the scan speed from 90 m s-1 to 25 m s-1. In particular, spikes formation process has been shown and optimised at 25 m s-1 and a full morphology characterization by SEM has been carried out. Reflectance measurements with integrating sphere are presented to compare reference surface with high scan rate textures. In the best case we show a black surface with reflectance value < 5%.

  7. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  8. Covert situational awareness with handheld ultrawideband short-pulse radar

    NASA Astrophysics Data System (ADS)

    Barnes, Mark A.; Nag, Soumya; Payment, Tim

    2001-08-01

    Law enforcement and emergency services all face the difficult task of determining the locations of people within a building. A handheld radar able to detect motion through walls and other obstructions has been developed to fill this need. This paper describes the attributes and difficulties of the radar design and includes test results of the radar's performance. This discussion begins by summarizing key user requirements and the electromagnetic losses of typical building materials. Ultra-wideband (UWB) short pulse radars are well suited for a handheld sensor primarily because of their inherit time isolation in high clutter environments and their capability to achieve high resolution at low spectral center frequencies. There are also constraints that complicate the system design. Using a technique referred to as time-modulation allows the radars to reject range ambiguities and enhances electromagnetic compatibility with similar radars and ambient systems. An outline of the specifications of the radar developed and a process diagram on how it generates a motion map showing range and direction of the people moving within structures is included. Images are then presented to illustrate its performance. The images include adults, child, and a dog. The test results also include data showing the radar's performance through a variety of building materials.

  9. Overview of LANL short-pulse ion acceleration activities

    SciTech Connect

    Flippo, Kirk A.; Schmitt, Mark J.; Offermann, Dustin; Cobble, James A.; Gautier, Donald; Kline, John; Workman, Jonathan; Archuleta, Fred; Gonzales, Raymond; Hurry, Thomas; Johnson, Randall; Letzring, Samuel; Montgomery, David; Reid, Sha-Marie; Shimada, Tsutomu; Gaillard, Sandrine A.; Sentoku, Yasuhiko; Bussman, Michael; Kluge, Thomas; Cowan, Thomas E.; Rassuchine, Jenny M.; Lowenstern, Mario E.; Mucino, J. Eduardo; Gall, Brady; Korgan, Grant; Malekos, Steven; Adams, Jesse; Bartal, Teresa; Chawla, Surgreev; Higginson, Drew; Beg, Farhat; Nilson, Phil; Mac Phee, Andrew; Le Pape, Sebastien; Hey, Daniel; Mac Kinnon, Andy; Geissel, Mattias; Schollmeier, Marius; Stephens, Rich

    2009-12-02

    An overview of Los Alamos National Laboratory's activities related to short-pulse ion acceleration is presented. LANL is involved is several projects related to Inertial Confinement Fusion (Fast Ignition) and Laser-Ion Acceleration. LANL has an active high energy X-ray backlighter program for radiographing ICF implosions and other High Energy Density Laboratory Physics experiments. Using the Trident 200TW laser we are currently developing high energy photon (>10 keV) phase contrast imaging techniques to be applied on Omega and the NIF. In addition we are engaged in multiple programs in laser ion acceleration to boost the ion energies and efficiencies for various potential applications including Fast Ignition, active material interrogation, and medical applications. Two basic avenues to increase ion performance are currently under study: one involves ultra-thin targets and the other involves changing the target geometry. We have recently had success in boosting proton energies above 65 MeV into the medical application range. Highlights covered in the presentation include: The Trident Laser System; X-ray Phase Contrast Imaging for ICF and HEDLP; Improving TNSA Ion Acceleration; Scaling Laws; Flat Targets; Thin Targets; Cone Targets; Ion Focusing;Trident; Omega EP; Scaling Comparisons; and, Conclusions.

  10. Ellipsometric Pump-probe Experiments for High Density Plasma with Ultra-short pulse Laser

    NASA Astrophysics Data System (ADS)

    Yoneda, Hitoki; Morikami, Hidetoshi; Ueda, Ken-Ichi; More, Richard M.

    2003-10-01

    A new type of ultra-short-pulse laser pump-probe experiment has been performed. In these measurements, reflectivity of p- and s- polarization (Rp and R_s) and their phase difference are obtained. Typical detection sensitivity was 5mrad for the phase difference and 2 ˜4% for reflectivity with time resolution of 100fs. When the data are plotted as Y=frac2|r_s||r_p|sin(δ)(|r_s|^2+|r_p|^2) versus X=frac|r_p|^2|r_s|^2, the trajectories of the Au target data with I=2×10^12 ˜5×10^13W/cm^2 follow approximately the same curve in (X, Y) space while for Cu the trajectories follow various curves. The unique Au trajectory implies a unique state of expanded Au such as neutral gold atoms. Fluid simulation with non-ideal equation of state and adiabatic expansion shows rapid recombination in the expanding plasma and the unique (X, Y) trajectory is reproduced by Maxwell's equations with these density profiles. By fitting the unknown complex dielectric function of high density Au neutral gas, the atomic polarizability (-1.75 + 0.2 i)× 10-24 cm^3 is obtained for λ=745nm light. The Saha equation predicts recombination and formation of gold negative ions and a low density of free electrons in the low-density vapor.

  11. SLIM, Short-pulse Technology for High Gradient Induction Accelerators

    SciTech Connect

    Arntz, Floyd; Kardo-Sysoev, A.; Krasnykh, A.; /SLAC

    2008-12-16

    A novel short-pulse concept (SLIM) suited to a new generation of a high gradient induction particle accelerators is described herein. It applies advanced solid state semiconductor technology and modern microfabrication techniques to a coreless induction method of charged particle acceleration first proven on a macro scale in the 1960's. Because this approach avoids use of magnetic materials there is the prospect of such an accelerator working efficiently with accelerating pulses in the nanosecond range and, potentially, at megahertz pulse rates. The principal accelerator section is envisioned as a stack of coreless induction cells, the only active element within each being a single, extremely fast (subnanosecond) solid state opening switch: a Drift Step Recovery Diode (DSRD). Each coreless induction cell incorporates an electromagnetic pulse compressor in which inductive energy developed within a transmission-line feed structure over a period of tens of nanoseconds is diverted to the acceleration of the passing charge packet for a few nanoseconds by the abrupt opening of the DSRD switch. The duration of this accelerating output pulse--typically two-to-four nanoseconds--is precisely determined by a microfabricated pulse forming line connected to the cell. Because the accelerating pulse is only nanoseconds in duration, longitudinal accelerating gradients approaching 100 MeV per meter are believed to be achievable without inciting breakdown. Further benefits of this approach are that, (1) only a low voltage power supply is required to produce the high accelerating gradient, and, (2) since the DSRD switch is normally closed, voltage stress is limited to a few nanoseconds per period, hence the susceptibility to hostile environment conditions such as ionizing radiation, mismatch (e.g. in medical applications the peak beam current may be low), strong electromagnetic noise levels, etc is expected to be minimal. Finally, we observe the SLIM concept is not limited to linac

  12. Plasmas and Short-Pulse, High-Intensity Lasers

    NASA Astrophysics Data System (ADS)

    Clark, Thomas

    1999-11-01

    Many of the applications of short-pulse, high-intensity laser systems, including coherent UV and X-ray generation, compact particle accelerators, and non-perturbative nonlinear optics as well as the study of laser-matter interaction physics, require large intensity-interaction length products. In recent years, plasma structures resulting from the hydrodynamic evolution of laser-produced plasma filaments have proven to be attractive media for guiding pulses with peak powers approaching the terawatt level over lengths many times the vacuum Rayleigh range. The hydrodynamics of plasma waveguides have been characterized using time- and space-resolved interferometry measurements of electron density profiles. The laser-driven ionization and heating phase of the plasma filament creation is followed by hot electron driven plasma expansion. Density profiles suitable for optical guiding develop within the first few hundred picoseconds after plasma creation, during which rapid cooling occurs. At longer times the plasma expansion closely follows that of a cylindrical blast wave, with further cooling due to expansion work. The observed guided intensity profiles of end-coupled and tunnel-coupled pulses compare favorably with calculations of the quasi-bound waveguide modes based on the measured electron density profiles. Time- and space-resolved electron density measurements of a laser-driven concentric implosion were also performed. The implosion is the result of the interaction of a second laser pulse with an existing plasma waveguide. The two-pulse absorption and ionization significantly exceed that due to a single pulse of the same total energy. The author would like to acknowledge the significant contributions of Prof. Howard M. Milchberg to the work being presented.

  13. High temperature, high density opacity measurements using short pulse lasers

    NASA Astrophysics Data System (ADS)

    Hoarty, D. J.; James, S. F.; Brown, C. R. D.; Williams, B. M.; Guymer, T.; Hill, M.; Morton, J.; Chapman, D.; Shepherd, R.; Dunn, J.; Brown, G.; Schneider, M.; Beiersdorfer, P.; Chung, H. K.; Harris, J. W. O.; Upcraft, L.; Smith, C. C.; Lee, R. W.

    2010-08-01

    Heating of thin foil targets by a high power laser at intensities of 1017 -1019W/cm2 has been studied as a method for producing high temperature, high density samples to investigate X-ray opacity and equation of state. The targets were plastic (parylene N) foils with a buried microdot of a sample material, which was either aluminium, germanium or a mixture of germanium and titanium mixture of germanium and titanium. L-shell and K-shell spectra were taken using crystal spectrometers recording onto film and an ultrafast X-ray streak camera coupled to a conical focussing crystal with a time resolution of 1ps. The conditions in the microdot were inferred by comparing the measured spectra to synthetic spectra produced by the time-dependent collisional-radiative (CR) models FLY and FLYCHK. The data were also compared to simulated spectra from a number of opacity codes assuming local thermodynamic equilibrium (LTE). Temperature and density gradients were taken into account in the comparisons. The sample conditions, inferred from the CR modelling using FLYCHK, were 800±100eV and 1.5±0.5g/cc, in the germanium/titanium samples and 600+50/-150eV, 3-4g/cc in the pure germanium or aluminium samples. The higher densities were achieved by using a combination of long and short pulses to compress and heat the foils respectively. The experimental results and comparisons to predicted spectra are presented and discussed.

  14. Efficient evaluation of dielectric response functions and calculations of ground and excited state properties beyond local Density Functional approaches

    NASA Astrophysics Data System (ADS)

    Lu, Deyu; Li, Yan; Rocca, Dario; Viet Nguyen, H.; Gygi, Francois; Galli, Giulia

    2010-03-01

    A recently developed technique to diagonalize iteratively dielectric matrices [1], is used to carry out efficient, ab-initio calculations of dispersion interactions, and excited state properties of nanostructures. In particular, we present results for the binding energies of weakly bonded molecular crystals [2], obtained at the EXX/RPA level of theory, and for absorption spectra of semiconducting clusters, obtained by an iterative solution of the Bethe-Salpeter equations [3]. We show that the ability to obtain the eigenmodes of dielectric matrices from Density Functional perturbation theory, without computing single particle excited states, greatly improves the efficiency of both EXX/RPA and many body perturbation theory [3,4] calculations and opens the way to large scale computations. [1] H. Wilson, F. Gygi and G. Galli, Phys. Rev. B , 78, 113303, 2008; and H. Wilson, D. Lu, F. Gygi and G. Galli, Phys. Rev. B, 79, 245106, 2009. [2] D. Lu, Y. Li, D. Rocca and G. Galli, Phys. Rev. Lett, 102, 206411, 2009; and Y. Li, D. Lu, V. Nguyen and G. Galli, J. Phys. Chem. C (submitted) [3] D. Rocca, D. Lu and G. Galli, submitted. [4] D. Lu, F. Gygi and G. Galli, Phys. Rev. Lett. 100, 147601, 2008. Work was funded by DOE/Scidac DE-FC02-06ER25794 and DOE/BES DE-FG02-06ER46262.

  15. Optical ablation by high-power short-pulse lasers

    SciTech Connect

    Stuart, B.C.; Feit, M.D.; Herman, S.; Rubenchik, A.M.; Shore, B.W.; Perry, M.D.

    1996-02-01

    Laser-induced damage threshold measurements were performed on homogeneous and multilayer dielectrics and gold-coated optics at 1053 and 526 nm for pulse durations {tau} ranging from 140 fs to 1 ns. Gold coatings were found, both experimentally and theoretically, to be limited to 0.6 J/cm{sup 2} in the subpicosecond range for 1053-nm pulses. In dielectrics, we find qualitative differences in the morphology of damage and a departure from the diffusion-dominated {tau}{sup 1/2} scaling that indicate that damage results from plasma formation and ablation for {tau}{le}10 ps and from conventional heating and melting for {tau}{approx_gt}50 ps. A theoretical model based on electron production by multiphoton ionization, joule heating, and collisional (avalanche) ionization is in quantitative agreement with both the pulse-width and the wavelength scaling of experimental results. {copyright} {ital 1996 Optical Society of America.}

  16. Effect of planar dielectric interfaces on fluorescence emission and detection. Evanescent excitation with high-aperture collection.

    PubMed Central

    Burghardt, T P; Thompson, N L

    1984-01-01

    We consider the effect of planar dielectric interfaces (e.g., solid/liquid) on the fluorescence emission of nearby probes. First, we derive an integral expression for the electric field radiated by an oscillating electric dipole when it is close to a dielectric interface. The electric field depends on the refractive indices of the interface, the orientation of the dipole, the distance from the dipole to the interface, and the position of observation. We numerically calculate the electric field intensity for a dipole on an interface, as a function of observation position. These results are applicable to fluorescent molecules excited by the evanescent field of a totally internally reflected laser beam and thus very close to a solid/liquid interface. Next, we derive an integral expression for the electric field radiated when a second dielectric interface is also close to the fluorescent molecule. We numerically calculate this intensity as observed through the second interface. These results are useful when the fluorescence is collected by a high-aperture microscope objective. Finally, we define and calculate a "dichroic factor," which describes the efficiency of collection, in the two-interface system, of polarized fluorescence. The limit when the first interface is removed is applicable for any high-aperture collection of polarized or unpolarized fluorescence. The limit when the second interface is removed has application in the collection of fluorescence with any aperture from molecules close to a dielectric interface. The results of this paper are required for the interpretation of order parameter measurements on fluorescent probes in supported phospholipid monolayers (Thompson, N.L., H. M. McConnell, and T. P. Burghardt, 1984, Biophys. J., 46:739-747). PMID:6518253

  17. Slow and fast light via SBS in optical fibers for short pulses and broadband pump

    NASA Astrophysics Data System (ADS)

    Kalosha, V. P.; Chen, Liang; Bao, Xiaoyi

    2006-12-01

    Slow-light effect via stimulated Brillouin scattering (SBS) in single-mode optical fibers was considered for short probe pulses of nanosecond duration relevant to Gb/s data streams. Unlike recent estimations of delay versus pump based on steady-state small-signal approximation we have used numerical solution of three-wave equations describing SBS for a realistic fiber length. Both regimes of small signal and pump depletion (gain saturation) were considered. The physical origin of Stokes pulse distortion is revealed which is related to excitation of long-living acoustic field behind the pulse and prevents effective delay control by pump power increase at cw pumping. We have shown different slope of the gain-dependent delay for different pulse durations. Spectrally broadened pumping by multiple cw components, frequency-modulated pump and pulse train were studied for short pulses which allow to obtain large delay and suppress pulse distortion. In the pump-depletion regime of pumping by pulse train, both pulse delay and distortion decrease with increasing pump, and the pulse achieves advancement.

  18. Slow and fast light via SBS in optical fibers for short pulses and broadband pump.

    PubMed

    Kalosha, V P; Chen, Liang; Bao, Xiaoyi

    2006-12-25

    Slow-light effect via stimulated Brillouin scattering (SBS) in single-mode optical fibers was considered for short probe pulses of nanosecond duration relevant to Gb/s data streams. Unlike recent estimations of delay versus pump based on steady-state small-signal approximation we have used numerical solution of three-wave equations describing SBS for a realistic fiber length. Both regimes of small signal and pump depletion (gain saturation) were considered. The physical origin of Stokes pulse distortion is revealed which is related to excitation of long-living acoustic field behind the pulse and prevents effective delay control by pump power increase at cw pumping. We have shown different slope of the gain-dependent delay for different pulse durations. Spectrally broadened pumping by multiple cw components, frequency-modulated pump and pulse train were studied for short pulses which allow to obtain large delay and suppress pulse distortion. In the pump-depletion regime of pumping by pulse train, both pulse delay and distortion decrease with increasing pump, and the pulse achieves advancement. PMID:19532161

  19. Development of short pulse laser pumped x-ray lasers

    SciTech Connect

    Dunn, J; Osterheld, A L; Hunter, J R; Shlyaptsev, V N

    2000-02-22

    X-ray lasers have been extensively studied around the world since the first laboratory demonstration on the Novette laser at LLNL in 1984. The characteristic properties of short wavelength, high monochromaticity, collimation and coherence make x-ray lasers useful for various applications. These include demonstrations of biological imaging within the water window, interferometry of laser plasmas and radiography of laser-heated surfaces. One of the critical issues has been the high power pump required to produce the inversion. The power scaling as a function of x-ray laser wavelength follows a {approx} {lambda}{sup -4} to {approx} {lambda}{sup -6} law. The shortest x-ray laser wavelength of {approx}35 {angstrom} demonstrated for Ni-like Au was at the limit of Nova laser capabilities. By requiring large, high power lasers such as Nova, the shot rate and total number of shots available have limited the rapid development of x-ray lasers and applications. In fact over the last fifteen years the main thrust has been to develop more efficient, higher repetition rate x-ray lasers that can be readily scaled to shorter wavelengths. The recent state of progress in the field can be found in references. The objective of the project was to develop a soft x-ray laser (XRL) pumped by a short pulse laser of a few joules. In effect to demonstrate a robust, worlung tabletop x-ray laser at LLNL for the first time. The transient collisional scheme as proposed by Shlyaptsev et al. was the candidate x-ray laser for study. The successful endeavor of any scientific investigation is often based upon prudent early decisions and the choice of this scheme was both sound and fruitful. It had been demonstrated very recently for Ne-like Ti at 326 {angstrom} using a small tabletop laser but had not yet reached its full potential. We chose this scheme for several reasons: (a) it was a collisional-type x-ray laser which has been historically the most robust; (b) it had the promise of high efficiency

  20. Formation of a strong electric field resulting in the excitation of microplasma discharges at the edge of a dielectric film on a metal in a plasma flow

    NASA Astrophysics Data System (ADS)

    Ivanov, V. A.; Sakharov, A. S.; Konyzhev, M. E.

    2016-06-01

    Results are presented from experimental and analytical studies of the processes resulting in the excitation of microplasma discharges (MPDs) on a metal surface partially covered with a thin dielectric film under the action of an external plasma flow in vacuum. It is shown experimentally that MPDs are excited at the interface between the open metal surface and the region covered by the dielectric film. The probability of MPD excitation is investigated as a function of the thickness of the dielectric film deposited on the metal. It is found that, for a film thickness of 1 μm, the probability of MPD excitation is close to unity. As the film thickness decreases below ~10 nm or increases above ~10 μm, the probability of MPD excitation is reduced by more than two orders of magnitude. A two-dimensional kinetic numerical code is developed that allows one to model the processes of Debye sheath formation and generation of a strong electric field near the edge of a finite-thickness dielectric film on a metal surface in a plasma flow for different configurations of the film edge. It is shown that the maximum value of the tangential component of the electric field is reached at the film edge and amounts to E max ≈ |φ0|/2 d (where φ0 < 0 is the electric potential applied to the metal and d is the film thickness), which for typical conditions of experiments on the excitation of MPDs on metal surfaces (φ0 ≈-400 V, d ≈ 1 μm) yields E max ≈ 2 MV/cm. The results of kinetic simulations confirm the qualitative idea about the mechanism of the formation of a strong electric field resulting in the excitation of MPDs at the edge of a dielectric film on a metal surface in a plasma flow and agree with experimental data.

  1. Measurements of short-pulse propagation through concrete walls

    SciTech Connect

    Aurand, J.F.

    1995-12-31

    The authors recently performed a series of experimental measurements of transient electromagnetic (EM) propagation through two different concrete walls. Several different short-duration pulses were used for the incident radiation, with frequency content from VHF to 20 GHz. Both walls were 30 cm thick, with three internal layers of reinforcing steel bars. For this particular set of data, the incident wave polarization was vertical linear only. Corroborating swept-frequency measurements were made with a vector network analyzer. This paper describes the propagation measurements through the two walls, and the propagation model of a lossy dielectric layer. They also examine the transfer function, dielectric constant, loss tangent, attenuation constant, and time-domain impulse response of these walls. The attenuation increases steadily with frequency, and is a strong function of the moisture content of the concrete. The time-domain pulse attenuation and dispersion are consistent with the lowpass-filtering effect of this attenuation loss vs. frequency. The time domain behavior will be very useful in time-domain radar studies of ground-penetrating radar, free-space layered measurement systems, etc.

  2. Interference effects in the UV(VUV)-excited luminescence spectroscopy of thin dielectric films.

    PubMed

    Buntov, Evgeny; Zatsepin, Anatoly

    2013-05-01

    The problem of exciting UV and VUV light interference affecting experimental photoluminescence excitation spectra is analysed for the case of thin transparent films containing arbitrarily distributed emission centres. A numerical technique and supplied software aimed at modelling the phenomenon and correcting the distorted spectra are proposed. Successful restoration results of the experimental synchrotron data for ion-implanted silica films show that the suggested method has high potential.

  3. Space Debris-de-Orbiting by Vaporization Impulse using Short Pulse Laser

    SciTech Connect

    Early, J; Bibeau, C; Claude, P

    2003-09-16

    Space debris constitutes a significant hazard to low earth orbit satellites and particularly to manned spacecraft. A quite small velocity decrease from vaporization impulses is enough to lower the perigee of the debris sufficiently for atmospheric drag to de-orbit the debris. A short pulse (picosecond) laser version of the Orion concept can accomplish this task in several years of operation. The ''Mercury'' short pulse Yb:S-FAP laser being developed at LLNL for laser fusion is appropriate for this task.

  4. The effects of nanoparticles and organic additives with controlled dispersion on dielectric properties of polymers: Charge trapping and impact excitation

    NASA Astrophysics Data System (ADS)

    Huang, Yanhui; Wu, Ke; Bell, Michael; Oakes, Andrew; Ratcliff, Tyree; Lanzillo, Nicholas A.; Breneman, Curt; Benicewicz, Brian C.; Schadler, Linda S.

    2016-08-01

    This work presents a comprehensive investigation into the effects of nanoparticles and organic additives on the dielectric properties of insulating polymers using reinforced silicone rubber as a model system. TiO2 and ZrO2 nanoparticles (d = 5 nm) were well dispersed into the polymer via a bimodal surface modification approach. Organic molecules with the potential of voltage stabilization were further grafted to the nanoparticle to ensure their dispersion. These extrinsic species were found to provide deep traps for charge carriers and exhibited effective charge trapping properties at a rather small concentration (˜1017 cm-3). The charge trapping is found to have the most significant effect on breakdown strength when the electrical stressing time is long enough that most charges are trapped in the deep states. To establish a quantitative correlation between the trap depth and the molecular properties, the electron affinity and ionization energy of each species were calculated by an ab initio method and were compared with the experimentally measured values. The correlation however remains elusive and is possibly complicated by the field effect and the electronic interactions between different species that are not considered in this computation. At high field, a super-linear increase of current density was observed for TiO2 filled composites and is likely caused by impact excitation due to the low excitation energy of TiO2 compared to ZrO2. It is reasoned that the hot charge carriers with energies greater than the excitation energy of TiO2 may excite an electron-hole pair upon collision with the NP, which later will be dissociated and contribute to free charge carriers. This mechanism can enhance the energy dissipation and may account for the retarded electrical degradation and breakdown of TiO2 composites.

  5. Laurdan solvatochromism: solvent dielectric relaxation and intramolecular excited-state reaction.

    PubMed Central

    Viard, M; Gallay, J; Vincent, M; Meyer, O; Robert, B; Paternostre, M

    1997-01-01

    Absorption, steady-state, and time-resolved fluorescence measurements have been performed on laurdan dissolved either in white viscous apolar solvents or in ethanol as a function of temperature. The heterogeneity of the absorption spectra in white oils or in ethanol is consistent with semiempirical calculations performed previously on Prodan. From steady-state and time-resolved fluorescence measurements in apolar media, an excited state reaction is evidenced. The bimodal lifetime distribution determined from the maximum entropy method (MEM) analysis is attributed to the radiative deexcitation of a "locally excited" (LE) state and of a "charge transfer" (CT) state, whereas a very short component (20 ps), the sign and the amplitude of which depend on the emission wavelength, is attributed to the kinetics of the interconvertion reaction. The observation of an isoemissive point in the temperature range from -50 degrees C to -110 degrees C in ethanol suggests an interconvertion between two average excited-state populations: unrelaxed and solvent-relaxed CT states. A further decrease in temperature (-190 degrees C), leading to frozen ethanol, induces an additional and important blue shift. This low temperature spectrum is partly attributed to the radiative deexcitation of the LE state. Time-resolved emission spectra (TRES) measurements at -80 degrees C in the ethanol liquid phase show a large spectral shift of approximately 2500 cm(-1) (stabilization energy of the excited state: 7.1 kcal x M(-1)). The time-dependent fluorescence shift (TDFS) is described for its major part by a nanosecond time constant. The initial part of the spectral shift reveals, however, a subnanosecond process that can be due to fast internal solvent reorientation and/or to intramolecular excited-state reactions. These two relaxation times are also detected in the analysis of the fluorescence decays in the middle range of emission energy. The activation energy of the longest process is

  6. Field and photo-emission in a short-pulse, high-charge Cesium telluride RF photoinjector

    NASA Astrophysics Data System (ADS)

    Wisniewski, Eric E.

    A new high-charge RF gun is now operating at the Argonne Wakefield Accelerator (AWA) facility at Argonne National Laboratory (ANL). The 1.5 cell 1.3 GHz gun uses a Cesium telluride photocathode driven with a 248 nm laser to provide short-pulse, high charge electron beams for the new 75 MeV drive beamline. The high-gradient RF gun (peak field on the cathode > 80MV/m) is a key piece of the facility upgrade. The large Cs2Te photocathode (diameter > 30 mm) was fabricated in-house. The photo-injector will be used to generate high-charge, short pulse, single bunches (Q > 100 nC) and bunch-trains (Q > 1000 nC) for wakefield experiments, typically involving dielectric-loaded accelerating structures. Details of the photocathode fabrication process and the results of associated diagnostic measurements are presented, including QE measurements and work function measurements performed with a Kelvin probe. Fieldemitted dark current from the Cs2Te cathode was measured during RF conditioning and characterized. Fowler-Nordheim plots of the data are presented and compared to similar measurements made using a copper cathode in the initial phase of conditioning. The results for cesium telluride exhibited non-linear regions within the Fowler-Nordheim plots similar to previous experimental results for other p-type semiconductors. Results of quantum efficiency (QE) studies are presented with the cathode operating in both single and bunch-train modes. QE uniformity and lifetime studies are presented. During commissioning, the cesium telluride photocathode produced bunch-charge of 100 nC, breaking the previous record. No evidence of bunch-train position-dependence of QE was found when generating four-bunch trains with total charge up to 200 nC.

  7. A rapidly-tuned, short-pulse-length, high-repetition-rate CO{sub 2} laser for IR dial

    SciTech Connect

    Zaugg, T.; Thompson, D.; Leland, W.T.; Busch, G.

    1997-08-01

    Analysis of noise sources in Differential Absorption LIDAR (DIAL) in the infrared region of the spectrum indicates that the signal-to-noise ratio for direct detection can be improved if multiple-wavelength, short-pulse-length beams are transmitted and received at high repetition rates. Atmospheric effects can be minimized, albedo can be rapidly scanned, and uncorrelated speckle can be acquired at the maximum possible rate. A compact, rugged, RF-excited waveguide laser can produce 15 nanosecond pulses at a 100 kHz rate with sufficient energy per pulse to reach the speckle limit of the signal-to-noise ratio. A high-repetition-rate laser has been procured and will be used to verify these signal and noise scaling relationships at high repetition rates. Current line-tuning devices are mechanical and are capable of switching lines at a rate up to a few hundred Hertz. Acousto-optic modulators, deflectors or tunable filters can be substituted for these mechanical devices in the resonator of a CO{sub 2} laser and used to rapidly line-tune the laser across the 9 and 10 micron bands at a rate as high as 100 kHz. Several configurations for line tuning using acousto-optic and electro-optic devices with and without gratings are presented. The merits of and constraints on each design are also discussed. A pair of large aperture, acousto-optic deflectors has been purchased and the various line-tuning designs will be evaluated in a conventional, glass tube, CO{sub 2} laser, with a view to incorporation into the high-repetition-rate, waveguide laser. A computer model of the dynamics of an RF-excited, short-pulse-length, high-repetition-rate waveguide laser has been developed. The model will be used to test the consequences of various line-tuning designs.

  8. Stabilization of CO2 laser short-pulse oscillation by tickle pulse for dot processing

    NASA Astrophysics Data System (ADS)

    Tokita, Daisaku; Sakurada, Noriyo; Ishii, Yoshio; Kubota, Yuzuru; Watanabe, Kazuhiro

    2005-03-01

    Image drawing using a laser system has been attempted by Segmented Pixel Drawing (SPD) method and Laser Plastic Coloring (LPC) method in our laboratory. Laser dot processing by a short pulse oscillation of a CO2 laser is used for these laser methods. Stable short pulse oscillation is required for an accurate image drawing. That oscillation has a tendency to be unstable because of its long oscillation interval. A tickle pulse is known as one of a technique which is conventionally used for a continuous pulse oscillation of a CO2 laser in order to make rising rate of laser oscillation quick. In this study, this tickle pulse has been improved and applied to the short pulse oscillation in order to stable short pulse oscillation and high accurate laser dot processing. In the result, processed dots are appeared bigger with less variation in their sizes with the improved tickle pulse case compared with the conventional case. Short pulse oscillation is stabilized by these improved tickle pulse. Reproducibility and accuracy ofthe SPD method and LPC method might be realized by this stabilized dot processing.

  9. Short-pulse excitation of microwave plasma for efficient diamond growth

    NASA Astrophysics Data System (ADS)

    Yamada, Hideaki; Chayahara, Akiyoshi; Mokuno, Yoshiaki

    2016-08-01

    To realize a variety of potential applications of diamonds, particularly in the area of power electronics, it is indispensable to improve their growth efficiency. Most conventional approaches have tried to achieve this simply by increasing the gas temperature; however, this makes it difficult to grow large diamond crystals. To improve the growth efficiency while lowering the gas temperature, we propose that using a pulse-modulated microwave plasma with a sub-millisecond pulse width can enhance the power efficiency of the growth rate of single-crystal diamonds. We found that using a sub-millisecond pulse-mode discharge could almost double the growth rate obtained using continuous mode discharge for a fixed average microwave power and gas pressure. A comparison between experimental observations of the optical emission spectra of the discharge and a numerical simulation of the gas temperature suggests that a decrease in the gas temperature was achieved, and highlights the importance of electron-dominated reactions for obtaining the enhancement of the growth rate. This result will have a large impact in the area of diamond growth because it enables diamond growth to be more power efficient at reduced temperatures.

  10. Energetics of Molecular Excitation, Fragmentation, and Polymerization in a Dielectric Barrier Discharge with Argon Carrier Gas.

    PubMed

    Watson, Sean; Nisol, Bernard; Lerouge, Sophie; Wertheimer, Michael Robert

    2015-09-22

    We report experiments at atmospheric pressure (AP) using a dielectric barrier discharge (DBD) reactor designed for plasma polymerization (PP) with "monomers" at ‰ concentrations in ca.10 standard liters per minute of argon (Ar) carrier gas. We have perfected a method for measuring Eg, the energy dissipated per cycle of the applied a.c. high voltage, Va(f), but the focus here is on ΔEg, the energy difference with and without a flow, Fd, of monomer in the Ar flow, with the plasma being sustained at Va(f) = 2.8 kVrms, f = 20 kHz. From ΔEg and Fd, we derive a characteristic energy per molecule, Em (in eV), and investigate plots of Em versus Fd and 1/Fd for three model "monomers": formic, acetic, and acrylic acid. These data, along with those for lighter or heavier organic compounds, reveal novel information about energy absorption from the plasma and ensuing polymerization reactions. PMID:26343365

  11. Theory of excitations and dielectric response at a spin-orbital quantum critical point

    NASA Astrophysics Data System (ADS)

    Ish, Daniel; Balents, Leon

    2015-09-01

    Despite possessing a local spin-2 moment on the iron site and a Curie-Weiss temperature of 45 K, the A-site spinel FeSc2S4 does not magnetically order down to 50 mK. Previous theoretical work advanced an explanation for this observation in the form of the "J2-λ " model, which places FeSc2S4 close to a quantum critical point on the disordered side of a quantum phase transition between a Néel ordered phase and a "spin-orbital liquid" in which spins and orbitals are entangled, quenching the magnetization. We present new theoretical studies of the optical properties of the J2-λ model, including a computation of the dispersion relation for the quasiparticle excitations and the form of the collective response to electric field. We argue that the latter directly probes a low energy excitation continuum characteristic of quantum criticality, and that our results reinforce the consistency of this model with experiment.

  12. An Overview of High Energy Short Pulse Technology for Advanced Radiography of Laser Fusion Experiments

    SciTech Connect

    Barty, C J; Key, M; Britten, J; Beach, R; Beer, G; Brown, C; Bryan, S; Caird, J; Carlson, T; Crane, J; Dawson, J; Erlandson, A C; Fittinghoff, D; Hermann, M; Hoaglan, C; Iyer, A; Jones, L; Jovanovic, I; Komashko, A; Landen, O; Liao, Z; Molander, W; Mitchell, A; Moses, E; Nielsen, N; Nguyen, H; Nissen, J; Payne, S; Pennington, D; Risinger, L; Rushford, M; Skulina, K; Spaeth, M; Stuart, B; Tietbohl, G; Wattellier, B

    2004-06-18

    The technical challenges and motivations for high-energy, short-pulse generation with NIF-class, Nd:glass laser systems are reviewed. High energy short pulse generation (multi-kilojoule, picosecond pulses) will be possible via the adaptation of chirped pulse amplification laser techniques on the NIF. Development of meter-scale, high efficiency, high-damage-threshold final optics is a key technical challenge. In addition, deployment of HEPW pulses on NIF is constrained by existing laser infrastructure and requires new, compact compressor designs and short-pulse, fiber-based, seed-laser systems. The key motivations for high energy petawatt pulses on NIF is briefly outlined and includes high-energy, x-ray radiography, proton beam radiography, proton isochoric heating and tests of the fast ignitor concept for inertial confinement fusion.

  13. Theoretical and experimental studies of ultra-short pulsed laser drilling of steel

    NASA Astrophysics Data System (ADS)

    Michalowski, Andreas; Qin, Yuan; Weber, Rudolf; Graf, Thomas

    2014-05-01

    Methods for the machining of metals based on the use of ultra-short pulsed laser radiation continue to gain importance in industrial production technology. Theoretical considerations and experimental studies on laser drilling of steel are discussed. The applicability of geometrical optics to calculate the absorbed energy distribution inside small blind holes is investigated theoretically. A model for melt transport during ultra-short pulsed drilling is proposed and verified experimentally. It confirms that helical drilling is advantageous for machining burr-free holes.

  14. Time-dependent Bragg diffraction and short-pulse reflection by one-dimensional photonic crystals

    NASA Astrophysics Data System (ADS)

    André, Jean-Michel; Jonnard, Philippe

    2015-08-01

    The time-dependence of the Bragg diffraction by one-dimensional photonic crystals and its influence on the short pulse reflection are studied in the framework of the coupled-wave theory. The indicial response of the photonic crystal is calculated and it appears that it presents a time-delay effect with a transient time conditioned by the extinction length. A numerical simulation is presented for a Bragg mirror in the x-ray domain and a pulse envelope modelled by a sine-squared shape. The potential consequences of the time-delay effect in time-dependent optics of short-pulses are emphasized.

  15. Measurement of lake ice thickness with a short-pulse radar system

    NASA Technical Reports Server (NTRS)

    Cooper, D. W.; Mueller, R. A.; Schertler, R. J.

    1976-01-01

    Measurements of lake ice thickness were made during March 1975 at the Straits of Mackinac by using a short-pulse radar system aboard an all-terrain vehicle. These measurements were compared with ice thicknesses determined with an auger. Over 25 sites were explored which had ice thicknesses in the range 29 to 60 cm. The maximum difference between radar and auger measurements was less than 9.8 percent. The magnitude of the error was less than + or - 3.5 cm. The NASA operating short-pulse radar system used in monitoring lake ice thickness from an aircraft is also described.

  16. Observation of Narrow-Band Terahertz Coherent Cherenkov Radiation from a Cylindrical Dielectric-Lined Waveguide

    NASA Astrophysics Data System (ADS)

    Cook, A. M.; Tikhoplav, R.; Tochitsky, S. Y.; Travish, G.; Williams, O. B.; Rosenzweig, J. B.

    2009-08-01

    We report experimental observation of narrow-band coherent Cherenkov radiation driven by a subpicosecond electron bunch traveling along the axis of a hollow cylindrical dielectric-lined waveguide. For an appropriate choice of dielectric wall thickness, a short-pulse beam current profile excites only the fundamental mode of the structure, producing energetic pulses in the terahertz range. We present detailed measurements showing a narrow emission spectrum peaked at 367±3GHz from a 1 cm long fused silica capillary tube with submillimeter transverse dimensions, closely matching predictions. We demonstrate a 100 GHz shift in the emitted central frequency when the tube wall thickness is changed by 50μm. Calibrated measurements of the radiated energy indicate up to 10μJ per 60 ps pulse for an incident beam charge of 200 pC, corresponding to a peak power of approximately 150 kW.

  17. Transient, polarity-dependent dielectric response in a twisted nematic liquid crystal under very low frequency excitation.

    PubMed

    Krishnamurthy, K S

    2015-09-01

    The electric Freedericksz transition is a second-order quadratic effect, which, in a planarly aligned nematic liquid crystal layer, manifests above a threshold field as a homogeneous symmetric distortion with maximum director-tilt in the midplane. We find that, upon excitation by a low frequency (<0.2Hz) square-wave field, the instability becomes spatially and temporally varying. This is demonstrated using calamitic liquid crystals, initially in the 90°-twisted planar configuration. The distortion occurs close to the negative electrode following each polarity switch and, for low-voltage amplitudes, decays completely in time. We use the elastically favorable geometry of Brochard-Leger walls to establish the location of maximum distortion. Thus, at successive polarity changes, the direction of extension of both annular and open walls switches between the alignment directions at the two substrates. For high voltages, this direction is largely along the midplane director, while remaining marginally oscillatory. These results are broadly understood by taking into account the time-varying and inhomogeneous field conditions that prevail soon after the polarity reverses. Polarity dependence of the instability is traced to the formation of intrinsic double layers that lead to an asymmetry in field distribution in the presence of an external bias. Momentary field elevation near the negative electrode following a voltage sign reversal leads to locally enhanced dielectric and gradient flexoelectric torques, which accounts for the surface-like phenomenon observed at low voltages. These spatiotemporal effects, also found earlier for other instabilities, are generic in nature.

  18. Surface excitations in electron spectroscopy. Part I: dielectric formalism and Monte Carlo algorithm

    PubMed Central

    Salvat-Pujol, F; Werner, W S M

    2013-01-01

    The theory describing energy losses of charged non-relativistic projectiles crossing a planar interface is derived on the basis of the Maxwell equations, outlining the physical assumptions of the model in great detail. The employed approach is very general in that various common models for surface excitations (such as the specular reflection model) can be obtained by an appropriate choice of parameter values. The dynamics of charged projectiles near surfaces is examined by calculations of the induced surface charge and the depth- and direction-dependent differential inelastic inverse mean free path (DIIMFP) and stopping power. The effect of several simplifications frequently encountered in the literature is investigated: differences of up to 100% are found in heights, widths, and positions of peaks in the DIIMFP. The presented model is implemented in a Monte Carlo algorithm for the simulation of the electron transport relevant for surface electron spectroscopy. Simulated reflection electron energy loss spectra are in good agreement with experiment on an absolute scale. Copyright © 2012 John Wiley & Sons, Ltd. PMID:23794766

  19. Surface excitations in electron spectroscopy. Part I: dielectric formalism and Monte Carlo algorithm.

    PubMed

    Salvat-Pujol, F; Werner, W S M

    2013-05-01

    The theory describing energy losses of charged non-relativistic projectiles crossing a planar interface is derived on the basis of the Maxwell equations, outlining the physical assumptions of the model in great detail. The employed approach is very general in that various common models for surface excitations (such as the specular reflection model) can be obtained by an appropriate choice of parameter values. The dynamics of charged projectiles near surfaces is examined by calculations of the induced surface charge and the depth- and direction-dependent differential inelastic inverse mean free path (DIIMFP) and stopping power. The effect of several simplifications frequently encountered in the literature is investigated: differences of up to 100% are found in heights, widths, and positions of peaks in the DIIMFP. The presented model is implemented in a Monte Carlo algorithm for the simulation of the electron transport relevant for surface electron spectroscopy. Simulated reflection electron energy loss spectra are in good agreement with experiment on an absolute scale. Copyright © 2012 John Wiley & Sons, Ltd. PMID:23794766

  20. Transient, polarity-dependent dielectric response in a twisted nematic liquid crystal under very low frequency excitation.

    PubMed

    Krishnamurthy, K S

    2015-09-01

    The electric Freedericksz transition is a second-order quadratic effect, which, in a planarly aligned nematic liquid crystal layer, manifests above a threshold field as a homogeneous symmetric distortion with maximum director-tilt in the midplane. We find that, upon excitation by a low frequency (<0.2Hz) square-wave field, the instability becomes spatially and temporally varying. This is demonstrated using calamitic liquid crystals, initially in the 90°-twisted planar configuration. The distortion occurs close to the negative electrode following each polarity switch and, for low-voltage amplitudes, decays completely in time. We use the elastically favorable geometry of Brochard-Leger walls to establish the location of maximum distortion. Thus, at successive polarity changes, the direction of extension of both annular and open walls switches between the alignment directions at the two substrates. For high voltages, this direction is largely along the midplane director, while remaining marginally oscillatory. These results are broadly understood by taking into account the time-varying and inhomogeneous field conditions that prevail soon after the polarity reverses. Polarity dependence of the instability is traced to the formation of intrinsic double layers that lead to an asymmetry in field distribution in the presence of an external bias. Momentary field elevation near the negative electrode following a voltage sign reversal leads to locally enhanced dielectric and gradient flexoelectric torques, which accounts for the surface-like phenomenon observed at low voltages. These spatiotemporal effects, also found earlier for other instabilities, are generic in nature. PMID:26465487

  1. Electron acceleration in relativistic plasma waves generated by a single frequency short-pulse laser

    SciTech Connect

    Coverdale, C.A.; Darrow, C.B.; Decker, C.D.; Mori, W.B.; Tzeng, K.C., Clayton, C.E.; Marsh, K.A.; Joshi, C.

    1995-04-27

    Experimental evidence for the acceleration of electrons in a relativistic plasma wave generated by Raman forward scattering (SRS-F) of a single-frequency short pulse laser are presented. A 1.053 {mu}m, 600 fsec, 5 TW laser was focused into a gas jet with a peak intensity of 8{times}10{sup 17} W/cm{sup 2}. At a plasma density of 2{times}10{sup 19} cm{sup {minus}3}, 2 MeV electrons were detected and their appearance was correlated with the anti-Stokes laser sideband generated by SRS-F. The results are in good agreement with 2-D PIC simulations. The use of short pulse lasers for making ultra-high gradient accelerators is explored.

  2. Simulation studies of vapor bubble generation by short-pulse lasers

    SciTech Connect

    Amendt, P.; London, R.A.; Strauss, M.

    1997-10-26

    Formation of vapor bubbles is characteristic of many applications of short-pulse lasers in medicine. An understanding of the dynamics of vapor bubble generation is useful for developing and optimizing laser-based medical therapies. To this end, experiments in vapor bubble generation with laser light deposited in an aqueous dye solution near a fiber-optic tip have been performed. Numerical hydrodynamic simulations have been developed to understand and extrapolate results from these experiments. Comparison of two-dimensional simulations with the experiment shows excellent agreement in tracking the bubble evolution. Another regime of vapor bubble generation is short-pulse laser interactions with melanosomes. Strong shock generation and vapor bubble generation are common physical features of this interaction. A novel effect of discrete absorption by melanin granules within a melanosome is studied as a possible role in previously reported high Mach number shocks.

  3. Chromium carbide thin films deposited by ultra-short pulse laser deposition

    NASA Astrophysics Data System (ADS)

    Teghil, R.; Santagata, A.; De Bonis, A.; Galasso, A.; Villani, P.

    2009-06-01

    Pulsed laser deposition performed by a laser with a pulse duration of 250 fs has been used to deposit films from a Cr 3C 2 target. Due to the different processes involved in the laser ablation when it is performed by an ultra-short pulse source instead of a conventional short pulse one, it has been possible to obtain in vacuum films containing only one type of carbide, Cr 3C 2, as shown by X-ray photoelectron spectroscopy. On the other hand, Cr 3C 2 is not the only component of the films, since a large amount of amorphous carbon is also present. The films, deposited at room temperature, are amorphous and seem to be formed by the coalescence of a large number of particles with nanometric size. The film composition can be explained in terms of thermal evaporation from particles ejected from the target.

  4. Feasibility study on a short-pulsed IR wavelength for effective calculus fragmentation

    NASA Astrophysics Data System (ADS)

    Kang, Hyun Wook

    2015-05-01

    Laser-induced lithotripsy has been used for a minimally-invasive surgery to treat kidney-stone disease associated with urinary obstruction. A short-pulsed Tm:YAG laser (λ = 2.01 µm) was developed to improve fragmentation efficiency and was evaluated with a Ho:YAG laser (λ = 2.12 μm) as to its ablation feature and mass removal rate. Application of a train of sub-microsecond pulses with a lower energy at a frequency of 500 Hz created multiple events of cavitation that accompanied strong acoustic transients. During Tm:YAG irradiation, both high light absorption and secondary photomechanical impacts readily fragmented the calculus into small pieces (< 3 mm) and removed them 130 times faster than photothermal Ho:YAG lithotripsy. The proposed short-pulsed Tm:YAG approach may be an effective lithotripter for treating calculus disease.

  5. Generation of radiation from interacion between ultra short pulse high power laser and plasma

    NASA Astrophysics Data System (ADS)

    Yugami, Noboru

    2005-10-01

    The generation of electromagnetic wave from the interaction between short pulse laser and plasmas are studied. The Ti:Sapphire laser (0.2 TW/100 fs) was forcused on neutral gas (N2 : 7.5 Torr) using a lens with a focal length 250 mm. By the interaction between short pulse and plasma, the electromagnetic wave was generated. The frequency of the observed electromagnetic waves was in the microwave range (˜ 100 GHz). The radiation pulses of this microwave were detected by the microwave circuit element, constructed by the horn antenna and crystal the detectors. The pulse duration was typically 200 ps (FWHM). It has the polarization in the radial direction and emitted in the conical direction. The emission of the radiation is due to the electron oscillation, because the direction and its intensity were changed by the applied magnetic field.

  6. SHORT-PULSE ELECTROMAGNETIC TRANSPONDER FOR HOLE-TO-HOLE USE.

    USGS Publications Warehouse

    Wright, David L.; Watts, Raymond D.; Bramsoe, Erik

    1983-01-01

    Hole-to-hole observations were made through nearly 20 m of granite using an electromagnetic transponder (an active reflector) in one borehole and a single-hole short-pulse radar in another. The transponder is inexpensive, operationally simple, and effective in extending the capability of a short-pulse borehole radar system to allow hole-to-hole operation without requiring timing cables. A detector in the transponder senses the arrival of each pulse from the radar. Each pulse detection triggers a kilovolt-amplitude pulse for retransmission. The transponder 'echo' may be stronger than that of a passive reflector by a factor of as much as 120 db. The result is an increase in range capability by a factor which depends on attenuation in the medium and hole-to-hole wavepath geometry.

  7. Nonlinear wave interactions between short pulses of different spatio-temporal extents

    PubMed Central

    Sivan, Y.; Rozenberg, S.; Halstuch, A.; Ishaaya, A. A.

    2016-01-01

    We study the nonlinear wave interactions between short pulses of different spatio-temporal extents. Unlike the well-understood mixing of quasi-monochromatic waves, this configuration is highly non-intuitive due to the complex coupling between the spatial and temporal degrees of freedom of the interacting pulses. We illustrate the process intuitively with transitions between different branches of the dispersion curves and interpret it in terms of spectral exchange between the interacting pulses. We verify our interpretation with an example whereby a spectrally-narrow pulse “inherits” the wide spectrum of a pump pulse centered at a different wavelength, using exact numerical simulations, as well as a simplified coupled mode analysis and an asymptotic analytical solution. The latter also provides a simple and intuitive quantitative interpretation. The complex wave mixing process studied here may enable flexible spatio-temporal shaping of short pulses and is the starting point of the study of more complicated systems. PMID:27381552

  8. Short-pulse laser-produced plasma from C60 molecules

    SciTech Connect

    Wuelker, Cornelius; Theobald, Wolfgang; Ouw, Donald; Schaefer, Fritz P.; Chichkov, Boris N.

    1995-05-01

    The first experimental observations of a plasma produced in a vapor of C60 molecules with a high-intensity subpicosecond KrF laser (6x10{sup 15} W/cm{sup 2}) are reported. It differs from a plasma created in an ordinary carbon preplasma by reaching much higher ionization stages under the same experimental conditions. This remarkable property of C60 molecules (and other clusters) opens new prospects for short-pulse driven X-ray lasers.

  9. Numerical modeling of short-pulse excimer lasers with negative branch unstable cavities.

    PubMed

    Fang, H; Perrone, M R

    1995-05-20

    A one-dimensional code for the numerical simulation of negative branch unstable resonators with an intracavity aperture that are applied to high-gain, short-pulse XeCl lasers is described. The model predicts near- and far-field performance of the output laser beams. The intracavity aperture size is shown as an important parameter for control of the output beam energy and divergence. A comparison with experimental measurements is presented. PMID:21052408

  10. Assessment and Mitigation of Electromagnetic Pulse (EMP) Impacts at Short-pulse Laser Facilities

    SciTech Connect

    Brown, Jr., C G; Bond, E; Clancy, T; Dangi, S; Eder, D C; Ferguson, W; Kimbrough, J; Throop, A

    2009-10-02

    The National Ignition Facility (NIF) will be impacted by electromagnetic pulse (EMP) during normal long-pulse operation, but the largest impacts are expected during short-pulse operation utilizing the Advanced Radiographic Capability (ARC). Without mitigation these impacts could range from data corruption to hardware damage. We describe our EMP measurement systems on Titan and NIF and present some preliminary results and thoughts on mitigation.

  11. Assessment and Mitigation of Electromagnetic Pulse (EMP) Impacts at Short-pulse Laser Facilities

    SciTech Connect

    Brown, Jr., C G; Bond, E; Clancy, T; Dangi, S; Eder, D C; Ferguson, W; Kimbrough, J; Throop, A

    2010-02-04

    The National Ignition Facility (NIF) will be impacted by electromagnetic pulse (EMP) during normal long-pulse operation, but the largest impacts are expected during short-pulse operation utilizing the Advanced Radiographic Capability (ARC). Without mitigation these impacts could range from data corruption to hardware damage. We describe our EMP measurement systems on Titan and NIF and present some preliminary results and thoughts on mitigation.

  12. Resonant frequency of microstrip antennas calculated from TE-excitation of an infinite strip embedded in a grounded dielectric slab

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1979-01-01

    The calculation of currents induced by a plane wave normally incident upon an infinite strip embedded in a grounded dielectric slab is used to infer the resonant width (or frequency) of rectangular microstrip antennas. By placing the strip inside the dielectric, the effect of a dielectric cover of the same material as the substrate can be included in the calculation of resonant frequency. A comparison with measured results indicated agreement of 1 percent or better for rectangular microstrip antennas constructed on Teflon-fiberglass substrate.

  13. Short-pulse, compressed ion beams at the Neutralized Drift Compression Experiment

    NASA Astrophysics Data System (ADS)

    Seidl, P. A.; Barnard, J. J.; Davidson, R. C.; Friedman, A.; Gilson, E. P.; Grote, D.; Ji, Q.; Kaganovich, I. D.; Persaud, A.; Waldron, W. L.; Schenkel, T.

    2016-05-01

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory, with 1-mm beam spot size within 2.5 ns full-width at half maximum. The ion kinetic energy is 1.2 MeV. To enable the short pulse duration and mm-scale focal spot radius, the beam is neutralized in a 1.5-meter-long drift compression section following the last accelerator cell. A short-focal-length solenoid focuses the beam in the presence of the volumetric plasma that is near the target. In the accelerator, the line-charge density increases due to the velocity ramp imparted on the beam bunch. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including select topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Below the transition to melting, the short beam pulses offer an opportunity to study the multi-scale dynamics of radiation-induced damage in materials with pump-probe experiments, and to stabilize novel metastable phases of materials when short-pulse heating is followed by rapid quenching. First experiments used a lithium ion source; a new plasma-based helium ion source shows much greater charge delivered to the target.

  14. Measuring the energy of amplified spontaneous emission (ASE) in a short pulse laser amplifier

    NASA Astrophysics Data System (ADS)

    Iliev, Marin; Adams, Daniel; Greco, Michael; Meier, Amanda; Squier, Jeff; Durfee, Charles

    2010-10-01

    In high-gain pulsed laser amplifiers, amplified spontaneous emission (ASE) tends to limit the gain in single stage fiber amplifiers. Even if ASE is not strong enough to deplete the gain of the amplifier, it still contributes strongly to a low-intensity background output in the amplified signal. The intensity contrast between the amplified short pulse and this background ASE pedestal can be measured with third-order autocorrelation, but this method cannot be used to completely specify the ASE's energy, which is distributed over many nanoseconds. We have developed a novel method that allows us to determine the energy and the spectrum of the ASE. We use a cross polarized wave (XPW) generating crystal such as BaF2 to ``clean up'' the ASE from the short pulse(SP). The input pulse (SP and ASE) and the cross-polarized signal are passed through a birefringent crystal such as sapphire. The relative group velocity difference along each crystal axis results in a delay between both channels. After passing through a polarizer, an interferogram is obtained in a spectrometer. This interferogram results from interference of the XPW pulse with the short-pulse content of the amplifier output, with a background of the ASE spectrum. Fourier analysis yields both the ASE energy and its spectrum.

  15. SiO2-glass drilling by short-pulse CO2 laser with controllable pulse-tail energy

    NASA Astrophysics Data System (ADS)

    Uno, Kazuyuki; Yamamoto, Takuya; Watanabe, Miyu; Akitsu, Tetsuya; Jitsuno, Takahisa

    2016-03-01

    We developed a longitudinally excited CO2 laser that produces a short laser pulse with the almost same spike-pulse energy of about 0.8 mJ and the controllable pulse-tail energy of 6.33-23.08 mJ. The laser was very simple and consisted of a 45-cm-long alumina ceramic pipe with an inner diameter of 9 mm, a pulse power supply, a step-up transformer, a storage capacitance and a spark-gap switch. The dependence of SiO2 glass drilling on the fluence and the number was investigated by four types of short-pulse CO2 lasers. In this work, the effective short laser pulse with the spike pulse energy of 0.8 mJ for SiO2 glass drilling was the laser pulse with the pulse tail energy of 19.88 mJ, and produces the drilling depth per the fluence of 124 μm/J/cm2.

  16. FY05 LDRD Final ReportTime-Resolved Dynamic Studies using Short Pulse X-Ray Radiation

    SciTech Connect

    Nelson, A; Dunn, J; van Buuren, T; Budil, K; Sadigh, B; Gilmer, G; Falcone, R; Lee, R; Ng, A

    2006-02-10

    Established techniques must be extended down to the ps and sub-ps time domain to directly probe product states of materials under extreme conditions. We used short pulse ({le} 1 ps) x-ray radiation to track changes in the physical properties in tandem with measurements of the atomic and electronic structure of materials undergoing fast laser excitation and shock-related phenomena. The sources included those already available at LLNL, including the picosecond X-ray laser as well as the ALS Femtosecond Phenomena beamline and the SSRL based sub-picosecond photon source (SPPS). These allow the temporal resolution to be improved by 2 orders of magnitude over the current state-of-the-art, which is {approx} 100 ps. Thus, we observed the manifestations of dynamical processes with unprecedented time resolution. Time-resolved x-ray photoemission spectroscopy and x-ray scattering were used to study phase changes in materials with sub-picosecond time resolution. These experiments coupled to multiscale modeling allow us to explore the physics of materials in high laser fields and extreme non-equilibrium states of matter. The ability to characterize the physical and electronic structure of materials under extreme conditions together with state-of-the-art models and computational facilities will catapult LLNL's core competencies into the scientific world arena as well as support its missions of national security and stockpile stewardship.

  17. Ultrafast dynamics of the dielectric functions of ZnO and BaTiO{sub 3} thin films after intense femtosecond laser excitation

    SciTech Connect

    Acharya, S.; Seifert, G.; Chouthe, S.; Graener, H.; Böntgen, T.; Sturm, C.; Schmidt-Grund, R.; Grundmann, M.

    2014-02-07

    The ultrafast carrier dynamics of epitaxial ZnO and BaTiO{sub 3} thin films after intense excitation at 3.10 eV and 4.66 eV photon energy has been studied by femtosecond absorption spectroscopy. Modelling the transient transmission changes on the basis of spectroscopic ellipsometry data and pertinent equilibrium model dielectric functions extended by additional terms for the effects at high carrier density (P-band luminescence and stimulated emission from electron-hole-plasma), a self-consistent parameterized description was obtained for both materials. Excited carrier lifetimes in the range of ≈2 to ≈60 ps and long-lived thermal effects after several hundred ps have been identified in both materials. These findings form a reliable basis to quantitatively describe future femtosecond studies on ZnO/BaTiO{sub 3} heterolayer systems.

  18. A new high intensity and short-pulse molecular beam valve

    NASA Astrophysics Data System (ADS)

    Yan, B.; Claus, P. F. H.; van Oorschot, B. G. M.; Gerritsen, L.; Eppink, A. T. J. B.; van de Meerakker, S. Y. T.; Parker, D. H.

    2013-02-01

    In this paper, we report on the design and performance of a new home-built pulsed gas valve, which we refer to as the Nijmegen Pulsed Valve (NPV). The main output characteristics include a short pulse width (as short as 20 μs) combined with operating rates up to 30 Hz. The operation principle of the NPV is based on the Lorentz force created by a pulsed current passing through an aluminum strip located within a magnetic field, which opens the nozzle periodically. The amplitude of displacement of the opening mechanism is sufficient to allow the use of nozzles with up to 1.0 mm diameter. To investigate the performance of the valve, several characterizations were performed with different experimental methods. First, a fast ionization gauge was used to measure the beam intensity of the free jet emanating from the NPV. We compare free jets from the NPV with those from several other pulsed valves in current use in our laboratory. Results showed that a high intensity and short pulse-length beam could be generated by the new valve. Second, the NPV was tested in combination with a skimmer, where resonance enhanced multiphoton ionization combined with velocity map imaging was used to show that the NPV was able to produce a pulsed molecular beam with short pulse duration (˜20 μs using 0.1% NO/He at 6 bars) and low rotational temperature (˜1 K using 0.5% NO/Ar at 6 bars). Third, a novel two-point pump-probe method was employed which we label double delay scan. This method allows a full kinematic characterization of the molecular beam, including accurate speed ratios at different temporal positions. It was found that the speed ratio was maximum (S = 50 using 0.1% NO/He at 3 bars) at the peak position of the molecular beam and decreased when it was on the leading or falling edge.

  19. Exploitation of stimulated Raman scattering in short-pulse fiber amplifiers.

    PubMed

    Zhou, Shian; Takamido, Tetsuji; Imai, Shinji; Wise, Frank

    2010-07-15

    Stimulated Raman scattering (SRS) generally limits the performance of short-pulse fiber amplifiers. We present the results of experiments that show that, under some conditions, SRS can extend the performance of amplifiers limited by nonlinear phase accumulation. The Stokes spectrum can be free of distortions arising from self-phase modulation and can circumvent the gain-narrowing limit of the amplifier. The generation of 1 microJ and 90 fs pulses from a single-mode fiber amplifier illustrates the potential of the process.

  20. Generation of nanostructured surfaces by interfering and no-interfering ultra-short pulse laser processing

    NASA Astrophysics Data System (ADS)

    Nakata, Y.; Tsuchida, K.; Miyanaga, N.

    2009-02-01

    Top down technology of ultra-short pulse laser processing was applied to induce liquidly process and generate new nanostructures such as nano-waterdrop, nanocrown, and fine web structure. For example, a nano-waterdrop was generated by a single shot ps laser irradiation and had the narrow dieter of about 50 nm. In the case of nanocrown, whiskers were standing at the edge of a nanohole, and the diameter of the whiskers was around 100 nm. In addition, wavelength-sized web structure was generated in a single shot of femtosecond laser irradiation.

  1. Polygon Scanner System for Ultra Short Pulsed Laser Micro-Machining Applications

    NASA Astrophysics Data System (ADS)

    De Loor, R.

    Ultra short pulsed lasers have gained acceptance in micro-machining applications and many processes have been developed in the lab. Transferring the technology to the manufacturing floor started few years ago as soon as relatively high average power (> 5W) lasers became available. Now that high repetition rates and average powers of 50 Watt and more are reaching the market, the commercially available galvo based laser scanners systems limit the efficient use of this expensive laser power. We present a novel polygon based scanner system incorporating laser and scanner synchronization enabling writing speeds of 50 m/sec and higher.

  2. Application of short pulsed laser systems for micro-scale processing.

    SciTech Connect

    Jared, Bradley Howell

    2010-03-01

    The relatively recent development of short (nsec) and ultra-short (fsec) pulsed laser systems has introduced process capabilities which are particularly suited for micro-manufacturing applications. Micrometer feature resolutions and minimal heat affected zones are commonly cited benefits, although unique material interactions also prove attractive for many applications. A background of short and ultra-short pulsed laser system capabilities and material interactions will be presented for micro-scale processing. Processing strengths and limitations will be discussed and demonstrated within the framework of applications related to micro-machining, material surface modifications, and fundamental material science research.

  3. Laser initiation and beam quality evolution in a confocal unstable resonator, short-pulse-duration laser.

    PubMed

    Ewanizky, T F

    1997-11-20

    The subjects of laser initiation and beam quality evolution in short-pulse-duration systems that employ confocal unstable resonators motivated this work. Experimentation and analysis of the performance of a laser-pumped, organic dye laser are presented. Combined results indicate that a saturation flux arises through a coalescence of stabilized, diverging-mode components of the initially emitted fluorescence. The ABCD law method was used to devise calculational techniques that clearly demonstrate the particular mechanisms responsible for rapid mode stabilization, subsequent beam quality development, and laser initiation. PMID:18264413

  4. High mode volume self filtering unstable resonator applied to a short pulse XeCl laser

    NASA Astrophysics Data System (ADS)

    Luches, A.; Nassisi, V.; Perrone, M. R.; Radiotis, E.

    1989-05-01

    A high mode volume non confocal self filtering unstable resonator has been applied to a short pulse XeCl laser. Such a resonator made up of a concave mirror (focal length is 25 cm) and a convex mirror (focal length is -25 cm), has a magnification | M|=34 and a cavity length of 151 cm. A nearly diffraction limited laser beam of 5.5 mJ, 10 ns duration and with a brightness of 2.5×10 13 W cm -2 sr -1 has been obtained. These results are compared to those obtained with another self-filtering unstable resonator having the same resonator length but | M|=10.

  5. Proton stopping power measurements using high intensity short pulse lasers produced proton beams

    NASA Astrophysics Data System (ADS)

    Chen, S. N.; Atzeni, S.; Gauthier, M.; Higginson, D. P.; Mangia, F.; Marques, J.-R.; Riquier, R.; Fuchs, J.

    2014-03-01

    Proton stopping power measurements in solids and gases, typically made using proton accelerators, Van de Graf machines, etc., have existed now for many decades for many elements and compounds. We propose a new method of making this type of measurement using a different source, namely proton beams created by high intensity short pulse lasers. The advantage of this type of source is that there is the high number of particles and short bunch lengths, which is ideal for measurements of evolving mediums such as hot dense plasmas. Our measurements are consistent with exiting data and theory which validates this method.

  6. Ignition and growth modeling of short pulse shock initiation experiments on fine particle Hexanitrostilbene (HNS)

    NASA Astrophysics Data System (ADS)

    Tarver, Craig M.; Chidester, Steven K.

    2014-05-01

    Hexanitrostilbene (HNS) is a booster explosive that is usually initiated using short pulse duration shock waves produced by high velocity impacts with thin flyer plates. HNS is generally used at a density of 1.60 g/cm3 which implies a porosity of 8%. It has been produced in several forms (I - IV, ultrafine, etc.) with various particle surface areas. The threshold flyer velocities for shock induced detonation versus failure to detonate for these different surface area materials vary slightly, but, in this paper, an average Ignition and Growth reactive flow model parameter set was determined using all of the experimental data from several aluminium and KaptonTM flyer plate studies. This data ranged from shock pressures of 4 GPa to above the Chapman-Jouguet (C-J) detonation pressure (~20 GPa) and from 1 to 120 nanoseconds in time duration. Good agreement was obtained for the available short pulse duration detonation verses failure to threshold flyer velocity data using the Ignition and Growth model,

  7. Advanced concepts for high-power, short-pulse CO2 laser development

    NASA Astrophysics Data System (ADS)

    Gordon, Daniel F.; Hasson, Victor; von Bergmann, Hubertus; Chen, Yu-hsin; Schmitt-Sody, A.; Penano, Joseph R.

    2016-06-01

    Ultra-short pulse lasers are dominated by solid-state technology, which typically operates in the near-infrared. Efforts to extend this technology to longer wavelengths are meeting with some success, but the trend remains that longer wavelengths correlate with greatly reduced power. The carbon dioxide (CO2) laser is capable of delivering high energy, 10 micron wavelength pulses, but the gain structure makes operating in the ultra-short pulse regime difficult. The Naval Research Laboratory and Air Force Research Laboratory are developing a novel CO2 laser designed to deliver ~1 Joule, ~1 picosecond pulses, from a compact gain volume (~2x2x80 cm). The design is based on injection seeding an unstable resonator, in order to achieve high energy extraction efficiency, and to take advantage of power broadening. The unstable resonator is seeded by a solid state front end, pumped by a custom built titanium sapphire laser matched to the CO2 laser bandwidth. In order to access a broader range of mid infrared wavelengths using CO2 lasers, one must consider nonlinear frequency multiplication, which is non-trivial due to the bandwidth of the 10 micron radiation.

  8. Hot Electron Measurement and Modeling for Short-Pulse Laser Plasma Interactions

    SciTech Connect

    Chen, H; McLean, S; Patel, P K; Wilks, S C

    2003-09-08

    We measured the hot electron production from short pulse laser plasma interactions using a fiber-array-based compact electron spectrometer that uses permanent magnets for electron energy dispersion and over 100 scintillating fibers coupled to a 1024 x 1024 pixel CCD as the detection system. This spectrometer has electron energy coverage from 10 keV to 60 MeV. The whole spectrometer is compact with dimensions of 8 inch x 7 inch x 4 inch. We performed systematic measurements of electron production on the ultra short pulse laser JanUSP (with pulse width less than 100 fs) at intensity range interest to Fast Ignition scheme from 10{sup 17} Wcm{sup -2} up to 10{sup 19} Wcm{sup -2} at Lawrence Livermore National laboratory. The electron distributions were obtained at various laser energies for different solid target materials and observation angles. We determined characteristic temperature of the escaped hot electrons at various incident laser intensity which is confirmed by theoretical simulations using the ZOHAL Particle-in-cell (PIC) code.

  9. Characteristics of High Energy Ka and Bremsstrahlung Sources Generated by Short Pulse Petawatt Lasers

    SciTech Connect

    Park, H; Izumi, N; Key, M H; Koch, J A; Landen, O L; Patel, P K; Phillips, T W; Zhang, B B

    2004-04-13

    We have measured the characteristics of high energy K{alpha} sources created with the Vulcan Petawatt laser at RAL and the JanUSP laser at LLNL. High energy x-ray backlighters will be essential for radiographing High-Energy-Density Experimental Science (HEDES) targets for NIF projects especially to probe implosions and high areal density planar samples. Hard K{alpha} x-ray photons are created through relativistic electron plasma interactions in the target material after irradiation by short pulse high intensity lasers. For our Vulcan experiment, we employed a CsI scintillator/CCD camera for imaging and a CCD camera for single photon counting. We measured the Ag K{alpha} source (22 keV) size using a pinhole array and the K{alpha} flux using a single photon counting method. We also radiographed a high Z target using the high energy broadband x-rays generated from these short pulse lasers. This paper will present results from these experiments.

  10. Investigating short-pulse shock initiation thresholds in HMX-based explosives with reactive mesoscale simulations

    NASA Astrophysics Data System (ADS)

    Springer, H.; May, C.; Tarver, C.; Reaugh, J.

    2013-06-01

    Short-pulse loading experiments have demonstrated the probabilistic nature of shock initiation thresholds in a variety of explosives. The intensely loaded region of explosive adjacent to the flyer impact zone, and its potential hot spots, influences the overall sample shock sensitivity. As the size of this region decreases below the representative volume element size, the likelihood of sampling differing hot spot densities in it increases from sample to sample. We hypothesize that this variation in active hot spots contributes to the probabilistic nature of short-pulse shock initiation. We investigate the role of microstructure and explosive reactive properties on shock initiation response with mesoscale simulations of miniature flyer plate experiments. LX-10 (95%wt HMX, 5%wt Viton A) is the model explosive. To investigate the influence of microstructure, we vary void size and spatial position. While void volume fraction and HMX grain size distributions are fixed, assigning random spatial positions to these parameters leads to hot spot density variations over many microstructural realizations. HMX reactivity is also investigated. The influences of microstructure and reactivity parameters are discussed. This study enables the development of predictive shock sensitivity models with basic structure-property information. This work performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344. This work was funded in part by the Joint DoD-DOE Munitions Program.

  11. Strip Velocity Measurements for Gated X-Ray Imagers Using Short Pulse Lasers

    SciTech Connect

    Ross, P. W.; Cardenas, M.; Griffin, M.; Mead, A.; Silbernagel, C. T.; Bell, P.; Haque, S. H.

    2013-09-01

    Strip velocity measurements of gated X-ray imagers are presented using an ultra-short pulse laser. Obtaining time-resolved X-ray images of inertial confinement fusion shots presents a difficult challenge. One diagnostic developed to address this challenge is the gated X-ray imagers. The gated X-ray detectors (GXDs) developed by Lawrence Livermore National Laboratory and Los Alamos National Laboratory use a microchannel plate (MCP) coated with a gold strip line, which serves as a photocathode. GXDs are used with an array of pinholes, which image onto various parts of the GXD image plane. As the pulse sweeps over the strip lines, it creates a time history of the event with consecutive images. In order to accurately interpret the timing of the images obtained using the GXDs, it is necessary to measure the propagation of the pulse over the strip line. The strip velocity was measured using a short pulse laser with a pulse duration of approximately 1-2 ps. The 200nm light from the laser is used to illuminate the GXD MCP. The laser pulse is split and a retroreflective mirror is used to delay one of the legs. By adjusting the distance to the mirror, one leg is temporally delayed compared to the reference leg. The retroreflective setup is calibrated using a streak camera with a 1 ns full sweep. Resolution of 0.5 mm is accomplished to achieve a temporal resolution of ~5 ps on the GXD strip line.

  12. GINGER simulations of short-pulse effects in the LEUTL FEL

    SciTech Connect

    Huang, Z.; Fawley, W.M.

    2001-07-01

    While the long-pulse, coasting beam model is often used in analysis and simulation of self-amplified spontaneous emission (SASE) free-electron lasers (FELs), many current SASE demonstration experiments employ relatively short electron bunches whose pulse length is on the order of the radiation slippage length. In particular, the low-energy undulator test line (LEUTL) FEL at the Advanced Photon Source has recently lased and nominally saturated in both visible and near-ultraviolet wavelength regions with a sub-ps pulse length that is somewhat shorter than the total slippage length in the 22-m undulator system. In this paper we explore several characteristics of the short pulse regime for SASE FELs with the multidimensional, time-dependent simulation code GINGER, concentrating on making a direct comparison with the experimental results from LEUTL. Items of interest include the radiation gain length, pulse energy, saturation position, and spectral bandwidth. We address the importance of short-pulse effects when scaling the LEUTL results to proposed x-ray FELs and also briefly discuss the possible importance of coherent spontaneous emission at startup.

  13. Single-step electropolymerization patterning of a polypyrrole nanowire by ultra-short pulses via an AFM cantilever.

    PubMed

    Nam, Kihwan; Lee, Gyudo; Jung, Huihun; Park, Jinsung; Kim, Chi Hyun; Seo, Jongbum; Yoon, Dae Sung; Lee, Sang Woo; Kwon, Taeyun

    2011-06-01

    Conducting polymers (CPs) have attracted a great deal of attention due to their unique properties; these properties are useful in implementing various functional devices, such as memory, and chemical and biological sensors. In particular, the nanopatterning of CPs is a key technology that will accelerate the adoption of CPs in fabricating nanoscaled multifunctional devices. This paper presents an innovative technique for forming polypyrrole nanowire (PPy-NW) patterns, without any additional pretreatment on the gold surface, using atomic force microscopy (AFM) and ultra-short pulse voltage. Applying the ultra-short pulse voltage to the AFM tip has the following advantage: since the electrochemical current is extremely localized around the tip, the successful formation of CP nanowires results. This is because the pulse width is much shorter than the resistor-capacitor (RC) time constant of the equivalent electrochemical circuit of our experimental set-up. This paper provides systematic results regarding the dimensional variation of the PPy-NW patterns produced by varying the electrical conditions of the ultra-short pulse, such as the pulse amplitude, width, and frequency. The results show that use of an ultra-short pulse is essential in fabricating PPy-NW patterns. Additionally, an ultra-short pulse offers excellent pattern controllability for both width (353 nm ∼ 3.37 µm) and height (2.0 ∼ 88.3 nm).

  14. Dielectric SiO2/ZrO2 distributed Bragg reflectors for ZnO microcavities prepared by the reactive helicon-wave-excited-plasma sputtering method

    NASA Astrophysics Data System (ADS)

    Chichibu, S. F.; Ohmori, T.; Shibata, N.; Koyama, T.

    2006-04-01

    Reactive helicon-wave-excited-plasma sputtering method is shown to be a suitable technique for the fabrication of high reflectivity (R) distributed Bragg reflectors (DBRs), in particular, operating at the resonance wavelength of B excitons in ZnO (366.5nm), utilizing quarter-wavelength multilayers of SiO2 and ZrO2 dielectric films. According to the surface-damage-free nature and proper stoichiometry controllability of the method, dense dielectric films exhibiting ideal refractive indices (1.46 for SiO2 and 2.10 for ZrO2 at 633nm) and small root-mean-square values for the surface roughness (0.20nm for SiO2 and 0.53nm for ZrO2) were deposited using Si and Zr targets and O2 gas at room temperature. Optical reflectance spectra of the SiO2/ZrO2 DBRs agreed with those calculated using the optical multilayer film theory, and eight-pair DBR exhibited R higher than 99.5% at 366.5nm and 82nm stop bandwidth (R ⩾95%). The results indicate that the DBR can be used for the realization of polariton lasers using ZnO microcavities.

  15. Short Pulse Laser Absorption and Energy Partition at Relativistic Laser Intensities

    SciTech Connect

    Shepherd, R; Chen, H; Ping, Y; Dyer, G; Wilks, S; Chung, H; Kemp, A; Hanson, S; Widmann, K; Fournier, K; Faenov, A; Pikuz, T; Niles, A; Beiersdorfer, P

    2007-02-27

    We have performed experiments at the COMET and Calisto short pulse laser facilities to make the first comprehensive measurements of the laser absorption and energy partition in solid targets heated with an ultrashort laser pulse focused to relativistic laser intensities (>10 10{sup 17} W/cm{sup 2}). The measurements show an exceedingly high absorption for P polarized laser-target interactions above 10{sup 19} W/cm{sup 2}. Additionally, the hot electron population is observed to markedly increase at the same intensity range. An investigation of the relaxation process was initiated u using time sing time-resolved K{sub {alpha}} spectroscopy. Measurements of the time time-resolved K{sub {alpha}} radiation suggest a 10-20 ps relativistic electron relaxation time. However modeling difficulties of these data are apparent and a more detailed investigation on this subject matter is warranted.

  16. The thermoelastic basis of short pulsed laser ablation of biological tissue.

    PubMed Central

    Itzkan, I; Albagli, D; Dark, M L; Perelman, L T; von Rosenberg, C; Feld, M S

    1995-01-01

    Strong evidence that short-pulse laser ablation of biological tissues is a photomechanical process is presented. A full three-dimensional, time-dependent solution to the thermoelastic wave equation is compared to the results of experiments using an interferometric surface monitor to measure thermoelastic expansion. Agreement is excellent for calibrations performed on glass and on acrylic at low laser fluences. For cortical bone, the measurements agree well with the theoretical predictions once optical scattering is included. The theory predicts the presence of the tensile stresses necessary to rupture the tissue during photomechanical ablation. The technique is also used to monitor the ablation event both before and after material is ejected. PMID:7892208

  17. Condition for short pulse generation in ultrahigh frequency mode-locking of semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Lau, K. Y.; Paslaski, J.

    1991-11-01

    It is shown that although it is possible to obtain mode-locking without self-pulsation when certain criteria are satisfied, the shortest pulses are almost always generated at or close to the onset of self-pulsation. Thus, the amplitude of the optical pulse train is modulated by the (relatively) low-frequency envelop of a few gigahertz under this condition. This observation was obtained by simultaneously measuring the pulsewidth using an autocorrelator and monitoring the optical intensity using a high-speed photodiode and a microwave spectrum analyzer. It is concluded that while it is possible to generate picosecond optical pulses in ultrahigh-frequency mode-locking of quantum-well lasers, very short pulses (approaching 1 ps) are almost always accompanied by self-pulsation which is manifested as low-frequency (gigahertz) envelope modulation of the optical pulse train.

  18. Characterization of a novel, short pulse laser-driven neutron source

    SciTech Connect

    Jung, D.; Falk, K.; Guler, N.; Devlin, M.; Favalli, A.; Fernandez, J. C.; Gautier, D. C.; Haight, R.; Hamilton, C. E.; Hegelich, B. M.; Johnson, R. P.; Merrill, F.; Schoenberg, K.; Shimada, T.; Taddeucci, T.; Tybo, J. L.; Wender, S. A.; Wilde, C. H.; Wurden, G. A.; Deppert, O.; and others

    2013-05-15

    We present a full characterization of a short pulse laser-driven neutron source. Neutrons are produced by nuclear reactions of laser-driven ions deposited in a secondary target. The emission of neutrons is a superposition of an isotropic component into 4π and a forward directed, jet-like contribution, with energies ranging up to 80 MeV. A maximum flux of 4.4 × 10{sup 9} neutrons/sr has been observed and used for fast neutron radiography. On-shot characterization of the ion driver and neutron beam has been done with a variety of different diagnostics, including particle detectors, nuclear reaction, and time-of-flight methods. The results are of great value for future optimization of this novel technique and implementation in advanced applications.

  19. Ignition and Growth Modeling of Short Pulse Duration Shock Initiation Experiments on HNS IV

    NASA Astrophysics Data System (ADS)

    Tarver, Craig; Chidester, Steven

    2013-06-01

    Short pulse duration shock initiation experiments on 1.60 g/cm3 density (92% TMD) HNS IV have been reported by Schwarz, Bowden et al., Dudley et al., Goveas et al., Greenaway et al., and others. This flyer threshold velocity for detonation/failure data plus measured unreacted HNS Hugoniot data and detonation cylinder test product expansion data were used as the experimental basis for the development of an Ignition and Growth reactive flow model for the shock initiation of HNS IV. The resulting Ignition and Growth HNS IV model parameters yielded good overall agreement with all of this experimental data. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.: Explosive, HNS IV, shock to detonation transition, Ignition and Growth: 82.33.Vx, 82.40.Fp.

  20. The evolution of ultra-intense, short-pulse lasers in underdense plasmas

    SciTech Connect

    Decker, C.D.; Mori, W.B.; Tzeng, K.C.

    1995-11-03

    The propagation of short-pulse lasers through underdense plasmas at ultra-high intensities (I {>=}10{sup 19}W/cm) is examined. The pulse evolution is found to be significantly different than it is for moderate intensities. Rather than beam breakup from self-modulation, Raman forward scattering and laser hose instabilities the behavior is dominated by leading edge erosion. A differential equation which describes local pump depletion is derived and used to analyze the formation and evolution of the erosion. This pulse erosion is demonstrated with one dimensional particle in cell (PIC) simulations. In addition, two dimensional simulations are presented which show pulse erosion along with other effects such as channeling and diffraction.

  1. Analysis of the Interaction of Short-Pulse High-Fluence Radiation with Targets

    SciTech Connect

    Lawrence, R.Jeffery

    1999-07-23

    We generally use large-scale hydrocodes to study the dynamic response of targets to influence pulsed radiation loads. However, for many applications where the desired solution does not require a detailed specification of pressure- or velocity-time histories, there are simple analytic approaches that can yield surprisingly accurate results. Examples include determining either the final velocity of a radiation-driven flying plate or the impulse delivered to a structural element. These methods are all based on relatively straightforward use of conservation of mass and momentum, but they typically need one scaling-law parameter. In this context, short pulse means short compared to the characteristic time of the desired response, which allows for the phenomena to be essentially uncoupled. High fluence means that the input energy is great enough to yield vaporization or blowoff of one or more portions of the configuration. We discuss some of these methods, give examples, and suggest limitations and criteria for their use.

  2. High power, short pulses ultraviolet laser for the development of a new x-ray laser

    SciTech Connect

    Meixler, L.; Nam, C.H.; Robinson, J.; Tighe, W.; Krushelnick, K.; Suckewer, S.; Goldhar, J.; Seely, J.; Feldman, U.

    1989-04-01

    A high power, short pulse ultraviolet laser system (Powerful Picosecond-Laser) has been developed at the Princeton Plasma Physics Laboratory (PPPL) as part of experiments designed to generate shorter wavelength x-ray lasers. With the addition of pulse compression and a final KrF amplifier the laser output is expected to have reached 1/3-1/2 TW (10/sup 12/ watts) levels. The laser system, particularly the final amplifier, is described along with some initial soft x-ray spectra from laser-target experiments. The front end of the PP-Laser provides an output of 20--30 GW (10/sup 9/ watts) and can be focussed to intensities of /approximately/10/sup 16/ W/cm/sup 2/. Experiments using this output to examine the effects of a prepulse on laser-target interaction are described. 19 refs., 14 figs.

  3. Status of the Short-Pulse X-ray Project at the Advanced Photon Source

    SciTech Connect

    Nassiri, A; Berenc, T G; Borland, M; Brajuskovic, B; Bromberek, D J; Carwardine, J; Decker, G; Emery, L; Fuerst, J D; Grelick, A E; Horan, D; Kaluzny, J; Lenkszus, F; Lill, R M; Liu, J; Ma, H; Sajaev, V; Smith, T L; Stillwell, B K; Waldschmidt, G J; Wu, G; Yang, B X; Yang, Y; Zholents, A; Byrd, J M; Doolittle, L R; Huang, G; Cheng, G; Ciovati, G; Dhakal, P; Eremeev, G V; Feingold, J J; Geng, R L; Henry, J; Kneisel, P; Macha, K; Mammosser, J D; Matalevich, J; Palczewski, A D; Rimmer, R A; Wang, H; Wilson, K M; Wiseman, M; Li, Z; Xiao, L

    2012-07-01

    The Advanced Photon Source Upgrade (APS-U) Project at Argonne will include generation of short-pulse x-rays based on Zholents deflecting cavity scheme. We have chosen superconducting (SC) cavities in order to have a continuous train of crabbed bunches and flexibility of operating modes. In collaboration with Jefferson Laboratory, we are prototyping and testing a number of single-cell deflecting cavities and associated auxiliary systems with promising initial results. In collaboration with Lawrence Berkeley National Laboratory, we are working to develop state-of-the-art timing, synchronization, and differential rf phase stability systems that are required for SPX. Collaboration with Advanced Computations Department at Stanford Linear Accelerator Center is looking into simulations of complex, multi-cavity geometries with lower- and higher-order modes waveguide dampers using ACE3P. This contribution provides the current R&D status of the SPX project.

  4. Short pulse, high power microwave radiation source with a laser-induced sheet plasma mirror

    SciTech Connect

    Higashiguchi, Takeshi; Yugami, Noboru

    2009-05-01

    We have demonstrated the short pulse, high power microwave radiation source using an ultraviolet laser-induced sheet plasma mirror in a gas-filled x-band rectangular waveguide from the conventional microwave sources and components. A laser-induced sheet plasma with an overdense plasma acts as a plasma mirror. The long pulse propagating in the gas-filled waveguide was sliced by the sheet plasma mirror at two different points along the waveguide. We observed about twice the power of the pulse by adding the two sliced microwave pulses produced by this scheme. A maximum peak power of 200 kW with a pulse duration of 10 ns (full width at half maximum) from the long microwave pulse source with a pulse duration of 0.8 mus was observed.

  5. Characterization of a heat flux sensor using short pulse laser calibration

    NASA Astrophysics Data System (ADS)

    Löhle, Stefan; Battaglia, Jean-Luc; Batsale, Jean-Christophe; Enouf, Olivier; Dubard, Jimmy; Filtz, Jean-Remy

    2007-05-01

    A method to calibrate classical heat flux sensors is presented. The classical approach to measure the temperature inside a known material by using a thermocouple fails when the measurement time is very short. In this work the surface heat flux is determined by solving the inverse heat conduction problem using a noninteger identified system as a direct model for the estimation process. Using short pulse laser calibration measurements the crucial design aspects of the sensor that play a significant role when assuming one-dimensional, semi-infinite heat transfer have been accounted for. The theoretical approach as well as the calibration results are presented and comparisons to the classical approach and results from finite element modeling are shown. It is concluded that the new method ameliorate the heat flux sensor significantly and extend its application to very short measurement times.

  6. Focal spot measurement in ultra-intense ultra-short pulse laser facility

    NASA Astrophysics Data System (ADS)

    Liu, Lanqin; Peng, Hansheng; Zhou, Kainan; Wang, Xiaodong; Wang, Xiao; Zeng, Xiaoming; Zhu, Qihua; Huang, Xiaojun; Wei, Xiaofeng; Ren, Huan

    2005-06-01

    A peak power of 286-TW Ti:sapphire laser facility referred to as SILEX-I was successfully built at China Academy of Engineering Physics, for a pulse duration of 30 fs in a three-stage Ti:sapphire amplifier chain based on chirped-pulse amplification. The beam have a wavefront distortion of 0.63μm PV and 0.09μm RMS, and the focal spot with an f/2.2 OAP is 5.7μm, to our knowledge, this is the best far field obtained for high-power ultra-short pulse laser systems with no deformable mirror wavefront correction. The peak focused intensity of ~1021W /cm2 were expected.

  7. High ion charge states in a high-current, short-pulse, vacuum ARC ion sources

    SciTech Connect

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M.

    1996-08-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1-4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several {mu}s) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution.

  8. An imaging proton spectrometer for short-pulse laser plasma experiments

    SciTech Connect

    Chen, H; Hazi, A; van Maren, R; Chen, S; Fuchs, J; Gauthier, M; Pape, S L; Rygg, J R; Shepherd, R

    2010-05-11

    Ultra intense short pulse laser pulses incident on solid targets can generate energetic protons. In additions to their potentially important applications such as in cancer treatments and proton fast ignition, these protons are essential to understand the complex physics of intense laser plasma interaction. To better characterize these laser-produced protons, we designed and constructed a novel, spatially imaging proton spectrometer that will not only measure proton energy distribution with high resolution, but also provide its angular characteristics. The information obtained from this spectrometer compliments those from commonly used diagnostics including radiochromic film packs, CR39 nuclear track detectors, and non-imaging magnetic spectrometers. The basic characterizations and sample data from this instrument are presented.

  9. Monochromatic short pulse laser produced ion beam using a compact passive magnetic device

    SciTech Connect

    Chen, S. N.; Gauthier, M.; Higginson, D. P.; Dorard, S.; Marquès, J.-R.; Fuchs, J.; Mangia, F.; Atzeni, S.; Riquier, R.

    2014-04-15

    High-intensity laser accelerated protons and ions are emerging sources with complementary characteristics to those of conventional sources, namely high charge, high current, and short bunch duration, and therefore can be useful for dedicated applications. However, these beams exhibit a broadband energy spectrum when, for some experiments, monoenergetic beams are required. We present here an adaptation of conventional chicane devices in a compact form (10 cm × 20 cm) which enables selection of a specific energy interval from the broadband spectrum. This is achieved by employing magnetic fields to bend the trajectory of the laser produced proton beam through two slits in order to select the minimum and maximum beam energy. The device enables a production of a high current, short duration source with a reproducible output spectrum from short pulse laser produced charged particle beams.

  10. Monochromatic short pulse laser produced ion beam using a compact passive magnetic device.

    PubMed

    Chen, S N; Gauthier, M; Higginson, D P; Dorard, S; Mangia, F; Riquier, R; Atzeni, S; Marquès, J-R; Fuchs, J

    2014-04-01

    High-intensity laser accelerated protons and ions are emerging sources with complementary characteristics to those of conventional sources, namely high charge, high current, and short bunch duration, and therefore can be useful for dedicated applications. However, these beams exhibit a broadband energy spectrum when, for some experiments, monoenergetic beams are required. We present here an adaptation of conventional chicane devices in a compact form (10 cm × 20 cm) which enables selection of a specific energy interval from the broadband spectrum. This is achieved by employing magnetic fields to bend the trajectory of the laser produced proton beam through two slits in order to select the minimum and maximum beam energy. The device enables a production of a high current, short duration source with a reproducible output spectrum from short pulse laser produced charged particle beams. PMID:24784604

  11. Experimental approach to interaction physics challenges of the shock ignition scheme using short pulse lasers.

    PubMed

    Goyon, C; Depierreux, S; Yahia, V; Loisel, G; Baccou, C; Courvoisier, C; Borisenko, N G; Orekhov, A; Rosmej, O; Labaune, C

    2013-12-01

    An experimental program was designed to study the most important issues of laser-plasma interaction physics in the context of the shock ignition scheme. In the new experiments presented in this Letter, a combination of kilojoule and short laser pulses was used to study the laser-plasma coupling at high laser intensities for a large range of electron densities and plasma profiles. We find that the backscatter is dominated by stimulated Brillouin scattering with stimulated Raman scattering staying at a limited level. This is in agreement with past experiments using long pulses but laser intensities limited to 2×10(15)  W/cm2, or short pulses with intensities up to 5×10(16)  W/cm2 as well as with 2D particle-in-cell simulations. PMID:24476284

  12. High Energy, Short Pulse Fiber Injection Lasers at Lawrence Livermore National Laboratory

    SciTech Connect

    Dawson, J W; Messerly, M J; Phan, H H; Crane, J K; Beach, R J; Siders, C W; Barty, C J

    2008-09-10

    A short pulse fiber injection laser for the Advanced Radiographic Capability (ARC) on the National Ignition Facility (NIF) has been developed at Lawrence Livermore National Laboratory (LLNL). This system produces 100 {micro}J pulses with 5 nm of bandwidth centered at 1053 nm. The pulses are stretched to 2.5 ns and have been recompressed to sub-ps pulse widths. A key feature of the system is that the pre-pulse power contrast ratio exceeds 80 dB. The system can also precisely adjust the final recompressed pulse width and timing and has been designed for reliable, hands free operation. The key challenges in constructing this system were control of the signal to noise ratio, dispersion management and managing the impact of self phase modulation on the chirped pulse.

  13. Control of Brillouin short-pulse seed amplification by chirping the pump pulse

    SciTech Connect

    Lehmann, G.; Spatschek, K. H.

    2015-04-15

    Seed amplification via Brillouin backscattering of a long pump pulse is considered. Similar to Raman amplification, several obstructive effects may occur during short-pulse Brillouin amplification. One is the spontaneous Raman backscattering of the pump before interacting with the seed. Preforming the plasma and/or chirping the pump will reduce unwanted pump backscattering. Optimized regions for low-loss pump propagation were proposed already in conjunction with Raman seed amplification. Hence, the influence of the chirp of the pump during Brillouin interaction with the seed becomes important and will be considered here. Both, the linear as well as the nonlinear evolution phases of the seed caused by Brillouin amplification under the action of a chirped pump are investigated. The amplification rate as well as the seed profiles are presented as function of the chirping rate. Also the dependence of superradiant scaling rates on the chirp parameter is discussed.

  14. Short-Pulse Laser Sintering of Multilayer Hard Metal Coatings: Structure and Wear Behavior

    NASA Astrophysics Data System (ADS)

    Kharanzhevskiy, Evgeny; Ipatov, Alexey; Nikolaeva, Irina; Zakirova, Raushaniya

    2015-06-01

    This paper reports on the phase composition and properties of multilayer hard metal coatings deposited on steel by a process variant of Selective laser melting (SLM). The process is based on layer-wise short-pulse laser sintering of high-dispersive WC-Co powder on a steel substrate. High temperature in the molten zone and chemical interaction with the substrate explain high level of adhesion strength between the coating and the substrate. The technique allows obtaining both high quality hard-metal multilayer gradient coatings with thickness up to 200 μm, density near to the theoretical density (TD), hardness up to 21 GPa and complex 3D objects by layer-wise powder based process such as SLM.

  15. Fluctuations of energy density of short-pulse optical radiation in the turbulent atmosphere.

    PubMed

    Banakh, V A; Smalikho, I N

    2014-09-22

    Fluctuations of energy density of short-pulse optical radiation in the turbulent atmosphere have been studied based on numerical solution of the parabolic wave equation for the complex spectral amplitude of the wave field by the split-step method. It has been shown that under conditions of strong optical turbulence, the relative variance of energy density fluctuations of pulsed radiation of femtosecond duration becomes much less than the relative variance of intensity fluctuations of continuous-wave radiation. The spatial structure of fluctuations of the energy density with a decrease of the pulse duration becomes more large-scale and homogeneous. For shorter pulses the maximal value of the probability density distribution of energy density fluctuations tends to the mean value of the energy density.

  16. Monochromatic short pulse laser produced ion beam using a compact passive magnetic device

    NASA Astrophysics Data System (ADS)

    Chen, S. N.; Gauthier, M.; Higginson, D. P.; Dorard, S.; Mangia, F.; Riquier, R.; Atzeni, S.; Marquès, J.-R.; Fuchs, J.

    2014-04-01

    High-intensity laser accelerated protons and ions are emerging sources with complementary characteristics to those of conventional sources, namely high charge, high current, and short bunch duration, and therefore can be useful for dedicated applications. However, these beams exhibit a broadband energy spectrum when, for some experiments, monoenergetic beams are required. We present here an adaptation of conventional chicane devices in a compact form (10 cm × 20 cm) which enables selection of a specific energy interval from the broadband spectrum. This is achieved by employing magnetic fields to bend the trajectory of the laser produced proton beam through two slits in order to select the minimum and maximum beam energy. The device enables a production of a high current, short duration source with a reproducible output spectrum from short pulse laser produced charged particle beams.

  17. Two-dimensional electromagnetic Child-Langmuir law of a short-pulse electron flow

    SciTech Connect

    Chen, S. H.; Tai, L. C.; Liu, Y. L.; Ang, L. K.; Koh, W. S.

    2011-02-15

    Two-dimensional electromagnetic particle-in-cell simulations were performed to study the effect of the displacement current and the self-magnetic field on the space charge limited current density or the Child-Langmuir law of a short-pulse electron flow with a propagation distance of {zeta} and an emitting width of W from the classical regime to the relativistic regime. Numerical scaling of the two-dimensional electromagnetic Child-Langmuir law was constructed and it scales with ({zeta}/W) and ({zeta}/W){sup 2} at the classical and relativistic regimes, respectively. Our findings reveal that the displacement current can considerably enhance the space charge limited current density as compared to the well-known two-dimensional electrostatic Child-Langmuir law even at the classical regime.

  18. Short-pulse laser beam interactions with biocompatible polymer materials and tissue

    NASA Astrophysics Data System (ADS)

    Serafetinides, Alexander A.

    1996-12-01

    Pulsed laser beams, of very short duration, appear to be very promising tools for polymer surface processing. Recently we have studied the interaction of picosecond and femtosecond laser radiation in the visible region of the spectrum with synthetic polymer films and we have compared these studies with our similar studies with nanosecond duration laser radiation. Biocompatible polymers have been extensively used for sutures, vascular grafts or bone and other hard tissue replacements. The use of surgical lasers for intervention on biocompatible material - tissue interfaces has attracted a great deal of interest, as both the high intensity, short pulse duration lasers and the prosthetic biomaterials are in increasing use. Our recent ablation studies, using ultrashort laser pulses, of biocompatible materials, are described in this article. Lasers were introduced in medical research in the early sixties but the laser beam ability to remove efficiently and safely soft or hard tissue, the lateral thermal damage and the final surface characteristics are still under investigation. In the past few years, by virtue of their water or water and hydroxyapatite content respectively, exhibit strong absorption restricting residual thermal damage to a relatively small zone. Recently we have investigated the interaction of short pulse laser radiation of picosecond and femtosecond duration with soft and hard tissue, as this unexplored field is expected to be a potential alternative in powerful laser processing of biomedical structures. The experimental results obtained, including ablation rates, ablation wavelength dependence, pulse duration dependence, fluence dependence, etc. are presented. These results are discussed according to simple theoretical models of laser energy absorption and the possible mechanisms of ultrashort pulse laser ablation, which in some cases involves multiphoton photodissociation processes. Finally, the design characteristics of the lasers employed in our

  19. Comparative study of long- and short-pulsed electric fields for treating melanoma in an in vivo mouse model.

    PubMed

    Chen, Xinhua; Chen, Xinmei; Schoenbach, Karl H; Zheng, Shusen; Swanson, R James

    2011-01-01

    A mouse melanoma model was set up with green fluorescent protein (GFP) expression in vivo. With the same energy, long- (1 ms) and short- (300 ns) pulsed electric fields were delivered to two melanomas injected into the same mouse. The tumor growth and green fluorescence were followed up to compare the different treatment efficacy of long and short pulses. After two days post treatment, short pulse-treated tumors showed a significantly lower tumor volume compared with long pulse-treated tumors (n=8, p<0.05). On 8 experimental animals, a short nanosecond pulsed electric field (nsPEF) had lesser or delayed effects on GFP quenching and greater effects in reducing tumor size. Short pulses produced by nsPEFs can cause melanoma regression with less effect on the plasma membrane.

  20. Efficient generation of fast ions from surface modulated nanostructure targets irradiated by high intensity short-pulse lasers

    SciTech Connect

    Andreev, Alexander; Kumar, Naveen; Pukhov, Alexander; Platonov, Konstantin

    2011-10-15

    It's shown that the imposition of sub-laser wavelength relief structures on the surface of mass-limited-targets results into several folds higher short-pulse laser absorption, and consequently the efficient generation of fast ions. The optimum relief parameters for enhanced short-pulse laser absorption and higher ion acceleration are estimated numerically by particle-in-cell simulations and then corroborated by analytical scalings. The stability of the pre-imposed surface modulation during the laser pulse foil interaction is also examined.

  1. Fluorescence excitation and imaging of single molecules near dielectric-coated and bare surfaces: a theoretical study.

    PubMed

    Axelrod, Daniel

    2012-08-01

    Microscopic fluorescent samples of interest to cell and molecular biology are commonly embedded in an aqueous medium near a solid surface that is coated with a thin film such as a lipid multilayer, collagen, acrylamide, or a cell wall. Both excitation and emission of fluorescent single molecules near film-coated surfaces are strongly affected by the proximity of the coated surface, the film thickness, its refractive index and the fluorophore's orientation. For total internal reflection excitation, multiple reflections in the film can lead to resonance peaks in the evanescent intensity versus incidence angle curve. For emission, multiple reflections arising from the fluorophore's near field emission can create a distinct intensity pattern in both the back focal plane and the image plane of a high aperture objective. This theoretical analysis discusses how these features can be used to report film thickness and refractive index, and fluorophore axial position and orientation. PMID:22612666

  2. Neutron imaging with the short-pulse laser driven neutron source at the Trident laser facility

    NASA Astrophysics Data System (ADS)

    Guler, N.; Volegov, P.; Favalli, A.; Merrill, F. E.; Falk, K.; Jung, D.; Tybo, J. L.; Wilde, C. H.; Croft, S.; Danly, C.; Deppert, O.; Devlin, M.; Fernandez, J.; Gautier, D. C.; Geissel, M.; Haight, R.; Hamilton, C. E.; Hegelich, B. M.; Henzlova, D.; Johnson, R. P.; Schaumann, G.; Schoenberg, K.; Schollmeier, M.; Shimada, T.; Swinhoe, M. T.; Taddeucci, T.; Wender, S. A.; Wurden, G. A.; Roth, M.

    2016-10-01

    Emerging approaches to short-pulse laser-driven neutron production offer a possible gateway to compact, low cost, and intense broad spectrum sources for a wide variety of applications. They are based on energetic ions, driven by an intense short-pulse laser, interacting with a converter material to produce neutrons via breakup and nuclear reactions. Recent experiments performed with the high-contrast laser at the Trident laser facility of Los Alamos National Laboratory have demonstrated a laser-driven ion acceleration mechanism operating in the regime of relativistic transparency, featuring a volumetric laser-plasma interaction. This mechanism is distinct from previously studied ones that accelerate ions at the laser-target surface. The Trident experiments produced an intense beam of deuterons with an energy distribution extending above 100 MeV. This deuteron beam, when directed at a beryllium converter, produces a forward-directed neutron beam with ˜5 × 109 n/sr, in a single laser shot, primarily due to deuteron breakup. The neutron beam has a pulse duration on the order of a few nanoseconds with an energy distribution extending from a few hundreds of keV to almost 80 MeV. For the experiments on neutron-source spot-size measurements, our gated neutron imager was setup to select neutrons in the energy range of 2.5-35 MeV. The spot size of neutron emission at the converter was measured by two different imaging techniques, using a knife-edge and a penumbral aperture, in two different experimental campaigns. The neutron-source spot size is measured ˜1 mm for both experiments. The measurements and analysis reported here give a spatial characterization for this type of neutron source for the first time. In addition, the forward modeling performed provides an empirical estimate of the spatial characteristics of the deuteron ion-beam. These experimental observations, taken together, provide essential yet unique data to benchmark and verify theoretical work into the

  3. Progress in understanding the short-pulse-driven collisional x-ray lasers

    SciTech Connect

    Nilsen, J

    1998-09-21

    Recently, the technique of using a nsec pulse to preform and ionize the plasma followed by a psec pulse to heat the plasma has enabled low-Z neon-like and nickel-like ions to lase driven by small lasers with only ten joules of energy. In this work we model recent experiments done using the COMET laser at LLNL to illuminate I cm long slab targets of Ti with a 4.8 J, 800 ps prepulse followed 1.6 nsec later by a 6 J, 1 psec drive pulse. The LASNEX code is used to calculate the hydrodynamic evolution of the plasma and provide the temperatures and densities fo the XRASER code, which then does the kinetics calculations to determine the gain. The temporal and spatial evolution of the plasma is studied both with and without radiation transport included for the 3d and 3s (arrow) 2p Ne-like Ti resonance lines. Large regions with gains greater than 80 cmminus1 are predicted for the 3p 1S0 (arrow), 3s 1P,1Ne-like Ti laser line at 326 Å. Given the large gain and low gradients in these plasmas, we do propagation calculations including refraction to understand which regions have the right combination of high gain and low gradients to contribute to the X-ray laser output. Calculations are also presented using different delays between the long and short pulse and different widths for the short pulse to provide better insight for optimizing the laser output. In addition to the standard 326 Å laser line, high gain is also predicted and observed for the 3d 1P1 (arrow) 3p 1P1, laser line at 301 Å in Ne-like Ti. We present calculations with and without radiation rransport included on the strong 3d 1P1 (arrow) 2p 1S0, resonance line to better understand this self photopumping effect. We also look at the analog transition in Ni-like ions to understand if self photopumping may also play a role in Ni-like ions. High gain is predicted on the 3d

  4. Modeling short-pulse-driven collisional x-ray lasers and other new schemes

    SciTech Connect

    Dunn, J; Li, Y; Nilsen, J; Osterheld, A L

    1999-07-01

    Recently, the technique of using a nsec pulse to preform and ionize the plasma followed by a psec pulse to heat the plasma has enabled low-Z neon-like and nickel-like ions to laser driven by small lasers with only ten joules of energy. In this work we model recent experiments done using the COMET laser at LLNL to illuminate 1 cm long slab targets of Ti with a 4.8 J, 800 ps prepulse followed 1.6 nsec later by a 6 J, 1 psec drive pulse. The LASNEX code is used to calculate the hydrodynamic evolution of the plasma and provide the temperatures and densities to the XRASER code, which then does the kinetics calculations to determine the gain. The temporal and spatial evolution of the plasma is studied both with and without radiation transport included for the 3d and 3s {_} 2p Ne-like Ti resonance lines. Large regions with gains greater than 80 cm{sup {minus}1} are predicted for the 3p {sup 1}S{sub 0} {_} 3s {sup 1}P{sub 1} Ne-like Ti laser line at 326 {angstrom}. Given the large gain and large gradients in these plasmas, we do propagation calculations including refraction to understand which regions have the right combination of high gain and low gradients to contribute to the X-ray laser output. Calculations are also presented using different delays between the long and short pulse and different widths for the short pulse to provide better insight for optimizing the laser output. In addition to the standard 326 {angstrom} laser line, high gain is also predicted and observed for the 3d {sup 1}P{sub 1} {_} 3p {sup 1}P{sub 1} laser line at 301 {angstrom} in Ne-like Ti. We present calculations with and without radiation transport included on the strong 3d {sup 1}P{sub 1} {_} 2p {sup 1}S{sub 0} resonance line to better understand this self photopumping effect. We also look at the analog transition in Ni-like ions to understand if self photopumping may also play a role in Ni-like ions. High gain is predicted on the 3d{sup 9} 4f {sup 1}P{sub 1} {_} 3d{sup 9} 4d {sup 1}P{sub 1

  5. Mitigation of Electromagnetic Pulse (EMP) Effects from Short-Pulse Lasers and Fusion Neutrons

    SciTech Connect

    Eder, D C; Throop, A; Brown, Jr., C G; Kimbrough, J; Stowell, M L; White, D A; Song, P; Back, N; MacPhee, A; Chen, H; DeHope, W; Ping, Y; Maddox, B; Lister, J; Pratt, G; Ma, T; Tsui, Y; Perkins, M; O'Brien, D; Patel, P

    2009-03-06

    Our research focused on obtaining a fundamental understanding of the source and properties of EMP at the Titan PW(petawatt)-class laser facility. The project was motivated by data loss and damage to components due to EMP, which can limit diagnostic techniques that can be used reliably at short-pulse PW-class laser facilities. Our measurements of the electromagnetic fields, using a variety of probes, provide information on the strength, time duration, and frequency dependence of the EMP. We measure electric field strengths in the 100's of kV/m range, durations up to 100 ns, and very broad frequency response extending out to 5 GHz and possibly beyond. This information is being used to design shielding to mitigate the effects of EMP on components at various laser facilities. We showed the need for well-shielded cables and oscilloscopes to obtain high quality data. Significant work was invested in data analysis techniques to process this data. This work is now being transferred to data analysis procedures for the EMP diagnostics being fielded on the National Ignition Facility (NIF). In addition to electromagnetic field measurements, we measured the spatial and energy distribution of electrons escaping from targets. This information is used as input into the 3D electromagnetic code, EMSolve, which calculates time dependent electromagnetic fields. The simulation results compare reasonably well with data for both the strength and broad frequency bandwidth of the EMP. This modeling work required significant improvements in EMSolve to model the fields in the Titan chamber generated by electrons escaping the target. During dedicated Titan shots, we studied the effects of varying laser energy, target size, and pulse duration on EMP properties. We also studied the effect of surrounding the target with a thick conducting sphere and cube as a potential mitigation approach. System generated EMP (SGEMP) in coaxial cables does not appear to be a significant at Titan. Our results

  6. Complex characterization of short-pulse propagation through InAs/InP quantum-dash optical amplifiers: from the quasi-linear to the two-photon-dominated regime.

    PubMed

    Capua, Amir; Saal, Abigael; Karni, Ouri; Eisenstein, Gadi; Reithmaier, Johann Peter; Yvind, Kresten

    2012-01-01

    We describe direct measurements at a high temporal resolution of the changes experienced by the phase and amplitude of an ultra-short pulse upon propagation through an inhomogenously broadened semiconductor nanostructured optical gain medium. Using a cross frequency-resolved optical gating technique, we analyze 150 fs-wide pulses propagating along an InP based quantum dash optical amplifier in both the quasi-linear and saturated regimes. For very large electrical and optical excitations, a second, trailing peak is generated and enhanced by a unique two-photon-induced amplification process.

  7. Femtosecond plasmon and photon wave packets excited by a high-energy electron on a metal or dielectric surface

    NASA Astrophysics Data System (ADS)

    Brenny, Benjamin J. M.; Polman, Albert; García de Abajo, F. Javier

    2016-10-01

    Swift electrons generate coherent transition radiation (TR) when crossing a material surface, as well as surface plasmon polaritons (SPPs) when the material is metallic. We present analytical and numerical calculations that describe the time- and space-dependent electric fields of TR and SPPs induced by 30-300 keV electrons on a Drude metal surface. The generated SPPs form wave packets a few-hundred femtoseconds in duration, depending on the material permittivity. High-frequency components close to the plasmon resonance are strongly damped, causing the wave packets to shift to lower frequencies as they propagate further. TR is emitted to the far field as ultrashort wave packets consisting of just a few optical cycles, with an intensity and angle dependence that is determined by the material permittivity. The excitation reaches its peak amplitude within a few femtoseconds and then drops off strongly for longer times. From a correlation between material permittivity and the calculated emission behavior, we determine qualitative predictions of the TR evolution for any given material. The results presented here provide key insights into the mechanisms enabling swift electrons to serve as nanoscale optical excitation sources.

  8. Lattice Boltzmann method for short-pulsed laser transport in a multi-layered medium

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Yi, Hong-Liang; Tan, He-Ping

    2015-04-01

    We construct a lattice Boltzmann method (LBM) for transient radiative transfer in one-dimensional multi-layered medium with distinct refractive index in each layer. The left boundary is irradiated normally by a short-pulsed laser. The Fresnel interfaces conditions, which incorporate reflection and refraction, are used at the boundaries and the interfaces. Based on the Fresnel's law and Snell's law, the interfacial intensity formulas are introduced. The collimated and diffuse intensities are treated individually. At a transient time step, the collimated component is first solved by LBM and then embedded into the transient radiative transfer equation as a source term. To keep the consistency of the directions in all the layers, angular interpolation of the intensities at the interfaces is adopted. The transient radiative transfer in a two-layer medium is first investigated, and the time-resolved results are validated by comparing with those by the Monte Carlo method (MCM). Of particular interest, the angular intensities along the slab at different times are presented to illustrate a variety of interesting phenomena, and the discontinuous nature of the intensity at the interfaces is discussed. The effects of various parameters on the time-resolved signals are examined.

  9. A short-pulse mode for the SPHINX LTD Z-pinch driver

    NASA Astrophysics Data System (ADS)

    D'Almeida, Thierry; Lassalle, Francis; Zucchini, Frederic; Loyen, Arnaud; Morell, Alain; Chuvatin, Alexander

    2015-11-01

    The SPHINX machine is a 6MA, 1 μs, LTD Z-pinch driver at CEA Gramat (France) and primarily used for studying radiation effects. Different power amplification concepts were examined in order to reduce the current rise time without modifying the generator discharge scheme, including the Dynamic Load Current Multiplier (DLCM) proposed by Chuvatin. A DLCM device, capable of shaping the current pulse without reducing the rise time, was developed at CEA. This device proved valuable for isentropic compression experiments in cylindrical geometry. Recently, we achieved a short pulse operation mode by inserting a vacuum closing switch between the DLCM and the load. The current rise time was reduced to ~300 ns. We explored the use of a reduced-height wire array for the Dynamic Flux Extruder in order to improve the wire array compression rate and increase the efficiency of the current transfer to the load. These developments are presented. Potential benefits of these developments for future Z pinch experiments are discussed.

  10. Investigation of energy partitioning from Leopard short-pulse laser interactions in mass limited targets

    NASA Astrophysics Data System (ADS)

    Griffin, B.; Sawada, H.; Yabuuchi, T.; McLean, H.; Patel, P.; Beg, F.

    2013-10-01

    The energy distribution in the interaction of a high-intensity, short-pulse laser with a mass limited target was investigated by simultaneously collecting x-ray and particle data. The Leopard laser system at the Nevada Terawatt Facility delivered 15 J of energy in a 350 fs pulse duration. With a beam spot size limited to within 8 μm, the target interaction achieved a peak intensity of 1019 W/cm2 at 20° incidence. The size of the Cu foil targets was varied from 2-20 μm in thickness and from 50 by 50 μm to 2000 by 2000 μm in surface area. A Bragg crystal x-ray spectrometer and a spherical crystal imager were used to measure 7.5-9.5 keV x-rays and 8.05 keV monochromatic x-ray images respectively. The escaping electrons and protons in the rear were monitored with a magnet-based electron spectrometer and radiochromic film. Preliminary results show both a decrease of the K β/K α ratio and a stronger He α emission for smaller sized targets, less than 250 by 250 μm. The detailed analyses of the K α images and particle data will be presented.

  11. Photoassociation of ultracold LiRb molecules with short pulses near a Feshbach resonance

    NASA Astrophysics Data System (ADS)

    Gacesa, Marko; Ghosal, Subhas; Byrd, Jason; Côté, Robin

    2014-05-01

    Ultracold diatomic molecules prepared in the lowest ro-vibrational state are a required first step in many experimental studies aimed at investigating the properties of cold quantum matter. We propose a novel approach to produce such molecules in a two-color photoassociation experiment with short pulses performed near a Feshbach resonance. Specifically, we report the results of a theoretical investigation of formation of 6Li87Rb molecules in a magnetic field. We show that the molecular formation rate can be significantly increased if the pump step is performed near a magnetic Feshbach resonance due to the strong coupling between the energetically open and closed hyperfine states. In addition, the dependence of the nodal structure of the total wave function on the magnetic field allows for enhanced control over the shape and position of the wave packet. The proposed approach is applicable to different systems that have accessible Feshbach resonances. Partially supported by ARO(MG), DOE(SG), AFOFR(JB), NSF(RC).

  12. Highly-charged heavy-ion production with short pulse lasers

    SciTech Connect

    Logan, G.; Bitmire, T.; Perry, M.; Anderson, O.; Kuehl, T.

    1998-01-27

    This MathCAD document describes a possible approach using a PW -class short pulse laser to form a useful number (10{sup 12}) of high and uniform charge state ions with low ion temperature (<< 100 eV) and low momentum spread ({delta}p{sub z}/p, < 10{sup -4} ) for injection into heavy-ion fusion accelerators. As a specific example, we consider here Xenon{sup +26}, which has an ionization energy E{sub i} {approximately} 860 eV for the 26th electron, and a significantly higher ionization potential of 1500 eV for the 27th electron because of the M-shell jump. The approach considered here may be used for other ion species as well. The challenge is not simply to produce high charge states with a laser (the ITEP group [Sharkov] have used long pulse CO{sub 2} lasers to create many charge states of chromium up to helium-like Cr{sup +25} by collisional ionization at high Te), nor just to create such high charge states more selectively by field (tunneling) ionization at higher intensities and shorter pulses. Rather, the challenge is to create a selected uniform high charge state, in useful numbers, while keeping the ion temperature and momentum spread small, and avoiding subsequent loss of ion charge state due to recombination and charge-exchange with background gas atoms during extraction into a useful low emittance beam.

  13. Theoretical analysis of saturation and limit cycles in short pulse FEL oscillators

    SciTech Connect

    Piovella, N.; Chaix, P.; Jaroszynski, D.

    1995-12-31

    We derive a model for the non linear evolution of a short pulse oscillator from low signal up to saturation in the small gain regime. This system is controlled by only two independent parameters: cavity detuning and losses. Using a closure relation, this model reduces to a closed set of 5 non linear partial differential equations for the EM field and moments of the electron distribution. An analysis of the linearised system allows to define and calculate the eigenmodes characterising the small signal regime. An arbitrary solution of the complete nonlinear system can then be expanded in terms of these eigenmodes. This allows interpreting various observed nonlinear behaviours, including steady state saturation, limit cycles, and transition to chaos. The single mode approximation reduces to a Landau-Ginzburg equation. It allows to obtain gain, nonlinear frequency shift, and efficiency as functions of cavity detuning and cavity losses. A generalisation to two modes allows to obtain a simple description of the limit cycle behaviour, as a competition between these two modes. An analysis of the transitions to more complex dynamics is also given. Finally, the analytical results are compared to the experimental data from the FELIX experiment.

  14. Large Area and Short-Pulse Shock Initiation of a Tatb/hmx Mixed Explosive

    NASA Astrophysics Data System (ADS)

    Guiji, Wang; Chengwei, Sun; Jun, Chen; Cangli, Liu; Jianheng, Zhao; Fuli, Tan; Ning, Zhang

    2007-12-01

    The large area and short-pulse shock initiation experiments on the plastic bonded mixed explosive of TATB(80%) and HMX(15%) have been performed with an electric gun where a Mylar flyer of 10-19 mm in diameter and 0.05˜0.30 mm in thickness was launched by an electrically exploding metallic bridge foil. The cylindrical explosive specimens (Φ16 mm×8 mm in size) were initiated by the Mylar flyers in thickness of 0.07˜0.20 mm, which induced shock pressure in specimen was of duration ranging from 0.029 to 0.109 μs. The experimental data were treated with the DRM(Delayed Robbins-Monro) procedure and to provide the initiation threshold of flyer velocities at 50% probability are 3.398˜1.713 km/s and that of shock pressure P 13.73˜5.23 GPa, respectively for different pulse durations. The shock initiation criteria of the explosive specimen at 50% and 100% probabilities are yielded. In addition, the 30° wedged sample was tested and the shock to detonation transition (SDT) process emerging on its inclined surface was diagnosed with a device consisting of multiple optical fiber probe, optoelectronic transducer and digital oscilloscope. The POP plot of the explosive has been gained from above SDT data.

  15. Large Area and Short Pulsed Shock Initiation of A TATB/HMX Mixed Explosive

    NASA Astrophysics Data System (ADS)

    Wang, Guiji; Sun, Chengwei; Chen, Jun; Liu, Cangli; Tan, Fuli; Zhang, Ning

    2007-06-01

    The large area and short pulsed shock initiation experiment on a plastic bonded mixed explosive of TATB(80%) and HMX(15%) has been performed with an electric gun where a mylar flyer of 19mm in diameter and 0.05˜0.30mm in thickness is launched by an electrically exploding metallic bridge foil. The cylindrical explosive specimens (φ16mm x 8mm in size) were initiated by the mylar flyers in thickness of 0.07˜0.20mm, which induced shock pressure in specimen was of duration ranging 0.029˜0.109μs. The experimental data were treated with the DRM(Delayed Robbins-Monro) procedure and to provide the threshold of shock pressure P 13.73˜5.23GPa. The shock initiation criterion of the explosive specimen is (P/GPa)^1.451(τ/μs) = 1.2. Meanwhile the criterion in 100% probability in the experiment is (P/GPa)^1.8(τ/μs) = 2.63. In addition, the 30^o wedged specimen was tested and the shock to detonation transition (SDT) process emerging on its inclined surface was diagnosed with a device consisting of multiple optical fiber probe, optoelectronic transducer and digital oscilloscope. The POP plot of the explosive has been gained from above SDT data.

  16. Short-pulse high-power microwave breakdown at high pressures

    NASA Astrophysics Data System (ADS)

    Zhao, Peng-Cheng; Liao, Cheng; Feng, Ju

    2015-02-01

    The fluid model is proposed to investigate the gas breakdown driven by a short-pulse (such as a Gaussian pulse) high-power microwave at high pressures. However, the fluid model requires specification of the electron energy distribution function (EEDF); the common assumption of a Maxwellian EEDF can result in the inaccurate breakdown prediction when the electrons are not in equilibrium. We confirm that the influence of the incident pulse shape on the EEDF is tiny at high pressures by using the particle-in-cell Monte Carlo collision (PIC-MCC) model. As a result, the EEDF for a rectangular microwave pulse directly derived from the Boltzmann equation solver Bolsig+ is introduced into the fluid model for predicting the breakdown threshold of the non-rectangular pulse over a wide range of pressures, and the obtained results are very well matched with those of the PIC-MCC simulations. The time evolution of a non-rectangular pulse breakdown in gas, obtained by the fluid model with the EEDF from Bolsig+, is presented and analyzed at different pressures. In addition, the effect of the incident pulse shape on the gas breakdown is discussed. Project supported by the National Basic Research Program of China (Grant No. 2013CB328904), the NSAF of China (Grant No. U1330109), and 2012 Doctoral Innovation Funds of Southwest Jiaotong University.

  17. Why Are Short Pulses More Efficient in Tissue Erosion Using Pulsed Cavitational Ultrasound Therapy (Histotripsy)?

    NASA Astrophysics Data System (ADS)

    Wang, Tzu-Yin; Maxwell, Adam D.; Park, Simone; Xu, Zhen; Fowlkes, J. Brian; Cain, Charles A.

    2010-03-01

    Histotripsy produces mechanical tissue fractionation through controlled cavitation. The histotripsy induced tissue erosion is more efficient with shorter (i.e., 3-6 cycles) rather than longer (i.e. 24 cycles) pulses. In this study, we investigated the reasons behind this observation by studying dynamics of the cavitating bubble clouds and individual bubbles during and after a therapy pulse. Bubble clouds were generated at a gel-water interface using 5 to 30-cycle 1 MHz pulses at P-/P+>19/125-MPa pressure and 1-kHz pulse repetition frequency. The evolution of the overall bubble cloud and individual bubbles were studied using high speed photography. Results show that: 1) within the first 10-15 cycles, the overall cloud grew to its maximum size; the individual bubbles underwent violent expansion and collapse, and grew in size with each cycle of ultrasound; 2) between the 15th cycle and the end of the pulse, the overall cloud size did not change even if further cycles of ultrasound were delivered; the individual bubbles no longer underwent violent collapse; 3) after the pulse, the overall cloud gradually dissolved; the individual bubbles may coalesce into larger bubbles for 0-40 μs, and then gradually dissolved. These observations suggest that violent growth and collapse of individual bubbles occur within the first few cycles of ultrasound pulse most often. This may explain why extremely short pulses are more energy efficient in histotripsy-induced tissue erosion.

  18. Large-scale atomistic simulations of surface nanostructuring by short pulse laser irradiation

    NASA Astrophysics Data System (ADS)

    Wu, Chengping; Shugaev, Maxim; Zhigilei, Leonid

    2015-03-01

    The availability of petascale supercomputing resources has expanded the range of research questions that can be addressed in the simulations and, in particular, enabled large-scale atomistic simulations of short pulse laser nanostructuring of metal surfaces. A series of simulations performed for systems consisting of 108 - 109 atoms is used in this study to investigate the mechanisms responsible for the generation of complex multiscale surface morphology and microstructure. At low laser fluence, just below the spallation threshold, a concurrent occurrence of fast laser melting, dynamic relaxation of laser-induced stresses, and rapid cooling and resolidification of the transiently melted surface region is found to produce a sub-surface porous region covered by a nanocrystalline layer. At higher laser fluences, in the spallation and phase explosion regimes, the material disintegration and ejection driven by the relaxation of laser-induced stresses and/or explosive release of vapor leads to the formation of complex surface morphology that can only be studied in billion-atom simulations. The first result from a billion atom simulation of surface nanostructuring performed on Titan will be discussed in the presentation. Financial support is provided by NSF (DMR-0907247 and CMMI-1301298) and AFOSR (FA9550-10-1-0541). Computational support is provided by the OLCF (MAT048) and NSF XSEDE (TG-DMR110090).

  19. Resistance and recovery of river biofilms receiving short pulses of Triclosan and Diuron.

    PubMed

    Proia, L; Morin, S; Peipoch, M; Romaní, A M; Sabater, S

    2011-08-01

    The effects of the herbicide Diuron (DIU) and the bactericide Triclosan (TCS) were assessed on laboratory-grown stream biofilms. Four week-old biofilms were exposed in mesocosms to 48-hours of short pulses of either DIU or TCS. The direct and indirect effects of each toxicant on the biofilms, and the subsequent recovery of the biofilms, were evaluated according to structural and functional biomarkers. These parameters were analyzed immediately before exposure, immediately after exposure, and 9 and 16days post-exposure. DIU caused an increase in diatom mortality (+79%), which persisted until the end of the experiment. TCS also affected diatom mortality (+41%), although the effect did not appear until 1week post-exposure. TCS caused an increase in bacterial mortality (+45%); however, this parameter returned to normal values 1week post-exposure. TCS compromised the cellular integrity of the green alga Spirogyra sp., whereas DIU did not. TCS also strongly inhibited phosphate uptake (-71%), which did not return to normal values until 2weeks post-exposure. DIU directly affected algae, but barely affected the heterotrophs, whereas TCS seriously impaired bacteria (direct effect) as well as autotrophs (indirect effect). However, the biofilms recovered their normal structure and function within only a few days to a few weeks. These findings demonstrate the capacity of biofilms to cope with periodic inputs of toxicants, but also the risks associated to repeated exposure or multi-contamination in aquatic ecosystems. PMID:21621820

  20. Proton acceleration from high-contrast short pulse lasers interacting with sub-micron thin foils

    NASA Astrophysics Data System (ADS)

    Petrov, G. M.; McGuffey, C.; Thomas, A. G. R.; Krushelnick, K.; Beg, F. N.

    2016-02-01

    A theoretical study complemented with published experimental data of proton acceleration from sub-micron (thickness < 1 μm) foils irradiated by ultra-high contrast ( >1010 ) short pulse lasers is presented. The underlying physics issues pertinent to proton acceleration are addressed using two-dimensional particle-in-cell simulations. For laser energy ɛ≤4 J (intensity I ≤5 ×1020 W/cm 2 ), simulation predictions agree with experimental data, both exhibiting scaling superior to Target Normal Sheath Acceleration's model. Anomalous behavior was observed for ɛ>4 J ( I >5 ×1020 W/cm 2 ), for which the measured maximum proton energies were much lower than predicted by scaling and these simulations. This unexpected behavior could not be explained within the frame of the model, and we conjecture that pre-pulses preceding the main pulse by picoseconds may be responsible. If technological issues can be resolved, energetic proton beams could be generated for a wide range of applications such as nuclear physics, radiography, and medical science.

  1. Fiber Laser Front Ends for High-Energy Short Pulse Lasers

    SciTech Connect

    Dawson, J W; Liao, Z M; Mitchell, S; Messerly, M; Beach, R; Jovanovic, I; Brown, C; Payne, S A; Barty, C J

    2005-01-18

    We are developing an all fiber laser system optimized for providing input pulses for short pulse (1-10ps), high energy ({approx}1kJ) glass laser systems. Fiber lasers are ideal solutions for these systems as they are highly reliable and once constructed they can be operated with ease. Furthermore, they offer an additional benefit of significantly reduced footprint. In most labs containing equivalent bulk laser systems, the system occupies two 4'x8' tables and would consist of 10's if not a 100 of optics which would need to be individually aligned and maintained. The design requirements for this application are very different those commonly seen in fiber lasers. High energy lasers often have low repetition rates (as low as one pulse every few hours) and thus high average power and efficiency are of little practical value. What is of high value is pulse energy, high signal to noise ratio (expressed as pre-pulse contrast), good beam quality, consistent output parameters and timing. Our system focuses on maximizing these parameters sometimes at the expense of efficient operation or average power. Our prototype system consists of a mode-locked fiber laser, a compressed pulse fiber amplifier, a ''pulse cleaner'', a chirped fiber Bragg grating, pulse selectors, a transport fiber system and a large flattened mode fiber amplifier. In our talk we will review the system in detail and present theoretical and experimental studies of critical components. We will also present experimental results from the integrated system.

  2. Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers.

    PubMed

    Zhou, Shian; Kuznetsova, Lyuba; Chong, Andy; Wise, Frank

    2005-06-27

    We show that nonlinear phase shifts and third-order dispersion can compensate each other in short-pulse fiber amplifiers. This compen-sation can be exploited in any implementation of chirped-pulse amplification, with stretching and compression accomplished with diffraction gratings, single-mode fiber, microstructure fiber, fiber Bragg gratings, etc. In particular, we consider chirped-pulse fiber amplifiers at wavelengths for which the fiber dispersion is normal. The nonlinear phase shift accumulated in the amplifier can be compensated by the third-order dispersion of the combination of a fiber stretcher and grating compressor. A numerical model is used to predict the compensation, and experimental results that exhibit the main features of the calculations are presented. In the presence of third-order dispersion, an optimal nonlinear phase shift reduces the pulse duration, and enhances the peak power and pulse contrast compared to the pulse produced in linear propagation. Contrary to common belief, fiber stretchers can perform as well or better than grating stretchers in fiber amplifiers, while offering the major practical advantages of a waveguide medium.

  3. Creation of Pure Frozen Gas Targets for Ion Acceleration using Short Pulse Lasers

    NASA Astrophysics Data System (ADS)

    McCary, Edward; Stehr, Florian; Jiao, Xuejing; Quevedo, Hernan; Franke, Philip; Agustsson, Ronald; Oshea, Finn; Berry, Robert; Chao, Dennis; Woods, Kayley; Gautier, Donald; Letzring, Sam; Hegelich, Bjorn

    2015-11-01

    A system for shooting interchangeable frozen gas targets was developed at the University of Texas and will be tested at Los Alamos National Lab. A target holder which can hold up to five substrates used for target growing was cryogenically cooled to temperatures below 14 K. The target substrates consist of holes with diameters ranging from 15 μm-500 μm and TEM grids with micron scale spacing, across which films of ice are frozen by releasing small amounts of pure gas molecules directly into the vacuum target chamber. Frozen gas targets comprised of simple molecules like methane and single element gasses like hydrogen and deuterium will provide novel target configuations that will be compared with laser plasma interaction simulations. The targets will be shot with the ultra-intense short-pulse Trident laser. Accelerated ion spectra will be characterized using a Thomson Parabola with magnetic field strength of 0.92T and electric field strength of 30kV. Hydrogen targets will be additionally characterized using stacks of copper which become activated upon exposure to energetic protons resulting in a beta decay signal which be imaged on electron sensitive imaging plates to provide an energy spectrum and spacial profile of the proton beam. Details of target creation and pre-shot characterization will be presented.

  4. STATUS OF THE DIELECTRIC WALL ACCELERATOR

    SciTech Connect

    Caporaso, G J; Chen, Y; Sampayan, S; Akana, G; Anaya, R; Blackfield, D; Carroll, J; Cook, E; Falabella, S; Guethlein, G; Harris, J; Hawkins, S; Hickman, B; Holmes, C; Horner, A; Nelson, S; Paul, A; Pearson, D; Poole, B; Richardson, R; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J; Weir, J

    2009-04-22

    The dielectric wall accelerator (DWA) system being developed at the Lawrence Livermore National Laboratory (LLNL) uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. High electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The system is capable of accelerating any charge to mass ratio particle. Applications of high gradient proton and electron versions of this accelerator will be discussed. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, photoconductive switches and compact proton sources.

  5. Atmospheric air diffuse array-needles dielectric barrier discharge excited by positive, negative, and bipolar nanosecond pulses in large electrode gap

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Yang, De-zheng; Wang, Wen-chun; Liu, Zhi-jie; Wang, Sen; Jiang, Peng-chao; Zhang, Shuai

    2014-09-01

    In this paper, positive, negative, and bipolar nanosecond pulses are employed to generate stable and diffuse discharge plasma using array needles-plate electrode configuration at atmospheric pressure. A comparison study of discharge images, electrical characteristics, optical emission spectra, and plasma vibrational temperature and rotational temperatures in three pulsed polarity discharges is carried on under different discharge conditions. It is found that bipolar pulse is beneficial to the excitation of diffuse dielectric barrier discharge, which can generate a room temperature plasma with more homogeneous and higher discharge intensity compared with unipolar discharges. Under the condition of 6 mm electrode gap distance, 26 kV pulse peak voltage, and 150 Hz pulse repetition rate, the emission intensity of N2 (C3Πu → B3Πg) of the bipolar pulsed discharge is 4 times higher than the unipolar discharge (both positive and negative), while the plasma gas temperature is kept at 300 K, which is about 10-20 K lower than the unipolar discharge plasma.

  6. Cutting and drilling of carbon fiber reinforced plastics (CFRP) by 70W short pulse nanosecond laser

    NASA Astrophysics Data System (ADS)

    Jaeschke, Peter; Stolberg, Klaus; Bastick, Stefan; Ziolkowski, Ewa; Roehner, Markus; Suttmann, Oliver; Overmeyer, Ludger

    2014-02-01

    Continuous carbon fibre reinforced plastics (CFRP) are recognized as having a significant lightweight construction potential for a wide variety of industrial applications. However, a today`s barrier for a comprehensive dissemination of CFRP structures is the lack of economic, quick and reliable manufacture processes, e.g. the cutting and drilling steps. In this paper, the capability of using pulsed disk lasers in CFRP machining is discussed. In CFRP processing with NIR lasers, carbon fibers show excellent optical absorption and heat dissipation, contrary to the plastics matrix. Therefore heat dissipation away from the laser focus into the material is driven by heat conduction of the fibres. The matrix is heated indirectly by heat transfer from the fibres. To cut CFRP, it is required to reach the melting temperature for thermoplastic matrix materials or the disintegration temperature for thermoset systems as well as the sublimation temperature of the reinforcing fibers simultaneously. One solution for this problem is to use short pulse nanosecond lasers. We have investigated CFRP cutting and drilling with such a laser (max. 7 mJ @ 10 kHz, 30 ns). This laser offers the opportunity of wide range parameter tuning for systematic process optimization. By applying drilling and cutting operations based on galvanometer scanning techniques in multi-cycle mode, excellent surface and edge characteristics in terms of delamination-free and intact fiber-matrix interface were achieved. The results indicate that nanosecond disk laser machining could consequently be a suitable tool for the automotive and aircraft industry for cutting and drilling steps.

  7. Conceptual moderator studies for the Spallation Neutron Source short-pulse second target station.

    PubMed

    Gallmeier, F X; Lu, W; Riemer, B W; Zhao, J K; Herwig, K W; Robertson, J L

    2016-06-01

    Candidate moderator configurations for a short-pulse second target station (STS) at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) have been identified using a global optimizer framework built around the MCNPX particle transport code. Neutron brightness metrics were selected as the figure-of-merit. We assumed that STS would use one out of six proton pulses produced by an SNS accelerator upgraded to operate at 1.3 GeV proton energy, 2.8 MW power and 60 Hz repetition rate. The simulations indicate that the peak brightness can be increased by a factor of 5 and 2.5 on a per proton pulse basis compared to the SNS first target station for both coupled and decoupled para-hydrogen moderators, respectively. Additional increases by factors of 3 and 2 were demonstrated for coupled and decoupled moderators, respectively, by reducing the area of neutron emission from 100 × 100 mm(2) to 20 × 20 mm(2). This increase in brightness has the potential to translate to an increase of beam intensity at the instruments' sample positions even though the total neutron emission of the smaller moderator is less than that of the larger. This is especially true for instruments with small samples (beam dimensions). The increased fluxes in the STS moderators come at accelerated poison and de-coupler burnout and higher radiation-induced material damage rates per unit power, which overall translate into lower moderator lifetimes. A first effort was undertaken to group decoupled moderators into a cluster collectively positioning them at the peak neutron production zone in the target and having a three-port neutron emission scheme that complements that of a cylindrical coupled moderator. PMID:27370444

  8. Conceptual moderator studies for the Spallation Neutron Source short-pulse second target station.

    PubMed

    Gallmeier, F X; Lu, W; Riemer, B W; Zhao, J K; Herwig, K W; Robertson, J L

    2016-06-01

    Candidate moderator configurations for a short-pulse second target station (STS) at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) have been identified using a global optimizer framework built around the MCNPX particle transport code. Neutron brightness metrics were selected as the figure-of-merit. We assumed that STS would use one out of six proton pulses produced by an SNS accelerator upgraded to operate at 1.3 GeV proton energy, 2.8 MW power and 60 Hz repetition rate. The simulations indicate that the peak brightness can be increased by a factor of 5 and 2.5 on a per proton pulse basis compared to the SNS first target station for both coupled and decoupled para-hydrogen moderators, respectively. Additional increases by factors of 3 and 2 were demonstrated for coupled and decoupled moderators, respectively, by reducing the area of neutron emission from 100 × 100 mm(2) to 20 × 20 mm(2). This increase in brightness has the potential to translate to an increase of beam intensity at the instruments' sample positions even though the total neutron emission of the smaller moderator is less than that of the larger. This is especially true for instruments with small samples (beam dimensions). The increased fluxes in the STS moderators come at accelerated poison and de-coupler burnout and higher radiation-induced material damage rates per unit power, which overall translate into lower moderator lifetimes. A first effort was undertaken to group decoupled moderators into a cluster collectively positioning them at the peak neutron production zone in the target and having a three-port neutron emission scheme that complements that of a cylindrical coupled moderator.

  9. Conceptual moderator studies for the Spallation Neutron Source short-pulse second target station

    NASA Astrophysics Data System (ADS)

    Gallmeier, F. X.; Lu, W.; Riemer, B. W.; Zhao, J. K.; Herwig, K. W.; Robertson, J. L.

    2016-06-01

    Candidate moderator configurations for a short-pulse second target station (STS) at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) have been identified using a global optimizer framework built around the MCNPX particle transport code. Neutron brightness metrics were selected as the figure-of-merit. We assumed that STS would use one out of six proton pulses produced by an SNS accelerator upgraded to operate at 1.3 GeV proton energy, 2.8 MW power and 60 Hz repetition rate. The simulations indicate that the peak brightness can be increased by a factor of 5 and 2.5 on a per proton pulse basis compared to the SNS first target station for both coupled and decoupled para-hydrogen moderators, respectively. Additional increases by factors of 3 and 2 were demonstrated for coupled and decoupled moderators, respectively, by reducing the area of neutron emission from 100 × 100 mm2 to 20 × 20 mm2. This increase in brightness has the potential to translate to an increase of beam intensity at the instruments' sample positions even though the total neutron emission of the smaller moderator is less than that of the larger. This is especially true for instruments with small samples (beam dimensions). The increased fluxes in the STS moderators come at accelerated poison and de-coupler burnout and higher radiation-induced material damage rates per unit power, which overall translate into lower moderator lifetimes. A first effort was undertaken to group decoupled moderators into a cluster collectively positioning them at the peak neutron production zone in the target and having a three-port neutron emission scheme that complements that of a cylindrical coupled moderator.

  10. Conceptual moderator studies for the Spallation Neutron Source short-pulse second target station

    DOE PAGESBeta

    Gallmeier, F. X.; Lu, W.; Riemer, B. W.; Zhao, J. K.; Herwig, K. W.; Robertson, J. L.

    2016-06-14

    We identified candidate moderator configurations for a short-pulse second target station (STS) at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) using a global optimizer framework built around the MCNPX particle transport code. Neutron brightness metrics were selected as the figure-of-merit. We assumed that STS would use one out of six proton pulses produced by an SNS accelerator upgraded to operate at 1.3 GeV proton energy, 2.8 MW power and 60 Hz repetition rate. The simulations indicate that the peak brightness can be increased by a factor of 5 and 2.5 on a per proton pulse basis compared tomore » the SNS first target station for both coupled and decoupled para-hydrogen moderators, respectively. Additional increases by factors of 3 and 2 were demonstrated for coupled and decoupled moderators, respectively, by reducing the area of neutron emission from 100 × 100 mm2 to 20 × 20 mm2. Furthermore, this increase in brightness has the potential to translate to an increase of beam intensity at the instruments’ sample positions even though the total neutron emission of the smaller moderator is less than that of the larger. This is especially true for instruments with small samples (beam dimensions). The increased fluxes in the STS moderators come at accelerated poison and de-coupler burnout and higher radiation-induced material damage rates per unit power, which overall translate into lower moderator lifetimes. Our first effort decoupled group moderators into a cluster collectively positioning them at the peak neutron production zone in the target and having a three-port neutron emission scheme that complements that of a cylindrical coupled moderator.« less

  11. DEVELOPMENT OF A COMPACT PHOTO-INJECTOR WITH RFFOCUSING LENS FOR SHORT PULSE ELECTRON SOURCE APPLICATION

    SciTech Connect

    Grabenhofer, Alexander; Eaton, Douglas W.

    2013-09-01

    For development of compact ultrafast electron source system, we are currently designing a short-pulse RF-gun with RF focusing structure by means of a series of comprehensive modeling analysis processes. EM design of a 2.5 cell resonant cavity with input coupler, acceleration dynamics of photo-emitted electron bunch, EM design of RF-lens with input coupler, and phasespace analysis of focused electron bunch are systematically examined with multi-physics simulators. All the features of the 2.856 GHz cavity geometry were precisely engineered for acceleration energies ranging from 100 keV to 500 keV (safety limited) to be powered by our 5 MW S-band klystron. The klystron (Thales TH2163) and modulator system (ScandiNova K1 turnkey system) were successfully installed and tested. Performance tests of the klystron system show peak output power > 5 MW, as per operation specifications. At the quasi-relativistic energies, the electron source is capable of generating 100fC – 1 pC electron bunch with pulse duration close to 30 fs – 1 ps and transverse size of a few hundred microns. PIC simulations have shown that the electron bunch undergoes fast RF acceleration, rapidly reaching the desired energies, which can be controlled by tuning RF injection phase and input driving power. It has been shown that it is possible to also focus/compress the bunch longitudinally using a RF-lens, which would allow us to control the temporal resolution of the system as well. While our primary analysis has been performed on a 2.5 cell design, we are also looking into half-cell (single cavity) design that is expected to provide the same range of beam energy with a simple configuration.

  12. Modeling of Short-Pulse-Driven Nickel-Like X-Ray Lasers and Recent Experiments

    SciTech Connect

    Nilsen, J; Dunn, J

    2001-07-27

    The technique of using a nsec pulse to preform and ionize the plasma followed by a psec pulse to heat the plasma has enabled low-Z nickel-like ions to achieve saturated output when driven by small lasers with less than ten joules of energy. We model experiments done using the COMET laser at LLNL and the P 102 laser at Limeil to produce Ni-like Pd and Ag lasers. The COMET experiments use a 2 J, 600 ps prepulse followed 700 psec later by a 6 J, 6 psec drive pulse in a 1.6 cm long line focus. The P102 experiments used a somewhat larger energy and were able to use different combinations of frequency doubled light for both the prepulse and short pulse drive. The LASNEX code is used to calculate the hydrodynamic evolution of the plasma and provide the temperatures and densities to the CRETIN code, which then does the kinetics calculations to determine the gain. The temporal and spatial evolution of the plasmas are studied both with and without radiation transport included to understand the role of the self photopumping process on the gain of the Ni-like 4f {yields} 4d laser lines as well as the gain of the usual collisionally driven Ni-like 4d {yields} 4p laser lines. In particular we study why the 4f {yields} 4d line lases well only when frequency doubled light is used with the prepulse in the P 102 experiments. Experimental results are presented for Ni-like Pd including two-dimensional near-field and far-field images.

  13. Development and Application of a Predictive Computational Tool for Short-Pulse, High-Intensity Target Interactions

    SciTech Connect

    Town, R J; Chung, H; Langdon, A B; Lasinski, B F; Lund, S M; McCandless, B C; Still, C H; Tabak, M

    2007-01-26

    The widely differing spatial, temporal, and density scales needed to accurately model the fast ignition process and other short-pulse laser-plasma interactions leads to a computationally challenging project that is difficult to solve using a single code. This report summarizes the work performed on a three year LDRD to couple together three independent codes using PYTHON to build a new integrated computational tool. An example calculation using this new model is described.

  14. Short-pulse Laser Induced Transient Structure Formation and Ablation Studied with Time-resolved Coherent XUV-scattering

    NASA Astrophysics Data System (ADS)

    Sokolowski-Tinten, Klaus; Barty, Anton; Boutet, Sebastien; Shymanovich, Uladzimir; Chapman, Henry; Bogan, Mike; Marchesini, Stefano; Hau-Riege, Stefan; Stojanovic, Nikola; Bonse, Jörn; Rosandi, Yudi; Urbassek, Herbert M.; Tobey, Ra'anan; Ehrke, Henri; Cavalleri, Andrea; Düsterer, Stefan; Redlin, Harald; Frank, Matthias; Bajt, Sasa; Schulz, Joachim; Seibert, Marvin; Hajdu, Janos; Treusch, Rolf; Bostedt, Christoph; Hoener, M.; Möller, T.

    2010-10-01

    The structural dynamics of short-pulse laser irradiated surfaces and nano-structures has been studied with nm spatial and ultrafast temporal resolution by means of single-shot coherent XUV-scattering techniques. The experiments allowed us to time-resolve the formation of laser-induced periodic surface structures, and to follow the expansion and disintegration of nano-objects during laser ablation.

  15. Pulse shaping effects on weld porosity in laser beam spot welds : contrast of long- & short- pulse welds.

    SciTech Connect

    Ellison, Chad M.; Perricone, Matthew J.; Faraone, Kevin M.; Norris, Jerome T.

    2007-10-01

    Weld porosity is being investigated for long-pulse spot welds produced by high power continuous output lasers. Short-pulse spot welds (made with a pulsed laser system) are also being studied but to a much small extent. Given that weld area of a spot weld is commensurate with weld strength, the loss of weld area due to an undefined or unexpected pore results in undefined or unexpected loss in strength. For this reason, a better understanding of spot weld porosity is sought. Long-pulse spot welds are defined and limited by the slow shutter speed of most high output power continuous lasers. Continuous lasers typically ramp up to a simmer power before reaching the high power needed to produce the desired weld. A post-pulse ramp down time is usually present as well. The result is a pulse length tenths of a second long as oppose to the typical millisecond regime of the short-pulse pulsed laser. This study will employ a Lumonics JK802 Nd:YAG laser with Super Modulation pulse shaping capability and a Lasag SLS C16 40 W pulsed Nd:YAG laser. Pulse shaping will include square wave modulation of various peak powers for long-pulse welds and square (or top hat) and constant ramp down pulses for short-pulse welds. Characterization of weld porosity will be performed for both pulse welding methods.

  16. Development of high damage threshold optics for petawatt-class short-pulse lasers

    SciTech Connect

    Stuart, B.C.; Perry, M.D.; Boyd, R.D.

    1995-02-22

    The authors report laser-induced damage threshold measurements on pure and multilayer dielectrics and gold-coated optics at 1053 and 526 nm for pulse durations, {tau}, ranging from 140 fs to 1 ns. Damage thresholds of gold coatings are limited to 500 mJ/cm{sup 2} in the subpicosecond range for 1053-nm pulses. In dielectrics, qualitative differences in the morphology of damage and a departure from the diffusion-dominated {tau}1/2 scaling indicate that damage results from plasma formation and ablation for {tau}{le}10 ps and from conventional melting and boiling for {tau}>50 ps. A theoretical model based on electron production via multiphoton ionization, Joule heating, and collisional (avalanche) ionization is in quantitative agreement with both the pulsewidth and wavelength scaling of experimental results.

  17. Development of high damage threshold optics for petawatt-class short-pulse lasers

    NASA Astrophysics Data System (ADS)

    Stuart, Brent C.; Perry, Michael D.; Boyd, Robert D.; Britten, Jerald A.; Shore, Bruce W.; Feit, Michael D.; Rubenchik, Alexander M.

    1995-04-01

    We report laser-induced damage threshold measurements on pure and multilayer dielectrics and gold-coated optics at 1053 and 526 nm for pulse durations, (tau) , ranging from 140 fs to 1 ns. Damage thresholds of gold coatings are limited to 500 mJ/cm2 in the subpicosecond range from 1053-nm pulses. In dielectrics, qualitative differences in the morphology of damage and a departure from the diffusion-dominated (tau) 1/2 scaling indicate that damage results from plasma formation and ablation for (tau) 50 ps. A theoretical model based on electron production via multiphoton ionization, Joule heating, and collisional (avalanche) ionization is in quantitative agreement with both the pulsewidth and wavelength scaling of experimental results.

  18. Short pulse laser stretcher-compressor using a single common reflective grating

    DOEpatents

    Erbert, Gaylen V.; Biswal, Subrat; Bartolick, Joseph M.; Stuart, Brent C.; Telford, Steve

    2004-05-25

    The present invention provides an easily aligned, all-reflective, aberration-free pulse stretcher-compressor in a compact geometry. The stretcher-compressor device is a reflective multi-layer dielectric that can be utilized for high power chirped-pulse amplification material processing applications. A reflective grating element of the device is constructed: 1) to receive a beam for stretching of laser pulses in a beam stretcher beam path and 2) to also receive stretched amplified pulses to be compressed in a compressor beam path through the same (i.e., common) reflective multilayer dielectric diffraction grating. The stretched and compressed pulses are interleaved about the grating element to provide the desired number of passes in each respective beam path in order to achieve the desired results.

  19. Short-pulse, high-energy radiation generation from laser-wakefield accelerated electron beams

    NASA Astrophysics Data System (ADS)

    Schumaker, Will

    2013-10-01

    Recent experimental results of laser wakefield acceleration (LWFA) of ~GeV electrons driven by the 200TW HERCULES and the 400TW ASTRA-GEMINI laser systems and their subsequent generation of photons, positrons, and neutrons are presented. In LWFA, high-intensity (I >1019 W /cm2), ultra-short (τL < 1 / (2 πωpe)) laser pulses drive highly nonlinear plasma waves which can trap ~ nC of electrons and accelerate them to ~GeV energies over ~cm lengths. These electron beams can then be converted by a high-Z target via bremsstrahlung into low-divergence (< 20 mrad) beams of high-energy (<600 MeV) photons and subsequently into positrons via the Bethe-Heitler process. By increasing the material thickness and Z, the resulting Ne+ /Ne- ratio can approach unity, resulting in a near neutral density plasma jet. These quasi-neutral beams are presumed to retain the short-pulse (τL < 40 fs) characteristic of the electron beam, resulting in a high peak density of ne- /e+ ~ 1016 cm-3 , making the source an excellent candidate for laboratory study of astrophysical leptonic jets. Alternatively, the electron beam can be interacted with a counter-propagating, ultra-high intensity (I >1021 W /cm2) laser pulse to undergo inverse Compton scattering and emit a high-peak brightness beam of high-energy photons. Preliminary results and experimental sensitivities of the electron-laser beam overlap are presented. The high-energy photon beams can be spectrally resolved using a forward Compton scattering spectrometer. Moreover, the photon flux can be characterized by a pixelated scintillator array and by nuclear activation and (γ,n) neutron measurements from the photons interacting with a secondary solid target. Monte-Carlo simulations were performed using FLUKA to support the yield estimates. This research was supported by DOE/NSF-PHY 0810979, NSF CAREER 1054164, DARPA AXiS N66001-11-1-4208, SF/DNDO F021166, and the Leverhulme Trust ECF-2011-383.

  20. Compact Short-Pulsed Electron Linac Based Neutron Sources for Precise Nuclear Material Analysis

    NASA Astrophysics Data System (ADS)

    Uesaka, M.; Tagi, K.; Matsuyama, D.; Fujiwara, T.; Dobashi, K.; Yamamoto, M.; Harada, H.

    2015-10-01

    An X-band (11.424GHz) electron linac as a neutron source for nuclear data study for the melted fuel debris analysis and nuclear security in Fukushima is under development. Originally we developed the linac for Compton scattering X-ray source. Quantitative material analysis and forensics for nuclear security will start several years later after the safe settlement of the accident is established. For the purpose, we should now accumulate more precise nuclear data of U, Pu, etc., especially in epithermal (0.1-10 eV) neutrons. Therefore, we have decided to modify and install the linac in the core space of the experimental nuclear reactor "Yayoi" which is now under the decommission procedure. Due to the compactness of the X-band linac, an electron gun, accelerating tube and other components can be installed in a small space in the core. First we plan to perform the time-of-flight (TOF) transmission measurement for study of total cross sections of the nuclei for 0.1-10 eV energy neutrons. Therefore, if we adopt a TOF line of less than 10m, the o-pulse length of generated neutrons should be shorter than 100 ns. Electronenergy, o-pulse length, power, and neutron yield are ~30 MeV, 100 ns - 1 micros, ~0.4 kW, and ~1011 n/s (~103 n/cm2/s at samples), respectively. Optimization of the design of a neutron target (Ta, W, 238U), TOF line and neutron detector (Ce:LiCAF) of high sensitivity and fast response is underway. We are upgrading the electron gun and a buncher to realize higher current and beam power with a reasonable beam size in order to avoid damage of the neutron target. Although the neutron flux is limited in case of the X-band electron linac based source, we take advantage of its short pulse aspect and availability for nuclear data measurement with a short TOF system. First, we form a tentative configuration in the current experimental room for Compton scattering in 2014. Then, after the decommissioning has been finished, we move it to the "Yayoi" room and perform

  1. Return current and proton emission from wire targets interacting with an intense short pulse laser

    NASA Astrophysics Data System (ADS)

    Beg, Farhat

    2004-05-01

    One of the important characteristics of short pulse high intensity laser-solid interactions is the generation of energetic charged particles, which result from the very efficient conversion of laser energy into hot electrons. Since the electrons in the electric field of the laser have relativistic quiver motions, the temperature of the hot electron distribution of the plasma produced at such extreme intensities can become very high. A large number of hot electrons (1013-1014) having an average energy of the order of 1-2 MeV can be generated as intensities exceed 1019 Wcm-2. Since the resulting beam current exceeds the Alfvén limit, a neutralizing return current of cold plasma electrons moving in the opposite direction is produced. Another source of return current is that due to the escape of very energetic electrons from the target, which then creates a large electrostatic potential due to charge separation. These return currents can cause significant ohmic heating. In addition escaping electrons establish the large electrostatic fields, accelerating a large number of protons from the target with energies of 10's of MeV. The experiments reported here were performed at the Rutherford Appleton Laboratory with the VULCAN laser facility at intensity greater than 5 x1019 Wcm-2 on wire targets. In some shots an additional wire or foil was placed nearby. The laser was blocked by the main wire target so that no laser light reached the additional wire or foil. Three main observations were made: (i) a Z-pinch was driven in the wire due to the return current, (ii) optical transition radiation (OTR) at 2w was generated and (iii) energetic proton emission was observed. The wire targets were observed to be ohmically heated and were m=0 unstable. The OTR emission is likely due to electron bunches accelerated by the ponderomotive force of the laser. The proton emission was in a form of thin disk perpendicular to the wire and centered on the wire at the laser focus. Proton

  2. Dielectric controlled excited state relaxation pathways of a representative push-pull stilbene: a mechanistic study using femtosecond fluorescence up-conversion technique.

    PubMed

    Rafiq, Shahnawaz; Sen, Pratik

    2013-02-28

    Femtosecond fluorescence up-conversion technique was employed to reinvestigate the intriguing dependence of fluorescence quantum yield of trans-4-dimethylamino-4(')-nitrostilbene (DNS) on dielectric properties of the media. In polar solvents, such as methanol and acetonitrile, the two time components of the fluorescence transients were assigned to intramolecular charge transfer (ICT) dynamics and to the depletion of the ICT state to the ground state via internal conversion along the torsional coordinate of nitro moiety. The viscosity independence of the first time component indicates the absence of any torsional coordinate in the charge transfer process. In slightly polar solvent (carbon tetrachloride) the fluorescence transients show a triple exponential behavior. The first time component was assigned to the formation of the ICT state on a 2 ps time scale. Second time component was assigned to the relaxation of the ICT state via two torsion controlled channels. First channel involves the torsional motion about the central double bond leading to the trans-cis isomerization via a conical intersection or avoided crossing. The other channel contributing to the depopulation of ICT state involves the torsional coordinates of dimethylanilino and∕or nitrophenyl moieties and leads to the formation of a conformationally relaxed state, which subsequently relaxes back to the ground state radiatively, and is responsible for the high fluorescence quantum yield of DNS in slightly polar solvents such as carbon tetrachloride, toluene, etc. The excited singlet state which is having a dominant π-π∗ character may also decay via intersystem crossing to the n-π∗ triplet manifold and thus accounts for the observed triplet yield of the molecule in slightly polar solvents. PMID:23464152

  3. Comparison of Single Event Transients Generated by Short Pulsed X-Rays, Lasers and Heavy Ions

    SciTech Connect

    Cardoza, David; LaLumondiere, Stephen D.; Tockstein, Michael A.; Brewe, Dale L.; Wells, Nathan P.; Koga, Rokutaro; Gaab, K. M.; Lotshaw, William T.; Moss, Steven C.

    2014-12-01

    We report an experimental study of the transients generated by pulsed x-rays, heavy ions, and different laser wavelengths in a Si p-i-n photodiode. We compare the charge collected by all of the excitation methods to determine the equivalent LET for pulsed x-rays relative to heavy ions. Our comparisons show that pulsed x-rays from synchrotron sources can generate a large range of equivalent LET and generate transients similar to those excited by laser pulses and heavy ion strikes. We also look at how the pulse width of the transients changes for the different excitation methods. We show that the charge collected with pulsed x-rays is greater than expected as the x-ray photon energy increases. Combined with their capability of focusing to small spot sizes and of penetrating metallization, pulsed x-rays are a promising new tool for high resolution screening of SEE susceptibility

  4. Progress of high average power, short-pulse laser technology for the Compton X-ray source

    NASA Astrophysics Data System (ADS)

    Endo, Akira; Sakaue, Kazuyuki; Washio, Masakazu

    2011-05-01

    Recent progress is reported in the development of high average power, short-pulse laser technology, which is relevant toward achieving a high X-ray flux in a Compton X-ray source for use in various applications. The Yb-based laser material is suitable for high-pulse energy in a picosecond pulse length. The thin disc amplifier technology is now close to operating continuously with 1 J, 2 ps, at a 100 Hz repetition rate with a multi-pass amplification scheme. The average power is 100 W at a 1030 nm wavelength. The laser beam quality is fine enough to focus on the bunched electron beam from a photocathode/S-band linac single-pass accelerator and to generate an X-ray flux of 109 photons/s at 100 Hz. The short-pulse carbon dioxide (CO2) laser has an advantage for a Compton X-ray source in high X-ray flux applications. The short-pulse amplification of the CO2 laser pulse has been demonstrated, at a power level of more than 10 kW at a 100 kHz repetition rate in a single laser beam, for application in the plasma generation for an extreme ultraviolet light source, using a commercially available RF-pumped laser module. The pulse length is now limited to around 1 ns because of the bandwidth of the low-pressure gain medium. The additional pulse compression scheme makes a high average power, pulsed CO2 laser ideal for various applications of the Compton X-ray source.

  5. Heat generation caused by ablation of dental restorative materials with an ultra short pulse laser (USPL) system

    NASA Astrophysics Data System (ADS)

    Braun, Andreas; Wehry, Richard; Brede, Olivier; Frentzen, Matthias; Schelle, Florian

    2011-03-01

    The aim of this study was to assess heat generation in dental restoration materials following laser ablation using an Ultra Short Pulse Laser (USPL) system. Specimens of phosphate cement (PC), ceramic (CE) and composite (C) were used. Ablation was performed with an Nd:YVO4 laser at 1064 nm and a pulse length of 8 ps. Heat generation during laser ablation depended on the thickness of the restoration material. A time delay for temperature increase was observed in the PC and C group. Employing the USPL system for removal of restorative materials, heat generation has to be considered.

  6. A short-pulse Ka-band instrumentation radar for foliage attenuation measurements

    NASA Astrophysics Data System (ADS)

    Puranen, Mikko; Eskelinen, Pekka

    2008-10-01

    A portable Ka-band instrumentation radar for foliage attenuation measurements has been designed. It uses direct dielectric resonator oscillator multiplier pulse modulation giving a half power pulse width of 17 ns. The dual conversion scalar receiver utilizes either a digital storage oscilloscope in envelope detection format or a special gated comparator arrangement providing 1 m resolution and associated led seven segment display for data analysis. The calibrated dynamic range is better than 37 dB with an equivalent noise floor of 0.005 dBsm at 25 m test range distance. First experiments indicate an effective beamwidth close to 1°. The total weight is below 5 kg and the unit can be mounted on a conventional photographic tripod. Power is supplied from a 12 V/6 A h sealed lead acid battery giving an operating time in excess of 10 h.

  7. High-power radio frequency pulse generation and extration based on wakefield excited by an intense charged particle beam in dielectric-loaded waveguides.

    SciTech Connect

    Gao, F.; High Energy Physics; Illinois Inst. of Tech

    2009-07-24

    Power extraction using a dielectric-loaded (DL) waveguide is a way to generate high-power radio frequency (RF) waves for future particle accelerators, especially for two-beam-acceleration. In a two-beam-acceleration scheme, a low-energy, high-current particle beam is passed through a deceleration section of waveguide (decelerator), where the power from the beam is partially transferred to trailing electromagnetic waves (wakefields); then with a properly designed RF output coupler, the power generated in the decelerator is extracted to an output waveguide, where finally the power can be transmitted and used to accelerate another usually high-energy low-current beam. The decelerator, together with the RF output coupler, is called a power extractor. At Argonne Wakefield Accelerator (AWA), we designed a 7.8GHz power extractor with a circular DL waveguide and tested it with single electron bunches and bunch trains. The output RF frequency (7.8GHz) is the sixth harmonic of the operational frequency (1.3GHz) of the electron gun and the linac at AWA. In single bunch excitation, a 1.7ns RF pulse with 30MW of power was generated by a single 66nC electron bunch passing through the decelerator. In subsequent experiments, by employing different splitting-recombining optics for the photoinjector laser, electron bunch trains were generated and thus longer RF pulses could be successfully generated and extracted. In 16-bunch experiments, 10ns and 22ns RF pulses have been generated and extracted; and in 4-bunch experiments, the maximum power generated was 44MW with 40MW extracted. A 26GHz DL power extractor has also been designed to test this technique in the millimeter-wave range. A power level of 148MW is expected to be generated by a bunch train with a bunch spacing of 769ps and bunch charges of 20nC each. The arrangement for the experiment is illustrated in a diagram. Higher-order-mode (HOM) power extraction has also been explored in a dual-frequency design. By using a bunch

  8. Temporal and spatial temperature distribution in the glabrous skin of rats induced by short-pulse CO2 laser

    NASA Astrophysics Data System (ADS)

    Lu, Pen-Li; Hsu, Shu-Shen; Tsai, Meng-Li; Jaw, Fu-Shan; Wang, An-Bang; Yen, Chen-Tung

    2012-11-01

    Pain is a natural alarm that aids the body in avoiding potential danger and can also present as an important indicator in clinics. Infrared laser-evoked potentials can be used as an objective index to evaluate nociception. In animal studies, a short-pulse laser is crucial because it completes the stimulation before escape behavior. The objective of the present study was to obtain the temporal and spatial temperature distributions in the skin caused by the irradiation of a short-pulse laser. A fast speed infrared camera was used to measure the surface temperature caused by a CO2 laser of different durations (25 and 35 ms) and power. The measured results were subsequently implemented with a three-layer finite element model to predict the subsurface temperature. We found that stratum corneum was crucial in the modeling of fast temperature response, and escape behaviors correlated with predictions of temperature at subsurface. Results indicated that the onset latency and duration of activated nociceptors must be carefully considered when interpreting physiological responses evoked by infrared irradiation.

  9. Using a short-pulse diffraction-limited laser beam to probe filamentation of a random phase plate smoothed beam.

    PubMed

    Kline, J L; Montgomery, D S; Flippo, K A; Johnson, R P; Rose, H A; Shimada, T; Williams, E A

    2008-10-01

    A short pulse (few picoseconds) laser probe provides high temporal resolution measurements to elucidate details of fast dynamic phenomena not observable with typical longer laser pulse probes and gated diagnostics. Such a short pulse laser probe (SPLP) has been used to measure filamentation of a random phase plate (RPP) smoothed laser beam in a gas-jet plasma. The plasma index of refraction due to driven density and temperature fluctuations by the RPP beam perturbs the phase front of a SPLP propagating at a 90 degree angle with respect to the RPP interaction beam. The density and temperature fluctuations are quasistatic on the time scale of the SPLP (approximately 2 ps). The transmitted near-field intensity distribution from the SPLP provides a measure of the phase front perturbation. At low plasma densities, the transmitted intensity pattern is asymmetric with striations across the entire probe beam in the direction of the RPP smoothed beam. As the plasma density increases, the striations break up into smaller sizes along the direction of the RPP beam propagation. The breakup of the intensity pattern is consistent with self-focusing of the RPP smoothed interaction beam. Simulations of the experiment using the wave propagation code, PF3D, are in qualitative agreement demonstrating that the asymmetric striations can be attributed to the RPP driven density fluctuations. Quantification of the beam breakup measured by the transmitted SPLP could lead to a new method for measuring self-focusing of lasers in underdense plasmas.

  10. Impact of Pre-Plasma on Fast Electron Generation and Transport from Short Pulse High Intensity Lasers

    NASA Astrophysics Data System (ADS)

    Peebles, J.; McGuffey, C.; Krauland, C.; Jarrott, L. C.; Sorokovikova, A.; Qiao, B.; Krasheninnikov, S.; Beg, F. N.; Wei, M. S.; Park, J.; Link, A.; Chen, H.; McLean, H. S.; Wagner, C.; Minello, V.; McCary, E.; Meadows, A.; Spinks, M.; Gaul, E.; Dyer, G.; Hegelich, B. M.; Martinez, M.; Donovan, M.; Ditmire, T.

    2014-10-01

    We present the results and analysis from recent short pulse laser matter experiments using the Texas Petawatt Laser to study the impact of pre-plasma on fast electron generation and transport. The experimental setup consisted of 3 separate beam elements: a main, high intensity, short pulse beam for the interaction, a secondary pulse of equal intensity interacting with a separate thin foil target to generate protons for side-on proton imaging and a third, low intensity, wider beam to generate a varied scale length pre-plasma. The main target consisted of a multilayer planar Al foil with a buried Cu fluor layer. The electron beam was characterized with multiple diagnostics, including several bremsstrahlung spectrometers, magnetic electron spectrometers and Cu-K α imaging. The protons from the secondary target were used to image the fields on the front of the target in the region of laser plasma interaction. Features seen in the interaction region by these protons will be presented along with characteristics of the generated electron beam. This work performed under the auspices of the US DOE under Contracts DE-FOA-0000583 (FES, NNSA).

  11. Short-pulse Er:YAG laser increases bond strength of composite resin to sound and eroded dentin

    NASA Astrophysics Data System (ADS)

    Cersosimo, Maria Cecília Pereira; Matos, Adriana Bona; Couto, Roberta Souza D.'Almeida; Marques, Márcia Martins; de Freitas, Patricia Moreira

    2016-04-01

    This study evaluated the influence of the irradiation with a short-pulse Er:YAG laser on the adhesion of composite resin to sound and eroded dentin (SD and ED). Forty-six samples of occlusal dentine, obtained from human molars, had half of their surface protected, while the other half was submitted to erosive cycles. Afterward, 23 samples were irradiated with Er:YAG laser, resulting in four experimental groups: SD, sound irradiated dentine (SID-Er:YAG, 50 μs, 2 Hz, 80 mJ, and 12.6 J/cm2), ED, and eroded irradiated dentin (EID-erosion + Er:YAG laser). A self-etching adhesive system was used, and then cylinders of composite resin were prepared. A microshear bond strength test was performed after 24 h storage (n=20). The morphology of SD and ED, with or without Er:YAG laser irradiation, was evaluated under scanning electron microscopy (n=3). Bond strength values (MPa) were subjected to analysis of variance followed by Tukey's test. Statistically significant differences were found among the experimental groups: SD (9.76±3.39 B), SID (12.77±5.09 A), ED (5.12±1.72 D), and EID (7.62±3.39 C). Even though erosion reduces the adhesion to dentin, the surface irradiation with a short-pulse Er:YAG laser increases adhesion to both ED and SD.

  12. Short-pulse Er:YAG laser increases bond strength of composite resin to sound and eroded dentin

    NASA Astrophysics Data System (ADS)

    Cersosimo, Maria Cecília Pereira; Matos, Adriana Bona; Couto, Roberta Souza D.'Almeida; Marques, Márcia Martins; de Freitas, Patricia Moreira

    2016-04-01

    This study evaluated the influence of the irradiation with a short-pulse Er:YAG laser on the adhesion of composite resin to sound and eroded dentin (SD and ED). Forty-six samples of occlusal dentine, obtained from human molars, had half of their surface protected, while the other half was submitted to erosive cycles. Afterward, 23 samples were irradiated with Er:YAG laser, resulting in four experimental groups: SD, sound irradiated dentine (SID-Er:YAG, 50 μs, 2 Hz, 80 mJ, and 12.6 J/cm2), ED, and eroded irradiated dentin (EID-erosion + Er:YAG laser). A self-etching adhesive system was used, and then cylinders of composite resin were prepared. A microshear bond strength test was performed after 24 h storage (n=20). The morphology of SD and ED, with or without Er:YAG laser irradiation, was evaluated under scanning electron microscopy (n=3). Bond strength values (MPa) were subjected to analysis of variance followed by Tukey's test. Statistically significant differences were found among the experimental groups: SD (9.76±3.39 B), SID (12.77±5.09 A), ED (5.12±1.72 D), and EID (7.62±3.39 C). Even though erosion reduces the adhesion to dentin, the surface irradiation with a short-pulse Er:YAG laser increases adhesion to both ED and SD.

  13. Laser induced damage in multilayer dielectric gratings due to ultrashort laser pulses

    SciTech Connect

    Shore, B.W.; Stuart, B.C.; Feit, M.D.; Rubenchik, A.M.; Perry, M.D.

    1995-05-26

    Chirped pulse amplification is increasingly used to produce intense ultrashort laser pulses. When high-efficiency gratings are the dispersive element, as in the LLNL Petawatt laser, their susceptibility to laser induced damage constitutes a limitation on the peak intensities that can be reached. To obtain robust gratings, it is necessary to understand the causes of short-pulse damage, and to recognize the range of design options for high efficiency gratings. Metal gratings owe their high efficiency to their high conductivity. To avoid the inevitable light absorption that accompanies conductivity, we have developed designs for high efficiency reflection gratings that use only transparent dielectric materials. These combine the reflectivity of a multilayer dielectric stack with a diffraction grating. We report here our present understanding of short-pulse laser induced damage, as it applies to dielectric gratings.

  14. Simulation of the short pulse effects in the start-up from noise in high-gain FELS

    SciTech Connect

    Hahn, S.J.; Kim, K.J.

    1995-12-31

    The spatio-temporal evolution of high-gain free electron lasers from noise is investigated by 1-D simulation calculation. To understand the discrepancy between the experimental result and theoretical prediction of the self-amplified spontaneous emission (SASE), the strong slippage effect in the short pulse electron beam and the coherent bunched beam effect are considered. When the length over which the electron density varies significantly is comparable or smaller than the FEL wavelength, the initial noise level would be increased due to the enhanced coherence between electrons. With a proper computer modeling of the start-up from noise including the energy spread, the overall performance and characteristics of SASE are studied. This work will be helpful to increase the credibility of the simulation calculation to predict the SASE performance in all wave-length regions.

  15. A design study for photon diagnostics for the APS storage ring short-pulse x-ray source.

    SciTech Connect

    Yang, B. X.; Lumpkin, A. H.; Landahl, E. C.; Dufresne, E. M.

    2008-01-01

    A short x-ray pulse source based on the crab cavity scheme proposed by Zholents is being developed at the Advanced Photon Source (APS). Photon diagnostics that visualize the electron bunches with transverse momentum chirp and verify the performance of the short x-ray pulse are required. We present a design study for the imaging diagnostics inside and outside of the crab cavity zone, utilizing both x-ray and visible synchrotron radiation. The diagnostics outside of the crab cavity zone will be used to map out stable operation parameters of the storage ring with crab cavities and to perform single-bunch, single- pass imaging of the chirped bunch, which facilitates optimizing the performance of the short-pulse source without disturbing other users around the ring.

  16. Remote sensing of atmospheric pressure and sea state from satellites using short-pulse multicolor laser altimeters

    NASA Technical Reports Server (NTRS)

    Gardner, C. S.; Tsai, B. M.; Abshire, J. B.

    1983-01-01

    Short pulse multicolor laser ranging systems are currently being developed for satellite ranging applications. These systems use Q-switched pulsed lasers and streak tube cameras to provide timing accuracies approaching a few picoseconds. Satellite laser ranging systems was used to evaluate many important geophysical phenomena such as fault motion, polar motion and solid earth tides, by measuring the orbital perturbations of retroreflector equipped satellites. Some existing operational systems provide range resolution approaching a few millimeters. There is currently considerable interest in adapting these highly accurate systems for use as airborne and satellite based altimeters. Potential applications include the measurement of sea state, ground topography and atmospheric pressure. This paper reviews recent progress in the development of multicolor laser altimeters for use in monitoring sea state and atmospheric pressure.

  17. Remote profiling of lake ice using an S-band short pulse radar aboard an all-terrain vehicle

    NASA Technical Reports Server (NTRS)

    Cooper, D. W.; Mueller, R. A.; Schertler, R. J.

    1975-01-01

    An airborne short-pulse radar system to measure ice thickness was designed. The system supported an effort to develop an all-weather Great Lakes Ice Information System to aid in extending the winter navigation season. Experimental studies into the accuracy and limitations of the system are described. A low power version was operated from an all-terrain vehicle on the Straits of Mackinac during March 1975. The vehicle allowed rapid surveying of large areas and eliminated the ambiguity in location between the radar system and the ground truth ice auger team. It was also possible to the effects of snow cover, surface melt water, pressure ridging, and ice type upon the accuracy of the system. Over 25 sites were explored which had ice thicknesses from 29 to 60 cm. The maximum radar overestimate was 9.8 percent, while the maximum underestimate was 6.6 percent. The average error of the 25 measurements was 0.1 percent.

  18. Self-consistent particle-in-cell modelling of short pulse absorption and transport for high energy density physics experiments

    NASA Astrophysics Data System (ADS)

    Ramsay, M. G.; Arber, T. D.; Sircombe, N. J.

    2016-03-01

    In order for detailed, solid density particle-in-cell (PIC) simulations to run within a reasonable time frame, novel approaches to modelling high density material must be employed. For the purposes of modelling high intensity, short pulse laser-plasma interactions, however, these approaches must be consistent with retaining a full PIC model in the low-density laser interaction region. By replacing the standard Maxwell field solver with an electric field update based on a simplified Ohm's law in regions of high electron density, it is possible to access densities at and above solid without being subject to the standard grid and time step constraints. Such a model has recently been implemented in the PIC code EPOCH. We present the initial results of a detailed two-dimensional simulation performed to compare the adapted version of the code with recent experimental results from the Orion laser facility.

  19. High performance compact magnetic spectrometers for energetic ion and electron measurement in ultra intense short pulse laser solid interactions

    SciTech Connect

    Chen, H; Link, A; van Maren, R; Patel, P; Shepherd, R; Wilks, S C; Beiersdorfer, P

    2008-05-08

    Ultra intense short pulse lasers incident on solid targets can generate relativistic electrons that then accelerate energetic protons and ions. These fast electrons and ions can effectively heat the solid target, beyond the region of direct laser interaction, and are vital to realizing the fast ignition concept. To study these energetic ions and electrons produced from the laser-target interactions, we have developed a range of spectrometers that can cover a large energy range (from less than 0.1 MeV to above 100 MeV). They are physically compact and feature high performance and low cost. We will present the basic design of these spectrometers and their test results from recent laser experiments.

  20. An analysis of short pulse and dual frequency radar techniques for measuring ocean wave spectra from satellites

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.

    1980-01-01

    Scanning beam microwave radars were used to measure ocean wave directional spectra from satellites. In principle, surface wave spectral resolution in wave number can be obtained using either short pulse (SP) or dual frequency (DF) techniques; in either case, directional resolution obtains naturally as a consequence of a Bragg-like wave front matching. A four frequency moment characterization of backscatter from the near vertical using physical optics in the high frequency limit was applied to an analysis of the SP and DF measurement techniques. The intrinsic electromagnetic modulation spectrum was to the first order in wave steepness proportional to the large wave directional slope spectrum. Harmonic distortion was small and was a minimum near 10 deg incidence. NonGaussian wave statistics can have an effect comparable to that in the second order of scattering from a normally distributed sea surface. The SP technique is superior to the DF technique in terms of measurement signal to noise ratio and contrast ratio.

  1. Laser Processing of Carbon Fiber Reinforced Plastics - Release of Carbon Fiber Segments During Short-pulsed Laser Processing of CFRP

    NASA Astrophysics Data System (ADS)

    Walter, Juergen; Brodesser, Alexander; Hustedt, Michael; Bluemel, Sven; Jaeschke, Peter; Kaierle, Stefan

    Cutting and ablation using short-pulsed laser radiation are promising technologies to produce or repair CFRP components with outstanding mechanical properties e.g. for automotive and aircraft industry. Using sophisticated laser processing strategies and avoiding excessive heating of the workpiece, a high processing quality can be achieved. However, the interaction of laser radiation and composite material causes a notable release of hazardous substances from the process zone, amongst others carbon fiber segments or fibrous particles. In this work, amounts and geometries of the released fiber segments are analyzed and discussed in terms of their hazardous potential. Moreover, it is investigated to what extent gaseous organic process emissions are adsorbed at the fiber segments, similar to an adsorption of volatile organic compounds at activated carbon, which is typically used as filter material.

  2. Multi-soliton, multi-breather and higher order rogue wave solutions to the complex short pulse equation

    NASA Astrophysics Data System (ADS)

    Ling, Liming; Feng, Bao-Feng; Zhu, Zuonong

    2016-07-01

    In the present paper, we are concerned with the general analytic solutions to the complex short pulse (CSP) equation including soliton, breather and rogue wave solutions. With the aid of a generalized Darboux transformation, we construct the N-bright soliton solution in a compact determinant form, the N-breather solution including the Akhmediev breather and a general higher order rogue wave solution. The first and second order rogue wave solutions are given explicitly and analyzed. The asymptotic analysis is performed rigorously for both the N-soliton and the N-breather solutions. All three forms of the analytical solutions admit either smoothed-, cusped- or looped-type ones for the CSP equation depending on the parameters. It is noted that, due to the reciprocal (hodograph) transformation, the rogue wave solution to the CSP equation can be a smoothed, cusponed or a looped one, which is different from the rogue wave solution found so far.

  3. High-power Waveguide Dampers for the Short-Pulse X-Ray Project at the Advanced Photon Source

    SciTech Connect

    Waldschmidt, G J; Liu, J; Middendorf, M E; Nassiri, A; Smith, T L; Wu, G; Henry, J; Mammosser, J D; Rimmer, R A; Wiseman, M

    2012-07-01

    High-power waveguide dampers have been designed and prototyped for the Short-Pulse X-ray (SPX) cavities at the Advanced Photon Source. The cavities will operate at 2.815 GHz and utilize the TM110 dipole mode. As a result, higher-order (HOM) and lower-order mode (LOM) in-vacuum dampers have been designed to satisfy the demanding broadband damping requirements in the APS storage ring. The SPX single-cell cavity consists of two WR284 waveguides for damping the HOMs and one WR284 waveguide for primarily damping the LOM where up to 2kW will be dissipated in the damping material. The damper designs and high-power experimental results will be discussed in this paper.

  4. Investigating short-pulse shock initiation in HMX-based explosives with reactive meso-scale simulations

    NASA Astrophysics Data System (ADS)

    Springer, H. K.; Tarver, C. M.; Reaugh, J. E.; May, C. M.

    2014-05-01

    We performed reactive meso-scale simulations of short-pulse experiments to study the influence of flyer velocity and pore structure on shock initiation of LX-10 (95wt% HMX, 5wt% Viton A). Our calculations show that the reaction evolution fit a power law relationship in time and increases with increasing porosity, decreasing pore size, and increasing flyer velocity. While heterogeneous shock initiation modes, dependent on hot spot mechanisms, are predicted at lower flyer velocities, mixed heterogeneous-homogeneous shock initiation modes, less dependent on hot spots, are predicted at higher velocities. These studies are important because they enable the development of predictive shock initiation models that incorporate complex microstructure and can be used to optimize performance-safety characteristics of explosives.

  5. Short-pulse photoassociation in rubidium below the D{sub 1} line

    SciTech Connect

    Koch, Christiane P.; Kosloff, Ronnie; Masnou-Seeuws, Francoise

    2006-04-15

    Photoassociation of two ultracold rubidium atoms and the subsequent formation of stable molecules in the singlet ground and lowest triplet states is investigated theoretically. The method employs laser pulses inducing transitions via excited states correlated to the 5S+5P{sub 1/2} asymptote. Weakly bound molecules in the singlet ground or lowest triplet state can be created by a single pulse while the formation of more deeply bound molecules requires a two-color pump-dump scenario. More deeply bound molecules in the singlet ground or lowest triplet state can be produced only if efficient mechanisms for both pump and dump steps exist. While long-range 1/R{sup 3} potentials allow for efficient photoassociation, stabilization is facilitated by the resonant spin-orbit coupling of the 0{sub u}{sup +} states. Molecules in the singlet ground state bound by a few wave numbers can thus be formed. This provides a promising first step toward ground-state molecules which are ultracold in both translational and vibrational degrees of freedom.

  6. Superdirective dielectric nanoantennas

    NASA Astrophysics Data System (ADS)

    Krasnok, Alexander E.; Simovski, Constantin R.; Belov, Pavel A.; Kivshar, Yuri S.

    2014-06-01

    We introduce the novel concept of superdirective nanoantennas based on the excitation of higher-order magnetic multipole moments in subwavelength dielectric nanoparticles. Our superdirective nanoantenna is a small Si nanosphere containing a notch, and is excited by a dipole located within the notch. In addition to extraordinary directivity, this nanoantenna demonstrates efficient radiation steering at the nanoscale, resulting from the subwavelength sensitivity of the beam radiation direction to variation of the source position inside the notch. We compare our dielectric nanoantenna with a plasmonic nanoantenna of similar geometry, and reveal that the nanoantenna's high directivity in the regime of transmission is not associated with strong localization of near fields in the regime of reception. Likewise, the absence of hot spots inside the nanoantenna leads to low dissipation in the radiation regime, so that our dielectric nanoantenna has significantly smaller losses and high radiation efficiency of up to 70%.

  7. Short-pulse cross-phase modulation in an electromagnetically-induced-transparency medium

    NASA Astrophysics Data System (ADS)

    Feizpour, Amir; Dmochowski, Greg; Steinberg, Aephraim M.

    2016-01-01

    Electromagnetically induced transparency (EIT) has been proposed as a way to greatly enhance cross-phase modulation, with the possibility of leading to few-photon-level optical nonlinearities [Schmidt and Imamoglu, Opt. Lett. 21, 1936 (1996), 10.1364/OL.21.001936]. This enhancement grows as the transparency window width, ΔEIT, is narrowed. Decreasing ΔEIT, however, has been shown to increase the response time of the nonlinear medium. This suggests that, for a given pulse duration, the nonlinearity would diminish once the window width became narrower than this pulse bandwidth. We show that this is not the case: the peak phase shift saturates but does not decrease. We show that in the regimes of most practical interest—narrow EIT windows perturbed by short signal pulses—the enhancement offered by EIT is not only in the magnitude of the nonlinear phase shift but also in its increased duration. That is, for the case of signal pulses much shorter (temporally) than the inverse EIT bandwidth, the narrow window serves to prolong the effect of the passing signal pulse, leading to an integrated phase shift that grows linearly with 1 /ΔEIT ; this continued growth of the integrated phase shift improves the detectability of the phase shift, in principle, without bound. For many purposes, it is this detectability which is of more interest than the absolute magnitude of the peak phase shift. We present analytical expressions based on a linear time-invariant model that accounts for the temporal behavior of the cross-phase modulation for several parameter ranges of interest. We conclude that in order to optimize the detectability of the EIT-based cross-phase shift, one should use the narrowest possible EIT window and a signal pulse that is as broadband as the excited-state linewidth and detuned by half a linewidth.

  8. A microwave dielectric resonant oscillatory circuit

    NASA Astrophysics Data System (ADS)

    Sigov, A. S.; Shvartsburg, A. B.

    2016-07-01

    Bias currents in a thin dielectric nonconducting torus are investigated, and the resonant mode of excitation of these currents is established. The similarity of the frequency spectrum of such a dielectric element to the spectra of a classical Thomson oscillatory circuit and a metamaterial with negative permittivity is demonstrated. The resonant frequency of electromagnetic oscillations of the ring dielectric circuit and magnetic and electric fields of such a circuit under resonant excitation are determined.

  9. Pulse compression below 40fs at 1μm: The first step towards a short-pulse, high-energy beam line at LULI

    NASA Astrophysics Data System (ADS)

    Chen, Xiaowei; Zou, Jiping; Martin, Luc; Simon, Francois; Lopez-Martens, Rodrigo; Audebert, Patrick

    2010-08-01

    We present the upgrading project ELFIE (Equipement Laser de Forte Intensité et Energie) based on the "100TW" mixed Nd:glass CPA laser system at 1μm at LULI, which includes an energy enhancement and the development of a short-pulse, high-energy, good temporal contrast beam line (50fs/5J). We report the first experimental step towards the short-pulse, high-energy beam line: spectral broadening above 60nm from 7nm and temporal pulse compression below 40fs from 300fs at 1μm through a Krypton-filled hollow fiber compressor.

  10. Dielectric barrier discharges applied for optical spectrometry

    NASA Astrophysics Data System (ADS)

    Brandt, S.; Schütz, A.; Klute, F. D.; Kratzer, J.; Franzke, J.

    2016-09-01

    The present review reflects the importance of dielectric barrier discharges for optical spectrometric detection in analytical chemistry. In contrast to usual discharges with a direct current the electrodes are separated by at least one dielectric barrier. There are two main features of the dielectric barrier discharges: they can serve as dissociation and excitation devices as well as ionization sources, respectively. This article portrays various application fields of dielectric barrier discharges in analytical chemistry used for elemental and molecular detection with optical spectrometry.

  11. Multiple current peaks in room-temperature atmospheric pressure homogenous dielectric barrier discharge plasma excited by high-voltage tunable nanosecond pulse in air

    SciTech Connect

    Yang, De-Zheng; Wang, Wen-Chun; Zhang, Shuai; Tang, Kai; Liu, Zhi-jie; Wang, Sen

    2013-05-13

    Room temperature homogenous dielectric barrier discharge plasma with high instantaneous energy efficiency is acquired by using nanosecond pulse voltage with 20-200 ns tunable pulse width. Increasing the voltage pulse width can lead to the generation of regular and stable multiple current peaks in each discharge sequence. When the voltage pulse width is 200 ns, more than 5 organized current peaks can be observed under 26 kV peak voltage. Investigation also shows that the organized multiple current peaks only appear in homogenous discharge mode. When the discharge is filament mode, organized multiple current peaks are replaced by chaotic filament current peaks.

  12. Mechanism and influencing factors on critical pulse width of oil-immersed polymer insulators under short pulses

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Su, Jian Cang; Li, Rui; Zeng, Bo; Cheng, Jie; Zheng, Lei; Yu, Bin Xiong; Wu, Xiao Long; Zhang, Xi Bo; Pan, Ya Feng

    2015-04-01

    The critical pulse width (τc) is a pulse width at which the surface flashover threshold (Ef) is equal to the bulk breakdown threshold (EBD) for liquid-polymer composite insulation systems, which is discovered by Zhao et al. [Annual Report Conference on Electrical Insulation and Dielectric Phenomena (IEEE Dielectrics and Electrical Insulation Society, Shenzhen, China, 2013), Vol. 2, pp. 854-857]. In this paper, the mechanism of τc is interpreted in perspective of the threshold and the time delay (td) of surface flashover and bulk breakdown, respectively. It is found that two changes appear as the pulse width decreases which are responsible for the existence of τc: (1) EBD is lower than Ef; (2) td of bulk breakdown is shorter than td of surface flashover. In addition, factors which have influences on τc are investigated, such as the dielectric type, the insulation length, the dielectric thickness, the dielectrics configuration, the pulse number, and the liquid purity. These influences of factors are generalized as three types if τc is expected to increase: (1) factors causing EBD to decrease, such as increasing the pulse number or employing a dielectric of lower EBD; (2) factors causing Ef to increase, such as complicating the insulator's configuration or increasing the liquid purity; (3) factors causing EBD and Ef to increase together, but Ef increases faster than EBD, such as decreasing the dielectric thickness or the insulation length. With the data in references, all the three cases are verified experimentally. In the end, a general method based on τc for solid insulation design is presented and the significance of τc on solid insulation design and on solid demolition are discussed.

  13. Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions

    SciTech Connect

    Higginson, D. P.; McNaney, J. M.; Swift, D. C.; Mackinnon, A. J.; Patel, P. K.; Petrov, G. M.; Davis, J.; Frenje, J. A.; Jarrott, L. C.; Tynan, G.; Beg, F. N.; Kodama, R.; Nakamura, H.; Lancaster, K. L.

    2011-10-15

    The generation of high-energy neutrons using laser-accelerated ions is demonstrated experimentally using the Titan laser with 360 J of laser energy in a 9 ps pulse. In this technique, a short-pulse, high-energy laser accelerates deuterons from a CD{sub 2} foil. These are incident on a LiF foil and subsequently create high energy neutrons through the {sup 7}Li(d,xn) nuclear reaction (Q = 15 MeV). Radiochromic film and a Thomson parabola ion-spectrometer were used to diagnose the laser accelerated deuterons and protons. Conversion efficiency into protons was 0.5%, an order of magnitude greater than into deuterons. Maximum neutron energy was shown to be angularly dependent with up to 18 MeV neutrons observed in the forward direction using neutron time-of-flight spectrometry. Absolutely calibrated CR-39 detected spectrally integrated neutron fluence of up to 8 x 10{sup 8} n sr{sup -1} in the forward direction.

  14. Transition from interpulse to afterglow plasmas driven by repetitive short-pulse microwaves in a multicusp magnetic field

    SciTech Connect

    Pandey, Shail; Sahu, Debaprasad; Bhattacharjee, Sudeep

    2012-08-15

    In the power-off phase, plasmas generated by repetitive short-pulse microwaves in a multicusp magnetic field show a transitive nature from interpulse to afterglow as a function of pulse duration t{sub w} = 20-200 {mu}s. The ionized medium can be driven from a highly non equilibrium to an equilibrium state inside the pulses, thereby dictating the behavior of the plasma in the power-off phase. Compared to afterglows, interpulse plasmas observed for t{sub w} < 50 {mu}s are characterized by a quasi-steady-state in electron density that persists for {approx} 20-40 {mu}s even after the end of the pulse and has a relatively slower decay rate ({approx} 4.3 Multiplication-Sign 10{sup 4} s{sup -1}) of the electron temperature, as corroborated by optical measurements. The associated electron energy probability function indicates depletion in low energy electrons which appear at higher energies just after the end of the pulse. The transition occurs at t{sub w} {approx} 50 {mu}s as confirmed by time evolution of integrated electron numbers densities obtained from the distribution function.

  15. Investigation of stimulated raman scattering using short-pulse diffraction limited laser beam near the instability threshold

    SciTech Connect

    Kline, John L; Montgomery, David S; Flippo, Kirk A; Rose, Harvey A; Yin, L; Albright, B J; Johnson, R P; Shimada, T; Bowers, K; Rousseaux, C; Tassin, V; Baton, S D; Amiranoff, F; Hardin, R A

    2008-01-01

    Short pulse laser plasma interaction experiments using diffraction limited beams provide an excellent platform to investigate the fundamental physics of Stimulated Raman Scattering. Detailed understanding of these laser plasma instabilities impacts the current inertial confinement fusion ignition designs and could potentially impact fast ignition when higher energy lasers are used with longer pulse durations ( > 1 kJ and> 1 ps). Using short laser pulses, experiments can be modeled over the entire interaction time of the laser using particle-in-cell codes to validate our understanding quantitatively. Experiments have been conducted at the Trident laser facility and the LULI (Laboratoire pour l'Utilisation des Lasers Intenses) to investigate stimulated Raman scattering near the threshold of the instability using 527 nm and 1059 nm laser light respectively with 1.5-3.0 ps pulses. In both experiments, the interaction beam was focused into a pre-ionized He gas-jet plasma. Measurements of the reflectivity as a function of intensity and k{lambda}{sub D} were completed at the Trident laser facility. At LULI, a 300 fs Thomson scattering probe is used to directly measure the density fluctuations of the driven electron plasma and ion acoustic waves. Work is currently underway comparing the results of the experiments with simulations using the VPIC [K. J. Bowers, et at., Phys. Plasmas, 15 055703 (2008)] particle-in-cell code. Details of the experimental results are presented in this manuscript.

  16. Improving Switching Performance of Power MOSFETs Used in High Rep-Rate, Short Pulse, High-Power Pulsers

    SciTech Connect

    Cook, E G

    2006-09-19

    As their switching and power handling characteristics improve, solid-state devices are finding new applications in pulsed power. This is particularly true of applications that require fast trains of short duration pulses. High voltage (600-1200V) MOSFETs are especially well suited for use in these systems, as they can switch at significant peak power levels and are easily gated on and off very quickly. MOSFET operation at the shortest pulse durations is not constrained by the intrinsic capabilities of the MOSFET, but rather by the capabilities of the gate drive circuit and the system physical layout. This project sought to improve MOSFET operation in a pulsed power context by addressing these issues. The primary goal of this project is to improve the switching performance of power MOSFETs for use in high rep-rate, short pulse, high-power applications by improving the design of the gate drive circuits and the circuit layouts used in these systems. This requires evaluation of new commercial gate drive circuits and upgrading the designs of LLNL-developed circuits. In addition, these circuits must be tested with the fastest available high-voltage power MOSFETs.

  17. Numerical simulation of high-power virtual-cathode reflex triode driven by repetitive short pulse electron gun

    SciTech Connect

    Yovchev, I.G.; Spassovsky, I.P.; Nikolov, N.A.; Dimitrov, D.P.; Messina, G.; Raimondi, P.; Barroso, J.J.; Correa, R.A.

    1996-06-01

    A virtual-cathode reflex triode is investigated by numerical simulations. A trapezoidal in shape voltage pulse with an amplitude of 300 kV is applied to the solid cathode of the device to drive the cathode negative. The electron beam-to-microwave power conversion efficiency {epsilon}, calculated for the pulse flat top with a duration {tau}{sub ft} = 1.2 ns is approximately the same (about 1.5--2%) as well as for a long flat top ({tau}{sub ft} = 4 ns). The simulations show a 10--15% increase of {epsilon} at {tau}{sub ft} shortening to 0.6 ns. However, this occurs when the anode mesh transparency is high (80--90%). Considerable enhancement of the efficiency (about four times) for {tau}{sub ft} = 0.6 ns has been calculated if the cathode side surface is brought near to the anode tube (from {approx}0.5% at cathode radius R{sub c} = 1.6 cm to {approx}2% at R{sub c} = 3.8 cm). The obtained results would find an application for the design of virtual-cathode reflex triode devices driven by a short pulse and high repetition rate electron gun.

  18. Investigation of Stimulated Raman Scattering Using Short-Pulse Diffraction Limited Laser Beam near the Instability Threshold

    NASA Astrophysics Data System (ADS)

    Kline, J. L.; Montgomery, D. S.; Yin, L.; Flippo, K. A.; Albright, B. J.; Johnson, R. P.; Shimada, T.; Rose, H. A.; Rousseaux, C.; Tassin, V.; Baton, S. D.; Amiranoff, F.; Hardin, R. A.

    2008-11-01

    Short pulse laser plasma interaction experiments using diffraction limited beams provide an excellent platform to investigate the fundamental physics of Stimulated Raman (SRS) and Stimulated Brillouin (SBS) Scattering. Detailed understanding of these laser plasma instabilities impacts the current inertial confinement fusion ignition designs and could potentially impact fast ignition when higher energy lasers are used with longer pulse durations ( > 1 kJ and > 1 ps). Using short laser pulses, experiments can be modeled over the entire interaction time of the laser using PIC codes to validate our understanding. Experiments have been conducted at the Trident laser and the LULI to investigate SRS near the threshold of the instability using 527 and 1064 nm laser light respectively with 1.5 -- 3 ps pulses. In the case of both experiments, the interaction beam was focused into a pre-ionized He gasjet plasma. Measurements of the reflectivity as a function of intensity and k?D were completed at the Trident laser. At LULI, a 300 fs Thomson scattering probe is used to directly measure the density fluctuations of the driven electron plasma and ion acoustic waves. Details of the experimental results will be presented.

  19. Direct laser acceleration of electron by an ultra intense and short-pulsed laser in under-dense plasma

    SciTech Connect

    Li, Y. Y.; Gu, Y. J.; Zhu, Z.; Li, X. F.; Ban, H. Y.; Kong, Q.; Kawata, S.

    2011-05-15

    Direct laser acceleration (DLA) of electron by an ultra intense and short-pulsed laser interacting with under-dense plasma is investigated based on 2.5-dimensional particle-in-cell simulation. A high-density electron beam is generated by the laser longitudinal ponderomotive force. Although the total number of DLA electrons is significantly smaller than the number of electrons trapped in the bubble, the total charge of high-energy DLA electrons (E>800MeV) reaches 67 pC/{mu}m. It is found that the electron beam occurs in a two-stage acceleration, i.e., accelerated in vacuum by the laser directly soon after a DLA process in plasma. The beam is accelerated violently with effective acceleration gradient in 100 GeV/cm. The energy spectrum of electrons presents a Maxwellian distribution with the highest energy of about 3.1 GeV. The dependence of maximum electron energy and electric quantity with laser intensity, laser width, pulse duration, and initial plasma density are also studied.

  20. Coaxial short pulsed laser

    DOEpatents

    Nelson, M.A.; Davies, T.J.

    1975-08-01

    This invention relates to a laser system of rugged design suitable for use in a field environment. The laser itself is of coaxial design with a solid potting material filling the space between components. A reservoir is employed to provide a gas lasing medium between an electrode pair, each of which is connected to one of the coaxial conductors. (auth)

  1. Direct electron-impact mechanism of excitation of mercury monobromide in a double-pulse dielectric-barrier-discharge HgBr lamp

    NASA Astrophysics Data System (ADS)

    Datsyuk, V. V.; Izmailov, I. A.; Naumov, V. V.; Kochelap, V. A.

    2016-08-01

    In a nonequlibrium plasma of a gas-discharge HgBr lamp, the terminal electronic state of the HgBr(B-X) radiative transition with a peak wavelength of 502 nm remains populated for a relatively long time and is repeatedly excited to the B state in collisions with plasma electrons. This transfer of the HgBr molecules from the ground state X to the excited state B is the main mechanism of formation of the light-emitting molecules especially when the lamp is excited by double current pulses. According to our simulations, due to the electron-induced transitions between HgBr(X) and HgBr(B), the output characteristics of the DBD lamp operating in a double-pulse regime are better than those of the lamp operating in a single-pulse regime. In the considered case, the peak power is calculated to increase by a factor of about 2 and the lamp efficiency increases by about 50%.

  2. Direct electron-impact mechanism of excitation of mercury monobromide in a double-pulse dielectric-barrier-discharge HgBr lamp

    NASA Astrophysics Data System (ADS)

    Datsyuk, V. V.; Izmailov, I. A.; Naumov, V. V.; Kochelap, V. A.

    2016-08-01

    In a nonequlibrium plasma of a gas-discharge HgBr lamp, the terminal electronic state of the HgBr(B–X) radiative transition with a peak wavelength of 502 nm remains populated for a relatively long time and is repeatedly excited to the B state in collisions with plasma electrons. This transfer of the HgBr molecules from the ground state X to the excited state B is the main mechanism of formation of the light-emitting molecules especially when the lamp is excited by double current pulses. According to our simulations, due to the electron-induced transitions between HgBr(X) and HgBr(B), the output characteristics of the DBD lamp operating in a double-pulse regime are better than those of the lamp operating in a single-pulse regime. In the considered case, the peak power is calculated to increase by a factor of about 2 and the lamp efficiency increases by about 50%.

  3. Study of energy partitioning in mass limited targets using the 50 TW Leopard short-pulse laser

    NASA Astrophysics Data System (ADS)

    Griffin, Brandon; Sawada, Hiroshi; Sentoku, Yasuhiko; Yabuuchi, Toshinori; Chen, Hui; Park, J.-B.; McClean, Harry; Patel, Prav; Beg, Farhat

    2014-10-01

    Mass limited Cu targets were used to study the energy distribution in the interaction of an ultra-intense, short-pulse laser by measuring characteristic x-rays and energetic particles. At the Nevada Terawatt Facility, Leopard delivered 15 J to an 8 μm spot size in a 350 fs pulse, achieving a peak intensity of 1019 W/cm2 at 20° incidence. The 2 μm thick Cu foil targets varied in size from 1 mm2 to 75 μm by 60 μm. A spherical crystal imager and a Bragg crystal x-ray spectrometer were used to measure 8.05 keV monochromatic x-ray images and 7.5-9.5 keV x-rays respectively. A magnet-based electron spectrometer in the rear monitored escaping electrons. Results show a decrease in the absolute yield of both escaped electrons and Cu K-shell x-rays as targets sizes are reduced, while He α emission remains nearly constant. In the smallest target, a bulk temperature of about 150 eV was inferred from the ratio of K β to K α. The interaction of the Leopard laser with the targets was simulated with 2-D implicit Particle-in-cell code PICLS. Comparisons of the simulation and experiment will be presented. This work was supported by the DOE Office of Fusion Energy Science under Fusion Science Center, and the National Nuclear Security Administration under cooperative agreements DE-FC52-06NA27616 and DE-NA0002075. T.Y. was supported by Japan/U.S. Cooperation.

  4. A note on ultra-short pulses compression in silicon optical waveguides under fourth-order dispersion

    NASA Astrophysics Data System (ADS)

    Mandeng Mandeng, L.; Fewo Ibraid, S.; Tchawoua, C.; Kofané, T. C.

    2014-08-01

    We present an overview of the pulse compression phenomenon obtained during the propagation of ultra-short pulses in common used optical waveguides. In the case of the silicon-on-insulator (SOI) waveguides, using the modified and realistic variational approach (MVA) that involves the Rayleigh's dissipation function (RDF), we conduct the analysis of the compression mechanism on different input profiles. This study allows to show the effects of fourth-order dispersion (FOD), the nonlinear coefficients of absorption (nonlinear absorption) and the chirp, not only on symmetric and compact pulses but also on those with asymmetric profile as the Airy pulses. Indeed, considering the case of linear compression, the conditions of their occurrence are obtained. A relation between the FOD, the group-velocity dispersion (GVD) and the chirp is proposed in this way. In the nonlinear case, using the symmetric profiles as input pulses, we demonstrate a periodic compression induced by the interplay between the self-phase modulation (SPM) and the FOD. This appears as a new mode to generate the pulse compression phenomenon. Then, we show that when large values of the initial chirp and absorption coefficients as the two-photon absorption (TPA) present in these waveguides are considered, the compression mechanism is completely destroyed with at least the observation of one pulse amplification over a short distance of propagation before the pulse broadening. Finally, the study relating to the Airy pulses, leads rather to the reduction of the compression length induced by the SPM, the TPA and the free-carrier absorption (FCA) showing the pulse asymmetry influence.

  5. Precise ablation of dental hard tissues with ultra-short pulsed lasers. Preliminary exploratory investigation on adequate laser parameters.

    PubMed

    Bello-Silva, Marina Stella; Wehner, Martin; Eduardo, Carlos de Paula; Lampert, Friedrich; Poprawe, Reinhart; Hermans, Martin; Esteves-Oliveira, Marcella

    2013-01-01

    This study aimed to evaluate the possibility of introducing ultra-short pulsed lasers (USPL) in restorative dentistry by maintaining the well-known benefits of lasers for caries removal, but also overcoming disadvantages, such as thermal damage of irradiated substrate. USPL ablation of dental hard tissues was investigated in two phases. Phase 1--different wavelengths (355, 532, 1,045, and 1,064 nm), pulse durations (picoseconds and femtoseconds) and irradiation parameters (scanning speed, output power, and pulse repetition rate) were assessed for enamel and dentin. Ablation rate was determined, and the temperature increase measured in real time. Phase 2--the most favorable laser parameters were evaluated to correlate temperature increase to ablation rate and ablation efficiency. The influence of cooling methods (air, air-water spray) on ablation process was further analyzed. All parameters tested provided precise and selective tissue ablation. For all lasers, faster scanning speeds resulted in better interaction and reduced temperature increase. The most adequate results were observed for the 1064-nm ps-laser and the 1045-nm fs-laser. Forced cooling caused moderate changes in temperature increase, but reduced ablation, being considered unnecessary during irradiation with USPL. For dentin, the correlation between temperature increase and ablation efficiency was satisfactory for both pulse durations, while for enamel, the best correlation was observed for fs-laser, independently of the power used. USPL may be suitable for cavity preparation in dentin and enamel, since effective ablation and low temperature increase were observed. If adequate laser parameters are selected, this technique seems to be promising for promoting the laser-assisted, minimally invasive approach.

  6. Analysis of the short-pulsed CO2 laser ablation process for optimizing the processing performance for cutting bony tissue

    NASA Astrophysics Data System (ADS)

    Mehrwald, Markus; Burgner, Jessica; Platzek, Christoph; Feldmann, Claus; Raczkowsky, Jörg; Wörn, Heinz

    2010-02-01

    Recently we established an experimental setup for robot-assisted laser bone ablation using short-pulsed CO2 laser. Due to the comparable low processing speed of laser bone ablation the application in surgical interventions is not yet feasible. In order to optimize this ablation process, we conducted a series of experiments to derive parameters for a discrete process model. After applying single and multiple laser pulses with varying intensity onto bone, the resulting craters were measured using a confocal microscope in 3D. The resulting ablation volumes were evaluated by applying Gaussian function fitting. We then derived a logarithmic function for the depth prediction of laser ablation on bone. In order to increase the ablation performance we conducted experiments using alternate fluids replacing the water spray: pure glycerin, glycerin/water mixture, acids and bases. Because of the higher boiling point of glycerin compared to water we had expected deeper craters through the resulting higher temperatures. Experimental results showed that glycerin or a glycerin/water mix do not have any effect on the depth of the ablation craters. Additionally applying the acid or base on to the ablation site does only show minor benefits compared to water. Furthermore we preheated the chemicals with a low energy pulse prior to the ablation pulse, which also showed no effect. However, applying a longer soaking time of the chemicals induced nearly a doubling of the ablation depth in some cases. Furthermore with this longer soaking time, carbonization at the crater margins does not occur as is observed when using conventionally water spray.

  7. Mechanism and influencing factors on critical pulse width of oil-immersed polymer insulators under short pulses

    SciTech Connect

    Zhao, Liang Li, Rui; Zheng, Lei; Su, Jian Cang; Cheng, Jie; Yu, Bin Xiong; Wu, Xiao Long; Zhang, Xi Bo; Pan, Ya Feng; Zeng, Bo

    2015-04-15

    The critical pulse width (τ{sub c}) is a pulse width at which the surface flashover threshold (E{sub f}) is equal to the bulk breakdown threshold (E{sub BD}) for liquid-polymer composite insulation systems, which is discovered by Zhao et al. [Annual Report Conference on Electrical Insulation and Dielectric Phenomena (IEEE Dielectrics and Electrical Insulation Society, Shenzhen, China, 2013), Vol. 2, pp. 854–857]. In this paper, the mechanism of τ{sub c} is interpreted in perspective of the threshold and the time delay (t{sub d}) of surface flashover and bulk breakdown, respectively. It is found that two changes appear as the pulse width decreases which are responsible for the existence of τ{sub c}: (1) E{sub BD} is lower than E{sub f}; (2) t{sub d} of bulk breakdown is shorter than t{sub d} of surface flashover. In addition, factors which have influences on τ{sub c} are investigated, such as the dielectric type, the insulation length, the dielectric thickness, the dielectrics configuration, the pulse number, and the liquid purity. These influences of factors are generalized as three types if τ{sub c} is expected to increase: (1) factors causing E{sub BD} to decrease, such as increasing the pulse number or employing a dielectric of lower E{sub BD}; (2) factors causing E{sub f} to increase, such as complicating the insulator's configuration or increasing the liquid purity; (3) factors causing E{sub BD} and E{sub f} to increase together, but E{sub f} increases faster than E{sub BD}, such as decreasing the dielectric thickness or the insulation length. With the data in references, all the three cases are verified experimentally. In the end, a general method based on τ{sub c} for solid insulation design is presented and the significance of τ{sub c} on solid insulation design and on solid demolition are discussed.

  8. Analysis of Ar plasma jets induced by single and double dielectric barrier discharges at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Judée, F.; Merbahi, N.; Wattieaux, G.; Yousfi, M.

    2016-09-01

    The aim is the comparison of different plasma parameters of single and double dielectric barrier discharge plasma jet configurations (S-DBD and D-DBD) which are potentially usable in biomedical applications. Both configurations are studied in terms of electric field distribution, electrical discharge characteristics, plasma parameters (estimated by optical emission spectroscopy analysis), and hydrodynamics of the plasma jet for electrical parameters of power supplies corresponding to an applied voltage of 10 kV, pulse duration of 1 μs, frequency of 9.69 kHz, and Ar flow of 2 l/min. We observed that the D-DBD configuration requires half the electrical power one needs to provide in the S-DBD case to generate a plasma jet with similar characteristics: excitation temperature around 4700 K, electron density around 2.5 × 1014 cm-3, gas temperature of about 320 K, a relatively high atomic oxygen concentration reaching up to 1000 ppm, the presence of reactive oxygen and nitrogen species (nitric oxide, hydroxyl radical, and atomic oxygen), and an irradiance in the UV-C range of about 20 μW cm-2. Moreover, it has been observed that D-DBD plasma jet is more sensitive to short pulse durations, probably due to the charge accumulation over the dielectric barrier around the internal electrode. This results in a significantly longer plasma length in the D-DBD configuration than in the S-DBD one up to a critical flow rate (2.25 l/min) before the occurrence of turbulence in the D-DBD case. Conversely, ionization wave velocities are significantly higher in the S-DBD setup (3.35 × 105 m/s against 1.02 × 105 m/s for D-DBD), probably due to the higher electrostatic field close to the high voltage electrode in the S-DBD plasma jet.

  9. Investigation of Vacuum Insulator Surface Dielectric Strength with Nanosecond Pulses

    SciTech Connect

    Nunnally, W C; Krogh, M; Williams, C; Trimble, D; Sampayan, S; Caporaso, G

    2003-06-03

    The maximum vacuum insulator surface dielectric strength determines the acceleration electric field gradient possible in a short pulse accelerator. Previous work has indicated that higher electric field strengths along the insulator-vacuum interface might be obtained as the pulse duration is decreased. In this work, a 250 kV, single ns wide impulse source was applied to small diameter, segmented insulators samples in a vacuum to evaluate the multi-layer surface dielectric strength of the sample construction. Resonances in the low inductance test geometry were used to obtain unipolar, pulsed electric fields in excess of 100 MV/m on the insulator surface. The sample construction, experimental arrangement and experimental results are presented for the initial data in this work. Modeling of the multi-layer structure is discussed and methods of improving insulator surface dielectric strength in a vacuum are proposed.

  10. Dielectric siphons.

    NASA Technical Reports Server (NTRS)

    Jones, T. B.; Perry, M. P.; Melcher, J. R.

    1971-01-01

    The normally weak polarization force density, exerted on insulating dielectric liquids by a nonuniform electric field, is enhanced if high pressures are used. The nonuniform electric field acts as an elastic ?wall' to contain and guide the dielectric fluid. A general theory for these electrohydrodynamic (EHD) conduits has been developed. An illustrative example of the EHD conduits is the dielectric siphon consisting of two U-shaped electrodes held adjacent to each other by insulating nylon screws.

  11. Enhancing caries resistance with a short-pulsed CO2 9.3-μm laser: a laboratory study (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rechmann, Peter; Rechmann, Beate M.; Groves, William H.; Le, Charles; Rapozo-Hilo, Marcia L.; Featherstone, John D. B.

    2016-02-01

    The objective of this laboratory study was to test whether irradiation with a new 9.3µm microsecond short-pulsed CO2-laser enhances enamel caries resistance with and without additional fluoride applications. 101 human enamel samples were divided into 7 groups. Each group was treated with different laser parameters (Carbon-dioxide laser, wavelength 9.3µm, 43Hz pulse-repetition rate, pulse duration between 3μs to 7μs (1.5mJ/pulse to 2.9mJ/pulse). Using a pH-cycling model and cross-sectional microhardness testing determined the mean relative mineral loss delta Z (∆Z) for each group. The pH-cycling was performed with or without additional fluoride. The CO2 9.3μm short-pulsed laser energy rendered enamel caries resistant with and without additional fluoride use.

  12. Study and development of 22 kW peak power fiber coupled short pulse Nd:YAG laser for cleaning applications

    NASA Astrophysics Data System (ADS)

    Choubey, Ambar; Vishwakarma, S. C.; Vachhani, D. M.; Singh, Ravindra; Misra, Pushkar; Jain, R. K.; Arya, R.; Upadhyaya, B. N.; Oak, S. M.

    2014-11-01

    Free running short pulse Nd:YAG laser of microsecond pulse duration and high peak power has a unique capability to ablate material from the surface without heat propagation into the bulk. Applications of short pulse Nd:YAG lasers include cleaning and restoration of marble, stones, and a variety of metals for conservation. A study on the development of high peak power short pulses from Nd:YAG laser along with its cleaning and conservation applications has been performed. A pulse energy of 1.25 J with 55 μs pulse duration and a maximum peak power of 22 kW has been achieved. Laser beam has an M2 value of ~28 and a pulse-to-pulse stability of ±2.5%. A lower value of M2 means a better beam quality of the laser in multimode operation. A top hat spatial profile of the laser beam was achieved at the exit end of 200 μm core diameter optical fiber, which is desirable for uniform cleaning. This laser system has been evaluated for efficient cleaning of surface contaminations on marble, zircaloy, and inconel materials for conservation with cleaning efficiency as high as 98%. Laser's cleaning quality and efficiency have been analysed by using a microscope, a scanning electron microscope (SEM), and X-ray photon spectroscopy (XPS) measurements.

  13. Mechanisms and kinetics of short pulse laser-induced destruction of silver-containing nanoparticles in multicomponent silicate photo-thermo-refractive glass.

    PubMed

    Lumeau, Julien; Glebov, Leonid B

    2014-11-01

    Photo-thermo-refractive (PTR) glass is a photosensitive multi-component silicate glass that is commercially used for the recording of volume holographic elements and finds many applications in advanced laser systems. Refractive index decrement in this glass is observed after UV exposure followed by thermal development. This procedure also causes the appearance of Ag-containing particles that can then be optically bleached by using the second harmonic of a Nd:YAG laser. Despite the broad usage of this method, its mechanisms are still unclear. In this paper, a systematic study of the short pulse laser-induced destruction of Ag-containing particles' kinetics versus incident energy per pulse and dosage is presented. We show that no bleaching of Ag-containing particles occurs for an energy density in laser pulses below 0.1  J/cm2 while above 1  J/cm2, the efficiency of bleaching saturates. Efficiency of bleaching depends on the type of particles to be bleached (Ag, AgBr…). Using a simple model of short pulse laser interaction with nanoparticles embedded in glass, the temperature of the Ag-containing particles reached during the laser interaction is shown to be large enough to produce complete dissipation of these particles which is expected to be the main mechanism of short pulse laser-induced destruction of Ag-containing particles.

  14. Directional spectra of ocean waves from microwave backscatter: A physical optics solution with application to the short-pulse and two-frequency measurement techniques

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.

    1979-01-01

    Two simple microwave radar techniques that are potentially capable of providing routine satellite measurements of the directional spectrum of ocean waves were developed. One technique, the short pulse technique, makes use of very short pulses to resolve ocean surface wave contrast features in the range direction; the other technique, the two frequency correlation technique makes use of coherency in the transmitted waveform to detect the large ocean wave contrast modulation as a beat or mixing frequency in the power backscattered at two closely separated microwave frequencies. A frequency domain analysis of the short pulse and two frequency systems shows that the two measurement systems are essentially duals; they each operate on the generalized (three frequency) fourth-order statistical moment of the surface transfer function in different, but symmetrical ways, and they both measure the same directional contrast modulation spectrum. A three dimensional physical optics solution for the fourth-order moment was obtained for backscatter in the near vertical, specular regime, assuming Gaussian surface statistics.

  15. A treatise on the interaction of molecular systems with short-pulsed highly-intense external fields

    NASA Astrophysics Data System (ADS)

    Paul, Amit K.; Adhikari, Satrajit; Baer, Michael

    2010-11-01

    In this review, we consider two gauges: one, the field-free gauge, is formed by the field-free electronic eigenstates and the other, the field-dressed gauge, is formed by the field-dressed electronic basis set. The field-free gauge is used, of course, in the case of time-independent systems but then it is also the more common one to be used in the case of molecular systems exposed to external fields. This gauge is conceptually simple and therefore numerically friendly - two features which make it versatile for numerical application. The field-dressed gauge is, eventually, more involved but yields deeper insight which might lead to a better understanding of the complicated interaction between a molecular system and external fields. In addition, these features can be exploited to develop efficient and reliable approximations that may save CPU (computer processing unit) time in numerical applications. These two gauges are the main topics of the present review. Once the general derivation of the two gauges is completed, two additional issues are discussed: (i) we extend these gauges to include external fields formed by non-classical photon-state distributions (also known as non-coherent Fock-state distributions). These photon state distributions, recently considered for the first time for molecular systems [A.K. Paul, S. Adhikari, M. Baer, R. Baer, Phys. Rev. A 81 (2010) 013412], are interesting on their own footing. Although here they mainly serve as a vehicle to test the above-mentioned novel approximations, we also devote part of the review to studying the importance of non-coherent Fock states for obtaining an unbiased correct understanding of the interaction of molecular systems with strong, short-pulsed laser fields. For this purpose, we study the photo-dissociation process of H2+ and show (a) that the approximations, recently introduced, diminish the CPU time by about one order of magnitude with minimal loss of accuracy and (b) indeed non-coherent Fock states

  16. Electromagnetic response of buried cylindrical structures for line current excitation

    NASA Astrophysics Data System (ADS)

    Pajewski, Lara; Ponti, Cristina

    2013-04-01

    arbitrary arrangements of cylinders in the soil. As future work, the presented analysis, carried out in the spectral domain, will be extended to a time-domain solution following an approach analogous to the one developed in [6] for pulsed plane-wave excitation. [1] M. Di Vico, F. Frezza, L. Pajewski, and G. Schettini, "Scattering by a Finite Set of Perfectly Conducting Cylinders Buried in a Dielectric Half-Space: a Spectral-Domain Solution," IEEE Transactions Antennas and Propagation, vol. 53(2), 719-727, 2005. [2] M. Di Vico, F. Frezza, L. Pajewski, and G. Schettini, "Scattering by Buried Dielectric Cylindrical Structures," Radio Science, vol. 40(6), RS6S18, 2005. [3] F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, "Scattering by Perfectly-Conducting Cylinders Buried in a Dielectric Slab through the Cylindrical Wave Approach," IEEE Transactions Antennas and Propagation, vol. 57(4), 1208-1217, 2009. [4] F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, "Accurate Wire-Grid Modeling of Buried Conducting Cylindrical Scatterers," Nondestructive Testing and Evaluation (Special Issue on "Civil Engineering Applications of Ground Penetrating Radar"), vol. 27(3), pp. 199-207, 2012. [5] F. Frezza, L. Pajewski, C. Ponti, G. Schettini, and N. Tedeschi, "Electromagnetic Scattering by a Metallic Cylinder Buried in a Lossy Medium with the Cylindrical Wave Approach," IEEE Geoscience and Remote Sensing Letters, vol. 10(1), pp. 179-183, 2013. [6] F. Frezza, P. Martinelli, L. Pajewski, and G. Schettini, "Short-Pulse Electromagnetic Scattering from Buried Perfectly-Conducting Cylinders," IEEE Geoscience and Remote Sensing Letters, vol. 4(4), pp. 611-615, 2007.

  17. Fast-ion radial diffusivity evaluated from vertical neutral particle measurements following short pulse beam injection into a TFTR ohmic plasma

    SciTech Connect

    Kusama, Y. . Naka Fusion Research Establishment); Heidbrink, W.W. ); Barnes, C.W. ); Beer, M.; Hammett, G.W.; McCune, D.C.; Medley, S.S.; Scott, S.D.; Zarnstorff, M.C. . Plasma Physics Lab.)

    1992-01-01

    The radial diffusivity of fast ions was evaluated from vertical neutral particle measurements in experiments where a short pulse of neutral deuterium beams was injected into a TFTR ohmic deuterium plasma. A comparison between the temporal evolution of the measured neutral particle flux and theoretical calculations showed that the spatially-averaged diffusion coefficient of fast ions is {le} 0.1 m{sup 2}/sec. This value is approximately an order of magnitude less than the diffusion coefficient for thermal ions and is consistent with results obtained previously on TFTR from other diagnostics.

  18. Optical design of the short pulse x-ray imaging and microscopy time-angle correlated diffraction beamline at the Advanced Photon Source

    SciTech Connect

    Reininger, R.; Dufresne, E. M.; Borland, M.; Beno, M. A.; Young, L.; Kim, K.-J.; Evans, P. G.

    2013-05-15

    The short pulse x-ray imaging and microscopy beamline is one of the two x-ray beamlines that will take full advantage of the short pulse x-ray source in the Advanced Photon Source (APS) upgrade. A horizontally diffracting double crystal monochromator which includes a sagittally focusing second crystal will collect most of the photons generated when the chirped electron beam traverses the undulator. A Kirkpatrick-Baez mirror system after the monochromator will deliver to the sample a beam which has an approximately linear correlation between time and vertical beam angle. The correlation at the sample position has a slope of 0.052 ps/{mu}rad extending over an angular range of 800 {mu}rad for a cavity deflection voltage of 2 MV. The expected time resolution of the whole system is 2.6 ps. The total flux expected at the sample position at 10 keV with a 0.9 eV energy resolution is 5.7 Multiplication-Sign 10{sup 12} photons/s at a spot having horizontal and vertical full width at half maximum of 33 {mu}m horizontal by 14 {mu}m vertical. This new beamline will enable novel time-dispersed diffraction experiments on small samples using the full repetition rate of the APS.

  19. Dynamics of shock waves and cavitation bubbles in bilinear elastic-plastic media, and the implications to short-pulsed laser surgery

    NASA Astrophysics Data System (ADS)

    Brujan, E.-A.

    2005-01-01

    The dynamics of shock waves and cavitation bubbles generated by short laser pulses in water and elastic-plastic media were investigated theoretically in order to get a better understanding of their role in short-pulsed laser surgery. Numerical simulations were performed using a spherical model of bubble dynamics which include the elastic-plastic behaviour of the medium surrounding the bubble, compressibility, viscosity, density and surface tension. Breakdown in water produces a monopolar acoustic signal characterized by a compressive wave. Breakdown in an elastic-plastic medium produces a bipolar acoustic signal, with a leading positive compression wave and a trailing negative tensile wave. The calculations revealed that consideration of the tissue elasticity is essential to describe the bipolar shape of the shock wave emitted during optical breakdown. The elastic-plastic response of the medium surrounding the bubble leads to a significant decrease of the maximum size of the cavitation bubble and pressure amplitude of the shock wave emitted during bubble collapse, and shortening of the oscillation period of the bubble. The results are discussed with respect to collateral damage in short-pulsed laser surgery.

  20. Dynamical interferences to probe short-pulse photoassociation of Rb atoms and stabilization of Rb{sub 2} dimers

    SciTech Connect

    Mur-Petit, Jordi; Luc-Koenig, Eliane; Masnou-Seeuws, Francoise

    2007-06-15

    We analyze the formation of Rb{sub 2} molecules with short photoassociation pulses applied to a cold {sup 85}Rb sample. A pump laser pulse couples a continuum level of the ground electronic state X {sup 1}{sigma}{sub g}{sup +} with bound levels in the 0{sub u}{sup +}(5S+5P{sub 1/2}) and 0{sub u}{sup +}(5S+5P{sub 3/2}) vibrational series. The nonadiabatic coupling between the two excited channels induces time-dependent beatings in the populations. We propose to take advantage of these oscillations to design further laser pulses that probe the photoassociation process via photoionization or that optimize the stabilization in deep levels of the ground state.

  1. A short pulse (7 μs FWHM) and high repetition rate (dc-5kHz) cantilever piezovalve for pulsed atomic and molecular beams

    NASA Astrophysics Data System (ADS)

    Irimia, Daniel; Dobrikov, Dimitar; Kortekaas, Rob; Voet, Han; van den Ende, Daan A.; Groen, Wilhelm A.; Janssen, Maurice H. M.

    2009-11-01

    In this paper we report on the design and operation of a novel piezovalve for the production of short pulsed atomic or molecular beams. The high speed valve operates on the principle of a cantilever piezo. The only moving part, besides the cantilever piezo itself, is a very small O-ring that forms the vacuum seal. The valve can operate continuous (dc) and in pulsed mode with the same drive electronics. Pulsed operation has been tested at repetition frequencies up to 5 kHz. The static deflection of the cantilever, as mounted in the valve body, was measured as a function of driving field strength with a confocal microscope. The deflection and high speed dynamical response of the cantilever can be easily changed and optimized for a particular nozzle diameter or repetition rate by a simple adjustment of the free cantilever length. Pulsed molecular beams with a full width at half maximum pulse width as low as 7 μs have been measured at a position 10 cm downstream of the nozzle exit. This represents a gas pulse with a length of only 10 mm making it well matched to for instance experiments using laser beams. Such a short pulse with 6 bar backing pressure behind a 150 μm nozzle releases about 1016 particles/pulse and the beam brightness was estimated to be 4×1022 particles/(s str). The short pulses of the cantilever piezovalve result in a much reduced gas load in the vacuum system. We demonstrate operation of the pulsed valve with skimmer in a single vacuum chamber pumped by a 520 l/s turbomolecular pump maintaining a pressure of 5×10-6 Torr, which is an excellent vacuum to have the strong and cold skimmed molecular beam interact with laser beams only 10 cm downstream of the nozzle to do velocity map slice imaging with a microchannel-plate imaging detector in a single chamber. The piezovalve produces cold and narrow (Δv /v=2%-3%) velocity distributions of molecules seeded in helium or neon at modest backing pressures of only 6 bar. The low gas load of the cantilever

  2. A short pulse (7 {mu}s FWHM) and high repetition rate (dc-5kHz) cantilever piezovalve for pulsed atomic and molecular beams

    SciTech Connect

    Irimia, Daniel; Dobrikov, Dimitar; Kortekaas, Rob; Voet, Han; Janssen, Maurice H. M.; Ende, Daan A. van den; Groen, Wilhelm A.

    2009-11-15

    In this paper we report on the design and operation of a novel piezovalve for the production of short pulsed atomic or molecular beams. The high speed valve operates on the principle of a cantilever piezo. The only moving part, besides the cantilever piezo itself, is a very small O-ring that forms the vacuum seal. The valve can operate continuous (dc) and in pulsed mode with the same drive electronics. Pulsed operation has been tested at repetition frequencies up to 5 kHz. The static deflection of the cantilever, as mounted in the valve body, was measured as a function of driving field strength with a confocal microscope. The deflection and high speed dynamical response of the cantilever can be easily changed and optimized for a particular nozzle diameter or repetition rate by a simple adjustment of the free cantilever length. Pulsed molecular beams with a full width at half maximum pulse width as low as 7 {mu}s have been measured at a position 10 cm downstream of the nozzle exit. This represents a gas pulse with a length of only 10 mm making it well matched to for instance experiments using laser beams. Such a short pulse with 6 bar backing pressure behind a 150 {mu}m nozzle releases about 10{sup 16} particles/pulse and the beam brightness was estimated to be 4x10{sup 22} particles/(s str). The short pulses of the cantilever piezovalve result in a much reduced gas load in the vacuum system. We demonstrate operation of the pulsed valve with skimmer in a single vacuum chamber pumped by a 520 l/s turbomolecular pump maintaining a pressure of 5x10{sup -6} Torr, which is an excellent vacuum to have the strong and cold skimmed molecular beam interact with laser beams only 10 cm downstream of the nozzle to do velocity map slice imaging with a microchannel-plate imaging detector in a single chamber. The piezovalve produces cold and narrow ({Delta}v/v=2%-3%) velocity distributions of molecules seeded in helium or neon at modest backing pressures of only 6 bar. The low gas

  3. A short pulse (7 micros FWHM) and high repetition rate (dc-5 kHz) cantilever piezovalve for pulsed atomic and molecular beams.

    PubMed

    Irimia, Daniel; Dobrikov, Dimitar; Kortekaas, Rob; Voet, Han; van den Ende, Daan A; Groen, Wilhelm A; Janssen, Maurice H M

    2009-11-01

    In this paper we report on the design and operation of a novel piezovalve for the production of short pulsed atomic or molecular beams. The high speed valve operates on the principle of a cantilever piezo. The only moving part, besides the cantilever piezo itself, is a very small O-ring that forms the vacuum seal. The valve can operate continuous (dc) and in pulsed mode with the same drive electronics. Pulsed operation has been tested at repetition frequencies up to 5 kHz. The static deflection of the cantilever, as mounted in the valve body, was measured as a function of driving field strength with a confocal microscope. The deflection and high speed dynamical response of the cantilever can be easily changed and optimized for a particular nozzle diameter or repetition rate by a simple adjustment of the free cantilever length. Pulsed molecular beams with a full width at half maximum pulse width as low as 7 micros have been measured at a position 10 cm downstream of the nozzle exit. This represents a gas pulse with a length of only 10 mm making it well matched to for instance experiments using laser beams. Such a short pulse with 6 bar backing pressure behind a 150 microm nozzle releases about 10(16) particles/pulse and the beam brightness was estimated to be 4x10(22) particles/(s str). The short pulses of the cantilever piezovalve result in a much reduced gas load in the vacuum system. We demonstrate operation of the pulsed valve with skimmer in a single vacuum chamber pumped by a 520 l/s turbomolecular pump maintaining a pressure of 5x10(-6) Torr, which is an excellent vacuum to have the strong and cold skimmed molecular beam interact with laser beams only 10 cm downstream of the nozzle to do velocity map slice imaging with a microchannel-plate imaging detector in a single chamber. The piezovalve produces cold and narrow (Delta v/v=2%-3%) velocity distributions of molecules seeded in helium or neon at modest backing pressures of only 6 bar. The low gas load of the

  4. All-dielectric metamaterials.

    PubMed

    Jahani, Saman; Jacob, Zubin

    2016-01-01

    The ideal material for nanophotonic applications will have a large refractive index at optical frequencies, respond to both the electric and magnetic fields of light, support large optical chirality and anisotropy, confine and guide light at the nanoscale, and be able to modify the phase and amplitude of incoming radiation in a fraction of a wavelength. Artificial electromagnetic media, or metamaterials, based on metallic or polar dielectric nanostructures can provide many of these properties by coupling light to free electrons (plasmons) or phonons (phonon polaritons), respectively, but at the inevitable cost of significant energy dissipation and reduced device efficiency. Recently, however, there has been a shift in the approach to nanophotonics. Low-loss electromagnetic responses covering all four quadrants of possible permittivities and permeabilities have been achieved using completely transparent and high-refractive-index dielectric building blocks. Moreover, an emerging class of all-dielectric metamaterials consisting of anisotropic crystals has been shown to support large refractive index contrast between orthogonal polarizations of light. These advances have revived the exciting prospect of integrating exotic electromagnetic effects in practical photonic devices, to achieve, for example, ultrathin and efficient optical elements, and realize the long-standing goal of subdiffraction confinement and guiding of light without metals. In this Review, we present a broad outline of the whole range of electromagnetic effects observed using all-dielectric metamaterials: high-refractive-index nanoresonators, metasurfaces, zero-index metamaterials and anisotropic metamaterials. Finally, we discuss current challenges and future goals for the field at the intersection with quantum, thermal and silicon photonics, as well as biomimetic metasurfaces.

  5. All-dielectric metamaterials

    NASA Astrophysics Data System (ADS)

    Jahani, Saman; Jacob, Zubin

    2016-01-01

    The ideal material for nanophotonic applications will have a large refractive index at optical frequencies, respond to both the electric and magnetic fields of light, support large optical chirality and anisotropy, confine and guide light at the nanoscale, and be able to modify the phase and amplitude of incoming radiation in a fraction of a wavelength. Artificial electromagnetic media, or metamaterials, based on metallic or polar dielectric nanostructures can provide many of these properties by coupling light to free electrons (plasmons) or phonons (phonon polaritons), respectively, but at the inevitable cost of significant energy dissipation and reduced device efficiency. Recently, however, there has been a shift in the approach to nanophotonics. Low-loss electromagnetic responses covering all four quadrants of possible permittivities and permeabilities have been achieved using completely transparent and high-refractive-index dielectric building blocks. Moreover, an emerging class of all-dielectric metamaterials consisting of anisotropic crystals has been shown to support large refractive index contrast between orthogonal polarizations of light. These advances have revived the exciting prospect of integrating exotic electromagnetic effects in practical photonic devices, to achieve, for example, ultrathin and efficient optical elements, and realize the long-standing goal of subdiffraction confinement and guiding of light without metals. In this Review, we present a broad outline of the whole range of electromagnetic effects observed using all-dielectric metamaterials: high-refractive-index nanoresonators, metasurfaces, zero-index metamaterials and anisotropic metamaterials. Finally, we discuss current challenges and future goals for the field at the intersection with quantum, thermal and silicon photonics, as well as biomimetic metasurfaces.

  6. All-dielectric metamaterials.

    PubMed

    Jahani, Saman; Jacob, Zubin

    2016-01-01

    The ideal material for nanophotonic applications will have a large refractive index at optical frequencies, respond to both the electric and magnetic fields of light, support large optical chirality and anisotropy, confine and guide light at the nanoscale, and be able to modify the phase and amplitude of incoming radiation in a fraction of a wavelength. Artificial electromagnetic media, or metamaterials, based on metallic or polar dielectric nanostructures can provide many of these properties by coupling light to free electrons (plasmons) or phonons (phonon polaritons), respectively, but at the inevitable cost of significant energy dissipation and reduced device efficiency. Recently, however, there has been a shift in the approach to nanophotonics. Low-loss electromagnetic responses covering all four quadrants of possible permittivities and permeabilities have been achieved using completely transparent and high-refractive-index dielectric building blocks. Moreover, an emerging class of all-dielectric metamaterials consisting of anisotropic crystals has been shown to support large refractive index contrast between orthogonal polarizations of light. These advances have revived the exciting prospect of integrating exotic electromagnetic effects in practical photonic devices, to achieve, for example, ultrathin and efficient optical elements, and realize the long-standing goal of subdiffraction confinement and guiding of light without metals. In this Review, we present a broad outline of the whole range of electromagnetic effects observed using all-dielectric metamaterials: high-refractive-index nanoresonators, metasurfaces, zero-index metamaterials and anisotropic metamaterials. Finally, we discuss current challenges and future goals for the field at the intersection with quantum, thermal and silicon photonics, as well as biomimetic metasurfaces. PMID:26740041

  7. Dynamics of a one-dimensional model and a three-dimensional hydrogen atom in an intense high-frequency short-pulse laser

    SciTech Connect

    Tang, X. ); Basile, S. di Fisica Teorica dell'Universita, Casello Postale 50, 98166 Sant'Agata di Messina, Messina, Italy )

    1991-08-01

    We present nonperturbative calculations of ionizing and trapping probabilities for a one-dimensional model and a three-dimensional hydrogen atom in an intense high-frequency Gaussian-pulsed laser field. Investigating the dynamics of the ionization process (for one- and two-photon ionization), we find that only for extremely short pulses, especially for hydrogen, does the system have a significant probability of surviving at the end of the pulse, leading to the phenomenon of atomic stabilization with respect to ionization. We also find that a one-dimensional model has a higher survival probability at the end of a Gaussian pulse, as compared to the three-dimensional hydrogen atom.

  8. Diode-pumped short pulse passively Q-switched 912 nm Nd:GdVO4/Cr:YAG laser at high repetition rate operation

    NASA Astrophysics Data System (ADS)

    Chen, F.; Yu, X.; Wang, C.; Yan, R. P.; Li, X. D.; Gao, J.; Zhang, Z. H.; Yu, J. H.

    2010-06-01

    A diode-end-pumped passively Q-switched 912 nm Nd:GdVO4/Cr:YAG laser is demonstrated for the first time. In a concave-piano cavity, pulsed 912 nm laser performance is investigated using two kinds of Cr:YAG crystal with different unsaturated transmission ( T U) of 95% and 90% at 912 nm as the saturable absorbers. When the T U = 90% Cr:YAG is used, as much as 2.6 W average output power for short pulsed 912 nm laser is achieved at an absorbed pump power of 34.0 W, corresponding to an optical efficiency of 7.6% and a slope efficiency of 20.3%. Moreover, 10.5 ns duration pulses and up to 2.3 kW peak power is obtained at the repetition rate around 81.6 kHz.

  9. Kinetic study on non-thermal volumetric plasma decay in the early afterglow of air discharge generated by a short pulse microwave or laser

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Zhou, Qianhong; Dong, Zhiwei

    2016-08-01

    This paper reports a kinetic study on non-thermal plasma decay in the early afterglow of air discharge generated by short pulse microwave or laser. A global self-consistent model is based on the particle balance of complex plasma chemistry, electron energy equation, and gas thermal balance equation. Electron-ion Coulomb collision is included in the steady state Boltzmann equation solver to accurately describe the electron mobility and other transport coefficients. The model is used to simulate the afterglow of microsecond to nanosecond pulse microwave discharge in N2, O2, and air, as well as femtosecond laser filament discharge in dry and humid air. The simulated results for electron density decay are in quantitative agreement with the available measured ones. The evolution of plasma decay under an external electric field is also investigated, and the effect of gas heating is considered. The underlying mechanism of plasma density decay is unveiled through the above kinetic modeling.

  10. Effect of pulse slippage on density transition-based resonant third-harmonic generation of short-pulse laser in plasma

    NASA Astrophysics Data System (ADS)

    Thakur, Vishal; Kant, Niti

    2016-08-01

    The resonant third-harmonic generation of a self-focusing laser in plasma with a density transition was investigated. Because of self-focusing of the fundamental laser pulse, a transverse intensity gradient was created, which generated a plasma wave at the fundamental wave frequency. Phase matching was satisfied by using a Wiggler magnetic field, which provided additional angular momentum to the third-harmonic photon to make the process resonant. An enhancement was observed in the resonant third-harmonic generation of an intense short-pulse laser in plasma embedded with a magnetic Wiggler with a density transition. A plasma density ramp played an important role in the self-focusing, enhancing the third-harmonic generation in plasma. We also examined the effect of the Wiggler magnetic field on the pulse slippage of the third-harmonic pulse in plasma. The pulse slippage was due to the group-velocity mismatch between the fundamental and third-harmonic pulses.

  11. Ultra-short pulse generation in the hybridly mode-locked erbium-doped all-fiber ring laser with a distributed polarizer

    NASA Astrophysics Data System (ADS)

    Krylov, Alexander A.; Sazonkin, Stanislav G.; Lazarev, Vladimir A.; Dvoretskiy, Dmitriy A.; Leonov, Stanislav O.; Pnev, Alexey B.; Karasik, Valeriy E.; Grebenyukov, Vyacheslav V.; Pozharov, Anatoly S.; Obraztsova, Elena D.; Dianov, Evgeny M.

    2015-06-01

    We report for the first time to the best of our knowledge on the ultra-short pulse (USP) generation in the dispersion-managed erbium-doped all-fiber ring laser hybridly mode-locked with boron nitride-doped single-walled carbon nanotubes in the co-action with a nonlinear polarization evolution in the ring cavity with a distributed polarizer. Stable 92.6 fs dechirped pulses were obtained via precise polarization state adjustment at a central wavelength of 1560 nm with 11.2 mW average output power, corresponding to the 2.9 kW maximum peak power. We have also observed the laser switching from a USP generation regime to a chirped pulse one with a corresponding pulse-width of 7.1 ps at the same intracavity dispersion.

  12. Spatially and Temporally Resolved Atomic Oxygen Measurements in Short Pulse Discharges by Two Photon Laser Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Lempert, Walter; Uddi, Mruthunjaya; Mintusov, Eugene; Jiang, Naibo; Adamovich, Igor

    2007-10-01

    Two Photon Laser Induced Fluorescence (TALIF) is used to measure time-dependent absolute oxygen atom concentrations in O2/He, O2/N2, and CH4/air plasmas produced with a 20 nanosecond duration, 20 kV pulsed discharge at 10 Hz repetition rate. Xenon calibrated spectra show that a single discharge pulse creates initial oxygen dissociation fraction of ˜0.0005 for air like mixtures at 40-60 torr total pressure. Peak O atom concentration is a factor of approximately two lower in fuel lean (φ=0.5) methane/air mixtures. In helium buffer, the initially formed atomic oxygen decays monotonically, with decay time consistent with formation of ozone. In all nitrogen containing mixtures, atomic oxygen concentrations are found to initially increase, for time scales on the order of 10-100 microseconds, due presumably to additional O2 dissociation caused by collisions with electronically excited nitrogen. Further evidence of the role of metastable N2 is demonstrated from time-dependent N2 2^nd Positive and NO Gamma band emission spectroscopy. Comparisons with modeling predictions show qualitative, but not quantitative, agreement with the experimental data.

  13. Hard-tissue drilling by short-pulse CO2 laser with controllable pulse-tail energy

    NASA Astrophysics Data System (ADS)

    Uno, Kazuyuki; Sasaki, Tatsufumi; Yamamoto, Takuya; Akitsu, Tetsuya; Jitsuno, Takahisa

    2016-02-01

    We developed a longitudinally excited CO2 laser that produces a short laser pulse with the almost same spike-pulse energy of about 0.8 mJ and the controllable pulse-tail energy of 0-21.26 mJ. The laser was very simple and consisted of a 45-cm-long alumina ceramic pipe with an inner diameter of 9 mm, a pulse power supply, a step-up transformer, a storage capacitance and a spark-gap switch. In single-shot irradiation using these laser pulses, the dependence of the drilling depth of dry ivory samples on the fluence was investigated. The drilling depth increased with the fluence in the same laser pulse waveform. In this work, the effective short laser pulse for the hard tissue drilling was the laser pulse with the spike pulse energy of 0.87 mJ and the pulse tail energy of 6.33 mJ that produced the drilling depth of 28.1 μm at the fluence of 3.48 J/cm2 and the drilling depth per the fluence of 7.27 μm/J/cm2.

  14. Dielectric ridge waveguide gas laser apparatus

    SciTech Connect

    DeMaria, A.J.; Bridges, W.

    1989-03-14

    A dielectric ridged waveguide flowing gas laser apparatus is described, comprising in combination; a dielectric substrate having a predetermined number of the grooves formed theron, the grooves extending along the longitudinal axis of the dielectric substrate, an electrically conductive member in parallel alignment with the grooved side of the dielectric substrate such that an air gasp is formed therebetween the air gap containing an active laser gas medium, electrically conductive strips disposed on the outside of the dielectric substrate forming electrodes, the conductive strips being aligned with the grooves and having the same length and width as the grooves, and an excitation source connected between the conductive member and the conductive strips, to provide lasing in the ridged waveguide.

  15. Parametric generation of energetic short mid-infrared pulses for dielectric laser acceleration

    NASA Astrophysics Data System (ADS)

    Wandel, S.; Xu, G.; Yin, Y.; Jovanovic, I.

    2014-12-01

    Laser-driven high-gradient electron acceleration in dielectric photonic structures is an enabling technology for compact and robust sources of tunable monochromatic x-rays. Such advanced x-ray sources are sought in medical imaging, security, industrial, and scientific applications. The use of long-wavelength pulses can mitigate the problem of laser-induced breakdown in dielectric structures at high optical intensities, relax the structure fabrication requirements, and allow greater pulse energy to be injected into the structure. We report on the design and construction of a simple and robust, short-pulse parametric source operating at a center wavelength 5 μm, to be used as a pump for a dielectric photonic structure for laser-driven acceleration. The source is based on a two-stage parametric downconversion design, consisting of a β-BaB2O4-based 2.05 μm optical parametric amplifier (OPA) and a ZnGeP2-based 5 μm OPA. The 2.05 μm OPA is presently pumped by a standard Ti:sapphire chirped-pulse amplified laser, which will be replaced with direct laser pumping at wavelengths \\gt 2 μ m in the future. The design and performance of the constructed short-pulse mid-infrared source are described. The demonstrated architecture is also of interest for use in other applications, such as high harmonic generation and attosecond pulse production.

  16. The Dielectric Wall Accelerator

    SciTech Connect

    Caporaso, George J.; Chen, Yu-Jiuan; Sampayan, Stephen E.

    2009-01-01

    The Dielectric Wall Accelerator (DWA), a class of induction accelerators, employs a novel insulating beam tube to impress a longitudinal electric field on a bunch of charged particles. The surface flashover characteristics of this tube may permit the attainment of accelerating gradients on the order of 100 MV/m for accelerating pulses on the order of a nanosecond in duration. A virtual traveling wave of excitation along the tube is produced at any desired speed by controlling the timing of pulse generating modules that supply a tangential electric field to the tube wall. Because of the ability to control the speed of this virtual wave, the accelerator is capable of handling any charge to mass ratio particle; hence it can be used for electrons, protons and any ion. The accelerator architectures, key technologies and development challenges will be described.

  17. Thin-ribbon tapered coupler for dielectric waveguides

    NASA Technical Reports Server (NTRS)

    Yeh, C.; Otoshi, T. Y.; Shimabukuro, F. I.

    1994-01-01

    A recent discovery shows that a high-dielectric constant, low-loss, solid material can be made into a ribbon-like waveguide structure to yield an attenuation constant of less than 0.02 dB/m for single-mode guidance of millimeter/submillimeter waves. One of the crucial components that must be invented in order to guarantee the low-loss utilization of this dielectric-waveguide guiding system is the excitation coupler. The traditional tapered-to-a-point coupler for a dielectric rod waveguide fails when the dielectric constant of the dielectric waveguide is large. This article presents a new way to design a low-loss coupler for a high- or low-dielectric constant dielectric waveguide for millimeter or submillimeter waves.

  18. Dielectric metasurfaces

    NASA Astrophysics Data System (ADS)

    Valentine, Jason

    While plasmonics metasurfaces have seen much development over the past several years, they still face throughput limitations due to ohmic losses. On the other hand, dielectric resonators and associated metasurfaces can eliminate the issue of ohmic loss while still providing the freedom to engineer the optical properties of the composite. In this talk, I will present our recent efforts to harness this freedom using metasurfaces formed from silicon and fabricated using CMOS-compatible techniques. Operating in the telecommunications band, I will discuss how we have used this platform to realize a number of novel functionalities including wavefront control, near-perfect reflection, and high quality factor resonances. In many cases the optical performance of these silicon-based metasurfaces can surpass their plasmonic counterparts. Furthermore, for some cases the surfaces are more amenable to large-area fabrication techniques.

  19. The Influence of High-Power Ion Beams and High-Intensity Short-Pulse Implantation of Ions on the Properties of Ceramic Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Kabyshev, A. V.; Konusov, F. V.; Pavlov, S. K.; Remnev, G. E.

    2016-02-01

    The paper is focused on the study of the structural, electrical and optical characteristics of the ceramic silicon carbide before and after irradiation in the regimes of the high-power ion beams (HPIB) and high-intensity short-pulse implantation (HISPI) of carbon ions. The dominant mechanism of transport of charge carriers, their type and the energy spectrum of localized states (LS) of defects determining the properties of SiC were established. Electrical and optical characteristics of ceramic before and after irradiation are determined by the biographical and radiation defects whose band gap (BG) energy levels have a continuous energetic distribution. A dominant p-type activation component of conduction with participation of shallow acceptor levels 0.05-0.16 eV is complemented by hopping mechanism of conduction involving the defects LS with a density of 1.2T017-2.4T018 eV-Am-3 distributed near the Fermi level.The effect of radiation defects with deep levels in the BG on properties change dominates after HISPI. A new material with the changed electronic structure and properties is formed in the near surface layer of SiC after the impact of the HPIB.

  20. High-resolution measurements of the spatial and temporal evolution of megagauss magnetic fields created in intense short-pulse laser-plasma interactions

    SciTech Connect

    Chatterjee, Gourab Singh, Prashant Kumar; Adak, Amitava; Lad, Amit D.; Kumar, G. Ravindra

    2014-01-15

    A pump-probe polarimetric technique is demonstrated, which provides a complete, temporally and spatially resolved mapping of the megagauss magnetic fields generated in intense short-pulse laser-plasma interactions. A normally incident time-delayed probe pulse reflected from its critical surface undergoes a change in its ellipticity according to the magneto-optic Cotton-Mouton effect due to the azimuthal nature of the ambient self-generated megagauss magnetic fields. The temporal resolution of the magnetic field mapping is typically of the order of the pulsewidth, limited by the laser intensity contrast, whereas a spatial resolution of a few μm is achieved by this optical technique. High-harmonics of the probe can be employed to penetrate deeper into the plasma to even near-solid densities. The spatial and temporal evolution of the megagauss magnetic fields at the target front as well as at the target rear are presented. The μm-scale resolution of the magnetic field mapping provides valuable information on the filamentary instabilities at the target front, whereas probing the target rear mirrors the highly complex fast electron transport in intense laser-plasma interactions.

  1. Free-electron laser at the TESLA Test Facility at DESY: toward a tunable short-pulsed soft x-ray source

    NASA Astrophysics Data System (ADS)

    Gerth, Christopher

    2001-12-01

    A high peak current, low emittance, short pulse electron beam can produce intense, laser-like radiation in a single pass through a long periodic magnetic structure. The construction of such free-electron lasers (FELs) based on self-amplified spontaneous emission (SASE) has become feasible by recent advances in accelerator technologies. Since SASE FELs do not require any optical components they are promising sources for the generation of intense, sub- picosecond laser pulses which are continuously tunable over a wide wavelength range in the vacuum ultraviolet (VUV) and X-ray region. In the first phase of the VUV-FEL (phase I) at the TESLA Test Facility at DESY, SASE was achieved for the first time in the VUV at wavelengths between 80 and 180 nm. The concept of the VUV FEL at DESY and first experimental results are presented. The second phase of the TESLA Test Facility (phase II), which includes an increase of the electron beam energy to 1 GeV, aims at the construction of a SASE FEL operating in the soft X-ray region. An overview of the current status and the activities toward a soft X-ray FEL user facility is given.

  2. High gradient insulator technology for the dielectric wall accelerator

    SciTech Connect

    Sampayan, S.; Caporaso, G.; Carder, B.

    1995-04-27

    Insulators composed of finely spaced alternating layers of dielectric and metal are thought to minimize secondary emission avalanche (SEA) growth. Most data to date was taken with small samples (order 10 cm{sup 2} area) in the absence of an ion or electron beam. The authors have begun long pulse (>1 {mu}s) high voltage testing of small hard seal samples. Further, they have performed short pulse (20 ns) high voltage testing of moderate scale bonded samples (order 100 cm{sup 2} area) in the presence of a 1 kA electron beam. Results thus far indicate a 1.0 to 4.0 increase in the breakdown electric field stress is possible with this technology.

  3. Ultra-short pulse generator

    DOEpatents

    McEwan, Thomas E.

    1993-01-01

    An inexpensive pulse generating circuit is disclosed that generates ultra-short, 200 picosecond, and high voltage 100 kW, pulses suitable for wideband radar and other wideband applications. The circuit implements a nonlinear transmission line with series inductors and variable capacitors coupled to ground made from reverse biased diodes to sharpen and increase the amplitude of a high-voltage power MOSFET driver input pulse until it causes non-destructive transit time breakdown in a final avalanche shockwave diode, which increases and sharpens the pulse even more.

  4. Ultra-short pulse generator

    DOEpatents

    McEwan, T.E.

    1993-12-28

    An inexpensive pulse generating circuit is disclosed that generates ultra-short, 200 picosecond, and high voltage 100 kW, pulses suitable for wideband radar and other wideband applications. The circuit implements a nonlinear transmission line with series inductors and variable capacitors coupled to ground made from reverse biased diodes to sharpen and increase the amplitude of a high-voltage power MOSFET driver input pulse until it causes non-destructive transit time breakdown in a final avalanche shock wave diode, which increases and sharpens the pulse even more. 5 figures.

  5. Investigations of the concept of a multibunch dielectric wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Onishchenko, I. N.; Kiselev, V. A.; Linnik, A. F.; Pristupa, V. I.; Sotnikov, G. V.

    2016-09-01

    Theoretical and experimental investigations of the physical principles of multibunch dielectric wakefield accelerator concept based on the wakefield excitation in the dielectric structure by a sequence of relativistic electron bunches are presented. The purpose of the concept is to enhance the wakefield intensity by means of the multibunch coherent excitation and wakefield accumulation in a resonator. The acceleration of bunches is achieved at detuning of bunch repetition frequency relative to the frequency of the excited wakefield. In such a way the sequence of bunches is divided into exciting and accelerated parts due to displacing bunches into accelerating phases of wakefield excited by a previous part of bunches of the same sequence. Besides the change of the permittivity and loss tangent of dielectrics under the irradiation by 100 MeV electron beam is studied.

  6. Cryogenic exciter

    SciTech Connect

    Bray, James William; Garces, Luis Jose

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  7. Ultra-High Gradient Dielectric Wakefield Accelerator Experiments

    SciTech Connect

    Thompson, M C; Badakov, H; Rosenzweig, J B; Travish, G; Hogan, M; Ischebeck, R; Kirby, N; Siemann, R; Walz, D; Muggli, P; Scott, A; Yoder, R

    2006-08-04

    Ultra-high gradient dielectric wakefield accelerators are a potential option for a linear collider afterburner since they are immune to the ion collapse and electron/positron asymmetry problems implicit in a plasma based afterburner. The first phase of an experiment to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range has been completed. The experiment took advantage of the unique SLAC FFTB electron beam and its ultra-short pulse lengths and high currents (e.g., {sigma}{sub z} = 20 {micro}m at Q = 3 nC). The FFTB electron beam was successfully focused down and sent through short lengths of fused silica capillary tubing (ID = 200 {micro}m/OD = 325 {micro}m). The pulse length of the electron beam was varied to produce a range of electric fields between 2 and 20 GV/m at the inner surface of the dielectric tubes. We observed a sharp increase in optical emissions from the capillaries in the middle part of this surface field range which we believe indicates the transition between sustainable field levels and breakdown. If this initial interpretation is correct, the surfaced fields that were sustained equate to on axis accelerating field of several GV/m. In future experiments being developed for the SLAC SABER and BNL ATF we plan to use the coherent Cerenkov radiation emitted from the capillary tube as a field strength diagnostic and demonstrate GV/m range particle energy gain.

  8. Ultra-High Gradient Dielectric Wakefield Accelerator Experiments

    SciTech Connect

    Thompson, M.C.; Badakov, H.; Rosenzweig, J.B.; Travish, G.; Hogan, M.; Ischebeck, R.; Kirby, N.; Siemann, R.; Walz, D.; Muggli, P.; Scott, A.; Yoder, R.; /LLNL, Livermore /UCLA /SLAC /Southern California U. /UC, Santa Barbara /Manhattan Coll., Riverdale

    2007-03-27

    Ultra-high gradient dielectric wakefield accelerators are a potential option for a linear collider afterburner since they are immune to the ion collapse and electron/positron asymmetry problems implicit in a plasma based afterburner. The first phase of an experiment to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range has been completed. The experiment took advantage of the unique SLAC FFTB electron beam and its ultra-short pulse lengths and high currents (e.g., {sigma}{sub z} = 20 {micro}m at Q = 3 nC). The FFTB electron beam was successfully focused down and sent through short lengths of fused silica capillary tubing (ID = 200 {micro}m/OD = 325 {micro}m). The pulse length of the electron beam was varied to produce a range of electric fields between 2 and 20 GV/m at the inner surface of the dielectric tubes. We observed a sharp increase in optical emissions from the capillaries in the middle part of this surface field range which we believe indicates the transition between sustainable field levels and breakdown. If this initial interpretation is correct, the surfaced fields that were sustained equate to on axis accelerating field of several GV/m. In future experiments being developed for the SLAC SABER and BNL ATF we plan to use the coherent Cerenkov radiation emitted from the capillary tube as a field strength diagnostic and demonstrate GV/m range particle energy gain.

  9. SERS-active dielectric metamaterials based on periodic nanostructures.

    PubMed

    Lagarkov, Andrey; Budashov, Igor; Chistyaev, Vladimir; Ezhov, Alexander; Fedyanin, Andrey; Ivanov, Andrey; Kurochkin, Ilya; Kosolobov, Sergey; Latyshev, Alexander; Nasimov, Dmitriy; Ryzhikov, Ilya; Shcherbakov, Maxim; Vaskin, Aleksandr; Sarychev, Andrey K

    2016-04-01

    New dielectric SERS metamaterial is investigated. The material consists of periodic dielectric bars deposited on the metal substrate. Computer simulations as well as real experiment reveal extraordinary optical reflectance in the proposed metamaterial due to the excitation of the multiple dielectric resonances. We demonstrate the enhancement of the Raman signal from the complex of 5,5'-dithio-bis-[2-nitrobenzoic acid] molecules and gold nanoparticle (DTNB-Au-NP), which is immobilized on the surface of the barshaped dielectric metamaterial. PMID:27137006

  10. Broadband excitation in solid-state NMR of paramagnetic samples using Delays Alternating with Nutation for Tailored Excitation ('Para-DANTE')

    NASA Astrophysics Data System (ADS)

    Carnevale, Diego; Vitzthum, Veronika; Lafon, Olivier; Trébosc, Julien; Amoureux, Jean-Paul; Bodenhausen, Geoffrey

    2012-11-01

    This Letter shows that interleaved sequences of short pulses in the manner of 'Delays Alternating with Nutation for Tailored Excitation' (DANTE) with N = 1, 2, 3 … equidistant pulses per rotor period extending over K rotor periods can be used to excite, invert or refocus a large number of spinning sidebands of spin-1/2 nuclei in paramagnetic samples where hyperfine couplings lead to very broad spectra that extend over more than 1 MHz. The breadth of the response is maintained for rf-field amplitudes as low as 30 kHz since it results from cumulative effects of individual pulses with very short durations.

  11. Expression of heat shock proteins 70 and 47 in tissues following short-pulse laser irradiation: assessment of thermal damage and healing.

    PubMed

    Sajjadi, Amir Yousef; Mitra, Kunal; Grace, Michael

    2013-10-01

    In order to develop effective laser-based therapeutics, the extent of laser-induced damage must be quantified for given laser parameters. Therefore, we want to determine the spatiotemporal expression patterns of heat shock proteins, both to understand the roles of heat shock proteins in laser-induced tissue damage and repair and to develop heat shock proteins as tools to illustrate the extent of laser-induced damage and wound healing following irradiation. We exposed anesthetized mice to the focused beam of a short-pulse Nd:YAG laser (1064 nm; 200 ns pulsewidth) for 15s, while measuring temperature distribution in the skin using an infrared thermal camera. Following irradiation, we examined expression of HSP47 and HSP70 over time (0-24h) as indicators of the heat shock response and recovery from damage in the laser-irradiated region. Expression patterns of HSP70 and HSP47 as detected by immunohistochemistry and confocal microscopy delineate the extent of damage and the process of healing in tissue. Both HSP70 and HSP47 were expressed in dermis and epidermis following laser irradiation, and the spatial and temporal changes in HSP expression patterns define the laser-induced thermal damage zone and the process of healing in tissues. HSP70 may define biochemically the thermal damage zone in which cells are targeted for destruction, and HSP47 may illustrate the process of recovery from thermally induced damage. Studying the effects of different laser parameters on the expression of HSPs will allow development of effective laser therapies that provide accurate and precise tissue ablation and may promote rapid wound healing following laser-based surgery.

  12. Ultrafast electronic processes in highly excited solids: subpicosecond optical studies

    NASA Astrophysics Data System (ADS)

    Petite, Guillaume

    1998-09-01

    Modern short pulse lasers are efficient tools for production of high levels of electronic excitation in solids under irradiation, a state which mimics that of the same materials after the passage of any particle which deposits its energy under the form of electronic excitation. Because they can also be used in a number of optical experiments of charge carriers and defect detection, they offer the unique opportunity of unraveling the ultrafast kinetic aspects of atomic processes induced by the electronic excitation, whose final state is the only aspect accessible in the case of other irradiations. After mentioning a few orders of magnitudes concerning the energy deposition, we will show some examples of recent experiments concerning the mechanisms of irradiation defect creation in insulators. The perspectives opened by recent developments of light sources in a wide range of wavelengths will be finally presented.

  13. Excitation of Accelerating Plasma Waves by Counter-propagating Laser Beams

    SciTech Connect

    Gennady Shvets; Nathaniel J. Fisch; and Alexander Pukhov

    2001-08-30

    Generation of accelerating plasma waves using two counter-propagating laser beams is considered. Colliding-beam accelerator requires two laser pulses: the long pump and the short timing beam. We emphasize the similarities and differences between the conventional laser wakefield accelerator and the colliding-beam accelerator (CBA). The highly nonlinear nature of the wake excitation is explained using both nonlinear optics and plasma physics concepts. Two regimes of CBA are considered: (i) the short-pulse regime, where the timing beam is shorter than the plasma period, and (ii) the parametric excitation regime, where the timing beam is longer than the plasma period. Possible future experiments are also outlined.

  14. Dielectric Characterization of Costal Cartilage Chondrocytes

    PubMed Central

    Stacey, Michael W.; Sabuncu, Ahmet Can; Beskok, Ali

    2013-01-01

    Background Chondrocytes respond to biomechanical and bioelectrochemical stimuli by secreting appropriate extracellular matrix proteins that enables the tissue to withstand the large forces it experiences. Although biomechanical aspects of cartilage are well described, little is known of the bioelectrochemical responses. The focus of this study is to identify bioelectrical characteristics of human costal cartilage cells using dielectric spectroscopy. Methods Dielectric spectroscopy allows non-invasive probing of biological cells. An in house computer program is developed to extract dielectric properties of human costal cartilage cells from raw cell suspension impedance data measured by a microfluidic device. The dielectric properties of chondrocytes are compared with other cell types in order to comparatively assess the electrical nature of chondrocytes. Results The results suggest that electrical cell membrane characteristics of chondrocyte cells are close to cardiomyoblast cells, cells known to possess an array of active ion channels. The blocking effect of the non-specific ion channel blocker gadolinium is tested on chondrocytes with a significant reduction in both membrane capacitance and conductance. Conclusions We have utilized a microfluidic chamber to mimic biomechanical events through changes in bioelectrochemistry and described the dielectric properties of chondrocytes to be closer to cells derived from electrically excitably tissues General significance and interest The studydescribes dielectric characterization of human costal chondrocyte cells using physical tools, where results and methodology can be used to identify potential anomalies in bioelectrochemical responses that may lead to cartilage disorders. PMID:24016606

  15. Dielectric loss against piezoelectric power harvesting

    NASA Astrophysics Data System (ADS)

    Liang, Junrui; Shu-Hung Chung, Henry; Liao, Wei-Hsin

    2014-09-01

    Piezoelectricity is one of the most popular electromechanical transduction mechanisms for constructing kinetic energy harvesting systems. When a standard energy harvesting (SEH) interface circuit, i.e., bridge rectifier plus filter capacitor, is utilized for collecting piezoelectric power, the previous literature showed that the power conversion can be well predicted without much consideration for the effect of dielectric loss. Yet, as the conversion power gets higher by adopting power-boosting interface circuits, such as synchronized switch harvesting on inductor (SSHI), the neglect of dielectric loss might give rise to deviation in harvested power estimation. Given the continuous progress on power-boosting interface circuits, the role of dielectric loss in practical piezoelectric energy harvesting (PEH) systems should receive attention with better evaluation. Based on the integrated equivalent impedance network model, this fast track communication provides a comprehensive study on the susceptibility of harvested power in PEH systems under different conditions. It shows that, dielectric loss always counteracts piezoelectric power harvesting by causing charge leakage across piezoelectric capacitance. In particular, taking corresponding ideal lossless cases as references, the counteractive effect might be aggravated under one of the five conditions: larger dielectric loss tangent, lower vibration frequency, further away from resonance, weaker electromechanical coupling, or using power-boosting interface circuit. These relationships are valuable for the study of PEH systems, as they not only help explain the role of dielectric loss in piezoelectric power harvesting, but also add complementary insights for material, structure, excitation, and circuit considerations towards holistic evaluation and design for practical PEH systems.

  16. Detecting cracks in teeth using ultrasonic excitation and infrared imaging

    NASA Astrophysics Data System (ADS)

    Han, Xiaoyan; Favro, Lawrence D.; Thomas, Robert L.

    2001-06-01

    We describe a new technique, Thermosonics, that can be used to detect cracks in teeth. This technique was initially invented and developed for finding cracks in industrial and aerospace applications. The thermosonics technique employs a single short pulse (typically tens of milliseconds) of ultrasound excitation combined with infrared imaging. Ultrasonic waves vibrate the target material. This vibration causes rubbing and clapping between faying surfaces of any cracks which are present, resulting in a temperature rise around the cracks. An infrared camera is used to image the temperature distribution during and after the ultrasound excitation. Thus, cracks in teeth can be detected. Although this technique is still under development, it shows promise for clinical use by dentists.

  17. Production of silver-silica core-shell nanocomposites using ultra-short pulsed laser ablation in nanoporous aqueous silica colloidal solutions

    NASA Astrophysics Data System (ADS)

    Santagata, A.; Guarnaccio, A.; Pietrangeli, D.; Szegedi, Á.; Valyon, J.; De Stefanis, A.; De Bonis, A.; Teghil, R.; Sansone, M.; Mollica, D.; Parisi, G. P.

    2015-05-01

    Ultra-short pulsed laser ablation of materials in liquid has been demonstrated to be a versatile technique for nanoparticles production. In a previous paper, it has been described, for the first time, how by laser ablation in a liquid system, silver nanoparticles can be loaded onto SBA-15 and MCM-41 supports which show promising catalytic properties for the oxidation of Volatile Organic Compounds (VOCs). The aim of the present research is to demonstrate the formation of stable silver-silica core-shell nanoparticles by direct laser ablation (Ti:Sa; 800 nm pulse duration: 120 fs repetition rate: 1 kHz, pulse energy: 3.6 mJ, fluence: 9 J cm  -  2) of a Ag target submerged in a static colloidal solution of MCM-41 or SBA-15 silica nanoporous materials. In previous studies, it was discovered that a side and negligible product of the laser ablation process of silver performed in water-silica systems, could be related to the formation of silver-silica core-shell nanoparticles. In order to emphasize this side process some modifications to the laser ablation experimental set-up were performed. Among these, the most important one, in order to favor the production of the core-shell systems, was to keep the liquid silica suspension firm. The laser generated nanomaterials were then analyzed using TEM morphologic characterization. By UV-vis absorption spectra the observed features have been related to components of the colloidal solution as well as to the number of the incident laser pulses. In this manner characterizations on both the process and the resulting suspension have been performed. Significant amount of small sized silver-silica core-shell nanoparticles have been detected in the studied systems. The size distribution, polydispersivity, UV-vis plasmonic bands and stability of the produced silver-silica core-shell nanocomposites have been related to the extent of damage induced in the nanoporous silica structure during the ablation procedure adopted

  18. DIELECTRIC WAKE FIELD RESONATOR ACCELERATOR MODULE

    SciTech Connect

    Hirshfield, Jay L.

    2013-11-06

    Results are presented from experiments, and numerical analysis of wake fields set up by electron bunches passing through a cylindrical or rectangular dielectric-lined structure. These bunches excite many TM-modes, with Ez components of the wake fields sharply localized on the axis of the structure periodically behind the bunches. The experiment with the cylindrical structure, carried out at ATF Brookhaven National Laboratory, used up to three 50 MeV bunches spaced by one wake field period (21 cm) to study the superposition of wake fields by measuring the energy loss of each bunch after it passed through the 53-cm long dielectric element. The millimeter-wave spectrum of radiation excited by the passage of bunches is also studied. Numerical analysis was aimed not only to simulate the behavior of our device, but in general to predict dielectric wake field accelerator performance. It is shown that one needs to match the radius of the cylindrical dielectric channel with the bunch longitudinal rms-length to achieve optimal performance.

  19. Dihedron dielectric loaded surface plasmon athermal polarization converter.

    PubMed

    Hassan, K; Leroy, F; Colas-des-Francs, G; Weeber, J-C

    2014-02-01

    We investigate numerically a novel plasmonic polarization converter relying on the excitation of a so-called dihedron dielectric loaded plasmon polariton. The dihedron dielectric loaded waveguide consists of a dielectric ridge implemented at the inner corner of a metal-coated dielectric step. For a dielectric ridge with a square cross section, the plasmon polariton modes supported by each side of the metallized step hybridize to create supermodes with crossed polarizations. We show that the two supermodes can be operated in a dual-mode interferometer configuration to perform an efficient (24 dB) TE-TM/TM-TE polarization conversion over typical distances below 30 μm at telecommunications wavelengths. In addition, on the basis of the thermo-optical properties of our device, we find that the dihedron plasmonic polarization converter is temperature insensitive.

  20. Time-resolved vacuum-ultraviolet emission (λ  =  60-120 nm) from a high pressure DBD-excited helium plasma: formation mechanisms of the fast component

    NASA Astrophysics Data System (ADS)

    Carman, R. J.; Ganesan, R.; Kane, D. M.

    2016-03-01

    We report time and wavelength resolved studies of the vacuum-ultraviolet (VUV) emission from a windowless dielectric barrier discharge (DBD) in helium. Short-pulse voltage excitation is utilised to clearly resolve the fast and slow temporal components of the Hopfield continuum between λ  =  60-120 nm. Experimental results and theoretical modelling of the spectral distributions indicate that the two components of the VUV emission must originate from the same radiating molecular state—\\text{He}2\\ast≤ft({{\\text{A}}1}Σ\\text{u}+\\right) , and that two distinct pumping mechanisms populate this state. The time evolution of the fast component is found to correlate with that from the (0,0) molecular transition \\text{He}2\\ast≤ft({{\\text{E}}1}{{\\Pi}\\text{g}}-~{{\\text{A}}1}Σ\\text{u}+\\right) (λ  =  513.4 nm). Thus the \\text{He}2\\ast≤ft({{\\text{A}}1}{}Σ\\text{u}+\\right) state is initially rapidly pumped via radiative cascade from higher \\text{He}2\\ast(n=3) molecular states. In addition, the observed band emissions from the molecular \\text{He}2\\ast≤ft({{\\text{E}}1}{{\\Pi}\\text{g}}\\right) v=0 and \\text{He}2\\ast≤ft({{\\text{F}}1}Σ\\text{u}+\\right) v=0 states and the line emissions from the atomic He*(n  =  3) states all exhibit similar temporal behaviour during the discharge excitation period. Our results are consistent with the recent report of Frost et al (J. Phys. B 34 1569 2001) concerning the existence of a so-called ‘neglected channel’ to fast \\text{He}2\\ast production from He*(n  =  3) atomic state precursors.

  1. Resonant dielectric metamaterials

    DOEpatents

    Loui, Hung; Carroll, James; Clem, Paul G; Sinclair, Michael B

    2014-12-02

    A resonant dielectric metamaterial comprises a first and a second set of dielectric scattering particles (e.g., spheres) having different permittivities arranged in a cubic array. The array can be an ordered or randomized array of particles. The resonant dielectric metamaterials are low-loss 3D isotropic materials with negative permittivity and permeability. Such isotropic double negative materials offer polarization and direction independent electromagnetic wave propagation.

  2. Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films.

    PubMed

    Balling, P; Schou, J

    2013-03-01

    Laser ablation of dielectrics by ultrashort laser pulses is reviewed. The basic interaction between ultrashort light pulses and the dielectric material is described, and different approaches to the modeling of the femtosecond ablation dynamics are reviewed. Material excitation by ultrashort laser pulses is induced by a combination of strong-field excitation (multi-photon and tunnel excitation), collisional excitation (potentially leading to an avalanche process), and absorption in the plasma consisting of the electrons excited to the conduction band. It is discussed how these excitation processes can be described by various rate-equation models in combination with different descriptions of the excited electrons. The optical properties of the highly excited dielectric undergo a rapid change during the laser pulse, which must be included in a detailed modeling of the excitations. The material ejected from the dielectric following the femtosecond-laser excitation can potentially be used for thin-film deposition. The deposition rate is typically much smaller than that for nanosecond lasers, but film production by femtosecond lasers does possess several attractive features. First, the strong-field excitation makes it possible to produce films of materials that are transparent to the laser light. Second, the highly localized excitation reduces the emission of larger material particulates. Third, lasers with ultrashort pulses are shown to be particularly useful tools for the production of nanocluster films. The important question of the film stoichiometry relative to that of the target will be thoroughly discussed in relation to the films reported in the literature. PMID:23439493

  3. Demonstration of short pulse laser heating of solid targets to temperatures of 600eV at depths exceeding 30μm using the Orion high power laser

    NASA Astrophysics Data System (ADS)

    Hobbs, L. M. R.; Hoarty, D. J.; Allan, P.; Brown, C. R. D.; Hill, M. P.; James, S. F.; Shepherd, R.; Lancaster, K. L.; Gray, R. J.; Wagenaars, E.; Dance, R. J.; Rossall, A. K.; Culfa, O.; Woolsey, N. C.

    2012-10-01

    The recently completed Orion laser at AWE in the UK has the capability of delivering a petaWatt short pulse at 1.06μm in two of its twelve laser beams. In the experiments described one of the short pulse beams was converted to 2nd harmonic at sub-aperture delivering 3x10^20W/cm^2 (100J of 0.53μm light in 0.5ps) onto plastic foils (parylene N) with embedded tracer layers of aluminium. The target heating profile was recorded on a shot by shot basis by changing the depth of the plastic overcoat between the laser and the buried aluminium layer and recording the aluminium K-shell emission spectra. These spectra were then compared to the FLY atomic kinetics and line-shape code to infer the conditions in the target. Temperatures of 600eV were recorded through a plastic depth in excess of 30μm. In contrast to this similar experiments conducted with the Orion short pulse beam operating at wavelength 1.06μm at energy of 500J (˜10^21W/cm^2) produced heating through only 5μm of plastic. The importance of the improved pulse contrast in 2nd harmonic operation in solid target heating is clear from these results. The data are also compared to results from similar experiments conducted on the VULCAN petaWatt laser using 1.06μm light but with improved pulse contrast.

  4. Calculation of the dielectric properties of semiconductors

    NASA Astrophysics Data System (ADS)

    Engel, G. E.; Farid, Behnam

    1992-12-01

    We report on numerical calculations of the dynamical dielectric function in silicon, using a continued-fraction expansion of the polarizability and a recently proposed representation of the inverse dielectric function in terms of plasmonlike excitations. A number of important technical refinements to further improve the computational efficiency of the method are introduced, making the ab initio calculation of the full energy dependence of the dielectric function comparable in cost to calculation of its static value. Physical results include the observation of previously unresolved features in the random-phase approximated dielectric function and its inverse within the framework of density-functional theory in the local-density approximation, which may be accessible to experiment. We discuss the dispersion of plasmon energies in silicon along the Λ and Δ directions and find improved agreement with experiment compared to earlier calculations. We also present quantitative evidence indicating the degree of violation of the Johnson f-sum rule for the dielectric function due to the nonlocality of the one-electron potential used in the underlying band-structure calculations.

  5. Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial

    SciTech Connect

    Zhang, Fuli He, Xuan; Zhao, Qian; Lan, Chuwen; Zhou, Ji; Zhang, Weihong Qiu, Kepeng

    2014-03-31

    In this manuscript, we experimentally demonstrate magnetically coupled electromagnetically induced transparency (EIT) analogy effect inside dielectric metamaterial. In contrast to previous studies employed different metallic topological microstructures to introduce dissipation loss change, barium strontium titanate, and calcium titanate (CaTiO{sub 3}) are chosen as the bright and dark EIT resonators, respectively, due to their different intrinsic dielectric loss. Under incident magnetic field excitation, dielectric metamaterial exhibits an EIT-type transparency window around 8.9 GHz, which is accompanied by abrupt change of transmission phase. Numerical calculations show good agreement with experiment spectra and reveal remarkably increased group index, indicating potential application in slow light.

  6. Effect of Parasitic Dielectric Resonators on CPW/Aperture-Coupled Dielectric Resonator Antennas

    NASA Technical Reports Server (NTRS)

    Simons, R. N.; Lee, R. Q.

    1993-01-01

    The effects of parasitic dielectric resonators on the HE (sub 11 sigma) and HE (High Efficiency) (sub 13 sigma) modes of a cylindrical dielectric resonator antenna (DRA) have been studied. The DRA was excited electromagnetically with a grounded coplanar waveguide through an aperture in the common ground plane. Strong couplings were observed for the HE (sub 11 sigma) mode with the parasitic element superimposed on the driven DRA, and for the HE (sub 13 sigma) mode with parasitic elements placed on both sides of the driven DRA. Results indicate significant enhancement in bandwidth for both modes, and good radiation patterns for the HE (sub 11 sigma) mode.

  7. Perfect coupling of light to a periodic dielectric/metal/dielectric structure

    SciTech Connect

    Wang, Zhengling E-mail: shiqiangli2013@u.northwestern.edu; Li, Shiqiang E-mail: shiqiangli2013@u.northwestern.edu; Chang, R. P. H.; Ketterson, John B.

    2014-07-21

    Using the finite difference time domain method, it is demonstrated that perfect coupling can be achieved between normally incident light and a periodic dielectric/metal/dielectric structure. The structure serves as a diffraction grating that excites modes related to the long range surface plasmon and short range surface plasmon modes that propagate on continuous metallic films. By optimizing the structural dimensions, perfect coupling is achieved between the incident light and these modes. A high Q of 697 and an accompanying ultrasharp linewidth of 0.8 nm are predicted for a 10 nm silver film for optimal conditions.

  8. Numerical modeling of multi-GeV laser wakefield electron acceleration inside a dielectric capillary tube

    SciTech Connect

    Paradkar, B. S.; Cros, B.; Maynard, G.; Mora, P.

    2013-08-15

    Numerical modeling of laser wakefield electron acceleration inside a gas filled dielectric capillary tube is presented. Guiding of a short pulse laser inside a dielectric capillary tube over a long distance (∼1 m) and acceleration of an externally injected electron bunch to ultra-relativistic energies (∼5-10 GeV) are demonstrated in the quasi-linear regime of laser wakefield acceleration. Two dimensional axisymmetric simulations were performed with the code WAKE-EP (Extended Performances), which allows computationally efficient simulations of such long scale plasma. The code is an upgrade of the quasi-static particle code, WAKE [P. Mora and T. M. Antonsen, Jr., Phys. Plasmas 4, 217 (1997)], to simulate the acceleration of an externally injected electron bunch (including beam loading effect) and propagation of the laser beam inside a dielectric capillary. The influence of the transverse electric field of the plasma wake on the radial loss of the accelerated electrons to the dielectric wall is investigated. The stable acceleration of electrons to multi-GeV energy with a non-resonant laser pulse with a large spot-size is demonstrated.

  9. Dielectric Barrier Discharge Methane Conversion

    NASA Astrophysics Data System (ADS)

    Liu, Chong; Fridman, Alexander; Rabinovich, Alexander; Dobrynin, Danil

    2015-09-01

    With the large amount of nature gas discovery every year, there is an increasing interest on modification of methane. The fact that methane is gaseous makes it less economic and efficient than liquid fuel. Here we propose a new way of converting methane from gas phase to liquid phase. Dielectric barrier discharge is used to treat methane and nitrogen mixture bubbles inside of liquid fuel. Nitrogen is here to help activate methane into an excited state, then it is possible for the excited molecules to react with other liquid hydrocarbon. Gaseous methane is converted in to liquid phase when excited methane replace a hydrogen and add onto the carbon chain. In this study some preliminary experiments is done to verify this hypothesis. There is equivalent weight increases with methane and nitrogen mixture discharging in diesel when compare to only nitrogen discharging in diesel. The same experiment have also been done with gas mixture discharged in 1-methylnaphthalene. And FTIR analysis of the after treatment hydrocarbon liquid all indicates that there is an increasing in C-H bond concentration and a decreasing in phenyl ring structure.

  10. Modelling of non-LTE atomic physics processes in hot dense plasmas during the interaction with an intense short pulse laser

    NASA Astrophysics Data System (ADS)

    Davis, J.; Petrov, G. M.

    2014-05-01

    The implicit 2D3V particle-in-cell (PIC) code developed to study the interaction of intense lasers with matter (Petrov and Davis 2008 Comput. Phys. Commun. 179 868-80 2011 Phys. Plasmas 18 073102) has been extended to include atomic physics under extreme energy density conditions. The atomic physics model is applied to aluminium. Each ionization stage contains two levels: one ground and one lumped excited state, for which various atomic physics processes such as optical field ionization, collisional ionization, excitation, de-excitation and radiative decay describe the population density. Two-dimensional PIC simulations have been carried out for laser pulses with peak intensity 1 × 1020 W cm-2, pulse duration 60 fs, spot size 3 µm and energy 0.75 J interacting with ultrathin (0.2 µm) Al foil. Radiation emitted during the laser-target interaction is computed by accounting for both bound-bound transitions and bremsstrahlung radiation. We demonstrate that the radiation signature of laser-produced plasma can be used as a complementary tool to other diagnostic techniques used in laser-plasma interactions. Finally, results from the PIC model are compared to equilibrium calculations (Maxwell-Boltzmann and Saha). In the early stages of laser-plasma interactions (<100 fs) the plasma is far from equilibrium and equilibrium models can not be applied with confidence to model the plasma.

  11. Multipactor experiment on a dielectric surface

    NASA Astrophysics Data System (ADS)

    Anderson, Rex Beach, III

    2001-12-01

    Multipactor is an electron multiplication process, or electron avalanche, that occurs on metallic and dielectric surfaces in the presence of rf microwave fields. Just as a rock avalanche only needs one rock to cause a larger slide of destruction, one electron under multipactor conditions can cause a tremendous amount of damage to electrical components. Multipactor is a nuisance that can cause excessive noise in communication satellites and radar, and damage to vacuum windows in particle accelerators. Single-surface multipactor on dielectrics is responsible for poor transmission properties of vacuum windows and can eventually lead to vacuum window failure. The repercussions of multipactor affect a wide range of people. For example, a civilian placing a call on a cell phone, or a captain dependent on radar for his ship's safety could both be affected by multipactor. In order to combat this expensive annoyance, a unique experiment to investigate single-surface multipactor on a dielectric surface was developed and tested. The motivation of this thesis is to introduce a novel experiment for multipactor that is designed to verify theoretical calculations and explore the physics behind the phenomenon. The compact apparatus consists of a small brass microwave cavity in a high vacuum system. Most single-surface multipactor experiments consist of a large resonant ring wave guide with a MW power supply. This experiment is the first to utilize a high Q resonant cavity and kW-level power supply to create multipactor on a dielectric surface. The small brass resonant cavity has an inner length of 9.154 cm with an inner diameter of 9.045 cm. A pulsed, variable frequency microwave source at ˜2.4 GHz, 2 kW peak excites the TE111 mode with a strong electric field parallel to a dielectric plate (˜0.2 cm thickness) that is inserted at the mid-plane of the cavity. The microwave pulses from the power supply are monitored by calibrated microwave diodes. These calibrated diodes along

  12. Terahertz Artificial Dielectric Lens

    NASA Astrophysics Data System (ADS)

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-03-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices.

  13. Dielectric properties of aerogels

    SciTech Connect

    Hrubesh, L.W.; Keene, L.E.; Latorre, V.R. )

    1993-07-01

    We have measured the real (dielectric constant) and imaginary (loss factor) components of the complex relative permittivity at 298 [degree]K using microwave frequencies (2, 10, and 18--40 GHz), for bulk SiO[sub 2]-aerogels and for two types of organic aerogels, resorcinol-formaldehyde (RF) and melamine-formaldehyde (MF). Measured dielectric constants are found to vary linearly between values of 1.0 and 2.0 for aerogel densities from 10 to 500 kg/m[sup 3]. For the same range of densities, the measured loss tangents vary linearly between values of 2[times]10[sup [minus]4] and 7[times]10[sup [minus]2]. The observed linearity of the dielectric properties with density in aerogels at microwave frequencies shows that their dielectric behavior is more gas-like than solid-like. The dielectric properties of aerogels are shown to be significantly affected by the adsorbed water internal to the bulk material. For example, water accounts for 7% of the dielectric constant and 70% of the loss at microwave frequencies for silica aerogels. Because of their very high porosity, even with the water content, the aerogels are among the few materials exhibiting such low dielectric properties. Our measurements show that aerogels with greater than 99% porosity have dielectric constants less than 1.03; these are the lowest values ever reported for a bulk solid material.

  14. Terahertz Artificial Dielectric Lens.

    PubMed

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M

    2016-01-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices. PMID:26973294

  15. Terahertz Artificial Dielectric Lens.

    PubMed

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M

    2016-03-14

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices.

  16. Terahertz Artificial Dielectric Lens

    PubMed Central

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-01-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices. PMID:26973294

  17. Dielectric barrier discharge plasma actuator for flow control

    NASA Astrophysics Data System (ADS)

    Opaits, Dmitry Florievich

    Electrohydrodynamic (EHD) and magnetohydrodynamic phenomena are being widely studied for aerodynamic applications. The major effects of these phenomena are heating of the gas, body force generation, and enthalpy addition or extraction, [1, 2, 3]. In particular, asymmetric dielectric barrier discharge (DBD) plasma actuators are known to be effective EHD device in aerodynamic control, [4, 5]. Experiments have demonstrated their effectiveness in separation control, acoustic noise reduction, and other aeronautic applications. In contrast to conventional DBD actuators driven by sinusoidal voltages, we proposed and used a voltage profile consisting of nanosecond pulses superimposed on dc bias voltage. This produces what is essentially a non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The advantage of this non-self-sustained discharge is that the parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. Experimental studies were conducted of a flow induced in a quiescent room air by a single DBD actuator. A new approach for non-intrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low

  18. Dielectric Barrier Discharge Plasma Actuator for Flow Control

    NASA Technical Reports Server (NTRS)

    Opaits, Dmitry, F.

    2012-01-01

    This report is Part II of the final report of NASA Cooperative Agreement contract no. NNX07AC02A. It includes a Ph.D. dissertation. The period of performance was January 1, 2007 to December 31, 2010. Part I of the final report is the overview published as NASA/CR-2012- 217654. Asymmetric dielectric barrier discharge (DBD) plasma actuators driven by nanosecond pulses superimposed on dc bias voltage are studied experimentally. This produces non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. The approach consisted of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low voltages. In view of practical applications certain questions have been also addressed, such as electrodynamic effects which accompany scaling of the actuators to real size models, and environmental effects of ozone production by the plasma actuators.

  19. Asymmetric plasmonic-dielectric coupler with short coupling length, high extinction ratio, and low insertion loss.

    PubMed

    Li, Qiang; Song, Yi; Zhou, Gan; Su, Yikai; Qiu, Min

    2010-10-01

    Asymmetric directional coupling between a hybrid plasmonic waveguide with subwavelength field confinement and a conventional dielectric waveguide is investigated. The proposed hybrid coupler features short coupling length, high coupling efficiency, high extinction ratio, and low insertion loss; it can also be integrated into a silicon-based platform. This coupler can be potentially adopted for signal routing between plasmonic waveguides and dielectric waveguides in photonic integrated circuits. Furthermore, it can be exploited to efficiently excite hybrid plasmonic modes with conventional dielectric modes.

  20. Fluorescence enhancement in visible light: dielectric or noble metal?

    PubMed

    Sun, S; Wu, L; Bai, P; Png, C E

    2016-07-28

    A high permittivity dielectric gives the impression of outperforming plasmonic noble metal in visible light fluorescence enhancement primarily because of its small loss. Nonetheless, the performances of these two platforms in various situations remain obscure due to the different optical confinement mechanisms as well as the complexity in the fluorescence enhancement process. This study presents a comprehensive comparison between these two platforms based on nanoparticles (NPs) to evaluate their capability and applicability in fluorescence enhancement by taking into account the fluorescence excitation rate, the quantum yield, the fluorophore wavelengths and Stokes shifts as well as the far field intensity. In a low permittivity sensing medium (e.g. air), the dielectric NP can achieve comparable or higher fluorescence enhancement than the metal NP due to its decent NP-enhanced excitation rate and larger quantum yield. In a relatively high permittivity sensing medium (e.g. water), however, there is a significant decrement of the excitation rate of the dielectric NP as the permittivity contrast decreases, leading to a smaller fluorescence enhancement compared to the metallic counterpart. Combining the fluorescence enhancement and the far field intensity studies, we further conclude that for both dielectric and plasmonic NPs, the optimal situation occurs when the fluorescence excitation wavelength, the fluorescence emission wavelength and the electric-dipole-mode of the dielectric NP (or the plasmonic resonance of the metal NP) are the same and all fall in the low conductivity region of the NP material. We also find that the electric-dipole-mode of the dielectric NP performs better than the magnetic-dipole-mode for fluorescence enhancement applications because only the electric-dipole-mode can be strongly excited by the routinely used fluorescent dyes and quantum dots, which behave as electric dipoles by nature.

  1. Fluorescence enhancement in visible light: dielectric or noble metal?

    PubMed

    Sun, S; Wu, L; Bai, P; Png, C E

    2016-07-28

    A high permittivity dielectric gives the impression of outperforming plasmonic noble metal in visible light fluorescence enhancement primarily because of its small loss. Nonetheless, the performances of these two platforms in various situations remain obscure due to the different optical confinement mechanisms as well as the complexity in the fluorescence enhancement process. This study presents a comprehensive comparison between these two platforms based on nanoparticles (NPs) to evaluate their capability and applicability in fluorescence enhancement by taking into account the fluorescence excitation rate, the quantum yield, the fluorophore wavelengths and Stokes shifts as well as the far field intensity. In a low permittivity sensing medium (e.g. air), the dielectric NP can achieve comparable or higher fluorescence enhancement than the metal NP due to its decent NP-enhanced excitation rate and larger quantum yield. In a relatively high permittivity sensing medium (e.g. water), however, there is a significant decrement of the excitation rate of the dielectric NP as the permittivity contrast decreases, leading to a smaller fluorescence enhancement compared to the metallic counterpart. Combining the fluorescence enhancement and the far field intensity studies, we further conclude that for both dielectric and plasmonic NPs, the optimal situation occurs when the fluorescence excitation wavelength, the fluorescence emission wavelength and the electric-dipole-mode of the dielectric NP (or the plasmonic resonance of the metal NP) are the same and all fall in the low conductivity region of the NP material. We also find that the electric-dipole-mode of the dielectric NP performs better than the magnetic-dipole-mode for fluorescence enhancement applications because only the electric-dipole-mode can be strongly excited by the routinely used fluorescent dyes and quantum dots, which behave as electric dipoles by nature. PMID:27374052

  2. Ultrafast and short pulse optical nonlinearities of meso-tetrakis-(2,3,5,6-tetrafluoro-N,N,N-trimethyl-4-aniliniumyl) porphyrin and its metal complexes

    NASA Astrophysics Data System (ADS)

    Siji Narendran, N. K.; Soman, Rahul; Sankar, Pranitha; Arunkumar, Chellaiah; Chandrasekharan, K.

    2015-11-01

    Among the various classes of Nonlinear Optical chromophores, porphyrins appear to have exclusive characteristics that make them superior to other compounds as optical materials. Here we report the experimental analysis on the nonlinear optical properties of a new series of porphyrins, meso-tetrakis(2,3,5,6-tetrafluoro-N,N,N-trimethyl-4-aniliniumyl) porphyrin and its central metal substitutions using Z-scan technique under nanosecond (532 nm, 7 ns) and femtosecond (800 nm, 100 fs) excitations. The compounds were found to exhibit two photon absorption assisted excited state absorption in the nanosecond regime and effective three photon absorption in the femtosecond regime. The third-order nonlinear optical susceptibilities (χ(3)) were of the order 10-11 esu and are compared through degenerate four wave mixing (DFWM). The compounds showed good optical limiting behavior in both femtosecond and nanosecond regimes which find applications in laser safety. The structure property relationship has been established with the support of Electrostatic Surface Potential (ESP) mapping.

  3. Picosecond laser damage performance assessment of multilayer dielectric gratings in vacuum.

    PubMed

    Alessi, David A; Carr, C Wren; Hackel, Richard P; Negres, Raluca A; Stanion, Kenneth; Fair, James E; Cross, David A; Nissen, James; Luthi, Ronald; Guss, Gabe; Britten, Jerald A; Gourdin, William H; Haefner, Constantin

    2015-06-15

    Precise assessment of the high fluence performance of pulse compressor gratings is necessary to determine the safe operational limits of short-pulse high energy lasers. We have measured the picosecond laser damage behavior of multilayer dielectric (MLD) diffraction gratings used in the compression of chirped pulses on the Advanced Radiographic Capability (ARC) kilojoule petawatt laser system at the Lawrence Livermore National Laboratory (LLNL). We present optical damage density measurements of MLD gratings using the raster scan method in order to estimate operational performance. We also report results of R-on-1 tests performed with varying pulse duration (1-30 ps) in air, and clean vacuum. Measurements were also performed in vacuum with controlled exposure to organic contamination to simulate the grating use environment. Results show sparse defects with lower damage resistance which were not detected by small-area damage test methods. PMID:26193533

  4. Picosecond laser damage performance assessment of multilayer dielectric gratings in vacuum.

    PubMed

    Alessi, David A; Carr, C Wren; Hackel, Richard P; Negres, Raluca A; Stanion, Kenneth; Fair, James E; Cross, David A; Nissen, James; Luthi, Ronald; Guss, Gabe; Britten, Jerald A; Gourdin, William H; Haefner, Constantin

    2015-06-15

    Precise assessment of the high fluence performance of pulse compressor gratings is necessary to determine the safe operational limits of short-pulse high energy lasers. We have measured the picosecond laser damage behavior of multilayer dielectric (MLD) diffraction gratings used in the compression of chirped pulses on the Advanced Radiographic Capability (ARC) kilojoule petawatt laser system at the Lawrence Livermore National Laboratory (LLNL). We present optical damage density measurements of MLD gratings using the raster scan method in order to estimate operational performance. We also report results of R-on-1 tests performed with varying pulse duration (1-30 ps) in air, and clean vacuum. Measurements were also performed in vacuum with controlled exposure to organic contamination to simulate the grating use environment. Results show sparse defects with lower damage resistance which were not detected by small-area damage test methods.

  5. Excited Delirium

    PubMed Central

    Takeuchi, Asia; Ahern, Terence L.; Henderson, Sean O.

    2011-01-01

    Excited (or agitated) delirium is characterized by agitation, aggression, acute distress and sudden death, often in the pre-hospital care setting. It is typically associated with the use of drugs that alter dopamine processing, hyperthermia, and, most notably, sometimes with death of the affected person in the custody of law enforcement. Subjects typically die from cardiopulmonary arrest, although the cause is debated. Unfortunately an adequate treatment plan has yet to be established, in part due to the fact that most patients die before hospital arrival. While there is still much to be discovered about the pathophysiology and treatment, it is hoped that this extensive review will provide both police and medical personnel with the information necessary to recognize and respond appropriately to excited delirium. PMID:21691475

  6. Band excitation Kelvin probe force microscopy utilizing photothermal excitation

    SciTech Connect

    Collins, Liam E-mail: liq1@ORNL.gov; Rodriguez, Brian J.; Jesse, Stephen; Balke, Nina; Kalinin, Sergei; Li, Qian E-mail: liq1@ORNL.gov

    2015-03-09

    A multifrequency open loop Kelvin probe force microscopy (KPFM) approach utilizing photothermal as opposed to electrical excitation is developed. Photothermal band excitation (PthBE)-KPFM is implemented here in a grid mode on a model test sample comprising a metal-insulator junction with local charge-patterned regions. Unlike the previously described open loop BE-KPFM, which relies on capacitive actuation of the cantilever, photothermal actuation is shown to be highly sensitive to the electrostatic force gradient even at biases close to the contact potential difference (CPD). PthBE-KPFM is further shown to provide a more localized measurement of true CPD in comparison to the gold standard ambient KPFM approach, amplitude modulated KPFM. Finally, PthBE-KPFM data contain information relating to local dielectric properties and electronic dissipation between tip and sample unattainable using conventional single frequency KPFM approaches.

  7. Excited baryons

    SciTech Connect

    Mukhopadhyay, N.C.

    1986-01-01

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)

  8. Room temperature optical anisotropy of a LaMnO3 thin-film induced by ultra-short pulse laser

    SciTech Connect

    Munkhbaatar, Purevdorj; Marton, Zsolt; Tsermaa, Bataarchuluun; Choi, Woo Seok; Seo, Sung Seok A.; Kim, Jin Seung; Nakagawa, Naoyuki; Hwang, H. Y.; Lee, Ho Nyung; Myung-Whun, Kim

    2015-03-04

    Ultra-short laser pulse induced optical anisotropy of LaMnO3 thin films grown on SrTiO3 substrates were observed by irradiation with a femto-second laser pulse with the fluence of less than 0.1 mJ/cm2 at room temperature. The transmittance and reflectance showed different intensities for different polarization states of the probe pulse after pump pulse irradiation. The theoretical optical transmittance and re ectance that assumed an orbital ordering of the 3d eg electrons in Mn3+ ions resulted in an anisotropic time dependent changes similar to those obtained from the experimental results, suggesting that the photo-induced optical anisotropy of LaMnO3 is a result of photo-induced symmetry breaking of the orbital ordering for an optically excited state.

  9. Room temperature optical anisotropy of a LaMnO3 thin-film induced by ultra-short pulse laser

    DOE PAGESBeta

    Munkhbaatar, Purevdorj; Marton, Zsolt; Tsermaa, Bataarchuluun; Choi, Woo Seok; Seo, Sung Seok A.; Kim, Jin Seung; Nakagawa, Naoyuki; Hwang, H. Y.; Lee, Ho Nyung; Myung-Whun, Kim

    2015-03-04

    Ultra-short laser pulse induced optical anisotropy of LaMnO3 thin films grown on SrTiO3 substrates were observed by irradiation with a femto-second laser pulse with the fluence of less than 0.1 mJ/cm2 at room temperature. The transmittance and reflectance showed different intensities for different polarization states of the probe pulse after pump pulse irradiation. The theoretical optical transmittance and re ectance that assumed an orbital ordering of the 3d eg electrons in Mn3+ ions resulted in an anisotropic time dependent changes similar to those obtained from the experimental results, suggesting that the photo-induced optical anisotropy of LaMnO3 is a result ofmore » photo-induced symmetry breaking of the orbital ordering for an optically excited state.« less

  10. Cast dielectric composite linear accelerator

    DOEpatents

    Sanders, David M.; Sampayan, Stephen; Slenes, Kirk; Stoller, H. M.

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  11. Alternate film dielectric materials

    SciTech Connect

    Foster, J.C. . Neutron Devices Dept.); Harris, J.O.; Martinez, J.I. )

    1990-01-01

    This paper presents data on polymeric dielectric films evaluated to support the design of high-energy-density capacitors. Evaluated materials include polycarbonate (two sources), polyphenylene sulfide, polyvinylidene fluoride, polyethermide (three sources), polyimide (four sources), polyethersulfone, and polyetherether ketone. A polyester was evaluated as the control material since many of our prior designs utilized this dielectric. The film evaluations were based on dielectric constant and dissipation factor variation as a function of temperature from {minus}55{degree}C to 300{degree}C, as well as dielectric breakdown strength. Additionally, film/foil capacitors in a dry, wrap-and-fill configuration were fabricated and tested to determine insulation resistance, breakdown voltage, and radiation hardness. Results will be presented for all the evaluations based on the several criteria. 7 refs., 4 figs., 4 tabs.

  12. Dielectric cavity relativistic magnetron

    NASA Astrophysics Data System (ADS)

    Hashemi, S. M. A.

    2010-02-01

    An alteration in the structure of the A6 relativistic magnetron is proposed, which introduces an extra degree of freedom to its design and enhances many of its quality factors. This modification involves the partial filling of the cavities of the device with a low-loss dielectric material. The operation of a dielectric-filled A6 is simulated; the results indicate single-mode operation at the desired π mode and a substantially cleaner rf spectrum.

  13. Dielectric spectroscopy in agrophysics

    NASA Astrophysics Data System (ADS)

    Skierucha, W.; Wilczek, A.; Szypłowska, A.

    2012-04-01

    The paper presents scientific foundation and some examples of agrophysical applications of dielectric spectroscopy techniques. The aim of agrophysics is to apply physical methods and techniques for studies of materials and processes which occur in agriculture. Dielectric spectroscopy, which describes the dielectric properties of a sample as a function of frequency, may be successfully used for examinations of properties of various materials. Possible test materials may include agrophysical objects such as soil, fruit, vegetables, intermediate and final products of the food industry, grain, oils, etc. Dielectric spectroscopy techniques enable non-destructive and non-invasive measurements of the agricultural materials, therefore providing tools for rapid evaluation of their water content and quality. There is a limited number of research in the field of dielectric spectroscopy of agricultural objects, which is caused by the relatively high cost of the respective measurement equipment. With the fast development of modern technology, especially in high frequency applications, dielectric spectroscopy has great potential of expansion in agrophysics, both in cognitive and utilitarian aspects.

  14. Mechanisms Responsible for Microwave Properties in High Performance Dielectric Materials

    NASA Astrophysics Data System (ADS)

    Zhang, Shengke

    Microwave properties of low-loss commercial dielectric materials are optimized by adding transition-metal dopants or alloying agents (i.e. Ni, Co, Mn) to tune the temperature coefficient of resonant frequency (tau f) to zero. This occurs as a result of the temperature dependence of dielectric constant offsetting the thermal expansion. At cryogenic temperatures, the microwave loss in these dielectric materials is dominated by electron paramagnetic resonance (EPR) loss, which results from the spin-excitations of d-shell electron spins in exchange-coupled clusters. We show that the origin of the observed magnetically-induced shifts in the dielectric resonator frequency originates from the same mechanism, as described by the Kramers-Kronig relations. The temperature coefficient of resonator frequency, tauf, is related to three material parameters according to the equation, tau f = - (½ tauepsilon + ½ taumu + alphaL), where tauepsilon, taumu , and alphaL are the temperature coefficient of dielectric constant, magnetic permeability, and lattice constant, respectively. Each of these parameters for dielectric materials of interest are measured experimentally. These results, in combination with density functional simulations, developed a much improved understanding of the fundamental mechanisms responsible for tau f. The same experimental methods have been used to characterize in-situ the physical nature and concentration of performance-degrading point defects in the dielectrics of superconducting planar microwave resonators.

  15. Emittance of short-pulsed high-current ion beams formed from the plasma of the electron cyclotron resonance discharge sustained by high-power millimeter-wave gyrotron radiation

    SciTech Connect

    Razin, S. Zorin, V.; Izotov, I.; Sidorov, A.; Skalyga, V.

    2014-02-15

    We present experimental results on measuring the emittance of short-pulsed (≤100 μs) high-current (80–100 mA) ion beams of heavy gases (Nitrogen, Argon) formed from a dense plasma of an ECR source of multiply charged ions (MCI) with quasi-gas-dynamic mode of plasma confinement in a magnetic trap of simple mirror configuration. The discharge was created by a high-power (90 kW) pulsed radiation of a 37.5-GHz gyrotron. The normalized emittance of generated ion beams of 100 mA current was (1.2–1.3) π mm mrad (70% of ions in the beams). Comparing these results with those obtained using a cusp magnetic trap, it was concluded that the structure of the trap magnetic field lines does not exert a decisive influence on the emittance of ion beams in the gas-dynamic ECR source of MCI.

  16. Room temperature optical anisotropy of a LaMnO{sub 3} thin-film induced by ultra-short pulse laser

    SciTech Connect

    Munkhbaatar, Purevdorj; Kim, Jin Seung; Myung-Whun, Kim; Marton, Zsolt; Lee, Ho Nyung; Tsermaa, Baatarchuluun; Choi, Woo Seok; Seo, Sung S. Ambrose; Nakagawa, Naoyuki; Hwang, Harold Y.

    2015-03-02

    We observed ultra-short laser pulse-induced transient optical anisotropy in a LaMnO{sub 3} thin film. The anisotropy was induced by laser pulse irradiation with a fluence of less than 0.1 mJ/cm{sup 2} at room temperature. The transmittance and reflectance showed strong dependence on the polarization states of the pulses. For parallel and perpendicular polarization states, there exists a difference of approximately 0.2% for transmittance and 0.05% for reflectance at 0.3 ps after the irradiation with a pump pulse, respectively. The theoretical values for optical transmittance and reflectance with an assumption of an orbital ordering of 3d e{sub g} electrons in Mn{sup 3+} ions showed good agreement with the experimental results, demonstrating that the transient optical anisotropy in LaMnO{sub 3} thin film is due to the photo-induced symmetry-breaking of orbital ordering in excited states.

  17. Effects of dielectric relaxation on the director dynamics of uniaxial nematic liquid crystals.

    PubMed

    Gu, Mingxia; Yin, Ye; Shiyanovskii, Sergij V; Lavrentovich, Oleg D

    2007-12-01

    The dielectric anisotropy of liquid crystals causes director reorientation in an applied electric field and is thus at the heart of electro-optic applications of these materials. The components of the dielectric tensor are frequency dependent. Until recently, this frequency dependence was not accounted for in a description of director dynamics in an electric field. We theoretically derive the reorienting dielectric torque acting on the director, taking into account the entire frequency spectrum of the dielectric tensor. The model allows one to include the effects of multiple relaxations in both parallel and perpendicular components of the dielectric tensor, thus generalizing a recent model [Y. Yin, Phys. Rev. Lett. 95, 087801 (2005)] limited by the single-relaxation approach. The model predicts the "dielectric memory effect" (DME)--i.e., dependence of the dielectric torque on both the "present" and "past" values of the electric field and the director. The model describes the experimentally observed director reorientation in the case when the rise time of the applied voltage is smaller than the dielectric relaxation time. In typical materials such as pentylcyanobiphenyl (5CB), in which the dielectric anisotropy is positive at low frequencies, the DME slows down the director reorientation in a sharply rising electric field, as the sharp front is perceived as a high-frequency excitation for which the dielectric anisotropy is small or even of a negative sign. In materials that are dielectrically negative, the DME speeds up the response when a sharp pulse is applied.

  18. Sexual excitement.

    PubMed

    Stoller, R J

    1976-08-01

    Sexual excitement depends on a scenario the person to be aroused has been writing since childhood. The story is an adventure, an autobiography disguised as fiction, in which the hero/heroine hides crucial intrapsychic conflicts, mysteries, screen memories of actual traumatic events and the resolution of these elements into a happy ending, best celebrated by orgasm. The function of the fantasy is to take these painful experiences and convert them to pleasure-triumph. In order to sharpen excitement-the vibration between the fear of original traumas repeating and the hope of a pleasurable conclusion this time-one introduces into the story elements of risk (approximations of the trauma) meant to prevent boredom and safety factors (sub-limnal signals to the storyteller that the risk are not truly dangerous). Sexual fantasy can be studied by means of a person's daydreams (including those chosen in magazines, books, plays, television, movies, and outright pornography), masturbatory behavior, object choice, foreplay, techniques of intercourse, or postcoital behavior. PMID:949223

  19. Sexual excitement.

    PubMed

    Stoller, R J

    1976-08-01

    Sexual excitement depends on a scenario the person to be aroused has been writing since childhood. The story is an adventure, an autobiography disguised as fiction, in which the hero/heroine hides crucial intrapsychic conflicts, mysteries, screen memories of actual traumatic events and the resolution of these elements into a happy ending, best celebrated by orgasm. The function of the fantasy is to take these painful experiences and convert them to pleasure-triumph. In order to sharpen excitement-the vibration between the fear of original traumas repeating and the hope of a pleasurable conclusion this time-one introduces into the story elements of risk (approximations of the trauma) meant to prevent boredom and safety factors (sub-limnal signals to the storyteller that the risk are not truly dangerous). Sexual fantasy can be studied by means of a person's daydreams (including those chosen in magazines, books, plays, television, movies, and outright pornography), masturbatory behavior, object choice, foreplay, techniques of intercourse, or postcoital behavior.

  20. Experimental demonstration of superdirective dielectric antenna

    SciTech Connect

    Krasnok, Alexander E.; Filonov, Dmitry S.; Belov, Pavel A.; Simovski, Constantin R.; Kivshar, Yuri S.

    2014-03-31

    We propose and demonstrate experimentally a simple approach for achieving superdirectivity of emitted radiation for electrically small antennas based on a spherical dielectric resonator with a notch excited by a dipole source. Superdirectivity is achieved without using complex antenna arrays and for a wide range of frequencies. We also demonstrate the steering effect for a subwavelength displacement of the source. Finally, unlike previously known superdirective antennas, our design has significantly smaller losses, at the operation frequency radiation efficiency attains 80%, and matching holds in the 3%-wide frequency band without any special matching technique.

  1. Dielectric assist accelerating structure

    NASA Astrophysics Data System (ADS)

    Satoh, D.; Yoshida, M.; Hayashizaki, N.

    2016-01-01

    A higher-order TM02 n mode accelerating structure is proposed based on a novel concept of dielectric loaded rf cavities. This accelerating structure consists of ultralow-loss dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure. Unlike conventional dielectric loaded accelerating structures, most of the rf power is stored in the vacuum space near the beam axis, leading to a significant reduction of the wall loss, much lower than that of conventional normal-conducting linac structures. This allows us to realize an extremely high quality factor and a very high shunt impedance at room temperature. A simulation of a 5 cell prototype design with an existing alumina ceramic indicates an unloaded quality factor of the accelerating mode over 120 000 and a shunt impedance exceeding 650 M Ω /m at room temperature.

  2. PREFACE: Dielectrics 2013

    NASA Astrophysics Data System (ADS)

    Hadjiloucas, Sillas; Blackburn, John

    2013-11-01

    This volume records the 42nd Dielectrics Group Proceedings of the Dielectrics Conference that took place at the University of Reading UK from 10-12 April 2013. The meeting is part of the biennial Dielectrics series of the Dielectrics Group, and formerly Dielectrics Society, and is organised by the Institute of Physics. The conference proceedings showcase some of the diversity and activity of the Dielectrics community worldwide, and bring together contributions from academics and industrial researchers with a diverse background and experiences from the Physics, Chemistry and Engineering communities. It is interesting to note some continuing themes such as Insulation/HV Materials, Dielectric Spectroscopy, Dielectric Measurement Techniques and Ferroelectric materials have a growing importance across a range of technologically important areas from the Energy sector to Materials research, Semiconductor and Electronics industries, and Metrology. We would like to thank all of our colleagues and friends in the Dielectrics community who have supported this event by contributing manuscripts and participating in the event. The conference has provided excellent networking opportunities for all delegates. Our thanks go also to our theme chairs: Dr Stephen Dodd (University of Leicester) on Insulation/HV Materials, Professor Darryl Almond (University of Bath) on Dielectric Spectroscopy, Dr John Blackburn (NPL) on Dielectric Measurement Techniques and Professor Anthony R West (University of Sheffield) on Ferroelectric Materials. We would also like to thank the other members of the Technical Programme Committee for their support, and refereeing the submitted manuscripts. Our community would also like to wish a full recovery to our plenary speaker Prof John Fothergill (City University London) who was unexpectedly unable to give his talk as well as thank Professor Alun Vaughan for stepping in and giving an excellent plenary lecture in his place at such very short notice. We are also

  3. Dielectric Monitoring of Curing Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Benjamin E.; Semmel, Marie L.

    1987-01-01

    Report describes preliminary attempts at dielectric monitoring of curing of graphite/epoxy and carbon/phenolic composites. Objective is to develop dielectric monitoring for optimizing curing process and reduce incidence of failures of produced composite structures.

  4. Thermally switchable dielectrics

    DOEpatents

    Dirk, Shawn M.; Johnson, Ross S.

    2013-04-30

    Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

  5. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, Michael D.; Britten, Jerald A.; Nguyen, Hoang T.; Boyd, Robert; Shore, Bruce W.

    1999-01-01

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described.

  6. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, M.D.; Britten, J.A.; Nguyen, H.T.; Boyd, R.; Shore, B.W.

    1999-05-25

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described. 7 figs.

  7. Excitation of Accelerating Plasma Waves by Counter-Propagating Laser Beams

    SciTech Connect

    Shvets, Gennady; Fisch, Nathaniel J; Pukhov, Alexander

    2002-04-05

    The conventional approach to exciting high phase velocity waves in plasmas is to employ a laser pulse moving in the direction of the desired particle acceleration. Photon downshifting then causes momentum transfer to the plasma and wave excitation. Novel approaches to plasma wake excitation, colliding-beam accelerator (CBA), which involve photon exchange between the long and short counter-propagating laser beams, are described. Depending on the frequency detuning Dw between beams and duration tL of the short pulse, there are two approaches to CBA. The first approach assumes tL ª 2/wp. Photons exchanged between the beams deposit their recoil momentum in the plasma driving the plasma wake. Frequency detuning between the beams determines the direction of the photon exchange, thereby controlling the phase of the plasma wake. This phase control can be used for reversing the slippage of the accelerated particles with respect to the wake. A variation on the same theme, super-beatwave accelerator, is also described. In the second approach, a short pulse with tL >> 2/wp1 detuned by Dw ~ 2wp from the counter-propagating beam is employed. While parametric excitation of plasma waves by the electromagnetic beatwave at 2wp of two co-propagating lasers was first predicted by Rosenbluth and Liu [M.N. Rosenbluth, C.S. Liu, Phys. Rev. Lett. 29 (1972) 701], it is demonstrated that the two excitation beams can be counter-propagating. The advantages of using this geometry (higher instability growth rate, insensitivity to plasma inhomogeneity) are explained, and supporting numerical simulations presented.

  8. Bandwidth Enhancement of Cylindrical Dielectric Resonator Antenna Using Thin Dielectric Layer Fed by Resonating Slot

    NASA Astrophysics Data System (ADS)

    Mishra, Nipun K.; Das, Soma; Vishwakarma, Dinesh K.

    2016-09-01

    In this paper Cylindrical Dielectric Resonator Antenna (CDRA) has been designed for X-band frequency range applications with slot feeding. Bandwidth of designed cylindrical dielectric resonator antenna has been enhanced by making the slot to be resonating and inserting very thin low permittivity dielectric layer between the slot and CDRA. Resonating slot excites the closely spaced HEM11δ and HEM21δ mode inside the antenna as well as provides the resonance at the upper side of desired X-band. Low profile low permittivity layer provides the excellent matching of these modes and shift the HEM21δ mode to higher frequency side at 11.25 GHz with better impedance matching. By combining all of three resonances, nearly 85 % increment in impedance Bandwidth has been obtained with reference to non resonating slot excited CDRA. Fractional impedance bandwidth for proposed design is 48 % and average Gain of 6 dB with more than 92 % radiation efficiency has been shown by the antenna throughout the desired band with broadside pattern.

  9. Dielectric spectroscopy of monatomic alcohols

    NASA Astrophysics Data System (ADS)

    Baida, A. A.; Rudakov, A. V.; Agaev, S. G.

    2013-04-01

    The frequency dependences of permittivity ɛ( f) and dielectric loss tanδ( f) of monatomic alcohols are measured in range of frequencies f from 0.025 to 1000 kHz. Dielectric relaxation is observed in the investigated frequency range. Empirical correlation equations describing the relationships between the dielectric characteristics and physicochemical properties of monatomic alcohols are obtained.

  10. Enhancement of the stability of a synchronously excited cw dye laser by insertion of a nonlinear absorber

    SciTech Connect

    Gafurov, K.G.; Krindach, D.P.; Nekhaenko, V.A.; Yakovlev, A.G.

    1985-06-01

    An experimental investigation was made of combined mode locking of a cw laser utilizing a mixture of rhodamine 6G (amplifier) and malachite green (absorber). The action of a saturable absorber shortened the output pulses to 700 fsec, widened the range of existence of the short pulses, and appreciably increased the lasing stability compared with synchronous excitation of pure rhodamine 6G. These characteristics of the radiation of a laser with combined mode locking were associated with the saturation dynamics of the gain and the absorption.

  11. Research of the recast layer on implant surface modified by micro-current electrical discharge machining using deionized water mixed with titanium powder as dielectric solvent

    NASA Astrophysics Data System (ADS)

    Chen, Sung-Long; Lin, Ming-Hong; Huang, Guo-Xin; Wang, Chia-Ching

    2014-08-01

    Surface modification of Ti using micro-current electrical discharge machining (MC-EDM) technology at various working parameters was conducted in the present study. A significant decrease in amount of surface cracks for modified Ti in deionized water mixed with concentration of 3 g/l Ti powder dielectric solvent was determined. Increasing the concentration of Ti powder to 6 g/l, no micro-cracks were observed on the modified Ti surfaces at current 0.1 A for short-pulse durations (≤50 μs). Moreover, the thickness of the recast layer increases with increasing current, pulse duration and concentration. Under the same working parameters, the thickness of recast layers on modified Ti enhances to approximately 4-11 μm in the concentration of 6 g/l Ti powder dielectric solvent. When Ti modified at different working parameters in deionized water mixed with Ti powder dielectric solvent, the TiO phase was observed within the recast layers. It was found that the modified Ti at current 0.1 A for 30 μs and 50 μs in a 6 g/l concentration of Ti powder dielectric solvent generates a hydrophilicity surface. Therefore, adding a suitable concentration of Ti powder into the dielectric solvent not only prevent the formation of surface cracks and micro-cracks, but also raise the wettability on the surfaces of Ti during MC-EDM modifications.

  12. Controlling guided modes in plasmonic metal/dielectric multilayer waveguides

    SciTech Connect

    Wickremasinghe, N.; Wang, X.; Wagner, H. P.; Thompson, J.; Schmitzer, H.

    2015-06-07

    We investigate the mode properties of planar dielectric aluminum-quinoline (Alq{sub 3}) multilayer waveguides comprising one single or three equally spaced embedded nanometer-thin (∼10 nm thick) Alq{sub 3}-Mg{sub 0.9}:Ag{sub 0.1} composite metal-island layers. The plasmonic waveguides were fabricated by organic molecular beam deposition. Transverse magnetic (TM) and transverse electric (TE) modes were selectively excited using the m-line method. The symmetric plasmonic TM{sub 0} mode was launched in all waveguides and—in addition—two higher order plasmonic TM{sub 1} and TM{sub 2} modes were generated in waveguides comprising three metal layers. Other TM modes have hybrid dielectric-plasmonic characters, showing an increased effective refractive index when one electric field antinode is close to a metallic layer. TM modes which have all their antinode(s) in the dielectric layers propagate essentially like dielectric modes. TE modes with antinode(s) at the position of the metal layer(s) are strongly damped while the losses are low for TE modes comprising a node at the position of the composite metal film(s). The possibility to control the effective refractive index and the losses for individual hybrid plasmonic-dielectric TM and dielectric TE modes opens new design opportunities for mode selective waveguides and TM-TE mode couplers.

  13. The electromagnetic radiation from simple sources in the presence of a homogeneous dielectric sphere

    NASA Technical Reports Server (NTRS)

    Mason, V. B.

    1973-01-01

    In this research, the effect of a homogeneous dielectric sphere on the electromagnetic radiation from simple sources is treated as a boundary value problem, and the solution is obtained by the technique of dyadic Green's functions. Exact representations of the electric fields in the various regions due to a source located inside, outside, or on the surface of a dielectric sphere are formulated. Particular attention is given to the effect of sphere size, source location, dielectric constant, and dielectric loss on the radiation patterns and directivity of small spheres (less than 5 wavelengths in diameter) using the Huygens' source excitation. The computed results are found to closely agree with those measured for waveguide-excited plexiglas spheres. Radiation patterns for an extended Huygens' source and for curved electric dipoles located on the sphere's surface are also presented. The resonance phenomenon associated with the dielectric sphere is studied in terms of the modal representation of the radiated fields. It is found that when the sphere is excited at certain frequencies, much of the energy is radiated into the sidelobes. The addition of a moderate amount of dielectric loss, however, quickly attenuates this resonance effect. A computer program which may be used to calculate the directivity and radiation pattern of a Huygens' source located inside or on the surface of a lossy dielectric sphere is listed.

  14. Molds for cable dielectrics

    DOEpatents

    Roose, L.D.

    1996-12-10

    Molds for use in making end moldings for high-voltage cables are described wherein the dielectric insulator of a cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made. 5 figs.

  15. Molds for cable dielectrics

    DOEpatents

    Roose, Lars D.

    1996-01-01

    Molds for use in making end moldings for high-voltage cables are described wherein the dielectric insulator of a cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made.

  16. Interfaces: nanometric dielectrics

    NASA Astrophysics Data System (ADS)

    Lewis, T. J.

    2005-01-01

    The incorporation of nanometric size particles in a matrix to form dielectric composites shows promise of materials (nanodielectrics) with new and improved properties. It is argued that the properties of the interfaces between the particles and the matrix, which will themselves be of nanometric dimensions, will have an increasingly dominant role in determining dielectric performance as the particle size decreases. The forces that determine the electrical and dielectric properties of interfaces are considered, with emphasis on the way in which they might influence composite behaviour. A number of examples are given in which interfaces at the nanometric level exercise both passive and active control over dielectric, optical and conductive properties. Electromechanical properties are also considered, and it is shown that interfaces have important electrostrictive and piezoelectric characteristics. It is demonstrated that the process of poling, namely subjecting macroscopic composite materials to electrical stress and raised temperatures to create piezoelectric materials, can be explained in terms of optimizing the collective response of the nanometric interfaces involved. If the electrical and electromechanical features are coupled to the long-established electrochemical properties, interfaces represent highly versatile active elements with considerable potential in nanotechnology.

  17. Dielectric elastomer memory

    NASA Astrophysics Data System (ADS)

    O'Brien, Benjamin M.; McKay, Thomas G.; Xie, Sheng Q.; Calius, Emilio P.; Anderson, Iain A.

    2011-04-01

    Life shows us that the distribution of intelligence throughout flexible muscular networks is a highly successful solution to a wide range of challenges, for example: human hearts, octopi, or even starfish. Recreating this success in engineered systems requires soft actuator technologies with embedded sensing and intelligence. Dielectric Elastomer Actuator(s) (DEA) are promising due to their large stresses and strains, as well as quiet flexible multimodal operation. Recently dielectric elastomer devices were presented with built in sensor, driver, and logic capability enabled by a new concept called the Dielectric Elastomer Switch(es) (DES). DES use electrode piezoresistivity to control the charge on DEA and enable the distribution of intelligence throughout a DEA device. In this paper we advance the capabilities of DES further to form volatile memory elements. A set reset flip-flop with inverted reset line was developed based on DES and DEA. With a 3200V supply the flip-flop behaved appropriately and demonstrated the creation of dielectric elastomer memory capable of changing state in response to 1 second long set and reset pulses. This memory opens up applications such as oscillator, de-bounce, timing, and sequential logic circuits; all of which could be distributed throughout biomimetic actuator arrays. Future work will include miniaturisation to improve response speed, implementation into more complex circuits, and investigation of longer lasting and more sensitive switching materials.

  18. An optimized slab-symmetric dielectric-based laser accelerator structure

    SciTech Connect

    Rosenzweig, J. B.; Schoessow, P. V.

    1999-10-21

    A slab-symmetric, partially dielectric filled, laser excited structure which maybe used to accelerate charged particles is analyzed theoretically and computationally. The fields associated with the accelerating mode are calculated, as are aspects of the resonant filling and impedance matching of the structure to the exciting laser. It is shown through computer simulation that the accelerating mode in this structure can be excited resonantly and with large quality factor Q. Practical aspects of implementing this structure as an accelerator are discussed.

  19. Microsecond-pulsed dielectric barrier discharge plasma stimulation of tissue macrophages for treatment of peripheral vascular disease

    SciTech Connect

    Miller, V. Lin, A.; Brettschneider, J.; Fridman, G.; Fridman, A.; Kako, F.; Gabunia, K.; Kelemen, S.; Autieri, M.

    2015-12-15

    Angiogenesis is the formation of new blood vessels from pre-existing vessels and normally occurs during the process of inflammatory reactions, wound healing, tissue repair, and restoration of blood flow after injury or insult. Stimulation of angiogenesis is a promising and an important step in the treatment of peripheral artery disease. Reactive oxygen species have been shown to be involved in stimulation of this process. For this reason, we have developed and validated a non-equilibrium atmospheric temperature and pressure short-pulsed dielectric barrier discharge plasma system, which can non-destructively generate reactive oxygen species and other active species at the surface of the tissue being treated. We show that this plasma treatment stimulates the production of vascular endothelial growth factor, matrix metalloproteinase-9, and CXCL 1 that in turn induces angiogenesis in mouse aortic rings in vitro. This effect may be mediated by the direct effect of plasma generated reactive oxygen species on tissue.

  20. Microsecond-pulsed dielectric barrier discharge plasma stimulation of tissue macrophages for treatment of peripheral vascular disease

    NASA Astrophysics Data System (ADS)

    Miller, V.; Lin, A.; Kako, F.; Gabunia, K.; Kelemen, S.; Brettschneider, J.; Fridman, G.; Fridman, A.; Autieri, M.

    2015-12-01

    Angiogenesis is the formation of new blood vessels from pre-existing vessels and normally occurs during the process of inflammatory reactions, wound healing, tissue repair, and restoration of blood flow after injury or insult. Stimulation of angiogenesis is a promising and an important step in the treatment of peripheral artery disease. Reactive oxygen species have been shown to be involved in stimulation of this process. For this reason, we have developed and validated a non-equilibrium atmospheric temperature and pressure short-pulsed dielectric barrier discharge plasma system, which can non-destructively generate reactive oxygen species and other active species at the surface of the tissue being treated. We show that this plasma treatment stimulates the production of vascular endothelial growth factor, matrix metalloproteinase-9, and CXCL 1 that in turn induces angiogenesis in mouse aortic rings in vitro. This effect may be mediated by the direct effect of plasma generated reactive oxygen species on tissue.

  1. Longitudinally Excited CO2 Laser with Short Laser Pulse like TEA CO2 Laser

    NASA Astrophysics Data System (ADS)

    Uno, Kazuyuki; Nakamura, Kenshi; Goto, Tatsumi; Jitsuno, Takahisa

    2009-11-01

    We have developed a longitudinally excited CO2 laser with a short laser pulse similar to that of TEA and Q-switched CO2 lasers. A capacitor transfer circuit with a low shunt resistance provided rapid discharge and a sharp spike pulse with a short pulse tail. Specifically, a circuit with a resistance of 10 M Ω provided a spike pulse width of 103.3 ns and a pulse tail length of 61.9 μs, whereas a circuit with a shunt resistance of 100 Ω provided a laser pulse with a spike pulse width of 96.3 ns and a pulse tail length of 17.2 μs. The laser pulses from this longitudinally excited CO2 laser were used for processing a human tooth without carbonization and for glass marking without cracks.

  2. Prospects for the diagnosis of electron-ion temperature equilibration rates of warm dense matter by ultra-short pulse hard X-ray diffraction with an X-ray free electron laser

    NASA Astrophysics Data System (ADS)

    Angulo Gareta, J. J.; Riley, D.

    2006-10-01

    Ultra-short pulse kiloelectronvolt X-ray diffraction with an X-ray free electron laser and its potential for the diagnosis of electron-ion equilibration rates of warm dense matter are evaluated. A simple experimental configuration is suggested for the generation and subsequent probing of warm dense aluminium with the TESLA X-ray free electron laser. Differential scattering cross-sections are computed in an approximate manner with Thomas-Fermi form factors and tabular ion-ion static structure factors of one-component plasmas, inclusive of electron screening and degeneracy. This requires simulation of the sample, for which we use a hydrodynamic code featuring the Sesame equation of state, Thomas-Fermi ionisation and cold solid opacities (for the calculation of energy deposition). The effect of electron-ion equilibration rate on the evolution of the diffraction pattern on a picosecond time-scale is investigated. Finally, the signal level expected from experiment is estimated, indicating that measurements with good angular-resolution are possible.

  3. Antenna with Dielectric Having Geometric Patterns

    NASA Technical Reports Server (NTRS)

    Dudley, Kenneth L. (Inventor); Elliott, Holly A. (Inventor); Cravey, Robin L. (Inventor); Connell, John W. (Inventor); Ghose, Sayata (Inventor); Watson, Kent A. (Inventor); Smith, Jr., Joseph G. (Inventor)

    2013-01-01

    An antenna includes a ground plane, a dielectric disposed on the ground plane, and an electrically-conductive radiator disposed on the dielectric. The dielectric includes at least one layer of a first dielectric material and a second dielectric material that collectively define a dielectric geometric pattern, which may comprise a fractal geometry. The radiator defines a radiator geometric pattern, and the dielectric geometric pattern is geometrically identical, or substantially geometrically identical, to the radiator geometric pattern.

  4. Non-destructive evaluation method employing dielectric electrostatic ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor)

    2003-01-01

    An acoustic nonlinearity parameter (.beta.) measurement method and system for Non-Destructive Evaluation (NDE) of materials and structural members novelly employs a loosely mounted dielectric electrostatic ultrasonic transducer (DEUT) to receive and convert ultrasonic energy into an electrical signal which can be analyzed to determine the .beta. of the test material. The dielectric material is ferroelectric with a high dielectric constant .di-elect cons.. A computer-controlled measurement system coupled to the DEUT contains an excitation signal generator section and a measurement and analysis section. As a result, the DEUT measures the absolute particle displacement amplitudes in test material, leading to derivation of the nonlinearity parameter (.beta.) without the costly, low field reliability methods of the prior art.

  5. Inverse dielectric response function for copper oxide superconductors

    NASA Astrophysics Data System (ADS)

    Sharma, A. C.; Kulshrestha, Ina

    1992-09-01

    We use a layered-electron-gas model to calculate the inverse electronic dielectric response functions for the normal state of copper oxide superconductors with one and two copper oxide layers per unit cell. Our calculation demonstrates that the low-energy electronic collective-excitation spectrum consists of both acoustic and optic plasmons. The acoustic plasmon modes are found to be well behaved only for certain restricted values of the wave vector and damping parameter. Our computed optical inverse dielectric response function exhibits one peak in the low-energy region and varies as βω2 for 0<=ω<=ωp. Here β is a material-dependent parameter and ωp is the position of the peak that corresponds to the intraband optic plasmon mode. Our calculated optical dielectric response functions show excellent agreement with the experimental results of Bozovic for 0<=ω<=ωp.

  6. A Compact Linac for Proton Therapy Based on a Dielectric Wall Accelerator

    SciTech Connect

    Caporaso, G J; Mackie, T R; Sampayan, S; Chen, Y -; Blackfield, D; Harris, J; Hawkins, S; Holmes, C; Nelson, S; Paul, A; Poole, B; Rhodes, M; Sanders, D; Sullivan, J; Wang, L; Watson, J; Reckwerdt, P J; Schmidt, R; Pearson, D; Flynn, R W; Matthews, D; Purdy, J

    2007-10-29

    A novel compact CT-guided intensity modulated proton radiotherapy (IMPT) system is described. The system is being designed to deliver fast IMPT so that larger target volumes and motion management can be accomplished. The system will be ideal for large and complex target volumes in young patients. The basis of the design is the dielectric wall accelerator (DWA) system being developed at the Lawrence Livermore National Laboratory (LLNL). The DWA uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. High electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The system will produce individual pulses that can be varied in intensity, energy and spot width. The IMPT planning system will optimize delivery characteristics. The system will be capable of being sited in a conventional linac vault and provide intensity modulated rotational therapy. Feasibility tests of an optimization system for selecting the position, energy, intensity and spot size for a collection of spots comprising the treatment are underway. A prototype is being designed and concept designs of the envelope and environmental needs of the unit are beginning. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, SiC photoconductive switches and compact proton sources.

  7. Compact Dielectric Wall Accelerator Development For Intensity Modulated Proton Therapy And Homeland Security Applications

    SciTech Connect

    Chen, Y -; Caporaso, G J; Guethlein, G; Sampayan, S; Akana, G; Anaya, R; Blackfield, D; Cook, E; Falabella, S; Gower, E; Harris, J; Hawkins, S; Hickman, B; Holmes, C; Horner, A; Nelson, S; Paul, A; Pearson, D; Poole, B; Richardson, R; Sanders, D; Stanley, J; Sullivan, J; Wang, L; Watson, J; Weir, J

    2009-06-17

    Compact dielectric wall (DWA) accelerator technology is being developed at the Lawrence Livermore National Laboratory. The DWA accelerator uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. Its high electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The DWA concept can be applied to accelerate charge particle beams with any charge to mass ratio and energy. Based on the DWA system, a novel compact proton therapy accelerator is being developed. This proton therapy system will produce individual pulses that can be varied in intensity, energy and spot width. The system will be capable of being sited in a conventional linac vault and provide intensity modulated rotational therapy. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, SiC photoconductive switches and compact proton sources. Applications of the DWA accelerator to problems in homeland security will also be discussed.

  8. Electrical Excitation of Surface Plasmon Polaritons

    NASA Astrophysics Data System (ADS)

    van Loon, R. V. A.

    2009-02-01

    A surface plasmon polariton (SPP) is an electromagnetic wave propagating at the interface between a metal and a dielectric material. The two-dimensional confinement of SPPs and the tunability of their dispersion enable optical functionality that cannot be achieved with regular dielectrics. Several novel concepts for sensing and opto-electronic integration based on SPPs have been proposed. In nearly all applications, as well as experiments based on SPPs, far-field excitation of SPPs is used, leading to bulky device designs. This thesis presents an electrically excitable source for SPPs that can be integrated in small, chip-size devices to enable the full application potential of SPPs. The device is based on a dielectric/metal geometry in which silicon quantum dots are placed in the near-field of the SPP mode. The quantum dots are electrically excited and decay by the generation of SPPs. Silicon quantum dots in silica are made by a magnetron sputtering technique, followed by annealing. From photoluminescence spectra as well as lifetime measurements we conclude that well-passivated Si quantum dots with quantum confined luminescence around 800 nm can be made. An electrical injection geometry is presented and electroluminescence is observed around 650 nm under a bias of 15-30 V. Strong bleaching of the quantum dot luminescence is observed under 0.5-20 keV electron beam irradiation, which has a potential consequence for the use of electron beam lithography in nanofabrication of structures with Si quantum dots. We describe the design and the fabrication of an electrically excitable plasmon source based on an insulator-metal-insulator (IMI) geometry. The coupling of quantum dots to the SPP mode was studied theoretically. For quantum dots spaced 20-200 nm away from the metal surface, more than 50% of the decay is into SPPs. An IMI SPP geometry for electrical excitation was fabricated using gold and silica doped with Si quantum dots as dielectric material. An IMI SPP source

  9. Temperature switchable polymer dielectrics.

    SciTech Connect

    Johnson, Ross Stefan

    2010-08-01

    Materials with switchable states are desirable in many areas of science and technology. The ability to thermally transform a dielectric material to a conductive state should allow for the creation of electronics with built-in safety features. Specifically, the non-desirable build-up and discharge of electricity in the event of a fire or over-heating would be averted by utilizing thermo-switchable dielectrics in the capacitors of electrical devices (preventing the capacitors from charging at elevated temperatures). We have designed a series of polymers that effectively switch from a non-conductive to a conductive state. The thermal transition is governed by the stability of the leaving group after it leaves as a free entity. Here, we present the synthesis and characterization of a series of precursor polymers that eliminate to form poly(p-phenylene vinylene) (PPV's).

  10. Temperature switchable polymer dielectrics.

    SciTech Connect

    Kholwadwala, Fenil Manish; Johnson, Ross Stefan; Dirk, Shawn M.

    2010-06-01

    Materials with switchable states are desirable in many areas of science and technology. The ability to thermally transform a dielectric material to a conductive state should allow for the creation of electronics with built-in safety features. Specifically, the non-desirable build-up and discharge of electricity in the event of a fire or over-heating would be averted by utilizing thermo-switchable dielectrics in the capacitors of electrical devices (preventing the capacitors from charging at elevated temperatures). We have designed a series of polymers that effectively switch from a non-conductive to a conductive state. The thermal transition is governed by the stability of the leaving group after it leaves as a free entity. Here, we present the synthesis and characterization of a series of precursor polymers that eliminate to form poly(p-phenylene vinylene) (PPV's).

  11. Correlation dynamics after short-pulse photoassociation

    SciTech Connect

    Koch, Christiane P.; Kosloff, Ronnie

    2010-06-15

    Two atoms in an ultracold gas are correlated at short interatomic distances due to threshold effects in which the potential energy of their interaction dominates the kinetic energy. The correlations manifest themselves in a distinct nodal structure of the density matrix at short interatomic distances. Pump-probe spectroscopy has recently been suggested [Phys. Rev. Lett. 103, 260401 (2009)] to probe these pair correlations: A suitably chosen, short photoassociation laser pulse depletes the ground-state pair density within the photoassociation window, creating a nonstationary wave packet in the electronic ground state. The dynamics of this nonstationary wave packet is monitored by time-delayed probe and ionization pulses. Here we discuss how the choice of the pulse parameters affects the experimental feasibility of this pump-probe spectroscopy of two-body correlations.

  12. Short pulse free electron laser amplifier

    DOEpatents

    Schlitt, Leland G.; Szoke, Abraham

    1985-01-01

    Method and apparatus for amplification of a laser pulse in a free electron laser amplifier where the laser pulse duration may be a small fraction of the electron beam pulse duration used for amplification. An electron beam pulse is passed through a first wiggler magnet and a short laser pulse to be amplified is passed through the same wiggler so that only the energy of the last fraction, f, (f<1) of the electron beam pulse is consumed in amplifying the laser pulse. After suitable delay of the electron beam, the process is repeated in a second wiggler magnet, a third, . . . , where substantially the same fraction f of the remainder of the electron beam pulse is consumed in amplification of the given short laser pulse in each wiggler magnet region until the useful electron beam energy is substantially completely consumed by amplification of the laser pulse.

  13. Ultra short pulse reconstruction software: GROG

    NASA Astrophysics Data System (ADS)

    Galletti, M.; Galimberti, M.; Giulietti, D.; Curcio, A.

    2016-07-01

    A new algorithmic method based on the 1D Conjugate Gradient Minimization Method, is presented. The purpose is, analyzing experimental FROG/GRENOUILLE traces, to accurately retrieve intensity and phase both in temporal and spectral domain so as to completely characterize an Ultra Short High Power laser pulse. This algorithm shows important features in the reconstruction of many different pulse classes. The employment of this algorithm also permits the inclusion of material response function present in the FROG/GRENOUILLE set-up.

  14. Low-k Dielectrics

    NASA Astrophysics Data System (ADS)

    Hayashi, Yoshihiro

    As CMOS transistors were scaled, interconnects to link them are also shrunk to reduce the line pitches [1-10]. As shown in Fig. 22.1, the interconnect pitches have been shrunk from 180 nm, 140 nm, and 100 nm for 65 [4], 45 [32], and 32 nm nodes [10] LSIs, respectively. To eliminate the interconnect parasitic capacitance, low-k dielectric films which have lower permittivity than the conventional silica (SiO2) dielectrics have been introduced. Figure 22.2 shows the technology trend of the k-value and the deposition process, in which the low-k films are deposited by spin-on-dielectric (SOD) method or plasma-enhanced CVD. In the case of SOD, precursor solution is poured on a rotated wafer, and the precursor film is heated to vaporize the solvent followed by reaction and densification to make a low-k film. In the case of PECVD [36, 42], on the other hand, precursor solution is vaporized with inert carrier gas such as He, and the precursor gas is introduced into PECVD chamber with RF power. The vaporized precursor gas is exited from plasma, depositing a low-k film on a wafer heated in high vacuum. The SOD method is advantageous to decrease the k-value, while PECVD method is superior in the adhesion strength due to the possibility of in-suite plasma surface treatment in vacuum just before the low-k deposition.

  15. Tunable Dielectric Properties of Ferrite-Dielectric Based Metamaterial

    PubMed Central

    Bi, K.; Huang, K.; Zeng, L. Y.; Zhou, M. H.; Wang, Q. M.; Wang, Y. G.; Lei, M.

    2015-01-01

    A ferrite-dielectric metamaterial composed of dielectric and ferrite cuboids has been investigated by experiments and simulations. By interacting with the electromagnetic wave, the Mie resonance can take place in the dielectric cuboids and the ferromagnetic precession will appear in the ferrite cuboids. The magnetic field distributions show the electric Mie resonance of the dielectric cuboids can be influenced by the ferromagnetic precession of ferrite cuboids when a certain magnetic field is applied. The effective permittivity of the metamaterial can be tuned by modifying the applied magnetic field. A good agreement between experimental and simulated results is demonstrated, which confirms that these metamaterials can be used for tunable microwave devices. PMID:25993433

  16. New silicone dielectric elastomers with a high dielectric constant

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Liu, Liwu; Fan, Jiumin; Yu, Kai; Liu, Yanju; Shi, Liang; Leng, Jinsong

    2008-03-01

    Dielectric elastomers (Des) are a type of EAPs with unique electrical properties and mechanical properties: high actuation strains and stresses, fast response times, high efficiency, stability, reliability and durability. The excellent figures of merit possessed by dielectric elastomers make them the most performing materials which can be applied in many domains: biomimetics, aerospace, mechanics, medicals, etc. In this paper, we present a kind of electroactive polymer composites based on silicone Dielectric elastomers with a high dielectric constant. Novel high DEs could be realized by means of a composite approach. By filling an ordinary elastomer (e.g. silicone) with a component of functional ceramic filler having a greater dielectric permittivity, it is possible to obtain a resulting composite showing the fruitful combination of the matrix's advantageous elasticity and the filler's high permittivity. Here we add the ferroelectric relaxor ceramics (mainly BaTiO3) which has high dielectric constant (>3000) to the conventional silicone Dielectric elastomers, to get the dielectric elastomer which can exhibit high elastic energy densities induced by an electric field of about 15 MV/m. Tests of the physical and chemical properties of the dielectric elastomers are conducted, which verify our supposes and offer the experimental data supporting further researches.

  17. Experimental realisation of all-dielectric bianisotropic metasurfaces

    NASA Astrophysics Data System (ADS)

    Odit, Mikhail; Kapitanova, Polina; Belov, Pavel; Alaee, Rasoul; Rockstuhl, Carsten; Kivshar, Yuri S.

    2016-05-01

    All-dielectric reciprocal metasurface based on bianisotropic scatterers operating at microwave frequencies is demonstrated experimentally. Experimental studies of a single bianisotropic particle supporting both electric and magnetic Mie-type resonances are performed, and reveal that the particle with a broken symmetry exhibits different back-scattering for the opposite excitation directions. A metasurface composed of the all-dielectric bianisotropic particles is fabricated and experimentally investigated in the frequency range of 4-9 GHz. The measured data demonstrate that the metasurface is characterized by different reflection phases when being excited from the opposite directions. At the frequency 6.8 GHz, the metasurface provides a 2π phase change in the reflection spectrum with the amplitude close to 1.

  18. Metal–Dielectric Waveguides for High Efficiency Fluorescence Imaging

    PubMed Central

    Zhu, Liangfu; Zhang, Douguo; Wang, Ruxue; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Du, Luping; Yuan, Xiaocong; Lakowicz, Joseph R.

    2015-01-01

    We demonstrate that Metal–Dielectric Waveguide structures (MDWs) with high efficiency of fluorescence coupling can be suitable as substrates for fluorescence imaging. This hybrid MDWs consists of a continuous metal film and a dielectric top layer. The optical modes sustaining inside this structure can be excited with a high numerical aperture (N.A) objective, and then focused into a virtual optical probe with high intensity, leading to efficient excitation of fluorophores deposited on top of the MDWs. The emitted fluorophores couple with the optical modes thus enabling the directional emission, which is verified by the back focal plane (BFP) imaging. These unique properties of MDWs have been adopted in a scanning laser confocal optical microscopy, and show the merit of high efficiency fluorescence imaging. MDWs can be easily fabricated by vapor deposition and/or spin coating, the silica surface of the MDWs is suitable for biomolecule tethering, and will offer new opportunities for cell biology and biophysics research. PMID:26525494

  19. Numerical study for electromagnetic wave emission from intrinsic Josephson junction stacks with a dielectric cover

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Matsumoto, H.; Ota, Y.; Machida, M.

    2013-08-01

    Electromagnetic (EM) wave emission from the intrinsic Josephson junction stacks (IJJ’s) covered with a thin dielectric medium is numerically investigated, using the multi-scale simulation method developed in our previous paper. It is shown that the power of emitted EM waves is considerably increased in the IJJ’s with a dielectric cover. The emission from the n = 2 resonance mode is greatly enhanced. The enhancement is caused by the excitation of a solitonic mode.

  20. Polarization insensitive metamaterial absorber based on E-shaped all-dielectric structure

    NASA Astrophysics Data System (ADS)

    Li, Liyang; Wang, Jun; Ma, Hua; Wang, Jiafu; Du, Hongliang; Qu, Shaobo

    2015-04-01

    In this paper, we designed a metamaterial absorber performed in microwave frequency band. This absorber is composed of E-shaped dielectrics which are arranged along different directions. The E-shaped all-dielectric structure is made of microwave ceramics with high permittivity and low loss. Within about 1 GHz frequency band, more than 86% absorption efficiency was observed for this metamaterial absorber. This absorber is polarization insensitive and is stable for incident angles. It is figured out that the polarization insensitive absorption is caused by the nearly located varied resonant modes which are excited by the E-shaped all-dielectric resonators with the same size but in the different direction. The E-shaped dielectric absorber contains intensive resonant points. Our research work paves a way for designing all-dielectric absorber.

  1. Electron dynamics and plasma jet formation in a helium atmospheric pressure dielectric barrier discharge jet

    SciTech Connect

    Algwari, Q. Th.; O'Connell, D.

    2011-09-19

    The excitation dynamics within the main plasma production region and the plasma jets of a kHz atmospheric pressure dielectric barrier discharge (DBD) jet operated in helium was investigated. Within the dielectric tube, the plasma ignites as a streamer-type discharge. Plasma jets are emitted from both the powered and grounded electrode end; their dynamics are compared and contrasted. Ignition of these jets are quite different; the jet emitted from the powered electrode is ignited with a slight time delay to plasma ignition inside the dielectric tube, while breakdown of the jet at the grounded electrode end is from charging of the dielectric and is therefore dependent on plasma production and transport within the dielectric tube. Present streamer theories can explain these dynamics.

  2. Voltage-induced pinnacle response in the dynamics of dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Li, Bo; Zhang, Junshi; Chen, Hualing; Li, Dichen

    2016-05-01

    A dielectric elastomer is capable of large deformation under alternating electromechanical excitation. In this paper, several dynamic properties of a dielectric elastomer are investigated, in particular the effect of strain stiffening. A theoretical model is established that shows that the bias voltage affects the amplitude and the response waveform during vibration, a curve with the shape of a pinnacle. We also describe the underlying physical mechanism by considering the molecular chain length and cross-linking density of the material. A phase portrait is presented that reveals the transitional behavior of the dielectric elastomer as it switches between soft and stiffened vibration states.

  3. Low-loss and high-symmetry negative refractive index media by hybrid dielectric resonators.

    PubMed

    Lai, Yueh-Chun; Chen, Cheng-Kuang; Yang, Yu-Hang; Yen, Ta-Jen

    2012-01-30

    Based on Maxwell's equations and Mie theory, strong sub-wavelength artificial magnetic and electric dipole resonances can be excited within dielectric resonators, and their resonant frequencies can be tailored simply by scaling the size of the dielectric resonators. Therefore, in this work we hybridize commercially available zirconia and alumina structures to harvest their individual artificial magnetic and electric response simultaneously, presenting a negative refractive index medium (NRIM). Comparing with the conventional NRIM constructed by metallic structures, the demonstrated all-dielectric NRIM possesses low-loss and high-symmetry advantages, thus benefiting practical applications in communication components, perfect lenses, invisible cloaking and other novel electromagnetic devices. PMID:22330524

  4. Voltage-induced pinnacle response in the dynamics of dielectric elastomers.

    PubMed

    Li, Bo; Zhang, Junshi; Chen, Hualing; Li, Dichen

    2016-05-01

    A dielectric elastomer is capable of large deformation under alternating electromechanical excitation. In this paper, several dynamic properties of a dielectric elastomer are investigated, in particular the effect of strain stiffening. A theoretical model is established that shows that the bias voltage affects the amplitude and the response waveform during vibration, a curve with the shape of a pinnacle. We also describe the underlying physical mechanism by considering the molecular chain length and cross-linking density of the material. A phase portrait is presented that reveals the transitional behavior of the dielectric elastomer as it switches between soft and stiffened vibration states. PMID:27300944

  5. Experimental Demonstration of Isotropic Negative Permeability in a Three-Dimensional Dielectric Composite

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Kang, Lei; Du, B.; Zhao, H.; Xie, Q.; Huang, X.; Li, B.; Zhou, J.; Li, L.

    2008-07-01

    Isotropic negative permeability resulting from Mie resonance is demonstrated in a three-dimensional (3D) dielectric composite consisting of an array of dielectric cubes. A strong subwavelength magnetic resonance, corresponding to the first Mie resonance, was excited in dielectric cubes by electromagnetic wave. Negative permeability is verified in the magnetic resonance area via microwave measurement and the dispersion properties. The resonance relies on the size and permittivity of the cubes. It is promising for construction of novel isotropic 3D left-handed materials with a simple structure.

  6. Coded excitation plane wave imaging for shear wave motion detection.

    PubMed

    Song, Pengfei; Urban, Matthew W; Manduca, Armando; Greenleaf, James F; Chen, Shigao

    2015-07-01

    Plane wave imaging has greatly advanced the field of shear wave elastography thanks to its ultrafast imaging frame rate and the large field-of-view (FOV). However, plane wave imaging also has decreased penetration due to lack of transmit focusing, which makes it challenging to use plane waves for shear wave detection in deep tissues and in obese patients. This study investigated the feasibility of implementing coded excitation in plane wave imaging for shear wave detection, with the hypothesis that coded ultrasound signals can provide superior detection penetration and shear wave SNR compared with conventional ultrasound signals. Both phase encoding (Barker code) and frequency encoding (chirp code) methods were studied. A first phantom experiment showed an approximate penetration gain of 2 to 4 cm for the coded pulses. Two subsequent phantom studies showed that all coded pulses outperformed the conventional short imaging pulse by providing superior sensitivity to small motion and robustness to weak ultrasound signals. Finally, an in vivo liver case study on an obese subject (body mass index = 40) demonstrated the feasibility of using the proposed method for in vivo applications, and showed that all coded pulses could provide higher SNR shear wave signals than the conventional short pulse. These findings indicate that by using coded excitation shear wave detection, one can benefit from the ultrafast imaging frame rate and large FOV provided by plane wave imaging while preserving good penetration and shear wave signal quality, which is essential for obtaining robust shear elasticity measurements of tissue.

  7. RESONANT CAVITY EXCITATION SYSTEM

    DOEpatents

    Baker, W.R.; Kerns, Q.A.; Riedel, J.

    1959-01-13

    An apparatus is presented for exciting a cavity resonator with a minimum of difficulty and, more specifically describes a sub-exciter and an amplifier type pre-exciter for the high-frequency cxcitation of large cavities. Instead of applying full voltage to the main oscillator, a sub-excitation voltage is initially used to establish a base level of oscillation in the cavity. A portion of the cavity encrgy is coupled to the input of the pre-exciter where it is amplified and fed back into the cavity when the pre-exciter is energized. After the voltage in the cavity resonator has reached maximum value under excitation by the pre-exciter, full voltage is applied to the oscillator and the pre-exciter is tunned off. The cavity is then excited to the maximum high voltage value of radio frequency by the oscillator.

  8. Square dielectric THz waveguides.

    PubMed

    Aflakian, N; Yang, N; LaFave, T; Henderson, R M; O, K K; MacFarlane, D L

    2016-06-27

    A holey cladding dielectric waveguide with square cross section is designed, simulated, fabricated and characterized. The TOPAS waveguide is designed to be single mode across the broad frequency range of 180 GHz to 360 GHz as shown by finite-difference time domain simulation and to robustly support simultaneous TE and TM mode propagation. The square fiber geometry is realized by pulling through a heat distribution made square by appropriate furnace design. The transmitted mode profile is imaged using a vector network analyzer with a pinhole at the receiver module. Good agreement between the measured mode distribution and the calculated mode distribution is demonstrated. PMID:27410645

  9. Low Dielectric Polymers

    NASA Technical Reports Server (NTRS)

    Cassidy, Patrick E.

    2002-01-01

    This report summarizes results obtained through our current research effort entitled 'Low Dielectric Polymers'. Results are reported in four areas: (1) Development of an alkyne containing a crosslinking agent for 12F-PEK and its analogues; (2) Preparation and evaluation of new silicon- and/or fluorine-containing polymers for low temperature applications; (3) Polymers derived from a new highly fluorinated monomer; and (4) Continued evaluation of the scale-up of the preparation of 6FC11- and 6FC17-PEKs.

  10. Low Dielectric Polymers

    NASA Technical Reports Server (NTRS)

    Venumbaka, Sreenivasulu R.; Cassidy, Patrick E.

    2002-01-01

    This report summarizes results obtained from research funded through Research Cooperative Agreement No. NCC-1-01033-"Low Dielectric Polymers" (from 5/10/01 through 5/09/02). Results are reported in three of the proposed research areas (Tasks 1-3 in the original proposal): (1) Repeat and confirm the preparation and properties of the new alkyl-substituted PEK, 6HC17-PEK, (2) Prepare and evaluate polymers derived from a highly fluorinated monomer, and (3) Prepare and evaluate new silicon and/or fluorine-containing polymers expected to retain useful properties at low temperature.

  11. Dielectric Properties Of Nanoferrites

    SciTech Connect

    Jankov, Stevan B.; Cvejic, Zeljka N.; Rakic, Srdjan; Srdic, Vladimir

    2007-04-23

    Dielectric properties: permittivity, loss factor, tan delta and ionic conductivity of nanostructured ferrites have been measured. Samples used were nickel, zinc and yttrium doped ferrites mixed in various ratios. The synthesis has been performed using precipitation method and obtained powders were pressed in pellets under varying pressure. X-ray diffractography approach for the refinement of structure and microstructural analysis has been performed. All parameters have been measured in 1 Hz to 100 kHz frequency range and 30 deg. C to 80 deg. C temperature range. Significant improvements in permittivity, loss factor and ionic conductivity comparing to bulk samples have been observed.

  12. SLAB symmetric dielectric micron scale structures for high gradient electron acceleration.

    SciTech Connect

    Rosenzweig, J. B.; Schoessow, P. V.

    1999-06-12

    A class of planar microstructure is proposed which provide high accelerating gradients when excited by an infrared laser pulse. These structures consist of parallel dielectric slabs separated by a vacuum gap; the dielectric or the outer surface coating are spatially modulated at the laser wavelength along the beam direction so as to support a standing wave accelerating field. We have developed numerical and analytic models of the accelerating mode fields in the structure. We show an optimized coupling scheme such that this mode is excited resonantly with a large quality factor. The status of planned experiments on fabricating and measuring these planar structures will be described.

  13. Voltage sensor and dielectric material

    DOEpatents

    Yakymyshyn, Christopher Paul; Yakymyshyn, Pamela Jane; Brubaker, Michael Allen

    2006-10-17

    A voltage sensor is described that consists of an arrangement of impedance elements. The sensor is optimized to provide an output ratio that is substantially immune to changes in voltage, temperature variations or aging. Also disclosed is a material with a large and stable dielectric constant. The dielectric constant can be tailored to vary with position or direction in the material.

  14. Microwave Propagation in Dielectric Fluids.

    ERIC Educational Resources Information Center

    Lonc, W. P.

    1980-01-01

    Describes an undergraduate experiment designed to verify quantitatively the effect of a dielectric fluid's dielectric constant on the observed wavelength of microwave radiation propagating through the fluid. The fluid used is castor oil, and results agree with the expected behavior within 5 percent. (Author/CS)

  15. Ferroelectric-dielectric tunable composites

    NASA Astrophysics Data System (ADS)

    Sherman, Vladimir O.; Tagantsev, Alexander K.; Setter, Nava; Iddles, David; Price, Tim

    2006-04-01

    The dielectric response of ferroelectric-dielectric composites is theoretically addressed. Dielectric permittivity, tunability (relative change of the permittivity driven by dc electric field), and loss tangent are evaluated for various composite models. The analytical results for small dielectric concentration and relative tunability are obtained in terms of the traditional electrostatic consideration. The results for large tunability are obtained numerically. A method is proposed for the evaluation of the tunability and loss at large concentrations of the dielectric. The basic idea of the method is to reformulate the effective medium approach in terms of electrical energies stored and dissipated in the composite. The important practical conclusion of the paper is that, for random ferroelectric-dielectric composite, the addition of small amounts of a linear dielectric into the tunable ferroelectric results in an increase of the tunability of the mixture. The loss tangent of such composites is shown to be virtually unaffected by the addition of moderate amounts of the low-loss dielectric. The experimental data for (Ba,Sr)TiO3 based composites are analyzed in terms of the theory developed and shown to be in a reasonable agreement with the theoretical results.

  16. Nanoscale Mapping of Dielectric Properties of Nanomaterials from Kilohertz to Megahertz Using Ultrasmall Cantilevers.

    PubMed

    Cadena, Maria J; Sung, Seung Hyun; Boudouris, Bryan W; Reifenberger, Ronald; Raman, Arvind

    2016-04-26

    Electrostatic force microscopy (EFM) is often used for nanoscale dielectric spectroscopy, the measurement of local dielectric properties of materials as a function of frequency. However, the frequency range of atomic force microscopy (AFM)-based dielectric spectroscopy has been limited to a few kilohertz by the resonance frequency and noise of soft microcantilevers used for this purpose. Here, we boost the frequency range of local dielectric spectroscopy by 3 orders of magnitude from a few kilohertz to a few megahertz by developing a technique that exploits the high resonance frequency and low thermal noise of ultrasmall cantilevers (USCs). We map the frequency response of the real and imaginary components of the capacitance gradient (∂C(ω)/∂z) by using second-harmonic EFM and a theoretical model, which relates cantilever dynamics to the complex dielectric constant. We demonstrate the method by mapping the nanoscale dielectric spectrum of polymer-based materials for organic electronic devices. Beyond offering a powerful extension to AFM-based dielectric spectroscopy, the approach also allows the identification of electrostatic excitation frequencies which affords high dielectric contrast on nanomaterials.

  17. Manipulation of Surface Plasmon Resonance in Metal and Alloy Thin Films Using Dielectric Media

    NASA Astrophysics Data System (ADS)

    Hall, Benjamin DuBray

    Surface plasmon polaritons are coherent electron oscillations that propagate along an interface between a Drude metal and a dielectric medium. The excitation of polaritons is highly dependent on the dielectric properties of the metal, the thickness of the metal, and the optical properties of the dielectric material. First, plasmonic activity is assessed for several thicknesses of silver and nickel chromium under He-Ne incidence. Relationships between film thickness and metal dielectric function are explored in both cases. To manipulate the plasmonic activity at the silver surfaces, two methods are explored. Silver oxide was grown on the surface of the silver films, and the resulting reflection curves are compared to the curves of the metal silver film alone. Next, a polymer was added to the top of the silver films, and the reflection curves were compared. Poling of the polymer is also discussed and attempted as a means of dynamically modulating the reflection curves. A weak relationship between the dielectric function of silver and the plasmonic activity was found. No definite relationship between the dielectric function of nickel chromium and plasmonic activity was found. Both dielectric media studied were found to alter the plasmonic activity at the metal-dielectric interface.

  18. Low dielectric polyimide fibers

    NASA Technical Reports Server (NTRS)

    Dorogy, William E., Jr. (Inventor); St.clair, Anne K. (Inventor)

    1994-01-01

    A high temperature resistant polyimide fiber that has a dielectric constant of less than 3 is presented. The fiber was prepared by first reacting 2,2-bis (4-(4aminophenoxy)phenyl) hexafluoropropane with 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride in an aprotic solvent to form a polyamic acid resin solution. The polyamic acid resin solution is then extruded into a coagulation medium to form polyamic acid fibers. The fibers are thermally cured to their polyimide form. Alternatively, 2,2-bis(4-(4-aminophenoxy)phenyl) hexafluoropropane is reacted with 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride to form a polyamic acid, and the polyamic acid is chemically converted to its polyimide form. The polyimide is then dissolved in a solvent to form a polyimide resin solution, and the polyimide resin is extruded into a coagulation medium to form a polyimide wet gel filament. In order to obtain polyimide fibers of increased tensile properties, the polyimide wet gel filaments are stretched at elevated temperatures. The tensile properties of the fibers were measured and found to be in the range of standard textile fibers. Polyimide fibers obtained by either method will have a dielectric constant similar to that of the corresponding polymer, viz., less than 3 at 10 GHz.

  19. Plasmonics without negative dielectrics

    NASA Astrophysics Data System (ADS)

    Della Giovampaola, Cristian; Engheta, Nader

    2016-05-01

    Plasmonic phenomena are exhibited in light-matter interaction involving materials whose real parts of permittivity functions attain negative values at operating wavelengths. However, such materials usually suffer from dissipative losses, thus limiting the performance of plasmon-based optical devices. Here, we utilize an alternative methodology that mimics a variety of plasmonic phenomena by exploiting the well-known structural dispersion of electromagnetic modes in bounded guided-wave structures filled with only materials with positive permittivity. A key issue in the design of such structures is prevention of mode coupling, which can be achieved by implementing thin metallic wires at proper interfaces. This method, which is more suitable for lower frequencies, allows designers to employ conventional dielectrics and highly conductive metals for which the loss is low at these frequencies, while achieving plasmonic features. We demonstrate, numerically and analytically, that this platform can provide surface plasmon polaritons, local plasmonic resonance, plasmonic cloaking, and epsilon-near-zero-based tunneling using conventional positive-dielectric materials.

  20. Dielectric Actuation of Polymers

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP

  1. Nonradiating anapole modes in dielectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, Andrey E.; Evlyukhin, Andrey B.; Yu, Ye Feng; Bakker, Reuben M.; Chipouline, Arkadi; Kuznetsov, Arseniy I.; Luk'yanchuk, Boris; Chichkov, Boris N.; Kivshar, Yuri S.

    2015-08-01

    Nonradiating current configurations attract attention of physicists for many years as possible models of stable atoms. One intriguing example of such a nonradiating source is known as `anapole'. An anapole mode can be viewed as a composition of electric and toroidal dipole moments, resulting in destructive interference of the radiation fields due to similarity of their far-field scattering patterns. Here we demonstrate experimentally that dielectric nanoparticles can exhibit a radiationless anapole mode in visible. We achieve the spectral overlap of the toroidal and electric dipole modes through a geometry tuning, and observe a highly pronounced dip in the far-field scattering accompanied by the specific near-field distribution associated with the anapole mode. The anapole physics provides a unique playground for the study of electromagnetic properties of nontrivial excitations of complex fields, reciprocity violation and Aharonov-Bohm like phenomena at optical frequencies.

  2. Nonradiating anapole modes in dielectric nanoparticles.

    PubMed

    Miroshnichenko, Andrey E; Evlyukhin, Andrey B; Yu, Ye Feng; Bakker, Reuben M; Chipouline, Arkadi; Kuznetsov, Arseniy I; Luk'yanchuk, Boris; Chichkov, Boris N; Kivshar, Yuri S

    2015-01-01

    Nonradiating current configurations attract attention of physicists for many years as possible models of stable atoms. One intriguing example of such a nonradiating source is known as 'anapole'. An anapole mode can be viewed as a composition of electric and toroidal dipole moments, resulting in destructive interference of the radiation fields due to similarity of their far-field scattering patterns. Here we demonstrate experimentally that dielectric nanoparticles can exhibit a radiationless anapole mode in visible. We achieve the spectral overlap of the toroidal and electric dipole modes through a geometry tuning, and observe a highly pronounced dip in the far-field scattering accompanied by the specific near-field distribution associated with the anapole mode. The anapole physics provides a unique playground for the study of electromagnetic properties of nontrivial excitations of complex fields, reciprocity violation and Aharonov-Bohm like phenomena at optical frequencies. PMID:26311109

  3. Generalized Brewster effect in dielectric metasurfaces

    PubMed Central

    Paniagua-Domínguez, Ramón; Yu, Ye Feng; Miroshnichenko, Andrey E.; Krivitsky, Leonid A.; Fu, Yuan Hsing; Valuckas, Vytautas; Gonzaga, Leonard; Toh, Yeow Teck; Kay, Anthony Yew Seng; Luk'yanchuk, Boris; Kuznetsov, Arseniy I.

    2016-01-01

    Polarization is a key property defining the state of light. It was discovered by Brewster, while studying light reflected from materials at different angles. This led to the first polarizers, based on Brewster's effect. Now, one of the trends in photonics is the study of miniaturized devices exhibiting similar, or improved, functionalities compared with bulk optical elements. In this work, it is theoretically predicted that a properly designed all-dielectric metasurface exhibits a generalized Brewster's effect potentially for any angle, wavelength and polarization of choice. The effect is experimentally demonstrated for an array of silicon nanodisks at visible wavelengths. The underlying physics is related to the suppressed scattering at certain angles due to the interference between the electric and magnetic dipole resonances excited in the nanoparticles. These findings open doors for Brewster phenomenon to new applications in photonics, which are not bonded to a specific polarization or angle of incidence. PMID:26783075

  4. Nonradiating anapole modes in dielectric nanoparticles

    PubMed Central

    Miroshnichenko, Andrey E.; Evlyukhin, Andrey B.; Yu, Ye Feng; Bakker, Reuben M.; Chipouline, Arkadi; Kuznetsov, Arseniy I.; Luk'yanchuk, Boris; Chichkov, Boris N.; Kivshar, Yuri S.

    2015-01-01

    Nonradiating current configurations attract attention of physicists for many years as possible models of stable atoms. One intriguing example of such a nonradiating source is known as ‘anapole'. An anapole mode can be viewed as a composition of electric and toroidal dipole moments, resulting in destructive interference of the radiation fields due to similarity of their far-field scattering patterns. Here we demonstrate experimentally that dielectric nanoparticles can exhibit a radiationless anapole mode in visible. We achieve the spectral overlap of the toroidal and electric dipole modes through a geometry tuning, and observe a highly pronounced dip in the far-field scattering accompanied by the specific near-field distribution associated with the anapole mode. The anapole physics provides a unique playground for the study of electromagnetic properties of nontrivial excitations of complex fields, reciprocity violation and Aharonov–Bohm like phenomena at optical frequencies. PMID:26311109

  5. Dielectric Metamaterials with Toroidal Dipolar Response

    NASA Astrophysics Data System (ADS)

    Basharin, Alexey A.; Kafesaki, Maria; Economou, Eleftherios N.; Soukoulis, Costas M.; Fedotov, Vassili A.; Savinov, Vassili; Zheludev, Nikolay I.

    2015-01-01

    Toroidal multipoles are the terms missing in the standard multipole expansion; they are usually overlooked due to their relatively weak coupling to the electromagnetic fields. Here, we propose and theoretically study all-dielectric metamaterials of a special class that represent a simple electromagnetic system supporting toroidal dipolar excitations in the THz part of the spectrum. We show that resonant transmission and reflection of such metamaterials is dominated by toroidal dipole scattering, the neglect of which would result in a misunderstanding interpretation of the metamaterials' macroscopic response. Because of the unique field configuration of the toroidal mode, the proposed metamaterials could serve as a platform for sensing or enhancement of light absorption and optical nonlinearities.

  6. Dielectric Sensors Based on Electromagnetic Energy Tunneling

    PubMed Central

    Siddiqui, Omar; Kashanianfard, Mani; Ramahi, Omar

    2015-01-01

    We show that metallic wires embedded in narrow waveguide bends and channels demonstrate resonance behavior at specific frequencies. The electromagnetic energy at these resonances tunnels through the narrow waveguide channels with almost no propagation losses. Under the tunneling behavior, high-intensity electromagnetic fields are produced in the vicinity of the metallic wires. These intense field resonances can be exploited to build highly sensitive dielectric sensors. The sensor operation is explained with the help of full-wave simulations. A practical setup consisting of a 3D waveguide bend is presented to experimentally observe the tunneling phenomenon. The tunneling frequency is predicted by determining the input impedance minima through a variational formula based on the Green function of a probe-excited parallel plate waveguide. PMID:25835188

  7. Generalized Brewster effect in dielectric metasurfaces.

    PubMed

    Paniagua-Domínguez, Ramón; Yu, Ye Feng; Miroshnichenko, Andrey E; Krivitsky, Leonid A; Fu, Yuan Hsing; Valuckas, Vytautas; Gonzaga, Leonard; Toh, Yeow Teck; Kay, Anthony Yew Seng; Luk'yanchuk, Boris; Kuznetsov, Arseniy I

    2016-01-01

    Polarization is a key property defining the state of light. It was discovered by Brewster, while studying light reflected from materials at different angles. This led to the first polarizers, based on Brewster's effect. Now, one of the trends in photonics is the study of miniaturized devices exhibiting similar, or improved, functionalities compared with bulk optical elements. In this work, it is theoretically predicted that a properly designed all-dielectric metasurface exhibits a generalized Brewster's effect potentially for any angle, wavelength and polarization of choice. The effect is experimentally demonstrated for an array of silicon nanodisks at visible wavelengths. The underlying physics is related to the suppressed scattering at certain angles due to the interference between the electric and magnetic dipole resonances excited in the nanoparticles. These findings open doors for Brewster phenomenon to new applications in photonics, which are not bonded to a specific polarization or angle of incidence. PMID:26783075

  8. Dielectric relaxation of CdO nanoparticles

    NASA Astrophysics Data System (ADS)

    Tripathi, Ramna; Dutta, Alo; Das, Sayantani; Kumar, Akhilesh; Sinha, T. P.

    2016-02-01

    Nanoparticles of cadmium oxide have been synthesized by soft chemical route using thioglycerol as the capping agent. The crystallite size is determined by X-ray diffraction technique and the particle size is obtained by transmission electron microscope. The band gap of the material is obtained using Tauc relation to UV-visible absorption spectrum. The photoluminescence emission spectra of the sample are measured at various excitation wavelengths. The molecular components in the material have been analyzed by FT-IR spectroscopy. The dielectric dispersion of the material is investigated in the temperature range from 313 to 393 K and in the frequency range from 100 Hz to 1 MHz by impedance spectroscopy. The Cole-Cole model is used to describe the dielectric relaxation of the system. The scaling behavior of imaginary part of impedance shows that the relaxation describes the same mechanism at various temperatures. The frequency-dependent electrical data are also analyzed in the framework of conductivity and electrical modulus formalisms. The frequency-dependent conductivity spectra are found to obey the power law.

  9. Multilayer optical dielectric coating

    DOEpatents

    Emmett, John L.

    1990-01-01

    A highly damage resistant, multilayer, optical reflective coating includes alternating layers of doped and undoped dielectric material. The doping levels are low enough that there are no distinct interfaces between the doped and undoped layers so that the coating has properties nearly identical to the undoped material. The coating is fabricated at high temperature with plasma-assisted chemical vapor deposition techniques to eliminate defects, reduce energy-absorption sites, and maintain proper chemical stoichiometry. A number of differently-doped layer pairs, each layer having a thickness equal to one-quarter of a predetermined wavelength in the material are combined to form a narrowband reflective coating for a predetermined wavelength. Broadband reflectors are made by using a number of narrowband reflectors, each covering a portion of the broadband.

  10. Higher order mode of a microstripline fed cylindrical dielectric resonator antenna

    NASA Astrophysics Data System (ADS)

    Kumar, A. V. Praveen

    2016-03-01

    A microstrip transmission line can be used to excite the broadside radiating mode of a cylindrical dielectric resonator antenna (CDRA). The same is found to excite considerably well a higher order mode (HOM) as well. However unlike the broadside mode, the higher order mode gives distorted radiation pattern which makes this mode less useful for practical applications. The cause of distortion in the HOM radiation and the dependence of HOM coupling on the microstrip feed line are explored using HFSS simulations.

  11. Pulsed Excitation Dynamics of an Optomechanical Crystal Resonator near Its Quantum Ground State of Motion

    NASA Astrophysics Data System (ADS)

    Meenehan, Seán M.; Cohen, Justin D.; MacCabe, Gregory S.; Marsili, Francesco; Shaw, Matthew D.; Painter, Oskar

    2015-10-01

    Using pulsed optical excitation and read-out along with single-phonon-counting techniques, we measure the transient backaction, heating, and damping dynamics of a nanoscale silicon optomechanical crystal cavity mounted in a dilution refrigerator at a base temperature of Tf≈11 mK . In addition to observing a slow (approximately 740-ns) turn-on time for the optical-absorption-induced hot-phonon bath, we measure for the 5.6-GHz "breathing" acoustic mode of the cavity an initial phonon occupancy as low as ⟨n ⟩=0.021 ±0.007 (mode temperature Tmin≈70 mK ) and an intrinsic mechanical decay rate of γ0=328 ±14 Hz (Qm≈1.7 ×107). These measurements demonstrate the feasibility of using short pulsed measurements for a variety of quantum optomechanical applications despite the presence of steady-state optical heating.

  12. Maxwell stress on a small dielectric sphere in a dielectric

    NASA Astrophysics Data System (ADS)

    Datsyuk, Vitaly V.; Pavlyniuk, Oleg R.

    2015-02-01

    Electrically induced normal pressure and tangential stress at the surface of a small dielectric sphere (or cavity) in a dielectric are calculated using the Minkowski, Einstein-Laub, Abraham, and Lorentz forms of the Maxwell stress tensor. Only the Lorentz tensor is in agreement with the following observations: (1) A spherical cavity in a dielectric transforms into a sharp-edge plate perpendicular to the electric field; (2) a liquid drop placed in a medium with a slightly lower refractive index is stretched along the electric field; and (3) there is a torque on a small birefringent sphere. These phenomena cannot be explained by the conventional theory using the Minkowski stress tensor. For example, the Minkowski stress tensor predicts lateral compression of a spherical cavity in a dielectric.

  13. Studies of Photo-Excited and Trapped Electrons in Cubic BISMUTH(12) Silicon OXYGEN(20)

    NASA Astrophysics Data System (ADS)

    Nouchi, Pascale

    We present experimental and theoretical studies of charge transport processes in cubic n-type Bi _{12}SiO_{20 } (n-BSO). We first study the room-temperature photocurrent response to short-pulse illumination in two n-BSO samples called CT1 and SU1 in previous publications. These experiments suggest that drifting electrons spend much time in shallow traps. They allow us to estimate the corresponding trap-limited mobility and to measure the electron lifetime in the conduction band and the dwell time in shallow traps. In sample CT1, we also study the transient photocurrent behavior below room temperature: we find that the charge transport is limited by two sets of shallow traps with energy depths equal to 410 +/- 50 meV and 650 +/- 80 meV. In sample SU1, we directly measure the trap-limited mobility and find it is equal to 0.24 +/- 0.07 cm^2V ^{-1}s^ {-1} at room temperature. We then describe what we believe to be the first measurement of the pure conduction band mobility in n-BSO which we find to be 4.4 +/- 1.3 cm^2V ^{-1}s^ {-1} in SU1. We describe the novel holographic "time-of-flight" technique we developed for this measurement in which we observe the average time for a photoexcited charge carrier to drift in the dark (because of a strong applied electric field) over the period of a grating of charged traps created in the crystal by two interfering short laser pulses. We also use this technique to study the temperature dependence of the mobility. These results suggest the existence of shallow traps of energy depth equal to 320 +/- 40 meV. We also derive an analytical solution to the standard material equations which describes the build-up of the photorefractive grating in the dark after an initial low-energy, spatially -sinusoidal, short-pulse excitation. It is the first short -pulse solution to be developed in a band transport model containing both deep photoexcitable traps and shallow thermally excitable traps. The build-up of the space-charge field includes two

  14. Optical and dielectric studies on tin(iv) tungstate nanoparticles

    NASA Astrophysics Data System (ADS)

    B, Beena; S, Manoj

    2015-02-01

    Tin(IV) tungstate nanoparticles in the form of disc were synthesized by a novel chemical coprecipitation method. Surface morphology and particle size of the synthesized materials were analysed using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). SEM image shows disc like appearance of the nanoparticles. The particle size obtained was found to be ~20nm. Optical absorption for this material arises due to O2p → W5d charge transfer in the tungstate structure. The energy band gap determined using optical absorption spectrum shows that it is a direct band gap semiconductor. The extent of disorder determined using Urbach plot was found to be 0.00176 meV. The material showed intrinsic Photoluminescence around 468nm when excited by UV light of 275nm. The variation of dielectric permittivity in the frequency range 316 Hz to 3.16 MHz was studied. The temperature dependence of dielectric permittivity was also studied in the frequency range 10Hz and 32 MHz. The compound exhibit a high dielectric constant at room temperature (ε1>103) for frequencies 10Hz and (ε1 > 105) for frequencies 3.2×107 Hz. It posses lower dielectric loss ie, ~0.1 at 10 Hz to ~3 at 3.2×107 Hz. The material is very attractive for potential application provides its losses can be minimized.

  15. Acoustically excited heated jets. 1: Internal excitation

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Ahuja, K. K.; Brown, W. H.; Salikuddin, M.; Morris, P. J.

    1988-01-01

    The effects of relatively strong upstream acoustic excitation on the mixing of heated jets with the surrounding air are investigated. To determine the extent of the available information on experiments and theories dealing with acoustically excited heated jets, an extensive literature survey was carried out. The experimental program consisted of flow visualization and flowfield velocity and temperature measurements for a broad range of jet operating and flow excitation conditions. A 50.8-mm-diam nozzle was used for this purpose. Parallel to the experimental study, an existing theoretical model of excited jets was refined to include the region downstream of the jet potential core. Excellent agreement was found between theory and experiment in moderately heated jets. However, the theory has not yet been confirmed for highly heated jets. It was found that the sensitivity of heated jets to upstream acoustic excitation varies strongly with the jet operating conditions and that the threshold excitation level increases with increasing jet temperature. Furthermore, the preferential Strouhal number is found not to change significantly with a change of the jet operating conditions. Finally, the effects of the nozzle exit boundary layer thickness appear to be similar for both heated and unheated jets at low Mach numbers.

  16. Electrolytes near structured dielectric interfaces

    NASA Astrophysics Data System (ADS)

    Wu, Huanxin; Jing, Yufei; Solis, Francisco; Olvera de La Cruz, Monica; Luijten, Erik

    2015-03-01

    The ion distribution in an electrolyte near a dielectric interface has important consequences for numerous applications. To date, most studies have focused on planar interfaces, where, e.g., simulations can take advantage of the image-charge method. However, for surfaces that display structure on the nanoscale, dielectric effects may be significantly different. Here, we investigate such interfaces via a combination of computer simulations and Poisson-Boltzmann theory. We demonstrate how, even for systems with piecewise uniform dielectric constant, surface structure affects the induced polarization charge as well as the ion distribution near the interface, in particular for asymmetric salts. We explore the role of ion concentration, dielectric mismatch and characteristic length scale of the surface structure.

  17. Infrared cubic dielectric resonator metamaterial.

    SciTech Connect

    Sinclair, Michael B.; Brener, Igal; Peters, David William; Ginn, James Cleveland, III; Ten Eyck, Gregory A.

    2010-06-01

    Dielectric resonators are an effective means to realize isotropic, low-loss optical metamaterials. As proof of this concept, a cubic resonator is analytically designed and then tested in the long-wave infrared.

  18. Thermo-switchable polymer dielectrics.

    SciTech Connect

    Kholwadwala, Fenil Manish; Johnson, Ross Stefan; Dirk, Shawn M.

    2010-11-01

    We are interested in utilizing the thermo-switchable properties of precursor poly(p-phenylene vinylene) (PPV) polymers to develop capacitor dielectrics that will fail at specific temperatures due to the material irreversibly switching from an insulator to a conducting polymer. By utilizing different leaving groups on the polymer main chain, the temperature at which the polymer transforms into a conductor can be varied over a range of temperatures. Electrical characterization of thin-film capacitors prepared from several precursor PPV polymers indicates that these materials have good dielectric properties until they reach elevated temperatures, at which point conjugation of the polymer backbone effectively disables the device. Here, we present the synthesis, dielectric processing, and electrical characterization of a new thermo-switchable polymer dielectric.

  19. Demonstration of the enhanced Purcell factor in all-dielectric structures

    NASA Astrophysics Data System (ADS)

    Krasnok, Alexander; Glybovski, Stanislav; Petrov, Mihail; Makarov, Sergey; Savelev, Roman; Belov, Pavel; Simovski, Constantin; Kivshar, Yuri

    2016-05-01

    The Purcell effect is usually described as a modification of the spontaneous decay rate in the presence of a resonator. In plasmonics, this effect is commonly associated with a large local-field enhancement in "hot spots" due to the excitation of surface plasmons. However, high-index dielectric nanostructures, which become the basis of all-dielectric nanophotonics, cannot provide high values of the local-field enhancement due to larger radiation losses. Here, we demonstrate how to achieve a strong Purcell effect in all-dielectric nanostructures, and show theoretically that the Purcell factor can be increased by two orders of magnitude in a finite chain of silicon nanoparticles. Using the eigenmode analysis for an infinite chain, we demonstrate that the high Purcell factor regime is associated with a Van Hove singularity. We perform a proof-of-concept experiment for microwave frequencies and observe the 65-fold enhancement of the Purcell factor in a chain of 10 dielectric particles.

  20. Interconnect Between a Waveguide and a Dielectric Waveguide Comprising an Impedance Matched Dielectric Lens

    NASA Technical Reports Server (NTRS)

    Decrossas, Emmanuel (Inventor); Chattopadhyay, Goutam (Inventor); Chahat, Nacer (Inventor); Tang, Adrian J. (Inventor)

    2016-01-01

    A lens for interconnecting a metallic waveguide with a dielectric waveguide is provided. The lens may be coupled a metallic waveguide and a dielectric waveguide, and minimize a signal loss between the metallic waveguide and the dielectric waveguide.

  1. Dielectric properties of marsh vegetation

    NASA Astrophysics Data System (ADS)

    Kochetkova, Tatiana D.; Suslyaev, Valentin I.; Shcheglova, Anna S.

    2015-10-01

    The present work is devoted to the measurement of the dielectric properties of mosses and lichens in the frequency range from 500 MHz to 18 GHz. Subjects of this research were three species of march vegetation - moss (Dicranum polysetum Michx), groundcedar (Diphasiastrum complanatum (L.) Holub) and lichen (Cladonia stellaris). Samples of vegetation were collected in Tomsk region, Western Siberia, Russia. Complex dielectric permittivity was measured in coaxial section by Agilent Technologies vector network analyzer E8363B. Green samples was measured for some moisture contents from 100% to 3-5 % during a natural drying. The measurements were performed at room temperature, which remained within 21 ÷ 23 ° C. The frequency dependence of the dielectric constant for the three species of marsh vegetation differ markedly. Different parts of the complex permittivity dependency on moisture were fitted by line for all frequency points. Two break point were observed corresponding to the transition of water in the vegetation in various phase states. The complex permittivity spectra of water in the vegetation allow determining the most likely corresponding dielectric model of water in the vegetation by the method of hypothesis testing. It is the Debye's model. Parameters of Debye's model were obtained by numerical methods for all of three states of water. This enables to calculate the dielectric constant of water at any frequency range from 500 MHz to 18 GHz and to find the parameters of the dielectric model of the vegetation.

  2. Dielectric microwave resonators in TE011 cavities for electron paramagnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Mett, Richard R.; Sidabras, Jason W.; Golovina, Iryna S.; Hyde, James S.

    2008-09-01

    The coupled system of the microwave cylindrical TE011 cavity and the TE01δ dielectric modes has been analyzed in order to determine the maximum achievable resonator efficiency parameter of a dielectric inserted into a cavity, and whether this value can exceed that of a dedicated TE01δ mode dielectric resonator. The frequency, Q value, and resonator efficiency parameter Λ for each mode of the coupled system were calculated as the size of the dielectric was varied. Other output parameters include the relative field magnitudes and phases. Two modes are found: one with fields in the dielectric parallel to the fields in the cavity center and the other with antiparallel fields. Results closely match those from a computer program that solves Maxwell's equations by finite element methods. Depending on the relative natural resonance frequencies of the cavity and dielectric, one mode has a higher Q value and correspondingly lower Λ than the other. The mode with the higher Q value is preferentially excited by a coupling iris or loop in or near the cavity wall. However, depending on the frequency separation between modes, either can be excited in this way. A relatively narrow optimum is found for the size of the insert that produces maximum signal for both modes simultaneously. It occurs when the self-resonance frequencies of the two resonators are nearly equal. The maximum signal is almost the same as that of the dedicated TE01δ mode dielectric resonator alone, Λ ≅40 G/W1/2 at X-band for a KTaO3 crystal. The cavity is analogous to the second stage of a two-stage coupler. In general, there is no electron paramagnetic resonance (EPR) signal benefit by use of a second stage. However, there is a benefit of convenience. A properly designed sample-mounted resonator inserted into a cavity can give EPR signals as large as what one would expect from the dielectric resonator alone.

  3. A Wideband Circularly Polarized Pixelated Dielectric Resonator Antenna.

    PubMed

    Trinh-Van, Son; Yang, Youngoo; Lee, Kang-Yoon; Hwang, Keum Cheol

    2016-01-01

    The design of a wideband circularly polarized pixelated dielectric resonator antenna using a real-coded genetic algorithm (GA) is presented for far-field wireless power transfer applications. The antenna consists of a dielectric resonator (DR) which is discretized into 8 × 8 grid DR bars. The real-coded GA is utilized to estimate the optimal heights of the 64 DR bars to realize circular polarization. The proposed antenna is excited by a narrow rectangular slot etched on the ground plane. A prototype of the proposed antenna is fabricated and tested. The measured -10 dB reflection and 3 dB axial ratio bandwidths are 32.32% (2.62-3.63 GHz) and 14.63% (2.85-3.30 GHz), respectively. A measured peak gain of 6.13 dBic is achieved at 3.2 GHz. PMID:27563897

  4. COAXIAL TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR

    SciTech Connect

    Hirshfield, Jay L.

    2013-04-30

    Theory, computations, and experimental apparatus are presented that describe and are intended to confirm novel properties of a coaxial two-channel dielectric wake field accelerator. In this configuration, an annular drive beam in the outer coaxial channel excites multimode wakefields which, in the inner channel, can accelerate a test beam to an energy much higher than the energy of the drive beam. This high transformer ratio is the result of judicious choice of the dielectric structure parameters, and of the phase separation between drive bunches and test bunches. A structure with cm-scale wakefields has been build for tests at the Argonne Wakefield Accelerator Laboratory, and a structure with mm-scale wakefields has been built for tests at the SLAC FACET facility. Both tests await scheduling by the respective facilities.

  5. A Wideband Circularly Polarized Pixelated Dielectric Resonator Antenna

    PubMed Central

    Trinh-Van, Son; Yang, Youngoo; Lee, Kang-Yoon; Hwang, Keum Cheol

    2016-01-01

    The design of a wideband circularly polarized pixelated dielectric resonator antenna using a real-coded genetic algorithm (GA) is presented for far-field wireless power transfer applications. The antenna consists of a dielectric resonator (DR) which is discretized into 8 × 8 grid DR bars. The real-coded GA is utilized to estimate the optimal heights of the 64 DR bars to realize circular polarization. The proposed antenna is excited by a narrow rectangular slot etched on the ground plane. A prototype of the proposed antenna is fabricated and tested. The measured −10 dB reflection and 3 dB axial ratio bandwidths are 32.32% (2.62–3.63 GHz) and 14.63% (2.85–3.30 GHz), respectively. A measured peak gain of 6.13 dBic is achieved at 3.2 GHz. PMID:27563897

  6. Multiple-photon excitation imaging with an all-solid-state laser

    NASA Astrophysics Data System (ADS)

    Wokosin, David L.; Centonze, Victoria F.; White, John G.; Hird, Steven N.; Sepsenwol, S.; Malcolm, Graeme P. A.; Maker, Gareth T.; Ferguson, Allister I.

    1996-05-01

    Two-photon excitation imaging is a recently described optical sectioning technique where fluorophore excitation is confined to--and therefore defines--the optical section being observed. This characteristic offers a significant advantage over laser-scanning confocal microscopy; the volume of fluorophore excited in the minimum necessary for imaging, thereby minimizing the destructive effects of fluorophore excitation in living tissues. In addition, a confocal pinhole is not required for optical scattering--thus further reducing the excitation needed for efficient photon collection. We have set up a two-photon excitation imaging system which uses an all-solid-state, short-pulse, long-wavelength laser as an excitation source. The source is a diode-pumped, mode-locked Nd:YLF laser operating in the infrared (1047 nm). This laser is small, has modest power requirements, and has proven reliable and stable in operation. The short laser pulses from the laser are affected by the system optical path; this has been investigated with second harmonic generation derived from a nonlinear crystal. The system has been specifically designed for the study of live biological specimens. Two cell types especially sensitive to high-energy illumination, the developing Caenorhabditis elegans embryo and the crawling sperm of the nematode, Ascaris, were used to demonstrate the dramatic increase in viability when fluorescence is generated by two-photon excitation. The system has the capability of switching between two-photon and confocal imaging modes to facilitate direct comparison of theory of these two optical sectioning techniques on the same specimen. A heavily stained zebra fish embryo was used to demonstrate the increase in sectioning depth when fluorescence is generated by infrared two- photon excitation. Two-photon excitation with the 1047 nm laser produces bright images with a variety of red emitting fluorophores, and some green emitting fluorophores, commonly used in biological

  7. Dielectric and permeability

    NASA Technical Reports Server (NTRS)

    Cole, K. D.

    1982-01-01

    Using the unabridged Maxwell equations (including vectors D, E and H) new effects in collisionless plasmas are uncovered. In a steady state, it is found that spatially varying energy density of the electric field (E perpendicular) orthogonal to B produces electric current leading, under certain conditions, to the relationship P perpendicular+B(2)/8 pi-epsilon E perpendicular(2)/8 pi = constant, where epsilon is the dielectric constant of the plasma for fields orthogonal to B. In steady state quasi-two-dimensional flows in plasmas, a general relationship between the components of electric field parallel and perpendicular to B is found. These effects are significant in goephysical and astrophysical plasmas. The general conditions for a steady state in collisionless plasma are deduced. With time variations in a plasma, slow compared to ion-gyroperiod, there is a general current, (j*), which includes the well-known polarisation current, given by J*=d/dt (ExM)+(PxB)xB B(-2) where M and P are the magnetization and polarization vectors respectively.

  8. Metal-dielectric interactions

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1979-01-01

    Metal direlectric surface interactions and dielectric films on metal substrates were investigated. Since interfacial interaction depends so heavily on the nature of the surfaces, analytical surface tools such as Auger emission spectroscopy, X-ray photoelectron spectroscopy and field ion microscopy were used to assist in surface and interfacial characterization. The results indicate that with metals contacting certain glasses in the clean state interfacial, bonding produces fractures in the glasses while when a film such as water is present, fractures occur in the metal near the interface. Friction forces were used to measure the interfacial bond strengths. Studies with metals contacting polymers using field ion microscopy revealed that strong bonding forces could develop being between a metal and polymer surface with polymer transferring to the metal surface in various ways depending upon the forces applied to the surface in contact. With the deposition of refractory carbides, silicides and borides onto metal and alloy substrates the presence of oxides at the interface or active gases in the deposition plasma were shown to alter interfacial properties and chemistry. Auger ion depth profile analysis indicated the chemical composition at the interface and this could be related to the mechanical, friction, and wear behavior of the coating.

  9. Dielectric optical invisibility cloaks

    NASA Astrophysics Data System (ADS)

    Blair, J.; Tamma, V. A.; Park, W.; Summers, C. J.

    2010-08-01

    Recently, metamaterial cloaks for the microwave frequency range have been designed using transformative optics design techniques and experimentally demonstrated. The design of these structures requires extreme values of permittivity and permeability within the device, which has been accomplished by the use of resonating metal elements. However, these elements severely limit the operating frequency range of the cloak due to their non-ideal dispersion properties at optical frequencies. In this paper we present designs to implement a simpler demonstration of cloaking, the carpet cloak, in which a curved reflective surface is compressed into a flat reflective surface, effectively shielding objects behind the curve from view with respect to the incoming radiation source. This approach eliminates the need for metallic resonant elements. These structures can now be fabricated using only high index dielectric materials by the use of electron beam lithography and standard cleanroom technologies. The design method, simulation analysis, device fabrication, and near field optical microscopy (NSOM) characterization results are presented for devices designed to operate in the 1400-1600nm wavelength range. Improvements to device performance by the deposition/infiltration of linear, and potentially non-linear optical materials, were investigated.

  10. High-efficiency, dielectric multilayer gratings optimized for manufacturability and laser damage threshold

    SciTech Connect

    Britten, J.A.; Perry, M.D.; Shore, B.W.; Boyd, R.D.; Loomis, G.E.; Chow, R.

    1995-11-29

    Ultrashort pulse, high-intensity lasers offer new opportunities for the study of light-matter interaction and for inertial confinement fusion. A 100 Terawatt laser operating 400 fs and 1.053 {mu}m is operational at LLNL, and a 1000 Terawatt (Petawatt) laser will come online in early 1996. These lasers use large-aperture (40 cm and 94 cm diameter, respectively) diffraction gratings to compress the amplified laser pulse. At present, hologrphically produced, gold overcoated photoresist gratings are used: these gratings represent the fuse in the laser chain. Higher laser damage thresholds and higher diffraction efficiencies are theoretically possible with multilayer dielectric gratings (MDG`s). A number of design parameters regarding both the multilayer stack and the etched grating structure can be optimized to maximize the laser damage threshold and also improve the processing latitude for the interference lithography and reactive ion etching steps used during manufacture of these gratings. This paper presents model predictions for the behavior of hafnia/silica MDG`s both during processing and in operation, and presents experimental data on the diffraction efficiency and short- pulse laser damage threshold for optimized witness gratings.

  11. Excited State Electronic Properties of Sodium Iodide and Cesium Iodide

    SciTech Connect

    Campbell, Luke W.; Gao, Fei

    2013-05-01

    We compute from first principles the dielectric function, loss function, lifetime and scattering rate of quasiparticles due to electronic losses, and secondary particle spectrum due to plasmon decay in two scintillating alkali halides, sodium iodide and cesium iodide. Particular emphasis is placed on quasiparticles within several multiples of the band gap from the band edges. A theory for the decay spectra of plasmons and other electronic excitations in crystals is presented. Applications to Monte Carlo radiation transport codes are discussed.

  12. Terahertz electromagnetic wave generation and amplification by an electron beam in the elliptical plasma waveguides with dielectric rod

    SciTech Connect

    Rahmani, Z. Jazi, B.; Heidari-Semiromi, E.

    2014-09-15

    The propagation of electromagnetic waves in an elliptical plasma waveguide including strongly magnetized plasma column and a dielectric rod is investigated. The dispersion relation of guided hybrid electromagnetic waves is obtained. Excitation of the waves by a thin annular relativistic elliptical electron beam will be studied. The time growth rate of electromagnetic waves is obtained. The effects of relative permittivity constant of dielectric rod, radius of dielectric rod, accelerating voltage, and current density of the annular elliptical beam on the growth rate and the frequency spectra are numerically presented.

  13. Alternate capacitor dielectric film materials

    SciTech Connect

    Foster, J.C.

    1990-08-01

    New high-temperature, high-energy density, and high-radiation tolerant capacitor applications require the evaluation of alternate dielectric materials. Evaluation work was performed at GE Neutron Devices (GEND) and Sandia National Laboratories (SNL), Albuquerque. US Department of Energy (DOE) requirements for capacitor function and environments are unique, and the representations included in this report do not constitute an endorsement of any material or manufacturer. This report presents data on polymeric dielectric films evaluated to support the design of new high-energy density capacitors. Materials which were evaluated include polycarbonate (two sources), polyphenylene sulfide, polyvinylidene fluoride, polyetherimide (three sources), polyimide (four sources), polyethersulfone, and polyetherether ketone. A polyester was evaluated as the control material since many prior designs utilized this dielectric. The film evaluations were based on dielectric constant and dissipation factor variation as a function of temperature ({minus}55{degree}C to 300{degree}C) as well as dielectric breakdown strength. Additionally, film/foil capacitors in a dry wrap-and-fill configuration were fabricated and tested to determine insulation resistance, breakdown voltage, and radiation hardness. Results are given for all evaluations. 7 refs., 4 figs., 4 tabs.

  14. Dielectric Covered Planar Antennas

    NASA Technical Reports Server (NTRS)

    Llombart Juan, Nuria (Inventor); Lee, Choonsup (Inventor); Chattopadhyay, Goutam (Inventor); Gill, John J. (Inventor); Skalare, Anders J. (Inventor); Siegel, Peter H. (Inventor)

    2014-01-01

    An antenna element suitable for integrated arrays at terahertz frequencies is disclosed. The antenna element comprises an extended spherical (e.g. hemispherical) semiconductor lens, e.g. silicon, antenna fed by a leaky wave waveguide feed. The extended spherical lens comprises a substantially spherical lens adjacent a substantially planar lens extension. A couple of TE/TM leaky wave modes are excited in a resonant cavity formed between a ground plane and the substantially planar lens extension by a waveguide block coupled to the ground plane. Due to these modes, the primary feed radiates inside the lens with a directive pattern that illuminates a small sector of the lens. The antenna structure is compatible with known semiconductor fabrication technology and enables production of large format imaging arrays.

  15. Scattering from thin dielectric straps surrounding a perfectly conducting structure

    NASA Technical Reports Server (NTRS)

    Al-Hekail, Zeyad; Gupta, Inder J.

    1989-01-01

    A method to calculate the electromagnetic scattered fields from a dielectric strap wrapped around convex, conducting structure is presented. A moment method technique is used to find the current excited within the strap by the incident plane wave. Then, Uniform Geometrical Theory of Diffraction (UTD) is used to compute the fields scattered by the strap. Reasonable agreement was obtained between the computed and the measured results. The results found in this study are useful in evaluating straps as a target support structure for scattering measurements.

  16. Capacitive Cells for Dielectric Constant Measurement

    ERIC Educational Resources Information Center

    Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco

    2015-01-01

    A simple capacitive cell for dielectric constant measurement in liquids is presented. As an illustrative application, the cell is used for measuring the degradation of overheated edible oil through the evaluation of their dielectric constant.

  17. USDA/ARS and dielectric properties research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An overview of the research is presented, including RF dielectric heating for seed treatment, insect control, product conditioning, and moisture and quality sensing applications, equipment used, dielectric properties measurement techniques, broad- frequency- range data obtained, and research results...

  18. Visible fiber lasers excited by GaN laser diodes

    NASA Astrophysics Data System (ADS)

    Fujimoto, Yasushi; Nakanishi, Jun; Yamada, Tsuyoshi; Ishii, Osamu; Yamazaki, Masaaki

    2013-07-01

    This paper describes and discusses visible fiber lasers that are excited by GaN laser diodes. One of the attractive points of visible light is that the human eye is sensitive to it between 400 and 700 nm, and therefore we can see applications in display technology. Of course, many other applications exist. First, we briefly review previously developed visible lasers in the gas, liquid, and solid-state phases and describe the history of primary solid-state visible laser research by focusing on rare-earth doped fluoride media, including glasses and crystals, to clarify the differences and the merits of primary solid-state visible lasers. We also demonstrate over 1 W operation of a Pr:WPFG fiber laser due to high-power GaN laser diodes and low-loss optical fibers (0.1 dB/m) made by waterproof fluoride glasses. This new optical fiber glass is based on an AlF3 system fluoride glass, and its waterproof property is much better than the well known fluoride glass of ZBLAN. The configuration of primary visible fiber lasers promises highly efficient, cost-effective, and simple laser systems and will realize visible lasers with photon beam quality and quantity, such as high-power CW or tunable laser systems, compact ultraviolet lasers, and low-cost ultra-short pulse laser systems. We believe that primary visible fiber lasers, especially those excited by GaN laser diodes, will be effective tools for creating the next generation of research and light sources.

  19. CVD Diamond Dielectric Accelerating Structures

    SciTech Connect

    Schoessow, P.; Kanareykin, A.; Gat, R.

    2009-01-22

    The electrical and mechanical properties of diamond make it an ideal candidate material for use in dielectric accelerating structures: high RF breakdown field, extremely low dielectric losses and the highest available thermoconductive coefficient. Using chemical vapor deposition (CVD) cylindrical diamond structures have been manufactured with dimensions corresponding to fundamental TM{sub 01} mode frequencies in the GHz to THz range. Surface treatments are being developed to reduce the secondary electron emission (SEE) coefficient below unity to reduce the possibility of multipactor. The diamond CVD cylindrical waveguide technology developed here can be applied to a variety of other high frequency, large-signal applications.

  20. Dielectric Properties of Piezoelectric Polyimides

    NASA Technical Reports Server (NTRS)

    Ounaies, Z.; Young, J. A.; Simpson, J. O.; Farmer, B. L.

    1997-01-01

    Molecular modeling and dielectric measurements are being used to identify mechanisms governing piezoelectric behavior in polyimides such as dipole orientation during poling, as well as degree of piezoelectricity achievable. Molecular modeling on polyimides containing pendant, polar nitrile (CN) groups has been completed to determine their remanent polarization. Experimental investigation of their dielectric properties evaluated as a function of temperature and frequency has substantiated numerical predictions. With this information in hand, we are then able to suggest changes in the molecular structures, which will then improve upon the piezoelectric response.

  1. Analysis of rib dielectric waveguides

    NASA Astrophysics Data System (ADS)

    Dagli, N.; Fonstad, C. G.

    1985-04-01

    It is noted in the present analysis of rib dielectric waveguides on the basis of a mode-matching technique that, when the constituent slab guides support only one guided mode, the cutoff condition for the higher-order modes is the same as the result yielded by the effective dielectric constant method. When the rib region is thick enough to support two guided slab modes, however, the cutoff conditions are significantly different. Universal design curves are obtained for this case, and the results obtained are compared with the Marcatili (1974) theory for such structures.

  2. Microwave dielectric properties of biopolymers

    NASA Astrophysics Data System (ADS)

    Bartsch, Carrie M.; Subramanyam, Guru; Grote, James G.; Hopkins, F. Kenneth; Brott, Lawrence L.; Naik, Rajesh R.

    2006-09-01

    A new capacitive test structure is used to characterize biopolymers at microwave frequencies. The new test structure is comprised of a parallel plate capacitor, combined with coplanar waveguide-based input and output feed lines. This allows microwave measurements to be taken easily under an applied DC electric field. The microwave dielectric properties are characterized for two biopolymer thin films: a deoxyribonucleic acid (DNA)-based film and a bovine serum albumin (BSA)-based film. These bio-dielectric thin-films are compared with a standard commercial polymer thin film, poly[Bisphenol A carbonate-co-4,4'(3,3,5-trimethyl cyclohexylidene) diphenol], or amorphous polycarbonate (APC).

  3. Dielectric material degradation monitoring of dielectric barrier discharge plasma actuators

    NASA Astrophysics Data System (ADS)

    Hanson, Ronald E.; Houser, Nicole M.; Lavoie, Philippe

    2014-01-01

    It is a known phenomenon that some dielectric materials used to construct plasma actuators degrade during operation. However, the rate at which this process occurs, to what extent, as well as a method to monitor is yet to be established. In this experimental study, it is shown that electrical measurements can be used to monitor changes in the material of the plasma actuators. The procedure we introduce for monitoring the actuators follows from the work of Kriegseis, Grundmann, and Tropea [Kriegseis et al., J. Appl. Phys. 110, 013305 (2011)], who used Lissajous figures to measure actuator power consumption and capacitance. In the present study, we quantify changes in both the power consumption and capacitance of the actuators over long operating durations. It is shown that the increase in the effective capacitance of the actuator is related to degradation (thinning) of the dielectric layer, which is accompanied by an increase in actuator power consumption. For actuators constructed from layers of Kapton® polyimide tape, these changes are self-limiting. Although the polyimide film degrades relatively quickly, the underlying adhesive layer appears to remain intact. Over time, the effective capacitance was found to increase by up to 36%, 25%, and 11% for actuators constructed with 2, 3, and 4 layers of Kapton tape, respectively. A method is presented to prevent erosion of the Kapton dielectric layer using a coating of Polydimethylsiloxane oil. It is shown the application of this treatment can delay the onset of degradation of the Kapton dielectric material.

  4. 8. POWERHOUSE INTERIOR SHOWING EXCITER No. 1 IN FOREGROUND, EXCITER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. POWERHOUSE INTERIOR SHOWING EXCITER No. 1 IN FOREGROUND, EXCITER No. 2., AND GENERATOR UNITS BEHIND EXCITER No. 2 IN BACKGROUND. EXCITER No. 1 GENERATOR HAS A COVER OVER TOP HALF OF COMMUTATOR ELEMENT. VIEW TO NORTHWEST. - Rush Creek Hydroelectric System, Powerhouse Exciters, Rush Creek, June Lake, Mono County, CA

  5. Electrically Excited Plasmonic Nanoruler for Biomolecule Detection.

    PubMed

    Dathe, André; Ziegler, Mario; Hübner, Uwe; Fritzsche, Wolfgang; Stranik, Ondrej

    2016-09-14

    Plasmon-based sensors are excellent tools for a label-free detection of small biomolecules. An interesting group of such sensors are plasmonic nanorulers that rely on the plasmon hybridization upon modification of their morphology to sense nanoscale distances. Sensor geometries based on the interaction of plasmons in a flat metallic layer together with metal nanoparticles inherit unique advantages but need a special optical excitation configuration that is not easy to miniaturize. Herein, we introduce the concept of nanoruler excitation by direct, electrically induced generation of surface plasmons based on the quantum shot noise of tunneling currents. An electron tunneling junction consisting of a metal-dielectric-semiconductor heterostructure is directly incorporated into the nanoruler basic geometry. With the application of voltage on this modified nanoruler, the plasmon modes are directly excited without any additional optical component as a light source. We demonstrate via several experiments that this electrically driven nanoruler possesses similar properties as an optically exited one and confirm its sensing capabilities by the detection of the binding of small biomolecules such as antibodies. This new sensing principle could open the way to a new platform of highly miniaturized, integrated plasmonic sensors compatible with monolithic integrated circuits.

  6. Nematic electroconvection under time-reversed excitation

    NASA Astrophysics Data System (ADS)

    Pietschmann, Dirk; John, Thomas; Stannarius, Ralf

    2010-10-01

    We study nematic electrohydrodynamic convection (EHC) under excitation with superimposed harmonic wave forms. Within the standard model for EHC, a time reversal of the excitation does not affect threshold voltages and pattern wavelengths obtained in a linear stability analysis. This was confirmed in experiments with superimposed square waves [Heuer , Phys. Rev. E 78, 036218 (2008)10.1103/PhysRevE.78.036218]. We show here that this symmetry with respect to time reversal of the excitation breaks down close to the transition from the conduction regime to the dielectric regime. The EHC standard model without flexoelectric terms fails to predict quantitatively correct threshold curves and wavelengths in a certain parameter range below the transition. This is an indication that a more elaborate description of the EHC mechanism is necessary in this range. We suggest that the weak electrolyte model has to be employed for a correct description. This is in accordance with observations of traveling rolls and of localized structures at onset of the convection in earlier experiments described in literature.

  7. Cellulose Triacetate Dielectric Films For Capacitors

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S.; Jow, T. Richard

    1994-01-01

    Cellulose triacetate investigated for use as dielectric material in high-energy-density capacitors for pulsed-electrical-power systems. Films of cellulose triacetate metalized on one or both sides for use as substrates for electrodes and/or as dielectrics between electrodes in capacitors. Used without metalization as simple dielectric films. Advantages include high breakdown strength and self-healing capability.

  8. Electron beam excitation of left-handed surface electromagnetic waves at artificial interfaces

    SciTech Connect

    Averkov, Yu. O.; Kats, A. V.; Yakovenko, V. M.

    2009-05-15

    In this Brief Report we present the theoretical analysis of excitation of the surface plasmon polaritons by a thin electron beam propagating in the vacuum gap separating a plasmalike medium (metal) from an artificial dielectric with negative magnetic permeability. We have obtained and discussed the dispersion relation for the vacuum-gap-localized waves for an arbitrary vacuum-gap width. We have shown that the interface-localized waves with the negative total energy flux can be excited.

  9. Photo-induced change of dielectric response in BaCoSiO4 stuffed tridymite

    NASA Astrophysics Data System (ADS)

    Taniguchi, Hiroki; Moriwake, Hiroki; Kuwabara, Akihide; Okamura, Takuma; Yamamoto, Takafumi; Okazaki, Ryuji; Itoh, Mitsuru; Terasaki, Ichiro

    2014-04-01

    The photodielectric effect is demonstrated in Mott-insulator BaCoSiO4 with a stuffed-tridymite-type structure under irradiation of visible light at 365 nm. The real part of dielectric permittivity is enhanced by ˜300% with little increase of tan δ in a low-frequency region. Results of diffuse reflectance spectroscopy, first-principles calculations and dielectric measurements suggest that the photodielectric effect stems from a response of photo-excited electrons in an unoccupied upper-Hubbard band for 3d-orbitals of cobalt, which have significantly small mobility due to the unique configuration of Co ions in the stuffed-tridymite-type structure.

  10. Optical pulling force on a particle near the surface of a dielectric slab waveguide

    NASA Astrophysics Data System (ADS)

    Paul, Nayan Kumar; Kemp, Brandon A.

    2016-01-01

    Optical forces on a Rayleigh particle near the surface of a dielectric slab waveguide are considered. A light wave of the lowest-order TE0 mode is used to excite the particle. The transverse and longitudinal forces acting on the particle are studied. The particle is always trapped near the surface of the slab, where the electric field intensity is high. The particle can be pushed away from or pulled toward the light source along the surface of the slab by tuning the frequency around a switching frequency. This phenomenon switches between scattering and gradient forces near the switching frequency of the dielectric slab waveguide.

  11. Aperiodic and randomized dielectric mirrors: alternatives to metallic back reflectors for solar cells.

    PubMed

    Lin, Albert; Zhong, Yan-Kai; Fu, Sze-Ming; Tseng, Chi Wei; Yan, Sheng Lun

    2014-05-01

    Dielectric mirrors have recently emerged for solar cells due to the advantages of lower cost, lower temperature processing, higher throughput, and zero plasmonic absorption as compared to conventional metallic counterparts. Nonetheless, in the past, efforts for incorporating dielectric mirrors into photovoltaics were not successful due to limited bandwidth and insufficient light scattering that prevented their wide usage. In this work, it is shown that the key for ultra-broadband dielectric mirrors is aperiodicity, or randomization. In addition, it has been proven that dielectric mirrors can be widely applicable to thin-film and thick wafer-based solar cells to provide for light trapping comparable to conventional metallic back reflectors at their respective optimal geometries. Finally, the near-field angular emission plot of Poynting vectors is conducted, and it further confirms the superior light-scattering property of dielectric mirrors, especially for diffuse medium reflectors, despite the absence of surface plasmon excitation. The preliminary experimental results also confirm the high feasibility of dielectric mirrors for photovoltaics.

  12. High Frequency Scattering from Arbitrarily Oriented Dielectric Disks

    NASA Technical Reports Server (NTRS)

    Levine, D. M.; Meneghini, R.; Lang, R. H.; Seker, S. S.

    1982-01-01

    Calculations have been made of electromagnetic wave scattering from dielectric disks of arbitrary shape and orientation in the high frequency (physical optics) regime. The solution is obtained by approximating the fields inside the disk with the fields induced inside an identically oriented slab (i.e. infinite parallel planes) with the same thickness and dielectric properties. The fields inside the disk excite conduction and polarization currents which are used to calculate the scattered fields by integrating the radiation from these sources over the volume of the disk. This computation has been executed for observers in the far field of the disk in the case of disks with arbitrary orientation and for arbitrary polarization of the incident radiation. The results have been expressed in the form of a dyadic scattering amplitude for the disk. The results apply to disks whose diameter is large compared to wavelength and whose thickness is small compared to diameter, but the thickness need not be small compared to wavelength. Examples of the dependence of the scattering amplitude on frequency, dielectric properties of the disk and disk orientation are presented for disks of circular cross section.

  13. Scattering from Thin Dielectric Disks

    NASA Technical Reports Server (NTRS)

    Levine, D. M.; Schneider, A.; Lang, R. H.; Carter, H. G.

    1984-01-01

    A solution was obtained for scattering from thin dielectric disks by approximating the currents induced inside the disk with the currents which would exist inside a dielectric slab of the same thickness, orientation and dielectric properties. This approximation reduces to an electrostatic approximation when the disk thickness, T, is small compared to the wavelength of the incident radiation and the approximation yields a conventional physical optics solution when the dimension, A, characteristic of the geometrical cross section of the disk (e.g., the diameter of a circular disk) is large compared to wavelength. When the ratio A/T is sufficiently large the disk will always be in one or the other of these regimes (T lambda or kA1. Consequently, when A/T is large this solution provides a conventional approximation for the scattered fields which can be applied at all frequencies. As a check on this conclusion, a comparison was made between the theoretical and measured radar cross section of thin dielectric disks. Agreement was found for thin disks with both large and small values of kA.

  14. Counteracting Gravitation In Dielectric Liquids

    NASA Technical Reports Server (NTRS)

    Israelsson, Ulf E.; Jackson, Henry W.; Strayer, Donald M.

    1993-01-01

    Force of gravity in variety of dielectric liquids counteracted by imposing suitably contoured electric fields. Technique makes possible to perform, on Earth, variety of experiments previously performed only in outer space and at great cost. Also used similarly in outer space to generate sort of artificial gravitation.

  15. 16. EXCITERS, AND SYNCHROSCOPE GAUGE ON WALL. ACTIVE ELECTRIC EXCITER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. EXCITERS, AND SYNCHROSCOPE GAUGE ON WALL. ACTIVE ELECTRIC EXCITER AT REAR; UNUSED WATER-DRIVEN EXCITER IN FOREGROUND. VIEW TO SOUTH-SOUTHWEST. - Santa Ana River Hydroelectric System, SAR-2 Powerhouse, Redlands, San Bernardino County, CA

  16. Dielectric breakdown model for composite materials.

    PubMed

    Peruani, F; Solovey, G; Irurzun, I M; Mola, E E; Marzocca, A; Vicente, J L

    2003-06-01

    This paper addresses the problem of dielectric breakdown in composite materials. The dielectric breakdown model was generalized to describe dielectric breakdown patterns in conductor-loaded composites. Conducting particles are distributed at random in the insulating matrix, and the dielectric breakdown propagates according to new rules to take into account electrical properties and particle size. Dielectric breakdown patterns are characterized by their fractal dimension D and the parameters of the Weibull distribution. Studies are carried out as a function of the fraction of conducting inhomogeneities, p. The fractal dimension D of electrical trees approaches the fractal dimension of a percolation cluster when the fraction of conducting particles approximates the percolation limit. PMID:16241318

  17. Plasmonic antennas hybridized with dielectric waveguides.

    PubMed

    Bernal Arango, Felipe; Kwadrin, Andrej; Koenderink, A Femius

    2012-11-27

    For the purpose of using plasmonics in an integrated scheme where single emitters can be probed efficiently, we experimentally and theoretically study the scattering properties of single nanorod gold antennas as well as antenna arrays placed on one-dimensional dielectric silicon nitride waveguides. Using real space and Fourier microscopy correlated with waveguide transmission measurements, we quantify the spectral properties, absolute strength, and directivity of scattering. The scattering processes can be well understood in the framework of the physics of dipolar objects placed on a planar layered environment with a waveguiding layer. We use the single plasmonic structures on top of the waveguide as dipolar building blocks for new types of antennas where the waveguide enhances the coupling between antenna elements. We report on waveguide hybridized Yagi-Uda antennas which show directionality in out-coupling of guided modes as well as directionality for in-coupling into the waveguide of localized excitations positioned at the feed element. These measurements together with simulations demonstrate that this system is ideal as a platform for plasmon quantum optics schemes as well as for fluorescence lab-on-chip applications.

  18. Dielectric elastomer pump for artificial organisms

    NASA Astrophysics Data System (ADS)

    Bowers, Amy E.; Rossiter, Jonathan M.; Walters, Peter J.; Ieropoulos, Ioannis A.

    2011-04-01

    This paper presents a bio-inspired, dielectric elastomer (DE) based tubular pumping unit, developed for eventual use as a component of an artificial digestive tract onboard a microbial fuel cell powered robot (EcoBot). The pump effects fluid displacement by direct actuation of the tube wall as opposed to excitation by an external body. The actuator consists of a DE tube moulded from silicone, held in a negative pressure chamber, which is used for prestraining the tube. The pump is coupled with custom designed polymeric check valves in order to rectify the fluid flow and assess the performance of the unit. The valves exhibited the necessary low opening pressures required for use with the actuator. The tube's actuation characteristics were measured both with and without liquid in the system. Based on these data the optimal operating conditions for the pump are discussed. The pump and valve system has achieved flowrates in excess of 40μl/s. This radially contracting/expanding actuator element is the fundamental component of a peristaltic pump. This 'soft pump' concept is suitable for biomimetic robotic systems, or for the medical or food industries where hard contact with the delivered substrate may be undesirable. Future work will look at connecting multiple tubes in series in order to achieve peristalsis.

  19. X-ray measurements at high-power lasers. Relative conversion efficiencies of short pulse laser light into K X-ray radiation in medium to high Z elements

    NASA Astrophysics Data System (ADS)

    Szabo, C. I.; Indelicato, P.; Gumberidze, A.; Holland, G. E.; Seely, J. F.; Hudson, L. T.; Henins, A.; Audebert, P.; Bastiani-Ceccotti, S.; Tabakhoff, E.; Brambrink, E.

    2009-03-01

    Conversion efficiencies of laser light into K x-ray radiation are used to characterize laser-solid interactions e.g. in measurements with back-lighter targets in Inertial Confinement Fusion research or in ultra short x-ray science where ultra short laser pulses are used to create x-rays for investigation of dynamic processes. In our measurements we observed high energy (few tens of keV) K x-ray radiation of element pairs created upon impact of a 1 ps, 100 J laser pulse on the target surface. The high-energy electrons created in this interaction ionise and excite the target material. We have used high purity alloy foils of Pd and Ag, as well as In and Sn and crystals of CsI and rare earth molybdates as target materials. Both constituents of these targets were simultaneously excited in one shot. The K x-ray radiation was dispersed and detected with the LCS (LULI Crystal Spectrometer), a Cauchois-type cylindrically bent transmission-crystal spectrometer. Measuring ratios in the x-ray spectra permits determination of relative conversion efficiencies for pairs of elements under identical laser-target interaction conditions.

  20. Fluorescence Spectroscopy with Metal-Dielectric Waveguides

    PubMed Central

    Badugu, Ramachandram; Szmacinski, Henryk; Ray, Krishanu; Descrovi, Emiliano; Ricciardi, Serena; Zhang, Douguo; Chen, Junxue; Huo, Yiping; Lakowicz, Joseph R.

    2015-01-01

    We describe a hybrid metal-dielectric waveguide structures (MDWs) with numerous potential applications in the biosciences. These structures consist of a thin metal film coated with a dielectric layer. Depending on the thickness of the dielectric layer, the modes can be localized near the metal, within the dielectric, or at the top surface of the dielectric. The optical modes in a metal-dielectric waveguide can have either S (TE) or P (TM) polarization. The dielectric spacer avoids the quenching, which usually occurs for fluorophores within about 5 nm from the metal. Additionally, the resonances display a sharp angular dependence and can exhibit several hundred-fold increases in intensity (E2) at the silica-air interface relative to the incident intensity. Fluorophores placed on top of the silica layer couple efficiently with the metal, resulting in a sharp angular distribution of emission through the metal and down from the bottom of the structure. This coupling occurs over large distances to several hundred nm away from the metal and was found to be consistent with simulations of the reflectivity of the metal-dielectric waveguides. Remarkably, for some silica thicknesses, the emission is almost completely coupled through the structure with little free-space emission away from the metal-dielectric waveguide. The efficiency of fluorophore coupling is related to the quality of the resonant modes sustained by the metal-dielectric waveguide, resulting in coupling of most of the emission through the metal into the underlying glass substrates. Metal-dielectric waveguides also provide a method to resolve the emission from surface-bound fluorophores from the bulk-phase fluorophores. Metal-dielectric waveguides are simple to fabricate for large surface areas, the resonance wavelength can be adjusted by the dielectric thickness, and the silica surface is suitable for coupling to biomolecules. Metal-dielectric waveguides can have numerous applications in diagnostics and high

  1. Two-phase mixed media dielectric with macro dielectric beads for enhancing resistivity and breakdown strength

    SciTech Connect

    Falabella, Steven; Meyer, Glenn A; Tang, Vincent; Guethlein, Gary

    2014-06-10

    A two-phase mixed media insulator having a dielectric fluid filling the interstices between macro-sized dielectric beads packed into a confined volume, so that the packed dielectric beads inhibit electro-hydrodynamically driven current flows of the dielectric liquid and thereby increase the resistivity and breakdown strength of the two-phase insulator over the dielectric liquid alone. In addition, an electrical apparatus incorporates the two-phase mixed media insulator to insulate between electrical components of different electrical potentials. And a method of electrically insulating between electrical components of different electrical potentials fills a confined volume between the electrical components with the two-phase dielectric composite, so that the macro dielectric beads are packed in the confined volume and interstices formed between the macro dielectric beads are filled with the dielectric liquid.

  2. Tailoring dielectric properties of ferroelectric-dielectric multilayers

    SciTech Connect

    Kesim, M. T.; Zhang, J.; Cole, M. W.; Misirlioglu, I. B.

    2014-01-13

    We develop a nonlinear thermodynamic model for multilayer ferroelectric heterostructures that takes into account electrostatic and electromechanical interactions between layers. We concentrate on the effect of relative layer fractions and in-plane thermal stresses on dielectric properties of Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}-, BaTiO{sub 3}-, and PbZr{sub 0.2}Ti{sub 0.8}O{sub 3} (PZT)-SrTiO{sub 3} (STO) multilayers on Si and c-sapphire. We show that dielectric properties of such multilayers can be significantly enhanced by tailoring the growth/processing temperature and the STO layer fraction. Our computations show that large tunabilities (∼90% at 400 kV/cm) are possible in carefully designed barium strontium titanate-STO and PZT-STO even on Si for which there exist substantially large in-plane strains.

  3. Scattering by dielectric circular cylinders in a dielectric slab.

    PubMed

    Frezza, Fabrizio; Pajewski, Lara; Ponti, Cristina; Schettini, Giuseppe

    2010-04-01

    An analytical-numerical technique for the solution of the plane-wave scattering problem by a set of dielectric cylinders embedded in a dielectric slab is presented. Scattered fields are expressed by means of expansions into cylindrical functions, and the concept of plane-wave spectrum of a cylindrical function is employed to define reflection and transmission through the planar interfaces. Multiple reflection phenomena due to the presence of a layered geometry are taken into account. Solutions can be obtained for both TM and TE polarizations and for near- and far-field regions. The numerical approach is described and the method is validated by comparison with examples given in the literature, with very good agreement. Results are presented for the scattering by a finite grid of three cylinders embedded in a slab.

  4. Anti-Stokes resonant x-ray Raman scattering for atom specific and excited state selective dynamics

    NASA Astrophysics Data System (ADS)

    Kunnus, Kristjan; Josefsson, Ida; Rajkovic, Ivan; Schreck, Simon; Quevedo, Wilson; Beye, Martin; Grübel, Sebastian; Scholz, Mirko; Nordlund, Dennis; Zhang, Wenkai; Hartsock, Robert W.; Gaffney, Kelly J.; Schlotter, William F.; Turner, Joshua J.; Kennedy, Brian; Hennies, Franz; Techert, Simone; Wernet, Philippe; Odelius, Michael; Föhlisch, Alexander

    2016-10-01

    Ultrafast electronic and structural dynamics of matter govern rate and selectivity of chemical reactions, as well as phase transitions and efficient switching in functional materials. Since x-rays determine electronic and structural properties with elemental, chemical, orbital and magnetic selectivity, short pulse x-ray sources have become central enablers of ultrafast science. Despite of these strengths, ultrafast x-rays have been poor at picking up excited state moieties from the unexcited ones. With time-resolved anti-Stokes resonant x-ray Raman scattering (AS-RXRS) performed at the LCLS, and ab initio theory we establish background free excited state selectivity in addition to the elemental, chemical, orbital and magnetic selectivity of x-rays. This unparalleled selectivity extracts low concentration excited state species along the pathway of photo induced ligand exchange of Fe(CO)5 in ethanol. Conceptually a full theoretical treatment of all accessible insights to excited state dynamics with AS-RXRS with transform-limited x-ray pulses is given—which will be covered experimentally by upcoming transform-limited x-ray sources.

  5. Broadband excitation and indirect detection of nitrogen-14 in rotating solids using Delays Alternating with Nutation (DANTE)

    NASA Astrophysics Data System (ADS)

    Vitzthum, Veronika; Caporini, Marc A.; Ulzega, Simone; Bodenhausen, Geoffrey

    2011-09-01

    A train of short rotor-synchronized pulses in the manner of Delays Alternating with Nutations for Tailored Excitation (DANTE) applied to nitrogen-14 nuclei ( I = 1) in samples spinning at the magic angle at high frequencies (typically νrot = 62.5 kHz so that τrot = 16 μs) allows one to achieve uniform excitation of a great number of spinning sidebands that arise from large first-order quadrupole interactions, as occur for aromatic nitrogen-14 nuclei in histidine. With routine rf amplitudes ω1( 14N)/(2 π) = 60 kHz and very short pulses of a typical duration 0.5 < τp < 2 μs, efficient excitation can be achieved with 13 rotor-synchronized pulses in 13 τrot = 208 μs. Alternatively, with 'overtone' DANTE sequences using 2, 4, or 8 pulses per rotor period one can achieve efficient broadband excitation in fewer rotor periods, typically 2-4 τrot. These principles can be combined with the indirect detection of 14N nuclei via spy nuclei with S = ½ such as 1H or 13C in the manner of Dipolar Heteronuclear Multiple-Quantum Correlation (D-HMQC).

  6. Dielectric breakdown of cell membranes.

    PubMed

    Zimmermann, U; Pilwat, G; Riemann, F

    1974-11-01

    With human and bovine red blood cells and Escherichia coli B, dielectric breakdown of cell membranes could be demonstrated using a Coulter Counter (AEG-Telefunken, Ulm, West Germany) with a hydrodynamic focusing orifice. In making measurements of the size distributions of red blood cells and bacteria versus increasing electric field strength and plotting the pulse heights versus the electric field strength, a sharp bend in the otherwise linear curve is observed due to the dielectric breakdown of the membranes. Solution of Laplace's equation for the electric field generated yields a value of about 1.6 V for the membrane potential at which dielectric breakdown occurs with modal volumes of red blood cells and bacteria. The same value is also calculated for red blood cells by applying the capacitor spring model of Crowley (1973. Biophys. J. 13:711). The corresponding electric field strength generated in the membrane at breakdown is of the order of 4 . 10(6) V/cm and, therefore, comparable with the breakdown voltages for bilayers of most oils. The critical detector voltage for breakdown depends on the volume of the cells. The volume-dependence predicted by Laplace theory with the assumption that the potential generated across the membrane is independent of volume, could be verified experimentally. Due to dielectric breakdown the red blood cells lose hemoglobin completely. This phenomenon was used to study dielectric breakdown of red blood cells in a homogeneous electric field between two flat platinum electrodes. The electric field was applied by discharging a high voltage storage capacitor via a spark gap. The calculated value of the membrane potential generated to produce dielectric breakdown in the homogeneous field is of the same order as found by means of the Coulter Counter. This indicates that mechanical rupture of the red blood cells by the hydrodynamic forces in the orifice of the Coulter Counter could also be excluded as a hemolysing mechanism. The detector

  7. Highly efficient dielectric gratings for high-power ultrafast femtosecond fiber laser systems

    NASA Astrophysics Data System (ADS)

    Clausnitzer, T.; Schreiber, Thomas; Roeser, Fabian; Limpert, Jens; Fuchs, H.-J.; Kley, Ernst-Bernhard; Tunnermann, Andreas

    2005-03-01

    Micromachining applications require high pulse energy (>1μJ) short pulse (<1ps) laser systems at high repetition rates. Rare-earth doped fibers are attractive to generate these target values by the amplification of ultrafast femtosecond seed sources. Two favored techniques have been used: the chirped pulse amplification (CPA) scheme where the pulses are stretched in the time domain to reduce nonlinearity in the amplifier stage and the parabolic pulse amplification scheme where the combined effect of nonlinearity, normal dispersion and gain in the fiber generate linearly chirped parabolic shaped pulses. Both approaches can be scaled to higher power by reducing the nonlinearity in the amplifiers. To achieve this, we discuss novel photonic crystal fiber designs which allow for larger single-mode core diameter and reduced absorption length and therefore reduced nonlinearity. The so generated high average power of >100 W at repetition rate up to several tens of MHz cannot be compressed by gold gratings to femtosecond pulse duration due to thermal heating. We focus on the development of dielectric gratings in fused silica which can handle this power levels due to their high damage threshold. Two kinds of gratings are discussed. Firstly, the transmission gratings with a period of 800 nm were designed to possess 96% diffraction efficiency over a spectral range from 1.03μm to 1.09μm. The fabrication of the rectangular groove profile was done using electron beam lithography and reactive ion beam etching into the fused silica substrate. The measured diffraction efficiency was 96.5% @ 1060nm. Secondly, dielectric reflection gratings, which consist of a dielectric grating on top of a high-reflective layerstack, can theoretically exhibit a diffraction efficiency of even higher than 99%. To achieve this we chose a period of 1060nm. The fabrication was done similar to the transmission gratings, though a HR-coated substrate had to be used instead of the simple fused substrate

  8. Analysis of dielectric-filled waveguide coupling to plasmas in the ICRF

    SciTech Connect

    Lam, N.T.; Lee, J.L.; Scharer, J.; Vernon, R.J.

    1986-06-01

    Dielectric-filled waveguides may be advantageous for heating reactor-grade tokamak plasmas, due to their compactness and power-handling capability. The authors present a theoretical analysis of coax excitation and plasma impedance for a dielectric-filled rectangular waveguide. The plasma reflection coefficient is obtained by matching plasma and waveguide fields at the interface. The numerical results show that the reflection coefficients can be made small by careful tailoring of the waveguide dimensions to the density profile for heating at the second or third harmonic of deuterium. They present a scattering matrix approach for the design of a coaxial feed to match the waveguide in the presence of a wide range of plasma loading. For a waveguide filled with a high permittivity dielectric, a shorted probe gives better coupling than an open-ended probe.

  9. Heat diode effect and negative differential thermal conductance across nanoscale metal-dielectric interfaces

    NASA Astrophysics Data System (ADS)

    Ren, Jie; Zhu, Jian-Xin

    2013-06-01

    Controlling heat flow by phononic nanodevices has received significant attention recently because of its fundamental and practical implications. Elementary phononic devices such as thermal rectifiers, transistors, and logic gates are essentially based on two intriguing properties: heat diode effect and negative differential thermal conductance. However, little is known about these heat transfer properties across metal-dielectric interfaces, especially at nanoscale. Here we analytically resolve the microscopic mechanism of the nonequilibrium nanoscale energy transfer across metal-dielectric interfaces, where the inelastic electron-phonon scattering directly assists the energy exchange. We demonstrate the emergence of heat diode effect and negative differential thermal conductance in nanoscale interfaces and explain why these novel thermal properties are usually absent in bulk metal-dielectric interfaces. These results will generate exciting prospects for the nanoscale interfacial energy transfer, which should have important implications in designing hybrid circuits for efficient thermal control and open up potential applications in thermal energy harvesting with low-dimensional nanodevices.

  10. Evaluation of New Amorphous Hydrocarbon Film for Copper Barrier Dielectric Film in Low-k Copper Metallization

    NASA Astrophysics Data System (ADS)

    Ishikawa, Hiraku; Nozawa, Toshihisa; Matsuoka, Takaaki; Teramoto, Akinobu; Hirayama, Masaki; Ito, Takashi; Ohmi, Tadahiro

    2008-04-01

    In recent ultra large-scale integration (ULSI), Cu wiring and low-k dielectrics are used to reduce resistive capacitive (RC) delay in interconnects. Cu diffusion barrier layers, such as SiC and SiCN, have relatively high k-values, thus they decrease effective k-values (keff) of dielectrics. For this issue, we propose a new amorphous hydrocarbon film (a-CHx) as a Cu barrier dielectric deposited using a microwave-excited plasma reactor with a showerhead. Low ion bombardments and optimum deposition gases gave an excellent film, which achieved low leakage current and thermal resistance simultaneously. This film showed Cu diffusion barrier ability at 350 °C and a lifetime of more than 10 years lifetime at 0.2 MV/cm, which is sufficient for next-generation interlayer dielectric films.

  11. Dielectric covered microstrip patch antennas

    NASA Astrophysics Data System (ADS)

    Sharpe, Lisa M.

    1988-11-01

    Microstrip antennas have many properties that make them suitable for airborne and satellite communications systems. These antennas are low in cost and lightweight. For these reasons, Rome Air Development Center is interested in verifying and augmenting existing design models for these antennas. The theory and results are presented for modeling microstrip antennas that are covered with a sheet of dielectric material. There are several reasons for designing a microstrip antenna covered with a dielectric material. This configuration would allow the modeling of antennas with an integrated radome. A cover layer could possibly be used to support a polarizer; to mount additional antenna elements on top of the cover layer to provide bandwidth enhancements; or to be used as a dual frequency antenna.

  12. Applications of dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Pelrine, Ron; Sommer-Larsen, Peter; Kornbluh, Roy D.; Heydt, Richard; Kofod, Guggi; Pei, Qibing; Gravesen, Peter

    2001-07-01

    Dielectric elastomer actuators, based on the field-induced deformation of elastomeric polymers with compliant electrodes, can produce a large strain response, combined with a fast response time and high electromechanical efficiency. This unique performance, combined with other factors such as low cost, suggests many potential applications, a wide range of which are under investigation. Applications that effectively exploit the properties of dielectric elastomers include artificial muscle actuators for robots; low-cost, lightweight linear actuators; solid- state optical devices; diaphragm actuators for pumps and smart skins; acoustic actuators; and rotary motors. Issues that may ultimately determine the success or failure of the actuation technology for specific applications include the durability of the actuator, the performance of the actuator under load, operating voltage and power requirements, and electronic driving circuitry, to name a few.

  13. Optical response of oxide dielectrics

    NASA Astrophysics Data System (ADS)

    Bussmann-Holder, Annette; Bishop, A. R.

    2003-10-01

    The optical response of oxide dielectrics is calculated by using a combination of self-consistent phonon theory together with results obtained from exactly solving a nonlinear electron-phonon interaction model in the continuum limit. The model is based on the unusual oxygen ion polarizability which induces multiphonon density-density interactions. The damping of optic modes together with an increase in oscillator strength and the development of line shape anomalies with decreasing temperature, is obtained in agreement with experimental data. Unusual mass dependences of optic modes are observed, and the origin of the damping of these phonon modes is identified. The results may provide a fundamental understanding of sum rule violations observed in many dielectrics.

  14. End moldings for cable dielectrics

    DOEpatents

    Roose, Lars D.

    2000-01-01

    End moldings for high-voltage cables are described wherein the dielectric insulator of the cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made. Disclosed is a method for making the cable connectors either in the field or in a factory, molds suitable for use with the method, and the molded cable connectors, themselves.

  15. Asymmetric Dielectric Elastomer Composite Material

    NASA Technical Reports Server (NTRS)

    Stewart, Brian K. (Inventor)

    2014-01-01

    Embodiments of the invention provide a dielectric elastomer composite material comprising a plurality of elastomer-coated electrodes arranged in an assembly. Embodiments of the invention provide improved force output over prior DEs by producing thinner spacing between electrode surfaces. This is accomplished by coating electrodes directly with uncured elastomer in liquid form and then assembling a finished component (which may be termed an actuator) from coated electrode components.

  16. Electrical conduction in polymer dielectrics

    NASA Technical Reports Server (NTRS)

    Cotts, D. B.

    1985-01-01

    The use of polymer dielectrics with moderate resistivities could reduce or eliminate problems associated with spacecraft charging. The processes responsible for conduction and the properties of electroactive polymers are reviewed, and correlations drawn between molecular structure and electrical conductivity. These structure-property relationships led to the development of several new electroactive polymer compositions and the identification of several systems that have the requisite thermal, mechanical, environmental and electrical properties for use in spacecraft.

  17. Microwave dielectric spectrum of rocks

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Bengal, T.; East, J.; Dobson, M. C.; Garvin, J.; Evans, D.

    1988-01-01

    A combination of several measurement techniques was used to investigate the dielectric properties of 80 rock samples in the microwave region. The real part of the dielectric constant, epsilon', was measured in 0.1 GHz steps from 0.5 to 18 GHz, and the imaginary part, epsilon'', was measured at five frequencies extending between 1.6 and 16 GHz. In addition to the dielectric measurements, the bulk density was measured for all the samples and the bulk chemical composition was determined for 56 of the samples. The study shows that epsilon' is frequency-dependent over the 0.5 to 18 GHz range for all rock samples, and that the bulk density rho accounts for about 50 percent of the observed variance of epsilon'. For individual rock types (by genesis), about 90 percent of the observed variance may be explained by the combination of density and the fractional contents of SiO2, Fe2O3, MgO, and TiO2. For the loss factor epsilon'', it was not possible to establish statistically significant relationships between it and the measured properties of the rock samples (density and chemical composition).

  18. Dielectric decrement effects in electrokinetics

    NASA Astrophysics Data System (ADS)

    Figliuzzi, Bruno; Chan, Wai Hong Ronald; Buie, Cullen; Moran, Jeffrey

    2015-11-01

    Understanding the nonlinear phenomena that occur in the electric double layer (EDL) that forms at charged surfaces is a key issue in electrokinetics. In recent studies, Nakayama and Andelman [J. Chem. Physics 2015] Hatlo et al. [EPL 2012], and Zhao and Zhai [JFM 2013] demonstrated that dielectric decrement significantly influences the ionic concentration in the electric double layer (EDL) at high zeta potential, leading to the formation of a condensed layer near the particle's surface. In this presentation, we apply the dielectric decrement model to study two archetypal problems in electrokinetics, namely the electrophoresis of particles with fixed surface charges and the electrophoresis of ideally polarizable particles. Our aim is to rely on numerical simulations to incorporate nonlinear effects including crowding effects due to the finite size of ions, dielectric decrement in the EDL, surface conduction, concentration polarization and advection in the bulk solution. In parallel, we derive a simplified composite layer model that enables us to obtain analytical estimates of the physical quantities involved in the physical description of the problem.

  19. Sensing Properties of a Fabry-Perot Dielectric Structure and Dimer Nanoparticles

    DOE PAGESBeta

    Polemi, A.; Shuford, K. L.

    2012-01-01

    We investigate the use of a Fabry-Perot dielectric structure combined with differently shaped nanoparticles for Surface Enhanced Raman Scattering. In particular, we show how an ideal two-layer Fabry-Perot configuration enhances the local surface field of silver nanoparticles positioned on the surface of the structure. We develop the concept using disc dimers and then extend the discussion to bowtie nanoparticles. The structure is excited by a single emitter, which couples to the nanoparticles through the dielectric layers, producing a wide aperture field that can be used to excite multiple dimers. We show how an array of nanoparticles can be properly arrangedmore » in order to increase the total scattering signal generated from the structure. The layered geometry produces robust field properties in between nanoparticles, making the overall sensing characteristics less sensitive to the interparticle seperation distance and incident polarization.« less

  20. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    NASA Astrophysics Data System (ADS)

    Marinov, Daniil; Guerra, Vasco; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine

    2013-10-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1-5 Torr and discharge currents ˜40-120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O_3^{*} , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O_3^{*} is strongly coupled with those of atomic oxygen and O2(a 1Δg) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established.

  1. Dielectric constant of water in the interface.

    PubMed

    Dinpajooh, Mohammadhasan; Matyushov, Dmitry V

    2016-07-01

    We define the dielectric constant (susceptibility) that should enter the Maxwell boundary value problem when applied to microscopic dielectric interfaces polarized by external fields. The dielectric constant (susceptibility) of the interface is defined by exact linear-response equations involving correlations of statistically fluctuating interface polarization and the Coulomb interaction energy of external charges with the dielectric. The theory is applied to the interface between water and spherical solutes of altering size studied by molecular dynamics (MD) simulations. The effective dielectric constant of interfacial water is found to be significantly lower than its bulk value, and it also depends on the solute size. For TIP3P water used in MD simulations, the interface dielectric constant changes from 9 to 4 when the solute radius is increased from ∼5 to 18 Å.

  2. Dielectric relaxation of high-k oxides

    PubMed Central

    2013-01-01

    Frequency dispersion of high-k dielectrics was observed and classified into two parts: extrinsic cause and intrinsic cause. Frequency dependence of dielectric constant (dielectric relaxation), that is the intrinsic frequency dispersion, could not be characterized before considering the effects of extrinsic frequency dispersion. Several mathematical models were discussed to describe the dielectric relaxation of high-k dielectrics. For the physical mechanism, dielectric relaxation was found to be related to the degree of polarization, which depended on the structure of the high-k material. It was attributed to the enhancement of the correlations among polar nanodomain. The effect of grain size for the high-k materials' structure mainly originated from higher surface stress in smaller grain due to its higher concentration of grain boundary. PMID:24180696

  3. Excitation Methods for Bridge Structures

    SciTech Connect

    Farrar, C.R.; Duffy, T.A.; Cornwell, P.J.; Doebling, S.W.

    1999-02-08

    This paper summarizes the various methods that have been used to excited bridge structures during dynamic testing. The excitation methods fall into the general categories of ambient excitation methods and measured-input excitation methods. During ambient excitation the input to the bridge is not directly measured. In contrast, as the category label implies, measured-input excitations are usually applied at a single location where the force input to the structure can be monitored. Issues associated with using these various types of measurements are discussed along with a general description of the various excitation methods.

  4. Exploring Strategies for High Dielectric Constant and Low Loss Polymer Dielectrics

    NASA Astrophysics Data System (ADS)

    Zhu, Lei

    Polymer dielectrics having high dielectric constant, high temperature capability, and low loss are attractive for a broad range of applications such as film capacitors, gate dielectrics, artificial muscles, and electrocaloric cooling. Unfortunately, it is generally observed that higher polarization or dielectric constant tends to cause significantly enhanced dielectric loss. It is therefore highly desired that the fundamental physics of all types of polarization and loss mechanisms be thoroughly understood for dielectric polymers. In this presentation, we intend to explore advantages and disadvantages for different types of polarization. Among a number of approaches, dipolar polarization is promising for high dielectric constant and low loss polymer dielectrics, if the dipolar relaxation peak can be pushed to above the gigahertz range. In particular, dipolar glass, paraelectric, and relaxor ferroelectric polymers are discussed for the dipolar polarization approach. This work is supported by NSF Polymers Program (DMR-1402733).

  5. Exploring Strategies for High Dielectric Constant and Low Loss Polymer Dielectrics.

    PubMed

    Zhu, Lei

    2014-11-01

    Polymer dielectrics having high dielectric constant, high temperature capability, and low loss are attractive for a broad range of applications such as film capacitors, gate dielectrics, artificial muscles, and electrocaloric cooling. Unfortunately, it is generally observed that higher polarization or dielectric constant tends to cause significantly enhanced dielectric loss. It is therefore highly desired that the fundamental physics of all types of polarization and loss mechanisms be thoroughly understood for dielectric polymers. In this Perspective, we intend to explore advantages and disadvantages for different types of polarization. Among a number of approaches, dipolar polarization is promising for high dielectric constant and low loss polymer dielectrics, if the dipolar relaxation peak can be pushed to above the gigahertz range. In particular, dipolar glass, paraelectric, and relaxor ferroelectric polymers are discussed for the dipolar polarization approach.

  6. Quantitative assessment of radiation force effect at the dielectric air-liquid interface

    PubMed Central

    Capeloto, Otávio Augusto; Zanuto, Vitor Santaella; Malacarne, Luis Carlos; Baesso, Mauro Luciano; Lukasievicz, Gustavo Vinicius Bassi; Bialkowski, Stephen Edward; Astrath, Nelson Guilherme Castelli

    2016-01-01

    We induce nanometer-scale surface deformation by exploiting momentum conservation of the interaction between laser light and dielectric liquids. The effect of radiation force at the air-liquid interface is quantitatively assessed for fluids with different density, viscosity and surface tension. The imparted pressure on the liquids by continuous or pulsed laser light excitation is fully described by the Helmholtz electromagnetic force density. PMID:26856622

  7. Development of a stable dielectric-barrier discharge enhanced laminar plasma jet generated at atmospheric pressure

    SciTech Connect

    Tang Jie; Li Shibo; Zhao Wei; Wang Yishan; Duan Yixiang

    2012-06-18

    A stable nonthermal laminar atmospheric-pressure plasma source equipped with dielectric-barrier discharge was developed to realize more efficient plasma generation, with the total energy consumption reduced to nearly 25% of the original. Temperature and emission spectra monitoring indicates that this plasma is uniform in the lateral direction of the jet core region. It is also found that this plasma contains not only abundant excited argon atoms but also sufficient excited N{sub 2} and OH. This is mainly resulted from the escape of abundant electrons from the exit, due to the sharp decrease of sustaining voltage and the coupling between ions and electrons.

  8. Dielectric behavior of semiconductors at microwave frequencies

    NASA Technical Reports Server (NTRS)

    Dahiya, Jai N.

    1992-01-01

    A cylindrical microwave resonant cavity in TE(011) (Transverse Electric) mode is used to study the dielectric relaxation in germanium and silicon. The samples of these semiconductors are used to perturb the electric field in the cavity, and Slater's perturbation equations are used to calculate the real and imaginary parts of the dielectric constant. The dielectric loss of germanium and silicon is studied at different temperatures, and Debye's equations are used to calculate the relaxation time at these temperatures.

  9. Broadbanding of circularly polarized patch antenna by waveguided magneto-dielectric metamaterial

    NASA Astrophysics Data System (ADS)

    Yang, Xin Mi; Wen, Juan; Liu, Chang Rong; Liu, Xue Guan; Cui, Tie Jun

    2015-12-01

    Design of bandwidth-enhanced circularly polarized (CP) patch antenna using artificial magneto-dielectric substrate was investigated. The artificial magneto-dielectric material adopted here takes the form of waveguided metamaterial (WG-MTM). In particular, the embedded meander line (EML) structure was employed as the building element of the WG-MTM. As verified by the retrieved effective medium parameters, the EML-based waveguided magneto-dielectric metamaterial (WG-MDM) exhibits two-dimensionally isotropic magneto-dielectric property with respect to TEM wave excitations applied in two orthogonal directions. A CP patch antenna loaded with the EML-based WG-MDM (WG-MDM antenna) has been proposed and its design procedure is described in detail. Simulation results show that the impedance and axial ratio bandwidths of the WG-MDM antenna have increased by 125% and 133%, respectively, compared with those obtained with pure dielectric substrate offering the same patch size. The design of the novel WG-MDM antenna was also validated by measurement results, which show good agreement with their simulated counterparts.

  10. Longitudinal wavevector- and frequency-dependent dielectric constant of the TIP4P water model

    NASA Astrophysics Data System (ADS)

    Omelyan, Igor P.

    A computer adapted theory for self-consistent calculations of the wavevector- and frequencydependent dielectric constant for interaction site models of polar systems is proposed. A longitudinal component of the dielectric constant is evaluated for the TIP4P water model over a very wide scale of wavenumbers and frequencies using molecular dynamics simulations. It is shown that values for the dielectric permittivity, calculated within the exact interaction site description, differ in a characteristic way from those obtained by the point dipole approximation which is usually used in computer experiment. It is shown also that the libration oscillations, existing in the shape of longitudinal time-dependent polarization fluctuations at small and intermediate wavevector values, vanish for larger wavenumbers. A comparison between the wavevector and frequency behaviour of the dielectric constant for the TIP4P water model and the Stockmayer model is made. The static screening of external charges and damping of longitudinal electric excitations in water are considered as well. A special investigation is devoted to the time dependence of dielectric quantities in the free motion regime.

  11. Achieving a multi-band metamaterial perfect absorber via a hexagonal ring dielectric resonator

    NASA Astrophysics Data System (ADS)

    Li, Li-Yang; Wang, Jun; Du, Hong-Liang; Wang, Jia-Fu; Qu, Shao-Bo

    2015-06-01

    A multi-band absorber composed of high-permittivity hexagonal ring dielectric resonators and a metallic ground plate is designed in the microwave band. Near-unity absorptions around 9.785 GHz, 11.525 GHz, and 12.37 GHz are observed for this metamaterial absorber. The dielectric hexagonal ring resonator is made of microwave ceramics with high permittivity and low loss. The mechanism for the near-unity absorption is investigated via the dielectric resonator theory. It is found that the absorption results from electric and magnetic resonances where enhanced electromagnetic fields are excited inside the dielectric resonator. In addition, the resonance modes of the hexagonal resonator are similar to those of standard rectangle resonators and can be used for analyzing hexagonal absorbers. Our work provides a new research method as well as a solid foundation for designing and analyzing dielectric metamaterial absorbers with complex shapes. Project supported by the National Natural Science Foundation of China (Grant Nos. 61331005, 11204378, 11274389, 11304393, and 61302023), the Aviation Science Foundation of China (Grant Nos. 20132796018 and 20123196015), the Natural Science Foundation for Post-Doctoral Scientists of China (Grant Nos. 2013M532131 and 2013M532221), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2013JM6005), and the Special Funds for Authors of Annual Excellent Doctoral Degree Dissertations of China (Grant No. 201242).

  12. Decoherence at constant excitation

    NASA Astrophysics Data System (ADS)

    Torres, J. M.; Sadurní, E.; Seligman, T. H.

    2012-02-01

    We present a simple exactly solvable extension of the Jaynes-Cummings model by adding dissipation. This is done such that the total number of excitations is conserved. The Liouville operator in the resulting master equation can be reduced to blocks of 4×4 matrices.

  13. Excited states in hydrocarbons

    SciTech Connect

    Lipsky, S.

    1987-01-01

    In this brief review we first summarize some pertinent features of the photophysical properties of excited states of hydrocarbons and the mechanisms by which they transfer energy to solutes and then review their yields and their behavior under fast-electron irradiation conditions. 33 refs.

  14. Positron excitation of neon

    NASA Technical Reports Server (NTRS)

    Parcell, L. A.; Mceachran, R. P.; Stauffer, A. D.

    1990-01-01

    The differential and total cross section for the excitation of the 3s1P10 and 3p1P1 states of neon by positron impact were calculated using a distorted-wave approximation. The results agree well with experimental conclusions.

  15. Solar cell with silicon oxynitride dielectric layer

    SciTech Connect

    Shepherd, Michael; Smith, David D

    2015-04-28

    Solar cells with silicon oxynitride dielectric layers and methods of forming silicon oxynitride dielectric layers for solar cell fabrication are described. For example, an emitter region of a solar cell includes a portion of a substrate having a back surface opposite a light receiving surface. A silicon oxynitride (SiO.sub.xN.sub.y, 0dielectric layer is disposed on the back surface of the portion of the substrate. A semiconductor layer is disposed on the silicon oxynitride dielectric layer.

  16. Computationally efficient dielectric calculations of molecular crystals

    SciTech Connect

    Schwarz, Kathleen A.; Sundararaman, Ravishankar; Arias, T. A.

    2015-06-07

    The microscopic dielectric response is a key quantity for electronic materials such as organic semiconductors. Calculations of this response for molecular crystals are currently either expensive or rely on extreme simplifications such as multipole expansions which lack microscopic detail. We present an alternate approach using a microscopic analogue of the Clausius-Mossotti equation, which constructs the dielectric response of a crystal from an eigenvalue decomposition of the dielectric response of individual molecules. This method can potentially be used to examine the effects of defects, disorder, and surfaces on the dielectric properties of molecular solids.

  17. Dielectric particle injector for material processing

    NASA Technical Reports Server (NTRS)

    Leung, Philip L. (Inventor)

    1992-01-01

    A device for use as an electrostatic particle or droplet injector is disclosed which is capable of injecting dielectric particles or droplets. The device operates by first charging the dielectric particles or droplets using ultraviolet light induced photoelectrons from a low work function material plate supporting the dielectric particles or droplets, and then ejecting the charged particles or droplets from the plate by utilizing an electrostatic force. The ejected particles or droplets are mostly negatively charged in the preferred embodiment; however, in an alternate embodiment, an ion source is used instead of ultraviolet light to eject positively charged dielectric particles or droplets.

  18. Time-dependent non-equilibrium dielectric response in QM/continuum approaches.

    PubMed

    Ding, Feizhi; Lingerfelt, David B; Mennucci, Benedetta; Li, Xiaosong

    2015-01-21

    The Polarizable Continuum Models (PCMs) are some of the most inexpensive yet successful methods for including the effects of solvation in quantum-mechanical calculations of molecular systems. However, when applied to the electronic excitation process, these methods are restricted to dichotomously assuming either that the solvent has completely equilibrated with the excited solute charge density (infinite-time limit), or that it retains the configuration that was in equilibrium with the solute prior to excitation (zero-time limit). This renders the traditional PCMs inappropriate for resolving time-dependent solvent effects on non-equilibrium solute electron dynamics like those implicated in the instants following photoexcitation of a solvated molecular species. To extend the existing methods to this non-equilibrium regime, we herein derive and apply a new formalism for a general time-dependent continuum embedding method designed to be propagated alongside the solute's electronic degrees of freedom in the time domain. Given the frequency-dependent dielectric constant of the solvent, an equation of motion for the dielectric polarization is derived within the PCM framework and numerically integrated simultaneously with the time-dependent Hartree fock/density functional theory equations. Results for small molecular systems show the anticipated dipole quenching and electronic state dephasing/relaxation resulting from out-of-phase charge fluctuations in the dielectric and embedded quantum system.

  19. Time-dependent non-equilibrium dielectric response in QM/continuum approaches

    SciTech Connect

    Ding, Feizhi; Lingerfelt, David B.; Li, Xiaosong E-mail: li@chem.washington.edu; Mennucci, Benedetta E-mail: li@chem.washington.edu

    2015-01-21

    The Polarizable Continuum Models (PCMs) are some of the most inexpensive yet successful methods for including the effects of solvation in quantum-mechanical calculations of molecular systems. However, when applied to the electronic excitation process, these methods are restricted to dichotomously assuming either that the solvent has completely equilibrated with the excited solute charge density (infinite-time limit), or that it retains the configuration that was in equilibrium with the solute prior to excitation (zero-time limit). This renders the traditional PCMs inappropriate for resolving time-dependent solvent effects on non-equilibrium solute electron dynamics like those implicated in the instants following photoexcitation of a solvated molecular species. To extend the existing methods to this non-equilibrium regime, we herein derive and apply a new formalism for a general time-dependent continuum embedding method designed to be propagated alongside the solute’s electronic degrees of freedom in the time domain. Given the frequency-dependent dielectric constant of the solvent, an equation of motion for the dielectric polarization is derived within the PCM framework and numerically integrated simultaneously with the time-dependent Hartree fock/density functional theory equations. Results for small molecular systems show the anticipated dipole quenching and electronic state dephasing/relaxation resulting from out-of-phase charge fluctuations in the dielectric and embedded quantum system.

  20. Optically Excited Surface Polaritons Using Strongly Absorbing Media.

    NASA Astrophysics Data System (ADS)

    Yang, Fuzi

    1991-08-01

    Available from UMI in association with The British Library. The results of several experiments, performed using the Otto configuration and infrared radiation to excite such modes supported at the surface of several transition metals having strong absorption at the wavelength, proves that even if the active medium has very strong absorption, a surface polariton can still be excited. Experiments, which use the Kretschmann configuration to measure the permittivity and thickness of the thin active film deposited on the prism together with the use of the hybrid Otto-Kretschmann geometry to excite the interaction between a surface plasmon - and a surface exciton-polariton have also been performed. These show the strong influences of the large imaginary component of the permittivity of the active medium. A detailed analysis of the surface modes of a thin slab of material of dielectric constant epsilon _2(= epsilon_{r2 } + iepsilon_{i2 }) surrounded symmetrically by dielectric media is also presented in this thesis. We also find that a long range surface mode may arise from the coupling between two surfaces which individually cannot support a surface mode. These are a pair of special coupled-surface modes which may exist below a certain critical film thickness and which have two separate propagation vectors each with the same field symmetry. It is also found that the inverse situation may pertain. The analysis has also been extended to practical situations with weakly absorbing surrounding media and to circumstances where the dielectric constants of the surrounding media are slightly different. The role played by the imaginary part of the permittivity of the active layers in a multi-layered geometry is discussed. The redistribution of the field in the multi-layered structure explains why a long range surface polariton can be supported on very strongly absorbing films and the effect from the prism coupling may introduce a lower loss of a LRSEP than one of its uncoupled