Beyond Born-Mayer: Improved models for short-range repulsion in ab initio force fields
Van Vleet, Mary J.; Misquitta, Alston J.; Stone, Anthony J.; ...
2016-06-23
Short-range repulsion within inter-molecular force fields is conventionally described by either Lennard-Jones or Born-Mayer forms. Despite their widespread use, these simple functional forms are often unable to describe the interaction energy accurately over a broad range of inter-molecular distances, thus creating challenges in the development of ab initio force fields and potentially leading to decreased accuracy and transferability. Herein, we derive a novel short-range functional form based on a simple Slater-like model of overlapping atomic densities and an iterated stockholder atom (ISA) partitioning of the molecular electron density. We demonstrate that this Slater-ISA methodology yields a more accurate, transferable, andmore » robust description of the short-range interactions at minimal additional computational cost compared to standard Lennard-Jones or Born-Mayer approaches. Lastly, we show how this methodology can be adapted to yield the standard Born-Mayer functional form while still retaining many of the advantages of the Slater-ISA approach.« less
Implementing Molecular Dynamics for Hybrid High Performance Computers - 1. Short Range Forces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W Michael; Wang, Peng; Plimpton, Steven J
The use of accelerators such as general-purpose graphics processing units (GPGPUs) have become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high performance computers, machines with more than one type of floating-point processor, are now becoming more prevalent due to these advantages. In this work, we discuss several important issues in porting a large molecular dynamics code for use on parallel hybrid machines - 1) choosing a hybrid parallel decomposition that works on central processing units (CPUs) with distributed memory and accelerator cores with shared memory,more » 2) minimizing the amount of code that must be ported for efficient acceleration, 3) utilizing the available processing power from both many-core CPUs and accelerators, and 4) choosing a programming model for acceleration. We present our solution to each of these issues for short-range force calculation in the molecular dynamics package LAMMPS. We describe algorithms for efficient short range force calculation on hybrid high performance machines. We describe a new approach for dynamic load balancing of work between CPU and accelerator cores. We describe the Geryon library that allows a single code to compile with both CUDA and OpenCL for use on a variety of accelerators. Finally, we present results on a parallel test cluster containing 32 Fermi GPGPUs and 180 CPU cores.« less
Effect of short range hydrodynamic on bimodal colloidal gel systems
NASA Astrophysics Data System (ADS)
Boromand, Arman; Jamali, Safa; Maia, Joao
2015-03-01
Colloidal Gels and disordered arrested systems has been studied extensively during the past decades. Although, they have found their place in multiple industries such as cosmetic, food and so on, their physical principals are still far beyond being understood. The interplay between different types of interactions from quantum scale, Van der Waals interaction, to short range interactions, depletion interaction, and long range interactions such as electrostatic double layer makes this systems challenging from simulation point of view. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation of colloidal system with short range attractive force. However, BD is not capable to include multi-body hydrodynamic interaction and MD is limited by the computational resources and is limited to short time and length scales. In this presentation we used Core-modified dissipative particle dynamics (CM-DPD) with modified depletion potential, as a coarse-grain model, to address the gel formation process in short ranged-attractive colloidal suspensions. Due to the possibility to include and separate short and long ranged-hydrodynamic forces in this method we studied the effect of each of those forces on the final morphology and report one of the controversial question in this field on the effect of hydrodynamics on the cluster formation process on bimodal, soft-hard colloidal mixtures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Vleet, Mary J.; Misquitta, Alston J.; Stone, Anthony J.
Short-range repulsion within inter-molecular force fields is conventionally described by either Lennard-Jones or Born-Mayer forms. Despite their widespread use, these simple functional forms are often unable to describe the interaction energy accurately over a broad range of inter-molecular distances, thus creating challenges in the development of ab initio force fields and potentially leading to decreased accuracy and transferability. Herein, we derive a novel short-range functional form based on a simple Slater-like model of overlapping atomic densities and an iterated stockholder atom (ISA) partitioning of the molecular electron density. We demonstrate that this Slater-ISA methodology yields a more accurate, transferable, andmore » robust description of the short-range interactions at minimal additional computational cost compared to standard Lennard-Jones or Born-Mayer approaches. Lastly, we show how this methodology can be adapted to yield the standard Born-Mayer functional form while still retaining many of the advantages of the Slater-ISA approach.« less
PHoToNs–A parallel heterogeneous and threads oriented code for cosmological N-body simulation
NASA Astrophysics Data System (ADS)
Wang, Qiao; Cao, Zong-Yan; Gao, Liang; Chi, Xue-Bin; Meng, Chen; Wang, Jie; Wang, Long
2018-06-01
We introduce a new code for cosmological simulations, PHoToNs, which incorporates features for performing massive cosmological simulations on heterogeneous high performance computer (HPC) systems and threads oriented programming. PHoToNs adopts a hybrid scheme to compute gravitational force, with the conventional Particle-Mesh (PM) algorithm to compute the long-range force, the Tree algorithm to compute the short range force and the direct summation Particle-Particle (PP) algorithm to compute gravity from very close particles. A self-similar space filling a Peano-Hilbert curve is used to decompose the computing domain. Threads programming is advantageously used to more flexibly manage the domain communication, PM calculation and synchronization, as well as Dual Tree Traversal on the CPU+MIC platform. PHoToNs scales well and efficiency of the PP kernel achieves 68.6% of peak performance on MIC and 74.4% on CPU platforms. We also test the accuracy of the code against the much used Gadget-2 in the community and found excellent agreement.
A splitting integration scheme for the SPH simulation of concentrated particle suspensions
NASA Astrophysics Data System (ADS)
Bian, Xin; Ellero, Marco
2014-01-01
Simulating nearly contacting solid particles in suspension is a challenging task due to the diverging behavior of short-range lubrication forces, which pose a serious time-step limitation for explicit integration schemes. This general difficulty limits severely the total duration of simulations of concentrated suspensions. Inspired by the ideas developed in [S. Litvinov, M. Ellero, X.Y. Hu, N.A. Adams, J. Comput. Phys. 229 (2010) 5457-5464] for the simulation of highly dissipative fluids, we propose in this work a splitting integration scheme for the direct simulation of solid particles suspended in a Newtonian liquid. The scheme separates the contributions of different forces acting on the solid particles. In particular, intermediate- and long-range multi-body hydrodynamic forces, which are computed from the discretization of the Navier-Stokes equations using the smoothed particle hydrodynamics (SPH) method, are taken into account using an explicit integration; for short-range lubrication forces, velocities of pairwise interacting solid particles are updated implicitly by sweeping over all the neighboring pairs iteratively, until convergence in the solution is obtained. By using the splitting integration, simulations can be run stably and efficiently up to very large solid particle concentrations. Moreover, the proposed scheme is not limited to the SPH method presented here, but can be easily applied to other simulation techniques employed for particulate suspensions.
Chung, Charles S; Mitov, Mihail I; Callahan, Leigh Ann; Campbell, Kenneth S
2014-06-15
Diastolic dysfunction is a clinically significant problem for patients with diabetes and often reflects increased ventricular stiffness. Attached cross-bridges contribute to myocardial stiffness and produce short-range forces, but it is not yet known whether these forces are altered in diabetes. In this study, we tested the hypothesis that cross-bridge-based short-range forces are increased in the streptozotocin (STZ) induced rat model of type 1 diabetes. Chemically permeabilized myocardial preparations were obtained from 12week old rats that had been injected with STZ or vehicle 4weeks earlier, and activated in solutions with pCa (=-log10[Ca(2+)]) values ranging from 9.0 to 4.5. The short-range forces elicited by controlled length changes were ∼67% greater in the samples from the diabetic rats than in the control preparations. This change was mostly due to an increased elastic limit (the length change at the peak short-range force) as opposed to increased passive muscle stiffness. The STZ-induced increase in short-ranges forces is thus unlikely to reflect changes to titin and/or collagen filaments. Gel electrophoresis showed that STZ increased the relative expression of β myosin heavy chain. This molecular mechanism can explain the increased short-ranges forces observed in the diabetic tissue if β myosin molecules remain bound between the filaments for longer durations than α molecules during imposed movements. These results suggest that interventions that decrease myosin attachment times may be useful treatments for diastolic dysfunction associated with diabetes. Copyright © 2013 Elsevier Inc. All rights reserved.
Self-consistent calculation of the Sommerfeld enhancement
Blum, Kfir; Sato, Ryosuke; Slatyer, Tracy R.
2016-06-08
A calculation of the Sommerfeld enhancement is presented and applied to the problem of s-wave non-relativistic dark matter annihilation. The difference from previous computations in the literature is that the effect of the underlying short-range scattering process is consistently included together with the long-range force in the effective QM Schrödinger problem. Our procedure satisfies partial-wave unitarity where previous calculations fail. We provide analytic results for some potentials of phenomenological relevance.
Narth, Christophe; Lagardère, Louis; Polack, Étienne; Gresh, Nohad; Wang, Qiantao; Bell, David R; Rackers, Joshua A; Ponder, Jay W; Ren, Pengyu Y; Piquemal, Jean-Philip
2016-02-15
We propose a general coupling of the Smooth Particle Mesh Ewald SPME approach for distributed multipoles to a short-range charge penetration correction modifying the charge-charge, charge-dipole and charge-quadrupole energies. Such an approach significantly improves electrostatics when compared to ab initio values and has been calibrated on Symmetry-Adapted Perturbation Theory reference data. Various neutral molecular dimers have been tested and results on the complexes of mono- and divalent cations with a water ligand are also provided. Transferability of the correction is adressed in the context of the implementation of the AMOEBA and SIBFA polarizable force fields in the TINKER-HP software. As the choices of the multipolar distribution are discussed, conclusions are drawn for the future penetration-corrected polarizable force fields highlighting the mandatory need of non-spurious procedures for the obtention of well balanced and physically meaningful distributed moments. Finally, scalability and parallelism of the short-range corrected SPME approach are addressed, demonstrating that the damping function is computationally affordable and accurate for molecular dynamics simulations of complex bio- or bioinorganic systems in periodic boundary conditions. Copyright © 2016 Wiley Periodicals, Inc.
Supercomputer simulations of structure formation in the Universe
NASA Astrophysics Data System (ADS)
Ishiyama, Tomoaki
2017-06-01
We describe the implementation and performance results of our massively parallel MPI†/OpenMP‡ hybrid TreePM code for large-scale cosmological N-body simulations. For domain decomposition, a recursive multi-section algorithm is used and the size of domains are automatically set so that the total calculation time is the same for all processes. We developed a highly-tuned gravity kernel for short-range forces, and a novel communication algorithm for long-range forces. For two trillion particles benchmark simulation, the average performance on the fullsystem of K computer (82,944 nodes, the total number of core is 663,552) is 5.8 Pflops, which corresponds to 55% of the peak speed.
Non-contact lateral force microscopy.
Weymouth, A J
2017-08-16
The goal of atomic force microscopy (AFM) is to measure the short-range forces that act between the tip and the surface. The signal recorded, however, includes long-range forces that are often an unwanted background. Lateral force microscopy (LFM) is a branch of AFM in which a component of force perpendicular to the surface normal is measured. If we consider the interaction between tip and sample in terms of forces, which have both direction and magnitude, then we can make a very simple yet profound observation: over a flat surface, long-range forces that do not yield topographic contrast have no lateral component. Short-range interactions, on the other hand, do. Although contact-mode is the most common LFM technique, true non-contact AFM techniques can be applied to perform LFM without the tip depressing upon the sample. Non-contact lateral force microscopy (nc-LFM) is therefore ideal to study short-range forces of interest. One of the first applications of nc-LFM was the study of non-contact friction. A similar setup is used in magnetic resonance force microscopy to detect spin flipping. More recently, nc-LFM has been used as a true microscopy technique to systems unsuitable for normal force microscopy.
Short-range components of nuclear forces: Experiment versus mythology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kukulin, V. I.; Platonova, M. N., E-mail: platonova@nucl-th.sinp.msu.ru
2013-12-15
The present-day situation around the description of various (central, spin-orbit, and tensor) components of short-range nuclear forces is discussed. A traditional picture of these interactions based on the idea of one-meson exchange is contrasted against numerous results of recent experiments. As is shown in the present study, these results often deviate strongly from the predictions of traditional models. One can therefore state that such models are inapplicable to describing short-range nuclear forces and that it is necessary to go over from a traditional description to some alternative QCD-based (or QCD-motivated) picture. This means that, despite the widespread popularity of traditionalmore » concepts of short-range nuclear forces and their applicability in many particular cases, these concepts are not more than scientific myths that show their inconsistency when analyzed from the viewpoint of the modern experiment.« less
Microstructural Dynamics and Rheology of Suspensions of Rigid Fibers
NASA Astrophysics Data System (ADS)
Butler, Jason E.; Snook, Braden
2018-01-01
The dynamics and rheology of suspensions of rigid, non-Brownian fibers in Newtonian fluids are reviewed. Experiments, theories, and computer simulations are considered, with an emphasis on suspensions at semidilute and concentrated conditions. In these suspensions, interactions between the particles strongly influence the microstructure and rheological properties of the suspension. The interactions can arise from hydrodynamic disturbances, giving multibody interactions at long ranges and pairwise lubrication forces over short distances. For concentrated suspensions, additional interactions due to excluded volume (contacts) and adhesive forces are addressed. The relative importance of the various interactions as a function of fiber concentration is assessed.
Probing short-range nucleon-nucleon interactions with an electron-ion collider
Miller, Gerald A.; Sievert, Matthew D.; Venugopalan, Raju
2016-04-07
For this research, we derive the cross section for exclusive vector meson production in high-energy deeply inelastic scattering off a deuteron target that disintegrates into a proton and a neutron carrying large relative momentum in the final state. This cross section can be expressed in terms of a novel gluon transition generalized parton distribution (T-GPD); the hard scale in the final state makes the T-GPD sensitive to the short-distance nucleon-nucleon interaction. We perform a toy model computation of this process in a perturbative framework and discuss the time scales that allow the separation of initial- and final-state dynamics in themore » T-GPD. We outline the more general computation based on the factorization suggested by the toy computation: In particular, we discuss the relative role of “pointlike” and “geometric” Fock configurations that control the parton dynamics of short-range nucleon-nucleon scattering. With the aid of exclusive J/ψ production data at the Hadron-Electron Ring Accelerator at DESY, as well as elastic nucleon-nucleon cross sections, we estimate rates for exclusive deuteron photodisintegration at a future Electron-Ion Collider (EIC). Our results, obtained using conservative estimates of EIC integrated luminosities, suggest that center-of-mass energies sNN ~12GeV 2 of the neutron-proton subsystem can be accessed. We argue that the high energies of the EIC can address outstanding dynamical questions regarding the short-range quark-gluon structure of nuclear forces by providing clean gluon probes of such “knockout” exclusive reactions in light and heavy nuclei.« less
Myocardial short-range force responses increase with age in F344 rats
Mitov, Mihail I.; Holbrook, Anastasia M.; Campbell, Kenneth S.
2009-01-01
The mechanical properties of triton-permeabilized ventricular preparations isolated from 4, 18 and 24-month-old F344 rats were analyzed to provide information about the molecular mechanisms that lead to age-related increases in diastolic myocardial stiffness in these animals. Passive stiffness (measured in solutions with minimal free Ca2+) did not change with age. This implies that the aging-associated dysfunction is not due to changes in titin or collagen molecules. Ca2+-activated preparations exhibited a characteristic short-range force response: force rose rapidly until the muscle reached its elastic limit and less rapidly thereafter. The elastic limit increased from 0.43 ± 0.01 % l0 (where l0 is the initial muscle length) in preparations from 4-month-old animals to 0.49 ± 0.01 % l0 in preparations from 24-month-old rats (p<0.001, ANOVA). Relative short-range force was defined as the maximum force produced during the short-range response normalized to the prevailing tension. This parameter increased from 0.110 ± 0.002 to 0.142 ± 0.002 over the same age-span (p<0.001, ANOVA). Analytical gel electrophoresis showed that the maximum stiffness of the preparations during the short-range response and the relative short-range force increased (p=0.031 and p=0.005 respectively) with the relative content of slow β myosin heavy chain molecules. Elastic limit values did not correlate with myosin isoform content. Simulations based on these results suggest that attached β myosin heavy chain cross-bridges are stiffer than links formed by α myosin heads. In conclusion, elevated content of stiffer β myosin heavy chain molecules may contribute to aging-associated increases in myocardial stiffness. PMID:19007786
Electron Bubbles in Superfluid (3) 3 He-A: Exploring the Quasiparticle-Ion Interaction
NASA Astrophysics Data System (ADS)
Shevtsov, Oleksii; Sauls, J. A.
2017-06-01
When an electron is forced into liquid ^3He, it forms an "electron bubble", a heavy ion with radius, R˜eq 1.5 nm, and mass, M˜eq 100 m_3, where m_3 is the mass of a ^3He atom. These negative ions have proven to be powerful local probes of the physical properties of the host quantum fluid, especially the excitation spectra of the superfluid phases. We recently developed a theory for Bogoliubov quasiparticles scattering off electron bubbles embedded in a chiral superfluid that provides a detailed understanding of the spectrum of Weyl Fermions bound to the negative ion, as well as a theory for the forces on moving electron bubbles in superfluid ^3He-A (Shevtsov and Sauls in Phys Rev B 94:064511, 2016). This theory is shown to provide quantitative agreement with measurements reported by the RIKEN group (Ikegami et al. in Science 341(6141):59, 2013) for the drag force and anomalous Hall effect of moving electron bubbles in superfluid ^3He-A. In this report, we discuss the sensitivity of the forces on the moving ion to the effective interaction between normal-state quasiparticles and the ion. We consider models for the quasiparticle-ion (QP-ion) interaction, including the hard-sphere potential, constrained random-phase-shifts, and interactions with short-range repulsion and intermediate-range attraction. Our results show that the transverse force responsible for the anomalous Hall effect is particularly sensitive to the structure of the QP-ion potential and that strong short-range repulsion, captured by the hard-sphere potential, provides an accurate model for computing the forces acting on the moving electron bubble in superfluid 3He-A.
Impact of Vial Capping on Residual Seal Force and Container Closure Integrity.
Mathaes, Roman; Mahler, Hanns-Christian; Roggo, Yves; Ovadia, Robert; Lam, Philippe; Stauch, Oliver; Vogt, Martin; Roehl, Holger; Huwyler, Joerg; Mohl, Silke; Streubel, Alexander
2016-01-01
The vial capping process is a critical unit operation during drug product manufacturing, as it could possibly generate cosmetic defects or even affect container closure integrity. Yet there is significant variability in capping equipment and processes, and their relation to potential defects or container closure integrity has not been thoroughly studied. In this study we applied several methods-residual seal force tester, a self-developed system of a piezo force sensor measurement, and computed tomography-to characterize different container closure system combinations that had been sealed using different capping process parameter settings. Additionally, container closure integrity of these samples was measured using helium leakage (physical container closure integrity) and compared to characterization data. The different capping equipment settings lead to residual seal force values from 7 to 115 N. High residual seal force values were achieved with high capping pre-compression force and a short distance between the capping plate and plunge. The choice of container closure system influenced the obtained residual seal force values. The residual seal force tester and piezoelectric measurements showed similar trends. All vials passed physical container closure integrity testing, and no stopper rupture was seen with any of the settings applied, suggesting that container closure integrity was warranted for the studied container closure system with the chosen capping setting ranges. The vial capping process is a critical unit operation during drug product manufacturing, as it could possibly generate cosmetic defects or even affect container closure integrity. Yet there is significant variability in capping equipment and processes, and their relation to potential defects or container closure integrity has not been thoroughly studied. In this study we applied several methods-residual seal force tester, a self-developed system of a piezo force sensor measurement, and computed tomography-to characterize different container closure system combinations that had been sealed using different capping process parameter settings. The residual seal force tester can analyze a variety of different container closure systems independent of the capping equipment. An adequate and safe residual seal force range for each container closure system configuration can be established with the residual seal force tester and additional methods like computed tomography scans and leak testing. In the residual seal force range studied, the physical container closure integrity of the container closure system was warranted. © PDA, Inc. 2016.
An Artificial Neural System for Autonomous Undersea Vehicles
1988-07-01
Neutralization System (MNS) have provided remote operation capability, but suffer from the drag and short range of an umbilical cable. On-board energy ...link altogether. The loss of the hard wire umbilical cables in these two later systems, however, forced the vehicles to carry their own energy supply...submersibles. One is an energy source or renewal strategy that will sustain long-term voyages; the other is an effec- tive on-board computer that will
Intentionally Short-Range Communications (ISRC) Exploratory Development Plan
1992-06-01
range voice communication links. In the 1980s , NOSC developed a short-range, 2400-bps, computer-to-computer link for the USMC (UV Communications, or UV...Communication Links," Proc. Tact. Comm. Conf. 1, 60. Hislop , A. R. 1982. "A Head-Worn 60 GHz Communicator for Short Range Applications." NOSC TN 1153
Precise satellite orbit determination with particular application to ERS-1
NASA Astrophysics Data System (ADS)
Fernandes, Maria Joana Afonso Pereira
The motivation behind this study is twofold. First to assess the accuracy of ERS-1 long arc ephemerides using state of the art models. Second, to develop improved methods for determining precise ERS-1 orbits using either short or long arc techniques. The SATAN programs, for the computation of satellite orbits using laser data were used. Several facilities were added to the original programs: the processing of PRARE range and altimeter data, and a number of algorithms that allow more flexible solutions by adjusting a number of additional parameters. The first part of this study, before the launch of ERS-1, was done with SEAS AT data. The accuracy of SEASAT orbits computed with PRARE simulated data has been determined. The effect of temporal distribution of tracking data along the arc and the extent to which altimetry can replace range data have been investigated. The second part starts with the computation of ERS-1 long arc solutions using laser data. Some aspects of modelling the two main forces affecting ERS-l's orbit are investigated. With regard to the gravitational forces, the adjustment of a set of geopotential coefficients has been considered. With respect to atmospheric drag, extensive research has been carried out on determining the influence on orbit accuracy of the measurements of solar fluxes (P10.7 indices) and geomagnetic activity (Kp indices) used by the atmospheric model in the computation of atmospheric density at satellite height. Two new short arc methods have been developed: the Constrained and the Bayesian method. Both methods are dynamic and consist of solving for the 6 osculating elements. Using different techniques, both methods overcome the problem of normal matrix ill- conditioning by constraining the solution. The accuracy and applicability of these methods are discussed and compared with the traditional non-dynamic TAR method.
NASA Astrophysics Data System (ADS)
Saintillan, David; Darve, Eric; Shaqfeh, Eric S. G.
2005-03-01
Large-scale simulations of non-Brownian rigid fibers sedimenting under gravity at zero Reynolds number have been performed using a fast algorithm. The mathematical formulation follows the previous simulations by Butler and Shaqfeh ["Dynamic simulations of the inhomogeneous sedimentation of rigid fibres," J. Fluid Mech. 468, 205 (2002)]. The motion of the fibers is described using slender-body theory, and the line distribution of point forces along their lengths is approximated by a Legendre polynomial in which only the total force, torque, and particle stresslet are retained. Periodic boundary conditions are used to simulate an infinite suspension, and both far-field hydrodynamic interactions and short-range lubrication forces are considered in all simulations. The calculation of the hydrodynamic interactions, which is typically the bottleneck for large systems with periodic boundary conditions, is accelerated using a smooth particle-mesh Ewald (SPME) algorithm previously used in molecular dynamics simulations. In SPME the slowly decaying Green's function is split into two fast-converging sums: the first involves the distribution of point forces and accounts for the singular short-range part of the interactions, while the second is expressed in terms of the Fourier transform of the force distribution and accounts for the smooth and long-range part. Because of its smoothness, the second sum can be computed efficiently on an underlying grid using the fast Fourier transform algorithm, resulting in a significant speed-up of the calculations. Systems of up to 512 fibers were simulated on a single-processor workstation, providing a different insight into the formation, structure, and dynamics of the inhomogeneities that occur in sedimenting fiber suspensions.
2008-03-28
A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.
Muscle short-range stiffness can be used to estimate the endpoint stiffness of the human arm
Hu, Xiao; Murray, Wendy M.
2011-01-01
The mechanical properties of the human arm are regulated to maintain stability across many tasks. The static mechanics of the arm can be characterized by estimates of endpoint stiffness, considered especially relevant for the maintenance of posture. At a fixed posture, endpoint stiffness can be regulated by changes in muscle activation, but which activation-dependent muscle properties contribute to this global measure of limb mechanics remains unclear. We evaluated the role of muscle properties in the regulation of endpoint stiffness by incorporating scalable models of muscle stiffness into a three-dimensional musculoskeletal model of the human arm. Two classes of muscle models were tested: one characterizing short-range stiffness and two estimating stiffness from the slope of the force-length curve. All models were compared with previously collected experimental data describing how endpoint stiffness varies with changes in voluntary force. Importantly, muscle properties were not fit to the experimental data but scaled only by the geometry of individual muscles in the model. We found that force-dependent variations in endpoint stiffness were accurately described by the short-range stiffness of active arm muscles. Over the wide range of evaluated arm postures and voluntary forces, the musculoskeletal model incorporating short-range stiffness accounted for 98 ± 2, 91 ± 4, and 82 ± 12% of the variance in stiffness orientation, shape, and area, respectively, across all simulated subjects. In contrast, estimates based on muscle force-length curves were less accurate in all measures, especially stiffness area. These results suggest that muscle short-range stiffness is a major contributor to endpoint stiffness of the human arm. Furthermore, the developed model provides an important tool for assessing how the nervous system may regulate endpoint stiffness via changes in muscle activation. PMID:21289133
Quantitative force measurements in liquid using frequency modulation atomic force microscopy
NASA Astrophysics Data System (ADS)
Uchihashi, Takayuki; Higgins, Michael J.; Yasuda, Satoshi; Jarvis, Suzanne P.; Akita, Seiji; Nakayama, Yoshikazu; Sader, John E.
2004-10-01
The measurement of short-range forces with the atomic force microscope (AFM) typically requires implementation of dynamic techniques to maintain sensitivity and stability. While frequency modulation atomic force microscopy (FM-AFM) is used widely for high-resolution imaging and quantitative force measurements in vacuum, quantitative force measurements using FM-AFM in liquids have proven elusive. Here we demonstrate that the formalism derived for operation in vacuum can also be used in liquids, provided certain modifications are implemented. To facilitate comparison with previous measurements taken using surface forces apparatus, we choose a model system (octamethylcyclotetrasiloxane) that is known to exhibit short-ranged structural ordering when confined between two surfaces. Force measurements obtained are found to be in excellent agreement with previously reported results. This study therefore establishes FM-AFM as a powerful tool for the quantitative measurement of forces in liquid.
Interactions regulating the head-to-tail directed assembly of biological Janus rods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, A. C.; Bachand, M.; Gomez, A.
We can generalize the directed, head-to-tail self-assembly of microtubule filaments in the context of Janus colloidal rods. Specifically, their assembly at the tens of micron-length scale involves a careful balance between long-range electrostatic repulsion and short-range attractive forces. We show that the addition of counterion salts increases the rate of directed assembly by screening the electrostatic forces and enhancing the effectiveness of short-range interactions at the microtubule ends.
Interactions regulating the head-to-tail directed assembly of biological Janus rods
Greene, A. C.; Bachand, M.; Gomez, A.; ...
2017-03-31
We can generalize the directed, head-to-tail self-assembly of microtubule filaments in the context of Janus colloidal rods. Specifically, their assembly at the tens of micron-length scale involves a careful balance between long-range electrostatic repulsion and short-range attractive forces. We show that the addition of counterion salts increases the rate of directed assembly by screening the electrostatic forces and enhancing the effectiveness of short-range interactions at the microtubule ends.
Kernel optimization for short-range molecular dynamics
NASA Astrophysics Data System (ADS)
Hu, Changjun; Wang, Xianmeng; Li, Jianjiang; He, Xinfu; Li, Shigang; Feng, Yangde; Yang, Shaofeng; Bai, He
2017-02-01
To optimize short-range force computations in Molecular Dynamics (MD) simulations, multi-threading and SIMD optimizations are presented in this paper. With respect to multi-threading optimization, a Partition-and-Separate-Calculation (PSC) method is designed to avoid write conflicts caused by using Newton's third law. Serial bottlenecks are eliminated with no additional memory usage. The method is implemented by using the OpenMP model. Furthermore, the PSC method is employed on Intel Xeon Phi coprocessors in both native and offload models. We also evaluate the performance of the PSC method under different thread affinities on the MIC architecture. In the SIMD execution, we explain the performance influence in the PSC method, considering the "if-clause" of the cutoff radius check. The experiment results show that our PSC method is relatively more efficient compared to some traditional methods. In double precision, our 256-bit SIMD implementation is about 3 times faster than the scalar version.
Hoang, Tony; Patel, Dhruv S; Halvorsen, Ken
2016-08-01
The centrifuge force microscope (CFM) was recently introduced as a platform for massively parallel single-molecule manipulation and analysis. Here we developed a low-cost and self-contained CFM module that works directly within a commercial centrifuge, greatly improving accessibility and ease of use. Our instrument incorporates research grade video microscopy, a power source, a computer, and wireless transmission capability to simultaneously monitor many individually tethered microspheres. We validated the instrument by performing single-molecule force shearing of short DNA duplexes. For a 7 bp duplex, we observed over 1000 dissociation events due to force dependent shearing from 2 pN to 12 pN with dissociation times in the range of 10-100 s. We extended the measurement to a 10 bp duplex, applying a 12 pN force clamp and directly observing single-molecule dissociation over an 85 min experiment. Our new CFM module facilitates simple and inexpensive experiments that dramatically improve access to single-molecule analysis.
NASA Astrophysics Data System (ADS)
Schwörer, Magnus; Breitenfeld, Benedikt; Tröster, Philipp; Bauer, Sebastian; Lorenzen, Konstantin; Tavan, Paul; Mathias, Gerald
2013-06-01
Hybrid molecular dynamics (MD) simulations, in which the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 103-105 molecules, pose a challenge. A corresponding computational approach should guarantee energy conservation, exclude artificial distortions of the electron density at the interface between the DFT and PMM fragments, and should treat the long-range electrostatic interactions within the hybrid simulation system in a linearly scaling fashion. Here we describe a corresponding Hamiltonian DFT/(P)MM implementation, which accounts for inducible atomic dipoles of a PMM environment in a joint DFT/PMM self-consistency iteration. The long-range parts of the electrostatics are treated by hierarchically nested fast multipole expansions up to a maximum distance dictated by the minimum image convention of toroidal boundary conditions and, beyond that distance, by a reaction field approach such that the computation scales linearly with the number of PMM atoms. Short-range over-polarization artifacts are excluded by using Gaussian inducible dipoles throughout the system and Gaussian partial charges in the PMM region close to the DFT fragment. The Hamiltonian character, the stability, and efficiency of the implementation are investigated by hybrid DFT/PMM-MD simulations treating one molecule of the water dimer and of bulk water by DFT and the respective remainder by PMM.
Subatomic Features on the Silicon (111)-(7x7) Surface Observed by Atomic Force Microscopy.
Giessibl; Hembacher; Bielefeldt; Mannhart
2000-07-21
The atomic force microscope images surfaces by sensing the forces between a sharp tip and a sample. If the tip-sample interaction is dominated by short-range forces due to the formation of covalent bonds, the image of an individual atom should reflect the angular symmetry of the interaction. Here, we report on a distinct substructure in the images of individual adatoms on silicon (111)-(7x7), two crescents with a spherical envelope. The crescents are interpreted as images of two atomic orbitals of the front atom of the tip. Key for the observation of these subatomic features is a force-detection scheme with superior noise performance and enhanced sensitivity to short-range forces.
Numerical Study of Charged Inertial Particles in Turbulence using a Coupled Fluid-P3M Approach
NASA Astrophysics Data System (ADS)
Yao, Yuan; Capecelatro, Jesse
2017-11-01
Non-trivial interactions between charged particles and turbulence play an important role in many engineering and environmental flows, including clouds, fluidized bed reactors, charged hydrocarbon sprays and dusty plasmas. Due to the long-range nature of electrostatic forces, Coulomb interactions in systems with many particles must be handled carefully to avoid O(N2) computations. The particle-mesh (PM) method is typically employed in Eulerian-Lagrangian (EL) simulations as it avoids computing direct pairwise sums, but it fails to capture short-range interactions that are anticipated to be important when particles cluster. In this presentation, the particle-particle-particle-mesh (P3M) method that scales with O(NlogN) is implemented within a EL framework to simulate charged particles accurately in a tractable manner. The EL-P3M method is used to assess the competition between drag and Coulomb forces for a range of Stokes numbers and charges. Simulations of like- and oppositely-charged particles suspended in a two-dimensional Taylor-Green vortex and three-dimensional homogeneous isotropic turbulence are reported. One-point and two-point statistics obtained using PM and P3M are compared to assess the effect of added accuracy on collision rate and clustering.
LAMMPS strong scaling performance optimization on Blue Gene/Q
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coffman, Paul; Jiang, Wei; Romero, Nichols A.
2014-11-12
LAMMPS "Large-scale Atomic/Molecular Massively Parallel Simulator" is an open-source molecular dynamics package from Sandia National Laboratories. Significant performance improvements in strong-scaling and time-to-solution for this application on IBM's Blue Gene/Q have been achieved through computational optimizations of the OpenMP versions of the short-range Lennard-Jones term of the CHARMM force field and the long-range Coulombic interaction implemented with the PPPM (particle-particle-particle mesh) algorithm, enhanced by runtime parameter settings controlling thread utilization. Additionally, MPI communication performance improvements were made to the PPPM calculation by re-engineering the parallel 3D FFT to use MPICH collectives instead of point-to-point. Performance testing was done using anmore » 8.4-million atom simulation scaling up to 16 racks on the Mira system at Argonne Leadership Computing Facility (ALCF). Speedups resulting from this effort were in some cases over 2x.« less
2008-03-29
A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.
2008-03-29
A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.
2008-03-29
A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.
Effects of neutron irradiation on pinning force scaling in state-of-the-art Nb3Sn wires
NASA Astrophysics Data System (ADS)
Baumgartner, T.; Eisterer, M.; Weber, H. W.; Flükiger, R.; Scheuerlein, C.; Bottura, L.
2014-01-01
We present an extensive irradiation study involving five state-of-the-art Nb3Sn wires which were subjected to sequential neutron irradiation up to a fast neutron fluence of 1.6 × 1022 m-2 (E > 0.1 MeV). The volume pinning force of short wire samples was assessed in the temperature range from 4.2 to 15 K in applied fields of up to 7 T by means of SQUID magnetometry in the unirradiated state and after each irradiation step. Pinning force scaling computations revealed that the exponents in the pinning force function differ significantly from those expected for pure grain boundary pinning, and that fast neutron irradiation causes a substantial change in the functional dependence of the volume pinning force. A model is presented, which describes the pinning force function of irradiated wires using a two-component ansatz involving a point-pinning contribution stemming from radiation induced pinning centers. The dependence of this point-pinning contribution on fast neutron fluence appears to be a universal function for all examined wire types.
Khashan, S. A.; Alazzam, A.; Furlani, E. P.
2014-01-01
A microfluidic design is proposed for realizing greatly enhanced separation of magnetically-labeled bioparticles using integrated soft-magnetic elements. The elements are fixed and intersect the carrier fluid (flow-invasive) with their length transverse to the flow. They are magnetized using a bias field to produce a particle capture force. Multiple stair-step elements are used to provide efficient capture throughout the entire flow channel. This is in contrast to conventional systems wherein the elements are integrated into the walls of the channel, which restricts efficient capture to limited regions of the channel due to the short range nature of the magnetic force. This severely limits the channel size and hence throughput. Flow-invasive elements overcome this limitation and enable microfluidic bioseparation systems with superior scalability. This enhanced functionality is quantified for the first time using a computational model that accounts for the dominant mechanisms of particle transport including fully-coupled particle-fluid momentum transfer. PMID:24931437
The Gravitational Origin of the Higgs Boson Mass
NASA Astrophysics Data System (ADS)
Winterberg, Friedwardt
2014-06-01
The Lorentzian interpretation of the special theory of relativity explains all the relativistic effects by true deformations of rods and clocks in absolute motion against a preferred reference system, and where Lorentz invariance is a dynamic symmetry with the Galilei group the more fundamental kinematic symmetry of nature. In an exactly nonrelativistic quantum field theory the particle number operator commutes with the Hamilton operator which permits to introduce negative besides positive masses as the fundamental constituents of matter. Assuming that space is densely filled with an equal number of positive and negative locally interacting Planck mass particles, with those of equal sign repelling and those of opposite sign attracting each other, all the particles except the Planck mass particles are quasiparticles of this positive-negative-mass Planck mass plasma. Very much as the Van der Waals forces is the residual short-range electromagnetic force holding condensed matter together, and the strong nuclear force the residual short range gluon force holding together nuclear matter, it is conjectured that the Higgs field is the residual short range gravitational force holding together pre-quark matter made up from large positive and negative masses of the order ±1013 GeV. This hypothesis supports a theory by Dehnen and Frommert who have shown that the Higgs field acts like a short range gravitational field, with a strength about 32 orders of magnitude larger than one would expect in the absence of the positive-negative pre-quark mass hypothesis.
Military simulation - Pushing the visual technology
NASA Astrophysics Data System (ADS)
Boyle, D.
1984-02-01
A full mission flight simulator has been developed for the U.S. Air Force's B-52 bomber crews which requires more computational capacity than is used aboard the Space Shuttle, employing a total of 14 computers capable of over 5 million operations/sec. The system encompasses a flight deck, in which the pilots train, an offensive station simulator, which is operated by the navigator and weaponry officer, and a defensive station simulator, operated by the electronic warfare (EW) officer and communications officer. Instructors control the computer-generated images simulating the external environment from three consoles corresponding to the three simulator units. In each simulated mission, the crews release bombs and air-launched cruise missiles, and fire short range attack missiles and the B-52 tail guns. The threats simulated include hostile aircraft, surface-to-air missiles, and antiaircraft artillery, together with EW activity.
Cross-scale impact of climate temporal variability on ecosystem water and carbon fluxes
Paschalis, Athanasios; Fatichi, Simone; Katul, Gabriel G.; ...
2015-08-07
While the importance of ecosystem functioning is undisputed in the context of climate change and Earth system modeling, the role of short-scale temporal variability of hydrometeorological forcing (~1 h) on the related ecosystem processes remains to be fully understood. Additionally, various impacts of meteorological forcing variability on water and carbon fluxes across a range of scales are explored here using numerical simulations. Synthetic meteorological drivers that highlight dynamic features of the short temporal scale in series of precipitation, temperature, and radiation are constructed. These drivers force a mechanistic ecohydrological model that propagates information content into the dynamics of water andmore » carbon fluxes for an ensemble of representative ecosystems. The focus of the analysis is on a cross-scale effect of the short-scale forcing variability on the modeled evapotranspiration and ecosystem carbon assimilation. Interannual variability of water and carbon fluxes is emphasized in the analysis. The main study inferences are summarized as follows: (a) short-scale variability of meteorological input does affect water and carbon fluxes across a wide range of time scales, spanning from the hourly to the annual and longer scales; (b) different ecosystems respond to the various characteristics of the short-scale variability of the climate forcing in various ways, depending on dominant factors limiting system productivity; (c) whenever short-scale variability of meteorological forcing influences primarily fast processes such as photosynthesis, its impact on the slow-scale variability of water and carbon fluxes is small; and (d) whenever short-scale variability of the meteorological forcing impacts slow processes such as movement and storage of water in the soil, the effects of the variability can propagate to annual and longer time scales.« less
Cross-scale impact of climate temporal variability on ecosystem water and carbon fluxes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paschalis, Athanasios; Fatichi, Simone; Katul, Gabriel G.
While the importance of ecosystem functioning is undisputed in the context of climate change and Earth system modeling, the role of short-scale temporal variability of hydrometeorological forcing (~1 h) on the related ecosystem processes remains to be fully understood. Additionally, various impacts of meteorological forcing variability on water and carbon fluxes across a range of scales are explored here using numerical simulations. Synthetic meteorological drivers that highlight dynamic features of the short temporal scale in series of precipitation, temperature, and radiation are constructed. These drivers force a mechanistic ecohydrological model that propagates information content into the dynamics of water andmore » carbon fluxes for an ensemble of representative ecosystems. The focus of the analysis is on a cross-scale effect of the short-scale forcing variability on the modeled evapotranspiration and ecosystem carbon assimilation. Interannual variability of water and carbon fluxes is emphasized in the analysis. The main study inferences are summarized as follows: (a) short-scale variability of meteorological input does affect water and carbon fluxes across a wide range of time scales, spanning from the hourly to the annual and longer scales; (b) different ecosystems respond to the various characteristics of the short-scale variability of the climate forcing in various ways, depending on dominant factors limiting system productivity; (c) whenever short-scale variability of meteorological forcing influences primarily fast processes such as photosynthesis, its impact on the slow-scale variability of water and carbon fluxes is small; and (d) whenever short-scale variability of the meteorological forcing impacts slow processes such as movement and storage of water in the soil, the effects of the variability can propagate to annual and longer time scales.« less
NASA Technical Reports Server (NTRS)
1982-01-01
The development of a time series of global atmospheric motion and mass fields through April 1984 to compare with changes in length of day and polar motion was investigated. Earth rotation was studied and the following topics are discussed: (1) computation of atmospheric angular momentum through April 1984; (2) comparisons of psi sub values with variations in length of day obtained by several groups utilizing B.I.H., lunar laser ranging, VLBI, or Lageos measurements; (3) computation of atmospheric excitation of polar motion using daily fields of atmospheric winds and pressures for a short test period. Daily calculations may be extended over a longer period to examine the forcing of the annual and Chandler wobbles, in addition to higher frequency nutations.
Tetramers of Two Heavy and Two Light Bosons
NASA Astrophysics Data System (ADS)
Naidon, Pascal
2018-07-01
This article considers the bound states of two heavy and two light bosons, when a short-range force attracts the bosons of different mass, and a short-range force repels the light bosons. The existence of such four-body bound states results from the competition between these two forces. For a given strength of the attraction, the critical strength of the repulsion necessary to unbind the four particles is calculated. This study is motivated by the experimental realisation of impurity atoms immersed in an atomic Bose-Einstein condensate, and aims at determining in which regime only one boson contributes to binding two impurities.
Force-reflection and shared compliant control in operating telemanipulators with time delay
NASA Technical Reports Server (NTRS)
Kim, Won S.; Hannaford, Blake; Bejczy, Antal K.
1992-01-01
The performance of an advanced telemanipulation system in the presence of a wide range of time delays between a master control station and a slave robot is quantified. The contemplated applications include multiple satellite links to LEO, geosynchronous operation, spacecraft local area networks, and general-purpose computer-based short-distance designs. The results of high-precision peg-in-hole tasks performed by six test operators indicate that task performance decreased linearly with introduced time delays for both kinesthetic force feedback (KFF) and shared compliant control (SCC). The rate of this decrease was substantially improved with SCC compared to KFF. Task performance at delays above 1 s was not possible using KFF. SCC enabled task performance for such delays, which are realistic values for ground-controlled remote manipulation of telerobots in space.
Temperature of maximum density and excess thermodynamics of aqueous mixtures of methanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
González-Salgado, D.; Zemánková, K.; Noya, E. G.
In this work, we present a study of representative excess thermodynamic properties of aqueous mixtures of methanol over the complete concentration range, based on extensive computer simulation calculations. In addition to test various existing united atom model potentials, we have developed a new force-field which accurately reproduces the excess thermodynamics of this system. Moreover, we have paid particular attention to the behavior of the temperature of maximum density (TMD) in dilute methanol mixtures. The presence of a temperature of maximum density is one of the essential anomalies exhibited by water. This anomalous behavior is modified in a non-monotonous fashion bymore » the presence of fully miscible solutes that partly disrupt the hydrogen bond network of water, such as methanol (and other short chain alcohols). In order to obtain a better insight into the phenomenology of the changes in the TMD of water induced by small amounts of methanol, we have performed a new series of experimental measurements and computer simulations using various force fields. We observe that none of the force-fields tested capture the non-monotonous concentration dependence of the TMD for highly diluted methanol solutions.« less
Dideriksen, Jakob L.; Negro, Francesco; Enoka, Roger M.
2012-01-01
Motoneurons receive synaptic inputs from tens of thousands of connections that cause membrane potential to fluctuate continuously (synaptic noise), which introduces variability in discharge times of action potentials. We hypothesized that the influence of synaptic noise on force steadiness during voluntary contractions is limited to low muscle forces. The hypothesis was examined with an analytical description of transduction of motor unit spike trains into muscle force, a computational model of motor unit recruitment and rate coding, and experimental analysis of interspike interval variability during steady contractions with the abductor digiti minimi muscle. Simulations varied contraction force, level of synaptic noise, size of motor unit population, recruitment range, twitch contraction times, and level of motor unit short-term synchronization. Consistent with the analytical derivations, simulations and experimental data showed that force variability at target forces above a threshold was primarily due to low-frequency oscillations in neural drive, whereas the influence of synaptic noise was almost completely attenuated by two low-pass filters, one related to convolution of motoneuron spike trains with motor unit twitches (temporal summation) and the other attributable to summation of single motor unit forces (spatial summation). The threshold force above which synaptic noise ceased to influence force steadiness depended on recruitment range, size of motor unit population, and muscle contractile properties. This threshold was low (<10% of maximal force) for typical values of these parameters. Results indicate that motor unit recruitment and muscle properties of a typical muscle are tuned to limit the influence of synaptic noise on force steadiness to low forces and that the inability to produce a constant force during stronger contractions is mainly attributable to the common low-frequency oscillations in motoneuron discharge rates. PMID:22423000
A NASA technician paints NASA's first Orion full-scale abort flight test crew module.
2008-03-31
A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.
2008-04-01
A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.
Tian, Ye; Schwieters, Charles D; Opella, Stanley J; Marassi, Francesca M
2017-01-01
Structure determination of proteins by NMR is unique in its ability to measure restraints, very accurately, in environments and under conditions that closely mimic those encountered in vivo. For example, advances in solid-state NMR methods enable structure determination of membrane proteins in detergent-free lipid bilayers, and of large soluble proteins prepared by sedimentation, while parallel advances in solution NMR methods and optimization of detergent-free lipid nanodiscs are rapidly pushing the envelope of the size limit for both soluble and membrane proteins. These experimental advantages, however, are partially squandered during structure calculation, because the commonly used force fields are purely repulsive and neglect solvation, Van der Waals forces and electrostatic energy. Here we describe a new force field, and updated energy functions, for protein structure calculations with EEFx implicit solvation, electrostatics, and Van der Waals Lennard-Jones forces, in the widely used program Xplor-NIH. The new force field is based primarily on CHARMM22, facilitating calculations with a wider range of biomolecules. The new EEFx energy function has been rewritten to enable OpenMP parallelism, and optimized to enhance computation efficiency. It implements solvation, electrostatics, and Van der Waals energy terms together, thus ensuring more consistent and efficient computation of the complete nonbonded energy lists. Updates in the related python module allow detailed analysis of the interaction energies and associated parameters. The new force field and energy function work with both soluble proteins and membrane proteins, including those with cofactors or engineered tags, and are very effective in situations where there are sparse experimental restraints. Results obtained for NMR-restrained calculations with a set of five soluble proteins and five membrane proteins show that structures calculated with EEFx have significant improvements in accuracy, precision, and conformation, and that structure refinement can be obtained by short relaxation with EEFx to obtain improvements in these key metrics. These developments broaden the range of biomolecular structures that can be calculated with high fidelity from NMR restraints.
Computing The No-Escape Envelope Of A Short-Range Missile
NASA Technical Reports Server (NTRS)
Neuman, Frank
1991-01-01
Method for computing no-escape envelope of short-range air-to-air missile devised. Useful for analysis of both strategies for avoidance and strategies for attack. With modifications, also useful in analysis of control strategies for one-on-one air-to-air combat, or wherever multiple control strategies considered.
NASA Astrophysics Data System (ADS)
Sukhanova, L. A.; Khlestkov, Yu. A.
2015-12-01
An equation for a massive vector field that explains the short-range action of nuclear forces has been obtained via a consistent solution of the Einstein-Maxwell-Lorentz equations in curved spacetime. The nucleus is identified with the throat, whose radius of curvature is adopted as the radius of the nucleus. In this gravitational model the experimentally observed proportionality of the radius of the nucleus to the cubic root of the mass number is obtained.
Soviet short-range nuclear forces: flexible response or flexible aggression. Student essay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, T.R.
1987-03-23
This essay takes a critical look at Soviet short-range nuclear forces in an effort to identify Soviet capabilities to fight a limited nuclear war with NATO. From an analysis of Soviet military art, weapon-system capabilities and tactics, the author concludes that the Soviets have developed a viable limited-nuclear-attack option. Unless NATO reacts to this option, the limited nuclear attack may become favored Soviet option and result in the rapid defeat of NATO.
Effect of long-range repulsive Coulomb interactions on packing structure of adhesive particles.
Chen, Sheng; Li, Shuiqing; Liu, Wenwei; Makse, Hernán A
2016-02-14
The packing of charged micron-sized particles is investigated using discrete element simulations based on adhesive contact dynamic model. The formation process and the final obtained structures of ballistic packings are studied to show the effect of interparticle Coulomb force. It is found that increasing the charge on particles causes a remarkable decrease of the packing volume fraction ϕ and the average coordination number 〈Z〉, indicating a looser and chainlike structure. Force-scaling analysis shows that the long-range Coulomb interaction changes packing structures through its influence on particle inertia before they are bonded into the force networks. Once contact networks are formed, the expansion effect caused by repulsive Coulomb forces are dominated by short-range adhesion. Based on abundant results from simulations, a dimensionless adhesion parameter Ad*, which combines the effects of the particle inertia, the short-range adhesion and the long-range Coulomb interaction, is proposed and successfully scales the packing results for micron-sized particles within the latest derived adhesive loose packing (ALP) regime. The structural properties of our packings follow well the recent theoretical prediction which is described by an ensemble approach based on a coarse-grained volume function, indicating some kind of universality in the low packing density regime of the phase diagram regardless of adhesion or particle charge. Based on the comprehensive consideration of the complicated inter-particle interactions, our findings provide insight into the roles of short-range adhesion and repulsive Coulomb force during packing formation and should be useful for further design of packings.
NASA Astrophysics Data System (ADS)
Diehl, Roger E.; Schinnerer, Ralph G.; Williamson, Walton E.; Boden, Daryl G.
The present conference discusses topics in orbit determination, tethered satellite systems, celestial mechanics, guidance optimization, flexible body dynamics and control, attitude dynamics and control, Mars mission analyses, earth-orbiting mission analysis/debris, space probe mission analyses, and orbital computation numerical analyses. Attention is given to electrodynamic forces for control of tethered satellite systems, orbiting debris threats to asteroid flyby missions, launch velocity requirements for interceptors of short range ballistic missiles, transfers between libration-point orbits in the elliptic restricted problem, minimum fuel spacecraft reorientation, orbital guidance for hitting a fixed point at maximum speed, efficient computation of satellite visibility periods, orbit decay and reentry prediction for space debris, and the determination of satellite close approaches.
NASA Technical Reports Server (NTRS)
Diehl, Roger E. (Editor); Schinnerer, Ralph G. (Editor); Williamson, Walton E. (Editor); Boden, Daryl G. (Editor)
1992-01-01
The present conference discusses topics in orbit determination, tethered satellite systems, celestial mechanics, guidance optimization, flexible body dynamics and control, attitude dynamics and control, Mars mission analyses, earth-orbiting mission analysis/debris, space probe mission analyses, and orbital computation numerical analyses. Attention is given to electrodynamic forces for control of tethered satellite systems, orbiting debris threats to asteroid flyby missions, launch velocity requirements for interceptors of short range ballistic missiles, transfers between libration-point orbits in the elliptic restricted problem, minimum fuel spacecraft reorientation, orbital guidance for hitting a fixed point at maximum speed, efficient computation of satellite visibility periods, orbit decay and reentry prediction for space debris, and the determination of satellite close approaches.
Multiscale mobility networks and the spatial spreading of infectious diseases.
Balcan, Duygu; Colizza, Vittoria; Gonçalves, Bruno; Hu, Hao; Ramasco, José J; Vespignani, Alessandro
2009-12-22
Among the realistic ingredients to be considered in the computational modeling of infectious diseases, human mobility represents a crucial challenge both on the theoretical side and in view of the limited availability of empirical data. To study the interplay between short-scale commuting flows and long-range airline traffic in shaping the spatiotemporal pattern of a global epidemic we (i) analyze mobility data from 29 countries around the world and find a gravity model able to provide a global description of commuting patterns up to 300 kms and (ii) integrate in a worldwide-structured metapopulation epidemic model a timescale-separation technique for evaluating the force of infection due to multiscale mobility processes in the disease dynamics. Commuting flows are found, on average, to be one order of magnitude larger than airline flows. However, their introduction into the worldwide model shows that the large-scale pattern of the simulated epidemic exhibits only small variations with respect to the baseline case where only airline traffic is considered. The presence of short-range mobility increases, however, the synchronization of subpopulations in close proximity and affects the epidemic behavior at the periphery of the airline transportation infrastructure. The present approach outlines the possibility for the definition of layered computational approaches where different modeling assumptions and granularities can be used consistently in a unifying multiscale framework.
Searching for effective forces in laboratory insect swarms
NASA Astrophysics Data System (ADS)
Puckett, James G.; Kelley, Douglas H.; Ouellette, Nicholas T.
2014-04-01
Collective animal behaviour is often modeled by systems of agents that interact via effective social forces, including short-range repulsion and long-range attraction. We search for evidence of such effective forces by studying laboratory swarms of the flying midge Chironomus riparius. Using multi-camera stereoimaging and particle-tracking techniques, we record three-dimensional trajectories for all the individuals in the swarm. Acceleration measurements show a clear short-range repulsion, which we confirm by considering the spatial statistics of the midges, but no conclusive long-range interactions. Measurements of the mean free path of the insects also suggest that individuals are on average very weakly coupled, but that they are also tightly bound to the swarm itself. Our results therefore suggest that some attractive interaction maintains cohesion of the swarms, but that this interaction is not as simple as an attraction to nearest neighbours.
NASA Astrophysics Data System (ADS)
Weymouth, Alfred J.; Riegel, Elisabeth; Matencio, Sonia; Giessibl, Franz J.
2018-04-01
One of the challenges of AFM, in contrast to STM, is that the measured signal includes both long-range and short-range components. The most accurate method for removing long-range components is to measure both on and off an adsorbate and to subtract the difference. This on-off method is challenging at room temperature due to thermal drift. By moving to a non-contact scheme in which the lateral component of the force interaction is probed, the measurement is dominated by short-range interactions. We use frequency-modulation lateral force microscopy to measure individual PTCDA molecules adsorbed on Ag/Si(111)-( √{3 }×√{3 } ). By fitting the data to a model potential, we can extract the depth and width of the potential. When the tip is closer to the sample, a repulsive feature can be observed in the data.
Accelerated path-integral simulations using ring-polymer interpolation
NASA Astrophysics Data System (ADS)
Buxton, Samuel J.; Habershon, Scott
2017-12-01
Imaginary-time path-integral (PI) molecular simulations can be used to calculate exact quantum statistical mechanical properties for complex systems containing many interacting atoms and molecules. The limiting computational factor in a PI simulation is typically the evaluation of the potential energy surface (PES) and forces at each ring-polymer "bead"; for an n-bead ring-polymer, a PI simulation is typically n times greater than the corresponding classical simulation. To address the increased computational effort of PI simulations, several approaches have been developed recently, most notably based on the idea of ring-polymer contraction which exploits either the separation of the PES into short-range and long-range contributions or the availability of a computationally inexpensive PES which can be incorporated to effectively smooth the ring-polymer PES; neither approach is satisfactory in applications to systems modeled by PESs given by on-the-fly ab initio calculations. In this article, we describe a new method, ring-polymer interpolation (RPI), which can be used to accelerate PI simulations without any prior assumptions about the PES. In simulations of liquid water modeled by an empirical PES (or force field) under ambient conditions, where quantum effects are known to play a subtle role in influencing experimental observables such as radial distribution functions, we find that RPI can accurately reproduce the results of fully-converged PI simulations, albeit with far fewer PES evaluations. This approach therefore opens the possibility of large-scale PI simulations using ab initio PESs evaluated on-the-fly without the drawbacks of current methods.
A particle-particle collision strategy for arbitrarily shaped particles at low Stokes numbers
NASA Astrophysics Data System (ADS)
Daghooghi, Mohsen; Borazjani, Iman
2016-11-01
We present a collision strategy for particles with any general shape at low Stokes numbers. Conventional collision strategies rely upon a short -range repulsion force along particles centerline, which is a suitable choice for spherical particles and may not work for complex-shaped particles. In the present method, upon the collision of two particles, kinematics of particles are modified so that particles have zero relative velocity toward each other along the direction in which they have the minimum distance. The advantage of this novel technique is that it guaranties to prevent particles from overlapping without unrealistic bounce back at low Stokes numbers, which may occur if repulsive forces are used. This model is used to simulate sedimentation of many particles in a vertical channel and suspensions of non-spherical particles under simple shear flow. This work was supported by the American Chemical Society (ACS) Petroleum Research Fund (PRF) Grant Number 53099-DNI9. The computational resources were partly provided by the Center for Computational Research (CCR) at the University at Buffalo.
Homodyne detection of short-range Doppler radar using a forced oscillator model
NASA Astrophysics Data System (ADS)
Kittipute, Kunanon; Saratayon, Peerayudh; Srisook, Suthasin; Wardkein, Paramote
2017-03-01
This article presents the homodyne detection in a self-oscillation system, which represented by a short-range radar (SRR) circuit, that is analysed using a multi-time forced oscillator (MTFO) model. The MTFO model is based on a forced oscillation perspective with the signal and system theory, a second-order differential equation, and the multiple time variable technique. This model can also apply to analyse the homodyne phenomenon in a difference kind of the oscillation system under same method such as the self-oscillation system, and the natural oscillation system with external forced. In a free oscillation system, which forced by the external source is represented by a pendulum with an oscillating support experiment, and a modified Colpitts oscillator circuit in the UHF band with input as a Doppler signal is a representative of self-oscillation system. The MTFO model is verified with the experimental result, which well in line with the theoretical analysis.
Kroonblawd, Matthew P; Pietrucci, Fabio; Saitta, Antonino Marco; Goldman, Nir
2018-04-10
We demonstrate the capability of creating robust density functional tight binding (DFTB) models for chemical reactivity in prebiotic mixtures through force matching to short time scale quantum free energy estimates. Molecular dynamics using density functional theory (DFT) is a highly accurate approach to generate free energy surfaces for chemical reactions, but the extreme computational cost often limits the time scales and range of thermodynamic states that can feasibly be studied. In contrast, DFTB is a semiempirical quantum method that affords up to a thousandfold reduction in cost and can recover DFT-level accuracy. Here, we show that a force-matched DFTB model for aqueous glycine condensation reactions yields free energy surfaces that are consistent with experimental observations of reaction energetics. Convergence analysis reveals that multiple nanoseconds of combined trajectory are needed to reach a steady-fluctuating free energy estimate for glycine condensation. Predictive accuracy of force-matched DFTB is demonstrated by direct comparison to DFT, with the two approaches yielding surfaces with large regions that differ by only a few kcal mol -1 .
Kroonblawd, Matthew P.; Pietrucci, Fabio; Saitta, Antonino Marco; ...
2018-03-15
Here, we demonstrate the capability of creating robust density functional tight binding (DFTB) models for chemical reactivity in prebiotic mixtures through force matching to short time scale quantum free energy estimates. Molecular dynamics using density functional theory (DFT) is a highly accurate approach to generate free energy surfaces for chemical reactions, but the extreme computational cost often limits the time scales and range of thermodynamic states that can feasibly be studied. In contrast, DFTB is a semiempirical quantum method that affords up to a thousandfold reduction in cost and can recover DFT-level accuracy. Here, we show that a force-matched DFTBmore » model for aqueous glycine condensation reactions yields free energy surfaces that are consistent with experimental observations of reaction energetics. Convergence analysis reveals that multiple nanoseconds of combined trajectory are needed to reach a steady-fluctuating free energy estimate for glycine condensation. Predictive accuracy of force-matched DFTB is demonstrated by direct comparison to DFT, with the two approaches yielding surfaces with large regions that differ by only a few kcal mol –1.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroonblawd, Matthew P.; Pietrucci, Fabio; Saitta, Antonino Marco
Here, we demonstrate the capability of creating robust density functional tight binding (DFTB) models for chemical reactivity in prebiotic mixtures through force matching to short time scale quantum free energy estimates. Molecular dynamics using density functional theory (DFT) is a highly accurate approach to generate free energy surfaces for chemical reactions, but the extreme computational cost often limits the time scales and range of thermodynamic states that can feasibly be studied. In contrast, DFTB is a semiempirical quantum method that affords up to a thousandfold reduction in cost and can recover DFT-level accuracy. Here, we show that a force-matched DFTBmore » model for aqueous glycine condensation reactions yields free energy surfaces that are consistent with experimental observations of reaction energetics. Convergence analysis reveals that multiple nanoseconds of combined trajectory are needed to reach a steady-fluctuating free energy estimate for glycine condensation. Predictive accuracy of force-matched DFTB is demonstrated by direct comparison to DFT, with the two approaches yielding surfaces with large regions that differ by only a few kcal mol –1.« less
NASA Astrophysics Data System (ADS)
Beyzaei, Hamid; Aryan, Reza; Moghaddam-Manesh, Mohammadreza; Ghasemi, Behzad; Karimi, Pouya; Samareh Delarami, Hojat; Sanchooli, Mahmood
2017-09-01
The synthesis of pyrazolo[3,4-d]pyrimidine derivatives is important due to their presence in various biologically active compounds such as anticancer, antimicrobial, antiparasitic, anti-inflammatory and antidiabetic agents. In this project, a new and efficient approach for the synthesis of some novel 4-imino-5H-pyrazolo[3,4-d]pyrimidin-5-amines from reaction of 5-amino-pyrazole-4-carbonitrile with various hydrazides in ethanolic sodium ethoxide medium was reported. Antimicrobial activities of all synthesized derivatives were evaluated against eight Gram-positive and five Gram-negative pathogenic bacteria. The moderate to good inhibitory effects were observed based on inhibition zone diameter (IZD), minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values. In order to determine the reasonable relationship between antibacterial activities and physiochemical properties of the derivatives, computational studies were carried out in terms of geometry optimization, short-range van der Waals forces, dipole moments, atomic charges and frontier orbital energies. It was found that both short-range forces and covalent bonds are important in the observed inhibitory effects of the molecules. The results suggested that pyrazolo[3,4-d]pyrimidine derivatives prefer a soft nucleophilic attack on bio-macromolecular targets. Furthermore, our models proposed that the antibacterial activities of these derivatives can be improved by substituting large electron donating groups on the 6-phenyl rings.
Casadesús, Ricard; Moreno, Miquel; González-Lafont, Angels; Lluch, José M; Repasky, Matthew P
2004-01-15
In this article a wide variety of computational approaches (molecular mechanics force fields, semiempirical formalisms, and hybrid methods, namely ONIOM calculations) have been used to calculate the energy and geometry of the supramolecular system 2-(2'-hydroxyphenyl)-4-methyloxazole (HPMO) encapsulated in beta-cyclodextrin (beta-CD). The main objective of the present study has been to examine the performance of these computational methods when describing the short range H. H intermolecular interactions between guest (HPMO) and host (beta-CD) molecules. The analyzed molecular mechanics methods do not provide unphysical short H...H contacts, but it is obvious that their applicability to the study of supramolecular systems is rather limited. For the semiempirical methods, MNDO is found to generate more reliable geometries than AM1, PM3 and the two recently developed schemes PDDG/MNDO and PDDG/PM3. MNDO results only give one slightly short H...H distance, whereas the NDDO formalisms with modifications of the Core Repulsion Function (CRF) via Gaussians exhibit a large number of short to very short and unphysical H...H intermolecular distances. In contrast, the PM5 method, which is the successor to PM3, gives very promising results. Our ONIOM calculations indicate that the unphysical optimized geometries from PM3 are retained when this semiempirical method is used as the low level layer in a QM:QM formulation. On the other hand, ab initio methods involving good enough basis sets, at least for the high level layer in a hybrid ONIOM calculation, behave well, but they may be too expensive in practice for most supramolecular chemistry applications. Finally, the performance of the evaluated computational methods has also been tested by evaluating the energetic difference between the two most stable conformations of the host(beta-CD)-guest(HPMO) system. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 25: 99-105, 2004
Chaudret, Robin; Gresh, Nohad; Narth, Christophe; Lagardère, Louis; Darden, Thomas A; Cisneros, G Andrés; Piquemal, Jean-Philip
2014-09-04
We demonstrate as a proof of principle the capabilities of a novel hybrid MM'/MM polarizable force field to integrate short-range quantum effects in molecular mechanics (MM) through the use of Gaussian electrostatics. This lead to a further gain in accuracy in the representation of the first coordination shell of metal ions. It uses advanced electrostatics and couples two point dipole polarizable force fields, namely, the Gaussian electrostatic model (GEM), a model based on density fitting, which uses fitted electronic densities to evaluate nonbonded interactions, and SIBFA (sum of interactions between fragments ab initio computed), which resorts to distributed multipoles. To understand the benefits of the use of Gaussian electrostatics, we evaluate first the accuracy of GEM, which is a pure density-based Gaussian electrostatics model on a test Ca(II)-H2O complex. GEM is shown to further improve the agreement of MM polarization with ab initio reference results. Indeed, GEM introduces nonclassical effects by modeling the short-range quantum behavior of electric fields and therefore enables a straightforward (and selective) inclusion of the sole overlap-dependent exchange-polarization repulsive contribution by means of a Gaussian damping function acting on the GEM fields. The S/G-1 scheme is then introduced. Upon limiting the use of Gaussian electrostatics to metal centers only, it is shown to be able to capture the dominant quantum effects at play on the metal coordination sphere. S/G-1 is able to accurately reproduce ab initio total interaction energies within closed-shell metal complexes regarding each individual contribution including the separate contributions of induction, polarization, and charge-transfer. Applications of the method are provided for various systems including the HIV-1 NCp7-Zn(II) metalloprotein. S/G-1 is then extended to heavy metal complexes. Tested on Hg(II) water complexes, S/G-1 is shown to accurately model polarization up to quadrupolar response level. This opens up the possibility of embodying explicit scalar relativistic effects in molecular mechanics thanks to the direct transferability of ab initio pseudopotentials. Therefore, incorporating GEM-like electron density for a metal cation enable the introduction of nonambiguous short-range quantum effects within any point-dipole based polarizable force field without the need of an extensive parametrization.
NASA Astrophysics Data System (ADS)
Nwosu, Chinomso; Pandey, Tara; Herring, Andrew; Coughlin, Edward; University of Massachusetts, Amherst Collaboration; Colorado School of Mines Collaboration
Backbone-to-backbone spacing in polymers is known to be dictated by the length of the pendant side-chains. Dipole forces in random polyelectrolytes lead to ionic clusters with a characteristic spacing that can be observed by SAXS. Repulsion due to side-chain sterics will compete with dipole forces driving cluster formation in random polyelectrolytes. A model study on short range order in anion exchange membranes (AEMs) of quaternized P4VP-ran-PI is presented. Quaternization of P4VP with alkyl bromides having different numbers of carbons, CnBr, introduces pendant side-chains as well as charges. X-ray scattering performed on PQ4VP-ran-PI(CnBr) show that when n <5 the dipole forces dominate leading to the formation of ionic clusters. However, when n >4, the chains remain separated due to sterics, forming a distinct backbone-to-backbone spacing morphology. For n=3, both dipole clustering and backbone spacing can coexist. Crosslinking of the isoprene units increased the coexistence window from n=3 to n=6. Impedance measurements show that a maximum conductivity of 110mS/cm was obtained for PQ4VP-ran-PI(C3Br). A discussion on short range order due to competition, or counter balancing, of steric repulsion and dipole forces will be presented. US Army MURI project (W911NF1010520).
A sensitivity study of fast outlet glaciers to short timescale cyclical perturbations
NASA Astrophysics Data System (ADS)
Aykutlug, E.; Dupont, T. K.
2015-01-01
The dynamic response of outlet glaciers on short (annual to decadal) timescales is affected by various external forcings, such as basal or oceanic conditions. Understanding the sensitivity of the dynamic response to such forcings can help assess more accurate ice volume projections. In this work, we investigate the spatiotemporal sensitivity of outlet glaciers to fast cyclical forcings using a one-dimensional depth and width-averaged heuristic model. Our results indicate that even on such short timescales, nonlinearities in ice dynamics may lead to an asymmetric response, despite the forcing functions being symmetric around each reference value. Results also show that such short-timescale effects become more pronounced as glaciers become closer to flotation. While being qualitatively similar for both downsloping and upsloping bed geometries, the results indicate higher sensitivity for upsloping ("West Antarctica-like") beds. The range in asymmetric response for different configurations motivate parameterizing or including short-timescale effects in models while investigating the dynamic behavior of outlet glaciers.
Wells, David B; Bhattacharya, Swati; Carr, Rogan; Maffeo, Christopher; Ho, Anthony; Comer, Jeffrey; Aksimentiev, Aleksei
2012-01-01
Molecular dynamics (MD) simulations have become a standard method for the rational design and interpretation of experimental studies of DNA translocation through nanopores. The MD method, however, offers a multitude of algorithms, parameters, and other protocol choices that can affect the accuracy of the resulting data as well as computational efficiency. In this chapter, we examine the most popular choices offered by the MD method, seeking an optimal set of parameters that enable the most computationally efficient and accurate simulations of DNA and ion transport through biological nanopores. In particular, we examine the influence of short-range cutoff, integration timestep and force field parameters on the temperature and concentration dependence of bulk ion conductivity, ion pairing, ion solvation energy, DNA structure, DNA-ion interactions, and the ionic current through a nanopore.
Short time Fourier analysis of the electromyogram - Fast movements and constant contraction
NASA Technical Reports Server (NTRS)
Hannaford, Blake; Lehman, Steven
1986-01-01
Short-time Fourier analysis was applied to surface electromyograms (EMG) recorded during rapid movements, and during isometric contractions at constant forces. A portion of the data to be transformed by multiplying the signal by a Hamming window was selected, and then the discrete Fourier transform was computed. Shifting the window along the data record, a new spectrum was computed each 10 ms. The transformed data were displayed in spectograms or 'voiceprints'. This short-time technique made it possible to see time-dependencies in the EMG that are normally averaged in the Fourier analysis of these signals. Spectra of EMGs during isometric contractions at constant force vary in the short (10-20 ms) term. Short-time spectra from EMGs recorded during rapid movements were much less variable. The windowing technique picked out the typical 'three-burst pattern' in EMG's from both wrist and head movements. Spectra during the bursts were more consistent than those during isometric contractions. Furthermore, there was a consistent shift in spectral statistics in the course of the three bursts. Both the center frequency and the variance of the spectral energy distribution grew from the first burst to the second burst in the same muscle. The analogy between EMGs and speech signals is extended to argue for future applicability of short-time spectral analysis of EMG.
Short arc orbit determination for altimeter calibration and validation on TOPEX/POSEIDON
NASA Technical Reports Server (NTRS)
Williams, B. G.; Christensen, E. J.; Yuan, D. N.; Mccoll, K. C.; Sunseri, R. F.
1993-01-01
TOPEX/POSEIDON (T/P) is a joint mission of United States' National Aeronautics and Space Administration (NASA) and French Centre National d'Etudes Spatiales (CNES) design launched August 10, 1992. It carries two radar altimeters which alternately share a common antenna. There are two project designated verification sites, a NASA site off the coast at Pt. Conception, CA and a CNES site near Lampedusa Island in the Mediterranean Sea. Altimeter calibration and validation for T/P is performed over these highly instrumented sites by comparing the spacecraft's altimeter radar range to computed range based on in situ measurements which include the estimated orbit position. This paper presents selected results of orbit determination over each of these sites to support altimeter verification. A short arc orbit determination technique is used to estimate a locally accurate position determination of T/P from less than one revolution of satellite laser ranging (SLR) data. This technique is relatively insensitive to gravitational and non-gravitational force modeling errors and is demonstrated by covariance analysis and by comparison to orbits determined from longer arcs of data and other tracking data types, such as Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) and Global Positioning System Demonstration Receiver (GPSDR) data.
Martelli, Saulo; Calvetti, Daniela; Somersalo, Erkki; Viceconti, Marco; Taddei, Fulvia
2013-08-09
Comparing the available electromyography (EMG) and the related uncertainties with the space of muscle forces potentially driving the same motion can provide insights into understanding human motion in healthy and pathological neuromotor conditions. However, it is not clear how effective the available computational tools are in completely sample the possible muscle forces. In this study, we compared the effectiveness of Metabolica and the Null-Space algorithm at generating a comprehensive spectrum of possible muscle forces for a representative motion frame. The hip force peak during a selected walking trial was identified using a lower-limb musculoskeletal model. The joint moments, the muscle lever arms, and the muscle force constraints extracted from the model constituted the indeterminate equilibrium equation at the joints. Two spectra, each containing 200,000 muscle force samples, were calculated using Metabolica and the Null-Space algorithm. The full hip force range was calculated using optimization and compared with the hip force ranges derived from the Metabolica and the Null-Space spectra. The Metabolica spectrum spanned a much larger force range than the NS spectrum, reaching 811N difference for the gluteus maximus intermediate bundle. The Metabolica hip force range exhibited a 0.3-0.4 BW error on the upper and lower boundaries of the full hip force range (3.4-11.3 BW), whereas the full range was imposed in the NS spectrum. The results suggest that Metabolica is well suited for exhaustively sample the spectrum of possible muscle recruitment strategy. Future studies will investigate the muscle force range in healthy and pathological neuromotor conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mereghetti, Paolo; Martinez, M.; Wade, Rebecca C.
Brownian dynamics (BD) simulations can be used to study very large molecular systems, such as models of the intracellular environment, using atomic-detail structures. Such simulations require strategies to contain the computational costs, especially for the computation of interaction forces and energies. A common approach is to compute interaction forces between macromolecules by precomputing their interaction potentials on three-dimensional discretized grids. For long-range interactions, such as electrostatics, grid-based methods are subject to finite size errors. We describe here the implementation of a Debye-Hückel correction to the grid-based electrostatic potential used in the SDA BD simulation software that was applied to simulatemore » solutions of bovine serum albumin and of hen egg white lysozyme.« less
2008-04-01
A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.
2008-04-01
A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.
Atomistic material behavior at extreme pressures
Beland, Laurent K.; Osetskiy, Yury N.; Stoller, Roger E.
2016-08-05
Computer simulations are routinely performed to model the response of materials to extreme environments, such as neutron (or ion) irradiation. The latter involves high-energy collisions from which a recoiling atom creates a so-called atomic displacement cascade. These cascades involve coordinated motion of atoms in the form of supersonic shockwaves. These shockwaves are characterized by local atomic pressures >15 GPa and interatomic distances <2 Å. Similar pressures and interatomic distances are observed in other extreme environment, including short-pulse laser ablation, high-impact ballistic collisions and diamond anvil cells. Displacement cascade simulations using four different force fields, with initial kinetic energies ranging frommore » 1 to 40 keV, show that there is a direct relationship between these high-pressure states and stable defect production. An important shortcoming in the modeling of interatomic interactions at these short distances, which in turn determines final defect production, is brought to light.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W Michael; Kohlmeyer, Axel; Plimpton, Steven J
The use of accelerators such as graphics processing units (GPUs) has become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high-performance computers, machines with nodes containing more than one type of floating-point processor (e.g. CPU and GPU), are now becoming more prevalent due to these advantages. In this paper, we present a continuation of previous work implementing algorithms for using accelerators into the LAMMPS molecular dynamics software for distributed memory parallel hybrid machines. In our previous work, we focused on acceleration for short-range models with anmore » approach intended to harness the processing power of both the accelerator and (multi-core) CPUs. To augment the existing implementations, we present an efficient implementation of long-range electrostatic force calculation for molecular dynamics. Specifically, we present an implementation of the particle-particle particle-mesh method based on the work by Harvey and De Fabritiis. We present benchmark results on the Keeneland InfiniBand GPU cluster. We provide a performance comparison of the same kernels compiled with both CUDA and OpenCL. We discuss limitations to parallel efficiency and future directions for improving performance on hybrid or heterogeneous computers.« less
ERIC Educational Resources Information Center
Richardson, William H., Jr.
2006-01-01
Computational precision is sometimes given short shrift in a first programming course. Treating this topic requires discussing integer and floating-point number representations and inaccuracies that may result from their use. An example of a moderately simple programming problem from elementary statistics was examined. It forced students to…
Study of the Use of Time-Mean Vortices to Generate Lift for MAV Applications
2011-05-31
microplate to in-plane resonance. Computational effort centers around optimization of a range of parameters (geometry, frequency, amplitude of oscillation, etc...issue involved. Towards this end, a suspended microplate was fabricated via MEMS technology and driven to in-plane resonance via Lorentz force...force to drive the suspended MEMS-based microplate to in-plane resonance. Computational effort centers around optimization of a range of parameters
New Results on Short-Range Correlations in Nuclei
Fomin, Nadia; Higinbotham, Douglas; Sargsian, Misak; ...
2017-10-12
Nuclear dynamics at short distances is one of the most fascinating topics of strong interaction physics. The physics of it is closely related to the understanding of the role of the QCD in generating nuclear forces at short distances, as well as of the dynamics of the superdense cold nuclear matter relevant to the interior of neutron stars. The emergence of high-energy electron and proton beams has led to significant recent progress in high-energy nuclear scattering experiments investigating the short-range structure of nuclei. These experiments, in turn, have stimulated new theoretical studies resulting in the observation of several new phenomenamore » specific to the short-range structure of nuclei. In this article, we review recent theoretical and experimental progress in studies of short-range correlations in nuclei and discuss their importance for advancing our understanding of the dynamics of nuclear interactions at short distances.« less
New Results on Short-Range Correlations in Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fomin, Nadia; Higinbotham, Douglas; Sargsian, Misak
Nuclear dynamics at short distances is one of the most fascinating topics of strong interaction physics. The physics of it is closely related to the understanding of the role of the QCD in generating nuclear forces at short distances, as well as of the dynamics of the superdense cold nuclear matter relevant to the interior of neutron stars. The emergence of high-energy electron and proton beams has led to significant recent progress in high-energy nuclear scattering experiments investigating the short-range structure of nuclei. These experiments, in turn, have stimulated new theoretical studies resulting in the observation of several new phenomenamore » specific to the short-range structure of nuclei. In this article, we review recent theoretical and experimental progress in studies of short-range correlations in nuclei and discuss their importance for advancing our understanding of the dynamics of nuclear interactions at short distances.« less
Homodyne detection of short-range Doppler radar using a forced oscillator model
Kittipute, Kunanon; Saratayon, Peerayudh; Srisook, Suthasin; Wardkein, Paramote
2017-01-01
This article presents the homodyne detection in a self-oscillation system, which represented by a short-range radar (SRR) circuit, that is analysed using a multi-time forced oscillator (MTFO) model. The MTFO model is based on a forced oscillation perspective with the signal and system theory, a second-order differential equation, and the multiple time variable technique. This model can also apply to analyse the homodyne phenomenon in a difference kind of the oscillation system under same method such as the self-oscillation system, and the natural oscillation system with external forced. In a free oscillation system, which forced by the external source is represented by a pendulum with an oscillating support experiment, and a modified Colpitts oscillator circuit in the UHF band with input as a Doppler signal is a representative of self-oscillation system. The MTFO model is verified with the experimental result, which well in line with the theoretical analysis. PMID:28252000
Capabilities and application of a dedicated conventional bomber force in 1993. Student report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomits, J.R.
1988-04-01
The removal of intermediate-range ballistic missiles as a result of the INF treaty presents conventional balance-of-force implications that will be difficult for NATO to redress in the short term. This study evaluates how a dedicated conventional B-52 force, updated with presently available or programmed technologies, could be applied to overcome the conventional-force imbalance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Lonnie Moore, the Computer Security Manager, CSSM/CPPM at Lawrence Livermore National Laboratory (LLNL) and Gale Warshawsky, the Coordinator for Computer Security Education & Awareness at LLNL, wanted to share topics such as computer ethics, software piracy, privacy issues, and protecting information in a format that would capture and hold an audience`s attention. Four Computer Security Short Subject videos were produced which ranged from 1-3 minutes each. These videos are very effective education and awareness tools that can be used to generate discussions about computer security concerns and good computing practices. Leaders may incorporate the Short Subjects into presentations. After talkingmore » about a subject area, one of the Short Subjects may be shown to highlight that subject matter. Another method for sharing them could be to show a Short Subject first and then lead a discussion about its topic. The cast of characters and a bit of information about their personalities in the LLNL Computer Security Short Subjects is included in this report.« less
AMOEBA 2.0: A physics-first approach to biomolecular simulations
NASA Astrophysics Data System (ADS)
Rackers, Joshua; Ponder, Jay
The goal of the AMOEBA force field project is to use classical physics to understand and predict the nature of interactions between biological molecules. While making significant advances over the past decade, the ultimate goal of predicting binding energies with ``chemical accuracy'' remains elusive. The primary source of this inaccuracy comes from the physics of how molecules interact at short range. For example, despite AMOEBA's advanced treatment of electrostatics, the force field dramatically overpredicts the electrostatic energy of DNA stacking interactions. AMOEBA 2.0 works to correct these errors by including simple, first principles physics-based terms to account for the quantum mechanical nature of these short-range molecular interactions. We have added a charge penetration term that considerably improves the description of electrostatic interactions at short range. We are reformulating the polarization term of AMOEBA in terms of basic physics assertions. And we are reevaluating the van der Waals term to match ab initio energy decompositions. These additions and changes promise to make AMOEBA more predictive. By including more physical detail of the important short-range interactions of biological molecules, we hope to move closer to the ultimate goal of true predictive power.
ERIC Educational Resources Information Center
McCombs, Barbara L.; And Others
The Computer Managed Instruction (CMI) Student Skills Project was developed and evaluated within the context of the Air Force Advanced Instructional System (AIS), with student study skill modules designed as short packages to be assigned near the beginning of any military technical training course; strategies or procedures included were expected…
Predicted Sensitivity for Tests of Short-range Gravity with a Novel Parallel-plate Torsion Pendulum
NASA Astrophysics Data System (ADS)
Richards, Matthew; Baxley, Brandon; Hoyle, C. D.; Leopardi, Holly; Shook, David
2011-11-01
The parallel-plate torsion pendulum apparatus at Humboldt State University is designed to test the Weak Equivalence Principle (WEP) and the gravitational inverse-square law (ISL) of General Relativity at unprecedented levels in the sub-millimeter regime. Some versions of String Theory predict additional dimensions that might affect the gravitational inverse-square law (ISL) at sub-millimeter levels. Some models also predict the existence of unobserved subatomic particles, which if exist, could cause a violation in the WEP at short distances. Short-range tests of gravity and the WEP are also instrumental in investigating possible proposed mechanisms that attempt to explain the accelerated expansion of the universe, generally attributed to Dark Energy. The weakness of the gravitational force makes measurement very difficult at small scales. Testing such a minimal force requires highly isolated experimental systems and precise measurement and control instrumentation. Moreover, a dedicated test of the WEP has not been performed below the millimeter scale. This talk will discuss the improved sensitivity that we expect to achieve in short-range gravity tests with respect to previous efforts that employ different experimental configurations.
Finite-size polyelectrolyte bundles at thermodynamic equilibrium
NASA Astrophysics Data System (ADS)
Sayar, M.; Holm, C.
2007-01-01
We present the results of extensive computer simulations performed on solutions of monodisperse charged rod-like polyelectrolytes in the presence of trivalent counterions. To overcome energy barriers we used a combination of parallel tempering and hybrid Monte Carlo techniques. Our results show that for small values of the electrostatic interaction the solution mostly consists of dispersed single rods. The potential of mean force between the polyelectrolyte monomers yields an attractive interaction at short distances. For a range of larger values of the Bjerrum length, we find finite-size polyelectrolyte bundles at thermodynamic equilibrium. Further increase of the Bjerrum length eventually leads to phase separation and precipitation. We discuss the origin of the observed thermodynamic stability of the finite-size aggregates.
Direct simulation of a self-similar plane wake
NASA Technical Reports Server (NTRS)
Moser, Robert D.; Rogers, Michael M.
1994-01-01
Direct simulations of two time-developing turbulent wakes have been performed. Initial conditions for the simulations were obtained from two realizations of a direct simulation of a turbulent boundary layer at momentum thickness Reynolds number 670. In addition, extra two dimensional disturbances were added in one of the cases to mimic two dimensional forcing. The unforced wake is allowed to evolve long enough to attain self similarity. The mass-flux Reynolds number (equivalent to the momentum thickness Reynolds number in spatially developing wakes) is 2000, which is high enough for a short k(exp -5/3) range to be evident in the streamwise one dimensional velocity spectrum. Several turbulence statistics have been computed by averaging in space and over the self-similar period in time. The growth rate in the unforced flow is low compared to experiments, but when this growth-rate difference is accounted for, the statistics of the unforced case are in reasonable agreement with experiments. However, the forced case is significantly different. The growth rate, turbulence Reynolds number, and turbulence intensities are as much as ten times larger in the forced case. In addition, the forced flow exhibits large-scale structures similar to those observed in transitional wakes, while the unforced flow does not.
NASA Astrophysics Data System (ADS)
Ge, Zhouyang; Loiseau, Jean-Christophe; Tammisola, Outi; Brandt, Luca
2018-01-01
Aiming for the simulation of colloidal droplets in microfluidic devices, we present here a numerical method for two-fluid systems subject to surface tension and depletion forces among the suspended droplets. The algorithm is based on an efficient solver for the incompressible two-phase Navier-Stokes equations, and uses a mass-conserving level set method to capture the fluid interface. The four novel ingredients proposed here are, firstly, an interface-correction level set (ICLS) method; global mass conservation is achieved by performing an additional advection near the interface, with a correction velocity obtained by locally solving an algebraic equation, which is easy to implement in both 2D and 3D. Secondly, we report a second-order accurate geometric estimation of the curvature at the interface and, thirdly, the combination of the ghost fluid method with the fast pressure-correction approach enabling an accurate and fast computation even for large density contrasts. Finally, we derive a hydrodynamic model for the interaction forces induced by depletion of surfactant micelles and combine it with a multiple level set approach to study short-range interactions among droplets in the presence of attracting forces.
NASA Astrophysics Data System (ADS)
Witham, Shawn; Boylen, Brett; Owesen, Barr; Rocchia, Walter; Alexov, Emil
2011-03-01
Electrostatic forces and energies are two of the major components that contribute to the stability, function and interaction of biological macromolecules. The calculations of the electrostatic potential distribution in such systems, which are comprised of irregularly shaped objects immersed in a water phase, is not a trivial task. In addition, an accurate model requires any missing hydrogen atoms of the corresponding structural files (Protein Data Bank, or, PDB files) to be generated in silico and, if necessary, missing atoms or residues to be predicted as well. Here we report a comprehensive suite, an academic DelPhi webserver, which allows the users to upload their structural file, calculate the components of the electrostatic energy, generate the corresponding potential (and/or concentration/dielectric constant) distribution map, and choose the appropriate force field. The webserver utilizes modern technology to take user input and construct an algorithm that suits the users specific needs. The webserver uses Clemson University's Palmetto Supercomputer Cluster to handle the DelPhi calculations, which can range anywhere from small and short computation times, to extensive and computationally demanding runtimes. The work was supported by a grant from NIGMS, NIH, grant number 1R01GM093937-01.
Dynamics of Nuclear Regions of Galaxies
NASA Technical Reports Server (NTRS)
Miller, Richard H.
1996-01-01
Current research carried out with the help of the ASEE-NASA Summer Faculty Program, at NASA-Ames, is concentrated on the dynamics of nuclear regions of galaxies. From a dynamical point of view a galaxy is a collection of around 10(sup 11) stars like our Sun, each of which moves in the summed gravitational field of all the remaining stars. Thus galaxy dynamics becomes a self-consistent n-body problem with forces given by Newtonian gravitation. Strong nonlinearity in the gravitational force and the inherent nonlinearity of self-consistent problems both argue for a numerical approach. The technique of numerical experiments consis of constructing an environment in the computer that is as close as possible to the physical conditions in a real galaxy and then carrying out experiments much like laboratory experiments in physics or engineering, in this environment. Computationally, an experiment is an initial value problem, and a good deal of thought and effort goes into the design of the starting conditions that serve as initial values. Experiments are run at Ames because all the 'equipment' is in place-the programs, the necessary computational power, and good facilities for post-run analysis. Our goal for this research program is to study the nuclear regions in detail and this means replacing most of the galaxy by a suitable boundary condition to allow the full capability of numerical experiments to be brought to bear on a small region perhaps 1/1000 of the linear dimensions of an entire galaxy. This is an extremely delicate numerical problem, one in which some small feature overlook, can easily lead to a collapse or blow-up of the entire system. All particles attract each other in gravitational problems, and the 1/r(sup 2) force is: (1) nonlinear; (2) strong at short range; (3) long-range, and (4) unscreened at any distance.
2014-01-01
Background Brownian dynamics (BD) simulations can be used to study very large molecular systems, such as models of the intracellular environment, using atomic-detail structures. Such simulations require strategies to contain the computational costs, especially for the computation of interaction forces and energies. A common approach is to compute interaction forces between macromolecules by precomputing their interaction potentials on three-dimensional discretized grids. For long-range interactions, such as electrostatics, grid-based methods are subject to finite size errors. We describe here the implementation of a Debye-Hückel correction to the grid-based electrostatic potential used in the SDA BD simulation software that was applied to simulate solutions of bovine serum albumin and of hen egg white lysozyme. Results We found that the inclusion of the long-range electrostatic correction increased the accuracy of both the protein-protein interaction profiles and the protein diffusion coefficients at low ionic strength. Conclusions An advantage of this method is the low additional computational cost required to treat long-range electrostatic interactions in large biomacromolecular systems. Moreover, the implementation described here for BD simulations of protein solutions can also be applied in implicit solvent molecular dynamics simulations that make use of gridded interaction potentials. PMID:25045516
NASA Astrophysics Data System (ADS)
Townsend, B.; Peyronel, F.; Callaghan-Patrachar, N.; Quinn, B.; Marangoni, A. G.; Pink, D. A.
2017-12-01
The effects of shear upon the aggregation of solid objects formed from solid triacylglycerols (TAGs) immersed in liquid TAG oils were modeled using Dissipative Particle Dynamics (DPD) and the predictions compared to experimental data using Ultra-Small Angle X-ray Scattering (USAXS). The solid components were represented by spheres interacting via attractive van der Waals forces and short range repulsive forces. A velocity was applied to the liquid particles nearest to the boundary, and Lees-Edwards boundary conditions were used to transmit this motion to non-boundary layers via dissipative interactions. The shear was created through the dissipative forces acting between liquid particles. Translational diffusion was simulated, and the Stokes-Einstein equation was used to relate DPD length and time scales to SI units for comparison with USAXS results. The SI values depended on how large the spherical particles were (250 nm vs. 25 nm). Aggregation was studied by (a) computing the Structure Function and (b) quantifying the number of pairs of solid spheres formed. Solid aggregation was found to be enhanced by low shear rates. As the shear rate was increased, a transition shear region was manifested in which aggregation was inhibited and shear banding was observed. Aggregation was inhibited, and eventually eliminated, by further increases in the shear rate. The magnitude of the transition region shear, γ˙ t, depended on the size of the solid particles, which was confirmed experimentally.
Laterality patterns of brain functional connectivity: gender effects.
Tomasi, Dardo; Volkow, Nora D
2012-06-01
Lateralization of brain connectivity may be essential for normal brain function and may be sexually dimorphic. Here, we study the laterality patterns of short-range (implicated in functional specialization) and long-range (implicated in functional integration) connectivity and the gender effects on these laterality patterns. Parallel computing was used to quantify short- and long-range functional connectivity densities in 913 healthy subjects. Short-range connectivity was rightward lateralized and most asymmetrical in areas around the lateral sulcus, whereas long-range connectivity was rightward lateralized in lateral sulcus and leftward lateralizated in inferior prefrontal cortex and angular gyrus. The posterior inferior occipital cortex was leftward lateralized (short- and long-range connectivity). Males had greater rightward lateralization of brain connectivity in superior temporal (short- and long-range), inferior frontal, and inferior occipital cortices (short-range), whereas females had greater leftward lateralization of long-range connectivity in the inferior frontal cortex. The greater lateralization of the male's brain (rightward and predominantly short-range) may underlie their greater vulnerability to disorders with disrupted brain asymmetries (schizophrenia, autism).
Laterality Patterns of Brain Functional Connectivity: Gender Effects
Tomasi, Dardo; Volkow, Nora D.
2012-01-01
Lateralization of brain connectivity may be essential for normal brain function and may be sexually dimorphic. Here, we study the laterality patterns of short-range (implicated in functional specialization) and long-range (implicated in functional integration) connectivity and the gender effects on these laterality patterns. Parallel computing was used to quantify short- and long-range functional connectivity densities in 913 healthy subjects. Short-range connectivity was rightward lateralized and most asymmetrical in areas around the lateral sulcus, whereas long-range connectivity was rightward lateralized in lateral sulcus and leftward lateralizated in inferior prefrontal cortex and angular gyrus. The posterior inferior occipital cortex was leftward lateralized (short- and long-range connectivity). Males had greater rightward lateralization of brain connectivity in superior temporal (short- and long-range), inferior frontal, and inferior occipital cortices (short-range), whereas females had greater leftward lateralization of long-range connectivity in the inferior frontal cortex. The greater lateralization of the male's brain (rightward and predominantly short-range) may underlie their greater vulnerability to disorders with disrupted brain asymmetries (schizophrenia, autism). PMID:21878483
Computational analysis of forebody tangential slot blowing on the high alpha research vehicle
NASA Technical Reports Server (NTRS)
Gee, Ken
1995-01-01
A numerical analysis of forebody tangential slot blowing as a means of generating side force and yawing moment is conducted using an aircraft geometry. The Reynolds-averaged, thin-layer, Navier-Stokes equations are solved using a partially flux-split, approximately-factored algorithm. An algebraic turbulence model is used to determine the turbulent eddy viscosity values. Solutions are obtained using both patched and overset grid systems. In the patched grid model, and actuator plane is used to introduce jet variables into the flow field. The overset grid model is used to model the physical slot geometry and facilitate modeling of the full aircraft configuration. A slot optimization study indicates that a short slot located close to the nose of the aircraft provided the most side force and yawing moment per unit blowing coefficient. Comparison of computed surface pressure with that obtained in full-scale wind tunnel tests produce good agreement, indicating the numerical method and grid system used in the study are valid. Full aircraft computations resolve the changes in vortex burst point due to blowing. A time-accurate full-aircraft solution shows the effect of blowing on the changes in the frequency of the aerodynamic loads over the vertical tails. A study of the effects of freestream Mach number and various jet parameters indicates blowing remains effective through the transonic Mach range. An investigation of the force onset time lag associated with forebody blowing shows the lag to be minimal. The knowledge obtained in this study may be applied to the design of a forebody tangential slot blowing system for use on flight aircraft.
Long Range Planning for Computer Use--A Task Force Model.
ERIC Educational Resources Information Center
Raucher, S. M.; Koehler, T. J.
A Management Operations Review and Evaluation (MORE) study of the Department of Management Information and Computer Services, which was completed in the fall of 1980, strongly recommended that the Montgomery County Public Schools (MCPS) develop a long-range plan to meet the computer needs of schools and central offices. In response to this…
Short-time dynamics of monomers and dimers in quasi-two-dimensional colloidal mixtures.
Sarmiento-Gómez, Erick; Villanueva-Valencia, José Ramón; Herrera-Velarde, Salvador; Ruiz-Santoyo, José Arturo; Santana-Solano, Jesús; Arauz-Lara, José Luis; Castañeda-Priego, Ramón
2016-07-01
We report on the short-time dynamics in colloidal mixtures made up of monomers and dimers highly confined between two glass plates. At low concentrations, the experimental measurements of colloidal motion agree well with the solution of the Navier-Stokes equation at low Reynolds numbers; the latter takes into account the increase in the drag force on a colloidal particle due to wall-particle hydrodynamic forces. More importantly, we find that the ratio of the short-time diffusion coefficient of the monomer and that of the center of mass of the dimmer is almost independent of both the dimer molar fraction, x_{d}, and the total packing fraction, ϕ, up to ϕ≈0.5. At higher concentrations, this ratio displays a small but systematic increase. A similar physical scenario is observed for the ratio between the parallel and the perpendicular components of the short-time diffusion coefficients of the dimer. This dynamical behavior is corroborated by means of molecular dynamics computer simulations that include explicitly the particle-particle hydrodynamic forces induced by the solvent. Our results suggest that the effects of colloid-colloid hydrodynamic interactions on the short-time diffusion coefficients are almost identical and factorable in both species.
Quantum mechanical force fields for condensed phase molecular simulations
NASA Astrophysics Data System (ADS)
Giese, Timothy J.; York, Darrin M.
2017-09-01
Molecular simulations are powerful tools for providing atomic-level details into complex chemical and physical processes that occur in the condensed phase. For strongly interacting systems where quantum many-body effects are known to play an important role, density-functional methods are often used to provide the model with the potential energy used to drive dynamics. These methods, however, suffer from two major drawbacks. First, they are often too computationally intensive to practically apply to large systems over long time scales, limiting their scope of application. Second, there remain challenges for these models to obtain the necessary level of accuracy for weak non-bonded interactions to obtain quantitative accuracy for a wide range of condensed phase properties. Quantum mechanical force fields (QMFFs) provide a potential solution to both of these limitations. In this review, we address recent advances in the development of QMFFs for condensed phase simulations. In particular, we examine the development of QMFF models using both approximate and ab initio density-functional models, the treatment of short-ranged non-bonded and long-ranged electrostatic interactions, and stability issues in molecular dynamics calculations. Example calculations are provided for crystalline systems, liquid water, and ionic liquids. We conclude with a perspective for emerging challenges and future research directions.
Fault tolerant computer control for a Maglev transportation system
NASA Technical Reports Server (NTRS)
Lala, Jaynarayan H.; Nagle, Gail A.; Anagnostopoulos, George
1994-01-01
Magnetically levitated (Maglev) vehicles operating on dedicated guideways at speeds of 500 km/hr are an emerging transportation alternative to short-haul air and high-speed rail. They have the potential to offer a service significantly more dependable than air and with less operating cost than both air and high-speed rail. Maglev transportation derives these benefits by using magnetic forces to suspend a vehicle 8 to 200 mm above the guideway. Magnetic forces are also used for propulsion and guidance. The combination of high speed, short headways, stringent ride quality requirements, and a distributed offboard propulsion system necessitates high levels of automation for the Maglev control and operation. Very high levels of safety and availability will be required for the Maglev control system. This paper describes the mission scenario, functional requirements, and dependability and performance requirements of the Maglev command, control, and communications system. A distributed hierarchical architecture consisting of vehicle on-board computers, wayside zone computers, a central computer facility, and communication links between these entities was synthesized to meet the functional and dependability requirements on the maglev. Two variations of the basic architecture are described: the Smart Vehicle Architecture (SVA) and the Zone Control Architecture (ZCA). Preliminary dependability modeling results are also presented.
Kumar, Vineet; Dixit, Nitin; Zhou, Liqiang Lisa; Fraunhofer, Wolfgang
2011-12-12
The purpose of this work was to determine the nature of long and short-range forces governing protein aggregation kinetics at low and high concentrations for a monoclonal antibody (IgG1) and a dual-variable-domain immunoglobulin (DVD-Ig). Protein-protein interactions (PPI) were studied under dilute conditions by utilizing the methods of static (B(22)) and dynamic light scattering (k(D)). PPI in solutions containing minimal ionic strengths were characterized to get detailed insights into the impact of ionic strength on aggregation. Microcalorimetry and susceptibility to denature at air-liquid interface were used to assess the tertiary structure and quiescent stability studies were conducted to study aggregation characteristics. Results for IgG1 showed that electrostatic interactions governed protein aggregation kinetics both under dilute and concentrated conditions (i.e., 5 mg/mL and 150 mg/mL). For DVD-Ig molecules, on the other hand, although electrostatic interactions governed protein aggregation under dilute conditions, hydrophobic forces clearly determined the kinetics at high concentrations. This manuscript shows for the first time that short-range hydrophobic interactions can outweigh electrostatic forces and play an important role in determining protein aggregation at high concentrations. Additionally, results show that although higher-order virial coefficients become significant under low ionic strength conditions, removal of added charges may be used to enhance the aggregation stability of dilute protein formulations. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Setty, Srinivas J.; Cefola, Paul J.; Montenbruck, Oliver; Fiedler, Hauke
2016-05-01
Catalog maintenance for Space Situational Awareness (SSA) demands an accurate and computationally lean orbit propagation and orbit determination technique to cope with the ever increasing number of observed space objects. As an alternative to established numerical and analytical methods, we investigate the accuracy and computational load of the Draper Semi-analytical Satellite Theory (DSST). The standalone version of the DSST was enhanced with additional perturbation models to improve its recovery of short periodic motion. The accuracy of DSST is, for the first time, compared to a numerical propagator with fidelity force models for a comprehensive grid of low, medium, and high altitude orbits with varying eccentricity and different inclinations. Furthermore, the run-time of both propagators is compared as a function of propagation arc, output step size and gravity field order to assess its performance for a full range of relevant use cases. For use in orbit determination, a robust performance of DSST is demonstrated even in the case of sparse observations, which is most sensitive to mismodeled short periodic perturbations. Overall, DSST is shown to exhibit adequate accuracy at favorable computational speed for the full set of orbits that need to be considered in space surveillance. Along with the inherent benefits of a semi-analytical orbit representation, DSST provides an attractive alternative to the more common numerical orbit propagation techniques.
Overshoot and Non-Overshoot Pathways to 1.5oC and Above: The Temperature Tunnel
NASA Astrophysics Data System (ADS)
Feijoo, F.; Edmonds, J.; Wise, M. A.; Mignone, B.; Kheshgi, H. S.
2017-12-01
We create 3000 temperature pathways that lead to a wide range of outcomes in 2100 from below 1.5oC to over 3oC. We use the Global Change Assessment Model (GCAM), which includes the HECTOR physical Earth system model, to generate emission, climate forcing and global temperature trajectories driven by a wide range of assumed carbon price trajectories. While no probability is estimated for the generated trajectories, we report the central estimate of temperature response to emissions from HECTOR. We find that despite the wide range of generated carbon emission trajectories, temperature pathways were constrained to a narrow range until shortly before mid-century. This "temperature tunnel" was the result of two phenomena: first, a narrow range of radiative forcing for 10-15 years created by the concurrent reduction of carbon and aerosol emissions; and second, the thermal lag of the climate response to radiative forcing change of roughly 10-15 years. Scenarios consistent with 1.5oC showed higher short-term temperatures than scenarios consistent with higher temperature outcomes. No scenarios were found that peak below approximately 1.9oC.
Fatigue analysis of the bow structure of FPSO
NASA Astrophysics Data System (ADS)
Hu, Zhi-Qiang; Gao, Zhen; Gu, Yong-Ning
2003-06-01
The bow structure of FPSO moored by the single mooring system is rather complicated. There are many potential hot spots in connection parts of structures between the mooring support frame and the forecastle. Mooring forces, which are induced by wave excitation and transferred by the YOKE and the mooring support frame, may cause fatigue damage to the bow structure. Different from direct wave-induced-forces, the mooring force consists of wave frequency force (WF) and 2nd draft low frequency force (LF)[3], which are represented by two sets of short-term distribution respectively. Based on two sets of short-term distribution of mooring forces obtained by the model test, the fatigue damage of the bow structure of FPSO is analyzed, with emphasis on two points. One is the procedure and position selection for fatigue check, and the other is the application of new formulae for the calculation of accumulative fatigue damage caused by two sets of short-term distribution of hot spot stress range. From the results distinguished features of fatigue damage to the FPSO’s bow structure can be observed.
Search for Lorentz Violation in a Short-Range Gravity Experiment
NASA Astrophysics Data System (ADS)
Bennett, D.; Skavysh, V.; Long, J.
2011-12-01
An experimental test of the Newtonian inverse square law at short range has been used to set limits on Lorentz violation in the pure gravity sector of the Standard-Model Extension. On account of the planar test mass geometry, nominally null with respect to 1/r2 forces, the limits derived for the SME coefficients of Lorentz violation are on the order bar sJK ˜ 104 .
NASA Astrophysics Data System (ADS)
Olvera de La Cruz, Monica; Sayar, Mehmet; Solis, Francisco J.; Stupp, Samuel I.
2001-03-01
Recent experimental studies in our group have shown that self assembled thin films of noncentrosymmetric supramolecular objects composed of triblock rodcoil molecules exhibit finite polar order. These aggregates have both long range dipolar and short range Ising-like interactions. We study the ground state of a simple model with these competing interactions. We find that the competition between Ising-like and dipolar forces yield a periodic domain structure, which can be controlled by adjusting the force constants and film thickness. When the surface forces are included in the potential, the system exhibits a finite macroscopic polar order.
Sweetman, Adam; Stannard, Andrew
2014-01-01
In principle, non-contact atomic force microscopy (NC-AFM) now readily allows for the measurement of forces with sub-nanonewton precision on the atomic scale. In practice, however, the extraction of the often desired 'short-range' force from the experimental observable (frequency shift) is often far from trivial. In most cases there is a significant contribution to the total tip-sample force due to non-site-specific van der Waals and electrostatic forces. Typically, the contribution from these forces must be removed before the results of the experiment can be successfully interpreted, often by comparison to density functional theory calculations. In this paper we compare the 'on-minus-off' method for extracting site-specific forces to a commonly used extrapolation method modelling the long-range forces using a simple power law. By examining the behaviour of the fitting method in the case of two radically different interaction potentials we show that significant uncertainties in the final extracted forces may result from use of the extrapolation method.
Computational Fluid Dynamics (CFD) techniques are increasingly being applied to air quality modeling of short-range dispersion, especially the flow and dispersion around buildings and other geometrically complex structures. The proper application and accuracy of such CFD techniqu...
Long-Range Interaction Forces between Polymer-Supported Lipid Bilayer Membranes
Seitz, Markus; Park, Chad K.; Wong, Joyce Y.
2009-01-01
Much of the short-range forces and structures of softly supported DMPC bilayers has been described previously. However, one interesting feature of the measured force–distance profile that remained unexplained is the presence of a long-range exponentially decaying repulsive force that is not observed between rigidly supported bilayers on solid mica substrate surfaces. This observation is discussed in detail here based on recent static and dynamic surface force experiments. The repulsive forces in the intermediate distance regime (mica–mica separations from 15 to 40 nm) are shown to be due not to an electrostatic force between the bilayers but to compression (deswelling) of the underlying soft polyelectrolyte layer, which may be thought of as a model cytoskeleton. The experimental data can be fit by simple theoretical models of polymer interactions from which the elastic properties of the polymer layer can be deduced. PMID:21359166
On improving the algorithm efficiency in the particle-particle force calculations
NASA Astrophysics Data System (ADS)
Kozynchenko, Alexander I.; Kozynchenko, Sergey A.
2016-09-01
The problem of calculating inter-particle forces in the particle-particle (PP) simulation models takes an important place in scientific computing. Such simulation models are used in diverse scientific applications arising in astrophysics, plasma physics, particle accelerators, etc., where the long-range forces are considered. The inverse-square laws such as Coulomb's law of electrostatic forces and Newton's law of universal gravitation are the examples of laws pertaining to the long-range forces. The standard naïve PP method outlined, for example, by Hockney and Eastwood [1] is straightforward, processing all pairs of particles in a double nested loop. The PP algorithm provides the best accuracy of all possible methods, but its computational complexity is O (Np2), where Np is a total number of particles involved. Too low efficiency of the PP algorithm seems to be the challenging issue in some cases where the high accuracy is required. An example can be taken from the charged particle beam dynamics where, under computing the own space charge of the beam, so-called macro-particles are used (see e.g., Humphries Jr. [2], Kozynchenko and Svistunov [3]).
Computer Literacy in '84: Pepperdine Prepares.
ERIC Educational Resources Information Center
California Higher Education, 1982
1982-01-01
Pepperdine University's long-range plan to assure that its liberal arts graduates are computer literate includes faculty training, microcomputer availability to faculty and students, faculty committees addressing long- and short-range curriculum needs, and course development for information technology literacy. Available from California Higher…
NASA Astrophysics Data System (ADS)
Hewitt, Helene T.; Bell, Michael J.; Chassignet, Eric P.; Czaja, Arnaud; Ferreira, David; Griffies, Stephen M.; Hyder, Pat; McClean, Julie L.; New, Adrian L.; Roberts, Malcolm J.
2017-12-01
As the importance of the ocean in the weather and climate system is increasingly recognised, operational systems are now moving towards coupled prediction not only for seasonal to climate timescales but also for short-range forecasts. A three-way tension exists between the allocation of computing resources to refine model resolution, the expansion of model complexity/capability, and the increase of ensemble size. Here we review evidence for the benefits of increased ocean resolution in global coupled models, where the ocean component explicitly represents transient mesoscale eddies and narrow boundary currents. We consider lessons learned from forced ocean/sea-ice simulations; from studies concerning the SST resolution required to impact atmospheric simulations; and from coupled predictions. Impacts of the mesoscale ocean in western boundary current regions on the large-scale atmospheric state have been identified. Understanding of air-sea feedback in western boundary currents is modifying our view of the dynamics in these key regions. It remains unclear whether variability associated with open ocean mesoscale eddies is equally important to the large-scale atmospheric state. We include a discussion of what processes can presently be parameterised in coupled models with coarse resolution non-eddying ocean models, and where parameterizations may fall short. We discuss the benefits of resolution and identify gaps in the current literature that leave important questions unanswered.
Computational Fluid Dynamics (CFD) techniques are increasingly being applied to air quality modeling of short-range dispersion, especially the flow and dispersion around buildings and other geometrically complex structures. The proper application and accuracy of such CFD techniqu...
Electrostatic attraction of coupled Wigner crystals: finite temperature effects.
Lau, A W; Pincus, P; Levine, D; Fertig, H A
2001-05-01
In this paper we present a unified physical picture for the electrostatic attraction between two coupled planar Wigner crystals at finite temperature. This model may facilitate our conceptual understanding of counterion-mediated attractions between (highly) similarly charged planes. By adopting an elastic theory, we show that the total attractive force between them can be (approximately) decomposed into a short-ranged and a long-ranged component. They are evaluated below the melting temperature of the Wigner crystals. In particular, we analyze the temperature dependence of the short-ranged attraction, arising from ground-state configuration, and we argue that thermal fluctuations may drastically reduce its strength. Also, the long-range force agrees exactly with that based on the charge-fluctuation approach. Furthermore, we take quantum contributions to the long-ranged (fluctuation-induced) attraction into account and show how the fractional power law, which scales as d(-7/2) for large interplanar distance d at zero temperature, crosses over to the classical regime d(-3) via an intermediate regime of d(-2).
Is the Conformational Ensemble of Alzheimer’s Aβ10-40 Peptide Force Field Dependent?
Siwy, Christopher M.
2017-01-01
By applying REMD simulations we have performed comparative analysis of the conformational ensembles of amino-truncated Aβ10-40 peptide produced with five force fields, which combine four protein parameterizations (CHARMM36, CHARMM22*, CHARMM22/cmap, and OPLS-AA) and two water models (standard and modified TIP3P). Aβ10-40 conformations were analyzed by computing secondary structure, backbone fluctuations, tertiary interactions, and radius of gyration. We have also calculated Aβ10-40 3JHNHα-coupling and RDC constants and compared them with their experimental counterparts obtained for the full-length Aβ1-40 peptide. Our study led us to several conclusions. First, all force fields predict that Aβ adopts unfolded structure dominated by turn and random coil conformations. Second, specific TIP3P water model does not dramatically affect secondary or tertiary Aβ10-40 structure, albeit standard TIP3P model favors slightly more compact states. Third, although the secondary structures observed in CHARMM36 and CHARMM22/cmap simulations are qualitatively similar, their tertiary interactions show little consistency. Fourth, two force fields, OPLS-AA and CHARMM22* have unique features setting them apart from CHARMM36 or CHARMM22/cmap. OPLS-AA reveals moderate β-structure propensity coupled with extensive, but weak long-range tertiary interactions leading to Aβ collapsed conformations. CHARMM22* exhibits moderate helix propensity and generates multiple exceptionally stable long- and short-range interactions. Our investigation suggests that among all force fields CHARMM22* differs the most from CHARMM36. Fifth, the analysis of 3JHNHα-coupling and RDC constants based on CHARMM36 force field with standard TIP3P model led us to an unexpected finding that in silico Aβ10-40 and experimental Aβ1-40 constants are generally in better agreement than these quantities computed and measured for identical peptides, such as Aβ1-40 or Aβ1-42. This observation suggests that the differences in the conformational ensembles of Aβ10-40 and Aβ1-40 are small and the former can be used as proxy of the full-length peptide. Based on this argument, we concluded that CHARMM36 force field with standard TIP3P model produces the most accurate representation of Aβ10-40 conformational ensemble. PMID:28085875
Estimation of excitation forces for wave energy converters control using pressure measurements
NASA Astrophysics Data System (ADS)
Abdelkhalik, O.; Zou, S.; Robinett, R.; Bacelli, G.; Wilson, D.
2017-08-01
Most control algorithms of wave energy converters require prediction of wave elevation or excitation force for a short future horizon, to compute the control in an optimal sense. This paper presents an approach that requires the estimation of the excitation force and its derivatives at present time with no need for prediction. An extended Kalman filter is implemented to estimate the excitation force. The measurements in this approach are selected to be the pressures at discrete points on the buoy surface, in addition to the buoy heave position. The pressures on the buoy surface are more directly related to the excitation force on the buoy as opposed to wave elevation in front of the buoy. These pressure measurements are also more accurate and easier to obtain. A singular arc control is implemented to compute the steady-state control using the estimated excitation force. The estimated excitation force is expressed in the Laplace domain and substituted in the control, before the latter is transformed to the time domain. Numerical simulations are presented for a Bretschneider wave case study.
Montes Ruiz-Cabello, F Javier; Trefalt, Gregor; Oncsik, Tamas; Szilagyi, Istvan; Maroni, Plinio; Borkovec, Michal
2015-06-25
Force profiles and aggregation rates involving positively and negatively charged polystyrene latex particles are investigated in monovalent electrolyte solutions, whereby the counterions are varied within the Hofmeister series. The force measurements are carried out with the colloidal probe technique, which is based on the atomic force microscope (AFM), while the aggregation rates are measured with time-resolved multiangle light scattering. The interaction force profiles cannot be described by classical DLVO theory, but an additional attractive short-ranged force must be included. An exponential force profile with a decay length of about 0.5 nm is consistent with the measured forces. Furthermore, the Hamaker constants extracted from the measured force profiles are substantially smaller than the theoretical values calculated from dielectric spectra. The small surface roughness of the latex particles (below 1 nm) is probably responsible for this deviation. Based on the measured force profiles, the aggregation rates can be predicted without adjustable parameters. The measured absolute aggregation rates in the fast regime are somewhat lower than the calculated ones. The critical coagulation concentration (CCC) agrees well with the experiment, including the respective shifts of the CCC within the Hofmeister series. These shifts are particularly pronounced for the positively charged particles. However, the consideration of the additional attractive short-ranged force is essential to quantify these shifts correctly. In the slow regime, the calculated rates are substantially smaller than the experimental ones. This disagreement is probably related to surface charge heterogeneities.
Hydrophobic interactions between dissimilar surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, R.H.; Flinn, D.H.; Rabinovich, Y.I.
1997-01-15
An atomic force microscope (AFM) was used to measure surface forces between a glass sphere and a silica plate. When the measurements were conducted between untreated surfaces, a short-range hydration force with decay lengths of 0.4 and 3.0 nm was observed. When the surfaces were hydrophobized with octadecyltrichlorosilane (OTS), on the other hand, long-range hydrophobic forces with decay lengths in the range of 2--32 nm were observed. The force measurements were conducted between surfaces having similar and dissimilar hydrophobicities so that the results may be used for deriving an empirical combining rule. It was found that the power law forcemore » constants for asymmetric interactions are close to the geometric means of those for symmetric interactions. Thus, hydrophobic force constants can be combined in the same manner as the Hamaker constants. A plot of the power law force constants versus water contact angles suggests that the hydrophobic force is uniquely determined by contact angle. These results will be useful in predicting hydrophobic forces for asymmetric interactions and in estimating hydrophobic forces from contact angles.« less
An accurate and efficient laser-envelope solver for the modeling of laser-plasma accelerators
Benedetti, C.; Schroeder, C. B.; Geddes, C. G. R.; ...
2017-10-17
Detailed and reliable numerical modeling of laser-plasma accelerators (LPAs), where a short and intense laser pulse interacts with an underdense plasma over distances of up to a meter, is a formidably challenging task. This is due to the great disparity among the length scales involved in the modeling, ranging from the micron scale of the laser wavelength to the meter scale of the total laser-plasma interaction length. The use of the time-averaged ponderomotive force approximation, where the laser pulse is described by means of its envelope, enables efficient modeling of LPAs by removing the need to model the details ofmore » electron motion at the laser wavelength scale. Furthermore, it allows simulations in cylindrical geometry which captures relevant 3D physics at 2D computational cost. A key element of any code based on the time-averaged ponderomotive force approximation is the laser envelope solver. In this paper we present the accurate and efficient envelope solver used in the code INF & RNO (INtegrated Fluid & paRticle simulatioN cOde). The features of the INF & RNO laser solver enable an accurate description of the laser pulse evolution deep into depletion even at a reasonably low resolution, resulting in significant computational speed-ups.« less
An accurate and efficient laser-envelope solver for the modeling of laser-plasma accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benedetti, C.; Schroeder, C. B.; Geddes, C. G. R.
Detailed and reliable numerical modeling of laser-plasma accelerators (LPAs), where a short and intense laser pulse interacts with an underdense plasma over distances of up to a meter, is a formidably challenging task. This is due to the great disparity among the length scales involved in the modeling, ranging from the micron scale of the laser wavelength to the meter scale of the total laser-plasma interaction length. The use of the time-averaged ponderomotive force approximation, where the laser pulse is described by means of its envelope, enables efficient modeling of LPAs by removing the need to model the details ofmore » electron motion at the laser wavelength scale. Furthermore, it allows simulations in cylindrical geometry which captures relevant 3D physics at 2D computational cost. A key element of any code based on the time-averaged ponderomotive force approximation is the laser envelope solver. In this paper we present the accurate and efficient envelope solver used in the code INF & RNO (INtegrated Fluid & paRticle simulatioN cOde). The features of the INF & RNO laser solver enable an accurate description of the laser pulse evolution deep into depletion even at a reasonably low resolution, resulting in significant computational speed-ups.« less
An accurate and efficient laser-envelope solver for the modeling of laser-plasma accelerators
NASA Astrophysics Data System (ADS)
Benedetti, C.; Schroeder, C. B.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.
2018-01-01
Detailed and reliable numerical modeling of laser-plasma accelerators (LPAs), where a short and intense laser pulse interacts with an underdense plasma over distances of up to a meter, is a formidably challenging task. This is due to the great disparity among the length scales involved in the modeling, ranging from the micron scale of the laser wavelength to the meter scale of the total laser-plasma interaction length. The use of the time-averaged ponderomotive force approximation, where the laser pulse is described by means of its envelope, enables efficient modeling of LPAs by removing the need to model the details of electron motion at the laser wavelength scale. Furthermore, it allows simulations in cylindrical geometry which captures relevant 3D physics at 2D computational cost. A key element of any code based on the time-averaged ponderomotive force approximation is the laser envelope solver. In this paper we present the accurate and efficient envelope solver used in the code INF&RNO (INtegrated Fluid & paRticle simulatioN cOde). The features of the INF&RNO laser solver enable an accurate description of the laser pulse evolution deep into depletion even at a reasonably low resolution, resulting in significant computational speed-ups.
Stoyanova, Alexandrina; Teale, Andrew M; Toulouse, Julien; Helgaker, Trygve; Fromager, Emmanuel
2013-10-07
The alternative separation of exchange and correlation energies proposed by Toulouse et al. [Theor. Chem. Acc. 114, 305 (2005)] is explored in the context of multi-configuration range-separated density-functional theory. The new decomposition of the short-range exchange-correlation energy relies on the auxiliary long-range interacting wavefunction rather than the Kohn-Sham (KS) determinant. The advantage, relative to the traditional KS decomposition, is that the wavefunction part of the energy is now computed with the regular (fully interacting) Hamiltonian. One potential drawback is that, because of double counting, the wavefunction used to compute the energy cannot be obtained by minimizing the energy expression with respect to the wavefunction parameters. The problem is overcome by using short-range optimized effective potentials (OEPs). The resulting combination of OEP techniques with wavefunction theory has been investigated in this work, at the Hartree-Fock (HF) and multi-configuration self-consistent-field (MCSCF) levels. In the HF case, an analytical expression for the energy gradient has been derived and implemented. Calculations have been performed within the short-range local density approximation on H2, N2, Li2, and H2O. Significant improvements in binding energies are obtained with the new decomposition of the short-range energy. The importance of optimizing the short-range OEP at the MCSCF level when static correlation becomes significant has also been demonstrated for H2, using a finite-difference gradient. The implementation of the analytical gradient for MCSCF wavefunctions is currently in progress.
Effect of surface tension on the behavior of adhesive contact based on Lennard-Jones potential law
NASA Astrophysics Data System (ADS)
Zhu, Xinyao; Xu, Wei
2018-02-01
The present study explores the effect of surface tension on adhesive contact behavior where the adhesion is interpreted by long-range intermolecular forces. The adhesive contact is analyzed using the equivalent system of a rigid sphere and an elastic half space covered by a membrane with surface tension. The long-range intermolecular forces are modeled with the Lennard‒Jones (L‒J) potential law. The current adhesive contact issue can be represented by a nonlinear integral equation, which can be solved by Newton‒Raphson method. In contrast to previous studies which consider intermolecular forces as short-range, the present study reveals more details of the features of adhesive contact with surface tension, in terms of jump instabilities, pull-off forces, pressure distribution within the contact area, etc. The transition of the pull-off force is not only consistent with previous studies, but also presents some new interesting characteristics in the current situation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
A video on computer security is described. Lonnie Moore, the Computer Security Manager, CSSM/CPPM at Lawrence Livermore National Laboratory (LLNL) and Gale Warshawsky, the Coordinator for Computer Security Education and Awareness at LLNL, wanted to share topics such as computer ethics, software piracy, privacy issues, and protecting information in a format that would capture and hold an audience`s attention. Four Computer Security Short Subject videos were produced which ranged from 1--3 minutes each. These videos are very effective education and awareness tools that can be used to generate discussions about computer security concerns and good computing practices.
Massey, G J; Balshaw, T G; Maden-Wilkinson, T M; Folland, J P
2018-04-01
The potential for tendinous tissues to adapt to functional overload, especially after several years of exposure to heavy-resistance training, is largely unexplored. This study compared the morphological and mechanical characteristics of the patellar tendon and knee extensor tendon-aponeurosis complex between young men exposed to long-term (4 years; n = 16), short-term (12 weeks; n = 15) and no (untrained controls; n = 39) functional overload in the form of heavy-resistance training. Patellar tendon cross-sectional area, vastus lateralis aponeurosis area and quadriceps femoris volume, plus patellar tendon stiffness and Young's modulus, and tendon-aponeurosis complex stiffness, were quantified with MRI, dynamometry and ultrasonography. As expected, long-term trained had greater muscle strength and volume (+58% and +56% vs untrained, both P < .001), as well as a greater aponeurosis area (+17% vs untrained, P < .01), but tendon cross-sectional area (mean and regional) was not different between groups. Only long-term trained had reduced patellar tendon elongation/strain over the whole force/stress range, whilst both short-term and long-term overload groups had similarly greater stiffness/Young's modulus at high force/stress (short-term +25/22%, and long-term +17/23% vs untrained; all P < .05). Tendon-aponeurosis complex stiffness was not different between groups (ANOVA, P = .149). Despite large differences in muscle strength and size, years of resistance training did not induce tendon hypertrophy. Both short-term and long-term overload demonstrated similar increases in high-force mechanical and material stiffness, but reduced elongation/strain over the whole force/stress range occurred only after years of overload, indicating a force/strain specific time-course to these adaptations. © 2017 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Zhen Tan, Rui; Lai, Tanny; Chiam, K.-H.
2017-08-01
A multilayered epithelium is made up of individual cells that are stratified in an orderly fashion, layer by layer. In such tissues, individual cells can adopt a wide range of shapes ranging from columnar to squamous. From histological images, we observe that, in flat epithelia such as the skin, the cells in the top layer are squamous while those in the middle and bottom layers are columnar, whereas in tubular epithelia, the cells in all layers are columnar. We develop a computational model to understand how individual cell shape is governed by the mechanical forces within multilayered flat and curved epithelia. We derive the energy function for an epithelial sheet of cells considering intercellular adhesive and intracellular contractile forces. We determine computationally the cell morphologies that minimize the energy function for a wide range of cellular parameters. Depending on the dominant adhesive and contractile forces, we find four dominant cell morphologies for the multilayered-layered flat sheet and three dominant cell morphologies for the two-layered curved sheet. We study the transitions between the dominant cell morphologies for the two-layered flat sheet and find both continuous and discontinuous transitions and also the presence of multistable states. Matching our computational results with histological images, we conclude that apical contractile forces from the actomyosin belt in the epithelial cells is the dominant force determining cell shape in multilayered epithelia. Our computational model can guide tissue engineers in designing artificial multilayered epithelia, in terms of figuring out the cellular parameters needed to achieve realistic epithelial morphologies.
Environmental Assessment for Construction of Small Arms Range at Tinker Air Force Base, Oklahoma
2008-11-01
Air Force Material Command Tinker Air Force Base, Oklahoma Prepared by: CHEROKEE CRC, LLC 916 West 23rd Street Tulsa, OK 74107...activities to avoid potential for short-term soil erosion which could result in adverse effects to water quality. Hazardous Materials and Waste...erosion which could result in adverse effects to water quality. Hazardous Materials and Waste. Soil from the remediation activities could potentially
Beyond BCS pairing in high-density neutron matter
NASA Astrophysics Data System (ADS)
Rios, A.; Ding, D.; Dussan, H.; Dickhoff, W. H.; Witte, S. J.; Polls, A.
2018-01-01
Pairing gaps in neutron matter need to be computed in a wide range of densities to address open questions in neutron star phenomenology. Traditionally, the Bardeen-Cooper-Schrieffer approach has been used to compute gaps from bare nucleon-nucleon interactions. Here, we incorporate the influence of short- and long-range correlations into pairing properties. Short-range correlations are treated including the appropriate fragmentation of single-particle states, and they suppress the gaps substantially. Long-range correlations dress the pairing interaction via density and spin modes, and provide a relatively small correction. We use three different interactions as a starting point to control for any systematic effects. Results are relevant for neutron-star cooling scenarios, in particular in view of the recent observational data on Cassiopeia A.
Extending the Range for Force Calibration in Magnetic Tweezers
Daldrop, Peter; Brutzer, Hergen; Huhle, Alexander; Kauert, Dominik J.; Seidel, Ralf
2015-01-01
Magnetic tweezers are a wide-spread tool used to study the mechanics and the function of a large variety of biomolecules and biomolecular machines. This tool uses a magnetic particle and a strong magnetic field gradient to apply defined forces to the molecule of interest. Forces are typically quantified by analyzing the lateral fluctuations of the biomolecule-tethered particle in the direction perpendicular to the applied force. Since the magnetic field pins the anisotropy axis of the particle, the lateral fluctuations follow the geometry of a pendulum with a short pendulum length along and a long pendulum length perpendicular to the field lines. Typically, the short pendulum geometry is used for force calibration by power-spectral-density (PSD) analysis, because the movement of the bead in this direction can be approximated by a simple translational motion. Here, we provide a detailed analysis of the fluctuations according to the long pendulum geometry and show that for this direction, both the translational and the rotational motions of the particle have to be considered. We provide analytical formulas for the PSD of this coupled system that agree well with PSDs obtained in experiments and simulations and that finally allow a faithful quantification of the magnetic force for the long pendulum geometry. We furthermore demonstrate that this methodology allows the calibration of much larger forces than the short pendulum geometry in a tether-length-dependent manner. In addition, the accuracy of determination of the absolute force is improved. Our force calibration based on the long pendulum geometry will facilitate high-resolution magnetic-tweezers experiments that rely on short molecules and large forces, as well as highly parallelized measurements that use low frame rates. PMID:25992733
Substellar fragmentation in self-gravitating fluids with a major phase transition
NASA Astrophysics Data System (ADS)
Füglistaler, A.; Pfenniger, D.
2015-06-01
Context. The observation of various ices in cold molecular clouds, the existence of ubiquitous substellar, cold H2 globules in planetary nebulae and supernova remnants, or the mere existence of comets suggest that the physics of very cold interstellar gas might be much richer than usually envisioned. At the extreme of low temperatures (≲10 K), H2 itself is subject to a phase transition crossing the entire cosmic gas density scale. Aims: This well-known, laboratory-based fact motivates us to study the ideal case of a cold neutral gaseous medium in interstellar conditions for which the bulk of the mass, instead of trace elements, is subject to a gas-liquid or gas-solid phase transition. Methods: On the one hand, the equilibrium of general non-ideal fluids is studied using the virial theorem and linear stability analysis. On the other hand, the non-linear dynamics is studied using computer simulations to characterize the expected formation of solid bodies analogous to comets. The simulations are run with a state-of-the-art molecular dynamics code (LAMMPS) using the Lennard-Jones inter-molecular potential. The long-range gravitational forces can be taken into account together with short-range molecular forces with finite limited computational resources, using super-molecules, provided the right scaling is followed. Results: The concept of super-molecule, where the phase transition conditions are preserved by the proper choice of the particle parameters, is tested with computer simulations, allowing us to correctly satisfy the Jeans instability criterion for one-phase fluids. The simulations show that fluids presenting a phase transition are gravitationally unstable as well, independent of the strength of the gravitational potential, producing two distinct kinds of substellar bodies, those dominated by gravity (planetoids) and those dominated by molecular attractive force (comets). Conclusions: Observations, formal analysis, and computer simulations suggest the possibility of the formation of substellar H2 clumps in cold molecular clouds due to the combination of phase transition and gravity. Fluids presenting a phase transition are gravitationally unstable, independent of the strength of the gravitational potential. Arbitrarily small H2 clumps may form even at relatively high temperatures up to 400-600 K, according to virial analysis. The combination of phase transition and gravity may be relevant for a wider range of astrophysical situations, such as proto-planetary disks. Figures 33-44 are available in electronic form at http://www.aanda.org
Providing Computer Conferencing Opportunities for Minority Students and Measuring Results.
ERIC Educational Resources Information Center
Schwalm, Karen T.
This paper reviews the research on the effects of differential computer background on the short- and long-range success of minority students, identifies some strategies Glendale Community College (Arizona) has used to encourage minority students' use of computing, specifically computer conferencing, and explains the measures constructed to track…
Cheng, Wei; Cornwall, Roger; Crouch, Dustin L; Li, Zhongyu; Saul, Katherine R
2015-06-01
Two potential mechanisms leading to postural and osseous shoulder deformity after brachial plexus birth palsy are muscle imbalance between functioning internal rotators and paralyzed external rotators and impaired longitudinal growth of paralyzed muscles. Our goal was to evaluate the combined and isolated effects of these 2 mechanisms on transverse plane shoulder forces using a computational model of C5-6 brachial plexus injury. We modeled a C5-6 injury using a computational musculoskeletal upper limb model. Muscles expected to be denervated by C5-6 injury were classified as affected, with the remaining shoulder muscles classified as unaffected. To model muscle imbalance, affected muscles were given no resting tone whereas unaffected muscles were given resting tone at 30% of maximal activation. To model impaired growth, affected muscles were reduced in length by 30% compared with normal whereas unaffected muscles remained normal in length. Four scenarios were simulated: normal, muscle imbalance only, impaired growth only, and both muscle imbalance and impaired growth. Passive shoulder rotation range of motion and glenohumeral joint reaction forces were evaluated to assess postural and osseous deformity. All impaired scenarios exhibited restricted range of motion and increased and posteriorly directed compressive glenohumeral joint forces. Individually, impaired muscle growth caused worse restriction in range of motion and higher and more posteriorly directed glenohumeral forces than did muscle imbalance. Combined muscle imbalance and impaired growth caused the most restricted joint range of motion and the highest joint reaction force of all scenarios. Both muscle imbalance and impaired longitudinal growth contributed to range of motion and force changes consistent with clinically observed deformity, although the most substantial effects resulted from impaired muscle growth. Simulations suggest that treatment strategies emphasizing treatment of impaired longitudinal growth are warranted for reducing deformity after brachial plexus birth palsy. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Possible biomechanical origins of the long-range correlations in stride intervals of walking
NASA Astrophysics Data System (ADS)
Gates, Deanna H.; Su, Jimmy L.; Dingwell, Jonathan B.
2007-07-01
When humans walk, the time duration of each stride varies from one stride to the next. These temporal fluctuations exhibit long-range correlations. It has been suggested that these correlations stem from higher nervous system centers in the brain that control gait cycle timing. Existing proposed models of this phenomenon have focused on neurophysiological mechanisms that might give rise to these long-range correlations, and generally ignored potential alternative mechanical explanations. We hypothesized that a simple mechanical system could also generate similar long-range correlations in stride times. We modified a very simple passive dynamic model of bipedal walking to incorporate forward propulsion through an impulsive force applied to the trailing leg at each push-off. Push-off forces were varied from step to step by incorporating both “sensory” and “motor” noise terms that were regulated by a simple proportional feedback controller. We generated 400 simulations of walking, with different combinations of sensory noise, motor noise, and feedback gain. The stride time data from each simulation were analyzed using detrended fluctuation analysis to compute a scaling exponent, α. This exponent quantified how each stride interval was correlated with previous and subsequent stride intervals over different time scales. For different variations of the noise terms and feedback gain, we obtained short-range correlations (α<0.5), uncorrelated time series (α=0.5), long-range correlations (0.5<α<1.0), or Brownian motion (α>1.0). Our results indicate that a simple biomechanical model of walking can generate long-range correlations and thus perhaps these correlations are not a complex result of higher level neuronal control, as has been previously suggested.
Effects of target distance on select biomechanical parameters in taekwondo roundhouse kick.
Falco, Coral; Molina-García, Javier; Alvarez, Octavio; Estevan, Isaac
2013-11-01
The aim of this study was to investigate the effects of target distance on temporal and impact force parameters that are important performance factors in taekwondo kicks. Forty-nine taekwondo athletes (age = 24.5 +/- 5.9 years; mass = 79.9 +/- 10.8 kg) were recruited: 13 male experts, 21 male novices, 8 female experts, and 6 female novices. Impact force, reaction time, and execution time were computed. Three-way repeated measure ANOVAs revealed significant 'distance' effect on impact force, reaction time, and execution time (p = 0.001). Comparisons between distance conditions revealed that taekwondo athletes kicked with higher impact force from short distance (17.6 +/- 7.5 N/kg) than from long distance (13.1 +/- 5.7 N/kg) (p < 0.001), had lower reaction time from short distance (498 +/- 90 ms) and normal distance (521 +/- 111 ms) than from long distance (602 +/- 121 ms) (p < 0.001), and had lower execution time from short distance (261 +/- 69 ms/m) than from normal distance (306 +/- 105 ms/m) or from long distance (350 +/- 106 ms/m) (p = 0.003 and p < 0.001, respectively). In conclusion, target distance affected the kick performance; as distance increases, impact force decreased and reaction time increased. Therefore, when reaction to a simple visual stimulus is needed, kicking from a long distance is not recommended, as longer time is required to respond.
Martoïa, F; Dumont, P J J; Orgéas, L; Belgacem, M N; Putaux, J-L
2016-02-14
In this study, we characterized and modeled the rheology of TEMPO-oxidized cellulose nanofibril (NFC) aqueous suspensions with electrostatically stabilized and unflocculated nanofibrous structures. These colloidal suspensions of slender and wavy nanofibers exhibited a yield stress and a shear thinning behavior at low and high shear rates, respectively. Both the shear yield stress and the consistency of these suspensions were power-law functions of the NFC volume fraction. We developed an original multiscale model for the prediction of the rheology of these suspensions. At the nanoscale, the suspensions were described as concentrated systems where NFCs interacted with the Newtonian suspending fluid through Brownian motion and long range fluid-NFC hydrodynamic interactions, as well as with each other through short range hydrodynamic and repulsive colloidal interaction forces. These forces were estimated using both the experimental results and 3D networks of NFCs that were numerically generated to mimic the nanostructures of NFC suspensions under shear flow. They were in good agreement with theoretical and measured forces for model colloidal systems. The model showed the primary role played by short range hydrodynamic and colloidal interactions on the rheology of NFC suspensions. At low shear rates, the origin of the yield stress of NFC suspensions was attributed to the combined contribution of repulsive colloidal interactions and the topology of the entangled NFC networks in the suspensions. At high shear rates, both concurrent colloidal and short (in some cases long) range hydrodynamic interactions could be at the origin of the shear thinning behavior of NFC suspensions.
2005-06-24
for an adhesion-active surface. 2.8.2 Dupre’s equation Let adhesive interaction between two bodies take place. Dupre’s equation defines the...connection between work of external forces on system of two bodies with adhesive interaction contact, the potential energies these bodies and the energy...Lagrangian of system of two bodies with adhesion interaction is equal half of work of external forces enclosed to this system” With the help of
Short-range correlation in high-momentum antisymmetrized molecular dynamics
NASA Astrophysics Data System (ADS)
Myo, Takayuki
2018-03-01
We propose a new variational method for treating short-range repulsion of bare nuclear force for nuclei in antisymmetrized molecular dynamics (AMD). In AMD, the short-range correlation is described in terms of large imaginary centroids of Gaussian wave packets of nucleon pairs in opposite signs, causing high-momentum components in the nucleon pairs. We superpose these AMD basis states and call this method "high-momentum AMD" (HM-AMD), which is capable of describing the strong tensor correlation [T. Myo et al., Prog. Theor. Exp. Phys., 2017, 111D01 (2017)]. In this letter, we extend HM-AMD by including up to two kinds of nucleon pairs in each AMD basis state utilizing the cluster expansion, which produces many-body correlations involving high-momentum components. We investigate how well HM-AMD describes the short-range correlation by showing the results for ^3H using the Argonne V4^' central potential. It is found that HM-AMD reproduces the results of few-body calculations and also the tensor-optimized AMD. This means that HM-AMD is a powerful approach to describe the short-range correlation in nuclei. In HM-AMD, the momentum directions of nucleon pairs isotropically contribute to the short-range correlation, which is different from the tensor correlation.
Theory and algorithms to compute Helfrich bending forces: a review.
Guckenberger, Achim; Gekle, Stephan
2017-05-24
Cell membranes are vital to shield a cell's interior from the environment. At the same time they determine to a large extent the cell's mechanical resistance to external forces. In recent years there has been considerable interest in the accurate computational modeling of such membranes, driven mainly by the amazing variety of shapes that red blood cells and model systems such as vesicles can assume in external flows. Given that the typical height of a membrane is only a few nanometers while the surface of the cell extends over many micrometers, physical modeling approaches mostly consider the interface as a two-dimensional elastic continuum. Here we review recent modeling efforts focusing on one of the computationally most intricate components, namely the membrane's bending resistance. We start with a short background on the most widely used bending model due to Helfrich. While the Helfrich bending energy by itself is an extremely simple model equation, the computation of the resulting forces is far from trivial. At the heart of these difficulties lies the fact that the forces involve second order derivatives of the local surface curvature which by itself is the second derivative of the membrane geometry. We systematically derive and compare the different routes to obtain bending forces from the Helfrich energy, namely the variational approach and the thin-shell theory. While both routes lead to mathematically identical expressions, so-called linear bending models are shown to reproduce only the leading order term while higher orders differ. The main part of the review contains a description of various computational strategies which we classify into three categories: the force, the strong and the weak formulation. We finally give some examples for the application of these strategies in actual simulations.
Short-range density functional correlation within the restricted active space CI method
NASA Astrophysics Data System (ADS)
Casanova, David
2018-03-01
In the present work, I introduce a hybrid wave function-density functional theory electronic structure method based on the range separation of the electron-electron Coulomb operator in order to recover dynamic electron correlations missed in the restricted active space configuration interaction (RASCI) methodology. The working equations and the computational algorithm for the implementation of the new approach, i.e., RAS-srDFT, are presented, and the method is tested in the calculation of excitation energies of organic molecules. The good performance of the RASCI wave function in combination with different short-range exchange-correlation functionals in the computation of relative energies represents a quantitative improvement with respect to the RASCI results and paves the path for the development of RAS-srDFT as a promising scheme in the computation of the ground and excited states where nondynamic and dynamic electron correlations are important.
Structural limits on force production and shortening of smooth muscle.
Siegman, Marion J; Davidheiser, Sandra; Mooers, Susan U; Butler, Thomas M
2013-02-01
This study determined the factors that limit force production and shortening in two smooth muscles having very different relationships between active and passive force as a function of muscle length. The rat anococcygeus muscle develops active force over the range of lengths 0.2-2.0× the optimum length for force production (Lo). Passive tension due to extension of the resting muscle occurs only at lengths exceeding Lo. In contrast, the rabbit taenia coli develops force in the range of lengths 0.4-1.1 Lo, and passive force which is detectable at 0.56 Lo, increases to ~0.45 maximum active force at Lo, and increases sharply with further extension. The anococcygeus muscle can shorten to 0.2 Lo and the taenia coli to 0.4 Lo. Dynamic stiffness and energy usage at short muscle lengths suggest that the limit of shortening in the taenia coli, in contrast to the anococcygeus muscle, is not due to a failure of cross bridge interaction. Phosphorylation of the regulatory myosin light chains in intact muscles decreased to a small extent at short lengths compared to the decrease in force production. The differences in force production and the extent of shortening in the two muscles was maintained even when, following permeabilization, the myosin light chains were irreversibly phosphorylated with ATPγS, indicating that differences in activation played little, if any role. Ultrastructural studies on resting and activated muscles show that the taenia coli, which is rich in connective tissue (unlike the anococcygeus muscle) undergoes marked cellular twisting and contractile filament misalignment at short lengths with compression of the extracellular matrix. As a result, force is not transmitted in the longitudinal axis of the muscle, but is dissipated against an internal load provided by the compressed extracellular matrix. These observations on two very different normal smooth muscles reveal how differences in the relative contribution of active and passive structural elements determine their mechanical behavior, and how this is potentially modified by remodeling that occurs in disease and in response to changes in functional demand.
Optoelectrofluidic field separation based on light-intensity gradients
Lee, Sanghyun; Park, Hyun Jin; Yoon, Jin Sung; Kang, Kwan Hyoung
2010-01-01
Optoelectrofluidic field separation (OEFS) of particles under light -intensity gradient (LIG) is reported, where the LIG illumination on the photoconductive layer converts the short-ranged dielectrophoresis (DEP) force to the long-ranged one. The long-ranged DEP force can compete with the hydrodynamic force by alternating current electro-osmosis (ACEO) over the entire illumination area for realizing effective field separation of particles. In the OEFS system, the codirectional illumination and observation induce the levitation effect, compensating the attenuation of the DEP force under LIG illumination by slightly floating particles from the surface. Results of the field separation and concentration of diverse particle pairs (0.82–16 μm) are well demonstrated, and conditions determining the critical radius and effective particle manipulation are discussed. The OEFS with codirectional LIG strategy could be a promising particle manipulation method in many applications where a rapid manipulation of biological cells and particles over the entire working area are of interest. PMID:20697461
Optoelectrofluidic field separation based on light-intensity gradients.
Lee, Sanghyun; Park, Hyun Jin; Yoon, Jin Sung; Kang, Kwan Hyoung
2010-07-14
Optoelectrofluidic field separation (OEFS) of particles under light -intensity gradient (LIG) is reported, where the LIG illumination on the photoconductive layer converts the short-ranged dielectrophoresis (DEP) force to the long-ranged one. The long-ranged DEP force can compete with the hydrodynamic force by alternating current electro-osmosis (ACEO) over the entire illumination area for realizing effective field separation of particles. In the OEFS system, the codirectional illumination and observation induce the levitation effect, compensating the attenuation of the DEP force under LIG illumination by slightly floating particles from the surface. Results of the field separation and concentration of diverse particle pairs (0.82-16 mum) are well demonstrated, and conditions determining the critical radius and effective particle manipulation are discussed. The OEFS with codirectional LIG strategy could be a promising particle manipulation method in many applications where a rapid manipulation of biological cells and particles over the entire working area are of interest.
Short-pulse laser interactions with disordered materials and liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phinney, L.M.; Goldman, C.H.; Longtin, J.P.
High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regimemore » in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.« less
NASA Tech Briefs, December 2008
NASA Technical Reports Server (NTRS)
2008-01-01
Topics covered include: Crew Activity Analyzer; Distributing Data to Hand-Held Devices in a Wireless Network; Reducing Surface Clutter in Cloud Profiling Radar Data; MODIS Atmospheric Data Handler; Multibeam Altimeter Navigation Update Using Faceted Shape Model; Spaceborne Hybrid-FPGA System for Processing FTIR Data; FPGA Coprocessor for Accelerated Classification of Images; SiC JFET Transistor Circuit Model for Extreme Temperature Range; TDR Using Autocorrelation and Varying-Duration Pulses; Update on Development of SiC Multi-Chip Power Modules; Radio Ranging System for Guidance of Approaching Spacecraft; Electromagnetically Clean Solar Arrays; Improved Short-Circuit Protection for Power Cells in Series; Electromagnetically Clean Solar Arrays; Logic Gates Made of N-Channel JFETs and Epitaxial Resistors; Improved Short-Circuit Protection for Power Cells in Series; Communication Limits Due to Photon-Detector Jitter; System for Removing Pollutants from Incinerator Exhaust; Sealing and External Sterilization of a Sample Container; Converting EOS Data from HDF-EOS to netCDF; HDF-EOS 2 and HDF-EOS 5 Compatibility Library; HDF-EOS Web Server; HDF-EOS 5 Validator; XML DTD and Schemas for HDF-EOS; Converting from XML to HDF-EOS; Simulating Attitudes and Trajectories of Multiple Spacecraft; Specialized Color Function for Display of Signed Data; Delivering Alert Messages to Members of a Work Force; Delivering Images for Mars Rover Science Planning; Oxide Fiber Cathode Materials for Rechargeable Lithium Cells; Electrocatalytic Reduction of Carbon Dioxide to Methane; Heterogeneous Superconducting Low-Noise Sensing Coils; Progress toward Making Epoxy/Carbon-Nanotube Composites; Predicting Properties of Unidirectional-Nanofiber Composites; Deployable Crew Quarters; Nonventing, Regenerable, Lightweight Heat Absorber; Miniature High-Force, Long-Stroke SMA Linear Actuators; "Bootstrap" Configuration for Multistage Pulse-Tube Coolers; Reducing Liquid Loss during Ullage Venting in Microgravity; Ka-Band Transponder for Deep-Space Radio Science; Replication of Space-Shuttle Computers in FPGAs and ASICs; Demisable Reaction-Wheel Assembly; Spatial and Temporal Low-Dimensional Models for Fluid Flow; Advanced Land Imager Assessment System; Range Imaging without Moving Parts.
ERIC Educational Resources Information Center
Lintz, Larry M.; And Others
This study investigated the feasibility of a low cost computer-aided instruction/computer-managed instruction (CAI/CMI) system. Air Force instructors and training supervisors were surveyed to determine the potential payoffs of various CAI and CMI functions. Results indicated that a wide range of capabilities had potential for resident technical…
High-resolution surface analysis for extended-range downscaling with limited-area atmospheric models
NASA Astrophysics Data System (ADS)
Separovic, Leo; Husain, Syed Zahid; Yu, Wei; Fernig, David
2014-12-01
High-resolution limited-area model (LAM) simulations are frequently employed to downscale coarse-resolution objective analyses over a specified area of the globe using high-resolution computational grids. When LAMs are integrated over extended time frames, from months to years, they are prone to deviations in land surface variables that can be harmful to the quality of the simulated near-surface fields. Nudging of the prognostic surface fields toward a reference-gridded data set is therefore devised in order to prevent the atmospheric model from diverging from the expected values. This paper presents a method to generate high-resolution analyses of land-surface variables, such as surface canopy temperature, soil moisture, and snow conditions, to be used for the relaxation of lower boundary conditions in extended-range LAM simulations. The proposed method is based on performing offline simulations with an external surface model, forced with the near-surface meteorological fields derived from short-range forecast, operational analyses, and observed temperatures and humidity. Results show that the outputs of the surface model obtained in the present study have potential to improve the near-surface atmospheric fields in extended-range LAM integrations.
de la Torre, B; Ellner, M; Pou, P; Nicoara, N; Pérez, Rubén; Gómez-Rodríguez, J M
2016-06-17
We show that noncontact atomic force microscopy (AFM) is sensitive to the local stiffness in the atomic-scale limit on weakly coupled 2D materials, as graphene on metals. Our large amplitude AFM topography and dissipation images under ultrahigh vacuum and low temperature resolve the atomic and moiré patterns in graphene on Pt(111), despite its extremely low geometric corrugation. The imaging mechanisms are identified with a multiscale model based on density-functional theory calculations, where the energy cost of global and local deformations of graphene competes with short-range chemical and long-range van der Waals interactions. Atomic contrast is related with short-range tip-sample interactions, while the dissipation can be understood in terms of global deformations in the weakly coupled graphene layer. Remarkably, the observed moiré modulation is linked with the subtle variations of the local interplanar graphene-substrate interaction, opening a new route to explore the local mechanical properties of 2D materials at the atomic scale.
Realistic kinetic loading of the jaw system during single chewing cycles: a finite element study.
Martinez Choy, S E; Lenz, J; Schweizerhof, K; Schmitter, M; Schindler, H J
2017-05-01
Although knowledge of short-range kinetic interactions between antagonistic teeth during mastication is of essential importance for ensuring interference-free fixed dental reconstructions, little information is available. In this study, the forces on and displacements of the teeth during kinetic molar biting simulating the power stroke of a chewing cycle were investigated by use of a finite-element model that included all the essential components of the human masticatory system, including an elastic food bolus. We hypothesised that the model can approximate the loading characteristics of the dentition found in previous experimental studies. The simulation was a transient analysis, that is, it considered the dynamic behaviour of the jaw. In particular, the reaction forces on the teeth and joints arose from contact, rather than nodal forces or constraints. To compute displacements of the teeth, the periodontal ligament (PDL) was modelled by use of an Ogden material model calibrated on the basis of results obtained in previous experiments. During the initial holding phase of the power stroke, bite forces were aligned with the roots of the molars until substantial deformation of the bolus occurred. The forces tilted the molars in the bucco-lingual and mesio-distal directions, but as the intrusive force increased the teeth returned to their initial configuration. The Ogden material model used for the PDL enabled accurate prediction of the displacements observed in experimental tests. In conclusion, the comprehensive kinetic finite element model reproduced the kinematic and loading characteristics of previous experimental investigations. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Negrello, Camille; Gosselet, Pierre; Rey, Christian
2018-05-01
An efficient method for solving large nonlinear problems combines Newton solvers and Domain Decomposition Methods (DDM). In the DDM framework, the boundary conditions can be chosen to be primal, dual or mixed. The mixed approach presents the advantage to be eligible for the research of an optimal interface parameter (often called impedance) which can increase the convergence rate. The optimal value for this parameter is often too expensive to be computed exactly in practice: an approximate version has to be sought for, along with a compromise between efficiency and computational cost. In the context of parallel algorithms for solving nonlinear structural mechanical problems, we propose a new heuristic for the impedance which combines short and long range effects at a low computational cost.
Ionic liquids-mediated interactions between nanorods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Zhou; Zhang, Fei; Huang, Jingsong
Surface forces mediated by room-temperature ionic liquids (RTILs) play an essential role in diverse applications including self-assembly, lubrication, and electrochemical energy storage. In this work, using molecular simulations we study the interactions between two nanorods immersed in model RTILs at rod-rod separations where both structural and double layer forces are important. The interaction force between neutral rods oscillates as the two rods approach each other, similar to the classical structural forces. Such oscillatory force originates from the density oscillation of RTILs near each rod and is affected by the packing constraints imposed by the neighboring rods. The oscillation period andmore » decay length of the oscillatory force are mainly dictated by the ion density distribution near isolated nanorods. When charges are introduced on the rods, the interaction force remains short-range and oscillatory, similar to the interactions between planar walls mediated by some protic RTILs reported earlier. Nevertheless, introducing net charges to the rods greatly changes the rod-rod interactions, e.g., by delaying the appearance of the first force trough and increasing the oscillation period and decay length of the interaction force. The oscillation period and decay length of the oscillatory force and free energy are commensurate with those of the space charge density near an isolated, charged rod. The free energy of rod-rod interactions reaches local minima (maxima) at rod-rod separations when the space charges near the two rods interfere constructively (destructively). Here, the insight on the short-range interactions between nanorods in RTILs helps guide the design of novel materials, e.g., crystalline ion gels based on rigid-rod polyanions and RTILs.« less
Ionic liquids-mediated interactions between nanorods
Yu, Zhou; Zhang, Fei; Huang, Jingsong; ...
2017-10-06
Surface forces mediated by room-temperature ionic liquids (RTILs) play an essential role in diverse applications including self-assembly, lubrication, and electrochemical energy storage. In this work, using molecular simulations we study the interactions between two nanorods immersed in model RTILs at rod-rod separations where both structural and double layer forces are important. The interaction force between neutral rods oscillates as the two rods approach each other, similar to the classical structural forces. Such oscillatory force originates from the density oscillation of RTILs near each rod and is affected by the packing constraints imposed by the neighboring rods. The oscillation period andmore » decay length of the oscillatory force are mainly dictated by the ion density distribution near isolated nanorods. When charges are introduced on the rods, the interaction force remains short-range and oscillatory, similar to the interactions between planar walls mediated by some protic RTILs reported earlier. Nevertheless, introducing net charges to the rods greatly changes the rod-rod interactions, e.g., by delaying the appearance of the first force trough and increasing the oscillation period and decay length of the interaction force. The oscillation period and decay length of the oscillatory force and free energy are commensurate with those of the space charge density near an isolated, charged rod. The free energy of rod-rod interactions reaches local minima (maxima) at rod-rod separations when the space charges near the two rods interfere constructively (destructively). Here, the insight on the short-range interactions between nanorods in RTILs helps guide the design of novel materials, e.g., crystalline ion gels based on rigid-rod polyanions and RTILs.« less
Theoretical prediction of the structural properties of uranium chalcogenides under high pressure
NASA Astrophysics Data System (ADS)
Kapoor, Shilpa; Yaduvanshi, Namrata; Singh, Sadhna
2018-05-01
Uranium chalcogenides crystallize in rock salt structure at normal condition and transform to Cesium Chloride structure at high pressure. We have investigated the transition pressure and volume drop of USe and UTe using three body potential model (TBIP). Present model includes long range Columbic, three body interaction forces and short range overlap forces operative up to next nearest neighbors. We have reported the phase transition pressure, relative volume collapses, the thermo physical properties such as molecular force constant (f), infrared absorption frequency (v0), Debye temperature (θD) and Gruneisen parameter (γ) of present chalcogenides and found that our results in general good agreement with experimental and other theoretical data.
Avoiding numerical pitfalls in social force models
NASA Astrophysics Data System (ADS)
Köster, Gerta; Treml, Franz; Gödel, Marion
2013-06-01
The social force model of Helbing and Molnár is one of the best known approaches to simulate pedestrian motion, a collective phenomenon with nonlinear dynamics. It is based on the idea that the Newtonian laws of motion mostly carry over to pedestrian motion so that human trajectories can be computed by solving a set of ordinary differential equations for velocity and acceleration. The beauty and simplicity of this ansatz are strong reasons for its wide spread. However, the numerical implementation is not without pitfalls. Oscillations, collisions, and instabilities occur even for very small step sizes. Classic solution ideas from molecular dynamics do not apply to the problem because the system is not Hamiltonian despite its source of inspiration. Looking at the model through the eyes of a mathematician, however, we realize that the right hand side of the differential equation is nondifferentiable and even discontinuous at critical locations. This produces undesirable behavior in the exact solution and, at best, severe loss of accuracy in efficient numerical schemes even in short range simulations. We suggest a very simple mollified version of the social force model that conserves the desired dynamic properties of the original many-body system but elegantly and cost efficiently resolves several of the issues concerning stability and numerical resolution.
Multi-site characterization of tropical aerosols: Implications for regional radiative forcing
NASA Astrophysics Data System (ADS)
Sumit, Kumar; Devara, P. C. S.; Manoj, M. G.
2012-03-01
A land campaign, as a part of the Indian Space Research Organization-Geosphere Biosphere Program (ISRO-GBP), has been organized using a suit of instruments like AERONET (Aerosol Robotic Network) Sun/Sky sunphotometer, Microtops-II (MICROprocessor-controlled Total Ozone Portable Spectrometer), short-wave pyranometer from December 1, 2006 to April 30, 2007, over five locations (Ahmedabad, Pune, Sinhgad, Trivandrum and Gadanki) representing different environments. The dominance of different aerosol types such as biomass burning, urban/industrial pollution, marine origin and desert-dust particles is expected at these five sites. In all locations, significant day-to-day variability in AOD and Ångström exponent is observed. The Ångström exponent exhibits its lowest values over semi-arid region (Ahmedabad) 0.4-0.7, while it is around 1.8 at rural site (Gadanki). The retrieved volume size distributions for Pune, Ahmedabad and Trivandrum are found to be bimodal with varying concentration of each mode. Interesting feature of this observation is, very low coarse-mode volume concentration observed at Trivandrum even though observations were made about 300 m from the coast. The synergy of results from these complementary measurements is reflected in the computed regional aerosol radiative forcing and heating rates. We have used a radiative transfer model (SBDART) to examine the variations of aerosol direct radiative effect (ADRE) and heating rates to give an overall estimation of the effect on climate. The ADRE, over different measurement sites, at short wavelength is found to be negative at the surface in the range of - 18 to - 59 W m - 2 , and TOA forcing values varied from + 0.9 to - 8 W m - 2 .
2002-06-24
VANDENBERG AIR FORCE BASE, CALIF. -- The National Oceanic and Atmospheric Administration (NOAA) spacecraft (NOAA-M) streaks above a cloud layer after a successful launch at 2:23 p.m. EDT aboard a Titan II rocket from Vandenberg Air Force Base, Calif. NOAA-M is another in a series of polar-orbiting Earth environmental observation satellites that provide global data to NOAA's short- and long-range weather forecasting systems
Short arc orbit determination and imminent impactors in the Gaia era
NASA Astrophysics Data System (ADS)
Spoto, F.; Del Vigna, A.; Milani, A.; Tommei, G.; Tanga, P.; Mignard, F.; Carry, B.; Thuillot, W.; David, P.
2018-06-01
Short-arc orbit determination is crucial when an asteroid is first discovered. In these cases usually the observations are so few that the differential correction procedure may not converge. We developed an initial orbit computation method, based on systematic ranging, which is an orbit determination technique that systematically explores a raster in the topocentric range and range-rate space region inside the admissible region. We obtained a fully rigorous computation of the probability for the asteroid that could impact the Earth within a few days from the discovery without any a priori assumption. We tested our method on the two past impactors, 2008 TC3 and 2014 AA, on some very well known cases, and on two particular objects observed by the European Space Agency Gaia mission.
Sundar, Vikram; Gelbwaser-Klimovsky, David; Aspuru-Guzik, Alán
2018-04-05
Modeling nuclear quantum effects is required for accurate molecular dynamics (MD) simulations of molecules. The community has paid special attention to water and other biomolecules that show hydrogen bonding. Standard methods of modeling nuclear quantum effects like Ring Polymer Molecular Dynamics (RPMD) are computationally costlier than running classical trajectories. A force-field functor (FFF) is an alternative method that computes an effective force field that replicates quantum properties of the original force field. In this work, we propose an efficient method of computing FFF using the Wigner-Kirkwood expansion. As a test case, we calculate a range of thermodynamic properties of Neon, obtaining the same level of accuracy as RPMD, but with the shorter runtime of classical simulations. By modifying existing MD programs, the proposed method could be used in the future to increase the efficiency and accuracy of MD simulations involving water and proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swaminarayan, Sriram; Germann, Timothy C; Kadau, Kai
2008-01-01
The authors present timing and performance numbers for a short-range parallel molecular dynamics (MD) code, SPaSM, that has been rewritten for the heterogeneous Roadrunner supercomputer. Each Roadrunner compute node consists of two AMD Opteron dual-core microprocessors and four PowerXCell 8i enhanced Cell microprocessors, so that there are four MPI ranks per node, each with one Opteron and one Cell. The interatomic forces are computed on the Cells (each with one PPU and eight SPU cores), while the Opterons are used to direct inter-rank communication and perform I/O-heavy periodic analysis, visualization, and checkpointing tasks. The performance measured for our initial implementationmore » of a standard Lennard-Jones pair potential benchmark reached a peak of 369 Tflop/s double-precision floating-point performance on the full Roadrunner system (27.7% of peak), corresponding to 124 MFlop/Watt/s at a price of approximately 3.69 MFlops/dollar. They demonstrate an initial target application, the jetting and ejection of material from a shocked surface.« less
Electrostatics of colloids in mixtures
NASA Astrophysics Data System (ADS)
Samin, Sela; Tsori, Yoav
2013-03-01
We examine the force between two charged colloids immersed in salty aqueous mixtures close to the coexistence curve. In an initially water-poor phase, the short-range solvation-related forces promote the condensation of a water-rich phase at a distance in the range 1-100nm. This leads to a strong long-range attraction between the colloids and hence to a deep metastable or globally stable energetic state. Our calculations are in good agreement with recent experiments on the reversible aggregation of colloids in critical mixtures. The specific nature of the solvation energy of ions can lead to some surprising effects, whereby positively charged surfaces attract while negatively charged surfaces repel. For hydrophilic anions and hydrophobic cations, a repulsive interaction is predicted between oppositely charged and hydrophilic colloids even though both the electrostatic and adsorption forces alone are attractive.
Capillary wave theory of adsorbed liquid films and the structure of the liquid-vapor interface
NASA Astrophysics Data System (ADS)
MacDowell, Luis G.
2017-08-01
In this paper we try to work out in detail the implications of a microscopic theory for capillary waves under the assumption that the density is given along lines normal to the interface. Within this approximation, which may be justified in terms of symmetry arguments, the Fisk-Widom scaling of the density profile holds for frozen realizations of the interface profile. Upon thermal averaging of capillary wave fluctuations, the resulting density profile yields results consistent with renormalization group calculations in the one-loop approximation. The thermal average over capillary waves may be expressed in terms of a modified convolution approximation where normals to the interface are Gaussian distributed. In the absence of an external field we show that the phenomenological density profile applied to the square-gradient free energy functional recovers the capillary wave Hamiltonian exactly. We extend the theory to the case of liquid films adsorbed on a substrate. For systems with short-range forces, we recover an effective interface Hamiltonian with a film height dependent surface tension that stems from the distortion of the liquid-vapor interface by the substrate, in agreement with the Fisher-Jin theory of short-range wetting. In the presence of long-range interactions, the surface tension picks up an explicit dependence on the external field and recovers the wave vector dependent logarithmic contribution observed by Napiorkowski and Dietrich. Using an error function for the intrinsic density profile, we obtain closed expressions for the surface tension and the interface width. We show the external field contribution to the surface tension may be given in terms of the film's disjoining pressure. From literature values of the Hamaker constant, it is found that the fluid-substrate forces may be able to double the surface tension for films in the nanometer range. The film height dependence of the surface tension described here is in full agreement with results of the capillary wave spectrum obtained recently in computer simulations, and the predicted translation mode of surface fluctuations reproduces to linear order in field strength an exact solution of the density correlation function for the Landau-Ginzburg-Wilson Hamiltonian in an external field.
NASA Astrophysics Data System (ADS)
Qian, Zuwen; Zhu, Zhemin; Ye, Shigong; Jiang, Wenhua; Zhu, Houqing; Yu, Jinshen
2010-10-01
Based on the analytic expressions for the radiated field of a circular concave piston given by Hasegawa et al., an integral for calculation of the radiation force on a plane absorbing target in a spherically focused field is derived. A general relation between acoustic power P and normal radiation force F n is obtained under the condition of kr ≫ 1. Numerical computation is carried out by using the symbolic computation program for practically focused sources and absorbing circular targets. The results show that, for a given source, there is a range of target positions where the radiation force is independent of the target’s position under the assumption that the contribution of the acoustic field behind the target to the radiation force can be neglected. The experiments are carried out and confirm that there is a range of target positions where the measured radiation force is basically independent of the target’s position even at high acoustic power (up to 700 W). It is believed that when the radiation force method is used to measure the acoustic power radiated from a focused source, the size of the target must be selected in such a way that no observable sound can be found in the region behind the target.
Effective field theory description of halo nuclei
NASA Astrophysics Data System (ADS)
Hammer, H.-W.; Ji, C.; Phillips, D. R.
2017-10-01
Nuclear halos emerge as new degrees of freedom near the neutron and proton driplines. They consist of a core and one or a few nucleons which spend most of their time in the classically-forbidden region outside the range of the interaction. Individual nucleons inside the core are thus unresolved in the halo configuration, and the low-energy effective interactions are short-range forces between the core and the valence nucleons. Similar phenomena occur in clusters of 4He atoms, cold atomic gases near a Feshbach resonance, and some exotic hadrons. In these weakly-bound quantum systems universal scaling laws for s-wave binding emerge that are independent of the details of the interaction. Effective field theory (EFT) exposes these correlations and permits the calculation of non-universal corrections to them due to short-distance effects, as well as the extension of these ideas to systems involving the Coulomb interaction and/or binding in higher angular-momentum channels. Halo nuclei exhibit all these features. Halo EFT, the EFT for halo nuclei, has been used to compute the properties of single-neutron, two-neutron, and single-proton halos of s-wave and p-wave type. This review summarizes these results for halo binding energies, radii, Coulomb dissociation, and radiative capture, as well as the connection of these properties to scattering parameters, thereby elucidating the universal correlations between all these observables. We also discuss how Halo EFT's encoding of the long-distance physics of halo nuclei can be used to check and extend ab initio calculations that include detailed modeling of their short-distance dynamics.
Nonequilibrium forces following quenches in active and thermal matter.
Rohwer, Christian M; Solon, Alexandre; Kardar, Mehran; Krüger, Matthias
2018-03-01
Nonequilibrium systems with conserved quantities like density or momentum are known to exhibit long-ranged correlations. This, in turn, leads to long-ranged fluctuation-induced (Casimir) forces, predicted to arise in a variety of nonequilibrium settings. Here, we study such forces, which arise transiently between parallel plates or compact inclusions in a gas of particles, following a change ("quench") in temperature or activity of the medium. Analytical calculations, as well as numerical simulations of passive or active Brownian particles, indicate two distinct forces: (i) The immediate effect of the quench is adsorption or desorption of particles of the medium to the immersed objects, which in turn initiates a front of relaxing (mean) density. This leads to time-dependent density-induced forces. (ii) A long-term effect of the quench is that density fluctuations are modified, manifested as transient (long-ranged) (pair-)correlations that relax diffusively to their (short-ranged) steady-state limit. As a result, transient fluctuation-induced forces emerge. We discuss the properties of fluctuation-induced and density-induced forces as regards universality, relaxation as a function of time, and scaling with distance between objects. Their distinct signatures allow us to distinguish the two types of forces in simulation data. Our simulations also show that a quench of the effective temperature of an active medium gives rise to qualitatively similar effects to a temperature quench in a passive medium. Based on this insight, we propose several scenarios for the experimental observation of the forces described here.
Nonequilibrium forces following quenches in active and thermal matter
NASA Astrophysics Data System (ADS)
Rohwer, Christian M.; Solon, Alexandre; Kardar, Mehran; Krüger, Matthias
2018-03-01
Nonequilibrium systems with conserved quantities like density or momentum are known to exhibit long-ranged correlations. This, in turn, leads to long-ranged fluctuation-induced (Casimir) forces, predicted to arise in a variety of nonequilibrium settings. Here, we study such forces, which arise transiently between parallel plates or compact inclusions in a gas of particles, following a change ("quench") in temperature or activity of the medium. Analytical calculations, as well as numerical simulations of passive or active Brownian particles, indicate two distinct forces: (i) The immediate effect of the quench is adsorption or desorption of particles of the medium to the immersed objects, which in turn initiates a front of relaxing (mean) density. This leads to time-dependent density-induced forces. (ii) A long-term effect of the quench is that density fluctuations are modified, manifested as transient (long-ranged) (pair-)correlations that relax diffusively to their (short-ranged) steady-state limit. As a result, transient fluctuation-induced forces emerge. We discuss the properties of fluctuation-induced and density-induced forces as regards universality, relaxation as a function of time, and scaling with distance between objects. Their distinct signatures allow us to distinguish the two types of forces in simulation data. Our simulations also show that a quench of the effective temperature of an active medium gives rise to qualitatively similar effects to a temperature quench in a passive medium. Based on this insight, we propose several scenarios for the experimental observation of the forces described here.
Tablet computers in assessing performance in a high stakes exam: opinion matters.
Currie, G P; Sinha, S; Thomson, F; Cleland, J; Denison, A R
2017-06-01
Background Tablet computers have emerged as a tool to capture, process and store data in examinations, yet evidence relating to their acceptability and usefulness in assessment is limited. Methods We performed an observational study to explore opinions and attitudes relating to tablet computer use in recording performance in a final year objective structured clinical examination at a single UK medical school. Examiners completed a short questionnaire encompassing background, forced-choice and open questions. Forced choice questions were analysed using descriptive statistics and open questions by framework analysis. Results Ninety-two (97% response rate) examiners completed the questionnaire of whom 85% had previous use of tablet computers. Ninety per cent felt checklist mark allocation was 'very/quite easy', while approximately half considered recording 'free-type' comments was 'easy/very easy'. Greater overall efficiency of marking and resource savings were considered the main advantages of tablet computers, while concerns relating to technological failure and ability to record free type comments were raised. Discussion In a context where examiners were familiar with tablet computers, they were preferred to paper checklists, although concerns were raised. This study adds to the limited literature underpinning the use of electronic devices as acceptable tools in objective structured clinical examinations.
Planetary quarantine computer applications
NASA Technical Reports Server (NTRS)
Rafenstein, M.
1973-01-01
The computer programs are identified pertaining to planetary quarantine activities within the Project Engineering Division, both at the Air Force Eastern Test Range and on site at the Jet Propulsion Laboratory. A brief description of each program and program inputs are given and typical program outputs are shown.
NASA Astrophysics Data System (ADS)
Wallen, Samuel P.
Granular media are one of the most common, yet least understood forms of matter on earth. The difficulties in understanding the physics of granular media stem from the fact that they are typically heterogeneous and highly disordered, and the grains interact via nonlinear contact forces. Historically, one approach to reducing these complexities and gaining new insight has been the study of granular crystals, which are ordered arrays of similarly-shaped particles (typically spheres) in Hertzian contact. Using this setting, past works explored the rich nonlinear dynamics stemming from contact forces, and proposed avenues where such granular crystals could form designer, dynamically responsive materials, which yield beneficial functionality in dynamic regimes. In recent years, the combination of self-assembly fabrication methods and laser ultrasonic experimental characterization have enabled the study of granular crystals at microscale. While our intuition may suggest that these microscale granular crystals are simply scaled-down versions of their macroscale counterparts, in fact, the relevant physics change drastically; for example, short-range adhesive forces between particles, which are negligible at macroscale, are several orders of magnitude stronger than gravity at microscale. In this thesis, we present recent advances in analytical and computational modeling of microscale granular crystals, in particular concerning the interplay of nonlinearity, shear interactions, and particle rotations, which have previously been either absent, or included separately at macroscale. Drawing inspiration from past works on phononic crystals and nonlinear lattices, we explore problems involving locally-resonant metamaterials, nonlinear localized modes, amplitude-dependent energy partition, and other rich dynamical phenomena. This work enhances our understanding of microscale granular media, which may find applicability in fields such as ultrasonic wave tailoring, signal processing, shock and vibration mitigation, and powder processing.
Sommerfeld, Thomas; Ehara, Masahiro
2015-01-21
The energy of a temporary anion can be computed by adding a stabilizing potential to the molecular Hamiltonian, increasing the stabilization until the temporary state is turned into a bound state, and then further increasing the stabilization until enough bound state energies have been collected so that these can be extrapolated back to vanishing stabilization. The lifetime can be obtained from the same data, but only if the extrapolation is done through analytic continuation of the momentum as a function of the square root of a shifted stabilizing parameter. This method is known as analytic continuation of the coupling constant, and it requires--at least in principle--that the bound-state input data are computed with a short-range stabilizing potential. In the context of molecules and ab initio packages, long-range Coulomb stabilizing potentials are, however, far more convenient and have been used in the past with some success, although the error introduced by the long-rang nature of the stabilizing potential remains unknown. Here, we introduce a soft-Voronoi box potential that can serve as a short-range stabilizing potential. The difference between a Coulomb and the new stabilization is analyzed in detail for a one-dimensional model system as well as for the (2)Πu resonance of CO2(-), and in both cases, the extrapolation results are compared to independently computed resonance parameters, from complex scaling for the model, and from complex absorbing potential calculations for CO2(-). It is important to emphasize that for both the model and for CO2(-), all three sets of results have, respectively, been obtained with the same electronic structure method and basis set so that the theoretical description of the continuum can be directly compared. The new soft-Voronoi-box-based extrapolation is then used to study the influence of the size of diffuse and the valence basis sets on the computed resonance parameters.
Impact-induced solidlike behavior and elasticity in concentrated colloidal suspensions
NASA Astrophysics Data System (ADS)
Chu, Baojin; Salem, David R.
2017-10-01
Modified drop weight impact tests were performed on Si O2 -ethylene glycol concentrated suspensions. Counterintuitive impact-induced solidlike behavior and elasticity, causing significant deceleration and rebound of the impactor, were observed. We provide evidence that the observed large deceleration force on the impactor mainly originates from the hydrodynamic force, and that the elasticity arises from the short-range repulsive force of a solvation layer on the particle surface. This study presents key experimental results to help understand the mechanisms underlying various stress-induced solidification phenomena.
Englert, Francois
2018-05-24
- Physics, as we know it, attempts to interpret the diverse natural phenomena as particular manifestations of general laws. This vision of a world ruled by general testable laws is relatively recent in the history of mankind. Basically it was initiated by the Galilean inertial principle. The subsequent rapid development of large-scale physics is certainly tributary to the fact that gravitational and electromagnetic forces are long-range and hence can be perceived directly without the mediation of highly sophisticated technical devices. - The discovery of subatomic structures and of the concomitant weak and strong short-range forces raised the question of how to cope with short-range forces in relativistic quantum field theory. The Fermi theory of weak interactions, formulated in terms of point-like current-current interaction, was well-defined in lowest order perturbation theory and accounted for existing experimental data.However, it was inconsistent in higher orders because of uncontrollable divergent quantum fluctuations. In technical terms, in contradistinction to quantum electrodynamics, the Fermi theorywas not ârenormalizableâ. This difficulty could not be solved by smoothing the point-like interaction by a massive, and therefore short-range, charged âvectorâ particle exchange: theories with massive charged vector bosons were not renormalizable either. In the early nineteen sixties, there seemed to be insuperable obstacles to formulating a consistent theory with short-range forces mediated by massive vectors. - The breakthrough came from the notion of spontaneous symmetry breaking which arose in the study of phase transitions and was introduced in field theory by Nambu in 1960. - Ferromagnets illustrate the notion in phase transitions. Although no direction is dynamically preferred, the magnetization selects a global orientation. This is a spontaneous broken symmetry(SBS)of rotational invariance. Such continuous SBS imply the existence of âmasslessâ modes (here spin-waves), which are the ancestors of the NG bosons discussed below. Fluctuations of the order parameter (the magnetization) are described by a âmassiveâ SBS mode. - In field theory, Nambu showed that broken chiral symmetry from a spontaneous generation of hadron masses induces massless pseudoscalar modes (identified with a massless limit of pion fields). This illustrates a general phenomenon made explicit by Goldstone: massless Nambu-Goldstone (NG) bosons are a necessary concomitant of spontaneously broken continuous symmetries. Massive SBS scalars bosons describe, as in phase transitions, the fluctuations of the SBS order parameters. - In 1964, with Robert Brout, we discovered a mechanism based on SBS by which short range interactions are generated from long range ones. A similar proposal was then made independently by Higgs in a different approach. Qualitatively, our mechanism works as follows. The long range fundamental electromagnetic and gravitational interactions are governed by extended symmetries,called gauge symmetries, which were supposed to guarantee that the elementary field constituents which transmit the forces, photons or gravitons, be massless. We considered a generalization of the electromagnetic âvectorâ field, known as Yang-Mills fields, and coupled them to fields which acquire from SBS constant values in the vacuum. These fields pervade space, as did magnetization, but they have no spatial orientation: they are âscalarââ fields. The vector Yang-Mills fields which interact with the scalar fields become massive and hence the forces they mediate become short ranged. We also showed that the mechanism can survive in absence of elementary scalar fields. - Because of the extended symmetries, the nature of SBS is profoundly altered: the NG fields are absorbed into the massive vector Yang-Mills fields and restore the gauge symmetry. This has a dramatic consequence. To confront precision experiments, the mechanism should be consistent at the quantum mechanical level, or in technical terms, should yield a ârenormalizableâ theory. From our analysis of the preserved gauge symmetry, we suggested in 1966 that this is indeed the case, in contradistinction to the aforementioned earlier theories of charged massive vector fields. The full proof of ârenormalizabilityâ is subtle and was achieved in the impressive work of ât Hooft and Veltman. One gains some insight into the subtleties by making explicit the equivalence of Higgsâ approach with ours. - To a large extend, the LHC was build to detect the massive SBS scalar boson, i.e. the fluctuations of the scalar field. More elaborate realizations of the mechanism without elementary scalars are possible, but their experimental confirmation may (or may not) be outside the scope of present available technology. - The mechanism of Brout, Englert and Higgs unified in the same theoretical framework short- and long-range forces. It became the cornerstone of the electroweak theory and opened the way to a modern view on unified laws of nature.
Dynamic Simulation of Random Packing of Polydispersive Fine Particles
NASA Astrophysics Data System (ADS)
Ferraz, Carlos Handrey Araujo; Marques, Samuel Apolinário
2018-02-01
In this paper, we perform molecular dynamic (MD) simulations to study the two-dimensional packing process of both monosized and random size particles with radii ranging from 1.0 to 7.0 μm. The initial positions as well as the radii of five thousand fine particles were defined inside a rectangular box by using a random number generator. Both the translational and rotational movements of each particle were considered in the simulations. In order to deal with interacting fine particles, we take into account both the contact forces and the long-range dispersive forces. We account for normal and static/sliding tangential friction forces between particles and between particle and wall by means of a linear model approach, while the long-range dispersive forces are computed by using a Lennard-Jones-like potential. The packing processes were studied assuming different long-range interaction strengths. We carry out statistical calculations of the different quantities studied such as packing density, mean coordination number, kinetic energy, and radial distribution function as the system evolves over time. We find that the long-range dispersive forces can strongly influence the packing process dynamics as they might form large particle clusters, depending on the intensity of the long-range interaction strength.
Properties of Organic Liquids when Simulated with Long-Range Lennard-Jones Interactions.
Fischer, Nina M; van Maaren, Paul J; Ditz, Jonas C; Yildirim, Ahmet; van der Spoel, David
2015-07-14
In order to increase the accuracy of classical computer simulations, existing methodologies may need to be adapted. Hitherto, most force fields employ a truncated potential function to model van der Waals interactions, sometimes augmented with an analytical correction. Although such corrections are accurate for homogeneous systems with a long cutoff, they should not be used in inherently inhomogeneous systems such as biomolecular and interface systems. For such cases, a variant of the particle mesh Ewald algorithm (Lennard-Jones PME) was already proposed 20 years ago (Essmann et al. J. Chem. Phys. 1995, 103, 8577-8593), but it was implemented only recently (Wennberg et al. J. Chem. Theory Comput. 2013, 9, 3527-3537) in a major simulation code (GROMACS). The availability of this method allows surface tensions of liquids as well as bulk properties to be established, such as density and enthalpy of vaporization, without approximations due to truncation. Here, we report on simulations of ≈150 liquids (taken from a force field benchmark: Caleman et al. J. Chem. Theory Comput. 2012, 8, 61-74) using three different force fields and compare simulations with and without explicit long-range van der Waals interactions. We find that the density and enthalpy of vaporization increase for most liquids using the generalized Amber force field (GAFF, Wang et al. J. Comput. Chem. 2004, 25, 1157-1174) and the Charmm generalized force field (CGenFF, Vanommeslaeghe et al. J. Comput. Chem. 2010, 31, 671-690) but less so for OPLS/AA (Jorgensen and Tirado-Rives, Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 6665-6670), which was parametrized with an analytical correction to the van der Waals potential. The surface tension increases by ≈10(-2) N/m for all force fields. These results suggest that van der Waals attractions in force fields are too strong, in particular for the GAFF and CGenFF. In addition to the simulation results, we introduce a new version of a web server, http://virtualchemistry.org, aimed at facilitating sharing and reuse of input files for molecular simulations.
Atomistic models for free energy evaluation of drug binding to membrane proteins.
Durdagi, S; Zhao, C; Cuervo, J E; Noskov, S Y
2011-01-01
The binding of various molecules to integral membrane proteins with optimal affinity and specificity is central to normal function of cell. While membrane proteins represent about one third of the whole cell proteome, they are a majority of common drug targets. The quest for the development of computational models capable of accurate evaluation of binding affinities, decomposition of the binding into its principal components and thus mapping molecular mechanisms of binding remains one of the main goals of modern computational biophysics and related drug development. The primary scope of this review will be on the recent extension of computational methods for the study of drug binding to membrane proteins. Several examples of such applications will be provided ranging from secondary transporters to voltage gated channels. In this mini-review, we will provide a short summary on the breadth of different methods for binding affinity evaluation. These methods include molecular docking with docking scoring functions, molecular dynamics (MD) simulations combined with post-processing analysis using Molecular Mechanics/Poisson Boltzmann (Generalized Born) Surface Area (MM/PB(GB)SA), as well as direct evaluation of free energies from Free Energy Perturbation (FEP) with constraining schemes, and Potential of Mean Force (PMF) computations. We will compare advantages and shortcomings of popular techniques and provide discussion on the integrative strategies for drug development aimed at targeting membrane proteins.
NASA Technical Reports Server (NTRS)
Lopez, Armando E.; Buell, Donald A.; Tinling, Bruce E.
1959-01-01
Wind-tunnel measurements were made of the static and dynamic rotary stability derivatives of an airplane model having sweptback wing and tail surfaces. The Mach number range of the tests was from 0.23 to 0.94. The components of the model were tested in various combinations so that the separate contribution to the stability derivatives of the component parts and the interference effects could be determined. Estimates of the dynamic rotary derivatives based on some of the simpler existing procedures which utilize static force data were found to be in reasonable agreement with the experimental results at low angles of attack. The results of the static and dynamic measurements were used to compute the short-period oscillatory characteristics of an airplane geometrically similar to the test model. The results of these calculations are compared with military flying qualities requirements.
Modeling Complex Biological Flows in Multi-Scale Systems using the APDEC Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trebotich, D
We have developed advanced numerical algorithms to model biological fluids in multiscale flow environments using the software framework developed under the SciDAC APDEC ISIC. The foundation of our computational effort is an approach for modeling DNA-laden fluids as ''bead-rod'' polymers whose dynamics are fully coupled to an incompressible viscous solvent. The method is capable of modeling short range forces and interactions between particles using soft potentials and rigid constraints. Our methods are based on higher-order finite difference methods in complex geometry with adaptivity, leveraging algorithms and solvers in the APDEC Framework. Our Cartesian grid embedded boundary approach to incompressible viscousmore » flow in irregular geometries has also been interfaced to a fast and accurate level-sets method within the APDEC Framework for extracting surfaces from volume renderings of medical image data and used to simulate cardio-vascular and pulmonary flows in critical anatomies.« less
Modeling complex biological flows in multi-scale systems using the APDEC framework
NASA Astrophysics Data System (ADS)
Trebotich, David
2006-09-01
We have developed advanced numerical algorithms to model biological fluids in multiscale flow environments using the software framework developed under the SciDAC APDEC ISIC. The foundation of our computational effort is an approach for modeling DNA laden fluids as ''bead-rod'' polymers whose dynamics are fully coupled to an incompressible viscous solvent. The method is capable of modeling short range forces and interactions between particles using soft potentials and rigid constraints. Our methods are based on higher-order finite difference methods in complex geometry with adaptivity, leveraging algorithms and solvers in the APDEC Framework. Our Cartesian grid embedded boundary approach to incompressible viscous flow in irregular geometries has also been interfaced to a fast and accurate level-sets method within the APDEC Framework for extracting surfaces from volume renderings of medical image data and used to simulate cardio-vascular and pulmonary flows in critical anatomies.
Electronic collection system for spacelab mission timeline requirements
NASA Technical Reports Server (NTRS)
Lindberg, James P.; Piner, John R.; Huang, Allen K. H.
1995-01-01
This paper describes the Functional Objective Requirements Collection System (FORCS) software tool that has been developed for use by Principal Investigators (PI's) and Payload Element Developers (PED's) on their own personal computers to develop on-orbit timelining requirements for their payloads. The FORCS tool can be used either in a totally stand-alone mode, storing the information in a local file on the user's personal computer hard disk or in a remote mode where the user's computer is linked to a host computer containing the integrated database of the timeline requirements for all of the payloads on a mission. There are a number of features incorporated in the FORCS software to assist the user. The user may move freely back and forth between the various forms for inputting the data. Several methods are used to input the information, depending on the type of the information. These methods range from filling in text boxes, using check boxes and radio buttons, to inputting information into a spreadsheet format. There are automated features provided to assist in developing the proper format for the data, ranging from limit checking on some of the parameters to automatic conversion of different formats of time data inputs to the one standard format used for the timeline scheduling software.
Soler, Miguel A; Rodriguez, Alex; Russo, Anna; Adedeji, Abimbola Feyisara; Dongmo Foumthuim, Cedrix J; Cantarutti, Cristina; Ambrosetti, Elena; Casalis, Loredana; Corazza, Alessandra; Scoles, Giacinto; Marasco, Daniela; Laio, Alessandro; Fortuna, Sara
2017-01-25
The oriented immobilization of proteins, key for the development of novel responsive biomaterials, relies on the availability of effective probes. These are generally provided by standard approaches based on in vivo maturation and in vitro selection of antibodies and/or aptamers. These techniques can suffer technical problems when a non-immunogenic epitope needs to be targeted. Here we propose a strategy to circumvent this issue by in silico design. In our method molecular binders, in the form of cyclic peptides, are computationally evolved by stochastically exploring their sequence and structure space to identify high-affinity peptides for a chosen epitope of a target globular protein: here a solvent-exposed site of β2-microglobulin (β2m). Designed sequences were screened by explicit solvent molecular dynamics simulations (MD) followed by experimental validation. Five candidates gave dose-response surface plasmon resonance signals with dissociation constants in the micromolar range. One of them was further analyzed by means of isothermal titration calorimetry, nuclear magnetic resonance, and 250 ns of MD. Atomic-force microscopy imaging showed that this peptide is able to immobilize β2m on a gold surface. In short, we have shown by a variety of experimental techniques that it is possible to capture a protein through an epitope of choice by computational design.
NASA Astrophysics Data System (ADS)
Heidari, M.; Cortes-Huerto, R.; Donadio, D.; Potestio, R.
2016-10-01
In adaptive resolution simulations the same system is concurrently modeled with different resolution in different subdomains of the simulation box, thereby enabling an accurate description in a small but relevant region, while the rest is treated with a computationally parsimonious model. In this framework, electrostatic interaction, whose accurate treatment is a crucial aspect in the realistic modeling of soft matter and biological systems, represents a particularly acute problem due to the intrinsic long-range nature of Coulomb potential. In the present work we propose and validate the usage of a short-range modification of Coulomb potential, the Damped shifted force (DSF) model, in the context of the Hamiltonian adaptive resolution simulation (H-AdResS) scheme. This approach, which is here validated on bulk water, ensures a reliable reproduction of the structural and dynamical properties of the liquid, and enables a seamless embedding in the H-AdResS framework. The resulting dual-resolution setup is implemented in the LAMMPS simulation package, and its customized version employed in the present work is made publicly available.
Keenan, Kevin G; Valero-Cuevas, Francisco J
2007-09-01
Computational models of motor-unit populations are the objective implementations of the hypothesized mechanisms by which neural and muscle properties give rise to electromyograms (EMGs) and force. However, the variability/uncertainty of the parameters used in these models--and how they affect predictions--confounds assessing these hypothesized mechanisms. We perform a large-scale computational sensitivity analysis on the state-of-the-art computational model of surface EMG, force, and force variability by combining a comprehensive review of published experimental data with Monte Carlo simulations. To exhaustively explore model performance and robustness, we ran numerous iterative simulations each using a random set of values for nine commonly measured motor neuron and muscle parameters. Parameter values were sampled across their reported experimental ranges. Convergence after 439 simulations found that only 3 simulations met our two fitness criteria: approximating the well-established experimental relations for the scaling of EMG amplitude and force variability with mean force. An additional 424 simulations preferentially sampling the neighborhood of those 3 valid simulations converged to reveal 65 additional sets of parameter values for which the model predictions approximate the experimentally known relations. We find the model is not sensitive to muscle properties but very sensitive to several motor neuron properties--especially peak discharge rates and recruitment ranges. Therefore to advance our understanding of EMG and muscle force, it is critical to evaluate the hypothesized neural mechanisms as implemented in today's state-of-the-art models of motor unit function. We discuss experimental and analytical avenues to do so as well as new features that may be added in future implementations of motor-unit models to improve their experimental validity.
Cardone, Antonio; Pant, Harish; Hassan, Sergio A.
2013-01-01
Weak and ultra-weak protein-protein association play a role in molecular recognition, and can drive spontaneous self-assembly and aggregation. Such interactions are difficult to detect experimentally, and are a challenge to the force field and sampling technique. A method is proposed to identify low-population protein-protein binding modes in aqueous solution. The method is designed to identify preferential first-encounter complexes from which the final complex(es) at equilibrium evolves. A continuum model is used to represent the effects of the solvent, which accounts for short- and long-range effects of water exclusion and for liquid-structure forces at protein/liquid interfaces. These effects control the behavior of proteins in close proximity and are optimized based on binding enthalpy data and simulations. An algorithm is described to construct a biasing function for self-adaptive configurational-bias Monte Carlo of a set of interacting proteins. The function allows mixing large and local changes in the spatial distribution of proteins, thereby enhancing sampling of relevant microstates. The method is applied to three binary systems. Generalization to multiprotein complexes is discussed. PMID:24044772
Radii effect on the translation spring constant of force transducer beams
NASA Technical Reports Server (NTRS)
Scott, C. E.
1992-01-01
Multi-component strain-gage force transducer design requires the designer to determine the spring constant of the numerous beams or flexures incorporated in the transducer. The classical beam deflection formulae that are used in calculating these spring constants typically assume that the beam has a uniform moment of inertia along the entire beam length. In practice all beams have a radius at the end where the beam interfaces with the shoulder of the transducer, and on short beams in particular this increases the beam spring constant considerably. A Basic computer program utilizing numerical integration is presented to determine this effect.
Computational process to study the wave propagation In a non-linear medium by quasi- linearization
NASA Astrophysics Data System (ADS)
Sharath Babu, K.; Venkata Brammam, J.; Baby Rani, CH
2018-03-01
Two objects having distinct velocities come into contact an impact can occur. The impact study i.e., in the displacement of the objects after the impact, the impact force is function of time‘t’ which is behaves similar to compression force. The impact tenure is very short so impulses must be generated subsequently high stresses are generated. In this work we are examined the wave propagation inside the object after collision and measured the object non-linear behavior in the one-dimensional case. Wave transmission is studied by means of material acoustic parameter value. The objective of this paper is to present a computational study of propagating pulsation and harmonic waves in nonlinear media using quasi-linearization and subsequently utilized the central difference scheme. This study gives focus on longitudinal, one- dimensional wave propagation. In the finite difference scheme Non-linear system is reduced to a linear system by applying quasi-linearization method. The computed results exhibit good agreement on par with the selected non-liner wave propagation.
Do trehalose and dimethyl sulfoxide affect intermembrane forces?
Pincet, F; Perez, E; Wolfe, J
1994-12-01
The sugar trehalose is produced in some organisms that survive dehydration and desiccation, and it preserves the integrity of membranes in model systems exposed to dehydration and freezing. Dimethyl sulfoxide, a solute which permeates membranes, is added to cell suspensions in many protocols for cryopreservation. Using a surface forces apparatus, we measured the very large, short-range repulsion between phosphatidylcholine bilayers in water and in solutions of trehalose, sorbitol, and dimethyl-sulfoxide. To the resolution of the technique, the force-distance curves between bilayers are unchanged by the addition of trehalose or sorbitol in concentrations exceeding 1 kmol.m-3. A relatively small increase in adhesion in the presence of trehalose and sorbitol solutions may be explained by their osmotic effects. The partitioning of trehalose between aqueous solutions and lamellar phases of dioleylphosphatidylcholine was measured gravimetrically. The amount of trehalose that preferentially adsorbs near membrane surfaces is at most small. The presence of dimethyl sulfoxide in water (1:2 by volume) makes very little difference to the short-range interaction between deposited bilayers, but it sometimes perturbs them in ways that vary among experiments: free bilayers and/or fusion of the deposited bilayers were each observed in about one-third of the experiments.
Molecular Simulations in Astrobiology
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Wilson, Michael A.; Schweighofer, Karl; Chipot, Christophe; New, Michael H.
2000-01-01
One of the main goals of astrobiology is to understand the origin of cellular life. The most direct approach to this problem is to construct laboratory models of protocells. Such efforts, currently underway in the NASA Astrobiology Program, are accompanied by computational studies aimed at explaining self-organization of simple molecules into ordered structures that are capable of performing protocellular functions. Many of these functions, such as importing nutrients, capturing energy and responding to changes in the environment, are carried out by proteins bound to membranes. We use computer simulations to address the following questions about these proteins: (1) How do small proteins self-organize into ordered structures at water-membrane interfaces and insert into membranes? (2) How do peptides form membrane-spanning structures (e.g. channels)? (3) By what mechanisms do such structures perform their functions? The simulations are performed using the molecular dynamics method. In this method, Newton's equations of motion for each atom in the system are solved iteratively. At each time step, the forces exerted on each atom by the remaining atoms are evaluated by dividing them into two parts. Short-range forces are calculated in real space while long-range forces are evaluated in reciprocal space, using a particle-mesh algorithm which is of order O(NInN). With a time step of 2 femtoseconds, problems occurring on multi-nanosecond time scales (10(exp 6)-10(exp 8) time steps) are accessible. To address a broader range of problems, simulations need to be extended by three orders of magnitude, which requires algorithmic improvements and codes scalable to a large number of processors. Work in this direction is in progress. Two series of simulations are discussed. In one series, it is shown that nonpolar peptides, disordered in water, translocate to the nonpolar interior of the membrane and fold into helical structures (see Figure). Once in the membrane, the peptides exhibit orientational flexibility with changing conditions, which may have provided a mechanism of transmitting signals between the protocell and its environment. In another series of simulations, the mechanism by which a simple protein channel efficiently mediates proton transport across membranes was investigated. This process is a key step in cellular bioenergetics. In the channel under study, proton transport is gated by four histidines that occlude the channel pore. The simulations identify the mechanisms by which protons move through the gate.
Long-ranged contributions to solvation free energies from theory and short-ranged models
Remsing, Richard C.; Liu, Shule; Weeks, John D.
2016-01-01
Long-standing problems associated with long-ranged electrostatic interactions have plagued theory and simulation alike. Traditional lattice sum (Ewald-like) treatments of Coulomb interactions add significant overhead to computer simulations and can produce artifacts from spurious interactions between simulation cell images. These subtle issues become particularly apparent when estimating thermodynamic quantities, such as free energies of solvation in charged and polar systems, to which long-ranged Coulomb interactions typically make a large contribution. In this paper, we develop a framework for determining very accurate solvation free energies of systems with long-ranged interactions from models that interact with purely short-ranged potentials. Our approach is generally applicable and can be combined with existing computational and theoretical techniques for estimating solvation thermodynamics. We demonstrate the utility of our approach by examining the hydration thermodynamics of hydrophobic and ionic solutes and the solvation of a large, highly charged colloid that exhibits overcharging, a complex nonlinear electrostatic phenomenon whereby counterions from the solvent effectively overscreen and locally invert the integrated charge of the solvated object. PMID:26929375
Atomic force microscopy of hydrated phosphatidylethanolamine bilayers.
Zasadzinski, J A; Helm, C A; Longo, M L; Weisenhorn, A L; Gould, S A; Hansma, P K
1991-01-01
We present images of the polar or headgroup regions of bilayers of dimyristoyl-phosphatidylethanolamine (DMPE), deposited by Langmuir-Blodgett deposition onto mica substrates at high surface pressures and imaged under water at room temperature with the optical lever atomic force microscope. The lattice structure of DMPE is visualized with sufficient resolution that the location of individual headgroups can be determined. The forces are sufficiently small that the same area can be repeatedly imaged with a minimum of damage. The DMPE molecules in the bilayer appear to have relatively good long-range orientational order, but rather short-range and poor positional order. These results are in good agreement with x-ray measurements of unsupported lipid monolayers on the water surface, and with electron diffraction of adsorbed monolayers. Images FIGURE 1 FIGURE 2 PMID:2049529
Harris, Jeff R.; Lance, Blake W.; Smith, Barton L.
2015-08-10
We present computational fluid dynamics (CFD) validation dataset for turbulent forced convection on a vertical plate. The design of the apparatus is based on recent validation literature and provides a means to simultaneously measure boundary conditions (BCs) and system response quantities (SRQs). Important inflow quantities for Reynolds-Averaged Navier-Stokes (RANS). CFD are also measured. Data are acquired at two heating conditions and cover the range 40,000 < Re x < 300,000, 357 < Re δ2 < 813, and 0.02 < Gr/Re 2 < 0.232.
Ramamurti, Ravi; Sandberg, William C; Löhner, Rainald; Walker, Jeffrey A; Westneat, Mark W
2002-10-01
Many fishes that swim with the paired pectoral fins use fin-stroke parameters that produce thrust force from lift in a mechanism of underwater flight. These locomotor mechanisms are of interest to behavioral biologists, biomechanics researchers and engineers. In the present study, we performed the first three-dimensional unsteady computations of fish swimming with oscillating and deforming fins. The objective of these computations was to investigate the fluid dynamics of force production associated with the flapping aquatic flight of the bird wrasse Gomphosus varius. For this computational work, we used the geometry of the wrasse and its pectoral fin, and previously measured fin kinematics, as the starting points for computational investigation of three-dimensional (3-D) unsteady fluid dynamics. We performed a 3-D steady computation and a complete set of 3-D quasisteady computations for a range of pectoral fin positions and surface velocities. An unstructured, grid-based, unsteady Navier-Stokes solver with automatic adaptive remeshing was then used to compute the unsteady flow about the wrasse through several complete cycles of pectoral fin oscillation. The shape deformation of the pectoral fin throughout the oscillation was taken from the experimental kinematics. The pressure distribution on the body of the bird wrasse and its pectoral fins was computed and integrated to give body and fin forces which were decomposed into lift and thrust. The velocity field variation on the surface of the wrasse body, on the pectoral fins and in the near-wake was computed throughout the swimming cycle. We compared our computational results for the steady, quasi-steady and unsteady cases with the experimental data on axial and vertical acceleration obtained from the pectoral fin kinematics experiments. These comparisons show that steady state computations are incapable of describing the fluid dynamics of flapping fins. Quasi-steady state computations, with correct incorporation of the experimental kinematics, are useful when determining trends in force production, but do not provide accurate estimates of the magnitudes of the forces produced. By contrast, unsteady computations about the deforming pectoral fins using experimentally measured fin kinematics were found to give excellent agreement, both in the time history of force production throughout the flapping strokes and in the magnitudes of the generated forces.
NASA Astrophysics Data System (ADS)
Colpi, Monica; Pallavicini, Andrea
1998-07-01
The drag force on a satellite of mass M moving with speed V in the gravitational field of a spherically symmetric background of stars is computed. During the encounter, the stars are subject to a time-dependent force that alters their equilibrium. The resulting distortion in the stellar density field acts back to produce a force FΔ that decelerates the satellite. This force is computed using a perturbative technique known as linear response theory. In this paper, we extend the formalism of linear response to derive the correct expression for the back-reaction force FΔ that applies when the stellar system is described by an equilibrium one-particle distribution function. FΔ is expressed in terms of a suitable correlation function that couples the satellite dynamics to the unperturbed dynamics of the stars. At time t, the force depends upon the whole history of the composite system. In the formalism, we account for the shift of the stellar center of mass resulting from linear momentum conservation. The self-gravity of the response is neglected since it contributes to a higher order in the perturbation. Linear response theory applies also to the case of a satellite orbiting outside the spherical galaxy. The case of a satellite moving on a straight line, at high speed relative to the stellar dispersion velocity, is explored. We find that the satellite during its passage raises (1) global tides in the stellar distribution and (2) a wake, i.e., an overdense region behind its trail. If the satellite motion is external to the galaxy, it suffers a dissipative force that is not exclusively acting along V but acquires a component along R, the position vector relative to the center of the spherical galaxy. We derive the analytical expression of the force in the impulse approximation. In penetrating short-lived encounters, the satellite moves across the stellar distribution and the transient wake excited in the density field is responsible for most of the deceleration. We find that dynamical friction arises from a memory effect involving only those stars perturbed along the path. The force can be written in terms of an effective Coulomb logarithm that now depends upon time. The value of ln Λ is computed for two simple equilibrium density distributions; it is shown that the drag increases as the satellite approaches the denser regions of the stellar distribution and attains a maximum after pericentric passage. When the satellite crosses the edge of the galaxy, the force does not vanish since the galaxy keeps memory of the perturbation induced and declines on a time comparable to the dynamical time of the stellar system. In the case of a homogeneous cloud, we compute the total energy loss. In evaluating the contribution resulting from friction, we derive self-consistently the maximum impact parameter, which is found to be equal to the length traveled by the satellite within the system. Tides excited by the satellite in the galaxy reduce the value of the energy loss by friction; in close encounters, this value is decreased by a factor of ~1.5.
Word Processing for Technical Writers and Teachers.
ERIC Educational Resources Information Center
Mullins, Carolyn J.; West, Thomas W.
This discussion of the computing network and word processing facilities available to professionals on the Indiana University campuses identifies the word and text processing needs of technical writers and faculty, describes the current computing network, and outlines both long- and short-range objectives, policies, and plans for meeting these…
Test of Newtonian gravity at short range using pico-precision displacement sensor
NASA Astrophysics Data System (ADS)
Akiyama, Takashi; Hata, Maki; Ninomiya, Kazufumi; Nishio, Hironori; Ogawa, Naruya; Sekiguchi, Yuta; Watanabe, Kentaro; Murata, Jiro
2009-10-01
Recent theoretical models of physics beyond the standard model, including attempts to resolve the hierarchy problem, predict deviations from the Newtonian gravity at short distances below millimeters. Present NEWTON project aims an experimental test of the inverse-square law at the millimeter scale, using a torsion pendulum with a pico-precision displacement sensor, which was originally developed for the micron precision optical alignment system (OASys) for the PHENIX muon tracking chambers at RHIC, using digital image analysis technique. In order to examine the gravitational force at short range scale around micrometers, we have developed a new apparatus NEWTON-III, which can determine the local gravitational acceleration by measuring the motion of the torsion pendulum. In this presentation, the development status and the results of the NEWTON-experiment will be reported.
Smart Swarms of Bacteria-Inspired Agents with Performance Adaptable Interactions
Shklarsh, Adi; Ariel, Gil; Schneidman, Elad; Ben-Jacob, Eshel
2011-01-01
Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions between the agents, which include short range repulsion, intermediate range alignment, and long range attraction. Here we study collective navigation of bacteria-inspired smart agents in complex terrains, with adaptive interactions that depend on performance. More specifically, each agent adjusts its interactions with the other agents according to its local environment – by decreasing the peers' influence while navigating in a beneficial direction, and increasing it otherwise. We show that inclusion of such performance dependent adaptable interactions significantly improves the collective swarming performance, leading to highly efficient navigation, especially in complex terrains. Notably, to afford such adaptable interactions, each modeled agent requires only simple computational capabilities with short-term memory, which can easily be implemented in simple swarming robots. PMID:21980274
Smart swarms of bacteria-inspired agents with performance adaptable interactions.
Shklarsh, Adi; Ariel, Gil; Schneidman, Elad; Ben-Jacob, Eshel
2011-09-01
Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions between the agents, which include short range repulsion, intermediate range alignment, and long range attraction. Here we study collective navigation of bacteria-inspired smart agents in complex terrains, with adaptive interactions that depend on performance. More specifically, each agent adjusts its interactions with the other agents according to its local environment--by decreasing the peers' influence while navigating in a beneficial direction, and increasing it otherwise. We show that inclusion of such performance dependent adaptable interactions significantly improves the collective swarming performance, leading to highly efficient navigation, especially in complex terrains. Notably, to afford such adaptable interactions, each modeled agent requires only simple computational capabilities with short-term memory, which can easily be implemented in simple swarming robots.
Dennerlein, J T; Yang, M C
2001-01-01
Pointing devices, essential input tools for the graphical user interface (GUI) of desktop computers, require precise motor control and dexterity to use. Haptic force-feedback devices provide the human operator with tactile cues, adding the sense of touch to existing visual and auditory interfaces. However, the performance enhancements, comfort, and possible musculoskeletal loading of using a force-feedback device in an office environment are unknown. Hypothesizing that the time to perform a task and the self-reported pain and discomfort of the task improve with the addition of force feedback, 26 people ranging in age from 22 to 44 years performed a point-and-click task 540 times with and without an attractive force field surrounding the desired target. The point-and-click movements were approximately 25% faster with the addition of force feedback (paired t-tests, p < 0.001). Perceived user discomfort and pain, as measured through a questionnaire, were also smaller with the addition of force feedback (p < 0.001). However, this difference decreased as additional distracting force fields were added to the task environment, simulating a more realistic work situation. These results suggest that for a given task, use of a force-feedback device improves performance, and potentially reduces musculoskeletal loading during mouse use. Actual or potential applications of this research include human-computer interface design, specifically that of the pointing device extensively used for the graphical user interface.
2013-02-01
telephone, local computer systems, long-haul communications , and land mobile radio systems (WPAFB 2001). There are over 100 miles of communication cable...10. SPONSOR/MONITOR’S ACRONYM(S) 11 . SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release...Air Force technologies and would include unique characteristics in design, propulsion, payload capacity, buman factors, communication , range, speed
NASA Technical Reports Server (NTRS)
Sanandres, L. A.; Vance, J. M.
1987-01-01
A review of previous experimental measurements of squeeze film damper (SFD) forces is given. Measurements by the authors of SFD pressure fields and force coefficients, for circular centered orbits with epsilon = 0.5, are described and compared with computer predictions. For Reynolds numbers over the range 2-6, the effect of fluid inertia on the pressure fields and forces is found to be significant.
Toward an Education for a Living World.
ERIC Educational Resources Information Center
Sloan, Douglas
1982-01-01
Education for peace and disarmament should be an integral part of all education. Educators face two tasks: (1) short-term marshalling of available forces to change the present situation; and (2) long-range shaping of human consciousness and institutions that will make peace sustainable. (PP)
FY 1978 Budget, FY 1979 Authorization Request and FY 1978-1982 Defense Programs,
1977-01-17
technological opportunities with defense applica- tions -- such as long-range cruise missiles and guidance, improved sensors, 25 miniaturization, and computer ...Various methods exist for computing the number of theater nuclear weapons needed to perform these missions with an acceptable level of confidence...foreign military forces. Mini-micro computers are especially interesting. -- Finally, since geography remains important, we must recognize that the
NASA Astrophysics Data System (ADS)
Raudino, Antonio; Pannuzzo, Martina
2010-01-01
A semiquantitative theory aimed to describe the adhesion kinetics between soft objects, such as living cells or vesicles, has been developed. When rigid bodies are considered, the adhesion kinetics is successfully described by the classical Derjaguin, Landau, Verwey, and Overbeek (DLVO) picture, where the energy profile of two approaching bodies is given by a two asymmetrical potential wells separated by a barrier. The transition probability from the long-distance to the short-distance minimum defines the adhesion rate. Conversely, soft bodies might follow a different pathway to reach the short-distance minimum: thermally excited fluctuations give rise to local protrusions connecting the approaching bodies. These transient adhesion sites are stabilized by short-range adhesion forces (e.g., ligand-receptor interactions between membranes brought at contact distance), while they are destabilized both by repulsive forces and by the elastic deformation energy. Above a critical area of the contact site, the adhesion forces prevail: the contact site grows in size until the complete adhesion of the two bodies inside a short-distance minimum is attained. This nucleation mechanism has been developed in the framework of a nonequilibrium Fokker-Planck picture by considering both the adhesive patch growth and dissolution processes. In addition, we also investigated the effect of the ligand-receptor pairing kinetics at the adhesion site in the time course of the patch expansion. The ratio between the ligand-receptor pairing kinetics and the expansion rate of the adhesion site is of paramount relevance in determining the overall nucleation rate. The theory enables one to self-consistently include both thermodynamics (energy barrier height) and dynamic (viscosity) parameters, giving rise in some limiting cases to simple analytical formulas. The model could be employed to rationalize fusion kinetics between vesicles, provided the short-range adhesion transition is the rate-limiting step to the whole adhesion process. Approximate relationships between the experimental fusion rates reported in the literature and parameters such as membrane elastic bending modulus, repulsion strength, temperature, osmotic forces, ligand-receptor binding energy, solvent and membrane viscosities are satisfactory explained by our model. The present results hint a possible role of the initial long-distance→short-distance transition in determining the whole fusion kinetics.
Raudino, Antonio; Pannuzzo, Martina
2010-01-28
A semiquantitative theory aimed to describe the adhesion kinetics between soft objects, such as living cells or vesicles, has been developed. When rigid bodies are considered, the adhesion kinetics is successfully described by the classical Derjaguin, Landau, Verwey, and Overbeek (DLVO) picture, where the energy profile of two approaching bodies is given by a two asymmetrical potential wells separated by a barrier. The transition probability from the long-distance to the short-distance minimum defines the adhesion rate. Conversely, soft bodies might follow a different pathway to reach the short-distance minimum: thermally excited fluctuations give rise to local protrusions connecting the approaching bodies. These transient adhesion sites are stabilized by short-range adhesion forces (e.g., ligand-receptor interactions between membranes brought at contact distance), while they are destabilized both by repulsive forces and by the elastic deformation energy. Above a critical area of the contact site, the adhesion forces prevail: the contact site grows in size until the complete adhesion of the two bodies inside a short-distance minimum is attained. This nucleation mechanism has been developed in the framework of a nonequilibrium Fokker-Planck picture by considering both the adhesive patch growth and dissolution processes. In addition, we also investigated the effect of the ligand-receptor pairing kinetics at the adhesion site in the time course of the patch expansion. The ratio between the ligand-receptor pairing kinetics and the expansion rate of the adhesion site is of paramount relevance in determining the overall nucleation rate. The theory enables one to self-consistently include both thermodynamics (energy barrier height) and dynamic (viscosity) parameters, giving rise in some limiting cases to simple analytical formulas. The model could be employed to rationalize fusion kinetics between vesicles, provided the short-range adhesion transition is the rate-limiting step to the whole adhesion process. Approximate relationships between the experimental fusion rates reported in the literature and parameters such as membrane elastic bending modulus, repulsion strength, temperature, osmotic forces, ligand-receptor binding energy, solvent and membrane viscosities are satisfactory explained by our model. The present results hint a possible role of the initial long-distance-->short-distance transition in determining the whole fusion kinetics.
NASA Technical Reports Server (NTRS)
1997-01-01
Session MP4 includes short reports on: (1) Face Recognition in Microgravity: Is Gravity Direction Involved in the Inversion Effect?; (2) Motor Timing under Microgravity; (3) Perceived Self-Motion Assessed by Computer-Generated Animations: Complexity and Reliability; (4) Prolonged Weightlessness Reference Frames and Visual Symmetry Detection; (5) Mental Representation of Gravity During a Locomotor Task; and (6) Haptic Perception in Weightlessness: A Sense of Force or a Sense of Effort?
Multifractal analysis of time series generated by discrete Ito equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Telesca, Luciano; Czechowski, Zbigniew; Lovallo, Michele
2015-06-15
In this study, we show that discrete Ito equations with short-tail Gaussian marginal distribution function generate multifractal time series. The multifractality is due to the nonlinear correlations, which are hidden in Markov processes and are generated by the interrelation between the drift and the multiplicative stochastic forces in the Ito equation. A link between the range of the generalized Hurst exponents and the mean of the squares of all averaged net forces is suggested.
NASA Astrophysics Data System (ADS)
Yang Yang, Fan; Nelson, Bron; Aziz, Jonathan; Carlino, Roberto; Dono Perez, Andres; Faber, Nicolas; Foster, Cyrus; Frost, Chad; Henze, Chris; Karacalıoğlu, Arif Göktuğ; Levit, Creon; Marshall, William; Mason, James; O'Toole, Conor; Swenson, Jason; Worden, Simon P.; Stupl, Jan
2016-09-01
This work provides an efficiency analysis of the LightForce space debris collision avoidance scheme in the current debris environment and describes a simulation approach to assess its impact on the long-term evolution of the space debris environment. LightForce aims to provide just-in-time collision avoidance by utilizing photon pressure from ground-based industrial lasers. These ground stations impart minimal accelerations to increase the miss distance for a predicted conjunction between two objects. In the first part of this paper we will present research that investigates the short-term effect of a few systems consisting of 20 kW class lasers directed by 1.5 m diameter telescopes using adaptive optics. The results found such a network of ground stations to mitigate more than 85 percent of conjunctions and could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. While these are impressive numbers that indicate LightForce's utility in the short-term, the remaining 15 % of possible collisions contain (among others) conjunctions between two massive objects that would add large amount of debris if they collide. Still, conjunctions between massive objects and smaller objects can be mitigated. Hence, we choose to expand the capabilities of the simulation software to investigate the overall effect of a network of LightForce stations on the long-term debris evolution. In the second part of this paper, we will present the planned simulation approach for that effort. For the efficiency analysis of collision avoidance in the current debris environment, we utilize a simulation approach that uses the entire Two Line Element (TLE) catalog in LEO for a given day as initial input. These objects are propagated for one year and an all-on-all conjunction analysis is performed. For conjunctions that fall below a range threshold, we calculate the probability of collision and record those values. To assess efficiency, we compare a baseline (without collision avoidance) conjunction analysis with an analysis where LightForce is active. Using that approach, we take into account that collision avoidance maneuvers could have effects on third objects. Performing all-on-all conjunction analyses for extended period of time requires significant computer resources; hence we implemented this simulation utilizing a highly parallel approach on the NASA Pleiades supercomputer.
Yang, Fan Yang; Nelson, Bron; Aziz, Jonathan; Carlino, Roberto; Perez, Andres Dono; Faber, Nicolas; Foster, Cyrus; Frost, Chad; Henze, Chris; Karacalıoğlu, Arif Göktuğ; Levit, Creon; Marshall, William; Mason, James; O'Toole, Conor; Swenson, Jason; Worden, Simon P; Stupl, Jan
2016-09-01
This work provides an efficiency analysis of the LightForce space debris collision avoidance scheme in the current debris environment and describes a simulation approach to assess its impact on the long-term evolution of the space debris environment. LightForce aims to provide just-in-time collision avoidance by utilizing photon pressure from ground-based industrial lasers. These ground stations impart minimal accelerations to increase the miss distance for a predicted conjunction between two objects. In the first part of this paper we will present research that investigates the short-term effect of a few systems consisting of 20 kW class lasers directed by 1.5 m diameter telescopes using adaptive optics. The results found such a network of ground stations to mitigate more than 85 percent of conjunctions and could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. While these are impressive numbers that indicate LightForce's utility in the short-term, the remaining 15 % of possible collisions contain (among others) conjunctions between two massive objects that would add large amount of debris if they collide. Still, conjunctions between massive objects and smaller objects can be mitigated. Hence, we choose to expand the capabilities of the simulation software to investigate the overall effect of a network of LightForce stations on the long-term debris evolution. In the second part of this paper, we will present the planned simulation approach for that effort. For the efficiency analysis of collision avoidance in the current debris environment, we utilize a simulation approach that uses the entire Two Line Element (TLE) catalog in LEO for a given day as initial input. These objects are propagated for one year and an all-on-all conjunction analysis is performed. For conjunctions that fall below a range threshold, we calculate the probability of collision and record those values. To assess efficiency, we compare a baseline (without collision avoidance) conjunction analysis with an analysis where LightForce is active. Using that approach, we take into account that collision avoidance maneuvers could have effects on third objects. Performing all-on-all conjunction analyses for extended period of time requires significant computer resources; hence we implemented this simulation utilizing a highly parallel approach on the NASA Pleiades supercomputer.
Bae, Dae Kyung; Lee, Jong Whan; Cho, Seong Jin; Song, Sang Jun
2017-01-01
Purpose To compare navigation and weight bearing radiographic measurements of mechanical axis (MA) before and after closed wedge high tibial osteotomy (HTO) and to evaluate post-osteotomy changes in MA assessed during application of external varus or valgus force. Materials and Methods Data from 30 consecutive patients (30 knees) who underwent computer-assisted closed-wedge HTO were prospectively analyzed. Pre- and postoperative weight bearing radiographic evaluation of MA was performed. Under navigation guidance, pre- and post-osteotomy MA values were measured in an unloaded position. Any change in the post-osteotomy MA in response to external varus or valgus force, which was named as dynamic range, was evaluated with the navigation system. The navigation and weight bearing radiographic measurements were compared. Results Although there was a positive correlation between navigation and radiographic measurements, the reliability of navigation measurements of coronal alignment was reduced after osteotomy and wedge closing. The mean post-osteotomy MA value measured with the navigation was 3.5°±0.8° valgus in an unloaded position. It was 1.3°±0.8° valgus under varus force and 5.8°±1.1° valgus under valgus force. The average dynamic range was >±2°. Conclusions Potential differences between the postoperative MAs assessed by weight bearing radiographs and the navigation system in unloaded position should be considered during computer-assisted closed wedge HTO. Care should be taken to keep the dynamic range within the permissible range of alignment goal in HTO. PMID:28854769
Moazzami-Gudarzi, Mohsen; Adam, Pavel; Smith, Alexander M; Trefalt, Gregor; Szilágyi, István; Maroni, Plinio; Borkovec, Michal
2018-04-04
Direct force measurements involving amidine latex (AL) and sulfate latex (SL) particles in aqueous solutions containing multivalent ferrocyanide anions are presented. These measurements feature three different pairs of particles, namely SL-SL, AL-SL, and AL-AL. The force profiles are quantitatively interpreted in terms of the theory by Derjaguin, Landau, Verwey, and Overbeek (DLVO) that is combined with a short-ranged exponential attraction. In monovalent salt solutions, the AL particles are positively charged, while the SL particles are negatively charged. In solutions containing ferrocyanide, the charge of the AL particles is reversed as the concentration is increased. The longer-ranged component of all force profiles is fully compatible with DLVO theory, provided effects of charge regulation are included. At shorter distances, an additional exponential attraction must be introduced, whereby the respective decay length is about 2 nm for the AL-AL pair, and below 1 nm for the SL-SL pair. This non-DLVO force is intermediate for the asymmetric AL-SL pair. These additional forces are probably related to charge fluctuations, patch-charged interactions, or hydrophobic forces.
Deformation of a helical filament by flow and electric or magnetic fields
NASA Astrophysics Data System (ADS)
Kim, Munju; Powers, Thomas R.
2005-02-01
Motivated by recent advances in the real-time imaging of fluorescent flagellar filaments in living bacteria [Turner, Ryu, and Berg, J. Bacteriol. 82, 2793 (2000)], we compute the deformation of a helical elastic filament due to flow and external magnetic or high-frequency electric fields. Two cases of deformation due to hydrodynamic drag are considered: the compression of a filament rotated by a stationary motor and the extension of a stationary filament due to flow along the helical axis. We use Kirchhoff rod theory for the filament, and work to linear order in the deflection. Hydrodynamic forces are described first by resistive-force theory, and then for comparison by the more accurate slender-body theory. For helices with a short pitch, the deflection in axial flow predicted by slender-body theory is significantly smaller than that computed with resistive-force theory. Therefore, our estimate of the bending stiffness of a flagellar filament is smaller than that of previous workers. In our calculation of the deformation of a polarizable helix in an external field, we show that the problem is equivalent to the classical case of a helix deformed by forces applied only at the ends.
Computational Methods for Biomolecular Electrostatics
Dong, Feng; Olsen, Brett; Baker, Nathan A.
2008-01-01
An understanding of intermolecular interactions is essential for insight into how cells develop, operate, communicate and control their activities. Such interactions include several components: contributions from linear, angular, and torsional forces in covalent bonds, van der Waals forces, as well as electrostatics. Among the various components of molecular interactions, electrostatics are of special importance because of their long range and their influence on polar or charged molecules, including water, aqueous ions, and amino or nucleic acids, which are some of the primary components of living systems. Electrostatics, therefore, play important roles in determining the structure, motion and function of a wide range of biological molecules. This chapter presents a brief overview of electrostatic interactions in cellular systems with a particular focus on how computational tools can be used to investigate these types of interactions. PMID:17964951
Nuclear structure of bound states of asymmetric dark matter
NASA Astrophysics Data System (ADS)
Gresham, Moira I.; Lou, Hou Keong; Zurek, Kathryn M.
2017-11-01
Models of asymmetric dark matter (ADM) with a sufficiently attractive and long-range force give rise to stable bound objects, analogous to nuclei in the Standard Model, called nuggets. We study the properties of these nuggets and compute their profiles and binding energies. Our approach, applicable to both elementary and composite fermionic ADM, utilizes relativistic mean field theory, and allows a more systematic computation of nugget properties, over a wider range of sizes and force mediator masses, compared to previous literature. We identify three separate regimes of nugget property behavior corresponding to (1) nonrelativistic and (2) relativistic constituents in a Coulomb-like limit, and (3) saturation in an anti-Coulomb limit when the nuggets are large compared to the force range. We provide analytical descriptions for nuggets in each regime. Through numerical calculations, we are able to confirm our analytic descriptions and also obtain smooth transitions for the nugget profiles between all three regimes. We also find that over a wide range of parameter space, the binding energy in the saturation limit is an O (1 ) fraction of the constituent's mass, significantly larger than expectations in the nonrelativistic case. In a companion paper, we apply our results to the synthesis of ADM nuggets in the early Universe.
Long-Range Interactions Restrict Water Transport in Pyrophyllite Interlayers
Zarzycki, Piotr; Gilbert, Benjamin
2016-04-27
Water diffusion within smectite clay interlayers is reduced by confinement and hence is highly determined by the interlayer spacings that are adopted during swelling. However, a molecular understanding of the short-and long-range forces governing interlayer water structure and dynamics is lacking. Using molecular dynamics simulations of water intercalated between pyrophyllite (smectite prototype) layers we provide a detailed picture of the variation of interlayered water mobility accompanying smectite expansion. Subtle changes in hydrogen bond network structure cause significant changes in water mobility that is greater for stable hydration states and reduced for intermediate separations. By studying pyrophyllite with and without externalmore » water we reveal that long-range electrostatic forces apply a restraining effect upon interlayer water mobility. Our findings are relevant for broad range of confining nanostructures with walls thin enough to permit long-range interactions that could affect the mobility of confined solvent molecules and solute species.« less
Long-Range Interactions Restrict Water Transport in Pyrophyllite Interlayers
Zarzycki, Piotr; Gilbert, Benjamin
2016-01-01
Water diffusion within smectite clay interlayers is reduced by confinement and hence is highly determined by the interlayer spacings that are adopted during swelling. However, a molecular understanding of the short- and long-range forces governing interlayer water structure and dynamics is lacking. Using molecular dynamics simulations of water intercalated between pyrophyllite (smectite prototype) layers we provide a detailed picture of the variation of interlayered water mobility accompanying smectite expansion. Subtle changes in hydrogen bond network structure cause significant changes in water mobility that is greater for stable hydration states and reduced for intermediate separations. By studying pyrophyllite with and without external water we reveal that long-range electrostatic forces apply a restraining effect upon interlayer water mobility. Our findings are relevant for broad range of confining nanostructures with walls thin enough to permit long-range interactions that could affect the mobility of confined solvent molecules and solute species. PMID:27118164
NASA Astrophysics Data System (ADS)
Zapoměl, J.; Ferfecki, P.
2016-09-01
A frequently used technological solution for minimization of undesirable effects caused by vibration of rotating machines consists in placing damping devices in the rotor supports. The application of magnetorheological squeeze film dampers enables their optimum performance to be achieved in a wide range of rotating speeds by adapting their damping effect to the current operating conditions. The damping force, which is produced by squeezing the layer of magnetorheological oil, can be controlled by changing magnetic flux passing through the lubricant. The force acting between the rotor and its frame is transmitted through the rolling element bearing, the lubricating layer and the squirrel spring. The loading of the bearing produces a time variable friction moment, energy losses, uneven rotor running, and has an influence on the rotor service life and the current fluctuation in electric circuits. The carried out research consisted in the development of a mathematical model of a magnetorheological squeeze film damper, its implementation into the computational models of rotor systems, and in performing the study on the dependence of the energy losses and variation of the friction moment on the damping force and its control. The new and computationally stable mathematical model of a magnetorheological squeeze film damper, its implementation in the computational models of rigid rotors and learning more on the energy losses generated in the rotor supports in dependence on the damping effect are the principal contributions of this paper. The results of the computational simulations prove that a suitable control of the damping force enables the energy losses to be reduced in a wide velocity range.
NASA Astrophysics Data System (ADS)
Castellano, Isabel; Geleijns, Jacob
After its clinical introduction in 1973, computed tomography developed from an x-ray modality for axial imaging in neuroradiology into a versatile three dimensional imaging modality for a wide range of applications in for example oncology, vascular radiology, cardiology, traumatology and even in interventional radiology. Computed tomography is applied for diagnosis, follow-up studies and screening of healthy subpopulations with specific risk factors. This chapter provides a general introduction in computed tomography, covering a short history of computed tomography, technology, image quality, dosimetry, room shielding, quality control and quality criteria.
2010-05-03
Chavez has led the charge against Colombia’s President Alvaro Uribe for recently signing an agreement which allows U.S. forces to use seven military...leadership, has charged Uribe with “giving itself (Colombia) away shamelessly to the United States.” 46 Amid Chavez’s plans to purchase short-range
Computation of transonic flow past projectiles at angle of attack
NASA Technical Reports Server (NTRS)
Reklis, R. P.; Sturek, W. B.; Bailey, F. R.
1978-01-01
Aerodynamic properties of artillery shell such as normal force and pitching moment reach peak values in a narrow transonic Mach number range. In order to compute these quantities, numerical techniques have been developed to obtain solutions to the three-dimensional transonic small disturbance equation about slender bodies at angle of attack. The computation is based on a plane relaxation technique involving Fourier transforms to partially decouple the three-dimensional difference equations. Particular care is taken to assure accurate solutions near corners found in shell designs. Computed surface pressures are compared to experimental measurements for circular arc and cone cylinder bodies which have been selected as test cases. Computed pitching moments are compared to range measurements for a typical projectile shape.
The FLAME-slab method for electromagnetic wave scattering in aperiodic slabs
NASA Astrophysics Data System (ADS)
Mansha, Shampy; Tsukerman, Igor; Chong, Y. D.
2017-12-01
The proposed numerical method, "FLAME-slab," solves electromagnetic wave scattering problems for aperiodic slab structures by exploiting short-range regularities in these structures. The computational procedure involves special difference schemes with high accuracy even on coarse grids. These schemes are based on Trefftz approximations, utilizing functions that locally satisfy the governing differential equations, as is done in the Flexible Local Approximation Method (FLAME). Radiation boundary conditions are implemented via Fourier expansions in the air surrounding the slab. When applied to ensembles of slab structures with identical short-range features, such as amorphous or quasicrystalline lattices, the method is significantly more efficient, both in runtime and in memory consumption, than traditional approaches. This efficiency is due to the fact that the Trefftz functions need to be computed only once for the whole ensemble.
Error estimates for (semi-)empirical dispersion terms and large biomacromolecules.
Korth, Martin
2013-10-14
The first-principles modeling of biomaterials has made tremendous advances over the last few years with the ongoing growth of computing power and impressive developments in the application of density functional theory (DFT) codes to large systems. One important step forward was the development of dispersion corrections for DFT methods, which account for the otherwise neglected dispersive van der Waals (vdW) interactions. Approaches at different levels of theory exist, with the most often used (semi-)empirical ones based on pair-wise interatomic C6R(-6) terms. Similar terms are now also used in connection with semiempirical QM (SQM) methods and density functional tight binding methods (SCC-DFTB). Their basic structure equals the attractive term in Lennard-Jones potentials, common to most force field approaches, but they usually use some type of cutoff function to make the mixing of the (long-range) dispersion term with the already existing (short-range) dispersion and exchange-repulsion effects from the electronic structure theory methods possible. All these dispersion approximations were found to perform accurately for smaller systems, but error estimates for larger systems are very rare and completely missing for really large biomolecules. We derive such estimates for the dispersion terms of DFT, SQM and MM methods using error statistics for smaller systems and dispersion contribution estimates for the PDBbind database of protein-ligand interactions. We find that dispersion terms will usually not be a limiting factor for reaching chemical accuracy, though some force fields and large ligand sizes are problematic.
Impact of hydrodynamic stresses on bacterial flagella
NASA Astrophysics Data System (ADS)
Das, Debasish; Riley, Emily; Lauga, Eric
2017-11-01
The locomotion of bacteria powered by helical filaments, such as Escherichia coli, critically involves the generation of flows and hydrodynamic stresses which lead to forces and moments balanced by the moment applied by the bacterial rotary motor (which is embedded in the cell wall) and the deformation of the short flexible hook. In this talk we use numerical computations to accurately compute these hydrodynamic stresses, to show how they critically lead to fluid-structure instabilities at the whole-cell level, and enquire if they can be used to rationalise experimental measurements of bacterial motor torques. ERC Consolidator Grant.
Representation of Small-Arms Effects in Aggregated Force-on-Force Combat Models.
1984-03-01
CONPUTATICY OF FORCE RATIO AND FRACTIONAL VALUE LOST 54 ***** 0 G. SCALING* COMPUTATION OF CASUALTIES AND WlAPCN LOSSES .. .. .. .. .. .. .. .. . .56 VI...ammo because cf its weight or his adversary with an AK-47 capable of rapid rates of accurate fire? The argument for the long- range kill capability of...LEVEL INDEPENDENT 8. IRE ALLOCATION ICT EXPLICITY CONSIDERED 9. SYMB!TRIC 10. 30 CCNSIDERXTION CF NONCOMBAT LOSSES (E.G. DESERTIONS, S URRENDERS) 11
Avoiding Defect Nucleation during Equilibration in Molecular Dynamics Simulations with ReaxFF
2015-04-01
respectively. All simulations are performed using the LAMMPS computer code.12 2 Fig. 1 a) Initial and b) final configurations of the molecular centers...Plimpton S. Fast parallel algorithms for short-range molecular dynamics. Comput J Phys. 1995;117:1–19. (Software available at http:// lammps .sandia.gov
NASA Astrophysics Data System (ADS)
Furuichi, Mikito; Nishiura, Daisuke
2017-10-01
We developed dynamic load-balancing algorithms for Particle Simulation Methods (PSM) involving short-range interactions, such as Smoothed Particle Hydrodynamics (SPH), Moving Particle Semi-implicit method (MPS), and Discrete Element method (DEM). These are needed to handle billions of particles modeled in large distributed-memory computer systems. Our method utilizes flexible orthogonal domain decomposition, allowing the sub-domain boundaries in the column to be different for each row. The imbalances in the execution time between parallel logical processes are treated as a nonlinear residual. Load-balancing is achieved by minimizing the residual within the framework of an iterative nonlinear solver, combined with a multigrid technique in the local smoother. Our iterative method is suitable for adjusting the sub-domain frequently by monitoring the performance of each computational process because it is computationally cheaper in terms of communication and memory costs than non-iterative methods. Numerical tests demonstrated the ability of our approach to handle workload imbalances arising from a non-uniform particle distribution, differences in particle types, or heterogeneous computer architecture which was difficult with previously proposed methods. We analyzed the parallel efficiency and scalability of our method using Earth simulator and K-computer supercomputer systems.
VEDA: a web-based virtual environment for dynamic atomic force microscopy.
Melcher, John; Hu, Shuiqing; Raman, Arvind
2008-06-01
We describe here the theory and applications of virtual environment dynamic atomic force microscopy (VEDA), a suite of state-of-the-art simulation tools deployed on nanoHUB (www.nanohub.org) for the accurate simulation of tip motion in dynamic atomic force microscopy (dAFM) over organic and inorganic samples. VEDA takes advantage of nanoHUB's cyberinfrastructure to run high-fidelity dAFM tip dynamics computations on local clusters and the teragrid. Consequently, these tools are freely accessible and the dAFM simulations are run using standard web-based browsers without requiring additional software. A wide range of issues in dAFM ranging from optimal probe choice, probe stability, and tip-sample interaction forces, power dissipation, to material property extraction and scanning dynamics over hetereogeneous samples can be addressed.
Invited Article: VEDA: A web-based virtual environment for dynamic atomic force microscopy
NASA Astrophysics Data System (ADS)
Melcher, John; Hu, Shuiqing; Raman, Arvind
2008-06-01
We describe here the theory and applications of virtual environment dynamic atomic force microscopy (VEDA), a suite of state-of-the-art simulation tools deployed on nanoHUB (www.nanohub.org) for the accurate simulation of tip motion in dynamic atomic force microscopy (dAFM) over organic and inorganic samples. VEDA takes advantage of nanoHUB's cyberinfrastructure to run high-fidelity dAFM tip dynamics computations on local clusters and the teragrid. Consequently, these tools are freely accessible and the dAFM simulations are run using standard web-based browsers without requiring additional software. A wide range of issues in dAFM ranging from optimal probe choice, probe stability, and tip-sample interaction forces, power dissipation, to material property extraction and scanning dynamics over hetereogeneous samples can be addressed.
The Layered Structure of The Universe
NASA Astrophysics Data System (ADS)
Kursunoglu, Behram N.
2003-06-01
It has now become a habit for the cosmologists to introduce attraction or repulsion generating substances to describe the observed cosmological behavior of matter. Examples are dark energy to provide repulsive force to cause increasing acceleration accompanying the expansion of the universe, quintessence providing repulsive force. In this paper we believe that what is needed in the final analysis is attraction and repulsion. We show here that universe can be conceived to consist of attractive and repulsive layers of matter expanding with increasing acceleration. The generalized theory of gravitation as developed originally by Einstein and Schrödinger as a non-symmetric theory was modified by this author using Bianchi-Einstein Identities yielding coupling between the field and electric charge as well as between the field and magnetic charge, and there appears a fundamental length parameter ro where quintessence constitute magnetic repulsive layers while dark energy and all other kinds of names invented by cosmologists refer to attractive electric layers. This layered structure of the universe resembles the layered structure of the elementary particle predicted by this theory decades ago (1, 3, and 6). This implies a layer Doughnut structure of the universe. We have therefore, obtained a unification of the structure of the universe and the structure of elementary particles. Overall the forces consist of long range attractive, long range repulsive, short-range attractive, and short-range repulsive variety. We further discovered the existence of space oscillations whose roles in the expansion of the universe with increasing acceleration and further the impact in the propagation of the gravitational waves can be expected to play a role in their observation.
With Courage: The U.S. Army Air Forces in World War II,
1994-01-01
account of the contributions of American air power to victory in that war. A second commemoration in September 1997 marks the fiftieth birthday of the... cost at $31 million a year for the five-year plan and $26 million a year thereafter to maintain the force in a modernized and ready state. This would...American bomber of the decade, but its short range, limited useful load, and high cost made it a disappointment. The Keystone series of bombers, represented
The short range anion-H interaction is the driving force for crystal formation of ions in water.
Alejandre, José; Chapela, Gustavo A; Bresme, Fernando; Hansen, Jean-Pierre
2009-05-07
The crystal formation of NaCl in water is studied by extensive molecular dynamics simulations. Ionic solutions at room temperature and various concentrations are studied using the SPC/E and TIP4P/2005 water models and seven force fields of NaCl. Most force fields of pure NaCl fail to reproduce the experimental density of the crystal, and in solution some favor dissociation at saturated conditions, while others favor crystal formation at low concentration. A new force field of NaCl is proposed, which reproduces the experimental phase diagram in the solid, liquid, and vapor regions. This force field overestimates the solubility of NaCl in water at saturation conditions when used with standard Lorentz-Berthelot combining rules for the ion-water pair potentials. It is shown that precipitation of ions is driven by the short range interaction between Cl-H pairs, a term which is generally missing in the simulation of ionic solutions. The effects of intramolecular flexibility of water on the solubility of NaCl ions are analyzed and is found to be small compared to rigid models. A flexible water model, extending the rigid SPC/E, is proposed, which incorporates Lennard-Jones interactions centered on the hydrogen atoms. This force field gives liquid-vapor coexisting densities and surface tensions in better agreement with experimental data than the rigid SPC/E model. The Cl-H, Na-O, and Cl-O pair distribution functions of the rigid and flexible models agree well with experiment. The predicted concentration dependence of the electric conductivity is in fair agreement with available experimental data.
NASA Astrophysics Data System (ADS)
Yao, Yuan; Capecelatro, Jesse
2018-03-01
We present a numerical study on inertial electrically charged particles suspended in a turbulent carrier phase. Fluid-particle interactions are accounted for in an Eulerian-Lagrangian (EL) framework and coupled to a Fourier-based Ewald summation method, referred to as the particle-particle-particle-mesh (P3M ) method, to accurately capture short- and long-range electrostatic forces in a tractable manner. The EL P3M method is used to assess the competition between drag and Coulomb forces for a range of Stokes numbers and charge densities. Simulations of like- and oppositely charged particles suspended in a two-dimensional Taylor-Green vortex and three-dimensional homogeneous isotropic turbulence are reported. It is found that even in dilute suspensions, the short-range electric potential plays an important role in flows that admit preferential concentration. Suspensions of oppositely charged particles are observed to agglomerate in the form of chains and rings. Comparisons between the particle-mesh method typically employed in fluid-particle calculations and P3M are reported, in addition to one-point and two-point statistics to quantify the level of clustering as a function of Reynolds number, Stokes number, and nondimensional electric settling velocity.
Raqeeb, Abdul; Solomon, Dennis; Paré, Peter D; Seow, Chun Y
2010-11-01
Airway smooth muscle (ASM) is able to generate maximal force under static conditions, and this isometric force can be maintained over a large length range due to length adaptation. The increased force at short muscle length could lead to excessive narrowing of the airways. Prolonged exposure of ASM to submaximal stimuli also increases the muscle's ability to generate force in a process called force adaptation. To date, the effects of length and force adaptation have only been demonstrated under static conditions. In the mechanically dynamic environment of the lung, ASM is constantly subjected to periodic stretches by the parenchyma due to tidal breathing and deep inspiration. It is not known whether force recovery due to muscle adaptation to a static environment could occur in a dynamic environment. In this study the effect of length oscillation mimicking tidal breathing and deep inspiration was examined. Force recovery after a length change was attenuated in the presence of length oscillation, except at very short lengths. Force adaptation was abolished by length oscillation. We conclude that in a healthy lung (with intact airway-parenchymal tethering) where airways are not allowed to narrow excessively, large stretches (associated with deep inspiration) may prevent the ability of the muscle to generate maximal force that would occur under static conditions irrespective of changes in mean length; mechanical perturbation on ASM due to tidal breathing and deep inspiration, therefore, is the first line of defense against excessive bronchoconstriction that may result from static length and force adaptation.
Preparation and atomic force microscopy of CTAB stabilized polythiophene nanoparticles thin film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graak, Pinki; Devi, Ranjna; Kumar, Dinesh
2016-05-06
Polythiophene nanoparticles were synthesized by iron catalyzed oxidative polymerization method. Polythiophene formation was detected by UV-Visible spectroscopy with λmax 375nm. Thin films of CTAB stabilized polythiophene nanoparticles was deposited on n-type silicon wafer by spin coating technique at 3000rpm in three cycles. Thickness of the thin films was computed as 300-350nm by ellipsometry. Atomic force micrscopyrevealws the particle size of polymeric nanoparticles in the range of 30nm to 100nm. Roughness of thinfilm was also analyzed from the atomic force microscopy data by Picoimage software. The observed RMS value lies in the range of 6 nm to 12 nm.
NASA Technical Reports Server (NTRS)
Beatty, T. D.; Worthey, M. K.
1984-01-01
A computerized prediction method known as the Vought V/STOL Aircraft Propulsive Effects computer program (VAPE) for propulsive induced forces and moments in transition and Short TakeOff and Landing (STOL) flight is improved and evaluated. The VAPE program is capable of evaluating: (1) effects of relative wind about an aircraft, (2) effects of propulsive lift jet entrainment, vorticity and flow blockage, (3) effects of engine inlet flow on the aircraft flow field, (4) engine inlet forces and moments including inlet separation, (5) ground effects in the STOL region of flight, and (6) viscous effects on lifting surfaces.
2005-06-01
immobilization of antibodies o Adsorbed, aminophase, heterobifunctional crosslinkers (GMBS, BMPS, EMCS) o GMBS attaches the most antibodies o ProteinA ...play a role in getting the antigen close enough to the immuno-surface to potentially interact as well as the short range molecular forces that
On the numerical treatment of Coulomb forces in scattering problems
NASA Astrophysics Data System (ADS)
Randazzo, J. M.; Ancarani, L. U.; Colavecchia, F. D.; Gasaneo, G.; Frapiccini, A. L.
2012-11-01
We investigate the limiting procedures to obtain Coulomb interactions from short-range potentials. The application of standard techniques used for the two-body case (exponential and sharp cutoff) to the three-body break-up problem is illustrated numerically by considering the Temkin-Poet (TP) model of e-H processes.
Simulation of dynamic vehicle-track interaction on small radius curves
NASA Astrophysics Data System (ADS)
Torstensson, Peter T.; Nielsen, Jens C. O.
2011-11-01
A time-domain method for the simulation of general three-dimensional dynamic interaction between a vehicle and a curved railway track, accounting for a prescribed relative wheel-rail displacement excitation in a wide frequency range (up to several hundred Hz), is presented. The simulation model is able to capture the low-frequency vehicle dynamics simultaneously due to curving and the high-frequency track dynamics due to the excitation by, for example, the short-pitch corrugation on the low rail. The adopted multibody dynamics formulation considers inertia forces, such as centrifugal and Coriolis forces, as well as the structural flexibility of vehicle and track components. To represent a wheel/rail surface irregularity, isoparametric two-dimensional elements able to describe generally curved surface shapes are used. The computational effort is reduced by including only one bogie in the vehicle model. The influence of the low-frequency vehicle dynamics of the remaining parts of the vehicle is considered by pre-calculated look-up tables of forces and moments acting in the secondary suspension. For a track model taken as rigid, good agreement is observed between the results calculated with the presented model and a commercial software. The features of the model are demonstrated by a number of numerical examples. The influence of the structural flexibility of the wheelset and track on wheel-rail contact forces is investigated. For a discrete rail irregularity excitation, it is shown that the longitudinal creep force is significantly influenced by the wheelset eigenmodes. The introduction of a velocity-dependent friction law is found to induce an oscillation in the tangential contact force on the low rail with a frequency corresponding to the first anti-symmetric torsional mode of the wheelset. Further, under the application of driving moments on the two wheelsets and excitation by a discrete irregularity on the high rail, the frequency content of the tangential contact forces on the low rail is significantly influenced by the P2 resonance as well as by several wheelset eigenmodes.
A smoothed particle hydrodynamics framework for modelling multiphase interactions at meso-scale
NASA Astrophysics Data System (ADS)
Li, Ling; Shen, Luming; Nguyen, Giang D.; El-Zein, Abbas; Maggi, Federico
2018-01-01
A smoothed particle hydrodynamics (SPH) framework is developed for modelling multiphase interactions at meso-scale, including the liquid-solid interaction induced deformation of the solid phase. With an inter-particle force formulation that mimics the inter-atomic force in molecular dynamics, the proposed framework includes the long-range attractions between particles, and more importantly, the short-range repulsive forces to avoid particle clustering and instability problems. Three-dimensional numerical studies have been conducted to demonstrate the capabilities of the proposed framework to quantitatively replicate the surface tension of water, to model the interactions between immiscible liquids and solid, and more importantly, to simultaneously model the deformation of solid and liquid induced by the multiphase interaction. By varying inter-particle potential magnitude, the proposed SPH framework has successfully simulated various wetting properties ranging from hydrophobic to hydrophilic surfaces. The simulation results demonstrate the potential of the proposed framework to genuinely study complex multiphase interactions in wet granular media.
Flow induction by pressure forces
NASA Technical Reports Server (NTRS)
Garris, C. A.; Toh, K. H.; Amin, S.
1992-01-01
A dual experimental/computational approach to the fluid mechanics of complex interactions that take place in a rotary-jet ejector is presented. The long-range goal is to perform both detailed flow mapping and finite element computational analysis. The described work represents an initial finding on the experimental mapping program. Test results on the hubless rotary-jet are discussed.
A Monte Carlo (N,V,T) study of the stability of charged interfaces: A simulation on a hypersphere
NASA Astrophysics Data System (ADS)
Delville, A.; Pellenq, R. J.-M.; Caillol, J. M.
1997-05-01
We have used an exact expression of the Coulombic interactions derived on a hypersphere of an Euclidian space of dimension four to determine the swelling behavior of two infinite charged plates neutralized by exchangeable counterions. Monte Carlo simulations in the (N,V,T) ensemble allows for a derivation of short-ranged hard core repulsions and long-ranged electrostatic forces, which are the two components of the interionic forces in the context of the primitive model. Comparison with numerical results obtained by a classical Euclidian method illustrates the efficiency of the hyperspherical approach, especially at strong coupling between the charged particles, i.e., for divalent counterions and small plate separation.
Jarvis, Sam; Danza, Rosanna; Moriarty, Philip
2012-01-01
Summary Background: Noncontact atomic force microscopy (NC-AFM) now regularly produces atomic-resolution images on a wide range of surfaces, and has demonstrated the capability for atomic manipulation solely using chemical forces. Nonetheless, the role of the tip apex in both imaging and manipulation remains poorly understood and is an active area of research both experimentally and theoretically. Recent work employing specially functionalised tips has provided additional impetus to elucidating the role of the tip apex in the observed contrast. Results: We present an analysis of the influence of the tip apex during imaging of the Si(100) substrate in ultra-high vacuum (UHV) at 5 K using a qPlus sensor for noncontact atomic force microscopy (NC-AFM). Data demonstrating stable imaging with a range of tip apexes, each with a characteristic imaging signature, have been acquired. By imaging at close to zero applied bias we eliminate the influence of tunnel current on the force between tip and surface, and also the tunnel-current-induced excitation of silicon dimers, which is a key issue in scanning probe studies of Si(100). Conclusion: A wide range of novel imaging mechanisms are demonstrated on the Si(100) surface, which can only be explained by variations in the precise structural configuration at the apex of the tip. Such images provide a valuable resource for theoreticians working on the development of realistic tip structures for NC-AFM simulations. Force spectroscopy measurements show that the tip termination critically affects both the short-range force and dissipated energy. PMID:22428093
An accurate ab initio quartic force field for ammonia
NASA Technical Reports Server (NTRS)
Martin, J. M. L.; Lee, Timothy J.; Taylor, Peter R.
1992-01-01
The quartic force field of ammonia is computed using basis sets of spdf/spd and spdfg/spdf quality and an augmented coupled cluster method. After correcting for Fermi resonance, the computed fundamentals and nu 4 overtones agree on average to better than 3/cm with the experimental ones except for nu 2. The discrepancy for nu 2 is principally due to higher-order anharmonicity effects. The computed omega 1, omega 3, and omega 4 confirm the recent experimental determination by Lehmann and Coy (1988) but are associated with smaller error bars. The discrepancy between the computed and experimental omega 2 is far outside the expected error range, which is also attributed to higher-order anharmonicity effects not accounted for in the experimental determination. Spectroscopic constants are predicted for a number of symmetric and asymmetric top isotopomers of NH3.
Computer Processing 10-20-30. Teacher's Manual. Senior High School Teacher Resource Manual.
ERIC Educational Resources Information Center
Fisher, Mel; Lautt, Ray
Designed to help teachers meet the program objectives for the computer processing curriculum for senior high schools in the province of Alberta, Canada, this resource manual includes the following sections: (1) program objectives; (2) a flowchart of curriculum modules; (3) suggestions for short- and long-range planning; (4) sample lesson plans;…
Three-dimensional formulation of dislocation climb
NASA Astrophysics Data System (ADS)
Gu, Yejun; Xiang, Yang; Quek, Siu Sin; Srolovitz, David J.
2015-10-01
We derive a Green's function formulation for the climb of curved dislocations and multiple dislocations in three-dimensions. In this new dislocation climb formulation, the dislocation climb velocity is determined from the Peach-Koehler force on dislocations through vacancy diffusion in a non-local manner. The long-range contribution to the dislocation climb velocity is associated with vacancy diffusion rather than from the climb component of the well-known, long-range elastic effects captured in the Peach-Koehler force. Both long-range effects are important in determining the climb velocity of dislocations. Analytical and numerical examples show that the widely used local climb formula, based on straight infinite dislocations, is not generally applicable, except for a small set of special cases. We also present a numerical discretization method of this Green's function formulation appropriate for implementation in discrete dislocation dynamics (DDD) simulations. In DDD implementations, the long-range Peach-Koehler force is calculated as is commonly done, then a linear system is solved for the climb velocity using these forces. This is also done within the same order of computational cost as existing discrete dislocation dynamics methods.
Technique for forcing high Reynolds number isotropic turbulence in physical space
NASA Astrophysics Data System (ADS)
Palmore, John A.; Desjardins, Olivier
2018-03-01
Many common engineering problems involve the study of turbulence interaction with other physical processes. For many such physical processes, solutions are expressed most naturally in physical space, necessitating the use of physical space solutions. For simulating isotropic turbulence in physical space, linear forcing is a commonly used strategy because it produces realistic turbulence in an easy-to-implement formulation. However, the method resolves a smaller range of scales on the same mesh than spectral forcing. We propose an alternative approach for turbulence forcing in physical space that uses the low-pass filtered velocity field as the basis of the forcing term. This method is shown to double the range of scales captured by linear forcing while maintaining the flexibility and low computational cost of the original method. This translates to a 60% increase of the Taylor microscale Reynolds number on the same mesh. An extension is made to scalar mixing wherein a scalar field is forced to have an arbitrarily chosen, constant variance. Filtered linear forcing of the scalar field allows for control over the length scale of scalar injection, which could be important when simulating scalar mixing.
NASA Astrophysics Data System (ADS)
Decuyper, J.; De Troyer, T.; Runacres, M. C.; Tiels, K.; Schoukens, J.
2018-01-01
The flow-induced vibration of bluff bodies is an important problem of many marine, civil, or mechanical engineers. In the design phase of such structures, it is vital to obtain good predictions of the fluid forces acting on the structure. Current methods rely on computational fluid dynamic simulations (CFD), with a too high computational cost to be effectively used in the design phase or for control applications. Alternative methods use heuristic mathematical models of the fluid forces, but these lack the accuracy (they often assume the system to be linear) or flexibility to be useful over a wide operating range. In this work we show that it is possible to build an accurate, flexible and low-computational-cost mathematical model using nonlinear system identification techniques. This model is data driven: it is trained over a user-defined region of interest using data obtained from experiments or simulations, or both. Here we use a Van der Pol oscillator as well as CFD simulations of an oscillating circular cylinder to generate the training data. Then a discrete-time polynomial nonlinear state-space model is fit to the data. This model relates the oscillation of the cylinder to the force that the fluid exerts on the cylinder. The model is finally validated over a wide range of oscillation frequencies and amplitudes, both inside and outside the so-called lock-in region. We show that forces simulated by the model are in good agreement with the data obtained from CFD.
Silva Lopez, Carlos; Nieto Faza, Olalla; De Proft, Frank; Kolocouris, Antonios
2016-11-15
The interactions of axial substituents in monosubstituted cyclohexane rings are studied in this work using an array of different computational techniques. Additionally, the anomalous axial preference for some bulky substituents is related to stabilizing dispersion interactions. We find that the C-H ax ···Y ax contacts for various substituents with distances ranging from 2 to ∼5 Å may include attractive dispersion forces that can affect the conformational equilibrium; these forces co-exist with Pauli repulsive forces effected by Y ax group due to van der Waals sphere penetration. At distances between 2 and 3 Å stabilizing electron transfer interactions were calculated and the combination of natural bond orbital and QTAIM analysis showed that, in certain cases, Y ax = t Bu, C ax -O or C ax = O or S ax = O or C ax = S this interaction can be characterized as an improper H-bond. DFT-D3 and non-covalent interactions calculations (NCIs) in cyclohexane derivatives with Y ax = SiOR 3 including H Yax ···H cy surfaces at distances ranging between 4 and 6 Å suggest that dispersion has a clear effect on the experimentally observed stabilization of the axial conformer. NCIs computed from the reduced density gradient help to visually identify and analyze these interactions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Makers of the United States Air Force,
1987-01-01
in a larger percentage of high performance , large capacity bombers. . ... In every test or exercise we have ever had . .. this plane stands out head...believed large formations of heavily armed, high - performance B-17Es could succeed, but a serious effort should be made to develop escort fighters. No...multi-engined bombers: one with high speed , substantial firepower, and short range; the other, a long-range bomber with heavy load capacity. In the summer
Exploring Space on the Computer
NASA Technical Reports Server (NTRS)
Bozym, Patrick
2004-01-01
For the past year Dennis Stocker has been in the process of developing pencil and paper games, which are fun, challenging, and educational for middle school and high school students. The latest version of these pencil and paper games is Spaceship Commander. The objective of the game is to earn points by plotting the flight path of a spaceship so astronauts can perform microgravity experiments, and make short-range measurements of other planets. During my ten weeks here at the GRC my goal is to create a computer based version of Spaceship commander. During the development of this game the primary focus has been on making it as educational and fun for the student as possible. The main educational objective of this game is to give students an understanding of forces and motion, including gravity. This is done by incorporating Newton's laws into the game. For example a spacecraft in the video game experiences a gravitational force applied to it by planets. The software I am using to create this game is a freeware application called Game Maker. Game Maker allows novice computer programmers like me to create arcade style games using a visual drag and drop interface. By using functions provided by Game Maker and a few I have written myself, I have been able to create a few simple computer games. Currently the computer game allows the student to navigate a space ship around planets, and asteroids by using the arrow keys on the numeric keypad. Each time an arrow key is pressed by the student the corresponding acceleration of the space ship is seen on the screen. Points are earned by navigating the space ship close enough to planets to gather scientific data. However the game encourages the student to plan his or her course carefully, because if the student gets too close to a planet they may not be able to escape the planet s gravity, and crash into the planet. The next step in the game development is to include a launch sequence which allows the student to launch from their home planet at a speed and direction determined by the student. Additional information is included in the original extended abstract.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lomboy, Gilson; Sundararajan, Sriram, E-mail: srirams@iastate.edu; Wang Kejin
2011-11-15
A method for determining Hamaker constant of cementitious materials is presented. The method involved sample preparation, measurement of adhesion force between the tested material and a silicon nitride probe using atomic force microscopy in dry air and in water, and calculating the Hamaker constant using appropriate contact mechanics models. The work of adhesion and Hamaker constant were computed from the pull-off forces using the Johnson-Kendall-Roberts and Derjagin-Muller-Toropov models. Reference materials with known Hamaker constants (mica, silica, calcite) and commercially available cementitious materials (Portland cement (PC), ground granulated blast furnace slag (GGBFS)) were studied. The Hamaker constants of the reference materialsmore » obtained are consistent with those published by previous researchers. The results indicate that PC has a higher Hamaker constant than GGBFS. The Hamaker constant of PC in water is close to the previously predicted value C{sub 3}S, which is attributed to short hydration time ({<=} 45 min) used in this study.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Gaigong; Lin, Lin, E-mail: linlin@math.berkeley.edu; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H{sub 2} and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less
Zhang, Gaigong; Lin, Lin; Hu, Wei; ...
2017-01-27
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Sin ce the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H 2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Gaigong; Lin, Lin; Hu, Wei
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Sin ce the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H 2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less
NASA Astrophysics Data System (ADS)
Zhang, Gaigong; Lin, Lin; Hu, Wei; Yang, Chao; Pask, John E.
2017-04-01
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn-Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann-Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann-Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H2 and liquid Al-Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.
Experimental Searches for Exotic Short-Range Forces Using Mechanical Oscillators
NASA Astrophysics Data System (ADS)
Weisman, Evan
Experimental searches for forces beyond gravity and electromagnetism at short range have attracted a great deal of attention over the last decade. In this thesis I describe the test mass development for two new experiments searching for forces below 1 mm. Both modify a previous experiment that used 1 kHz mechanical oscillators as test masses with a stiff conducting shield between them to suppress backgrounds, a promising technique for probing exceptionally small distances at the limit of instrumental thermal noise. To further reduce thermal noise, one experiment will use plated silicon test masses at cryogenic temperatures. The other experiment, which searches for spin-dependent interactions, will apply the spin-polarizable material Dy3Fe5O 12 to the test mass surfaces. This material exhibits orbital compensation of the magnetism associated with its intrinsic electron spin, minimizing magnetic backgrounds. Several plated silicon test mass prototypes were fabricated using photolithography (useful in both experiments), and spin-dependent materials were synthesized with a simple chemical recipe. Both silicon and spin-dependent test masses demonstrate the mechanical and magnetic properties necessary for sensitive experiments. I also describe sensitivity calculations of another proposed spin-dependent experiment, based on a modified search for the electron electric dipole moment, which show unprecedented sensitivity to exotic monopole-dipole forces. Inspired by a finite element model, a study attempting to maximize detector quality factor versus geometry is also presented, with experimental results so far not explained by the model.
[Passive ranging of infrared target using oxygen A-band and Elsasser model].
Li, Jin-Hua; Wang, Zhao-Ba; Wang Zhi
2014-09-01
Passive ranging method of short range and single band was developed based on target radiation and attenuation characteristic of oxygen spectrum absorption. The relation between transmittance of oxygen A band and range of measured target was analyzed. Radiation strength distribution of measured target can be obtained according to the distribution law of absorption coefficient with environmental parameters. Passive ranging mathematical model of short ranges was established using Elsasser model with Lorentz line shape based on the computational methods of band average transmittance and high-temperature gas radiation narrowband model. The range of measured object was obtained using transmittance fitting with test data calculation and theoretical model. Besides, ranging precision was corrected considering the influence of oxygen absorption with enviromental parameter. The ranging experiment platform was established. The source was a 10 watt black body, and a grating spectrometer with 17 cm(-1) resolution was used. In order to improve the light receiving efficiency, light input was collected with 23 mm calibre telescope. The test data was processed for different range in 200 m. The results show that the transmittance accuracy was better than 2.18% in short range compared to the test data with predicted value in the same conditions.
Influence of structure of iron nanoparticles in aggregates on their magnetic properties
2011-01-01
Zero-valent iron nanoparticles rapidly aggregate. One of the reasons is magnetic forces among the nanoparticles. Magnetic field around particles is caused by composition of the particles. Their core is formed from zero-valent iron, and shell is a layer of magnetite. The magnetic forces contribute to attractive forces among the nanoparticles and that leads to increasing of aggregation of the nanoparticles. This effect is undesirable for decreasing of remediation properties of iron particles and limited transport possibilities. The aggregation of iron nanoparticles was established for consequent processes: Brownian motion, sedimentation, velocity gradient of fluid around particles and electrostatic forces. In our previous work, an introduction of influence of magnetic forces among particles on the aggregation was presented. These forces have significant impact on the rate of aggregation. In this article, a numerical computation of magnetic forces between an aggregate and a nanoparticle and between two aggregates is shown. It is done for random position of nanoparticles in an aggregate and random or arranged directions of magnetic polarizations and for structured aggregates with arranged vectors of polarizations. Statistical computation by Monte Carlo is done, and range of dominant area of magnetic forces around particles is assessed. PMID:21917152
Autonomous Navigation by a Mobile Robot
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance; Aghazarian, Hrand
2005-01-01
ROAMAN is a computer program for autonomous navigation of a mobile robot on a long (as much as hundreds of meters) traversal of terrain. Developed for use aboard a robotic vehicle (rover) exploring the surface of a remote planet, ROAMAN could also be adapted to similar use on terrestrial mobile robots. ROAMAN implements a combination of algorithms for (1) long-range path planning based on images acquired by mast-mounted, wide-baseline stereoscopic cameras, and (2) local path planning based on images acquired by body-mounted, narrow-baseline stereoscopic cameras. The long-range path-planning algorithm autonomously generates a series of waypoints that are passed to the local path-planning algorithm, which plans obstacle-avoiding legs between the waypoints. Both the long- and short-range algorithms use an occupancy-grid representation in computations to detect obstacles and plan paths. Maps that are maintained by the long- and short-range portions of the software are not shared because substantial localization errors can accumulate during any long traverse. ROAMAN is not guaranteed to generate an optimal shortest path, but does maintain the safety of the rover.
Yang, Fan Yang; Nelson, Bron; Aziz, Jonathan; Carlino, Roberto; Perez, Andres Dono; Faber, Nicolas; Foster, Cyrus; Frost, Chad; Henze, Chris; Karacalıoğlu, Arif Göktuğ; Levit, Creon; Marshall, William; Mason, James; O’Toole, Conor; Swenson, Jason; Worden, Simon P.; Stupl, Jan
2017-01-01
This work provides an efficiency analysis of the LightForce space debris collision avoidance scheme in the current debris environment and describes a simulation approach to assess its impact on the long-term evolution of the space debris environment. LightForce aims to provide just-in-time collision avoidance by utilizing photon pressure from ground-based industrial lasers. These ground stations impart minimal accelerations to increase the miss distance for a predicted conjunction between two objects. In the first part of this paper we will present research that investigates the short-term effect of a few systems consisting of 20 kW class lasers directed by 1.5 m diameter telescopes using adaptive optics. The results found such a network of ground stations to mitigate more than 85 percent of conjunctions and could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. While these are impressive numbers that indicate LightForce’s utility in the short-term, the remaining 15 % of possible collisions contain (among others) conjunctions between two massive objects that would add large amount of debris if they collide. Still, conjunctions between massive objects and smaller objects can be mitigated. Hence, we choose to expand the capabilities of the simulation software to investigate the overall effect of a network of LightForce stations on the long-term debris evolution. In the second part of this paper, we will present the planned simulation approach for that effort. For the efficiency analysis of collision avoidance in the current debris environment, we utilize a simulation approach that uses the entire Two Line Element (TLE) catalog in LEO for a given day as initial input. These objects are propagated for one year and an all-on-all conjunction analysis is performed. For conjunctions that fall below a range threshold, we calculate the probability of collision and record those values. To assess efficiency, we compare a baseline (without collision avoidance) conjunction analysis with an analysis where LightForce is active. Using that approach, we take into account that collision avoidance maneuvers could have effects on third objects. Performing all-on-all conjunction analyses for extended period of time requires significant computer resources; hence we implemented this simulation utilizing a highly parallel approach on the NASA Pleiades supercomputer. PMID:29302129
NASA Astrophysics Data System (ADS)
Joung, Young Soo
2018-05-01
We propose a new analytical model of ionic surfactants used for the dispersion of carbon nanotubes (CNTs) in aqueous solutions. Although ionic surfactants are commonly used to facilitate the dispersion of CNTs in aqueous solutions, understanding the dispersion process is challenging and time-consuming owing to its complexity and nonlinearity. In this work, we develop a mean-density model of ionic surfactants to simplify the calculation of interaction forces between CNTs stabilized by ionic surfactants. Using this model, we can evaluate various interaction forces between the CNTs and ionic surfactants under different conditions. The dispersion mechanism is investigated by estimating the potential of mean force (PMF) as a function of van der Waals forces, electrostatic forces, interfacial tension, and osmotic pressure. To verify the proposed model, we compare the PMFs derived using our method with those derived from molecular dynamics simulations using comparable CNTs and ionic surfactants. Notably, for stable dispersions, the osmotic pressure and interfacial energy are important for long-range and short-range interactions, respectively, in comparison with the effect of electrostatic forces. Our model effectively prescribes specific surfactants and their concentrations to achieve stable aqueous suspensions of CNTs.
Forces Driving Chaperone Action
Koldewey, Philipp; Stull, Frederick; Horowitz, Scott; Martin, Raoul; Bardwell, James C. A.
2016-01-01
SUMMARY It is still unclear what molecular forces drive chaperone-mediated protein folding. Here, we obtain a detailed mechanistic understanding of the forces that dictate the four key steps of chaperone-client interaction: initial binding, complex stabilization, folding, and release. Contrary to the common belief that chaperones recognize unfolding intermediates by their hydrophobic nature, we discover that the model chaperone Spy uses long-range electrostatic interactions to rapidly bind to its unfolded client protein Im7. Short-range hydrophobic interactions follow, which serve to stabilize the complex. Hydrophobic collapse of the client protein then drives its folding. By burying hydrophobic residues in its core, the client’s affinity to Spy decreases, which causes client release. By allowing the client to fold itself, Spy circumvents the need for client-specific folding instructions. This mechanism might help explain how chaperones can facilitate the folding of various unrelated proteins. PMID:27293188
Interaction forces between DPPC bilayers on glass
Orozco-Alcaraz, Raquel; Kuhl, Tonya L.
2013-01-01
The Surface Force Apparatus (SFA) was utilized to obtain force-distance profiles between silica supported membranes formed by Langmuir-Blodgett deposition of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). In the absence of a membrane, a long range electrostatic and short range steric repulsion is measured due to deprotonation of silica in water and roughness of the silica film. The electrostatic repulsion is partially screened by the lipid membrane and a van der Waals adhesion comparable to that measured with well packed DPPC membranes on mica is measured. This finding suggest that electrostatic interactions due to the underlying negatively charged silica are likely present in other systems of glass supported membranes. In contrast, the charge of an underlying mica substrate is almost completely screened when a lipid membrane is deposited on the mica. The difference in the two systems is attributed to stronger physisorption of zwitterionic lipids to molecularly smooth mica compared to rougher silica. PMID:23199333
Measurement properties of the Spinal Cord Injury-Functional Index (SCI-FI) short forms.
Heinemann, Allen W; Dijkers, Marcel P; Ni, Pengsheng; Tulsky, David S; Jette, Alan
2014-07-01
To evaluate the psychometric properties of the Spinal Cord Injury-Functional Index (SCI-FI) short forms (basic mobility, self-care, fine motor, ambulation, manual wheelchair, and power wheelchair) based on internal consistency; correlations between short forms banks, full item bank forms, and a 10-item computer adaptive test version; magnitude of ceiling and floor effects; and test information functions. Cross-sectional cohort study. Six rehabilitation hospitals in the United States. Individuals with traumatic spinal cord injury (N=855) recruited from 6 national Spinal Cord Injury Model Systems facilities. Not applicable. SCI-FI full item bank, 10-item computer adaptive test, and parallel short form scores. The SCI-FI short forms (with separate versions for individuals with paraplegia and tetraplegia) demonstrate very good internal consistency, group-level reliability, excellent correlations between short forms and scores based on the total item bank, and minimal ceiling and floor effects (except ceiling effects for persons with paraplegia on self-care, fine motor, and power wheelchair ability and floor effects for persons with tetraplegia on self-care, fine motor, and manual wheelchair ability). The test information functions are acceptable across the range of scores where most persons in the sample performed. Clinicians and researchers should consider the SCI-FI short forms when computer adaptive testing is not feasible. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Georgakarakos, E; Xenakis, A; Georgiadis, G S; Argyriou, C; Manopoulos, C; Tsangaris, S; Lazarides, M K
2014-10-01
The influence of the relative iliac limb length of an endograft (EG) on the displacements forces (DF) predisposing to adverse effects are under-appreciated in the literature. Therefore, we conducted a computational study to estimate the magnitude of the DF acting over an entire reconstructed EG and its counterparts for a range of main body-to-iliac limb length (L1/L2) ratios. A customary bifurcated 3D model was computationally created and meshed using the commercially available ANSYS ICEM (Ansys Inc., Canonsburg, PA, USA) software. Accordingly, Fluid Structure Interaction was used to estimate the DF. The total length of the EG was kept constant, while the L1/L2 ratio ranged from 0.3 to 1.5. The increase in L1/L2 slightly affected the DF on the EG (ranging from 3.8 to 4.1 N) and its bifurcation (4.0 to 4.6 N). However, the forces exerted at the iliac sites were strongly affected by the L1/L2 values (ranging from 0.9 to 2.2 N), showing a parabolic pattern with a minimum for 0.6 ratio. It is suggested that the hemodynamic effect of the relative limb lengths should not be considered negligible. A high main body-to-iliac limb length ratio seems to favor hemodynamically a low bifurcation but it attenuates the main body-iliac limbs modular stability. Further clinical studies should investigate the relevant value of these findings. The Bolton Treovance(®) device is presented as a representative, improved stent-graft design that takes into account these hemodynamic parameters in order to achieve a promising, improved clinical performance.
Uplift of Zagros Mountains slows plate convergence
NASA Astrophysics Data System (ADS)
Balcerak, Ernie
2013-05-01
Research has indicated that mountain ranges can slow down the convergence between two tectonic plates on timescales as short as a few million years, as the growing mountains provide enough tectonic force to impact plate motions. Focusing on the convergence of the Arabian and Eurasian plates at the Zagros mountain range, which runs across Iran and Iraq, Austermann and Iaffaldano reconstructed the relative motion of the plates using published paleomagnetic data covering the past 13 million years, as well as current geodetic measurements. They show that the convergence of the two plates has decreased by about 30% over the past 5 million years. Looking at the geological record to infer past topography and using a computer model of the mantle-lithosphere system, the authors examined whether the recent uplift across the Zagros Mountains could have caused the observed slowdown. They also considered several other geological events that might have influenced the convergence rate, but the authors were able to rule those out as dominant controls. The authors conclude that the uplift across the Zagros Mountains in the past 5 million years did indeed play a key role in slowing down the convergence between the Eurasian and Arabian plates. (Tectonics, doi:10.1002/tect.20027, 2013)
2017-05-23
iss051e049012 (May 23, 2017) --- Air Force colonel and NASA astronaut Jack Fischer (left) works outside the U.S. Destiny laboratory module to attach wireless antennas during the 201st spacewalk in support of International Space Station maintenance and assembly. This was a short and unplanned, contingency spacewalk whose primary task was the removal and replacement of a failed computer data relay box that controls the functionality of important station components such as solar arrays and radiators.
Partnership for a Nation of Learners: Joining Forces, Creating Value
ERIC Educational Resources Information Center
Kulpinski, Dan
2009-01-01
This publication presents in-depth profiles of six high-performing partnerships funded by the Partnership for a Nation of Learners (PNL) and short profiles of the remaining grantees. The partnerships illustrate a range of examples of how museums, libraries, public broadcasters, and other vital community organizations can collaborate to address…
NASA Technical Reports Server (NTRS)
Crawford, Winifred
2010-01-01
This final report describes the development of a peak wind forecast tool to assist forecasters in determining the probability of violating launch commit criteria (LCC) at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The peak winds are an important forecast element for both the Space Shuttle and Expendable Launch Vehicle (ELV) programs. The LCC define specific peak wind thresholds for each launch operation that cannot be exceeded in order to ensure the safety of the vehicle. The 45th Weather Squadron (45 WS) has found that peak winds are a challenging parameter to forecast, particularly in the cool season months of October through April. Based on the importance of forecasting peak winds, the 45 WS tasked the Applied Meteorology Unit (AMU) to develop a short-range peak-wind forecast tool to assist in forecasting LCC violations.The tool includes climatologies of the 5-minute mean and peak winds by month, hour, and direction, and probability distributions of the peak winds as a function of the 5-minute mean wind speeds.
NASA Astrophysics Data System (ADS)
Martin-Medina, Manuel; Morichon, Denis; Abadie, Stephane; Le Roy, Sylvestre; Lemoine, Anne
2017-04-01
The Tohoku tsunami, that impacted the Japanese coast in 2011, caused great damages on many offshore vertical breakwaters ranging from the erosion of the rubble mound to the partial displacement or total collapse of caissons. The breakwater failure mechanisms were function of the tsunami wave types that vary along the Japanese coast according to the bathymetry features. The Iwate coast, characterized by deep water depths and steep slopes, was mainly impacted by tsunami overflow leading in particular to the failure of the world's deepest breakwater of Kamaishi. In the shallow waters of the Sendai bay, observations showed that breakwaters protecting harbor entrances were impacted by short waves train resembling to undular bore. This work aims to investigate this latter type of tsunami wave impacts that are less reported in the literature. We chose to focus on the highly damaged offshore breakwater of Soma, located in the south part of the Sendai bay. The hydrodynamics conditions during the tsunami impact are investigated using the VARANS Thetis code (Desombre et al., 2012), which allows to simulate both the free surface flow and the flow inside the rubble mound simulated by a porous medium. The model is forced at the offshore boundaries by the Funwave Boussinesq code that describes the transformation of the tsunami waves from the source to the generation of undular bores in shallow waters. The study includes the computation of forces acting on the caissons. We discuss the relevance of describing the hydrodynamics at the short wave scale to assess breakwater stability in the course of tsunami-like undular bore impact. References Desombre, J., Morichon, D., & Mory, M. (2012). SIMULTANEOUS SURFACE AND SUBSURFACE AIR AND WATER FLOWS MODELLING IN THE SWASH ZONE. Coastal Engineering Proceedings, 1(33), 56.
Nonadditivity of van der Waals forces on liquid surfaces
NASA Astrophysics Data System (ADS)
Venkataram, Prashanth S.; Whitton, Jeremy D.; Rodriguez, Alejandro W.
2016-09-01
We present an approach for modeling nanoscale wetting and dewetting of textured solid surfaces that exploits recently developed, sophisticated techniques for computing exact long-range dispersive van der Waals (vdW) or (more generally) Casimir forces in arbitrary geometries. We apply these techniques to solve the variational formulation of the Young-Laplace equation and predict the equilibrium shapes of liquid-vacuum interfaces near solid gratings. We show that commonly employed methods of computing vdW interactions based on additive Hamaker or Derjaguin approximations, which neglect important electromagnetic boundary effects, can result in large discrepancies in the shapes and behaviors of liquid surfaces compared to exact methods.
Short Range Wireless Power Transfer (WPT) for UAV/UAS Battery Charging - Phase 1
2014-12-01
WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) Department of Electrical and Computer Engineering 8...Research Computer Engineering iii THIS PAGE INTENTIONALLY LEFT BLANK iv ABSTRACT The...battery charging, spacecraft recharging and station keeping, and direct propulsion of UAVs and hovering airships . The client antenna is usually of low
Assaraf, Roland
2014-12-01
We show that the recently proposed correlated sampling without reweighting procedure extends the locality (asymptotic independence of the system size) of a physical property to the statistical fluctuations of its estimator. This makes the approach potentially vastly more efficient for computing space-localized properties in large systems compared with standard correlated methods. A proof is given for a large collection of noninteracting fragments. Calculations on hydrogen chains suggest that this behavior holds not only for systems displaying short-range correlations, but also for systems with long-range correlations.
Towards the computation of time-periodic inertial range dynamics
NASA Astrophysics Data System (ADS)
van Veen, L.; Vela-Martín, A.; Kawahara, G.
2018-04-01
We explore the possibility of computing simple invariant solutions, like travelling waves or periodic orbits, in Large Eddy Simulation (LES) on a periodic domain with constant external forcing. The absence of material boundaries and the simple forcing mechanism make this system a comparatively simple target for the study of turbulent dynamics through invariant solutions. We show, that in spite of the application of eddy viscosity the computations are still rather challenging and must be performed on GPU cards rather than conventional coupled CPUs. We investigate the onset of turbulence in this system by means of bifurcation analysis, and present a long-period, large-amplitude unstable periodic orbit that is filtered from a turbulent time series. Although this orbit is computed on a coarse grid, with only a small separation between the integral scale and the LES filter length, the periodic dynamics seem to capture a regeneration process of the large-scale vortices.
A real-time Global Warming Index.
Haustein, K; Allen, M R; Forster, P M; Otto, F E L; Mitchell, D M; Matthews, H D; Frame, D J
2017-11-13
We propose a simple real-time index of global human-induced warming and assess its robustness to uncertainties in climate forcing and short-term climate fluctuations. This index provides improved scientific context for temperature stabilisation targets and has the potential to decrease the volatility of climate policy. We quantify uncertainties arising from temperature observations, climate radiative forcings, internal variability and the model response. Our index and the associated rate of human-induced warming is compatible with a range of other more sophisticated methods to estimate the human contribution to observed global temperature change.
Bungee force level, stiffness, and variation during treadmill locomotion in simulated microgravity.
De Witt, John K; Schaffner, Grant; Ploutz-Snyder, Lori L
2014-04-01
Crewmembers performing treadmill exercise on the International Space Station must wear a harness with an external gravity replacement force that is created by elastomer bungees. The quantification of the total external force, displacement, stiffness, and force variation is important for understanding the forces applied to the crewmember during typical exercise. Data were collected during static trials in the laboratory from a single subject and four subjects were tested while walking at 1.34 m x s(-1) and running at 2.24 m x s(-1) and 3.13 m x s(-1) on a treadmill during simulated microgravity in parabolic flight. The external force was provided by bungees and carabiner clips in configurations commonly used by crewmembers. Total external force, displacement, and force variation in the bungee system were measured, from which stiffness was computed. Mean external force ranged from 431 to 804 N (54-131% bodyweight) across subjects and conditions. Mean displacement was 4 to 8 cm depending upon gait speed. Mean stiffness was affected by bungee configuration and ranged from 1.73 to 29.20 N x cm(-1). Force variation for single bungee configurations was 2.61-4.48% of total external force and between 4.30-57.5% total external force for two-bungee configurations. The external force supplied to crewmembers by elastomer bungees provided a range of loading levels with variations that occur throughout the gait cycle. The quantification of bungee-loading characteristics is important to better define the system currently used by crewmembers during exercise.
Recent CFD Simulations of Shuttle Orbiter Contingency Abort Aerodynamics
NASA Technical Reports Server (NTRS)
Papadopoulos, Periklis; Prabhu, Dinesh; Wright, Michael; Davies, Carol; McDaniel, Ryan; Venkatapathy, Ethiraj; Wersinski, Paul; Gomez, Reynaldo; Arnold, Jim (Technical Monitor)
2001-01-01
Modern Computational Fluid Dynamics (CFD) techniques were used to compute aerodynamic forces and moments of the Space Shuttle Orbiter in specific portions of contingency abort trajectory space. The trajectory space covers a Mach number range of 3.5-15, an angle-of-attack range of 20-60 degrees, an altitude range of 100-190 kft, and several different settings of the control surfaces (elevons, body flap, and speed brake). While approximately 40 cases have been computed, only a sampling of the results is presented here. The computed results, in general, are in good agreement with the Orbiter Operational Aerodynamic Data Book (OADB) data (i.e., within the uncertainty bands) for almost all the cases. However, in a limited number of high angle-of-attack cases (at Mach 15), there are significant differences between the computed results, especially the vehicle pitching moment, and the OADB data. A preliminary analysis of the data from the CFD simulations at Mach 15 shows that these differences can be attributed to real-gas/Mach number effects.
Theory of nanobubble formation and induced force in nanochannels
NASA Astrophysics Data System (ADS)
Arai, Noriyoshi; Koishi, Takahiro; Ebisuzaki, Toshikazu
2017-10-01
This paper presents a fundamental theory of nanobubble formation and induced force in confined nanochannels. It is shown that nanobubble formation between hydrophobic plates can be predicted from their surface tension and geometry, with estimated values for the surface free energy and the force acting on the plates in good agreement with the results of molecular dynamics simulation and experimentation. When a bubble is formed between two plates, vertical attractive force and horizontal retract force due to the shifted plates are applied to the plates. The net force exerted on the plates is not dependent on the distance between them. The short-range force between hydrophobic surfaces due to hydrophobic interaction appears to correspond to the force estimated by our theory. We compared between experimental and theoretical values for the binding energy of a molecular motor system to validate our theory. The tendency that the binding energy increases as the size of the protein increases is consistent with the theory.
Mercadante, Davide; Wagner, Johannes A; Aramburu, Iker V; Lemke, Edward A; Gräter, Frauke
2017-09-12
Molecular dynamics (MD) simulations have valuably complemented experiments describing the dynamics of intrinsically disordered proteins (IDPs), particularly since the proposal of models to solve the artificial collapse of IDPs in silico. Such models suggest redefining nonbonded interactions, by either increasing water dispersion forces or adopting the Kirkwood-Buff force field. These approaches yield extended conformers that better comply with experiments, but it is unclear if they all sample the same intrachain dynamics of IDPs. We have tested this by employing MD simulations and single-molecule Förster resonance energy transfer spectroscopy to sample the dimensions of systems with different sequence compositions, namely strong and weak polyelectrolytes. For strong polyelectrolytes in which charge effects dominate, all the proposed solutions equally reproduce the expected ensemble's dimensions. For weak polyelectrolytes, at lower cutoffs, force fields abnormally alter intrachain dynamics, overestimating excluded volume over chain flexibility or reporting no difference between the dynamics of different chains. The TIP4PD water model alone can reproduce experimentally observed changes in extensions (dimensions), but not quantitatively and with only weak statistical significance. Force field limitations are reversed with increased interaction cutoffs, showing that chain dynamics are critically defined by the presence of long-range interactions. Force field analysis aside, our study provides the first insights into how long-range interactions critically define IDP dimensions and raises the question of which length range is crucial to correctly sample the overall dimensions and internal dynamics of the large group of weakly charged yet highly polar IDPs.
Large-Amplitude, High-Rate Roll Oscillations of a 65 deg Delta Wing at High Incidence
NASA Technical Reports Server (NTRS)
Chaderjian, Neal M.; Schiff, Lewis B.
2000-01-01
The IAR/WL 65 deg delta wing experimental results provide both detail pressure measurements and a wide range of flow conditions covering from simple attached flow, through fully developed vortex and vortex burst flow, up to fully-stalled flow at very high incidence. Thus, the Computational Unsteady Aerodynamics researchers can use it at different level of validating the corresponding code. In this section a range of CFD results are provided for the 65 deg delta wing at selected flow conditions. The time-dependent, three-dimensional, Reynolds-averaged, Navier-Stokes (RANS) equations are used to numerically simulate the unsteady vertical flow. Two sting angles and two large- amplitude, high-rate, forced-roll motions and a damped free-to-roll motion are presented. The free-to-roll motion is computed by coupling the time-dependent RANS equations to the flight dynamic equation of motion. The computed results are compared with experimental pressures, forces, moments and roll angle time history. In addition, surface and off-surface flow particle streaks are also presented.
Quantifying indices of short- and long-range white matter connectivity at each cortical vertex
Scariati, Elisa; Mutlu, A. Kadir; Zöller, Daniela; Schneider, Maude; Eliez, Stephan
2017-01-01
Several neurodevelopmental diseases are characterized by impairments in cortical morphology along with altered white matter connectivity. However, the relationship between these two measures is not yet clear. In this study, we propose a novel methodology to compute and display metrics of white matter connectivity at each cortical point. After co-registering the extremities of the tractography streamlines with the cortical surface, we computed two measures of connectivity at each cortical vertex: the mean tracts’ length, and the proportion of short- and long-range connections. The proposed measures were tested in a clinical sample of 62 patients with 22q11.2 deletion syndrome (22q11DS) and 57 typically developing individuals. Using these novel measures, we achieved a fine-grained visualization of the white matter connectivity patterns at each vertex of the cortical surface. We observed an intriguing pattern of both increased and decreased short- and long-range connectivity in 22q11DS, that provides novel information about the nature and topology of white matter alterations in the syndrome. We argue that the method presented in this study opens avenues for additional analyses of the relationship between cortical properties and patterns of underlying structural connectivity, which will help clarifying the intrinsic mechanisms that lead to altered brain structure in neurodevelopmental disorders. PMID:29141024
Quantifying indices of short- and long-range white matter connectivity at each cortical vertex.
Padula, Maria Carmela; Schaer, Marie; Scariati, Elisa; Mutlu, A Kadir; Zöller, Daniela; Schneider, Maude; Eliez, Stephan
2017-01-01
Several neurodevelopmental diseases are characterized by impairments in cortical morphology along with altered white matter connectivity. However, the relationship between these two measures is not yet clear. In this study, we propose a novel methodology to compute and display metrics of white matter connectivity at each cortical point. After co-registering the extremities of the tractography streamlines with the cortical surface, we computed two measures of connectivity at each cortical vertex: the mean tracts' length, and the proportion of short- and long-range connections. The proposed measures were tested in a clinical sample of 62 patients with 22q11.2 deletion syndrome (22q11DS) and 57 typically developing individuals. Using these novel measures, we achieved a fine-grained visualization of the white matter connectivity patterns at each vertex of the cortical surface. We observed an intriguing pattern of both increased and decreased short- and long-range connectivity in 22q11DS, that provides novel information about the nature and topology of white matter alterations in the syndrome. We argue that the method presented in this study opens avenues for additional analyses of the relationship between cortical properties and patterns of underlying structural connectivity, which will help clarifying the intrinsic mechanisms that lead to altered brain structure in neurodevelopmental disorders.
Free Energies of Quantum Particles: The Coupled-Perturbed Quantum Umbrella Sampling Method.
Glover, William J; Casey, Jennifer R; Schwartz, Benjamin J
2014-10-14
We introduce a new simulation method called Coupled-Perturbed Quantum Umbrella Sampling that extends the classical umbrella sampling approach to reaction coordinates involving quantum mechanical degrees of freedom. The central idea in our method is to solve coupled-perturbed equations to find the response of the quantum system's wave function along a reaction coordinate of interest. This allows for propagation of the system's dynamics under the influence of a quantum biasing umbrella potential and provides a method to rigorously undo the effects of the bias to compute equilibrium ensemble averages. In this way, one can drag electrons into regions of high free energy where they would otherwise not go, thus enabling chemistry by fiat. We demonstrate the applicability of our method for two condensed-phase systems of interest. First, we consider the interaction of a hydrated electron with an aqueous sodium cation, and we calculate a potential of mean force that shows that an e(-):Na(+) contact pair is the thermodynamically favored product starting from either a neutral sodium atom or the separate cation and electron species. Second, we present the first determination of a hydrated electron's free-energy profile relative to an air/water interface. For the particular model parameters used, we find that the hydrated electron is more thermodynamically stable in the bulk rather than at the interface. Our analysis suggests that the primary driving force keeping the electron away from the interface is the long-range electron-solvent polarization interaction rather than the short-range details of the chosen pseudopotential.
Kinetics of interior loop formation in semiflexible chains.
Hyeon, Changbong; Thirumalai, D
2006-03-14
Loop formation between monomers in the interior of semiflexible chains describes elementary events in biomolecular folding and DNA bending. We calculate analytically the interior distance distribution function for semiflexible chains using a mean field approach. Using the potential of mean force derived from the distance distribution function we present a simple expression for the kinetics of interior looping by adopting Kramers theory. For the parameters, that are appropriate for DNA, the theoretical predictions in comparison with the case are in excellent agreement with explicit Brownian dynamics simulations of wormlike chain (WLC) model. The interior looping times (tauIC) can be greatly altered in the cases when the stiffness of the loop differs from that of the dangling ends. If the dangling end is stiffer than the loop then tauIC increases for the case of the WLC with uniform persistence length. In contrast, attachment of flexible dangling ends enhances rate of interior loop formation. The theory also shows that if the monomers are charged and interact via screened Coulomb potential then both the cyclization (tauc) and interior looping (tauIC) times greatly increase at low ionic concentration. Because both tauc and tauIC are determined essentially by the effective persistence length [lp(R)] we computed lp(R) by varying the range of the repulsive interaction between the monomers. For short range interactions lp(R) nearly coincides with the bare persistence length which is determined largely by the backbone chain connectivity. This finding rationalizes the efficacy of describing a number of experimental observations (response of biopolymers to force and cyclization kinetics) in biomolecules using WLC model with an effective persistence length.
Polynomial filter estimation of range and range rate for terminal rendezvous
NASA Technical Reports Server (NTRS)
Philips, R.
1970-01-01
A study was made of a polynomial filter for computing range rate information from CSM VHF range data. The filter's performance during the terminal phase of the rendezvous is discussed. Two modifications of the filter were also made and tested. A manual terminal rendezvous was simulated and desired accuracies were achieved for vehicles on an intercept trajectory, except for short periods following each braking maneuver when the estimated range rate was initially in error by the magnitude of the burn.
NASA Technical Reports Server (NTRS)
Troiani, N.; Yerazunis, S. W.
1978-01-01
An autonomous roving science vehicle that relies on terrain data acquired by a hierarchy of sensors for navigation was one method of carrying out such a mission. The hierarchy of sensors included a short range sensor with sufficient resolution to detect every possible obstacle and with the ability to make fast and reliable terrain characterizations. A multilaser, multidetector triangulation system was proposed as a short range sensor. The general system was studied to determine its perception capabilities and limitations. A specific rover and low resolution sensor system was then considered. After studying the data obtained, a hazard detection algorithm was developed that accounts for all possible terrains given the sensor resolution. Computer simulation of the rover on various terrains was used to test the entire hazard detection system.
The search for the hydrophobic force law.
Hammer, Malte U; Anderson, Travers H; Chaimovich, Aviel; Shell, M Scott; Israelachvili, Jacob
2010-01-01
After nearly 30 years of research on the hydrophobic interaction, the search for the hydrophobic force law is still continuing. Indeed, there are more questions than answers, and the experimental data are often quite different for nominally similar conditions, as well as, apparently, for nano-, micro-, and macroscopic surfaces. This has led to the conclusion that the experimentally observed force-distance relationships are either a combination of different 'fundamental' interactions, or that the hydrophobic force-law, if there is one, is complex--depending on numerous parameters. The only unexpectedly strong attractive force measured in all experiments so far has a range of D approximately 100-200 angstroms, increasing roughly exponentially down to approximately 10-20 angstroms and then more steeply down to adhesive contact at D = 0 or, for power-law potentials, effectively at D approximately 2 angstroms. The measured forces in this regime (100-200 angstroms) and especially the adhesive forces are much stronger, and have a different distance-dependence from the continuum VDW force (Lifshitz theory) for non-conducting dielectric media. We suggest a three-regime force-law for the forces observed between hydrophobic surfaces: In the first, from 100-200 angstroms to thousands of angstroms, the dominating force is created by complementary electrostatic domains or patches on the apposing surfaces and/or bridging vapour cavities; a 'pure' but still not well-understood 'long-range hydrophobic force' dominates the second regime from approximately 150 to approximately 15 angstroms, possibly due to an enhanced Hamaker constant associated with the 'proton-hopping' polarizability of water; while below approximately 10-15 anstroms to contact there is another 'pure short-range hydrophobic force' related to water structuring effects associated with surface-induced changes in the orientation and/or density of water molecules and H-bonds at the water-hydrophobic interface. We present recent SFA and other experimental results, as well as a simplified model for water based on a spherically-symmetric potential that is able to capture some basic features of hydrophobic association. Such a model may be useful for theoretical studies of the HI over the broad range of scales observed in SFA experiments.
A computational parametric study on edge loading in ceramic-on-ceramic total hip joint replacements.
Liu, Feng; Feng, Li; Wang, Junyuan
2018-07-01
Edge loading in ceramic-on-ceramic total hip joint replacement is an adverse condition that occurs as the result of a direct contact between the head and the cup rim. It has been associated with translational mismatch in the centres of rotation of the cup and head, and found to cause severe wear and early failure of the implants. Edge loading has been considered in particular in relation to dynamic separation of the cup and head centres during a gait cycle. Research has been carried out both experimentally and computationally to understand the mechanism including the influence of bearing component positioning on the occurrence and severity of edge loading. However, it is experimentally difficult to measure both the load magnitude and duration of edge loading as it occurs as a short impact within the tight space of hip joints. Computationally, a dynamic contact model, for example, developed using the MSC ADAMS software for a multi-body dynamics simulation can be particularly useful for calculating the loads and characterising the edge loading. The aim of the present study was to further develop the computational model, and improve the predictions of contact force and the understanding of mechanism in order to provide guidance on design and surgical factors to avoid or to reduce edge loading and wear. The results have shown that edge loading can be avoided for a low range of translational mismatch in the centres of rotation of the cup and head during gait at the level of approximately 1.0 mm for a cup at 45° inclination, keeping a correct cup inclination at 45° is important to reduce the edge loading severity, and edge loading can be avoided for a certain range of translational mismatch of the cup and head centres with an increased swing phase load. Copyright © 2018 Elsevier Ltd. All rights reserved.
A new method to include the gravitational forces in a finite element model of the scoliotic spine.
Clin, Julien; Aubin, Carl-Éric; Lalonde, Nadine; Parent, Stefan; Labelle, Hubert
2011-08-01
The distribution of stresses in the scoliotic spine is still not well known despite its biomechanical importance in the pathomechanisms and treatment of scoliosis. Gravitational forces are one of the sources of these stresses. Existing finite element models (FEMs), when considering gravity, applied these forces on a geometry acquired from radiographs while the patient was already subjected to gravity, which resulted in a deformed spine different from the actual one. A new method to include gravitational forces on a scoliotic trunk FEM and compute the stresses in the spine was consequently developed. The 3D geometry of three scoliotic patients was acquired using a multi-view X-ray 3D reconstruction technique and surface topography. The FEM of the patients' trunk was created using this geometry. A simulation process was developed to apply the gravitational forces at the centers of gravity of each vertebra level. First the "zero-gravity" geometry was determined by applying adequate upwards forces on the initial geometry. The stresses were reset to zero and then the gravity forces were applied to compute the geometry of the spine subjected to gravity. An optimization process was necessary to find the appropriate zero-gravity and gravity geometries. The design variables were the forces applied on the model to find the zero-gravity geometry. After optimization the difference between the vertebral positions acquired from radiographs and the vertebral positions simulated with the model was inferior to 3 mm. The forces and compressive stresses in the scoliotic spine were then computed. There was an asymmetrical load in the coronal plane, particularly, at the apices of the scoliotic curves. Difference of mean compressive stresses between concavity and convexity of the scoliotic curves ranged between 0.1 and 0.2 MPa. In conclusion, a realistic way of integrating gravity in a scoliotic trunk FEM was developed and stresses due to gravity were explicitly computed. This is a valuable improvement for further biomechanical modeling studies of scoliosis.
Determination of the Contact Angle Based on the Casimir Effect
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin; Volz, Martin P.
2015-01-01
On a macroscopic scale, a nonreactive liquid partially covering a homogeneous solid surface will intersect the solid at an angle called the contact angle. For molten metals and semiconductors, the contact angle is materially dependent upon both the solid and liquid and typical values fall in the range 80-170 deg, depending on the crucible material. On a microscopic scale, there does not exist a precise and sharp contact angle but rather the liquid and solid surfaces merge smoothly and continuously. Consider the example of the so called detached Bridgman crystal growth process. In this technique, a small gap is formed between the growing crystal and the crucible. At the crystal/melt interface, a meniscus ring is formed. Its width can be in the range of a few micrometers, approaching a microscopic scale. It then becomes questionable to describe the shape of this meniscus by the contact angle. A more advanced treatment of the interface is needed and here we propose such a refined model. The interaction of the liquid surface with the solid can be calculated by considering two forces: a short-range repulsive force and a longer range (up to a few micrometers) Casimir or van der Waals force.
A Scheme for Short-Term Prediction of Hydrometeors Using Advection and Physical Forcing.
1984-07-01
D.A. Lowry, 1978: Use of a real - time computer graphics system for diagnosis and forecasting . Preprints, Conf. on Wes. Forecasting and Analysis and...28 Figure 4.2.1. Graph for forecasting the night minimum temperature from observations at 1800-2000 local time . From Zverev (1972...3u 1. 2 much weather is produced by organized systems that translate, and forecast gains were made through use of the concepts of steering
ERIC Educational Resources Information Center
Swanson, H. Lee; Zheng, Xinhua; Jerman, Olga
2009-01-01
The purpose of the present study was to synthesize research that compares children with and without reading disabilities (RD) on measures of short-term memory (STM) and working memory (WM). Across a broad age, reading, and IQ range, 578 effect sizes (ESs) were computed, yielding a mean ES across studies of -0.89 (SD = 1.03). A total of 257 ESs…
Universal Linear Motor Driven Leg Press Dynamometer and Concept of Serial Stretch Loading.
Hamar, Dušan
2015-08-24
Paper deals with backgrounds and principles of universal linear motor driven leg press dynamometer and concept of serial stretch loading. The device is based on two computer controlled linear motors mounted to the horizontal rails. As the motors can keep either constant resistance force in selected position or velocity in both directions, the system allows simulation of any mode of muscle contraction. In addition, it also can generate defined serial stretch stimuli in a form of repeated force peaks. This is achieved by short segments of reversed velocity (in concentric phase) or acceleration (in eccentric phase). Such stimuli, generated at the rate of 10 Hz, have proven to be a more efficient means for the improvement of rate of the force development. This capability not only affects performance in many sports, but also plays a substantial role in prevention of falls and their consequences. Universal linear motor driven and computer controlled dynamometer with its unique feature to generate serial stretch stimuli seems to be an efficient and useful tool for enhancing strength training effects on neuromuscular function not only in athletes, but as well as in senior population and rehabilitation patients.
Azadi, Mehdi; Nguyen, Anh V; Yakubov, Gleb E
2015-02-17
Interfacial gas enrichment of dissolved gases (IGE) has been shown to cover hydrophobic solid surfaces in water. The atomic force microscopy (AFM) data has recently been supported by molecular dynamics simulation. It was demonstrated that IGE is responsible for the unexpected stability and large contact angle of gaseous nanobubbles at the hydrophobic solid-water interface. Here we provide further evidence of the significant effect of IGE on an attractive force between hydrophobic solid surfaces in water. The force in the presence of dissolved gas, i.e., in aerated and nonaerated NaCl solutions (up to 4 M), was measured by the AFM colloidal probe technique. The effect of nanobubble bridging on the attractive force was minimized or eliminated by measuring forces on the first approach of the AFM probe toward the flat hydrophobic surface and by using high salt concentrations to reduce gas solubility. Our results confirm the presence of three types of forces, two of which are long-range attractive forces of capillary bridging origin as caused by either surface nanobubbles or gap-induced cavitation. The third type is a short-range attractive force observed in the absence of interfacial nanobubbles that is attributed to the IGE in the form of a dense gas layer (DGL) at hydrophobic surfaces. Such a force was found to increase with increasing gas saturation and to decrease with decreasing gas solubility.
Drag reduction in turbulent channel laden with finite-size oblate spheroids
NASA Astrophysics Data System (ADS)
Niazi Ardekani, Mehdi; Pedro Costa Collaboration; Wim-Paul Breugem Collaboration; Francesco Picano Collaboration; Luca Brandt Collaboration
2016-11-01
Suspensions of oblate rigid particles in a turbulent plane channel flow are investigated for different values of the particle volume fraction. We perform direct numerical simulations (DNS), using a direct-forcing immersed boundary method to account for the particle-fluid interactions, combined with a soft-sphere collision model and lubrication corrections for short-range particle-particle and particle-wall interactions. We show a clear drag reduction and turbulence attenuation in flows laden with oblate spheroids, both with respect to the single phase turbulent flow and to suspensions of rigid spheres. We explain the drag reduction by the lack of the particle layer at the wall, observed before for spherical particles. In addition, the special shape of the oblate particles creates a tendency to stay parallel to the wall in its vicinity, forming a shield of particles that prevents strong fluctuations in the outer layer to reach the wall and vice versa. Detailed statistics of the fluid and particle phase will be presented at the conference to explain the observed drag reduction. Supported by the European Research Council Grant No. ERC-2013-CoG-616186, TRITOS. The authors acknowledge computer time provided by SNIC (Swedish National Infrastructure for Computing) and the support from the COST Action MP1305: Flowing matter.
Substrate strain induced interaction of adatoms on W (110)
NASA Astrophysics Data System (ADS)
Kappus, W.
1980-09-01
The interaction of adatoms due to elastic strains created in an elastically isotropic substrate is investigated. For cases where the adatoms occupy sites with low symmetry, an angular dependent interaction results which falls off as s-3 at large distances. An exact expression is given for the long range interaction in terms of an anisotropy parameter of the force dipole tensor. The short range interaction is calculated by introducing a smooth cutoff. Interactions of adatoms on near neighbour sites on W (110) are given.
Pionnier, Raphaël; Découfour, Nicolas; Barbier, Franck; Popineau, Christophe; Simoneau-Buessinger, Emilie
2016-03-01
The purpose of this study was to quantitatively and qualitatively assess dynamic balance with accuracy in individuals with chronic ankle instability (CAI). To this aim, a motion capture system was used while participants performed the Star Excursion Balance Test (SEBT). Reached distances for the 8 points of the star were automatically computed, thereby excluding any dependence to the experimenter. In addition, new relevant variables were also computed, such as absolute time needed to reach each distance, lower limb ranges of motion during unipodal stance, as well as absolute error of pointing. Velocity of the center of pressure and range of variation of ground reaction forces have also been assessed during the unipodal phase of the SEBT thanks to force plates. CAI group exhibited smaller reached distances and greater absolute error of pointing than the control group (p<0.05). Moreover, the ranges of motion of lower limbs joints, the velocity of the center of pressure and the range of variation of the ground reaction forces were all significantly smaller in the CAI group (p<0.05). These reduced quantitative and qualitative performances highlighted a lower dynamic postural control. The limited body movements and accelerations during the unipodal stance in the CAI group could highlight a protective strategy. The present findings could help clinicians to better understand the motor strategies used by CAI patients during dynamic balance and may guide the rehabilitation process. Copyright © 2016 Elsevier B.V. All rights reserved.
Topological effects on the mechanical properties of polymer knots
NASA Astrophysics Data System (ADS)
Zhao, Yani; Ferrari, Franco
2017-11-01
The mechanical properties of knotted polymer rings under stretching in a bad or good solvent are investigated by applying a force F to a point of the knot while keeping another point fixed. The Monte Carlo sampling of the polymer conformations is performed on a simple cubic lattice using the Wang-Landau algorithm. The specific energy, specific heat capacity, gyration radius and the force-elongation curves are computed for several knot topologies with lengths up to 120 lattice units. The common features of the mechanical and thermal behavior of stretched short polymer rings forming knots of a given topological type are analyzed as well as the differences arising due to topology and size effects. It is found that these systems admit three different phases depending on the values of the tensile force F and the temperature T. The transitions from one phase to the other are well characterized by the peaks of the specific heat capacity and by the data of the gyration radius and specific energy. At very low temperatures the force-elongation curves show that the stretching of a knot is a stepwise process, which becomes smooth at higher temperatures. Criteria for distinguishing topological and size effects are provided. It turns out from our study that the behavior of short polymer rings is strongly influenced by topological effects. In particular, the swelling and the swelling rate of knots are severely limited by the topological constraints. Several other properties that are affected by topology, like the decay of the specific energy at high tensile forces, are discussed. The fading out of the influences of topological origin with increasing knot lengths has been verified. Some anomalies detected in the plots of the specific heat capacity of very short and complex knots have been explained by the limitations in the number of accessible energy states due to the topological constraints.
Air pollution radiative forcing from specific emissions sectors at 2030
NASA Astrophysics Data System (ADS)
Unger, Nadine; Shindell, Drew T.; Koch, Dorothy M.; Streets, David G.
2008-01-01
Reduction of short-lived air pollutants can contribute to mitigate global warming in the near-term with ancillary benefits to human health. However, the radiative forcings of short-lived air pollutants depend on the location and source type of the precursor emissions. We apply the Goddard Institute for Space Studies atmospheric composition-climate model to quantify near-future (2030 A1B) global annual mean radiative forcing by ozone (O3) and sulfate from six emissions sectors in seven geographic regions. At 2030 the net forcings from O3, sulfate, black and organic carbon, and indirect CH4 effects for each emission sector are (in mWm-2) biomass burning, +95; domestic, +68; transportation, +67; industry, -131; and power, -224. Biomass burning emissions in East Asia and central and southern Africa, domestic biofuel emissions in East Asia, south Asia, and central and southern Africa, and transportation emissions in Europe and North America have large net positive forcings and are therefore attractive targets to counter global warming. Power and industry emissions from East Asia, south Asia, and north Africa and the Middle East have large net negative forcings. Therefore air quality control measures that affect these regional sectors require offsetting climate measures to avoid a warming impact. Linear relationships exist between O3 forcing and biomass burning and domestic biofuel CO precursor emissions independent of region with sensitivity of +0.2 mWm-2/TgCO. Similarly, linear relationships exist between sulfate forcing and SO2 precursor emissions that depend upon region but are independent of sector with sensitivities ranging from -3 to -12 mWm-2/TgS.
On the climate impacts from the volcanic and solar forcings
NASA Astrophysics Data System (ADS)
Varotsos, Costas A.; Lovejoy, Shaun
2016-04-01
The observed and the modelled estimations show that the main forcings on the atmosphere are of volcanic and solar origins, which act however in an opposite way. The former can be very strong and decrease at short time scales, whereas, the latter increase with time scale. On the contrary, the observed fluctuations in temperatures increase at long scales (e.g. centennial and millennial), and the solar forcings do increase with scale. The common practice is to reduce forcings to radiative equivalents assuming that their combination is linear. In order to clarify the validity of the linearity assumption and determine its range of validity, we systematically compare the statistical properties of solar only, volcanic only and combined solar and volcanic forcings over the range of time scales from one to 1000 years. Additionally, we attempt to investigate plausible reasons for the discrepancies observed between the measured and modeled anomalies of tropospheric temperatures in the tropics. For this purpose, we analyse tropospheric temperature anomalies for both the measured and modeled time series. The results obtained show that the measured temperature fluctuations reveal white noise behavior, while the modeled ones exhibit long-range power law correlations. We suggest that the persistent signal, should be removed from the modeled values in order to achieve better agreement with observations. Keywords: Scaling, Nonlinear variability, Climate system, Solar radiation
NASA Technical Reports Server (NTRS)
1992-01-01
The PER-Force robotic handcontroller provides a sense of touch or "feel" to an operator manipulating robots. The force simulation and wide range of motion greatly enhances the efficiency of robotic and computer operations. The handcontroller was developed for the Space Station by Cybernet Systems Corporation under a Small Business Innovation Research (SBIR) contract. Commercial applications include underwater use, underground excavations, research laboratories, hazardous waste handling and in manufacturing operations in which it is unsafe or impractical for humans to work.
Viscous friction of hydrogen-bonded matter
NASA Astrophysics Data System (ADS)
Erbas, Aykut; Horinek, Dominik; Netz, Roland R.
2012-02-01
Amontons' law successfully describes friction between macroscopic solid bodies for a wide range of velocities and normal forces. For the diffusion and forced sliding of adhering or entangled macromolecules, proteins and biological complexes, temperature effects are invariably important and a similarly successful friction law at biological length and velocity scales is missing. Hydrogen bonds are key to the specific binding of bio-matter. Here we show that friction between hydrogen-bonded matter obeys in the biologically relevant low-velocity viscous regime a simple equations: the friction force is proportional to the number of hydrogen bonds, the sliding velocity, and a friction coefficient γHB. This law is deduced from atomistic molecular dynamics simulations for short peptide chains that are laterally pulled over hydroxylated substrates in the presence of water and holds for widely different peptides, surface polarities and applied normal forces. The value of γHB is extrapolated from simulations at sliding velocities in the range from v=10-2 m/s to 100 m/s by mapping on a simple stochastic model and turns out to be of the order of γHB˜10-8 kg/s. 3 hydrogen bonds act collectively.
Aging and functional brain networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomasi D.; Tomasi, D.; Volkow, N.D.
2011-07-11
Aging is associated with changes in human brain anatomy and function and cognitive decline. Recent studies suggest the aging decline of major functional connectivity hubs in the 'default-mode' network (DMN). Aging effects on other networks, however, are largely unknown. We hypothesized that aging would be associated with a decline of short- and long-range functional connectivity density (FCD) hubs in the DMN. To test this hypothesis, we evaluated resting-state data sets corresponding to 913 healthy subjects from a public magnetic resonance imaging database using functional connectivity density mapping (FCDM), a voxelwise and data-driven approach, together with parallel computing. Aging was associatedmore » with pronounced long-range FCD decreases in DMN and dorsal attention network (DAN) and with increases in somatosensory and subcortical networks. Aging effects in these networks were stronger for long-range than for short-range FCD and were also detected at the level of the main functional hubs. Females had higher short- and long-range FCD in DMN and lower FCD in the somatosensory network than males, but the gender by age interaction effects were not significant for any of the networks or hubs. These findings suggest that long-range connections may be more vulnerable to aging effects than short-range connections and that, in addition to the DMN, the DAN is also sensitive to aging effects, which could underlie the deterioration of attention processes that occurs with aging.« less
NASA Astrophysics Data System (ADS)
Deleflie, Florent; Sammuneh, Muhammad Ali; Coulot, David; Pollet, Arnaud; Biancale, Richard; Capderou, Michel
2017-04-01
Part of the energy received on the Earth from the Sun is split into two components, a short wave component which corresponds to the visible emissivity of the Earth's surface (albedo), and the long wave part corresponding to the thermic emissivity (infrared wavelengths). These two components induce small non gravitational forces on the orbits of artificial satellites, towards the radial direction (mainly), that we are evaluating to derive a mean model. The first step to evaluate the mean amplitudes and periods of the generaetd perturbations consists in comparing post-fit adjustment of geodetic satellites to SLR data, in two dynamical models accounting or not accounting for empirical forces standing for such effects: the orbits of the geodetic satellite STARLETTE, Stella, Ajisai, Lageos 1 and Lageos 2 are carried out in such a way over the period 2000-2016, with the GINS GRGS orbit computation s/w. We then use three kinds of data sets to investigate the mean amplitudes of the perturbations, and to investigate features on regional spatial scales: (i) Stephens tables, (Stephens, 1980), ECMWF (European Centre for Medium-Range Weather Forecasts ) data sets (that are available at GRGS, Groupe de Recherche de Géodésie Spatiale, France), and CERES (Clouds and the Earth's Radiant Energy System) data sets (publickly available).We analyze what is the data set leading to the lowest residual level. Then, following an approach close to the one developed by Stephens, we propose a set of monthly grids that are averaged over the period 2000-2016, and that is evaluated through the orbit computation of the above-mentioned satellites.
Design analysis of a self-acting spiral-groove ring seal for counter-rotating shafts
NASA Technical Reports Server (NTRS)
Dirusso, E.
1983-01-01
A self-acting spiral groove inter-shaft ring seal of nominal 16.33 cm (6.43 in.) diameter for sealing fan bleed air between counter-rotating hafts in advanced turbofan engines was analyzed. The analysis focused on the lift force characteristics of the spiral grooves. A NASA Lewis developed computer program for predicting the performance of gas lubricated face seals was used to optimize the spiral groove geometry to produce maximum lift force. Load capacity curves (lift force as function of film thickness) were generated for four advanced turbofan engine operating conditions at relative seal speeds ranging from 17,850 to 29,800 rpm, sealed air pressures from 6 to 42 N/sq cm (9 to 60 psi) absolute and temperatures from 95 deg to 327 C (203 deg to 620 F). The relative seal sliding speed range was 152 to 255 m/sec (500 to 836 ft/sec). The analysis showed that the spiral grooves are capable of producing sufficient lift force such that the ring seal will operate in a noncontacting mode over the operating range of typical advanced turbofan engines.
Design analysis of a self-acting spiral-groove ring seal for counter-rotating shafts. [o ring seals
NASA Technical Reports Server (NTRS)
Dirusso, E.
1983-01-01
A self-acting spiral groove inter-shaft ring seal of nominal 16.33 cm (6.43 in.) diameter for sealing fan bleed air between counter rotating shafts in advanced turbofan engines was analyzed. The analysis focused on the lift force characteristics of the spiral grooves. A NASA Lewis developed computer program for predicting the performance of gas lubricated face seals was used to optimize the spiral groove geometry to produce maximum lift force. Load capacity curves (lift force as function of film thickness) were generated for four advanced turbofan engine operating conditions at relative seal speeds ranging from 17,850 to 29,800 rpm, sealed air pressures from 6 to 42 N/sq cm (9 to 60 psi) absolute and temperatures from 95 to 327 C (203 to 620 F). The relative seal sliding speed range was 152 to 255 m/sec (500 to 836 ft/sec). The analysis showed that the spiral grooves are capable of producing sufficient lift force such that the ring seal will operate in a noncontacting mode over the operating range of typical advanced turbofan engines.
Local deformation for soft tissue simulation
Omar, Nadzeri; Zhong, Yongmin; Smith, Julian; Gu, Chengfan
2016-01-01
ABSTRACT This paper presents a new methodology to localize the deformation range to improve the computational efficiency for soft tissue simulation. This methodology identifies the local deformation range from the stress distribution in soft tissues due to an external force. A stress estimation method is used based on elastic theory to estimate the stress in soft tissues according to a depth from the contact surface. The proposed methodology can be used with both mass-spring and finite element modeling approaches for soft tissue deformation. Experimental results show that the proposed methodology can improve the computational efficiency while maintaining the modeling realism. PMID:27286482
Conference-EC-US Task Force Joint US-EU Workshop on Metabolomics and Environmental Biotechnology
DOE Office of Scientific and Technical Information (OSTI.GOV)
PI: Lily Y. Young
2009-06-04
Since 1990, the EC-US Task Force on Biotechnology Research has been coordinating transatlantic efforts to guide and exploit the ongoing revolution in biotechnology and the life sciences. The Task Force was established in June 1990 by the European Commission and the White House Office of Science and Technology Policy. The Task Force has acted as an effective forum for discussion, coordination, and development of new ideas for the last 18 years. Task Force members are European Commission and US Government science and technology administrators who meet annually to enhance communication across the Atlantic, and to encourage collaborative research. Through sponsoringmore » workshops, and other activities, the Task Force also brings together scientific leaders and early career researchers from both sides of the Atlantic to forecast research challenges and opportunities and to promote better links between researchers. Over the years, by keeping a focus on the future of science, the Task Force has played a key role in establishing a diverse range of emerging scientific fields, including biodiversity research, neuroinformatics, genomics, nanobiotechnology, neonatal immunology, transkingdom molecular biology, biologically-based fuels, and environmental biotechnology. The EC-US Task Force has sponsored a number of Working Groups on topics of mutual transatlantic interest. The idea to create a Working Group on Environmental Biotechnology research was discussed in the Task Force meeting of October 1993. The EC-US Working Group on Environmental Biotechnology set as its mission 'To train the next generation of leaders in environmental biotechnology in the United States and the European Union to work collaboratively across the Atlantic.' Since 1995, the Working Group supported three kinds of activities, all of which focus one early career scientists: (1) Workshops on the use of molecular methods and genomics in environmental biotechnology; (2) Short courses with theoretical, laboratory and field elements; and (3) Short term exchange fellowships. The short term exchange fellowships were created to enable young scientists to develop collaborations with colleagues across the Atlantic and to learn a new skill or expertise in the area of environmental biotechnology.« less
Computationally Efficient Multiconfigurational Reactive Molecular Dynamics
Yamashita, Takefumi; Peng, Yuxing; Knight, Chris; Voth, Gregory A.
2012-01-01
It is a computationally demanding task to explicitly simulate the electronic degrees of freedom in a system to observe the chemical transformations of interest, while at the same time sampling the time and length scales required to converge statistical properties and thus reduce artifacts due to initial conditions, finite-size effects, and limited sampling. One solution that significantly reduces the computational expense consists of molecular models in which effective interactions between particles govern the dynamics of the system. If the interaction potentials in these models are developed to reproduce calculated properties from electronic structure calculations and/or ab initio molecular dynamics simulations, then one can calculate accurate properties at a fraction of the computational cost. Multiconfigurational algorithms model the system as a linear combination of several chemical bonding topologies to simulate chemical reactions, also sometimes referred to as “multistate”. These algorithms typically utilize energy and force calculations already found in popular molecular dynamics software packages, thus facilitating their implementation without significant changes to the structure of the code. However, the evaluation of energies and forces for several bonding topologies per simulation step can lead to poor computational efficiency if redundancy is not efficiently removed, particularly with respect to the calculation of long-ranged Coulombic interactions. This paper presents accurate approximations (effective long-range interaction and resulting hybrid methods) and multiple-program parallelization strategies for the efficient calculation of electrostatic interactions in reactive molecular simulations. PMID:25100924
Zero side force volute development
NASA Technical Reports Server (NTRS)
Anderson, P. G.; Franz, R. J.; Farmer, R. C.; Chen, Y. S.
1995-01-01
Collector scrolls on high performance centrifugal pumps are currently designed with methods which are based on very approximate flowfield models. Such design practices result in some volute configurations causing excessive side loads even at design flowrates. The purpose of this study was to develop and verify computational design tools which may be used to optimize volute configurations with respect to avoiding excessive loads on the bearings. The new design methodology consisted of a volute grid generation module and a computational fluid dynamics (CFD) module to describe the volute geometry and predict the radial forces for a given flow condition, respectively. Initially, the CFD module was used to predict the impeller and the volute flowfields simultaneously; however, the required computation time was found to be excessive for parametric design studies. A second computational procedure was developed which utilized an analytical impeller flowfield model and an ordinary differential equation to describe the impeller/volute coupling obtained from the literature, Adkins & Brennen (1988). The second procedure resulted in 20 to 30 fold increase in computational speed for an analysis. The volute design analysis was validated by postulating a volute geometry, constructing a volute to this configuration, and measuring the steady radial forces over a range of flow coefficients. Excellent agreement between model predictions and observed pump operation prove the computational impeller/volute pump model to be a valuable design tool. Further applications are recommended to fully establish the benefits of this new methodology.
Mechanics of Constriction during Cell Division: A Variational Approach
Almendro-Vedia, Victor G.; Monroy, Francisco; Cao, Francisco J.
2013-01-01
During symmetric division cells undergo large constriction deformations at a stable midcell site. Using a variational approach, we investigate the mechanical route for symmetric constriction by computing the bending energy of deformed vesicles with rotational symmetry. Forces required for constriction are explicitly computed at constant area and constant volume, and their values are found to be determined by cell size and bending modulus. For cell-sized vesicles, considering typical bending modulus of , we calculate constriction forces in the range . The instability of symmetrical constriction is shown and quantified with a characteristic coefficient of the order of , thus evidencing that cells need a robust mechanism to stabilize constriction at midcell. PMID:23990888
Charge ordering in ionic fluids mediate repulsive surface interactions
NASA Astrophysics Data System (ADS)
Dasbiswas, Kinjal; Ludwig, Nicholas B.; Zhang, Hao; Talapin, Dmitri; Vaikuntanathan, Suri
Recent experiments on ionic fluids, such as surface force measurements in organic ionic liquids and the observation of colloidal stability in inorganic molten salts, suggest the presence of long-ranged repulsive forces. These cannot be explained within the classical Debye-Hückel theory for dilute electrolytes. We argue that such repulsive interactions can arise from long-range (several nm) charge density oscillations induced by a surface that preferentially binds one of the ionic species in an ionic fluid. We present a continuum theory that accounts for such charge layering based on a frustrated Ising model that incorporates both long-range Coulombic and short-range steric interactions. The mean-field analytic treatment qualitatively matches results from molecular simulations. A careful analysis of the ionic correlation functions arising from such charge ordering may also explain the long electrostatic screening lengths observed in various ionic fluids and their non-monotonic dependence on the electrolyte concentration. We acknowledge the University of Chicago for support.
Reactive Force Fields via Explicit Valency
NASA Astrophysics Data System (ADS)
Kale, Seyit
Computational simulations are invaluable in elucidating the dynamics of biological macromolecules. Unfortunately, reactions present a fundamental challenge. Calculations based on quantum mechanics can predict bond formation and rupture; however they suffer from severe length- and time-limitations. At the other extreme, classical approaches provide orders of magnitude faster simulations; however they regard chemical bonds as immutable entities. A few exceptions exist, but these are not always trivial to adopt for routine use. We bridge this gap by providing a novel, pseudo-classical approach, based on explicit valency. We unpack molecules into valence electron pairs and atomic cores. Particles bear ionic charges and interact via pairwise-only potentials. The potentials are informed of quantum effects in the short-range and obey dissociation limits in the long-range. They are trained against a small set of isolated species, including geometries and thermodynamics of small hydrides and of dimers formed by them. The resulting force field captures the essentials of reactivity, polarizability and flexibility in a simple, seamless setting. We call this model LEWIS, after the chemical theory that inspired the use of valence pairs. Following the introduction in Chapter 1, we initially focus on the properties of water. Chapter 2 considers gas phase clusters. To transition to the liquid phase, Chapter 3 describes a novel pairwise long-range compensation that performs comparably to infinite lattice summations. The approach is suited to ionic solutions in general. In Chapters 4 and 5, LEWIS is shown to correctly predict the dipolar and quadrupolar response in bulk liquid, and can accommodate proton transfers in both acid and base. Efficiency permits the study of proton defects at dilutions not accessible to experiment or quantum mechanics. Chapter 6 discusses explicit valency approaches in other hydrides, forming the basis of a reactive organic force field. Examples of simple proton transfer and more complex reactions are discussed. Chapter 7 provides a framework for variable electron spread. This addition resolves some of the inherent limitations of the former model which implicitly assumed that electron spread was not affected by the environment. A brief summary is provided in Chapter 8.
A computer method of finding valuations forcing validity of LC formulae
NASA Astrophysics Data System (ADS)
Godlewski, Łukasz; Świetorzecka, Kordula; Mulawka, Jan
2014-11-01
The purpose of this paper is to present the computer implementation of a system known as LC temporal logic [1]. Firstly, to become familiar with some theoretical issues, a short introduction to this logic is discussed. The algorithms allowing a deep analysis of the formulae of LC logic are considered. In particular we discuss how to determine if a formula is a tautology, contrtautology or it is satisfable. Next, we show how to find all valuations to satisfy the formula. Finally, we consider finding histories generated by the formula and transforming these histories into the state machine. Moreover, a description of the experiments that verify the implementation are briefly presented.
Zhang, Suoxin; Qian, Jianqiang; Li, Yingzi; Zhang, Yingxu; Wang, Zhenyu
2018-06-04
Atomic force microscope (AFM) is an idealized tool to measure the physical and chemical properties of the sample surfaces by reconstructing the force curve, which is of great significance to materials science, biology, and medicine science. Frequency modulation atomic force microscope (FM-AFM) collects the frequency shift as feedback thus having high force sensitivity and it accomplishes a true noncontact mode, which means great potential in biological sample detection field. However, it is a challenge to establish the relationship between the cantilever properties observed in practice and the tip-sample interaction theoretically. Moreover, there is no existing method to reconstruct the force curve in FM-AFM combining the higher harmonics and the higher flexural modes. This paper proposes a novel method that a full force curve can be reconstructed by any order higher harmonics of the first two flexural modes under any vibration amplitude in FM-AFM. Moreover, in the small amplitude regime, short range forces are reconstructed more accurately by higher harmonics analysis compared with fundamental harmonics using the Sader-Jarvis formula.
Atomistic clustering-ordering and high-strain deformation of an Al0.1CrCoFeNi high-entropy alloy
Sharma, Aayush; Singh, Prashant; Johnson, Duane D.; Liaw, Peter K.; Balasubramanian, Ganesh
2016-01-01
Computational investigations of structural, chemical, and deformation behavior in high-entropy alloys (HEAs), which possess notable mechanical strength, have been limited due to the absence of applicable force fields. To extend investigations, we propose a set of intermolecular potential parameters for a quinary Al-Cr-Co-Fe-Ni alloy, using the available ternary Embedded Atom Method and Lennard-Jones potential in classical molecular-dynamics simulations. The simulation results are validated by a comparison to first-principles Korringa-Kohn-Rostoker (KKR) - Coherent Potential Approximation (CPA) [KKR-CPA] calculations for the HEA structural properties (lattice constants and bulk moduli), relative stability, pair probabilities, and high-temperature short-range ordering. The simulation (MD)-derived properties are in quantitative agreement with KKR-CPA calculations (first-principles) and experiments. We study AlxCrCoFeNi for Al ranging from 0 ≤ x ≤2 mole fractions, and find that the HEA shows large chemical clustering over a wide temperature range for x < 0.5. At various temperatures high-strain compression promotes atomistic rearrangements in Al0.1CrCoFeNi, resulting in a clustering-to-ordering transition that is absent for tensile loading. Large fluctuations under stress, and at higher temperatures, are attributed to the thermo-plastic instability in Al0.1CrCoFeNi. PMID:27498807
Atomistic clustering-ordering and high-strain deformation of an Al 0.1CrCoFeNi high-entropy alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Aayush; Singh, Prashant; Johnson, Duane D.
2016-08-08
Here, computational investigations of structural, chemical, and deformation behavior in high-entropy alloys (HEAs), which possess notable mechanical strength, have been limited due to the absence of applicable force fields. To extend investigations, we propose a set of intermolecular potential parameters for a quinary Al-Cr-Co-Fe-Ni alloy, using the available ternary Embedded Atom Method and Lennard-Jones potential in classical molecular-dynamics simulations. The simulation results are validated by a comparison to first-principles Korringa-Kohn-Rostoker (KKR) - Coherent Potential Approximation (CPA) [KKR-CPA] calculations for the HEA structural properties (lattice constants and bulk moduli), relative stability, pair probabilities, and high-temperature short-range ordering. The simulation (MD)-derived propertiesmore » are in quantitative agreement with KKR-CPA calculations (first-principles) and experiments. We study Al xCrCoFeNi for Al ranging from 0 ≤ x ≤2 mole fractions, and find that the HEA shows large chemical clustering over a wide temperature range for x < 0.5. At various temperatures high-strain compression promotes atomistic rearrangements in Al 0.1CrCoFeNi, resulting in a clustering-to-ordering transition that is absent for tensile loading. Large fluctuations under stress, and at higher temperatures, are attributed to the thermo-plastic instability in Al 0.1CrCoFeNi.« less
Neural Computations in a Dynamical System with Multiple Time Scales.
Mi, Yuanyuan; Lin, Xiaohan; Wu, Si
2016-01-01
Neural systems display rich short-term dynamics at various levels, e.g., spike-frequency adaptation (SFA) at the single-neuron level, and short-term facilitation (STF) and depression (STD) at the synapse level. These dynamical features typically cover a broad range of time scales and exhibit large diversity in different brain regions. It remains unclear what is the computational benefit for the brain to have such variability in short-term dynamics. In this study, we propose that the brain can exploit such dynamical features to implement multiple seemingly contradictory computations in a single neural circuit. To demonstrate this idea, we use continuous attractor neural network (CANN) as a working model and include STF, SFA and STD with increasing time constants in its dynamics. Three computational tasks are considered, which are persistent activity, adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, and hence cannot be implemented by a single dynamical feature or any combination with similar time constants. However, with properly coordinated STF, SFA and STD, we show that the network is able to implement the three computational tasks concurrently. We hope this study will shed light on the understanding of how the brain orchestrates its rich dynamics at various levels to realize diverse cognitive functions.
NASA Technical Reports Server (NTRS)
Haggard, J. B., Jr.
1981-01-01
An experimental investigation was conducted on methane, laminar-jet, diffusion flames with coaxial, forced-air flow to examine flame shapes in zero-gravity and in situations where buoyancy aids (normal-gravity flames) or hinders (inverted-gravity flames) the flow velocities. Fuel nozzles ranged in size from 0.051 to 0.305 cm inside radius, while the coaxial, convergent, air nozzle had a 1.4 cm inside radius at the fuel exit plane. Fuel flows ranged from 1.55 to 10.3 cu cm/sec and air flows from 0 to 597 cu cm/sec. A computer program developed under a previous government contract was used to calculate the characteristic dimensions of normal and zero-gravity flames only. The results include a comparison between the experimental data and the computed axial flame lengths for normal gravity and zero gravity which showed good agreement. Inverted-gravity flame width was correlated with the ratio of fuel nozzle radius to average fuel velocity. Flame extinguishment upon entry into weightlessness was studied, and it was found that relatively low forced-air velocities (approximately 10 cm/sec) are sufficient to sustain methane flame combustion in zero gravity. Flame color is also discussed.
The MOLDY short-range molecular dynamics package
NASA Astrophysics Data System (ADS)
Ackland, G. J.; D'Mellow, K.; Daraszewicz, S. L.; Hepburn, D. J.; Uhrin, M.; Stratford, K.
2011-12-01
We describe a parallelised version of the MOLDY molecular dynamics program. This Fortran code is aimed at systems which may be described by short-range potentials and specifically those which may be addressed with the embedded atom method. This includes a wide range of transition metals and alloys. MOLDY provides a range of options in terms of the molecular dynamics ensemble used and the boundary conditions which may be applied. A number of standard potentials are provided, and the modular structure of the code allows new potentials to be added easily. The code is parallelised using OpenMP and can therefore be run on shared memory systems, including modern multicore processors. Particular attention is paid to the updates required in the main force loop, where synchronisation is often required in OpenMP implementations of molecular dynamics. We examine the performance of the parallel code in detail and give some examples of applications to realistic problems, including the dynamic compression of copper and carbon migration in an iron-carbon alloy. Program summaryProgram title: MOLDY Catalogue identifier: AEJU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 2 No. of lines in distributed program, including test data, etc.: 382 881 No. of bytes in distributed program, including test data, etc.: 6 705 242 Distribution format: tar.gz Programming language: Fortran 95/OpenMP Computer: Any Operating system: Any Has the code been vectorised or parallelized?: Yes. OpenMP is required for parallel execution RAM: 100 MB or more Classification: 7.7 Nature of problem: Moldy addresses the problem of many atoms (of order 10 6) interacting via a classical interatomic potential on a timescale of microseconds. It is designed for problems where statistics must be gathered over a number of equivalent runs, such as measuring thermodynamic properities, diffusion, radiation damage, fracture, twinning deformation, nucleation and growth of phase transitions, sputtering etc. In the vast majority of materials, the interactions are non-pairwise, and the code must be able to deal with many-body forces. Solution method: Molecular dynamics involves integrating Newton's equations of motion. MOLDY uses verlet (for good energy conservation) or predictor-corrector (for accurate trajectories) algorithms. It is parallelised using open MP. It also includes a static minimisation routine to find the lowest energy structure. Boundary conditions for surfaces, clusters, grain boundaries, thermostat (Nose), barostat (Parrinello-Rahman), and externally applied strain are provided. The initial configuration can be either a repeated unit cell or have all atoms given explictly. Initial velocities are generated internally, but it is also possible to specify the velocity of a particular atom. A wide range of interatomic force models are implemented, including embedded atom, Morse or Lennard-Jones. Thus the program is especially well suited to calculations of metals. Restrictions: The code is designed for short-ranged potentials, and there is no Ewald sum. Thus for long range interactions where all particles interact with all others, the order- N scaling will fail. Different interatomic potential forms require recompilation of the code. Additional comments: There is a set of associated open-source analysis software for postprocessing and visualisation. This includes local crystal structure recognition and identification of topological defects. Running time: A set of test modules for running time are provided. The code scales as order N. The parallelisation shows near-linear scaling with number of processors in a shared memory environment. A typical run of a few tens of nanometers for a few nanoseconds will run on a timescale of days on a multiprocessor desktop.
Jamroz, Michal; Orozco, Modesto; Kolinski, Andrzej; Kmiecik, Sebastian
2013-01-08
It is widely recognized that atomistic Molecular Dynamics (MD), a classical simulation method, captures the essential physics of protein dynamics. That idea is supported by a theoretical study showing that various MD force-fields provide a consensus picture of protein fluctuations in aqueous solution [Rueda, M. et al. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 796-801]. However, atomistic MD cannot be applied to most biologically relevant processes due to its limitation to relatively short time scales. Much longer time scales can be accessed by properly designed coarse-grained models. We demonstrate that the aforementioned consensus view of protein dynamics from short (nanosecond) time scale MD simulations is fairly consistent with the dynamics of the coarse-grained protein model - the CABS model. The CABS model employs stochastic dynamics (a Monte Carlo method) and a knowledge-based force-field, which is not biased toward the native structure of a simulated protein. Since CABS-based dynamics allows for the simulation of entire folding (or multiple folding events) in a single run, integration of the CABS approach with all-atom MD promises a convenient (and computationally feasible) means for the long-time multiscale molecular modeling of protein systems with atomistic resolution.
Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Treweek, Benjamin C., E-mail: btreweek@utexas.edu; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.
Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitudemore » and direction, which may enable more accurate noninvasive determination of tissue properties.« less
Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue
NASA Astrophysics Data System (ADS)
Treweek, Benjamin C.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.
2015-10-01
Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitude and direction, which may enable more accurate noninvasive determination of tissue properties.
Tekin, Ali Çağrı; Çabuk, Haluk; Dedeoğlu, Süleyman Semih; Saygılı, Mehmet Selçuk; Adaş, Müjdat; Esenyel, Cem Zeki; Büyükkurt, Cem Dinçay; Tonbul, Murat
2016-03-22
To present the functional and radiological results and evaluate the effectiveness of a computer-assisted external fixator (spider frame) in patients with lower extremity shortness and deformity. The study comprised 17 patients (14 male, 3 female) who were treated for lower extremity long bone deformity and shortness between 2012 and 2015 using a spider frame. The procedure's level of difficulty was determined preoperatively using the Paley Scale. Postoperatively, the results for the patients who underwent tibial operations were evaluated using the Paley criteria modified by ASAMI, and the results for the patients who underwent femoral operations were evaluated according to the Paley scoring system. The evaluations were made by calculating the External Fixator and Distraction indexes. The mean age of the patients was 24.58 years (range, 5-51 years). The spider frame was applied to the femur in 10 patients and to the tibia in seven. The mean follow-up period was 15 months (range, 6-31 months) from the operation day, and the mean amount of lengthening was 3.0 cm (range, 1-6 cm). The mean duration of fixator application was 202.7 days (range, 104-300 days). The mean External Fixator Index was 98 days/cm (range, 42-265 days/cm). The mean Distraction Index was 10.49 days/cm (range, 10-14 days/cm). The computer-assisted external fixator system (spider frame) achieves single-stage correction in cases of both deformity and shortness. The system can be applied easily, and because of its high-tech software, it offers the possibility of postoperative treatment of the deformity.
Direct Aerosol Radiative Forcing: Calculations and Measurements from the Tropospheric
NASA Technical Reports Server (NTRS)
Russell, P. B.; Hignett, P.; Stowe, L. L.; Livingston, J. M.; Kinne, S.; Wong, J.; Chan, K. Roland (Technical Monitor)
1997-01-01
Radiative forcing is defined as the change in the net (downwelling minus upwelling) radiative flux at a given level in the atmosphere. This net flux is the radiative power density available to drive climatic processes in the earth-atmosphere system below that level. Recent research shows that radiative forcing by aerosol particles is a major source of uncertainty in climate predictions. To reduce those uncertainties, TARFOX was designed to determine direct (cloud-free) radiative forcing by the aerosols in one of the world's major industrial pollution plumes--that flowing from the east coast of the US over the Atlantic Ocean. TARFOX measured a variety of aerosol radiative effects (including direct forcing) while simultaneously measuring the chemical, physical, and optical properties of the aerosol particles causing those effects. The resulting data sets permit a wide variety of tests of the consistency, or closure, among the measurements and the models that link them. Because climate predictions use the same or similar model components, closure tests help to assess and reduce prediction uncertainties. In this work we use the TARFOX-determined aerosol, gas, and surface properties to compute radiative forcing for a variety of aerosol episodes, with inadvisable optical depths ranging from 0.07 to 0.6. We calculate forcing by several techniques with varying degrees of sophistication, in part to test the range of applicability of simplified techniques--which are often the only ones feasible in climate predictions by general circulation models (GCMs). We then compare computed forcing to that determined from: (1) Upwelling and downwelling fluxes (0.3-0.7 mm and 0.7-3.0 mm) measured by radiometers on the UK MRF C-130. and (2) Daily average cloud-free absorbed solar and emitted thermal radiative flux at the top of the atmosphere derived from the AVHRR radiometer on the NOAA- 14 satellite. The calculations and measurements all yield aerosol direct radiative forcing in the range -50 to -190 W sq m per unit inadvisable optical depth. The magnitudes are about 15 to 100 times larger than the global-average direct forcing expected for the global-average sulfate aerosol optical depth of 0.04. The reasons for the larger forcing in TARFOX include the relatively large optical depths and the focus on cloud-free, daytime conditions over the dark ocean surface. These are the conditions that produce the actual major radiative forcing events that contribute to any global-average climate effect. Detailed comparisons of calculated and measured forcings for specific events are used for more refined tests of closure.
Models of dynamic extraction of lipid tethers from cell membranes.
Nowak, Sarah A; Chou, Tom
2010-05-07
When a ligand that is bound to an integral membrane receptor is pulled, the membrane and the underlying cytoskeleton can deform before either the membrane delaminates from the cytoskeleton or the ligand detaches from the receptor. If the membrane delaminates from the cytoskeleton, it may be further extruded and form a membrane tether. We develop a phenomenological model for this process by assuming that deformations obey Hooke's law up to a critical force at which the cell membrane locally detaches from the cytoskeleton and a membrane tether forms. We compute the probability of tether formation and show that tethers can be extruded only within an intermediate range of force loading rates and pulling velocities. The mean tether length that arises at the moment of ligand detachment is computed as are the force loading rates and pulling velocities that yield the longest tethers.
Tilt changes of short duration
McHugh, Stuart
1976-01-01
Section I of this report contains a classification scheme for short period tilt data. For convenience, all fluctuations in the local tilt field of less than 24 hours duration will be designated SP (i.e., short period) tilt events. Three basic categories of waveshape appearance are defined, and the rules for naming the waveforms are outlined. Examples from tilt observations at four central California sites are provided. Section II contains some coseismic tilt data. Fourteen earthquakes in central California, ranging in magnitude from 2.9 to 5.2, were chosen for study on four tiltmeters within 10 source dimensions of the epicenters. The raw records from each of the four tiltmeters at the times of the earthquakes were photographed and are presented in this section. Section III contains documentation of computer programs used in the analysis of the short period tilt data. Program VECTOR computes the difference vector of a tilt event and displays the sequence of events as a head-to-tail vector plot. Program ONSTSP 1) requires two component digitized tilt data as input, 2) scales and plots the data, and 3) computes and displays the amplitude, azimuth, and normalized derivative of the tilt amplitude. Program SHARPS computes the onset sharpness, (i.e., the normalized derivative of the tilt amplitude at the onset of the tilt event) as a function of source-station distance from a model of creep-related tilt changes. Program DSPLAY plots the digitized data.
Kirkhus, Niels E; Skare, Øivind; Ulvestad, Bente; Aaløkken, Trond Mogens; Günther, Anne; Olsen, Raymond; Thomassen, Yngvar; Lund, May Brit; Ellingsen, Dag G
2018-04-01
The aim of this study was to assess short-term changes in pulmonary function in drill floor workers currently exposed to airborne contaminants generated as a result of drilling offshore. We also aimed to study the prevalence of pulmonary fibrosis using high-resolution computed tomography (HRCT) scans of another group of previously exposed drill floor workers. Pulmonary function was measured before and after a 14-day work period in a follow-up study of 65 drill floor workers and 65 referents. Additionally, 57 other drill floor workers exposed to drilling fluids during the 1980s were examined with HRCT of the lungs in a cross-sectional study. The drill floor workers had a statistically significant decline in forced expiratory volume in 1 s (FEV 1 ) across the 14-day work period after adjustment for diurnal variations in pulmonary function (mean 90 mL, range 30-140 mL), while the small decline among the referents (mean 20 mL, range - 30 to 70 mL) was not of statistical significance. Larger declines in FEV 1 among drill workers were associated with the fewer number of days of active drilling. There were no signs of pulmonary fibrosis related to oil mist exposure among the other previously exposed drill floor workers. After 14 days offshore, a statistically significant decline in FEV 1 was observed in the drill floor workers, which may not be related to oil mist exposure. No pulmonary fibrosis related to oil mist exposure was observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokosawa, A.
Experimental data concerning S = O dibaryon resonances are reviewed, with an emphasis on the nucleon-nucelon system. Structures observed in the ..gamma..d channel, the ..pi..d elastic scattering, pp ..-->.. ..pi..d channel, and other channels are discussed. Experimental data are compared with various theories. The short-range forces can be represented by dibaryon resonances. Further measurements to clarify the understanding of dibaryons are also discussed. 53 refs., 24 figs.
2005-12-01
3-11 De Minimis Levels for Exemption from General Confonnity Rule Requirements...Confonnity Rule de minimis levels. Therefore, not No significant impact. Noise -------1---=c=--onsidered a significant impact. Temporary, short...required under state law. This combined element is intended to guide long-range growth and de - velopment in an orderly manner that protects the
Attraction of undulatory swimmers, such as nematodes, to surfaces
NASA Astrophysics Data System (ADS)
Yuan, Jinzhou; Raizen, David; Bau, Haim
2014-11-01
Nematodes play a significant role in the ecosystem; agriculture; human, animal, and plant disease; and medical research. The interactions between nematodes and surfaces may play an important role in nematodes' life cycle and ability to invade a host. We studied the effect of a surface on the dynamics of low-Reynolds number, undulating swimmers such as Caenorhabditis (C.) elegans -both wild type and touch-insensitive. The experiments demonstrated that swimmers located far from a surface selected randomly their direction of motion. In contrast, surface-proximate swimmers rotated towards, collided with, and swam along the surface for considerable time intervals, periodically contacting the surface with their anterior. Likewise, swimmers in a swarm were present at higher concentrations close to the surface. Both resistive force theory-based calculations and symmetry arguments predict that short range hydrodynamic torque, resulting from the interaction between the swimmer-induced flow field and the surface, rotate the swimmer towards the surface. We conclude that the surface attraction and following results from the interplay between short-range hydrodynamic and steric forces and is genotype-independent. The work was supported, in part, by NIH NIA 5R03AG042690-02 and NBIC NSF NSEC DMR08-32802.
NASA Astrophysics Data System (ADS)
Tiwari, Sarvesh K.; Pandey, L. K.; Shukla, Lal Ji; Upadhyaya, K. S.
2009-12-01
The van der Waals three-body force shell model (VTSM) has been developed by modifying the three-body force shell model (TSM) for the lattice dynamics of ionic crystals with cesium chloride (CsCl) structure. This new model incorporates van der Waals interactions along with long-range Coulomb interactions, three-body interactions and short-range second neighbour interactions in the framework of a rigid shell model (RSM). In the present paper, VTSM has been used to study the lattice dynamics of thallous bromide (TlBr), from which adequacy of VTSM has been established. A comparative study of the dynamical behaviour of TlBr has also been done between the present model and TSM, the model over which modification has been made to obtain the present model VTSM. Good agreement has been observed between the theoretical and experimental results, which give confidence that it is an appropriate model for the complete description of ionic crystals with CsCl structure.
Samson, M; Monnet, T; Bernard, A; Lacouture, P; David, L
2018-01-23
The propulsive forces generated by the hands and arms of swimmers have so far been determined essentially by quasi-steady approaches. This study aims to quantify the temporal dependence of the hydrodynamic forces for a simple translation movement: an impulsive start from rest. The study, carried out in unsteady numerical simulation, couples the calculation of the lift and the drag on an expert swimmer hand-forearm model with visualizations of the flow and flow vortex structure analysis. The results of these simulations show that the hand and forearm hydrodynamic forces should be studied from an unsteady approach because the quasi-steady model is inadequate. It also appears that the delayed stall effect generates higher circulatory forces during a short translation at high angle of attack than forces calculated under steady state conditions. During this phase the hand force coefficients are approximately twice as large as those of the forearm. The total force coefficients are highest for angles of attack between 40° and 60°. For the same angle of attack, the forces produced when the leading edge is the thumb side are slightly greater than those produced when the leading edge is the little finger side. Copyright © 2017 Elsevier Ltd. All rights reserved.
A moving control volume approach to computing hydrodynamic forces and torques on immersed bodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nangia, Nishant; Johansen, Hans; Patankar, Neelesh A.
Here, we present a moving control volume (CV) approach to computing hydrodynamic forces and torques on complex geometries. The method requires surface and volumetric integrals over a simple and regular Cartesian box that moves with an arbitrary velocity to enclose the body at all times. The moving box is aligned with Cartesian grid faces, which makes the integral evaluation straightforward in an immersed boundary (IB) framework. Discontinuous and noisy derivatives of velocity and pressure at the fluid–structure interface are avoided and far-field (smooth) velo city and pressure information is used. We re-visit the approach to compute hydrodynamic forces and torquesmore » through force/torque balance equations in a Lagrangian frame that some of us took in a prior work (Bhalla et al., 2013 [13]). We prove the equivalence of the two approaches for IB methods, thanks to the use of Peskin's delta functions. Both approaches are able to suppress spurious force oscillations and are in excellent agreement, as expected theoretically. Test cases ranging from Stokes to high Reynolds number regimes are considered. We discuss regridding issues for the moving CV method in an adaptive mesh refinement (AMR) context. The proposed moving CV method is not limited to a specific IB method and can also be used, for example, with embedded boundary methods.« less
A moving control volume approach to computing hydrodynamic forces and torques on immersed bodies
Nangia, Nishant; Johansen, Hans; Patankar, Neelesh A.; ...
2017-10-01
Here, we present a moving control volume (CV) approach to computing hydrodynamic forces and torques on complex geometries. The method requires surface and volumetric integrals over a simple and regular Cartesian box that moves with an arbitrary velocity to enclose the body at all times. The moving box is aligned with Cartesian grid faces, which makes the integral evaluation straightforward in an immersed boundary (IB) framework. Discontinuous and noisy derivatives of velocity and pressure at the fluid–structure interface are avoided and far-field (smooth) velo city and pressure information is used. We re-visit the approach to compute hydrodynamic forces and torquesmore » through force/torque balance equations in a Lagrangian frame that some of us took in a prior work (Bhalla et al., 2013 [13]). We prove the equivalence of the two approaches for IB methods, thanks to the use of Peskin's delta functions. Both approaches are able to suppress spurious force oscillations and are in excellent agreement, as expected theoretically. Test cases ranging from Stokes to high Reynolds number regimes are considered. We discuss regridding issues for the moving CV method in an adaptive mesh refinement (AMR) context. The proposed moving CV method is not limited to a specific IB method and can also be used, for example, with embedded boundary methods.« less
Shek, Tina L T; Tse, Leonard W; Nabovati, Aydin; Amon, Cristina H
2012-12-01
The technique of crossing the limbs of bifurcated modular stent grafts for endovascular aneurysm repair (EVAR) is often employed in the face of splayed aortic bifurcations to facilitate cannulation and prevent device kinking. However, little has been reported about the implications of cross-limb EVAR, especially in comparison to conventional EVAR. Previous computational fluid dynamics studies of conventional EVAR grafts have mostly utilized simplified planar stent graft geometries. We herein examined the differences between conventional and cross-limb EVAR by comparing their hemodynamic flow fields (i.e., in the "direct" and "cross" configurations, respectively). We also added a "planar" configuration, which is commonly found in the literature, to identify how well this configuration compares to out-of-plane stent graft configurations from a hemodynamic perspective. A representative patient's cross-limb stent graft geometry was segmented using computed tomography imaging in Mimics software. The cross-limb graft geometry was used to build its direct and planar counterparts in SolidWorks. Physiologic velocity and mass flow boundary conditions and blood properties were implemented for steady-state and pulsatile transient simulations in ANSYS CFX. Displacement forces, wall shear stress (WSS), and oscillatory shear index (OSI) were all comparable between the direct and cross configurations, whereas the planar geometry yielded very different predictions of hemodynamics compared to the out-of-plane stent graft configurations, particularly for displacement forces. This single-patient study suggests that the short-term hemodynamics involved in crossing the limbs is as safe as conventional EVAR. Higher helicity and improved WSS distribution of the cross-limb configuration suggest improved flow-related thrombosis resistance in the short term. However, there may be long-term fatigue implications to stent graft use in the cross configuration when compared to the direct configuration.
Labor force planning issues for allied health in Australia.
Smith, C S; Crowley, S
1995-01-01
The aim of this paper is to discuss labor force planning issues for allied health professionals in Australia. Health system reform and changes in the demand for health labor, combined with key characteristics of the professions, will have a profound influence on future needs for career development of allied health professionals. Key issues include the increasing need for allied health professionals to undertake business management and public health training, the growing trend of multiskilling versus specialization, and the need for the professions to diversify their skill base to ensure a range of career options in a changing health care system. The challenge for allied health professions is to improve tools of analysis in relation to labor force planning and to systematically investigate various factors influencing labor force supply and demand, on both a short-term and long-term basis.
Glassy phases and driven response of the phase-field-crystal model with random pinning.
Granato, E; Ramos, J A P; Achim, C V; Lehikoinen, J; Ying, S C; Ala-Nissila, T; Elder, K R
2011-09-01
We study the structural correlations and the nonlinear response to a driving force of a two-dimensional phase-field-crystal model with random pinning. The model provides an effective continuous description of lattice systems in the presence of disordered external pinning centers, allowing for both elastic and plastic deformations. We find that the phase-field crystal with disorder assumes an amorphous glassy ground state, with only short-ranged positional and orientational correlations, even in the limit of weak disorder. Under increasing driving force, the pinned amorphous-glass phase evolves into a moving plastic-flow phase and then, finally, a moving smectic phase. The transverse response of the moving smectic phase shows a vanishing transverse critical force for increasing system sizes.
Static and Dynamic Pressure Distributions in a Short Labyrinth Seal
NASA Technical Reports Server (NTRS)
Millsaps, K. T.; Martinez-Sanchez, M.
1991-01-01
As part of a study into turbine blade tip destabilizing forces, a seals test rig was built in which spin rate, circular whirl rate, direction and amplitude of inlet swirl angle, and eccentricity can all be controlled over wide ranges, and measurements can be made at gap Reynolds numbers up to about 2 x 10(exp 4). This facility is described and preliminary data is presented for a one cavity labyrinth seal with a flat, stator mounted land. The impact of different flow coefficients for the first and second knives on the rotordynamic coefficients was found. While this effect is dominant for the direct forces, it should also be incorporated into calculations of cross forces where it has an impact under many conditions.
Origins of phase contrast in the atomic force microscope in liquids
Melcher, John; Carrasco, Carolina; Xu, Xin; Carrascosa, José L.; Gómez-Herrero, Julio; José de Pablo, Pedro; Raman, Arvind
2009-01-01
We study the physical origins of phase contrast in dynamic atomic force microscopy (dAFM) in liquids where low-stiffness microcantilever probes are often used for nanoscale imaging of soft biological samples with gentle forces. Under these conditions, we show that the phase contrast derives primarily from a unique energy flow channel that opens up in liquids due to the momentary excitation of higher eigenmodes. Contrary to the common assumption, phase-contrast images in liquids using soft microcantilevers are often maps of short-range conservative interactions, such as local elastic response, rather than tip-sample dissipation. The theory is used to demonstrate variations in local elasticity of purple membrane and bacteriophage ϕ29 virions in buffer solutions using the phase-contrast images. PMID:19666560
Origins of phase contrast in the atomic force microscope in liquids.
Melcher, John; Carrasco, Carolina; Xu, Xin; Carrascosa, José L; Gómez-Herrero, Julio; José de Pablo, Pedro; Raman, Arvind
2009-08-18
We study the physical origins of phase contrast in dynamic atomic force microscopy (dAFM) in liquids where low-stiffness microcantilever probes are often used for nanoscale imaging of soft biological samples with gentle forces. Under these conditions, we show that the phase contrast derives primarily from a unique energy flow channel that opens up in liquids due to the momentary excitation of higher eigenmodes. Contrary to the common assumption, phase-contrast images in liquids using soft microcantilevers are often maps of short-range conservative interactions, such as local elastic response, rather than tip-sample dissipation. The theory is used to demonstrate variations in local elasticity of purple membrane and bacteriophage 29 virions in buffer solutions using the phase-contrast images.
Rapid sampling of stochastic displacements in Brownian dynamics simulations
NASA Astrophysics Data System (ADS)
Fiore, Andrew M.; Balboa Usabiaga, Florencio; Donev, Aleksandar; Swan, James W.
2017-03-01
We present a new method for sampling stochastic displacements in Brownian Dynamics (BD) simulations of colloidal scale particles. The method relies on a new formulation for Ewald summation of the Rotne-Prager-Yamakawa (RPY) tensor, which guarantees that the real-space and wave-space contributions to the tensor are independently symmetric and positive-definite for all possible particle configurations. Brownian displacements are drawn from a superposition of two independent samples: a wave-space (far-field or long-ranged) contribution, computed using techniques from fluctuating hydrodynamics and non-uniform fast Fourier transforms; and a real-space (near-field or short-ranged) correction, computed using a Krylov subspace method. The combined computational complexity of drawing these two independent samples scales linearly with the number of particles. The proposed method circumvents the super-linear scaling exhibited by all known iterative sampling methods applied directly to the RPY tensor that results from the power law growth of the condition number of tensor with the number of particles. For geometrically dense microstructures (fractal dimension equal three), the performance is independent of volume fraction, while for tenuous microstructures (fractal dimension less than three), such as gels and polymer solutions, the performance improves with decreasing volume fraction. This is in stark contrast with other related linear-scaling methods such as the force coupling method and the fluctuating immersed boundary method, for which performance degrades with decreasing volume fraction. Calculations for hard sphere dispersions and colloidal gels are illustrated and used to explore the role of microstructure on performance of the algorithm. In practice, the logarithmic part of the predicted scaling is not observed and the algorithm scales linearly for up to 4 ×106 particles, obtaining speed ups of over an order of magnitude over existing iterative methods, and making the cost of computing Brownian displacements comparable to the cost of computing deterministic displacements in BD simulations. A high-performance implementation employing non-uniform fast Fourier transforms implemented on graphics processing units and integrated with the software package HOOMD-blue is used for benchmarking.
NASA Astrophysics Data System (ADS)
Zeman, Johannes; Uhlig, Frank; Smiatek, Jens; Holm, Christian
2017-12-01
We present a coarse-grained polarizable molecular dynamics force field for the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]). For the treatment of electronic polarizability, we employ the Drude model. Our results show that the new explicitly polarizable force field reproduces important static and dynamic properties such as mass density, enthalpy of vaporization, diffusion coefficients, or electrical conductivity in the relevant temperature range. In situations where an explicit treatment of electronic polarizability might be crucial, we expect the force field to be an improvement over non-polarizable models, while still profiting from the reduction of computational cost due to the coarse-grained representation.
Monjo, Florian; Forestier, Nicolas
2018-04-01
This study was designed to explore the effects of intrafusal thixotropy, a property affecting muscle spindle sensitivity, on the sense of force. For this purpose, psychophysical measurements of force perception were performed using an isometric force matching paradigm of elbow flexors consisting of matching different force magnitudes (5, 10 and 20% of subjects' maximal voluntary force). We investigated participants' capacity to match these forces after their indicator arm had undergone voluntary isometric conditioning contractions known to alter spindle thixotropy, i.e., contractions performed at long ('hold long') or short muscle lengths ('hold short'). In parallel, their reference arm was conditioned at the intermediate muscle length ('hold-test') at which the matchings were performed. The thixotropy hypothesis predicts that estimation errors should only be observed at low force levels (up to 10% of the maximal voluntary force) with overestimation of the forces produced following 'hold short' conditioning and underestimation following 'hold long' conditioning. We found the complete opposite, especially following 'hold-short' conditioning where subjects underestimated the force they generated with similar relative error magnitudes across force levels. In a second experiment, we tested the hypothesis that estimation errors depended on the degree of afferent-induced facilitation using the Kohnstamm phenomenon as a probe of motor pathway excitability. Because the stronger post-effects were observed following 'hold-short' conditioning, it appears that the conditioning-induced excitation of spindle afferents leads to force misjudgments by introducing a decoupling between the central effort and the cortical motor outputs.
Numerical simulation of linear fiction welding (LFW) processes
NASA Astrophysics Data System (ADS)
Fratini, L.; La Spisa, D.
2011-05-01
Solid state welding processes are becoming increasingly important due to a large number of advantages related to joining "unweldable" materials and in particular light weight alloys. Linear friction welding (LFW) has been used successfully to bond non-axisymmetric components of a range of materials including titanium alloys, steels, aluminum alloys, nickel, copper, and also dissimilar material combinations. The technique is useful in the research of quality of the joints and in reducing costs of components and parts of the aeronautic and automotive industries. LFW involves parts to be welded through the relative reciprocating motion of two components under an axial force. In such process the heat source is given by the frictional forces work decaying into heat determining a local softening of the material and proper bonding conditions due to both the temperature increase and the local pressure of the two edges to be welded. This paper is a comparative test between the numerical model in two dimensions, i.e. in plane strain conditions, and in three dimensions of a LFW process of AISI1045 steel specimens. It must be observed that the 3D model assures a faithful simulation of the actual threedimensional material flow, even if the two-dimensional simulation computational times are very short, a few hours instead of several ones as the 3D model. The obtained results were compared with experimental values found out in the scientific literature.
Jet-induced ground effects on a parametric flat-plate model in hover
NASA Technical Reports Server (NTRS)
Wardwell, Douglas A.; Hange, Craig E.; Kuhn, Richard E.; Stewart, Vearl R.
1993-01-01
The jet-induced forces generated on short takeoff and vertical landing (STOVL) aircraft when in close proximity to the ground can have a significant effect on aircraft performance. Therefore, accurate predictions of these aerodynamic characteristics are highly desirable. Empirical procedures for estimating jet-induced forces during the vertical/short takeoff and landing (V/STOL) portions of the flight envelope are currently limited in accuracy. The jet-induced force data presented significantly add to the current STOVL configurations data base. Further development of empirical prediction methods for jet-induced forces, to provide more configuration diversity and improved overall accuracy, depends on the viability of this STOVL data base. The data base may also be used to validate computational fluid dynamics (CFD) analysis codes. The hover data obtained at the NASA Ames Jet Calibration and Hover Test (JCAHT) facility for a parametric flat-plate model is presented. The model tested was designed to allow variations in the planform aspect ratio, number of jets, nozzle shape, and jet location. There were 31 different planform/nozzle configurations tested. Each configuration had numerous pressure taps installed to measure the pressures on the undersurface of the model. All pressure data along with the balance jet-induced lift and pitching-moment increments are tabulated. For selected runs, pressure data are presented in the form of contour plots that show lines of constant pressure coefficient on the model undersurface. Nozzle-thrust calibrations and jet flow-pressure survey information are also provided.
Particle behavior simulation in thermophoresis phenomena by direct simulation Monte Carlo method
NASA Astrophysics Data System (ADS)
Wada, Takao
2014-07-01
A particle motion considering thermophoretic force is simulated by using direct simulation Monte Carlo (DSMC) method. Thermophoresis phenomena, which occur for a particle size of 1 μm, are treated in this paper. The problem of thermophoresis simulation is computation time which is proportional to the collision frequency. Note that the time step interval becomes much small for the simulation considering the motion of large size particle. Thermophoretic forces calculated by DSMC method were reported, but the particle motion was not computed because of the small time step interval. In this paper, the molecule-particle collision model, which computes the collision between a particle and multi molecules in a collision event, is considered. The momentum transfer to the particle is computed with a collision weight factor, where the collision weight factor means the number of molecules colliding with a particle in a collision event. The large time step interval is adopted by considering the collision weight factor. Furthermore, the large time step interval is about million times longer than the conventional time step interval of the DSMC method when a particle size is 1 μm. Therefore, the computation time becomes about one-millionth. We simulate the graphite particle motion considering thermophoretic force by DSMC-Neutrals (Particle-PLUS neutral module) with above the collision weight factor, where DSMC-Neutrals is commercial software adopting DSMC method. The size and the shape of the particle are 1 μm and a sphere, respectively. The particle-particle collision is ignored. We compute the thermophoretic forces in Ar and H2 gases of a pressure range from 0.1 to 100 mTorr. The results agree well with Gallis' analytical results. Note that Gallis' analytical result for continuum limit is the same as Waldmann's result.
A simple Lagrangian forecast system with aviation forecast potential
NASA Technical Reports Server (NTRS)
Petersen, R. A.; Homan, J. H.
1983-01-01
A trajectory forecast procedure is developed which uses geopotential tendency fields obtained from a simple, multiple layer, potential vorticity conservative isentropic model. This model can objectively account for short-term advective changes in the mass field when combined with fine-scale initial analyses. This procedure for producing short-term, upper-tropospheric trajectory forecasts employs a combination of a detailed objective analysis technique, an efficient mass advection model, and a diagnostically proven trajectory algorithm, none of which require extensive computer resources. Results of initial tests are presented, which indicate an exceptionally good agreement for trajectory paths entering the jet stream and passing through an intensifying trough. It is concluded that this technique not only has potential for aiding in route determination, fuel use estimation, and clear air turbulence detection, but also provides an example of the types of short range forecasting procedures which can be applied at local forecast centers using simple algorithms and a minimum of computer resources.
Geometry-induced phase transition in fluids: Capillary prewetting
NASA Astrophysics Data System (ADS)
Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim
2013-02-01
We report a new first-order phase transition preceding capillary condensation and corresponding to the discontinuous formation of a curved liquid meniscus. Using a mean-field microscopic approach based on the density functional theory we compute the complete phase diagram of a prototypical two-dimensional system exhibiting capillary condensation, namely that of a fluid with long-ranged dispersion intermolecular forces which is spatially confined by a substrate forming a semi-infinite rectangular pore exerting long-ranged dispersion forces on the fluid. In the T-μ plane the phase line of the new transition is tangential to the capillary condensation line at the capillary wetting temperature Tcw. The surface phase behavior of the system maps to planar wetting with the phase line of the new transition, termed capillary prewetting, mapping to the planar prewetting line. If capillary condensation is approached isothermally with T>Tcw, the meniscus forms at the capping wall and unbinds continuously, making capillary condensation a second-order phenomenon. We compute the corresponding critical exponent for the divergence of adsorption.
The search for the hydrophobic force law
Hammer, Malte U.; Anderson, Travers H.; Chaimovich, Aviel; Scott Shell, M.
2010-01-01
After nearly 30 years of research on the hydrophobic interaction, the search for the hydrophobic force law is still continuing. Indeed, there are more questions than answers, and the experimental data are often quite different for nominally similar conditions, as well as, apparently, for nano-, micro-, and macroscopic surfaces. This has led to the conclusion that the experimentally observed force–distance relationships are either a combination of different ‘fundamental’ interactions, or that the hydrophobic force-law, if there is one, is complex – depending on numerous parameters. The only unexpectedly strong attractive force measured in all experiments so far has a range of D ≈ 100–200 Å, increasing roughly exponentially down to ~ 10–20 Å and then more steeply down to adhesive contact at D = 0 or, for power-law potentials, effectively at D ≈ 2 Å. The measured forces in this regime (100–200 Å) and especially the adhesive forces are much stronger, and have a different distance-dependence from the continuum VDW force (Lifshitz theory) for non-conducting dielectric media. We suggest a three-regime force-law for the forces observed between hydrophobic surfaces: In the first, from 100–200 Å to thousands of ångstroms, the dominating force is created by complementary electrostatic domains or patches on the apposing surfaces and/or bridging vapour cavities; a ‘pure’ but still not well-understood ‘long-range hydrophobic force’ dominates the second regime from ~ 150 to ~ 15 Å, possibly due to an enhanced Hamaker constant associated with the ‘proton-hopping’ polarizability of water; while below ~ 10–15 Å to contact there is another ‘pure short-range hydrophobic force’ related to water structuring effects associated with surface-induced changes in the orientation and/or density of water molecules and H-bonds at the water–hydrophobic interface. We present recent SFA and other experimental results, as well as a simplified model for water based on a spherically-symmetric potential that is able to capture some basic features of hydrophobic association. Such a model may be useful for theoretical studies of the HI over the broad range of scales observed in SFA experiments. PMID:21043428
Quantifying new water fractions and water age distributions using ensemble hydrograph separation
NASA Astrophysics Data System (ADS)
Kirchner, James
2017-04-01
Catchment transit times are important controls on contaminant transport, weathering rates, and runoff chemistry. Recent theoretical studies have shown that catchment transit time distributions are nonstationary, reflecting the temporal variability in precipitation forcing, the structural heterogeneity of catchments themselves, and the nonlinearity of the mechanisms controlling storage and transport in the subsurface. The challenge of empirically estimating these nonstationary transit time distributions in real-world catchments, however, has only begun to be explored. Long, high-frequency tracer time series are now becoming available, creating new opportunities to study how rainfall becomes streamflow on timescales of minutes to days following the onset of precipitation. Here I show that the conventional formula used for hydrograph separation can be converted into an equivalent linear regression equation that quantifies the fraction of current rainfall in streamflow across ensembles of precipitation events. These ensembles can be selected to represent different discharge ranges, different precipitation intensities, or different levels of antecedent moisture, thus quantifying how the fraction of "new water" in streamflow varies with forcings such as these. I further show how this approach can be generalized to empirically determine the contributions of precipitation inputs to streamflow across a range of time lags. In this way the short-term tail of the transit time distribution can be directly quantified for an ensemble of precipitation events. Benchmark testing with a simple, nonlinear, nonstationary catchment model demonstrates that this approach quantitatively measures the short tail of the transit time distribution for a wide range of catchment response characteristics. In combination with reactive tracer time series, this approach can potentially be extended to measure short-term chemical reaction rates at the catchment scale. High-frequency tracer time series from several experimental catchments will be used to demonstrate the utility of the new approach outlined here.
Chung, Peter J.; Choi, Myung Chul; Miller, Herbert P.; Feinstein, H. Eric; Raviv, Uri; Li, Youli; Wilson, Leslie; Feinstein, Stuart C.; Safinya, Cyrus R.
2015-01-01
Microtubules (MTs) are hollow cytoskeletal filaments assembled from αβ-tubulin heterodimers. Tau, an unstructured protein found in neuronal axons, binds to MTs and regulates their dynamics. Aberrant Tau behavior is associated with neurodegenerative dementias, including Alzheimer’s. Here, we report on a direct force measurement between paclitaxel-stabilized MTs coated with distinct Tau isoforms by synchrotron small-angle X-ray scattering (SAXS) of MT-Tau mixtures under osmotic pressure (P). In going from bare MTs to MTs with Tau coverage near the physiological submonolayer regime (Tau/tubulin-dimer molar ratio; ΦTau = 1/10), isoforms with longer N-terminal tails (NTTs) sterically stabilized MTs, preventing bundling up to PB ∼ 10,000–20,000 Pa, an order of magnitude larger than bare MTs. Tau with short NTTs showed little additional effect in suppressing the bundling pressure (PB ∼ 1,000–2,000 Pa) over the same range. Remarkably, the abrupt increase in PB observed for longer isoforms suggests a mushroom to brush transition occurring at 1/13 < ΦTau < 1/10, which corresponds to MT-bound Tau with NTTs that are considerably more extended than SAXS data for Tau in solution indicate. Modeling of Tau-mediated MT–MT interactions supports the hypothesis that longer NTTs transition to a polyelectrolyte brush at higher coverages. Higher pressures resulted in isoform-independent irreversible bundling because the polyampholytic nature of Tau leads to short-range attractions. These findings suggest an isoform-dependent biological role for regulation by Tau, with longer isoforms conferring MT steric stabilization against aggregation either with other biomacromolecules or into tight bundles, preventing loss of function in the crowded axon environment. PMID:26542680
Robust mechanobiological behavior emerges in heterogeneous myosin systems.
Egan, Paul F; Moore, Jeffrey R; Ehrlicher, Allen J; Weitz, David A; Schunn, Christian; Cagan, Jonathan; LeDuc, Philip
2017-09-26
Biological complexity presents challenges for understanding natural phenomenon and engineering new technologies, particularly in systems with molecular heterogeneity. Such complexity is present in myosin motor protein systems, and computational modeling is essential for determining how collective myosin interactions produce emergent system behavior. We develop a computational approach for altering myosin isoform parameters and their collective organization, and support predictions with in vitro experiments of motility assays with α-actinins as molecular force sensors. The computational approach models variations in single myosin molecular structure, system organization, and force stimuli to predict system behavior for filament velocity, energy consumption, and robustness. Robustness is the range of forces where a filament is expected to have continuous velocity and depends on used myosin system energy. Myosin systems are shown to have highly nonlinear behavior across force conditions that may be exploited at a systems level by combining slow and fast myosin isoforms heterogeneously. Results suggest some heterogeneous systems have lower energy use near stall conditions and greater energy consumption when unloaded, therefore promoting robustness. These heterogeneous system capabilities are unique in comparison with homogenous systems and potentially advantageous for high performance bionanotechnologies. Findings open doors at the intersections of mechanics and biology, particularly for understanding and treating myosin-related diseases and developing approaches for motor molecule-based technologies.
Robust mechanobiological behavior emerges in heterogeneous myosin systems
NASA Astrophysics Data System (ADS)
Egan, Paul F.; Moore, Jeffrey R.; Ehrlicher, Allen J.; Weitz, David A.; Schunn, Christian; Cagan, Jonathan; LeDuc, Philip
2017-09-01
Biological complexity presents challenges for understanding natural phenomenon and engineering new technologies, particularly in systems with molecular heterogeneity. Such complexity is present in myosin motor protein systems, and computational modeling is essential for determining how collective myosin interactions produce emergent system behavior. We develop a computational approach for altering myosin isoform parameters and their collective organization, and support predictions with in vitro experiments of motility assays with α-actinins as molecular force sensors. The computational approach models variations in single myosin molecular structure, system organization, and force stimuli to predict system behavior for filament velocity, energy consumption, and robustness. Robustness is the range of forces where a filament is expected to have continuous velocity and depends on used myosin system energy. Myosin systems are shown to have highly nonlinear behavior across force conditions that may be exploited at a systems level by combining slow and fast myosin isoforms heterogeneously. Results suggest some heterogeneous systems have lower energy use near stall conditions and greater energy consumption when unloaded, therefore promoting robustness. These heterogeneous system capabilities are unique in comparison with homogenous systems and potentially advantageous for high performance bionanotechnologies. Findings open doors at the intersections of mechanics and biology, particularly for understanding and treating myosin-related diseases and developing approaches for motor molecule-based technologies.
2016-01-01
Molecular mechanics force fields that explicitly account for induced polarization represent the next generation of physical models for molecular dynamics simulations. Several methods exist for modeling induced polarization, and here we review the classical Drude oscillator model, in which electronic degrees of freedom are modeled by charged particles attached to the nuclei of their core atoms by harmonic springs. We describe the latest developments in Drude force field parametrization and application, primarily in the last 15 years. Emphasis is placed on the Drude-2013 polarizable force field for proteins, DNA, lipids, and carbohydrates. We discuss its parametrization protocol, development history, and recent simulations of biologically interesting systems, highlighting specific studies in which induced polarization plays a critical role in reproducing experimental observables and understanding physical behavior. As the Drude oscillator model is computationally tractable and available in a wide range of simulation packages, it is anticipated that use of these more complex physical models will lead to new and important discoveries of the physical forces driving a range of chemical and biological phenomena. PMID:26815602
Elek, J; Prochazka, A; Hulliger, M; Vincent, S
1990-01-01
1. It has been claimed that stretch in the non-contractile (extramysial) portion of muscles is substantial, and may produce large discrepancies between the origin-to-insertion muscle length and the internal length variations 'seen' by muscle spindle endings. 2. In eight pentobarbitone-anaesthetized cats, we estimated stretch in the extramysial portion of medial gastrocnemius (MG) muscle with a method similar to the spindle null technique. 3. Length variations of MG previously monitored in a normal step cycle were reproduced with a computer-controlled length servo. The responses of test MG spindle endings were monitored in dorsal root filaments. Distributed stimulation of ventral root filaments, rate-modulated by the step-cycle EMG envelope, served to reproduce step-cycle forces. The filaments were selected so as to have no fusimotor action on the test spindle. 4. Spindle responses in active cycles were compared with those in passive cycles (stretch, but no distributed stimulation). In some cases concomitant tonic fusimotor stimulation was used to maintain spindle responsiveness throughout the cycle, both in active and passive trials. Generally, small discrepancies in spindle firing were seen. The passive trials were now repeated, with iterative adjustments of the length function, until the response matched the spindle firing profile in the active trial. The spindle 'saw' the same internal length change in the final passive trial as in the active trial. Any difference between the corresponding length profiles was attributed to extramysial displacement. 5. Extramysial displacement estimated in this was was maximal at short mean muscle lengths, reaching about 0.5 mm in a typical step cycle (force rising from 0 to 10 N). At longer mean muscle lengths where muscle force rose from say 2 to 12 N in the cycle, extramysial displacement was in the range 0.2-0.4 mm. 6. Except at very short lengths, the displacement was probably mainly tendinous. On this assumption, our results suggested that the stiffness of the MG tendinous compartment was force related, and about double that of cat soleus muscle at any given force. Calculations indicated that though the stretch was small, the MG tendon would store and release enough strain energy per cycle to contribute significantly to the E3 phase of the step cycle. The discrepancies in spindle firing were generally quite subtle, so we reject the claim that extramysial stretch poses a serious difficulty for inferences about fusimotion from chronic spindle afferent recordings. PMID:2148952
Shamir, Lior; Yerby, Carol; Simpson, Robert; von Benda-Beckmann, Alexander M; Tyack, Peter; Samarra, Filipa; Miller, Patrick; Wallin, John
2014-02-01
Vocal communication is a primary communication method of killer and pilot whales, and is used for transmitting a broad range of messages and information for short and long distance. The large variation in call types of these species makes it challenging to categorize them. In this study, sounds recorded by audio sensors carried by ten killer whales and eight pilot whales close to the coasts of Norway, Iceland, and the Bahamas were analyzed using computer methods and citizen scientists as part of the Whale FM project. Results show that the computer analysis automatically separated the killer whales into Icelandic and Norwegian whales, and the pilot whales were separated into Norwegian long-finned and Bahamas short-finned pilot whales, showing that at least some whales from these two locations have different acoustic repertoires that can be sensed by the computer analysis. The citizen science analysis was also able to separate the whales to locations by their sounds, but the separation was somewhat less accurate compared to the computer method.
Security in Wireless Sensor Networks Employing MACGSP6
ERIC Educational Resources Information Center
Nitipaichit, Yuttasart
2010-01-01
Wireless Sensor Networks (WSNs) have unique characteristics which constrain them; including small energy stores, limited computation, and short range communication capability. Most traditional security algorithms use cryptographic primitives such as Public-key cryptography and are not optimized for energy usage. Employing these algorithms for the…
Driving Chemical Reactions in Plasmonic Nanogaps with Electrohydrodynamic Flow.
Thrift, William J; Nguyen, Cuong Q; Darvishzadeh-Varcheie, Mahsa; Zare, Siavash; Sharac, Nicholas; Sanderson, Robert N; Dupper, Torin J; Hochbaum, Allon I; Capolino, Filippo; Abdolhosseini Qomi, Mohammad Javad; Ragan, Regina
2017-11-28
Nanoparticles from colloidal solution-with controlled composition, size, and shape-serve as excellent building blocks for plasmonic devices and metasurfaces. However, understanding hierarchical driving forces affecting the geometry of oligomers and interparticle gap spacings is still needed to fabricate high-density architectures over large areas. Here, electrohydrodynamic (EHD) flow is used as a long-range driving force to enable carbodiimide cross-linking between nanospheres and produces oligomers exhibiting sub-nanometer gap spacing over mm 2 areas. Anhydride linkers between nanospheres are observed via surface-enhanced Raman scattering (SERS) spectroscopy. The anhydride linkers are cleavable via nucleophilic substitution and enable placement of nucleophilic molecules in electromagnetic hotspots. Atomistic simulations elucidate that the transient attractive force provided by EHD flow is needed to provide a sufficient residence time for anhydride cross-linking to overcome slow reaction kinetics. This synergistic analysis shows assembly involves an interplay between long-range driving forces increasing nanoparticle-nanoparticle interactions and probability that ligands are in proximity to overcome activation energy barriers associated with short-range chemical reactions. Absorption spectroscopy and electromagnetic full-wave simulations show that variations in nanogap spacing have a greater influence on optical response than variations in close-packed oligomer geometry. The EHD flow-anhydride cross-linking assembly method enables close-packed oligomers with uniform gap spacings that produce uniform SERS enhancement factors. These results demonstrate the efficacy of colloidal driving forces to selectively enable chemical reactions leading to future assembly platforms for large-area nanodevices.
Force user's manual: A portable, parallel FORTRAN
NASA Technical Reports Server (NTRS)
Jordan, Harry F.; Benten, Muhammad S.; Arenstorf, Norbert S.; Ramanan, Aruna V.
1990-01-01
The use of Force, a parallel, portable FORTRAN on shared memory parallel computers is described. Force simplifies writing code for parallel computers and, once the parallel code is written, it is easily ported to computers on which Force is installed. Although Force is nearly the same for all computers, specific details are included for the Cray-2, Cray-YMP, Convex 220, Flex/32, Encore, Sequent, Alliant computers on which it is installed.
Nonlinear times series analysis of epileptic human electroencephalogram (EEG)
NASA Astrophysics Data System (ADS)
Li, Dingzhou
The problem of seizure anticipation in patients with epilepsy has attracted significant attention in the past few years. In this paper we discuss two approaches, using methods of nonlinear time series analysis applied to scalp electrode recordings, which is able to distinguish between epochs temporally distant from and just prior to, the onset of a seizure in patients with temporal lobe epilepsy. First we describe a method involving a comparison of recordings taken from electrodes adjacent to and remote from the site of the seizure focus. In particular, we define a nonlinear quantity which we call marginal predictability. This quantity is computed using data from remote and from adjacent electrodes. We find that the difference between the marginal predictabilities computed for the remote and adjacent electrodes decreases several tens of minutes prior to seizure onset, compared to its value interictally. We also show that these difl'crcnc es of marginal predictability intervals are independent of the behavior state of the patient. Next we examine the please coherence between different electrodes both in the long-range and the short-range. When time is distant from seizure onsets ("interictally"), epileptic patients have lower long-range phase coherence in the delta (1-4Hz) and beta (18-30Hz) frequency band compared to nonepileptic subjects. When seizures approach (''preictally"), we observe an increase in phase coherence in the beta band. However, interictally there is no difference in short-range phase coherence between this cohort of patients and non-epileptic subjects. Preictally short-range phase coherence also increases in the alpha (10-13Hz) and the beta band. Next we apply the quantity marginal predictability on the phase difference time series. Such marginal predictabilities are lower in the patients than in the non-epileptic subjects. However, when seizure approaches, the former moves asymptotically towards the latter.
Self-referential forces are sufficient to explain different dendritic morphologies
Memelli, Heraldo; Torben-Nielsen, Benjamin; Kozloski, James
2013-01-01
Dendritic morphology constrains brain activity, as it determines first which neuronal circuits are possible and second which dendritic computations can be performed over a neuron's inputs. It is known that a range of chemical cues can influence the final shape of dendrites during development. Here, we investigate the extent to which self-referential influences, cues generated by the neuron itself, might influence morphology. To this end, we developed a phenomenological model and algorithm to generate virtual morphologies, which are then compared to experimentally reconstructed morphologies. In the model, branching probability follows a Galton–Watson process, while the geometry is determined by “homotypic forces” exerting influence on the direction of random growth in a constrained space. We model three such homotypic forces, namely an inertial force based on membrane stiffness, a soma-oriented tropism, and a force of self-avoidance, as directional biases in the growth algorithm. With computer simulations we explored how each bias shapes neuronal morphologies. We show that based on these principles, we can generate realistic morphologies of several distinct neuronal types. We discuss the extent to which homotypic forces might influence real dendritic morphologies, and speculate about the influence of other environmental cues on neuronal shape and circuitry. PMID:23386828
Hard Fighting: Israel in Lebanon and Gaza
2011-01-01
mines . Hezbollah itself also proved an unexpectedly formidable adversary. During the years leading up to the Second Lebanon War, Hezbollah forces...hitting Hamas positions and detonating mines and IEDs. IDF engineers used armored D-9 bulldozers to clear paths through the remaining IEDs. Armored...discipline; cellular structure; small formations (squads) • Weapons: small arms; RPGs; mortars; short- range rockets; IEDs/ mines • Command and control
ERIC Educational Resources Information Center
Friedlander, Jack
Designed to assist staff at Napa Valley College (NVC) in their efforts to develop short- and long-range plans for the institution, this report reviews recent reports by the Bureau of Labor Statistics regarding trends in the labor force. Following introductory material, the report looks at occupations with the largest job growth, the 20 fastest…
Safety testing of lithium cells
NASA Astrophysics Data System (ADS)
Bene, J.
1981-03-01
The testing consisted of a forced discharge to zero volts constant current under isothermal conditions. The temperature range was -40 to 65 C. Short circuit tests, drop tests, and puncture tests were run to determine how a cell might behave if it developed a leak. Once the sulfur dioxide is exhausted, a lithium acetontirile reaction occurs. An excess of sulfur dioxide must be maintained in order to avoid chemical explosions.
Safety testing of lithium cells
NASA Technical Reports Server (NTRS)
Bene, J.
1981-01-01
The testing consisted of a forced discharge to zero volts constant current under isothermal conditions. The temperature range was -40 to 65 C. Short circuit tests, drop tests, and puncture tests were run to determine how a cell might behave if it developed a leak. Once the sulfur dioxide is exhausted, a lithium acetontirile reaction occurs. An excess of sulfur dioxide must be maintained in order to avoid chemical explosions.
NASA Astrophysics Data System (ADS)
Benedek, G.; Nardelli, G. F.
1967-03-01
Lattice response functions, such as the thermal conductivity and dielectric susceptibility of an imperfect crystal with rocksalt structure, are evaluated in terms of the irreducible T matrix accounting for the phonon scattering. It is shown that the effect of defects on thermal conductivity and dielectric susceptibility can be accounted for by expressions which have essentially the same structure. The T matrix for a defect which affects both the mass and the short-range interaction is analyzed according to the irreducible representations of the point group which pertains to the perturbation, and the resonance conditions for Γ1, Γ12, and Γ15 irreducible representations are considered in detail for any positive impurity in KBr crystals. Hardy's deformation-dipole (DD) model is employed for the description of the host-lattice dynamics. A comparison is made with simplified models, such as diatomic linear chains with nearest-neighbor interaction; it is shown that in polar crystals an effective-force constant has to be used in order to give a reliable description of the short-range interaction between the impurity and the host lattice. An attempt is made to define such effective force constants in the framework of the DD model. The numerical calculations concern positive monovalent impurities in KBr crystals. Γ1, Γ12, and Γ15 resonance frequencies are evaluated as a function of the change of mass and nearest-neighbor force constant. For KBr:Li+ and KBr:Ag+ we also evaluate the band shape of the absorption spectrum at infrared frequencies; good agreement is found between the theoretical prediction and the experimental data on KBr:Li+. It is shown that some structures actually observed in the spectrum are due to peaks in the projected density of states of the host lattice, and have nothing to do with resonance scattering. Good agreement is found between the impurity-host-lattice interaction as estimated from a priori calculations and as deduced by fitting the Γ15 resonance frequency to the experimental data. A simple explanation of the off-center position of small ions is also suggested. Finally, concentration and stress effects on the absorption coefficient are briefly discussed.
GPU-based cone beam computed tomography.
Noël, Peter B; Walczak, Alan M; Xu, Jinhui; Corso, Jason J; Hoffmann, Kenneth R; Schafer, Sebastian
2010-06-01
The use of cone beam computed tomography (CBCT) is growing in the clinical arena due to its ability to provide 3D information during interventions, its high diagnostic quality (sub-millimeter resolution), and its short scanning times (60 s). In many situations, the short scanning time of CBCT is followed by a time-consuming 3D reconstruction. The standard reconstruction algorithm for CBCT data is the filtered backprojection, which for a volume of size 256(3) takes up to 25 min on a standard system. Recent developments in the area of Graphic Processing Units (GPUs) make it possible to have access to high-performance computing solutions at a low cost, allowing their use in many scientific problems. We have implemented an algorithm for 3D reconstruction of CBCT data using the Compute Unified Device Architecture (CUDA) provided by NVIDIA (NVIDIA Corporation, Santa Clara, California), which was executed on a NVIDIA GeForce GTX 280. Our implementation results in improved reconstruction times from minutes, and perhaps hours, to a matter of seconds, while also giving the clinician the ability to view 3D volumetric data at higher resolutions. We evaluated our implementation on ten clinical data sets and one phantom data set to observe if differences occur between CPU and GPU-based reconstructions. By using our approach, the computation time for 256(3) is reduced from 25 min on the CPU to 3.2 s on the GPU. The GPU reconstruction time for 512(3) volumes is 8.5 s. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Numerical computation of the effective-one-body potential q using self-force results
NASA Astrophysics Data System (ADS)
Akcay, Sarp; van de Meent, Maarten
2016-03-01
The effective-one-body theory (EOB) describes the conservative dynamics of compact binary systems in terms of an effective Hamiltonian approach. The Hamiltonian for moderately eccentric motion of two nonspinning compact objects in the extreme mass-ratio limit is given in terms of three potentials: a (v ) , d ¯ (v ) , q (v ) . By generalizing the first law of mechanics for (nonspinning) black hole binaries to eccentric orbits, [A. Le Tiec, Phys. Rev. D 92, 084021 (2015).] recently obtained new expressions for d ¯(v ) and q (v ) in terms of quantities that can be readily computed using the gravitational self-force approach. Using these expressions we present a new computation of the EOB potential q (v ) by combining results from two independent numerical self-force codes. We determine q (v ) for inverse binary separations in the range 1 /1200 ≤v ≲1 /6 . Our computation thus provides the first-ever strong-field results for q (v ) . We also obtain d ¯ (v ) in our entire domain to a fractional accuracy of ≳10-8 . We find that our results are compatible with the known post-Newtonian expansions for d ¯(v ) and q (v ) in the weak field, and agree with previous (less accurate) numerical results for d ¯(v ) in the strong field.
Computational Characterization of Type I collagen-based Extra-cellular Matrix
NASA Astrophysics Data System (ADS)
Liang, Long; Jones, Christopher Allen Rucksack; Lin, Daniel; Jiao, Yang; Sun, Bo
2015-03-01
A model of extracellular matrix (ECM) of collagen fibers has been built, in which cells could communicate with distant partners via fiber-mediated long-range-transmitted stress states. The ECM is modeled as a spring-like fiber network derived from skeletonized confocal microscopy data. Different local and global perturbations have been performed on the network, each followed by an optimized global Monte-Carlo (MC) energy minimization leading to the deformed network in response to the perturbations. In the optimization, a highly efficient local energy update procedure is employed and force-directed MC moves are used, which results in a convergence to the energy minimum state 20 times faster than the commonly used random displacement trial moves in MC. Further analysis and visualization of the distribution and correlation of the resulting force network reveal that local perturbations can give rise to global impacts: the force chains formed with a linear extent much further than the characteristic length scale associated with the perturbation sites and average fiber length. This behavior provides a strong evidence for our hypothesis of fiber-mediated long-range force transmission in ECM networks and the resulting long-range cell-cell mechanical signaling. ASU Seed Grant.
Direct construction of mesoscopic models from microscopic simulations
NASA Astrophysics Data System (ADS)
Lei, Huan; Caswell, Bruce; Karniadakis, George Em
2010-02-01
Starting from microscopic molecular-dynamics (MD) simulations of constrained Lennard-Jones (LJ) clusters (with constant radius of gyration Rg ), we construct two mesoscopic models [Langevin dynamics and dissipative particle dynamics (DPD)] by coarse graining the LJ clusters into single particles. Both static and dynamic properties of the coarse-grained models are investigated and compared with the MD results. The effective mean force field is computed as a function of the intercluster distance, and the corresponding potential scales linearly with the number of particles per cluster and the temperature. We verify that the mean force field can reproduce the equation of state of the atomistic systems within a wide density range but the radial distribution function only within the dilute and the semidilute regime. The friction force coefficients for both models are computed directly from the time-correlation function of the random force field of the microscopic system. For high density or a large cluster size the friction force is overestimated and the diffusivity underestimated due to the omission of many-body effects as a result of the assumed pairwise form of the coarse-grained force field. When the many-body effect is not as pronounced (e.g., smaller Rg or semidilute system), the DPD model can reproduce the dynamic properties of the MD system.
Efficient Computation of Anharmonic Force Constants via q-space, with Application to Graphene
NASA Astrophysics Data System (ADS)
Kornbluth, Mordechai; Marianetti, Chris
We present a new approach for extracting anharmonic force constants from a sparse sampling of the anharmonic dynamical tensor. We calculate the derivative of the energy with respect to q-space displacements (phonons) and strain, which guarantees the absence of supercell image errors. Central finite differences provide a well-converged quadratic error tail for each derivative, separating the contribution of each anharmonic order. These derivatives populate the anharmonic dynamical tensor in a sparse mesh that bounds the Brillouin Zone, which ensures comprehensive sampling of q-space while exploiting small-cell calculations for efficient, high-throughput computation. This produces a well-converged and precisely-defined dataset, suitable for big-data approaches. We transform this sparsely-sampled anharmonic dynamical tensor to real-space anharmonic force constants that obey full space-group symmetries by construction. Machine-learning techniques identify the range of real-space interactions. We show the entire process executed for graphene, up to and including the fifth-order anharmonic force constants. This method successfully calculates strain-based phonon renormalization in graphene, even under large strains, which solves a major shortcoming of previous potentials.
Computations of the Magnus effect for slender bodies in supersonic flow
NASA Technical Reports Server (NTRS)
Sturek, W. B.; Schiff, L. B.
1980-01-01
A recently reported Parabolized Navier-Stokes code has been employed to compute the supersonic flow field about spinning cone, ogive-cylinder, and boattailed bodies of revolution at moderate incidence. The computations were performed for flow conditions where extensive measurements for wall pressure, boundary layer velocity profiles and Magnus force had been obtained. Comparisons between the computational results and experiment indicate excellent agreement for angles of attack up to six degrees. The comparisons for Magnus effects show that the code accurately predicts the effects of body shape and Mach number for the selected models for Mach numbers in the range of 2-4.
Analysis of pinching in deterministic particle separation
NASA Astrophysics Data System (ADS)
Risbud, Sumedh; Luo, Mingxiang; Frechette, Joelle; Drazer, German
2011-11-01
We investigate the problem of spherical particles vertically settling parallel to Y-axis (under gravity), through a pinching gap created by an obstacle (spherical or cylindrical, center at the origin) and a wall (normal to X axis), to uncover the physics governing microfluidic separation techniques such as deterministic lateral displacement and pinched flow fractionation: (1) theoretically, by linearly superimposing the resistances offered by the wall and the obstacle separately, (2) computationally, using the lattice Boltzmann method for particulate systems and (3) experimentally, by conducting macroscopic experiments. Both, theory and simulations, show that for a given initial separation between the particle centre and the Y-axis, presence of a wall pushes the particles closer to the obstacle, than its absence. Experimentally, this is expected to result in an early onset of the short-range repulsive forces caused by solid-solid contact. We indeed observe such an early onset, which we quantify by measuring the asymmetry in the trajectories of the spherical particles around the obstacle. This work is partially supported by the National Science Foundation Grant Nos. CBET- 0731032, CMMI-0748094, and CBET-0954840.
Grain-resolving simulations of settling cohesive sediment
NASA Astrophysics Data System (ADS)
Vowinckel, Bernhard; Whithers, Jade; Meiburg, Eckart; Luzzatto-Fegiz, Paolo
2017-11-01
Cohesive sediment is ubiquitous in natural environments such as rivers, lakes and coastal ecosystems. For this type of sediment, we can no longer ignore the short-range attractive forces that result in flocculation of aggregates much larger than the individual grain size. Hence, understanding the complex dynamics of the interplay between flocculated sediment and the ambient fluid is of prime interest for managing aquatic environments, although a comprehensive understanding of these phenomena is still lacking. In the present study, we address this issue by carrying out grain-resolved simulations of cohesive particles settling under gravity using the Immersed Boundary Method. We present a computational model formulation to accurately resolve the process of flocculation. The cohesive model is then applied to a complex test case. A randomly distributed ensemble of 1261 polydisperse particles is released in a tank of quiescent fluid. Subsequently, particles start to settle, thereby replacing fluid at the bottom of the tank, which induces a counter flow opposing the settling direction. This mechanism will be compared to experimental studies from the literature, as well as to the non-cohesive counterpart to assessthe impact of flocculation on sedimentation.
Computer-aided analysis of cutting processes for brittle materials
NASA Astrophysics Data System (ADS)
Ogorodnikov, A. I.; Tikhonov, I. N.
2017-12-01
This paper is focused on 3D computer simulation of cutting processes for brittle materials and silicon wafers. Computer-aided analysis of wafer scribing and dicing is carried out with the use of the ANSYS CAE (computer-aided engineering) software, and a parametric model of the processes is created by means of the internal ANSYS APDL programming language. Different types of tool tip geometry are analyzed to obtain internal stresses, such as a four-sided pyramid with an included angle of 120° and a tool inclination angle to the normal axis of 15°. The quality of the workpieces after cutting is studied by optical microscopy to verify the FE (finite-element) model. The disruption of the material structure during scribing occurs near the scratch and propagates into the wafer or over its surface at a short range. The deformation area along the scratch looks like a ragged band, but the stress width is rather low. The theory of cutting brittle semiconductor and optical materials is developed on the basis of the advanced theory of metal turning. The fall of stress intensity along the normal on the way from the tip point to the scribe line can be predicted using the developed theory and with the verified FE model. The crystal quality and dimensions of defects are determined by the mechanics of scratching, which depends on the shape of the diamond tip, the scratching direction, the velocity of the cutting tool and applied force loads. The disunity is a rate-sensitive process, and it depends on the cutting thickness. The application of numerical techniques, such as FE analysis, to cutting problems enhances understanding and promotes the further development of existing machining technologies.
NASA Astrophysics Data System (ADS)
Perez, R. Navarro; Schunck, N.; Lasseri, R.-D.; Zhang, C.; Sarich, J.
2017-11-01
We describe the new version 3.00 of the code HFBTHO that solves the nuclear Hartree-Fock (HF) or Hartree-Fock-Bogolyubov (HFB) problem by using the cylindrical transformed deformed harmonic oscillator basis. In the new version, we have implemented the following features: (i) the full Gogny force in both particle-hole and particle-particle channels, (ii) the calculation of the nuclear collective inertia at the perturbative cranking approximation, (iii) the calculation of fission fragment charge, mass and deformations based on the determination of the neck, (iv) the regularization of zero-range pairing forces, (v) the calculation of localization functions, (vi) a MPI interface for large-scale mass table calculations. Program Files doi:http://dx.doi.org/10.17632/c5g2f92by3.1 Licensing provisions: GPL v3 Programming language: FORTRAN-95 Journal reference of previous version: M.V. Stoitsov, N. Schunck, M. Kortelainen, N. Michel, H. Nam, E. Olsen, J. Sarich, and S. Wild, Comput. Phys. Commun. 184 (2013). Does the new version supersede the previous one: Yes Summary of revisions: 1. the Gogny force in both particle-hole and particle-particle channels was implemented; 2. the nuclear collective inertia at the perturbative cranking approximation was implemented; 3. fission fragment charge, mass and deformations were implemented based on the determination of the position of the neck between nascent fragments; 4. the regularization method of zero-range pairing forces was implemented; 5. the localization functions of the HFB solution were implemented; 6. a MPI interface for large-scale mass table calculations was implemented. Nature of problem:HFBTHO is a physics computer code that is used to model the structure of the nucleus. It is an implementation of the energy density functional (EDF) approach to atomic nuclei, where the energy of the nucleus is obtained by integration over space of some phenomenological energy density, which is itself a functional of the neutron and proton intrinsic densities. In the present version of HFBTHO, the energy density derives either from the zero-range Skyrme or the finite-range Gogny effective two-body interaction between nucleons. Nuclear super-fluidity is treated at the Hartree-Fock-Bogolyubov (HFB) approximation. Constraints on the nuclear shape allows probing the potential energy surface of the nucleus as needed e.g., for the description of shape isomers or fission. The implementation of a local scale transformation of the single-particle basis in which the HFB solutions are expanded provide a tool to properly compute the structure of weakly-bound nuclei. Solution method: The program uses the axial Transformed Harmonic Oscillator (THO) single-particle basis to expand quasiparticle wave functions. It iteratively diagonalizes the Hartree-Fock-Bogolyubov Hamiltonian based on generalized Skyrme-like energy densities and zero-range pairing interactions or the finite-range Gogny force until a self-consistent solution is found. A previous version of the program was presented in M.V. Stoitsov, N. Schunck, M. Kortelainen, N. Michel, H. Nam, E. Olsen, J. Sarich, and S. Wild, Comput. Phys. Commun. 184 (2013) 1592-1604 with much of the formalism presented in the original paper M.V. Stoitsov, J. Dobaczewski, W. Nazarewicz, P. Ring, Comput. Phys. Commun. 167 (2005) 43-63. Additional comments: The user must have access to (i) the LAPACK subroutines DSYEEVR, DSYEVD, DSYTRF and DSYTRI, and their dependencies, which compute eigenvalues and eigenfunctions of real symmetric matrices, (ii) the LAPACK subroutines DGETRI and DGETRF, which invert arbitrary real matrices, and (iii) the BLAS routines DCOPY, DSCAL, DGEMM and DGEMV for double-precision linear algebra (or provide another set of subroutines that can perform such tasks). The BLAS and LAPACK subroutines can be obtained from the Netlib Repository at the University of Tennessee, Knoxville: http://netlib2.cs.utk.edu/.
Liquid film drag out in the presence of molecular forces
NASA Astrophysics Data System (ADS)
Schmidhalter, I.; Cerro, R. L.; Giavedoni, M. D.; Saita, F. A.
2013-03-01
From a practical as well as a conceptual point of view, one of the most interesting problems of physicochemical hydrodynamics is the drag out of a liquid film by a moving solid out of a pool of liquid. The basic problem, sometimes denoted the Landau-Levich problem [L. Landau and B. Levich, "Dragging of a liquid by a moving plate," Acta Physicochim. USSR 17, 42-54 (1942)], involves an interesting blend of capillary and viscous forces plus a matching of the static solution for capillary rise with a numerical solution of the film evolution equation, neglecting gravity, on the downstream region of the flow field. The original solution describes experimental data for a wide range of Capillary numbers but fails to match results for large and very small Capillary numbers. Molecular level forces are introduced to create an augmented version of the film evolution equation to show the effect of van der Waals forces at the lower range of Capillary numbers. A closed form solution for static capillary rise, including molecular forces, was matched with a numerical solution of the augmented film evolution equation in the dynamic meniscus region. Molecular forces do not sensibly modify the static capillary rise region, since film thicknesses are larger than the range of influence of van der Waals forces, but are determinant in shaping the downstream dynamic meniscus of the very thin liquid films. As expected, a quantitatively different level of disjoining pressure for different values of molecular constants remains in the very thin liquid film far downstream. Computational results for a wide range of Capillary numbers and Hamaker constants show a clear transition towards a region where the film thickness becomes independent of the coating speed.
3-DOF Force-Sensing Motorized Micro-Forceps for Robot-Assisted Vitreoretinal Surgery
Gonenc, Berk; Chamani, Alireza; Handa, James; Gehlbach, Peter; Taylor, Russell H.; Iordachita, Iulian
2017-01-01
In vitreoretinal surgery, membrane peeling is a prototypical task where a layer of fibrous tissue is delaminated off the retina with a micro-forceps by applying very fine forces that are mostly imperceptible to the surgeon. Previously we developed sensitized ophthalmic surgery tools based on fiber Bragg grating (FBG) strain sensors, which were shown to precisely detect forces at the instrument’s tip in two degrees of freedom perpendicular to the tool axis. This paper presents a new design that employs an additional sensor to capture also the tensile force along the tool axis. The grasping functionality is provided via a compact motorized unit. To compute forces, we investigate two distinct fitting methods: a linear regression and a nonlinear fitting based on second-order Bernstein polynomials. We carry out experiments to test the repeatability of sensor outputs, calibrate the sensor and validate its performance. Results demonstrate sensor wavelength repeatability within 2 pm. Although the linear method provides sufficient accuracy in measuring transverse forces, in the axial direction it produces a root mean square (rms) error over 3 mN even for a confined magnitude and direction of forces. On the other hand, the nonlinear method provides a more consistent and accurate measurement of both the transverse and axial forces for the entire force range (0–25 mN). Validation including random samples shows that our tool with the nonlinear force computation method can predict 3-D forces with an rms error under 0.15 mN in the transverse plane and within 2 mN accuracy in the axial direction. PMID:28736508
Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies.
Kührová, Petra; Best, Robert B; Bottaro, Sandro; Bussi, Giovanni; Šponer, Jiří; Otyepka, Michal; Banáš, Pavel
2016-09-13
The computer-aided folding of biomolecules, particularly RNAs, is one of the most difficult challenges in computational structural biology. RNA tetraloops are fundamental RNA motifs playing key roles in RNA folding and RNA-RNA and RNA-protein interactions. Although state-of-the-art Molecular Dynamics (MD) force fields correctly describe the native state of these tetraloops as a stable free-energy basin on the microsecond time scale, enhanced sampling techniques reveal that the native state is not the global free energy minimum, suggesting yet unidentified significant imbalances in the force fields. Here, we tested our ability to fold the RNA tetraloops in various force fields and simulation settings. We employed three different enhanced sampling techniques, namely, temperature replica exchange MD (T-REMD), replica exchange with solute tempering (REST2), and well-tempered metadynamics (WT-MetaD). We aimed to separate problems caused by limited sampling from those due to force-field inaccuracies. We found that none of the contemporary force fields is able to correctly describe folding of the 5'-GAGA-3' tetraloop over a range of simulation conditions. We thus aimed to identify which terms of the force field are responsible for this poor description of TL folding. We showed that at least two different imbalances contribute to this behavior, namely, overstabilization of base-phosphate and/or sugar-phosphate interactions and underestimated stability of the hydrogen bonding interaction in base pairing. The first artifact stabilizes the unfolded ensemble, while the second one destabilizes the folded state. The former problem might be partially alleviated by reparametrization of the van der Waals parameters of the phosphate oxygens suggested by Case et al., while in order to overcome the latter effect we suggest local potentials to better capture hydrogen bonding interactions.
Auctions in Defense Acquisition: Theory and Experimental Evidence
2002-01-01
Department of Defense (DoD) has recently begun purchasing with online auctions — receiving offers from suppli- ers for things ranging from computers to...equipment for U.S. Navy vessels. The Navy was the first to try online auctions for procuring airplane and ship parts. The Army’s first venture into...system. The Air Force first tested the online auction waters in Au- gust 2000 to acquire computer equipment and saved about $88,000, or 27 percent of
Nonlocality and Short-Range Wetting Phenomena
NASA Astrophysics Data System (ADS)
Parry, A. O.; Romero-Enrique, J. M.; Lazarides, A.
2004-08-01
We propose a nonlocal interfacial model for 3D short-range wetting at planar and nonplanar walls. The model is characterized by a binding-potential functional depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tubelike fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong nonperturbative influence of nonlocality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.
Nonlocality and short-range wetting phenomena.
Parry, A O; Romero-Enrique, J M; Lazarides, A
2004-08-20
We propose a nonlocal interfacial model for 3D short-range wetting at planar and nonplanar walls. The model is characterized by a binding-potential functional depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tubelike fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong nonperturbative influence of nonlocality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.
Long-term associative learning predicts verbal short-term memory performance.
Jones, Gary; Macken, Bill
2018-02-01
Studies using tests such as digit span and nonword repetition have implicated short-term memory across a range of developmental domains. Such tests ostensibly assess specialized processes for the short-term manipulation and maintenance of information that are often argued to enable long-term learning. However, there is considerable evidence for an influence of long-term linguistic learning on performance in short-term memory tasks that brings into question the role of a specialized short-term memory system separate from long-term knowledge. Using natural language corpora, we show experimentally and computationally that performance on three widely used measures of short-term memory (digit span, nonword repetition, and sentence recall) can be predicted from simple associative learning operating on the linguistic environment to which a typical child may have been exposed. The findings support the broad view that short-term verbal memory performance reflects the application of long-term language knowledge to the experimental setting.
Binary-selectable detector holdoff circuit
NASA Technical Reports Server (NTRS)
Kadrmas, K. A.
1974-01-01
High-speed switching circuit protects detectors from sudden, extremely-intense backscattered radiation that results from short-range atmospheric dust layers, or low-level clouds, entering laser/radar field of view. Function of circuit is to provide computer-controlled switching of photodiode detector, preamplifier power-supply voltages, in approximately 10 nanoseconds.
Six component robotic force-torque sensor
NASA Technical Reports Server (NTRS)
Grahn, Allen R.; Hutchings, Brad L.; Johnston, David R.; Parsons, David C.; Wyatt, Roland F.
1987-01-01
The results of a two-phase contract studying the feasibility of a miniaturized six component force-torque sensor and development of a working laboratory system were described. The principle of operation is based upon using ultrasonic pulse-echo ranging to determine the position of ultrasonic reflectors attached to a metal or ceramic cover plate. Because of the small size of the sensor, this technology may have application in robotics, to sense forces and torques at the finger tip of a robotic end effector. Descriptions are included of laboratory experiments evaluating materials and techniques for sensor fabrication and of the development of support electronics for data acquisition, computer interface, and operator display.
Numerical Modeling of Climatic Change from the Terminus Record of Lewis Glacier, Mount Kenya.
NASA Astrophysics Data System (ADS)
Kruss, Phillip Donald
Over the last 100 years, the glaciers and lakes of East Africa have undergone dramatic change in response to climatic forcing. However, the available conventional meterological series have not proven sufficient to explain these environmental events. The secular climatic change at Lewis Glacier, Mount Kenya (0(DEGREES)9'S, 37(DEGREES)19'E), is reconstructed from its terminus record documented since 1893. The short-time-step numerical model developed for this study consists of climate and ice dynamics segments. The climate segment directly computes the effect on the net balance of change in the four forcings: precipitation, albedo, cloudiness, and temperature. The flow segment calculates the dynamic glacier response to net balance variation. Climatic change occurs over a wide range of time scales. Each glacier responds in a unique fashion to this spectrum of climatic forcings. The response of the Lewis terminus extent to repeated sinusoidal fluctuation in the net balance is calculated. The net balance versus elevation profile is separately translated along the orthogonal balance and elevation axes. Net balance amplitudes of 0.1 to 0.5 m a('-1) of ice and 10 to 50 m elevation, respectively, and periods ranging from 20 to 1000 years are covered. Consideration of the Lewis response is perspective with similar results for Hintereisferner, Storglaciaren, and Berendon and South Cascade Glaciers identifies general characteristics of the time lag and amplitude of the terminus response. The magnitude and timing of the change in only one of the climatic forcings precipitation, albedo, cloudiness, or temperature necessary to produce the retreat of the Lewis terminus from its late 19th century maximum are computed. Equivalent changes for two scenarios of simultaneous variation, namely precipitation/albedo/cloudiness and temperature/albedo, are also estimated. These numerical results are interpreted in the light of long-term lake level, river flow, and instrumental information. A decrease in the annual precipitation of about 160 (+OR-) 70 mm between the early 1880's and the very beginning of the 20th century followed by a secular air temperature rise of 0.35 (+OR-) 0.2(DEGREES)C during the first half of the 1900's, with most warming occurring after about 1920--these climatic changes together with associated albedo and cloudiness variation constitute the most likely cause of the Lewis Glacier wastage during the last 100 years. The modeling and interpretation techniques developed offer the potential for deriving climatic information from the long terminus records and dated geological evidence of past ice extents available for other glaciers. Given the difficulty of documenting climatic change by conventional techniques, the possible role for glaciers and other climate -sensitive environmental components in the monitoring of recent climatic change should be explored.
Determination of the Contact Angle Based on the Casimir Effect
NASA Technical Reports Server (NTRS)
Mazuruk, K.; Volz, M. P.
2015-01-01
In several crystal growth processed based on capillarity, a melt comes into contact with a crucible wall at an angle defined as the contact angle. For molten metals and semiconductors, this contact angle is dependent upon both the crucible and melt material and typical values fall in the range 80-170deg. However, on a microscopic scale, there does not exist a precise and sharp contact angle but rather the melt and solid surfaces merge smoothly and continuously over a distance of up to several micrometers. Accurate modeling requires a more advanced treatment of this interaction. The interaction between the melt and solid surfaces can be calculated by considering two forces: a short-range repulsive force and a longer range (up to a few micrometers) Casimir force. The Casimir force between the two bodies of complex geometry is calculated using a retarded temperature Green's function (Matsubara type) for the photon in the medium. The governing equations are cast in the form of a set of boundary integral equations which are then solved numerically for the case of molten Ge on SiO2. The shape of the molten surface approaching the flat solid body is determined, and the contact angle is defined as the angle between the two surfaces at the microscopically asymptotic distance of 1-2 micrometers. The formulation of this model and the results of the numerical calculations will be presented and discussed.
Torsion balances with fibres of zero length
NASA Astrophysics Data System (ADS)
Speake, Clive C.; Collins, Christopher J.
2018-04-01
Torsion balances have good immunity to tilt and low rotational stiffness. However precise control of the position of the suspended torsion 'bob' is difficult in the presence of ground vibrations and tilt and this is a limiting factor in applications where Casimir forces or putative non-Newtonian short-range forces are being measured. We describe how the desirable characteristics of torsion balances can be reproduced in a rigid body that is suspended using applied forces rather than a torsion fibre. The suspension system can then provide a more precise control of the degrees of freedom of the suspended body. We apply these ideas to a superconducting levitated torsion balance, developed by the authors, and a generic electrostatic suspension. We present results of preliminary experiments that provide support for our analyses.
Local lubrication model for spherical particles within incompressible Navier-Stokes flows.
Lambert, B; Weynans, L; Bergmann, M
2018-03-01
The lubrication forces are short-range hydrodynamic interactions essential to describe suspension of the particles. Usually, they are underestimated in direct numerical simulations of particle-laden flows. In this paper, we propose a lubrication model for a coupled volume penalization method and discrete element method solver that estimates the unresolved hydrodynamic forces and torques in an incompressible Navier-Stokes flow. Corrections are made locally on the surface of the interacting particles without any assumption on the global particle shape. The numerical model has been validated against experimental data and performs as well as existing numerical models that are limited to spherical particles.
NASA Astrophysics Data System (ADS)
Lindsey, Rebecca; Goldman, Nir; Fried, Laurence
2017-06-01
Atomistic modeling of chemistry at extreme conditions remains a challenge, despite continuing advances in computing resources and simulation tools. While first principles methods provide a powerful predictive tool, the time and length scales associated with chemistry at extreme conditions (ns and μm, respectively) largely preclude extension of such models to molecular dynamics. In this work, we develop a simulation approach that retains the accuracy of density functional theory (DFT) while decreasing computational effort by several orders of magnitude. We generate n-body descriptions for atomic interactions by mapping forces arising from short density functional theory (DFT) trajectories on to simple Chebyshev polynomial series. We examine the importance of including greater than 2-body interactions, model transferability to different state points, and discuss approaches to ensure smooth and reasonable model shape outside of the distance domain sampled by the DFT training set. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Performance evaluation of a six-axis generalized force-reflecting teleoperator
NASA Technical Reports Server (NTRS)
Hannaford, B.; Wood, L.; Guggisberg, B.; Mcaffee, D.; Zak, H.
1989-01-01
Work in real-time distributed computation and control has culminated in a prototype force-reflecting telemanipulation system having a dissimilar master (cable-driven, force-reflecting hand controller) and a slave (PUMA 560 robot with custom controller), an extremely high sampling rate (1000 Hz), and a low loop computation delay (5 msec). In a series of experiments with this system and five trained test operators covering over 100 hours of teleoperation, performance was measured in a series of generic and application-driven tasks with and without force feedback, and with control shared between teleoperation and local sensor referenced control. Measurements defining task performance included 100-Hz recording of six-axis force/torque information from the slave manipulator wrist, task completion time, and visual observation of predefined task errors. The task consisted of high precision peg-in-hole insertion, electrical connectors, velcro attach-de-attach, and a twist-lock multi-pin connector. Each task was repeated three times under several operating conditions: normal bilateral telemanipulation, forward position control without force feedback, and shared control. In shared control, orientation was locally servo controlled to comply with applied torques, while translation was under operator control. All performance measures improved as capability was added along a spectrum of capabilities ranging from pure position control through force-reflecting teleoperation and shared control. Performance was optimal for the bare-handed operator.
Scaling and self-organized criticality in proteins: Lysozyme c
NASA Astrophysics Data System (ADS)
Phillips, J. C.
2009-11-01
Proteins appear to be the most dramatic natural example of self-organized criticality (SOC), a concept that explains many otherwise apparently unlikely phenomena. Protein functionality is often dominated by long-range hydro(phobic/philic) interactions, which both drive protein compaction and mediate protein-protein interactions. In contrast to previous reductionist short-range hydrophobicity scales, the holistic Moret-Zebende hydrophobicity scale [Phys. Rev. E 75, 011920 (2007)] represents a hydroanalytic tool that bioinformatically quantifies SOC in a way fully compatible with evolution. Hydroprofiling identifies chemical trends in the activities and substrate binding abilities of model enzymes and antibiotic animal lysozymes c , as well as defensins, which have been the subject of tens of thousands of experimental studies. The analysis is simple and easily performed and immediately yields insights not obtainable by traditional methods based on short-range real-space interactions, as described either by classical force fields used in molecular-dynamics simulations, or hydrophobicity scales based on transference energies from water to organic solvents or solvent-accessible areas.
Spin-dependent excitation of plasma modes in non-neutral ion plasmas
NASA Astrophysics Data System (ADS)
Sawyer, Brian C.; Britton, Joe W.; Bollinger, John J.
2011-10-01
We report on a new technique for exciting and sensitively detecting plasma modes in small, cold non-neutral ion plasmas. The technique uses an optical dipole force generated from laser beams to excite plasma modes. By making the force spin- dependent (i.e. depend on the internal state of the atomic ion) very small mode excitations (<100 nm) can be detected through spin-motion entanglement. Even when the optical dipole force is homogeneous throughout the plasma, short wavelength modes on the order of the interparticle spacing can in principle be excited and detected through the spin dependence of the force. We use this technique to study the drumhead modes of single plane triangular arrays of a few hundred Be+ ions. Spin-dependent mode excitation is interesting in this system because it provides a means of engineering an Ising interaction on a 2-D triangular lattice. For the case of an anti-ferromagnetic interaction, this system exhibits spin frustration on a scale that is at present computationally intractable. Work supported by the DARPA OLE program and NIST.
Shine, K. P.; Berntsen, T. K.; Fuglestvedt, J. S.; Sausen, R.
2005-01-01
The Kyoto Protocol seeks to limit emissions of various greenhouse gases but excludes short-lived species and their precursors even though they cause a significant climate forcing. We explore the difficulties that are faced when designing metrics to compare the climate impact of emissions of oxides of nitrogen (NOx) with other emissions. There are two dimensions to this difficulty. The first concerns the definition of a metric that satisfactorily accounts for its climate impact. NOx emissions increase tropospheric ozone, but this increase and the resulting climate forcing depend strongly on the location of the emissions, with low-latitude emissions having a larger impact. NOx emissions also decrease methane concentrations, causing a global-mean radiative forcing similar in size but opposite in sign to the ozone forcing. The second dimension of difficulty concerns the intermodel differences in the values of computed metrics. We explore the use of indicators that could lead to metrics that, instead of using global-mean inputs, are computed locally and then averaged globally. These local metrics may depend less on cancellation in the global mean; the possibilities presented here seem more robust to model uncertainty, although their applicability depends on the poorly known relationship between local climate change and its societal/ecological impact. If it becomes a political imperative to include NOx emissions in future climate agreements, policy makers will be faced with difficult choices in selecting an appropriate metric. PMID:16243971
Shine, K P; Berntsen, T K; Fuglestvedt, J S; Sausen, R
2005-11-01
The Kyoto Protocol seeks to limit emissions of various greenhouse gases but excludes short-lived species and their precursors even though they cause a significant climate forcing. We explore the difficulties that are faced when designing metrics to compare the climate impact of emissions of oxides of nitrogen (NO(x)) with other emissions. There are two dimensions to this difficulty. The first concerns the definition of a metric that satisfactorily accounts for its climate impact. NO(x) emissions increase tropospheric ozone, but this increase and the resulting climate forcing depend strongly on the location of the emissions, with low-latitude emissions having a larger impact. NO(x) emissions also decrease methane concentrations, causing a global-mean radiative forcing similar in size but opposite in sign to the ozone forcing. The second dimension of difficulty concerns the intermodel differences in the values of computed metrics. We explore the use of indicators that could lead to metrics that, instead of using global-mean inputs, are computed locally and then averaged globally. These local metrics may depend less on cancellation in the global mean; the possibilities presented here seem more robust to model uncertainty, although their applicability depends on the poorly known relationship between local climate change and its societal/ecological impact. If it becomes a political imperative to include NO(x) emissions in future climate agreements, policy makers will be faced with difficult choices in selecting an appropriate metric.
NASA Astrophysics Data System (ADS)
Périllat, Raphaël; Girard, Sylvain; Korsakissok, Irène; Mallet, Vinien
2015-04-01
In a previous study, the sensitivity of a long distance model was analyzed on the Fukushima Daiichi disaster case with the Morris screening method. It showed that a few variables, such as horizontal diffusion coefficient or clouds thickness, have a weak influence on most of the chosen outputs. The purpose of the present study is to apply a similar methodology on the IRSN's operational short distance atmospheric dispersion model, called pX. Atmospheric dispersion models are very useful in case of accidental releases of pollutant to minimize the population exposure during the accident and to obtain an accurate assessment of short and long term environmental and sanitary impact. Long range models are mostly used for consequences assessment while short range models are more adapted to the early phases of the crisis and are used to make prognosis. The Morris screening method was used to estimate the sensitivity of a set of outputs and to rank the inputs by their influences. The input ranking is highly dependent on the considered output, but a few variables seem to have a weak influence on most of them. This first step revealed that interactions and non-linearity are much more pronounced with the short range model than with the long range one. Afterward, the Sobol screening method was used to obtain more quantitative results on the same set of outputs. Using this method was possible for the short range model because it is far less computationally demanding than the long range model. The study also confronts two parameterizations, Doury's and Pasquill's models, to contrast their behavior. The Doury's model seems to excessively inflate the influence of some inputs compared to the Pasquill's model, such as the altitude of emission and the air stability which do not have the same role in the two models. The outputs of the long range model were dominated by only a few inputs. On the contrary, in this study the influence is shared more evenly between the inputs.
The transient response of ice-shelf melting to ocean change
NASA Astrophysics Data System (ADS)
Holland, P.
2017-12-01
Idealised modelling studies show that the melting of ice shelves varies as a quadratic function of ocean temperature. This means that warm-water ice shelves have higher melt rates and are also more sensitive to ocean warming. However, this result is the equilibrium response, derived from a set of ice—ocean simulations subjected to a fixed ocean forcing and run until steady. This study considers instead the transient response of melting, using unsteady simulations subjected to forcing conditions that are oscillated in time with a range of periods. The results show that when the ocean forcing is varied slowly, the melt rates follow the equililbrium response. However, for rapid ocean change melting deviates from the equilibrium response in interesting ways. The residence time of water in the sub-ice cavity offers a critical timescale. When the forcing varies slowly (period of oscillation >> residence time), the cavity is fully-flushed with forcing anomalies at all stages of the cycle and melting follows the equilibrium response. When the forcing varies rapidly (period ≤ residence time), multiple cold and warm anomalies coexist in the cavity, cancelling each other in the spatial mean and thus inducing a relatively steady melt rate. This implies that all ice shelves have a maximum frequency of ocean variability that can be manifested in melting. The results also show that ice shelves forced by warm water have high melt rates, high equilibrium sensitivity, and short residence times, hence a short timescale over which the equilibrium sensitivity is manifest. The most rapid melting adjustment is induced by warm anomalies that are also saline. Thus, ice shelves in the Amundsen and Bellingshausen seas, Antarctica, are highly sensitive to ocean change.
NASA Astrophysics Data System (ADS)
Sotiropoulou, R. P.; Meshkhidze, N.; Nenes, A.
2006-12-01
The aerosol indirect forcing is one of the largest sources of uncertainty in assessments of anthropogenic climate change [IPCC, 2001]. Much of this uncertainty arises from the approach used for linking cloud droplet number concentration (CDNC) to precursor aerosol. Global Climate Models (GCM) use a wide range of cloud droplet activation mechanisms ranging from empirical [Boucher and Lohmann, 1995] to detailed physically- based formulations [e.g., Abdul-Razzak and Ghan, 2000; Fountoukis and Nenes, 2005]. The objective of this study is to assess the uncertainties in indirect forcing and autoconversion of cloud water to rain caused by the application of different cloud droplet parameterization mechanisms; this is an important step towards constraining the aerosol indirect effects (AIE). Here we estimate the uncertainty in indirect forcing and autoconversion rate using the NASA Global Model Initiative (GMI). The GMI allows easy interchange of meteorological fields, chemical mechanisms and the aerosol microphysical packages. Therefore, it is an ideal tool for assessing the effect of different parameters on aerosol indirect forcing. The aerosol module includes primary emissions, chemical production of sulfate in clear air and in-cloud aqueous phase, gravitational sedimentation, dry deposition, wet scavenging in and below clouds, and hygroscopic growth. Model inputs include SO2 (fossil fuel and natural), black carbon (BC), organic carbon (OC), mineral dust and sea salt. The meteorological data used in this work were taken from the NASA Data Assimilation Office (DAO) and two different GCMs: the NASA GEOS4 finite volume GCM (FVGCM) and the Goddard Institute for Space Studies version II' (GISS II') GCM. Simulations were carried out for "present day" and "preindustrial" emissions using different meteorological fields (i.e. DAO, FVGCM, GISS II'); cloud droplet number concentration is computed from the correlations of Boucher and Lohmann [1995], Abdul-Razzak and Ghan [2000], Feingold and Heymsfield [1992], Fountoukis and Nenes [2005] and Segal and Khain [2006]. Computed CDNC is used to calculate the cloud optical depth, the autoconversion rate and the mean top-of-the-atmosphere (TOA) short-wave radiative forcing using modified FAST-J algorithm [Meshkhidze et al., 2006]. Autoconversion of cloud water to precipitation is parameterized following the formulation of Khairoutdinov and Kogan [2000]. References Abdul-Razzak, H., and S. J. Ghan (2000), J. Geophys. Res., 105, 6837-6844. Boucher, O., and U. Lohmann (1995), Tellus, Ser. B, 47, 281- 300. Feingold, G. and A. Heymsfield (1992), J. Atmos. Sci., 49, 2325-2342. Fountoukis, C., and A. Nenes (2005), J. Geophys. Res., 110, D11212, doi:10.1029/ 2004JD005591. Intergovernmental Panel on Climate Change - IPCC (2001), Climate Change, The Scientific Basis, Cambridge University Press, UK. Khairoutdinov, M. and Y. Kogan (2000), Mon. Weather Rev., 128 (1), 229-243. Meshkhidze, N., A Nenes, J. Kouatchou, B. Das and J. Rodriguez, 7th International Aerosol Conference, American Association for Aerosol Research (IAC 2006), St. Paul, Minnesota, October 2006 Nenes, A., and J. H. Seinfeld (2003), J. Geophys. Res., 108, 4415, doi:10.1029/ 2002JD002911. Segal, Y., and A. Khain (2006), J. Geophys. Res., 111, D15204, doi:10.1029/2005JD006561.
Augmented Computer Mouse Would Measure Applied Force
NASA Technical Reports Server (NTRS)
Li, Larry C. H.
1993-01-01
Proposed computer mouse measures force of contact applied by user. Adds another dimension to two-dimensional-position-measuring capability of conventional computer mouse; force measurement designated to represent any desired continuously variable function of time and position, such as control force, acceleration, velocity, or position along axis perpendicular to computer video display. Proposed mouse enhances sense of realism and intuition in interaction between operator and computer. Useful in such applications as three-dimensional computer graphics, computer games, and mathematical modeling of dynamics.
Korte, F Steven; McDonald, Kerry S
2007-01-01
The effects of sarcomere length (SL) on sarcomeric loaded shortening velocity, power output and rates of force development were examined in rat skinned cardiac myocytes that contained either α-myosin heavy chain (α-MyHC) or β-MyHC at 12 ± 1°C. When SL was decreased from 2.3 μm to 2.0 μm submaximal isometric force decreased ∼40% in both α-MyHC and β-MyHC myocytes while peak absolute power output decreased 55% in α-MyHC myocytes and 70% in β-MyHC myocytes. After normalization for the fall in force, peak power output decreased about twice as much in β-MyHC as in α-MyHC myocytes (41%versus 20%). To determine whether the fall in normalized power was due to the lower force levels, [Ca2+] was increased at short SL to match force at long SL. Surprisingly, this led to a 32% greater peak normalized power output at short SL compared to long SL in α-MyHC myocytes, whereas in β-MyHC myocytes peak normalized power output remained depressed at short SL. The role that interfilament spacing plays in determining SL dependence of power was tested by myocyte compression at short SL. Addition of 2% dextran at short SL decreased myocyte width and increased force to levels obtained at long SL, and increased peak normalized power output to values greater than at long SL in both α-MyHC and β-MyHC myocytes. The rate constant of force development (ktr) was also measured and was not different between long and short SL at the same [Ca2+] in α-MyHC myocytes but was greater at short SL in β-MyHC myocytes. At short SL with matched force by either dextran or [Ca2+], ktr was greater than at long SL in both α-MyHC and β-MyHC myocytes. Overall, these results are consistent with the idea that an intrinsic length component increases loaded crossbridge cycling rates at short SL and β-MyHC myocytes exhibit a greater sarcomere length dependence of power output. PMID:17347271
Forced underwater laminar flows with active magnetohydrodynamic metamaterials
NASA Astrophysics Data System (ADS)
Culver, Dean; Urzhumov, Yaroslav
2017-12-01
Theory and practical implementations for wake-free propulsion systems are proposed and proven with computational fluid dynamic modeling. Introduced earlier, the concept of active hydrodynamic metamaterials is advanced by introducing magnetohydrodynamic metamaterials, structures with custom-designed volumetric distribution of Lorentz forces acting on a conducting fluid. Distributions of volume forces leading to wake-free, laminar flows are designed using multivariate optimization. Theoretical indications are presented that such flows can be sustained at arbitrarily high Reynolds numbers. Moreover, it is shown that in the limit Re ≫102 , a fixed volume force distribution may lead to a forced laminar flow across a wide range of Re numbers, without the need to reconfigure the force-generating metamaterial. Power requirements for such a device are studied as a function of the fluid conductivity. Implications to the design of distributed propulsion systems underwater and in space are discussed.
Longitudinal relaxation of initially straight flexible and stiff polymers
NASA Astrophysics Data System (ADS)
Dimitrakopoulos, Panagiotis; Dissanayake, Inuka
2004-11-01
The present talk considers the relaxation of a single flexible or stiff polymer chain from an initial straight configuration in a viscous solvent. This problem commonly arises when strong flows are turned off in both industrial and biological applications. The problem is also motivated by recent experiments with single biopolymer molecules relaxing after being fully extended by applied forces as well as by the recent development of micro-devices involving stretched tethered biopolymers. Our results are applicable to a wide array of synthetic polymers such as polyacrylamides, Kevlar and polyesters as well as biopolymers such as DNA, actin filaments, microtubules and MTV. In this talk we discuss the mechanism of the polymer relaxation as was revealed through Brownian Dynamics simulations covering a broad range of time scales and chain stiffness. After the short-time free diffusion, the chain's longitudinal reduction at early intermediate times is shown to constitute a universal behavior for any chain stiffness caused by a quasi-steady relaxation of tensions associated with the deforming action of the Brownian forces. Stiff chains are shown to exhibit a late intermediate-time longitudinal reduction associated with a relaxation of tensions affected by the deforming Brownian and the restoring bending forces. The longitudinal and transverse relaxations are shown to obey different laws, i.e. the chain relaxation is anisotropic at all times. In the talk, we show how from the knowledge of the relaxation mechanism, we can predict and explain the polymer properties including the polymer stress and the solution birefringence. In addition, a generalized stress-optic law is derived valid for any time and chain stiffness. All polymer properties which depend on the polymer length are shown to exhibit two intermediate-time behaviors with the early one to constitute a universal behavior for any chain stiffness. This work was supported in part by the Minta Martin Research Fund. The computations were performed on multiprocessor computers provided by the National Center for Supercomputing Applications (NCSA) in Illinois (grant DMR000003), and by an Academic Equipment Grant from Sun Microsystems Inc.
The Outlook in Engineering-Related Technology Fields
ERIC Educational Resources Information Center
Weeks, Peggie
2009-01-01
Community colleges have a long and impressive history of preparing a well-qualified technical workforce to meet the immediate and short-term needs of local and regional industries. Programs range from certificates in areas such as drafting, computer-aided design, and automotive technology to associate degrees in electrical and mechanical…
Broadband boundary effects on Brownian motion.
Mo, Jianyong; Simha, Akarsh; Raizen, Mark G
2015-12-01
Brownian motion of particles in confined fluids is important for many applications, yet the effects of the boundary over a wide range of time scales are still not well understood. We report high-bandwidth, comprehensive measurements of Brownian motion of an optically trapped micrometer-sized silica sphere in water near an approximately flat wall. At short distances we observe anisotropic Brownian motion with respect to the wall. We find that surface confinement not only occurs in the long time scale diffusive regime but also in the short time scale ballistic regime, and the velocity autocorrelation function of the Brownian particle decays faster than that of a particle in bulk fluid. Furthermore, at low frequencies the thermal force loses its color due to the reflected flow from the no-slip boundary. The power spectrum of the thermal force on the particle near a no-slip boundary becomes flat at low frequencies. This detailed understanding of boundary effects on Brownian motion opens a door to developing a 3D microscope using particles as remote sensors.
Quantum Gravitational Spectroscopy
Nesvizhevsky, Valery V.; Antoniadis, Ignatios; Baessler, Stefan; ...
2015-01-01
We report that one of the main goals for improving the accuracy of quantum gravitational spectroscopy with neutrons is searches for extra short-range fundamental forces. We discuss also any progress in all competing nonneutron methods as well as constraints at other characteristic distances. Among major methodical developments related to the phenomenon of gravitational quantum states are the detailed theoretical analysis and the planning experiments on observation of gravitational quantum states of antihydrogen atoms.
Parallel Processing Systems for Passive Ranging During Helicopter Flight
NASA Technical Reports Server (NTRS)
Sridhar, Bavavar; Suorsa, Raymond E.; Showman, Robert D. (Technical Monitor)
1994-01-01
The complexity of rotorcraft missions involving operations close to the ground result in high pilot workload. In order to allow a pilot time to perform mission-oriented tasks, sensor-aiding and automation of some of the guidance and control functions are highly desirable. Images from an electro-optical sensor provide a covert way of detecting objects in the flight path of a low-flying helicopter. Passive ranging consists of processing a sequence of images using techniques based on optical low computation and recursive estimation. The passive ranging algorithm has to extract obstacle information from imagery at rates varying from five to thirty or more frames per second depending on the helicopter speed. We have implemented and tested the passive ranging algorithm off-line using helicopter-collected images. However, the real-time data and computation requirements of the algorithm are beyond the capability of any off-the-shelf microprocessor or digital signal processor. This paper describes the computational requirements of the algorithm and uses parallel processing technology to meet these requirements. Various issues in the selection of a parallel processing architecture are discussed and four different computer architectures are evaluated regarding their suitability to process the algorithm in real-time. Based on this evaluation, we conclude that real-time passive ranging is a realistic goal and can be achieved with a short time.
Controlling under-actuated robot arms using a high speed dynamics process
NASA Technical Reports Server (NTRS)
Jain, Abhinandan (Inventor); Rodriguez, Guillermo (Inventor)
1994-01-01
The invention controls an under-actuated manipulator by first obtaining predetermined active joint accelerations of the active joints and the passive joint friction forces of the passive joints, then computing articulated body qualities for each of the joints from the current positions of the links, and finally computing from the articulated body qualities and from the active joint accelerations and the passive joint forces, active joint forces of the active joints. Ultimately, the invention transmits servo commands to the active joint forces thus computed to the respective ones of the joint servos. The computation of the active joint forces is accomplished using a recursive dynamics algorithm. In this computation, an inward recursion is first carried out for each link, beginning with the outermost link in order to compute the residual link force of each link from the active joint acceleration if the corresponding joint is active, or from the known passive joint force if the corresponding joint is passive. Then, an outward recursion is carried out for each link in which the active joint force is computed from the residual link force if the corresponding joint is active or the passive joint acceleration is computed from the residual link force if the corresponding joint is passive.
1996-07-01
JIATFE employs a mixture of DoD and DLEA assets and sensors to conduct routine patrol operations and respond to changing intelligence assessments...to evolve. These changes range from changing protocol data unit (PDU) formats to introduction of new behaviors, such as infrared sensor management...load, sensors , damage assessment, and physical status. In addition, the PDC contains the processes for computing physical state changes such as
Calculation and Correlation of the Unsteady Flowfield in a High Pressure Turbine
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.; Liu, Jong S.; Panovsky, Josef; Keith, Theo G., Jr.; Mehmed, Oral
2002-01-01
Forced vibrations in turbomachinery components can cause blades to crack or fail due to high-cycle fatigue. Such forced response problems will become more pronounced in newer engines with higher pressure ratios and smaller axial gap between blade rows. An accurate numerical prediction of the unsteady aerodynamics phenomena that cause resonant forced vibrations is increasingly important to designers. Validation of the computational fluid dynamics (CFD) codes used to model the unsteady aerodynamic excitations is necessary before these codes can be used with confidence. Recently published benchmark data, including unsteady pressures and vibratory strains, for a high-pressure turbine stage makes such code validation possible. In the present work, a three dimensional, unsteady, multi blade-row, Reynolds-Averaged Navier Stokes code is applied to a turbine stage that was recently tested in a short duration test facility. Two configurations with three operating conditions corresponding to modes 2, 3, and 4 crossings on the Campbell diagram are analyzed. Unsteady pressures on the rotor surface are compared with data.
Fast-SG: an alignment-free algorithm for hybrid assembly.
Di Genova, Alex; Ruz, Gonzalo A; Sagot, Marie-France; Maass, Alejandro
2018-05-01
Long-read sequencing technologies are the ultimate solution for genome repeats, allowing near reference-level reconstructions of large genomes. However, long-read de novo assembly pipelines are computationally intense and require a considerable amount of coverage, thereby hindering their broad application to the assembly of large genomes. Alternatively, hybrid assembly methods that combine short- and long-read sequencing technologies can reduce the time and cost required to produce de novo assemblies of large genomes. Here, we propose a new method, called Fast-SG, that uses a new ultrafast alignment-free algorithm specifically designed for constructing a scaffolding graph using light-weight data structures. Fast-SG can construct the graph from either short or long reads. This allows the reuse of efficient algorithms designed for short-read data and permits the definition of novel modular hybrid assembly pipelines. Using comprehensive standard datasets and benchmarks, we show how Fast-SG outperforms the state-of-the-art short-read aligners when building the scaffoldinggraph and can be used to extract linking information from either raw or error-corrected long reads. We also show how a hybrid assembly approach using Fast-SG with shallow long-read coverage (5X) and moderate computational resources can produce long-range and accurate reconstructions of the genomes of Arabidopsis thaliana (Ler-0) and human (NA12878). Fast-SG opens a door to achieve accurate hybrid long-range reconstructions of large genomes with low effort, high portability, and low cost.
g_contacts: Fast contact search in bio-molecular ensemble data
NASA Astrophysics Data System (ADS)
Blau, Christian; Grubmuller, Helmut
2013-12-01
Short-range interatomic interactions govern many bio-molecular processes. Therefore, identifying close interaction partners in ensemble data is an essential task in structural biology and computational biophysics. A contact search can be cast as a typical range search problem for which efficient algorithms have been developed. However, none of those has yet been adapted to the context of macromolecular ensembles, particularly in a molecular dynamics (MD) framework. Here a set-decomposition algorithm is implemented which detects all contacting atoms or residues in maximum O(Nlog(N)) run-time, in contrast to the O(N2) complexity of a brute-force approach. Catalogue identifier: AEQA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEQA_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 8945 No. of bytes in distributed program, including test data, etc.: 981604 Distribution format: tar.gz Programming language: C99. Computer: PC. Operating system: Linux. RAM: ≈Size of input frame Classification: 3, 4.14. External routines: Gromacs 4.6[1] Nature of problem: Finding atoms or residues that are closer to one another than a given cut-off. Solution method: Excluding distant atoms from distance calculations by decomposing the given set of atoms into disjoint subsets. Running time:≤O(Nlog(N)) References: [1] S. Pronk, S. Pall, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R. Shirts, J.C. Smith, P. M. Kasson, D. van der Spoel, B. Hess and Erik Lindahl, Gromacs 4.5: a high-throughput and highly parallel open source molecular simulation toolkit, Bioinformatics 29 (7) (2013).
Investigation of electric charge on inertial particle dynamics in turbulence
NASA Astrophysics Data System (ADS)
Lu, Jiang; Shaw, Raymond
2014-11-01
The behavior of electrically charged, inertial particles in homogeneous, isotropic turbulence is investigated. Both like-charged and oppositely-charged particle interactions are considered. Direct numerical simulations (DNS) of turbulence in a periodic box using the pseudospectral numerical method are performed, with Lagrangian tracking of the particles. We study effects of mutual electrostatic repulsion and attraction on the particle dynamics, as quantified by the radial distribution function (RDF) and the radial relative velocity. For the like-charged particle case, the Coulomb force leads to a short range repulsion behavior and an RDF reminiscent of that for a dilute gas. For the oppositely-charged particle case, the Coulomb force increases the RDF beyond that already occurring for neutral inertial particles. For both cases, the relative velocities are calculated as a function of particle separation distance and show distinct deviations from the expected scaling within the dissipation range. This research was supported by NASA Grant NNX113AF90G.
Jeong, Seongmin; Cho, Hyunmin; Han, Seonggeun; Won, Phillip; Lee, Habeom; Hong, Sukjoon; Yeo, Junyeob; Kwon, Jinhyeong; Ko, Seung Hwan
2017-07-12
Air quality has become a major public health issue in Asia including China, Korea, and India. Particulate matters are the major concern in air quality. We present the first environmental application demonstration of Ag nanowire percolation network for a novel, electrical type transparent, reusable, and active PM2.5 air filter although the Ag nanowire percolation network has been studied as a very promising transparent conductor in optoelectronics. Compared with previous particulate matter air filter study using relatively weaker short-range intermolecular force in polar polymeric nanofiber, Ag nanowire percolation network filters use stronger long-range electrostatic force to capture PM2.5, and they are highly efficient (>99.99%), transparent, working on an active mode, low power consumption, antibacterial, and reusable after simple washing. The proposed new particulate matter filter can be applied for a highly efficient, reusable, active and energy efficient filter for wearable electronics application.
The role of electrostatics in protein-protein interactions of a monoclonal antibody.
Roberts, D; Keeling, R; Tracka, M; van der Walle, C F; Uddin, S; Warwicker, J; Curtis, R
2014-07-07
Understanding how protein-protein interactions depend on the choice of buffer, salt, ionic strength, and pH is needed to have better control over protein solution behavior. Here, we have characterized the pH and ionic strength dependence of protein-protein interactions in terms of an interaction parameter kD obtained from dynamic light scattering and the osmotic second virial coefficient B22 measured by static light scattering. A simplified protein-protein interaction model based on a Baxter adhesive potential and an electric double layer force is used to separate out the contributions of longer-ranged electrostatic interactions from short-ranged attractive forces. The ionic strength dependence of protein-protein interactions for solutions at pH 6.5 and below can be accurately captured using a Deryaguin-Landau-Verwey-Overbeek (DLVO) potential to describe the double layer forces. In solutions at pH 9, attractive electrostatics occur over the ionic strength range of 5-275 mM. At intermediate pH values (7.25 to 8.5), there is a crossover effect characterized by a nonmonotonic ionic strength dependence of protein-protein interactions, which can be rationalized by the competing effects of long-ranged repulsive double layer forces at low ionic strength and a shorter ranged electrostatic attraction, which dominates above a critical ionic strength. The change of interactions from repulsive to attractive indicates a concomitant change in the angular dependence of protein-protein interaction from isotropic to anisotropic. In the second part of the paper, we show how the Baxter adhesive potential can be used to predict values of kD from fitting to B22 measurements, thus providing a molecular basis for the linear correlation between the two protein-protein interaction parameters.
Interpretation of frequency modulation atomic force microscopy in terms of fractional calculus
NASA Astrophysics Data System (ADS)
Sader, John E.; Jarvis, Suzanne P.
2004-07-01
It is widely recognized that small amplitude frequency modulation atomic force microscopy probes the derivative of the interaction force between tip and sample. For large amplitudes, however, such a physical connection is currently lacking, although it has been observed that the frequency shift presents a quantity intermediate to the interaction force and energy for certain force laws. Here we prove that these observations are a universal property of large amplitude frequency modulation atomic force microscopy, by establishing that the frequency shift is proportional to the half-fractional integral of the force, regardless of the force law. This finding indicates that frequency modulation atomic force microscopy can be interpreted as a fractional differential operator, where the order of the derivative/integral is dictated by the oscillation amplitude. We also establish that the measured frequency shift varies systematically from a probe of the force gradient for small oscillation amplitudes, through to the measurement of a quantity intermediate to the force and energy (the half-fractional integral of the force) for large oscillation amplitudes. This has significant implications to measurement sensitivity, since integrating the force will smooth its behavior, while differentiating it will enhance variations. This highlights the importance in choice of oscillation amplitude when wishing to optimize the sensitivity of force spectroscopy measurements to short-range interactions and consequently imaging with the highest possible resolution.
Mapping the Drude polarizable force field onto a multipole and induced dipole model
NASA Astrophysics Data System (ADS)
Huang, Jing; Simmonett, Andrew C.; Pickard, Frank C.; MacKerell, Alexander D.; Brooks, Bernard R.
2017-10-01
The induced dipole and the classical Drude oscillator represent two major approaches for the explicit inclusion of electronic polarizability into force field-based molecular modeling and simulations. In this work, we explore the equivalency of these two models by comparing condensed phase properties computed using the Drude force field and a multipole and induced dipole (MPID) model. Presented is an approach to map the electrostatic model optimized in the context of the Drude force field onto the MPID model. Condensed phase simulations on water and 15 small model compounds show that without any reparametrization, the MPID model yields properties similar to the Drude force field with both models yielding satisfactory reproduction of a range of experimental values and quantum mechanical data. Our results illustrate that the Drude oscillator model and the point induced dipole model are different representations of essentially the same physical model. However, results indicate the presence of small differences between the use of atomic multipoles and off-center charge sites. Additionally, results on the use of dispersion particle mesh Ewald further support its utility for treating long-range Lennard Jones dispersion contributions in the context of polarizable force fields. The main motivation in demonstrating the transferability of parameters between the Drude and MPID models is that the more than 15 years of development of the Drude polarizable force field can now be used with MPID formalism without the need for dual-thermostat integrators nor self-consistent iterations. This opens up a wide range of new methodological opportunities for polarizable models.
Navier-Stokes Computations of Longitudinal Forces and Moments for a Blended Wing Body
NASA Technical Reports Server (NTRS)
Pao, S. Paul; Biedron, Robert T.; Park, Michael A.; Fremaux, C. Michael; Vicroy, Dan D.
2005-01-01
The object of this paper is to investigate the feasibility of applying CFD methods to aerodynamic analyses for aircraft stability and control. The integrated aerodynamic parameters used in stability and control, however, are not necessarily those extensively validated in the state of the art CFD technology. Hence, an exploratory study of such applications and the comparison of the solutions to available experimental data will help to assess the validity of the current computation methods. In addition, this study will also examine issues related to wind tunnel measurements such as measurement uncertainty and support interference effects. Several sets of experimental data from the NASA Langley 14x22-Foot Subsonic Tunnel and the National Transonic Facility are presented. Two Navier-Stokes flow solvers, one using structured meshes and the other unstructured meshes, were used to compute longitudinal static stability derivatives for an advanced Blended Wing Body configuration over a wide range of angles of attack. The computations were performed for two different Reynolds numbers and the resulting forces and moments are compared with the above mentioned wind tunnel data.
Navier-Stokes Computations of Longitudinal Forces and Moments for a Blended Wing Body
NASA Technical Reports Server (NTRS)
Pao, S. Paul; Biedron, Robert T.; Park, Michael A.; Fremaux, C. Michael; Vicroy, Dan D.
2004-01-01
The object of this paper is to investigate the feasibility of applying CFD methods to aerodynamic analyses for aircraft stability and control. The integrated aerodynamic parameters used in stability and control, however, are not necessarily those extensively validated in the state of the art CFD technology. Hence, an exploratory study of such applications and the comparison of the solutions to available experimental data will help to assess the validity of the current computation methods. In addition, this study will also examine issues related to wind tunnel measurements such as measurement uncertainty and support interference effects. Several sets of experimental data from the NASA Langley 14x22-Foot Subsonic Tunnel and the National Transonic Facility are presented. Two Navier-Stokes flow solvers, one using structured meshes and the other unstructured meshes, were used to compute longitudinal static stability derivatives for an advanced Blended Wing Body configuration over a wide range of angles of attack. The computations were performed for two different Reynolds numbers and the resulting forces and moments are compared with the above mentioned wind tunnel data.
Liu, Jian; Pedroza, Luana S; Misch, Carissa; Fernández-Serra, Maria V; Allen, Philip B
2014-07-09
We present total energy and force calculations for the (GaN)1-x(ZnO)x alloy. Site-occupancy configurations are generated from Monte Carlo (MC) simulations, on the basis of a cluster expansion model proposed in a previous study. Local atomic coordinate relaxations of surprisingly large magnitude are found via density-functional calculations using a 432-atom periodic supercell, for three representative configurations at x = 0.5. These are used to generate bond-length distributions. The configurationally averaged composition- and temperature-dependent short-range order (SRO) parameters of the alloys are discussed. The entropy is approximated in terms of pair distribution statistics and thus related to SRO parameters. This approximate entropy is compared with accurate numerical values from MC simulations. An empirical model for the dependence of the bond length on the local chemical environments is proposed.
Angelescu, Daniel G; Caragheorgheopol, Dan
2015-10-14
The mean-force and the potential of the mean force between two like-charged spherical shells were investigated in the salt-free limit using the primitive model and Monte Carlo simulations. Apart from an angular homogeneous distribution, a discrete charge distribution where point charges localized on the shell outer surface followed an icosahedral arrangement was considered. The electrostatic coupling of the model system was altered by the presence of mono-, trivalent counterions or small dendrimers, each one bearing a net charge of 9 e. We analyzed in detail how the shell thickness and the radial and angular distribution of the shell charges influenced the effective interaction between the shells. We found a sequence of the potential of the mean force similar to the like-charged filled spheres, ranging from long-range purely repulsive to short-range purely attractive as the electrostatic coupling increased. Both types of potentials were attenuated and an attractive-to-repulsive transition occurred in the presence of trivalent counterions as a result of (i) thinning the shell or (ii) shifting the shell charge from the outer towards the inner surface. The potential of the mean force became more attractive with the icosahedrally symmetric charge model, and additionally, at least one shell tended to line up with 5-fold symmetry axis along the longest axis of the simulation box at the maximum attraction. The results provided a basic framework of understanding the non-specific electrostatic origin of the agglomeration and long-range assembly of the viral nanoparticles.
NASA Astrophysics Data System (ADS)
Jayaraman, Saivenkataraman; Maginn, Edward J.
2007-12-01
The melting point, enthalpy of fusion, and thermodynamic stability of two crystal polymorphs of the ionic liquid 1-n-butyl-3-methylimidazolium chloride are calculated using a thermodynamic integration-based atomistic simulation method. The computed melting point of the orthorhombic phase ranges from 365 to 369 K, depending on the classical force field used. This compares reasonably well with the experimental values, which range from 337 to 339 K. The computed enthalpy of fusion ranges from 19 to 29 kJ/mol, compared to the experimental values of 18.5-21.5 kJ/mol. Only one of the two force fields evaluated in this work yielded a stable monoclinic phase, despite the fact that both give accurate liquid state densities. The computed melting point of the monoclinic polymorph was found to be 373 K, which is somewhat higher than the experimental range of 318-340 K. The computed enthalpy of fusion was 23 kJ/mol, which is also higher than the experimental value of 9.3-14.5 kJ/mol. The simulations predict that the monoclinic form is more stable than the orthorhombic form at low temperature, in agreement with one set of experiments but in conflict with another. The difference in free energy between the two polymorphs is very small, due to the fact that a single trans-gauche conformational difference in an alkyl sidechain distinguishes the two structures. As a result, it is very difficult to construct simple classical force fields that are accurate enough to definitively predict which polymorph is most stable. A liquid phase analysis of the probability distribution of the dihedral angles in the alkyl chain indicates that less than half of the dihedral angles are in the gauche-trans configuration that is adopted in the orthorhombic crystal. The low melting point and glass forming tendency of this ionic liquid is likely due to the energy barrier for conversion of the remaining dihedral angles into the gauche-trans state. The simulation procedure used to perform the melting point calculations is an extension of the so-called pseudosupercritical path sampling procedure. This study demonstrates that the method can be effectively applied to quite complex systems such as ionic liquids and that the appropriate choice of tethering potentials for a key step in the thermodynamic path can enable first order phase transitions to be avoided.
Quantifying Climatological Ranges and Anomalies for Pacific Coral Reef Ecosystems
Gove, Jamison M.; Williams, Gareth J.; McManus, Margaret A.; Heron, Scott F.; Sandin, Stuart A.; Vetter, Oliver J.; Foley, David G.
2013-01-01
Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic–biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will help identify reef ecosystems most exposed to environmental stress as well as systems that may be more resistant or resilient to future climate change. PMID:23637939
Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems.
Gove, Jamison M; Williams, Gareth J; McManus, Margaret A; Heron, Scott F; Sandin, Stuart A; Vetter, Oliver J; Foley, David G
2013-01-01
Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic-biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will help identify reef ecosystems most exposed to environmental stress as well as systems that may be more resistant or resilient to future climate change.
Miller, Robert T.; Delin, G.N.
2002-01-01
In May 1980, the University of Minnesota began a project to evaluate the feasibility of storing heated water (150 degrees Celsius) in the Franconia-Ironton Galesville aquifer (183 to 245 meters below land surface) and later recovering it for space heating. The University's steam-generation facilities supplied high-temperature water for injection. The Aquifer Thermal-Energy Storage system is a doublet-well design in which the injection-withdrawal wells are spaced approximately 250 meters apart. Water was pumped from one of the wells through a heat exchanger, where heat was added or removed. This water was then injected back into the aquifer through the other well. Four short-term test cycles were completed. Each cycle consisted of approximately equal durations of injection and withdrawal ranging from 5.25 to 8.01 days. Equal rates of injection and withdrawal, ranging from 17.4 to 18.6 liters per second, were maintained for each short-term test cycle. Average injection temperatures ranged from 88.5 to 117.9 degrees Celsius. Temperature graphs for selected depths at individual observation wells indicate that the Ironton and Galesville Sandstones received and stored more thermal energy than the upper part of the Franconia Formation. Clogging of the Ironton Sandstone was possibly due to precipitation of calcium carbonate or movement of fine-grain material or both. Vertical-profile plots indicate that the effects of buoyancy flow were small within the aquifer. A three-dimensional, anisotropic, nonisothermal, ground-water-flow, and thermal-energy-transport model was constructed to simulate the four short-term test cycles. The model was used to simulate the entire short-term testing period of approximately 400 days. The only model properties varied during model calibration were longitudinal and transverse thermal dispersivities, which, for final calibration, were simulated as 3.3 and 0.33 meters, respectively. The model was calibrated by comparing model-computed results to (1) measured temperatures at selected altitudes in four observation wells, (2) measured temperatures at the production well, and (3) calculated thermal efficiencies of the aquifer. Model-computed withdrawal-water temperatures were within an average of about 3 percent of measured values and model-computed aquifer-thermal efficiencies were within an average of about 5 percent of calculated values for the short-term test cycles. These data indicate that the model accurately simulated thermal-energy storage within the Franconia-Ironton-Galesville aquifer.
Effect of misalignment on mechanical behavior of metals in creep. [computer programs
NASA Technical Reports Server (NTRS)
Wu, H. C.
1979-01-01
Application of the endochronic theory of viscoplasticity to creep, creep recovery, and stress relaxation at the small strain and short time range produced the following results: (1) The governing constitutive equations for constant-strain-rate stress-strain behavior, creep, creep recovery, and stress relaxation were derived by imposing appropriate constraints on the general constitutive equation of the endochronic theory. (2) A set of material constants was found which correlate strain-hardening, creep, creep recovery, and stress relaxation. (3) The theory predicts with reasonable accuracy the creep and creep recovery behaviors at short time. (4) The initial strain history prior to the creep stage affects the subsequent creep significantly. (5) A critical stress was established for creep recovery. A computer program, written for the misalignment problem is reported.
Stockman, Isabelle; Bohman, Katarina; Jakobsson, Lotta; Brolin, Karin
2013-01-01
The objective of this study was to present, compare, and discuss the kinematic response of children and child anthropomorphic test devices (ATDs) during emergency braking events in different restraint configurations in a passenger vehicle. A driving study was conducted on a closed-circuit test track comprising 16 children aged 4 to 12 years old and the Q3, Hybrid III (HIII) 3-year-old, 6-year-old, and 10-year-old ATDs restrained on the right rear seat of a modern passenger vehicle. The children were exposed to one braking event in each of the 2 restraint systems and the ATDs were exposed to 2 braking events in each restraint system. All events had a deceleration of 1.0 g. Short children (stature 107-123 cm) and the Q3, HIII 3-year-old, and 6-year-old were restrained on booster cushions as well as high-back booster seats. Tall children (stature 135-150 cm) and HIII 10-year-old were restrained on booster cushions or restrained by 3-point belts directly on the car seat. Vehicle data were collected and synchronized with video data. Forward trajectories for the forehead and external auditory canal (ear) were determined as well as head rotation and shoulder belt force. A total of 40 trials were analyzed. Child volunteers had greater maximum forward displacement of the head and greater head rotation compared to the ATDs. The average maximum displacement for children ranged from 165 to 210 mm and 155 to 195 mm for the forehead and ear target, respectively. Corresponding values for the ATDs were 55 to 165 mm and 50 to 160 mm. The change in head angle was greater for short children than for tall children. Shoulder belt force was within the same range for short children when restrained on booster cushions or high-back booster seats. For tall children, the shoulder belt force was greater when restrained on booster cushions compared to being restrained by seat belts directly on the car seat. The forward displacement was within the same range for all children regardless of stature and restraint system. However, the maximum forward position depended on the initial seated posture and shoulder belt position on the shoulder. Differences could also be seen in the curvature of the neck and spine. Short children exhibited a greater flexion motion of the head, whereas a more upright posture at maximum forward position was exhibited by the tall children. The ATDs displayed less forward displacement compared to the children.
Structure of aqueous proline via parallel tempering molecular dynamics and neutron diffraction.
Troitzsch, R Z; Martyna, G J; McLain, S E; Soper, A K; Crain, J
2007-07-19
The structure of aqueous L-proline amino acid has been the subject of much debate centering on the validity of various proposed models, differing widely in the extent to which local and long-range correlations are present. Here, aqueous proline is investigated by atomistic, replica exchange molecular dynamics simulations, and the results are compared to neutron diffraction and small angle neutron scattering (SANS) data, which have been reported recently (McLain, S.; Soper, A.; Terry, A.; Watts, A. J. Phys. Chem. B 2007, 111, 4568). Comparisons between neutron experiments and simulation are made via the static structure factor S(Q) which is measured and computed from several systems with different H/D isotopic compositions at a concentration of 1:20 molar ratio. Several different empirical water models (TIP3P, TIP4P, and SPC/E) in conjunction with the CHARMM22 force field are investigated. Agreement between experiment and simulation is reasonably good across the entire Q range although there are significant model-dependent variations in some cases. In general, agreement is improved slightly upon application of approximate quantum corrections obtained from gas-phase path integral simulations. Dimers and short oligomeric chains formed by hydrogen bonds (frequently bifurcated) coexist with apolar (hydrophobic) contacts. These emerge as the dominant local motifs in the mixture. Evidence for long-range association is more equivocal: No long-range structures form spontaneously in the MD simulations, and no obvious low-Q signature is seen in the SANS data. Moreover, associations introduced artificially to replicate a long-standing proposed mesoscale structure for proline correlations as an initial condition are annealed out by parallel tempering MD simulations. However, some small residual aggregates do remain, implying a greater degree of long-range order than is apparent in the SANS data.
Blood-Forsythe, Martin A; Markovich, Thomas; DiStasio, Robert A; Car, Roberto; Aspuru-Guzik, Alán
2016-03-01
An accurate treatment of the long-range electron correlation energy, including van der Waals (vdW) or dispersion interactions, is essential for describing the structure, dynamics, and function of a wide variety of systems. Among the most accurate models for including dispersion into density functional theory (DFT) is the range-separated many-body dispersion (MBD) method [A. Ambrosetti et al. , J. Chem. Phys. , 2014, 140 , 18A508], in which the correlation energy is modeled at short-range by a semi-local density functional and at long-range by a model system of coupled quantum harmonic oscillators. In this work, we develop analytical gradients of the MBD energy with respect to nuclear coordinates, including all implicit coordinate dependencies arising from the partitioning of the charge density into Hirshfeld effective volumes. To demonstrate the efficiency and accuracy of these MBD gradients for geometry optimizations of systems with intermolecular and intramolecular interactions, we optimized conformers of the benzene dimer and isolated small peptides with aromatic side-chains. We find excellent agreement with the wavefunction theory reference geometries of these systems (at a fraction of the computational cost) and find that MBD consistently outperforms the popular TS and D3(BJ) dispersion corrections. To demonstrate the performance of the MBD model on a larger system with supramolecular interactions, we optimized the C 60 @C 60 H 28 buckyball catcher host-guest complex. In our analysis, we also find that neglecting the implicit nuclear coordinate dependence arising from the charge density partitioning, as has been done in prior numerical treatments, leads to an unacceptable error in the MBD forces, with relative errors of ∼20% (on average) that can extend well beyond 100%.
PeakForce Tapping resolves individual microvilli on living cells.
Schillers, Hermann; Medalsy, Izhar; Hu, Shuiqing; Slade, Andrea L; Shaw, James E
2016-02-01
Microvilli are a common structure found on epithelial cells that increase the apical surface thus enhancing the transmembrane transport capacity and also serve as one of the cell's mechanosensors. These structures are composed of microfilaments and cytoplasm, covered by plasma membrane. Epithelial cell function is usually coupled to the density of microvilli and its individual size illustrated by diseases, in which microvilli degradation causes malabsorption and diarrhea. Atomic force microscopy (AFM) has been widely used to study the topography and morphology of living cells. Visualizing soft and flexible structures such as microvilli on the apical surface of a live cell has been very challenging because the native microvilli structures are displaced and deformed by the interaction with the probe. PeakForce Tapping® is an AFM imaging mode, which allows reducing tip-sample interactions in time (microseconds) and controlling force in the low pico-Newton range. Data acquisition of this mode was optimized by using a newly developed PeakForce QNM-Live Cell probe, having a short cantilever with a 17-µm-long tip that minimizes hydrodynamic effects between the cantilever and the sample surface. In this paper, we have demonstrated for the first time the visualization of the microvilli on living kidney cells with AFM using PeakForce Tapping. The structures observed display a force dependence representing either the whole microvilli or just the tips of the microvilli layer. Together, PeakForce Tapping allows force control in the low pico-Newton range and enables the visualization of very soft and flexible structures on living cells under physiological conditions. © 2015 The Authors Journal of Molecular Recognition Published by John Wiley & Sons Ltd.
Nucleic acids: theory and computer simulation, Y2K.
Beveridge, D L; McConnell, K J
2000-04-01
Molecular dynamics simulations on DNA and RNA that include solvent are now being performed under realistic environmental conditions of water activity and salt. Improvements to force-fields and treatments of long-range interactions have significantly increased the reliability of simulations. New studies of sequence effects, axis bending, solvation and conformational transitions have appeared.
Simple vertex correction improves G W band energies of bulk and two-dimensional crystals
NASA Astrophysics Data System (ADS)
Schmidt, Per S.; Patrick, Christopher E.; Thygesen, Kristian S.
2017-11-01
The G W self-energy method has long been recognized as the gold standard for quasiparticle (QP) calculations of solids in spite of the fact that the neglect of vertex corrections and the use of a density-functional theory starting point lack rigorous justification. In this work we remedy this situation by including a simple vertex correction that is consistent with a local-density approximation starting point. We analyze the effect of the self-energy by splitting it into short-range and long-range terms which are shown to govern, respectively, the center and size of the band gap. The vertex mainly improves the short-range correlations and therefore has a small effect on the band gap, while it shifts the band gap center up in energy by around 0.5 eV, in good agreement with experiments. Our analysis also explains how the relative importance of short- and long-range interactions in structures of different dimensionality is reflected in their QP energies. Inclusion of the vertex comes at practically no extra computational cost and even improves the basis set convergence compared to G W . Taken together, the method provides an efficient and rigorous improvement over the G W approximation.
(abstract) Optical Scattering and Surface Microroughness of Ion Beam Deposited Au and Pt Thin Films
NASA Technical Reports Server (NTRS)
Al-Jumaily, Ghanim A.; Raouf, Nasrat A.; Edlou, Samad M.; Simons, John C.
1994-01-01
Thin films of gold and platinum have been deposited onto superpolished fused silica substrates using thermal evaporation, ion assisted deposition (IAD), and ion assisted sputtering. The influence of ion beam flux, thin film material, and deposition rate on the films microroughness have been investigated. Short range surface microroughness of the films has been examined using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). Long range surface microroughness has been characterized using an angle resolved optical scatterometer. Results indicate that ion beam deposited coatings have improved microstructure over thermally evaporated films.
Roth, Joshua D; Howell, Stephen M; Hull, Maury L
2017-04-01
Contact force imbalance and contact kinematics (i.e., motion of the contact location in each compartment during flexion) of the tibiofemoral joint are both important predictors of a patient's outcome following total knee arthroplasty (TKA). Previous tibial force sensors have limitations in that they either did not determine contact forces and contact locations independently in the medial and lateral compartments or only did so within restricted areas of the tibial insert, which prevented them from thoroughly evaluating contact force imbalance and contact kinematics in vitro. Accordingly, the primary objective of this study was to present the design and verification of an improved tibial force sensor which overcomes these limitations. The improved tibial force sensor consists of a modified tibial baseplate which houses independent medial and lateral arrays of three custom tension-compression transducers each. This sensor is interchangeable with a standard tibial component because it accommodates tibial articular surface inserts with a range of sizes and thicknesses. This sensor was verified by applying known loads at known locations over the entire surface of the tibial insert to determine the errors in the computed contact force and contact location in each compartment. The root-mean-square errors (RMSEs) in contact force are ≤ 6.1 N which is 1.4% of the 450 N full-scale output. The RMSEs in contact location are ≤ 1.6 mm. This improved tibial force sensor overcomes the limitations of the previous sensors and therefore should be useful for in vitro evaluation of new alignment goals, new surgical techniques, and new component designs in TKA.
Multi-channel, passive, short-range anti-aircraft defence system
NASA Astrophysics Data System (ADS)
Gapiński, Daniel; Krzysztofik, Izabela; Koruba, Zbigniew
2018-01-01
The paper presents a novel method for tracking several air targets simultaneously. The developed concept concerns a multi-channel, passive, short-range anti-aircraft defence system based on the programmed selection of air targets and an algorithm of simultaneous synchronisation of several modified optical scanning seekers. The above system is supposed to facilitate simultaneous firing of several self-guided infrared rocket missiles at many different air targets. From the available information, it appears that, currently, there are no passive self-guided seekers that fulfil such tasks. This paper contains theoretical discussions and simulations of simultaneous detection and tracking of many air targets by mutually integrated seekers of several rocket missiles. The results of computer simulation research have been presented in a graphical form.
Upgrading NASA/DOSE laser ranging system control computers
NASA Technical Reports Server (NTRS)
Ricklefs, Randall L.; Cheek, Jack; Seery, Paul J.; Emenheiser, Kenneth S.; Hanrahan, William P., III; Mcgarry, Jan F.
1993-01-01
Laser ranging systems now managed by the NASA Dynamics of the Solid Earth (DOSE) and operated by the Bendix Field Engineering Corporation, the University of Hawaii, and the University of Texas have produced a wealth on interdisciplinary scientific data over the last three decades. Despite upgrades to the most of the ranging station subsystems, the control computers remain a mix of 1970's vintage minicomputers. These encompass a wide range of vendors, operating systems, and languages, making hardware and software support increasingly difficult. Current technology allows replacement of controller computers at a relatively low cost while maintaining excellent processing power and a friendly operating environment. The new controller systems are now being designed using IBM-PC-compatible 80486-based microcomputers, a real-time Unix operating system (LynxOS), and X-windows/Motif IB, and serial interfaces have been chosen. This design supports minimizing short and long term costs by relying on proven standards for both hardware and software components. Currently, the project is in the design and prototyping stage with the first systems targeted for production in mid-1993.
Patterning in systems driven by nonlocal external forces.
Luneville, L; Mallick, K; Pontikis, V; Simeone, D
2016-11-01
This work focuses on systems displaying domain patterns resulting from competing external and internal dynamics. To this end, we introduce a Lyapunov functional capable of describing the steady states of systems subject to external forces, by adding nonlocal terms to the Landau Ginzburg free energy of the system. Thereby, we extend the existing methodology treating long-range order interactions, to the case of external nonlocal forces. By studying the quadratic term of this Lyapunov functional, we compute the phase diagram in the temperature versus external field and we determine all possible modulated phases (domain patterns) as a function of the external forces and the temperature. Finally, we investigate patterning in chemical reactive mixtures and binary mixtures under irradiation, and we show that the last case opens the path toward micro-structural engineering of materials.
Patterning in systems driven by nonlocal external forces
NASA Astrophysics Data System (ADS)
Luneville, L.; Mallick, K.; Pontikis, V.; Simeone, D.
2016-11-01
This work focuses on systems displaying domain patterns resulting from competing external and internal dynamics. To this end, we introduce a Lyapunov functional capable of describing the steady states of systems subject to external forces, by adding nonlocal terms to the Landau Ginzburg free energy of the system. Thereby, we extend the existing methodology treating long-range order interactions, to the case of external nonlocal forces. By studying the quadratic term of this Lyapunov functional, we compute the phase diagram in the temperature versus external field and we determine all possible modulated phases (domain patterns) as a function of the external forces and the temperature. Finally, we investigate patterning in chemical reactive mixtures and binary mixtures under irradiation, and we show that the last case opens the path toward micro-structural engineering of materials.
Sohlberg, Karl; Bazargan, Gloria; Angelo, Joseph P; Lee, Choongkeun
2017-01-01
Herein we report a study of the switchable [3]rotaxane reported by Huang et al. (Appl Phys Lett 85(22):5391-5393, 1) that can be mounted to a surface to form a nanomechanical, linear, molecular motor. We demonstrate the application of semiempirical electronic structure theory to predict the average and instantaneous force generated by redox-induced ring shuttling. Detailed analysis of the geometric and electronic structure of the system reveals technical considerations essential to success of the approach. The force is found to be in the 100-200 pN range, consistent with published experimental estimates. Graphical Abstract A single surface-mounted switchable rotaxane.
NASA Technical Reports Server (NTRS)
Migdal, D.; Hill, W. G., Jr.; Jenkins, R. C.
1979-01-01
Results of a series of in ground effect twin jet tests are presented along with flow models for closely spaced jets to help predict pressure and upwash forces on simulated aircraft surfaces. The isolated twin jet tests revealed unstable fountains over a range of spacings and jet heights, regions of below ambient pressure on the ground, and negative pressure differential in the upwash flow field. A separate computer code was developed for vertically oriented, incompressible jets. This model more accurately reflects fountain behavior without fully formed wall jets, and adequately predicts ground isobars, upwash dynamic pressure decay, and fountain lift force variation with height above ground.
Computation of Relative Magnetic Helicity in Spherical Coordinates
NASA Astrophysics Data System (ADS)
Moraitis, Kostas; Pariat, Étienne; Savcheva, Antonia; Valori, Gherardo
2018-06-01
Magnetic helicity is a quantity of great importance in solar studies because it is conserved in ideal magnetohydrodynamics. While many methods for computing magnetic helicity in Cartesian finite volumes exist, in spherical coordinates, the natural coordinate system for solar applications, helicity is only treated approximately. We present here a method for properly computing the relative magnetic helicity in spherical geometry. The volumes considered are finite, of shell or wedge shape, and the three-dimensional magnetic field is considered to be fully known throughout the studied domain. Testing of the method with well-known, semi-analytic, force-free magnetic-field models reveals that it has excellent accuracy. Further application to a set of nonlinear force-free reconstructions of the magnetic field of solar active regions and comparison with an approximate method used in the past indicates that the proposed method can be significantly more accurate, thus making our method a promising tool in helicity studies that employ spherical geometry. Additionally, we determine and discuss the applicability range of the approximate method.
Theoretical analysis of impact in composite plates
NASA Technical Reports Server (NTRS)
Moon, F. C.
1973-01-01
The calculated stresses and displacements induced anisotropic plates by short duration impact forces are presented. The theoretical model attempts to model the response of fiber composite turbine fan blades to impact by foreign objects such as stones and hailstones. In this model the determination of the impact force uses the Hertz impact theory. The plate response treats the laminated blade as an equivalent anisotropic material using a form of Mindlin's theory for crystal plates. The analysis makes use of a computational tool called the fast Fourier transform. Results are presented in the form of stress contour plots in the plane of the plate for various times after impact. Examination of the maximum stresses due to impact versus ply layup angle reveals that the + or - 15 deg layup angle gives lower flexural stresses than 0 deg, + or - 30 deg and + or - 45 deg. cases.
Push-off forces in elite short-track speed skating.
van der Kruk, Eline; Reijne, Marco M; de Laat, Bjorn; Veeger, DirkJan H E J
2018-05-30
This study performed an analysis of the push-off forces of elite-short-track speed skaters using a new designed instrumented short-track speed skate with the aim to improve short-track skating performance. Four different skating strokes were distinguished for short-track speed skaters at speed. The strokes differed in stroke time, force level in both normal and lateral directions, and the centre of pressure (COP) on the blade. Within the homogeneous group of male elite speed skaters (N = 6), diversity of execution of the force patterns in the four phases of skating was evident, while skating at the same velocities. The male participants (N = 6) with a better personal record (PR) kept the COP more to the rear of their blades while hanging into the curve (r = 0.82, p < 0.05), leaving the curve (r = 0.86, p < 0.05), and entering the straight (r = 0.76, p < 0.10). Furthermore, the male skaters with a better PR showed a trend of a lower lateral peak force while entering the curve (r = 0.74, p < 0.10). Females showed a trend towards applying higher body weight normalised lateral forces than the males, while skating at imposed lower velocities.
NASA Astrophysics Data System (ADS)
Sandri, T.; Deleflie, F.; Sammuneh, M. A.; Coulot, D.; Pollet, A.; Biancale, R.; Marty, J. C.
2016-12-01
Part of the energy received on the Earth from the Sun is split into two components, a short wave component which corresponds to the visible emissivity of the Earth's surface (albedo), and the long wave part corresponding to the thermic emissivity (infrared wavelengths). These two components induce non gravitational forces on the orbits of artificial satellites, towards the radial direction (mainly), that we are evaluating to derive a mean model. We use three kinds of data sets to investigate the order of magnitudes of the orbit perturbations: (i) Stephens tables, (Stephens, 1980), ECMWF (European Centre for Medium-Range Weather Forecasts ) data sets (that are available at GRGS, Groupe de Recherche de Géodésie Spatiale, France), and CERES (Clouds and the Earth's Radiant Energy System) data sets (publickly available). From the trajectography point of view, based on post-fit residual analysis of LEO and MEO geodetic satellites, we analyze what is the data set leading to the lowest residual level. Then, following an approach close to the one developed by Stephens, we propose a set of monthly grids that are averaged over the period 2000-2015. We propose as well an analytic formulation that can be used independently from the grids. This analytical modeling is finally used as a model in the orbit computation s/w that is used within our group, and namely GINS. The evaluation is carried out over very short (a couple of days) or very long periods of time.
Usage Patterns of Communication Interfaces for Social Support among At-Risk Adolescents
ERIC Educational Resources Information Center
Passig, David
2014-01-01
Social and interpersonal support has mostly been carried out face-to-face. However, the internet was able, in the last couple of decades, to facilitate social interactions through a range of computer-mediated communication (CMC) interfaces--from email applications, chat-rooms, forums, instant messages (IM), short text messages (SMS), social…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yuanhang; Beran, Gregory J. O., E-mail: gregory.beran@ucr.edu
2015-07-28
Three-body and higher intermolecular interactions can play an important role in molecular condensed phases. Recent benchmark calculations found problematic behavior for many widely used density functional approximations in treating 3-body intermolecular interactions. Here, we demonstrate that the combination of second-order Møller-Plesset (MP2) perturbation theory plus short-range damped Axilrod-Teller-Muto (ATM) dispersion accurately describes 3-body interactions with reasonable computational cost. The empirical damping function used in the ATM dispersion term compensates both for the absence of higher-order dispersion contributions beyond the triple-dipole ATM term and non-additive short-range exchange terms which arise in third-order perturbation theory and beyond. Empirical damping enables this simplemore » model to out-perform a non-expanded coupled Kohn-Sham dispersion correction for 3-body intermolecular dispersion. The MP2 plus ATM dispersion model approaches the accuracy of O(N{sup 6}) methods like MP2.5 or even spin-component-scaled coupled cluster models for 3-body intermolecular interactions with only O(N{sup 5}) computational cost.« less
NASA Technical Reports Server (NTRS)
Lambert, Winifred C.; Merceret, Francis J. (Technical Monitor)
2002-01-01
This report describes the results of the ANU's (Applied Meteorology Unit) Short-Range Statistical Forecasting task for peak winds. The peak wind speeds are an important forecast element for the Space Shuttle and Expendable Launch Vehicle programs. The Keith Weather Squadron and the Spaceflight Meteorology Group indicate that peak winds are challenging to forecast. The Applied Meteorology Unit was tasked to develop tools that aid in short-range forecasts of peak winds at tower sites of operational interest. A 7 year record of wind tower data was used in the analysis. Hourly and directional climatologies by tower and month were developed to determine the seasonal behavior of the average and peak winds. In all climatologies, the average and peak wind speeds were highly variable in time. This indicated that the development of a peak wind forecasting tool would be difficult. Probability density functions (PDF) of peak wind speed were calculated to determine the distribution of peak speed with average speed. These provide forecasters with a means of determining the probability of meeting or exceeding a certain peak wind given an observed or forecast average speed. The climatologies and PDFs provide tools with which to make peak wind forecasts that are critical to safe operations.
TAD- THEORETICAL AERODYNAMICS PROGRAM
NASA Technical Reports Server (NTRS)
Barrowman, J.
1994-01-01
This theoretical aerodynamics program, TAD, was developed to predict the aerodynamic characteristics of vehicles with sounding rocket configurations. These slender, axisymmetric finned vehicle configurations have a wide range of aeronautical applications from rockets to high speed armament. Over a given range of Mach numbers, TAD will compute the normal force coefficient derivative, the center-of-pressure, the roll forcing moment coefficient derivative, the roll damping moment coefficient derivative, and the pitch damping moment coefficient derivative of a sounding rocket configured vehicle. The vehicle may consist of a sharp pointed nose of cone or tangent ogive shape, up to nine other body divisions of conical shoulder, conical boattail, or circular cylinder shape, and fins of trapezoid planform shape with constant cross section and either three or four fins per fin set. The characteristics computed by TAD have been shown to be accurate to within ten percent of experimental data in the supersonic region. The TAD program calculates the characteristics of separate portions of the vehicle, calculates the interference between separate portions of the vehicle, and then combines the results to form a total vehicle solution. Also, TAD can be used to calculate the characteristics of the body or fins separately as an aid in the design process. Input to the TAD program consists of simple descriptions of the body and fin geometries and the Mach range of interest. Output includes the aerodynamic characteristics of the total vehicle, or user-selected portions, at specified points over the mach range. The TAD program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 123K of 8 bit bytes. The TAD program was originally developed in 1967 and last updated in 1972.
Parameterization of aerosol scavenging due to atmospheric ionization under varying relative humidity
NASA Astrophysics Data System (ADS)
Zhang, Liang; Tinsley, Brian A.
2017-05-01
Simulations and parameterizations of the modulation of aerosol scavenging by electric charges on particles and droplets for different relative humidities have been made for 3 μm radii droplets and a wide range of particle radii. For droplets and particles with opposite-sign charges, the attractive Coulomb force increases the collision rate coefficients above values due to other forces. With same-sign charges, the repulsive Coulomb force decreases the rate coefficients, and the short-range attractive image forces become important. The phoretic forces are attractive for relative humidity less than 100% and repulsive for relative humidity greater than 100% and have increasing overall effect for particle radii up to about 1 μm. There is an analytic solution for rate coefficients if only inverse square forces are present, but due to the presence of image forces, and for larger particles the intercept, weight, and the flow around the particle affecting the droplet trajectory, the simulated results usually depart far from the analytic solution. We give simple empirical parameterization formulas for some cases and more complex parameterizations for more exact fits to the simulated results. The results can be used in cloud models with growing droplets, as in updrafts, as well as with evaporating droplets in downdrafts. There is considered to be little scavenging of uncharged ice-forming nuclei in updrafts, but with charged ice-forming nuclei it is possible for scavenging in updrafts in cold clouds to produce contact ice nucleation. Scavenging in updrafts below the freezing level produces immersion nuclei that promote enhanced freezing as droplets rise above it.
NASA Astrophysics Data System (ADS)
Clifford, Corey; Kimber, Mark
2017-11-01
Over the last 30 years, an industry-wide shift within the nuclear community has led to increased utilization of computational fluid dynamics (CFD) to supplement nuclear reactor safety analyses. One such area that is of particular interest to the nuclear community, specifically to those performing loss-of-flow accident (LOFA) analyses for next-generation very-high temperature reactors (VHTR), is the capacity of current computational models to predict heat transfer across a wide range of buoyancy conditions. In the present investigation, a critical evaluation of Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES) turbulence modeling techniques is conducted based on CFD validation data collected from the Rotatable Buoyancy Tunnel (RoBuT) at Utah State University. Four different experimental flow conditions are investigated: (1) buoyancy-aided forced convection; (2) buoyancy-opposed forced convection; (3) buoyancy-aided mixed convection; (4) buoyancy-opposed mixed convection. Overall, good agreement is found for both forced convection-dominated scenarios, but an overly-diffusive prediction of the normal Reynolds stress is observed for the RANS-based turbulence models. Low-Reynolds number RANS models perform adequately for mixed convection, while higher-order RANS approaches underestimate the influence of buoyancy on the production of turbulence.
Polymer translocation under a pulling force: Scaling arguments and threshold forces
NASA Astrophysics Data System (ADS)
Menais, Timothée
2018-02-01
DNA translocation through nanopores is one of the most promising strategies for next-generation sequencing technologies. Most experimental and numerical works have focused on polymer translocation biased by electrophoresis, where a pulling force acts on the polymer within the nanopore. An alternative strategy, however, is emerging, which uses optical or magnetic tweezers. In this case, the pulling force is exerted directly at one end of the polymer, which strongly modifies the translocation process. In this paper, we report numerical simulations of both linear and structured (mimicking DNA) polymer models, simple enough to allow for a statistical treatment of the pore structure effects on the translocation time probability distributions. Based on extremely extended computer simulation data, we (i) propose scaling arguments for an extension of the predicted translocation times τ ˜N2F-1 over the moderate forces range and (ii) analyze the effect of pore size and polymer structuration on translocation times τ .
NASA Astrophysics Data System (ADS)
Castelain, Mickaël; Pignon, Frédéric; Piau, Jean-Michel; Magnin, Albert
2008-04-01
We used an optical tweezer to investigate the adhesion of yeast Saccharomyces cerevisiae onto a glass substrate at the initial contact. Micromanipulation of free-living objects with single-beam gradient optical trap enabled to highlight mechanisms involved in this initial contact. As a function of the ionic strength and with a displacement parallel to the glass surface, the yeast adheres following different successive ways: (i) Slipping and rolling at 1.5mM NaCl, (ii) slipping, rolling, and sticking at 15mM NaCl, and (iii) only sticking at 150mM. These observations were numerous and reproducible. A kinetic evolution of these adhesion phenomena during yeast movement was clearly established. The nature, range, and relative intensity of forces involved in these different adhesion mechanisms have been worked out as a quantitative analysis from Derjaguin-Landau-Verwey-Overbeek (DLVO) and extended DLVO theories. Calculations show that the adhesion mechanisms observed and their affinity with ionic strength were mainly governed by the Lifshitz-van der Waals interaction forces and the electrical double-layer repulsion to which are added specific contact forces linked to "sticky" glycoprotein secretion, considered to be the main forces capable of overcoming the short-range Lewis acid-base repulsions.
Spring-Mediated Cranioplasty in Sagittal Synostosis: Does Age at Placement Affect Expansion?
Sun, James; Ter Maaten, Netanja S; Mazzaferro, Daniel M; Wes, Ari M; Naran, Sanjay; Bartlett, Scott P; Taylor, Jesse A
2018-05-01
The aim of this study is to evaluate the effect of timing of surgery and spring characteristics on correction of scaphocephalic deformity in patients undergoing spring-mediated cranioplasty (SMC) for sagittal craniosynostosis. The authors conducted a review of patients with sagittal craniosynostosis who underwent SMC at a tertiary referral center between July 2011 and March 2017, with a primary outcome measure of head shape, both preoperatively and postoperatively, determined by cephalic index (CI). Patient demographics and operative details including timing of surgery and spring characteristics were collected. Differences in CI preoperation and postoperation were compared using Wilcoxon signed-rank test. Ordinary least-squares linear regression was used to assess the impact of timing, number of springs, maximum single spring force, and total spring force on postoperative change in CI. Thirty-six subjects (12 males and 24 females) were included in the study. Mean age at spring placement was 3.9 months (range: 1.9-9.2) with a mean follow-up of 1.4 years (range: 0.3-5.2). The mean number of springs used was 3 (range: 2-4). The mean maximum single spring force was 9.9 Newtons (N) (range: 6.9-13.0) and the mean total spring force was 24.6 N (range: 12.7-37.0). Mean CI increased from 70 ± 0.9 preoperatively to 77 ± 1.0 postoperatively (P < 0.001). Age at spring placement was significantly associated with change in CI: for every month increase in age, the change in CI decreased by 1.3 (P = 0.03). The number of springs used, greatest single spring force, and total spring force did not correlate with changes in CI (P = 0.85, P = 0.42, and P = 0.84, respectively). In SMC, earlier age at time of surgery appears to correlate with greater improvement in CI, at least in the short-term. While spring characteristics did not appear to affect head shape, it is possible that the authors were underpowered to detect a difference, and spring-related variables likely deserve additional study.
Configurational phases in elastic foams under lengthscale-free punching
NASA Astrophysics Data System (ADS)
Sabuwala, Tapan; Dai, Xiangyu; Gioia, Gustavo
2016-08-01
We carry out experiments with brick-like specimens of elastic open-cell (EOC) foams of three relative densities. Individual specimens may be "tall" (height = width = depth) or "short" (2 height = width = depth). We place each specimen on a supporting plate and use a lengthscale-free (wedge-shaped or conical) punch to apply forces downward along the specimen's height. Regardless of the type of specimen, the force-penetration curves remain linear, for the wedge-shaped punch, or quadratic, for the conical punch, up to a sizable penetration commensurate with the smallest lengthscale of the specimen. After that there is an abrupt, all-but-discontinuous change in stiffness: if the specimen is tall, the stiffness drops; if the specimen is short, the stiffness shoots up. To analyze these curious experimental results, we posit that EOC foams can be found in either of two configurational phases, here termed the low-strain phase and the high-strain phase, which share a two-dimensional interface (a surface of strain discontinuity). The analysis may be outlined as follows. In the first part of an experiment, there obtains a "similarity regime" in which the penetration of the punch and the radius of the interface are the only prevailing lengthscales (because the punch is lengthscale free). In this case, it is possible to show that the force-penetration curve must be linear, or quadratic, depending on whether the punch be wedge-shaped or conical, respectively. This prediction of the analysis is consistent with the experiments. In time, the similarity regime breaks down when the interface reaches one of the specimen's boundaries distal to the tip of the punch. If the specimen is tall, the soft, stress-free lateral boundary is reached first, and the stiffness must drop; if the specimen is short, the hard boundary in contact with the supporting plate is reached first, and the stiffness must shoot up. These predictions too are consistent with the experiments. To provide direct empirical evidence of the interface, we use a digital-image correlation method. Lastly, we run computational simulations of all the experiments, using finite elements and the skeleton-and-bubble model of EOC foams. The computational results are in good accord with the experimental ones, and they allow us to carry out a detailed validation of the analysis. Our findings evince the cardinal role of configurational phases in the mechanics of EOC foams.
Negro, Francesco; Holobar, Aleš; Farina, Dario
2009-01-01
The aim of the study was to investigate the relation between linear transformations of motor unit discharge rates and muscle force. Intramuscular (wire electrodes) and high-density surface EMG (13 × 5 electrode grid) were recorded from the abductor digiti minimi muscle of eight healthy men during 60 s contractions at 5%, 7.5% and 10% of the maximal force. Spike trains of a total of 222 motor units were identified from the EMG recordings with decomposition algorithms. Principal component analysis of the smoothed motor unit discharge rates indicated that one component (first common component, FCC) described 44.2 ± 7.5% of the total variability of the smoothed discharge rates when computed over the entire contraction interval and 64.3 ± 10.2% of the variability when computed over 5 s intervals. When the FCC was computed from four or more motor units per contraction, it correlated with the force produced by the muscle (62.7 ± 10.1%) by a greater degree (P < 0.001) than the smoothed discharge rates of individual motor units (41.4 ± 7.8%). The correlation between FCC and the force signal increased up to 71.8 ± 13.1% when the duration and the shape of the smoothing window for discharge rates were similar to the average motor unit twitch force. Moreover, the coefficients of variation (CoV) for the force and for the FCC signal were correlated in all subjects (R2 range = 0.14–0.56; P < 0.05) whereas the CoV for force was correlated to the interspike interval variability in only one subject (R2= 0.12; P < 0.05). Similar results were further obtained from measures on the tibialis anterior muscle of an additional eight subjects during contractions at forces up to 20% of the maximal force (e.g. FCC explained 59.8 ± 11.0% of variability of the smoothed discharge rates). In conclusion, one signal captures most of the underlying variability of the low-frequency components of motor unit discharge rates and explains large part of the fluctuations in the motor output during isometric contractions. PMID:19840996
Negro, Francesco; Holobar, Ales; Farina, Dario
2009-12-15
The aim of the study was to investigate the relation between linear transformations of motor unit discharge rates and muscle force. Intramuscular (wire electrodes) and high-density surface EMG (13 x 5 electrode grid) were recorded from the abductor digiti minimi muscle of eight healthy men during 60 s contractions at 5%, 7.5% and 10% of the maximal force. Spike trains of a total of 222 motor units were identified from the EMG recordings with decomposition algorithms. Principal component analysis of the smoothed motor unit discharge rates indicated that one component (first common component, FCC) described 44.2 +/- 7.5% of the total variability of the smoothed discharge rates when computed over the entire contraction interval and 64.3 +/- 10.2% of the variability when computed over 5 s intervals. When the FCC was computed from four or more motor units per contraction, it correlated with the force produced by the muscle (62.7 +/- 10.1%) by a greater degree (P < 0.001) than the smoothed discharge rates of individual motor units (41.4 +/- 7.8%). The correlation between FCC and the force signal increased up to 71.8 +/- 13.1% when the duration and the shape of the smoothing window for discharge rates were similar to the average motor unit twitch force. Moreover, the coefficients of variation (CoV) for the force and for the FCC signal were correlated in all subjects (R(2) range = 0.14-0.56; P < 0.05) whereas the CoV for force was correlated to the interspike interval variability in only one subject (R(2) = 0.12; P < 0.05). Similar results were further obtained from measures on the tibialis anterior muscle of an additional eight subjects during contractions at forces up to 20% of the maximal force (e.g. FCC explained 59.8 +/- 11.0% of variability of the smoothed discharge rates). In conclusion, one signal captures most of the underlying variability of the low-frequency components of motor unit discharge rates and explains large part of the fluctuations in the motor output during isometric contractions.
NASA Astrophysics Data System (ADS)
Martins, Cyril; Lenz, Benjamin; Perfetti, Luca; Brouet, Veronique; Bertran, François; Biermann, Silke
2018-03-01
We address the role of nonlocal Coulomb correlations and short-range magnetic fluctuations in the high-temperature phase of Sr2IrO4 within state-of-the-art spectroscopic and first-principles theoretical methods. Introducing an "oriented-cluster dynamical mean-field scheme", we compute momentum-resolved spectral functions, which we find to be in excellent agreement with angle-resolved photoemission spectra. We show that while short-range antiferromagnetic fluctuations are crucial to accounting for the electronic properties of Sr2IrO4 even in the high-temperature paramagnetic phase, long-range magnetic order is not a necessary ingredient of the insulating state. Upon doping, an exotic metallic state is generated, exhibiting cuprate-like pseudo-gap spectral properties, for which we propose a surprisingly simple theoretical mechanism.
NASA Technical Reports Server (NTRS)
Towne, Charles E.
1999-01-01
The WIND code is a general-purpose, structured, multizone, compressible flow solver that can be used to analyze steady or unsteady flow for a wide range of geometric configurations and over a wide range of flow conditions. WIND is the latest product of the NPARC Alliance, a formal partnership between the NASA Lewis Research Center and the Air Force Arnold Engineering Development Center (AEDC). WIND Version 1.0 was released in February 1998, and Version 2.0 will be released in February 1999. The WIND code represents a merger of the capabilities of three existing computational fluid dynamics codes--NPARC (the original NPARC Alliance flow solver), NXAIR (an Air Force code used primarily for unsteady store separation problems), and NASTD (the primary flow solver at McDonnell Douglas, now part of Boeing).
Future in biomolecular computation
NASA Astrophysics Data System (ADS)
Wimmer, E.
1988-01-01
Large-scale computations for biomolecules are dominated by three levels of theory: rigorous quantum mechanical calculations for molecules with up to about 30 atoms, semi-empirical quantum mechanical calculations for systems with up to several hundred atoms, and force-field molecular dynamics studies of biomacromolecules with 10,000 atoms and more including surrounding solvent molecules. It can be anticipated that increased computational power will allow the treatment of larger systems of ever growing complexity. Due to the scaling of the computational requirements with increasing number of atoms, the force-field approaches will benefit the most from increased computational power. On the other hand, progress in methodologies such as density functional theory will enable us to treat larger systems on a fully quantum mechanical level and a combination of molecular dynamics and quantum mechanics can be envisioned. One of the greatest challenges in biomolecular computation is the protein folding problem. It is unclear at this point, if an approach with current methodologies will lead to a satisfactory answer or if unconventional, new approaches will be necessary. In any event, due to the complexity of biomolecular systems, a hierarchy of approaches will have to be established and used in order to capture the wide ranges of length-scales and time-scales involved in biological processes. In terms of hardware development, speed and power of computers will increase while the price/performance ratio will become more and more favorable. Parallelism can be anticipated to become an integral architectural feature in a range of computers. It is unclear at this point, how fast massively parallel systems will become easy enough to use so that new methodological developments can be pursued on such computers. Current trends show that distributed processing such as the combination of convenient graphics workstations and powerful general-purpose supercomputers will lead to a new style of computing in which the calculations are monitored and manipulated as they proceed. The combination of a numeric approach with artificial-intelligence approaches can be expected to open up entirely new possibilities. Ultimately, the most exciding aspect of the future in biomolecular computing will be the unexpected discoveries.
Lagardère, Louis; Jolly, Luc-Henri; Lipparini, Filippo; Aviat, Félix; Stamm, Benjamin; Jing, Zhifeng F; Harger, Matthew; Torabifard, Hedieh; Cisneros, G Andrés; Schnieders, Michael J; Gresh, Nohad; Maday, Yvon; Ren, Pengyu Y; Ponder, Jay W; Piquemal, Jean-Philip
2018-01-28
We present Tinker-HP, a massively MPI parallel package dedicated to classical molecular dynamics (MD) and to multiscale simulations, using advanced polarizable force fields (PFF) encompassing distributed multipoles electrostatics. Tinker-HP is an evolution of the popular Tinker package code that conserves its simplicity of use and its reference double precision implementation for CPUs. Grounded on interdisciplinary efforts with applied mathematics, Tinker-HP allows for long polarizable MD simulations on large systems up to millions of atoms. We detail in the paper the newly developed extension of massively parallel 3D spatial decomposition to point dipole polarizable models as well as their coupling to efficient Krylov iterative and non-iterative polarization solvers. The design of the code allows the use of various computer systems ranging from laboratory workstations to modern petascale supercomputers with thousands of cores. Tinker-HP proposes therefore the first high-performance scalable CPU computing environment for the development of next generation point dipole PFFs and for production simulations. Strategies linking Tinker-HP to Quantum Mechanics (QM) in the framework of multiscale polarizable self-consistent QM/MD simulations are also provided. The possibilities, performances and scalability of the software are demonstrated via benchmarks calculations using the polarizable AMOEBA force field on systems ranging from large water boxes of increasing size and ionic liquids to (very) large biosystems encompassing several proteins as well as the complete satellite tobacco mosaic virus and ribosome structures. For small systems, Tinker-HP appears to be competitive with the Tinker-OpenMM GPU implementation of Tinker. As the system size grows, Tinker-HP remains operational thanks to its access to distributed memory and takes advantage of its new algorithmic enabling for stable long timescale polarizable simulations. Overall, a several thousand-fold acceleration over a single-core computation is observed for the largest systems. The extension of the present CPU implementation of Tinker-HP to other computational platforms is discussed.
Scalar self-force for highly eccentric equatorial orbits in Kerr spacetime
NASA Astrophysics Data System (ADS)
Thornburg, Jonathan; Wardell, Barry
2017-04-01
If a small "particle" of mass μ M (with μ ≪1 ) orbits a black hole of mass M , the leading-order radiation-reaction effect is an O (μ2) "self-force" acting on the particle, with a corresponding O (μ ) "self-acceleration" of the particle away from a geodesic. Such "extreme-mass-ratio inspiral" systems are likely to be important gravitational-wave sources for future space-based gravitational-wave detectors. Here we consider the "toy model" problem of computing the self-force for a scalar-field particle on a bound eccentric orbit in Kerr spacetime. We use the Barack-Golbourn-Vega-Detweiler effective-source regularization with a 4th-order puncture field, followed by an ei m ϕ ("m -mode") Fourier decomposition and a separate time-domain numerical evolution in 2 +1 dimensions for each m . We introduce a finite worldtube that surrounds the particle worldline and define our evolution equations in a piecewise manner so that the effective source is only used within the worldtube. Viewed as a spatial region, the worldtube moves to follow the particle's orbital motion. We use slices of constant Boyer-Lindquist time in the region of the particle's motion, deformed to be asymptotically hyperboloidal and compactified near the horizon and J+ . Our numerical evolution uses Berger-Oliger mesh refinement with 4th-order finite differencing in space and time. Our computational scheme allows computation for highly eccentric orbits and should be generalizable to orbital evolution in the future. Our present implementation is restricted to equatorial geodesic orbits, but this restriction is not fundamental. We present numerical results for a number of test cases with orbital eccentricities as high as 0.98. In some cases we find large oscillations ("wiggles") in the self-force on the outgoing leg of the orbit shortly after periastron passage; these appear to be caused by the passage of the orbit through the strong-field region close to the background Kerr black hole.
Single cell adhesion assay using computer controlled micropipette.
Salánki, Rita; Hős, Csaba; Orgovan, Norbert; Péter, Beatrix; Sándor, Noémi; Bajtay, Zsuzsa; Erdei, Anna; Horvath, Robert; Szabó, Bálint
2014-01-01
Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today's techniques typically have an extremely low throughput (5-10 cells per day). Here, we introduce a computer controlled micropipette mounted onto a normal inverted microscope for probing single cell interactions with specific macromolecules. We calculated the estimated hydrodynamic lifting force acting on target cells by the numerical simulation of the flow at the micropipette tip. The adhesion force of surface attached cells could be accurately probed by repeating the pick-up process with increasing vacuum applied in the pipette positioned above the cell under investigation. Using the introduced methodology hundreds of cells adhered to specific macromolecules were measured one by one in a relatively short period of time (∼30 min). We blocked nonspecific cell adhesion by the protein non-adhesive PLL-g-PEG polymer. We found that human primary monocytes are less adherent to fibrinogen than their in vitro differentiated descendants: macrophages and dendritic cells, the latter producing the highest average adhesion force. Validation of the here introduced method was achieved by the hydrostatic step-pressure micropipette manipulation technique. Additionally the result was reinforced in standard microfluidic shear stress channels. Nevertheless, automated micropipette gave higher sensitivity and less side-effect than the shear stress channel. Using our technique, the probed single cells can be easily picked up and further investigated by other techniques; a definite advantage of the computer controlled micropipette. Our experiments revealed the existence of a sub-population of strongly fibrinogen adherent cells appearing in macrophages and highly represented in dendritic cells, but not observed in monocytes.
Xu, Chun; Silder, Amy; Zhang, Ju; Hughes, Julie; Unnikrishnan, Ginu; Reifman, Jaques; Rakesh, Vineet
2016-10-01
Prior studies have assessed the effects of load carriage on the tibia. Here, we expand on these studies and investigate the effects of load carriage on joint reaction forces (JRFs) and the resulting spatiotemporal stress/strain distributions in the tibia. Using full-body motion and ground reaction forces from a female subject, we computed joint and muscle forces during walking for four load carriage conditions. We applied these forces as physiological loading conditions in a finite-element (FE) analysis to compute strain and stress. We derived material properties from computed tomography (CT) images of a sex-, age-, and body mass index-matched subject using a mesh morphing and mapping algorithm, and used them within the FE model. Compared to walking with no load, the knee JRFs were the most sensitive to load carriage, increasing by as much as 26.2% when carrying a 30% of body weight (BW) load (ankle: 16.4% and hip: 19.0%). Moreover, our model revealed disproportionate increases in internal JRFs with increases in load carriage, suggesting a coordinated adjustment in the musculature functions in the lower extremity. FE results reflected the complex effects of spatially varying material properties distribution and muscular engagement on tibial biomechanics during walking. We observed high stresses on the anterior crest and the medial surface of the tibia at pushoff, whereas high cumulative stress during one walking cycle was more prominent in the medioposterior aspect of the tibia. Our findings reinforce the need to include: (1) physiologically accurate loading conditions when modeling healthy subjects undergoing short-term exercise training and (2) the duration of stress exposure when evaluating stress-fracture injury risk. As a fundamental step toward understanding the instantaneous effect of external loading, our study presents a means to assess the relationship between load carriage and bone biomechanics.
Single Cell Adhesion Assay Using Computer Controlled Micropipette
Salánki, Rita; Hős, Csaba; Orgovan, Norbert; Péter, Beatrix; Sándor, Noémi; Bajtay, Zsuzsa; Erdei, Anna; Horvath, Robert; Szabó, Bálint
2014-01-01
Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today’s techniques typically have an extremely low throughput (5–10 cells per day). Here, we introduce a computer controlled micropipette mounted onto a normal inverted microscope for probing single cell interactions with specific macromolecules. We calculated the estimated hydrodynamic lifting force acting on target cells by the numerical simulation of the flow at the micropipette tip. The adhesion force of surface attached cells could be accurately probed by repeating the pick-up process with increasing vacuum applied in the pipette positioned above the cell under investigation. Using the introduced methodology hundreds of cells adhered to specific macromolecules were measured one by one in a relatively short period of time (∼30 min). We blocked nonspecific cell adhesion by the protein non-adhesive PLL-g-PEG polymer. We found that human primary monocytes are less adherent to fibrinogen than their in vitro differentiated descendants: macrophages and dendritic cells, the latter producing the highest average adhesion force. Validation of the here introduced method was achieved by the hydrostatic step-pressure micropipette manipulation technique. Additionally the result was reinforced in standard microfluidic shear stress channels. Nevertheless, automated micropipette gave higher sensitivity and less side-effect than the shear stress channel. Using our technique, the probed single cells can be easily picked up and further investigated by other techniques; a definite advantage of the computer controlled micropipette. Our experiments revealed the existence of a sub-population of strongly fibrinogen adherent cells appearing in macrophages and highly represented in dendritic cells, but not observed in monocytes. PMID:25343359
Origins of the Non-DLVO Force between Glass Surfaces in Aqueous Solution.
Adler, Joshua J.; Rabinovich, Yakov I.; Moudgil, Brij M.
2001-05-15
Direct measurement of surface forces has revealed that silica surfaces seem to have a short-range repulsion that is not accounted for in classical DLVO theory. The two leading hypotheses for the origin of the non-DLVO force are (i) structuring of water at the silica interface or (ii) water penetration into the surface resulting in a gel layer. In this article, the interaction of silica surfaces will be reviewed from the perspective of the non-DLVO force origin. In an attempt to more accurately describe the behavior of silica and glass surfaces, alternative models of how surfaces with gel layers should interact are proposed. It is suggested that a lessened van der Waals attraction originating from a thin gel layer may explain both the additional stability and the coagulation behavior of silica. It is important to understand the mechanisms underlying the existence of the non-DLVO force which is likely to have a major influence on the adsorption of polymers and surfactants used to modify the silica surface for practical applications in the ceramic, mineral, and microelectronic industries. Copyright 2001 Academic Press.
Does temperature nudging overwhelm aerosol radiative ...
For over two decades, data assimilation (popularly known as nudging) methods have been used for improving regional weather and climate simulations by reducing model biases in meteorological parameters and processes. Similar practice is also popular in many regional integrated meteorology-air quality models that include aerosol direct and indirect effects. However in such multi-modeling systems, temperature changes due to nudging can compete with temperature changes induced by radiatively active & hygroscopic short-lived tracers leading to interesting dilemmas: From weather and climate prediction’s (retrospective or future) point of view when nudging is continuously applied, is there any real added benefit of using such complex and computationally expensive regional integrated modeling systems? What are the relative sizes of these two competing forces? To address these intriguing questions, we convert temperature changes due to nudging into radiative fluxes (referred to as the pseudo radiative forcing, PRF) at the surface and troposphere, and compare the net PRF with the reported aerosol radiative forcing. Results indicate that the PRF at surface dominates PRF at top of the atmosphere (i.e., the net). Also, the net PRF is about 2-4 times larger than estimated aerosol radiative forcing at regional scales while it is significantly larger at local scales. These results also show large surface forcing errors at many polluted urban sites. Thus, operational c
Study of aircraft in intraurban transportation systems, volume 1
NASA Technical Reports Server (NTRS)
Stout, E. G.; Kesling, P. H.; Matteson, H. C.; Sherwood, D. E.; Tuck, W. R., Jr.; Vaughn, L. A.
1971-01-01
An analysis of an effective short range, high density computer transportation system for intraurban systems is presented. The seven county Detroit, Michigan, metropolitan area, was chosen as the scenario for the analysis. The study consisted of an analysis and forecast of the Detroit market through 1985, a parametric analysis of appropriate short haul aircraft concepts and associated ground systems, and a preliminary overall economic analysis of a simplified total system designed to evaluate the candidate vehicles and select the most promising VTOL and STOL aircraft. Data are also included on the impact of advanced technology on the system, the sensitivity of mission performance to changes in aircraft characteristics and system operations, and identification of key problem areas that may be improved by additional research. The approach, logic, and computer models used are adaptable to other intraurban or interurban areas.
NASA Technical Reports Server (NTRS)
Strash, D. J.; Summa, J. M.
1996-01-01
In the work reported herein, a simplified, uncoupled, zonal procedure is utilized to assess the capability of numerically simulating icing effects on a Boeing 727-200 aircraft. The computational approach combines potential flow plus boundary layer simulations by VSAERO for the un-iced aircraft forces and moments with Navier-Stokes simulations by NPARC for the incremental forces and moments due to iced components. These are compared with wind tunnel force and moment data, supplied by the Boeing Company, examining longitudinal flight characteristics. Grid refinement improved the local flow features over previously reported work with no appreciable difference in the incremental ice effect. The computed lift curve slope with and without empennage ice matches the experimental value to within 1%, and the zero lift angle agrees to within 0.2 of a degree. The computed slope of the un-iced and iced aircraft longitudinal stability curve is within about 2% of the test data. This work demonstrates the feasibility of a zonal method for the icing analysis of complete aircraft or isolated components within the linear angle of attack range. In fact, this zonal technique has allowed for the viscous analysis of a complete aircraft with ice which is currently not otherwise considered tractable.
NASA Technical Reports Server (NTRS)
Russell, P. B.; Livingston, J. M.; Hignett, P.; Kinne, S.; Wong, J.; Chien, A.; Bergstrom, R.; Durkee, P.; Hobbs, P. V.
2000-01-01
The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) measured a variety of aerosol radiative effects (including flux changes) while simultaneously measuring the chemical, physical, and optical properties of the responsible aerosol particles. Here we use TARFOX-determined aerosol and surface properties to compute shortwave radiative flux changes for a variety of aerosol situations, with midvisible optical depths ranging from 0.06 to 0.55. We calculate flux changes by several techniques with varying degrees of sophistication, in part to investigate the sensitivity of results to computational approach. We then compare computed flux changes to those determined from aircraft measurements. Calculations using several approaches yield downward and upward flux changes that agree with measurements. The agreement demonstrates closure (i.e. consistency) among the TARFOX-derived aerosol properties, modeling techniques, and radiative flux measurements. Agreement between calculated and measured downward flux changes is best when the aerosols are modeled as moderately absorbing (midvisible single-scattering albedos between about 0.89 and 0.93), in accord with independent measurements of the TARPOX aerosol. The calculated values for instantaneous daytime upwelling flux changes are in the range +14 to +48 W/sq m for midvisible optical depths between 0.2 and 0.55. These values are about 30 to 100 times the global-average direct forcing expected for the global-average sulfate aerosol optical depth of 0.04. The reasons for the larger flux changes in TARFOX include the relatively large optical depths and the focus on cloud-free, daytime conditions over the dark ocean surface. These are the conditions that produce major aerosol radiative forcing events and contribute to any global-average climate effect.
Short-term droughts forecast using Markov chain model in Victoria, Australia
NASA Astrophysics Data System (ADS)
Rahmat, Siti Nazahiyah; Jayasuriya, Niranjali; Bhuiyan, Muhammed A.
2017-07-01
A comprehensive risk management strategy for dealing with drought should include both short-term and long-term planning. The objective of this paper is to present an early warning method to forecast drought using the Standardised Precipitation Index (SPI) and a non-homogeneous Markov chain model. A model such as this is useful for short-term planning. The developed method has been used to forecast droughts at a number of meteorological monitoring stations that have been regionalised into six (6) homogenous clusters with similar drought characteristics based on SPI. The non-homogeneous Markov chain model was used to estimate drought probabilities and drought predictions up to 3 months ahead. The drought severity classes defined using the SPI were computed at a 12-month time scale. The drought probabilities and the predictions were computed for six clusters that depict similar drought characteristics in Victoria, Australia. Overall, the drought severity class predicted was quite similar for all the clusters, with the non-drought class probabilities ranging from 49 to 57 %. For all clusters, the near normal class had a probability of occurrence varying from 27 to 38 %. For the more moderate and severe classes, the probabilities ranged from 2 to 13 % and 3 to 1 %, respectively. The developed model predicted drought situations 1 month ahead reasonably well. However, 2 and 3 months ahead predictions should be used with caution until the models are developed further.
Membrane-based actuation for high-speed single molecule force spectroscopy studies using AFM.
Sarangapani, Krishna; Torun, Hamdi; Finkler, Ofer; Zhu, Cheng; Degertekin, Levent
2010-07-01
Atomic force microscopy (AFM)-based dynamic force spectroscopy of single molecular interactions involves characterizing unbinding/unfolding force distributions over a range of pulling speeds. Owing to their size and stiffness, AFM cantilevers are adversely affected by hydrodynamic forces, especially at pulling speeds >10 microm/s, when the viscous drag becomes comparable to the unbinding/unfolding forces. To circumvent these adverse effects, we have fabricated polymer-based membranes capable of actuating commercial AFM cantilevers at speeds >or=100 microm/s with minimal viscous drag effects. We have used FLUENT, a computational fluid dynamics (CFD) software, to simulate high-speed pulling and fast actuation of AFM cantilevers and membranes in different experimental configurations. The simulation results support the experimental findings on a variety of commercial AFM cantilevers and predict significant reduction in drag forces when membrane actuators are used. Unbinding force experiments involving human antibodies using these membranes demonstrate that it is possible to achieve bond loading rates >or=10(6) pN/s, an order of magnitude greater than that reported with commercial AFM cantilevers and systems.
Whole-Body Human Inverse Dynamics with Distributed Micro-Accelerometers, Gyros and Force Sensing †
Latella, Claudia; Kuppuswamy, Naveen; Romano, Francesco; Traversaro, Silvio; Nori, Francesco
2016-01-01
Human motion tracking is a powerful tool used in a large range of applications that require human movement analysis. Although it is a well-established technique, its main limitation is the lack of estimation of real-time kinetics information such as forces and torques during the motion capture. In this paper, we present a novel approach for a human soft wearable force tracking for the simultaneous estimation of whole-body forces along with the motion. The early stage of our framework encompasses traditional passive marker based methods, inertial and contact force sensor modalities and harnesses a probabilistic computational technique for estimating dynamic quantities, originally proposed in the domain of humanoid robot control. We present experimental analysis on subjects performing a two degrees-of-freedom bowing task, and we estimate the motion and kinetics quantities. The results demonstrate the validity of the proposed method. We discuss the possible use of this technique in the design of a novel soft wearable force tracking device and its potential applications. PMID:27213394
Study of the TRAC Airfoil Table Computational System
NASA Technical Reports Server (NTRS)
Hu, Hong
1999-01-01
The report documents the study of the application of the TRAC airfoil table computational package (TRACFOIL) to the prediction of 2D airfoil force and moment data over a wide range of angle of attack and Mach number. The TRACFOIL generates the standard C-81 airfoil table for input into rotorcraft comprehensive codes such as CAM- RAD. The existing TRACFOIL computer package is successfully modified to run on Digital alpha workstations and on Cray-C90 supercomputers. A step-by-step instruction for using the package on both computer platforms is provided. Application of the newer version of TRACFOIL is made for two airfoil sections. The C-81 data obtained using the TRACFOIL method are compared with those of wind-tunnel data and results are presented.
NASA Technical Reports Server (NTRS)
Bennett, R. L.
1975-01-01
The analytical techniques and computer program developed in the fully-coupled rotor vibration study are described. The rotor blade natural frequency and mode shape analysis was implemented in a digital computer program designated DF1758. The program computes collective, cyclic, and scissor modes for a single blade within a specified range of frequency for specified values of rotor RPM and collective angle. The analysis includes effects of blade twist, cg offset from reference axis, and shear center offset from reference axis. Coupled inplane, out-of-plane, and torsional vibrations are considered. Normalized displacements, shear forces and moments may be printed out and Calcomp plots of natural frequencies as a function of rotor RPM may be produced.
Structural evolution of Colloidal Gels under Flow
NASA Astrophysics Data System (ADS)
Boromand, Arman; Maia, Joao; Jamali, Safa
Colloidal suspensions are ubiquitous in different industrial applications ranging from cosmetic and food industries to soft robotics and aerospace. Owing to the fact that mechanical properties of colloidal gels are controlled by its microstructure and network topology, we trace the particles in the networks formed under different attraction potentials and try to find a universal behavior in yielding of colloidal gels. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation and yielding mechanism in colloidal system with short-ranged attractive force. However, BD neglects multi-body hydrodynamic interactions (HI) which are believed to be responsible for the second yielding of colloidal gels. We envision using dissipative particle dynamics (DPD) with modified depletion potential and hydrodynamic interactions, as a coarse-grain model, can provide a robust simulation package to address the gel formation process and yielding in short ranged-attractive colloidal systems. The behavior of colloidal gels with different attraction potentials under flow is examined and structural fingerprints of yielding in these systems will be discussed.
NASA Astrophysics Data System (ADS)
Allphin, Devin
Computational fluid dynamics (CFD) solution approximations for complex fluid flow problems have become a common and powerful engineering analysis technique. These tools, though qualitatively useful, remain limited in practice by their underlying inverse relationship between simulation accuracy and overall computational expense. While a great volume of research has focused on remedying these issues inherent to CFD, one traditionally overlooked area of resource reduction for engineering analysis concerns the basic definition and determination of functional relationships for the studied fluid flow variables. This artificial relationship-building technique, called meta-modeling or surrogate/offline approximation, uses design of experiments (DOE) theory to efficiently approximate non-physical coupling between the variables of interest in a fluid flow analysis problem. By mathematically approximating these variables, DOE methods can effectively reduce the required quantity of CFD simulations, freeing computational resources for other analytical focuses. An idealized interpretation of a fluid flow problem can also be employed to create suitably accurate approximations of fluid flow variables for the purposes of engineering analysis. When used in parallel with a meta-modeling approximation, a closed-form approximation can provide useful feedback concerning proper construction, suitability, or even necessity of an offline approximation tool. It also provides a short-circuit pathway for further reducing the overall computational demands of a fluid flow analysis, again freeing resources for otherwise unsuitable resource expenditures. To validate these inferences, a design optimization problem was presented requiring the inexpensive estimation of aerodynamic forces applied to a valve operating on a simulated piston-cylinder heat engine. The determination of these forces was to be found using parallel surrogate and exact approximation methods, thus evidencing the comparative benefits of this technique. For the offline approximation, latin hypercube sampling (LHS) was used for design space filling across four (4) independent design variable degrees of freedom (DOF). Flow solutions at the mapped test sites were converged using STAR-CCM+ with aerodynamic forces from the CFD models then functionally approximated using Kriging interpolation. For the closed-form approximation, the problem was interpreted as an ideal 2-D converging-diverging (C-D) nozzle, where aerodynamic forces were directly mapped by application of the Euler equation solutions for isentropic compression/expansion. A cost-weighting procedure was finally established for creating model-selective discretionary logic, with a synthesized parallel simulation resource summary provided.
Jeon, Su-Jin; Moon, Young-Mi; Seo, Min-Seock
2017-11-01
The aims of this study were to quantify tug-back by measuring the pulling force and investigate the correlation of clinical tug-back pulling force with in vitro gutta-percha (GP) cone adaptation score using micro-computed tomography (µCT). Twenty-eight roots from human single-rooted teeth were divided into 2 groups. In the ProTaper Next (PTN) group, root canals were prepared with PTN, and in the ProFile (PF) group, root canals were prepared using PF ( n = 14). The degree of tug-back was scored after selecting taper-matched GP cones. A novel method using a spring balance was designed to quantify the tug-back by measuring the pulling force. The correlation between tug-back scores, pulling force, and percentage of the gutta-percha occupied area (pGPOA) within apical 3 mm was investigated using µCT. The data were analyzed using Pearson's correlation analysis, one-way analysis of variance (ANOVA) and Tukey's test. Specimens with a strong tug-back had a mean pulling force of 1.24 N (range, 0.15-1.70 N). This study showed a positive correlation between tug-back score, pulling force, and pGPOA. However, there was no significant difference in these factors between the PTN and PF groups. Regardless of the groups, pGPOA and pulling force were significantly higher in the specimens with a higher tug-back score ( p < 0.05). The degree of subjective tug-back was a definitive determinant for master cone adaptation in the root canal. The use of the tug-back scoring system and pulling force allows the interpretation of subjective tug-back in a more objective and quantitative manner.
The Uncertain Nature of Cometary Motions
NASA Technical Reports Server (NTRS)
Yeomans, Donald K.
1997-01-01
The number of active short- and long-periodic comets crossing the Earth's orbit each year is less than 10 percent of the corresponding number of asteroids crossing the Earth's orbit. However, the higher relative velocities of comets with respect to the Earth and the uncertainties associated with accurately computing their future trajectories can cause considerable problems when assessing the risks of Earth-crossing objects. Unlike asteroids, the motions of active comets are often affected by so-called nongravitational (outgassing) forces that are imperfectly modeled. In addition, the astrometric optical observations that are used to refine a comet's orbit are often imprecise because a comet's center of mass can be hidden by atmospheric gas and dust. For long-period comets, there is the additional problem of having to base orbital solutions on relatively short observational data intervals. Long-term numerical integrations extending two centuries into the future have been carried out to investigate upcoming Earth-close approaches by known periodic comets. Error analyses and impact probabilities have been computed for those comets that will pass closest to the Earth. Although there are no known comets that will make dangerously close Earth approaches in the next two centuries, there are a few objects that warrant future monitoring.
Estimating short-period dynamics using an extended Kalman filter
NASA Technical Reports Server (NTRS)
Bauer, Jeffrey E.; Andrisani, Dominick
1990-01-01
An extended Kalman filter (EKF) is used to estimate the parameters of a low-order model from aircraft transient response data. The low-order model is a state space model derived from the short-period approximation of the longitudinal aircraft dynamics. The model corresponds to the pitch rate to stick force transfer function currently used in flying qualities analysis. Because of the model chosen, handling qualities information is also obtained. The parameters are estimated from flight data as well as from a six-degree-of-freedom, nonlinear simulation of the aircraft. These two estimates are then compared and the discrepancies noted. The low-order model is able to satisfactorily match both flight data and simulation data from a high-order computer simulation. The parameters obtained from the EKF analysis of flight data are compared to those obtained using frequency response analysis of the flight data. Time delays and damping ratios are compared and are in agreement. This technique demonstrates the potential to determine, in near real time, the extent of differences between computer models and the actual aircraft. Precise knowledge of these differences can help to determine the flying qualities of a test aircraft and lead to more efficient envelope expansion.
Simulation of silicon thin-film solar cells for oblique incident waves
NASA Astrophysics Data System (ADS)
Jandl, Christine; Hertel, Kai; Pflaum, Christoph; Stiebig, Helmut
2011-05-01
To optimize the quantum efficiency (QE) and short-circuit current density (JSC) of silicon thin-film solar cells, one has to study the behavior of sunlight in these solar cells. Simulations are an adequate and economic method to analyze the optical properties of light caused by absorption and reflection. To this end a simulation tool is developed to take several demands into account. These include the analysis of perpendicular and oblique incident waves under E-, H- and circularly polarized light. Furthermore, the topology of the nanotextured interfaces influences the efficiency and therefore also the short-circuit current density. It is well known that a rough transparent conductive oxide (TCO) layer increases the efficiency of solar cells. Therefore, it is indispensable that various roughness profiles at the interfaces of the solar cell layers can be modeled in such a way that atomic force microscope (AFM) scan data can be integrated. Numerical calculations of Maxwell's equations based on the finite integration technique (FIT) and Finite Difference Time Domain (FDTD) method are necessary to incorporate all these requirements. The simulations are performed in parallel on high performance computers (HPC) to meet the large computational requirements.
CFD Simulations in Support of Shuttle Orbiter Contingency Abort Aerodynamic Database Enhancement
NASA Technical Reports Server (NTRS)
Papadopoulos, Periklis E.; Prabhu, Dinesh; Wright, Michael; Davies, Carol; McDaniel, Ryan; Venkatapathy, E.; Wercinski, Paul; Gomez, R. J.
2001-01-01
Modern Computational Fluid Dynamics (CFD) techniques were used to compute aerodynamic forces and moments of the Space Shuttle Orbiter in specific portions of contingency abort trajectory space. The trajectory space covers a Mach number range of 3.5-15, an angle-of-attack range of 20deg-60deg, an altitude range of 100-190 kft, and several different settings of the control surfaces (elevons, body flap, and speed brake). Presented here are details of the methodology and comparisons of computed aerodynamic coefficients against the values in the current Orbiter Operational Aerodynamic Data Book (OADB). While approximately 40 cases have been computed, only a sampling of the results is provided here. The computed results, in general, are in good agreement with the OADB data (i.e., within the uncertainty bands) for almost all the cases. However, in a limited number of high angle-of-attack cases (at Mach 15), there are significant differences between the computed results, especially the vehicle pitching moment, and the OADB data. A preliminary analysis of the data from the CFD simulations at Mach 15 shows that these differences can be attributed to real-gas/Mach number effects. The aerodynamic coefficients and detailed surface pressure distributions of the present simulations are being used by the Shuttle Program in the evaluation of the capabilities of the Orbiter in contingency abort scenarios.
1978-02-01
Numerical methods in the form of a digital computer model were used to simulate and study the tide- and wind-induced circulation in Chandeleur -Breton...entrances through the Chandeleur Island chain, where speed reaches 50-60 cm/sec for short periods. Surface elevations were found to have an average tide range
Lin, Yen-Ting; Kuo, Chia-Hua; Hwang, Ing-Shiou
2014-01-01
Continuous force output containing numerous intermittent force pulses is not completely smooth. By characterizing force fluctuation properties and force pulse metrics, this study investigated adaptive changes in trajectory control, both force-generating capacity and force fluctuations, as fatigue progresses. Sixteen healthy subjects (20–24 years old) completed rhythmic isometric gripping with the non-dominant hand to volitional failure. Before and immediately following the fatigue intervention, we measured the gripping force to couple a 0.5 Hz sinusoidal target in the range of 50–100% maximal voluntary contraction. Dynamic force output was off-line decomposed into 1) an ideal force trajectory spectrally identical to the target rate; and 2) a force pulse trace pertaining to force fluctuations and error-correction attempts. The amplitude of ideal force trajectory regarding to force-generating capacity was more suppressed than that of the force pulse trace with increasing fatigue, which also shifted the force pulse trace to lower frequency bands. Multi-scale entropy analysis revealed that the complexity of the force pulse trace at high time scales increased with fatigue, contrary to the decrease in complexity of the force pulse trace at low time scales. Statistical properties of individual force pulses in the spatial and temporal domains varied with muscular fatigue, concurrent with marked suppression of gamma muscular oscillations (40–60 Hz) in the post-fatigue test. In conclusion, this study first reveals that muscular fatigue impairs the amplitude modulation of force pattern generation more than it affects the amplitude responsiveness of fine-tuning a force trajectory. Besides, motor fatigue results disadvantageously in enhancement of motor noises, simplification of short-term force-tuning strategy, and slow responsiveness to force errors, pertaining to dimensional changes in force fluctuations, scaling properties of force pulse, and muscular oscillation. PMID:24465605
2012-09-01
speed, and 2-m relative humidity (RH) (Kuchera 2011; Kuchera 2011, personal communication ). The AFWA deterministic (non-ensemble) WRF NWP model also...create the runs for this research in late 2010 (Kuchera 2011, personal communication ). The configuration used for the runs is described below, with...object-specific is not just a limitation with automated instrumentation, as a human observer viewing landmarks of various brightnesses is subject to
Installation Restoration Program Records Search for George Air Force Base, California
1982-06-01
located in the Mojave Desert. The climate is arid with long hot summers and short cool winters. The mean 3relative humidity ranges from 27 percent in...abitat Native plant and animal comunities on base reflect the dry climatic conditions of an upland desert region. Along the eastern border of the bas...soil conditions because of a low ground- water table and the dry climatic conditions. While native systems are disrupted in the immediate vicinity of
Another Brick in the Wall: The Israeli Experience in Missile Defense
2015-04-01
region. In particular, the way the Is- raelis decapitated the Egyptian Air Force on June 5 in only 3 hours engendered tremendous awe among the Arab...in a memo, “Iraq has the most aggressive and advanced ballistic missile development program in the Arab World.”8 Like the Egyptians , the Iraqis...range ballistic missile (SRBM) delivered in 1973 shortly be- fore the war with Israel. Like the Egyptians , the Syr- ians also used their missiles
Evaluation of streamflow forecast for the National Water Model of U.S. National Weather Service
NASA Astrophysics Data System (ADS)
Rafieeinasab, A.; McCreight, J. L.; Dugger, A. L.; Gochis, D.; Karsten, L. R.; Zhang, Y.; Cosgrove, B.; Liu, Y.
2016-12-01
The National Water Model (NWM), an implementation of the community WRF-Hydro modeling system, is an operational hydrologic forecasting model for the contiguous United States. The model forecasts distributed hydrologic states and fluxes, including soil moisture, snowpack, ET, and ponded water. In particular, the NWM provides streamflow forecasts at more than 2.7 million river reaches for three forecast ranges: short (15 hr), medium (10 days), and long (30 days). In this study, we verify short and medium range streamflow forecasts in the context of the verification of their respective quantitative precipitation forecasts/forcing (QPF), the High Resolution Rapid Refresh (HRRR) and the Global Forecast System (GFS). The streamflow evaluation is performed for summer of 2016 at more than 6,000 USGS gauges. Both individual forecasts and forecast lead times are examined. Selected case studies of extreme events aim to provide insight into the quality of the NWM streamflow forecasts. A goal of this comparison is to address how much streamflow bias originates from precipitation forcing bias. To this end, precipitation verification is performed over the contributing areas above (and between assimilated) USGS gauge locations. Precipitation verification is based on the aggregated, blended StageIV/StageII data as the "reference truth". We summarize the skill of the streamflow forecasts, their skill relative to the QPF, and make recommendations for improving NWM forecast skill.
Lattice dynamics of a rigid-ion model for gadolinium molybdate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyer, L.L.; Hardy, J.R.
Calculations are presented which support the view that the ferroelectric phase tnnnsition in gadolinium molybdate (GMO) arises from the softening and ultimate instability of a doubly degenerate zone-edge mode of the high- temperature paraelectric phase. A rigid-ion model was used in which the short- range force constants are obtained from a detailed knowledge of the crystal structure together wiih the conditions imposed by the requirement that the crystal must be in static equilibrium under the combined influence of both Coulomb and short-range forces. Results show that this type of approach is very useful when one is dealing with complex structuresmore » such as GMO, which has thirty- four ions per unit cell in the paraelectric phase. In view of the simplicity of the model, a surprisingly good correlation with experimental results was obtained. In particular, the calculated zone-center frequencies reproduce the basic features of the observed Raman spectruna. Dispersion curves are presented which show a pronounced softening of two phonon branches which become doubly degenerate at the M point, in agreement with inelastic neutron scattering. The displacements associated wiih the soft M-point modes correlate with the difference in the structures of the high- and low-temperature phases determined by x-ray diffraction. This provides further evidence that the ferroelectric domains in GMO are to be interpreted as frozen-in'' soft zoneboundary modes of the paraelectric phase. (auth)« less
On-Orbit Range Set Applications
NASA Astrophysics Data System (ADS)
Holzinger, M.; Scheeres, D.
2011-09-01
History and methodology of Δv range set computation is briefly reviewed, followed by a short summary of the Δv optimal spacecraft servicing problem literature. Service vehicle placement is approached from a Δv range set viewpoint, providing a framework under which the analysis becomes quite geometric and intuitive. The optimal servicing tour design problem is shown to be a specific instantiation of the metric- Traveling Salesman Problem (TSP), which in general is an NP-hard problem. The Δv-TSP is argued to be quite similar to the Euclidean-TSP, for which approximate optimal solutions may be found in polynomial time. Applications of range sets are demonstrated using analytical and simulation results.
Effects of modified short-leg walkers on ground reaction force characteristics.
Keefer, Maria; King, Jon; Powell, Douglas; Krusenklaus, John H; Zhang, Songning
2008-11-01
Although short-leg walkers are often used in the treatment of lower extremity injuries (ankle and foot fractures and severe ankle sprains), little is known about the effect the short-leg walker on gait characteristics. The purpose was to examine how heel height modifications in different short-leg walkers and shoe side may affect ground reaction forces in walking. Force platforms were used to collect ground reaction force data on 10 healthy participants. Five trials were performed in each of six conditions: lab shoes, gait walker, gait walker with heel insert on shoe side, gait walker modified with insert on walker side, equalizer walker, and equalizer walker with heel insert on shoe side. Conditions were randomized and walking speed was standardized between conditions. A 2x6 (sidexcondition) repeated analysis of variance was used on selected ground reaction force variables (P<0.05). The application of a walker created peak vertical and anteroposterior ground reaction forces prior to the normal peaks associated with the loading response. Wearing a walker introduced an elevated minimum vertical ground reaction force in all conditions except the equalizer walker when compared to shoe on the shoe side. Peak propulsive anteroposterior ground reaction forces were smaller in all walker conditions compared to shoe on walker side. The application of heel insert in gait walker with heel insert (on shoe side) and gait walker modified (on walker side) does not diminish the minimum vertical ground reaction force as hypothesized. Wearing a walker decreases the peak propulsive anteroposterior ground reaction force on the walker side and induces asymmetrical loading.
NASA Astrophysics Data System (ADS)
Zhang, Liang; Tinsley, Brian A.
2018-03-01
Simulations and parameterization of collision rate coefficients for aerosol particles with 3 μm radius droplets have been extended to a range of particle densities up to 2,000 kg m-3 for midtropospheric ( 5 km) conditions (540 hPa, -17°C). The increasing weight has no effect on collisions for particle radii less than 0.2 μm, but for greater radii the weight effect becomes significant and usually decreases the collision rate coefficient. When increasing size and density of particles make the fall speed of the particle relative to undisturbed air approach to that of the droplet, the effect of the particle falling away in the stagnation region ahead of the droplet becomes important, and the probability of frontside collisions can decrease to zero. Collisions on the rear side of the droplet can be enhanced as particle weight increases, and for this the weight effect tends to increase the rate coefficients. For charges on the droplet and for large particles with density ρ < 1,000 kg m-3 the predominant effect increases in rate coefficient due to the short-range attractive image electric force. With density ρ above about 1,000 kg m-3, the stagnation region prevents particles moving close to the droplet and reduces the effect of these short-range forces. Together with previous work, it is now possible to obtain collision rate coefficients for realistic combinations of droplet charge, particle charge, droplet radius, particle radius, particle density, and relative humidity in clouds. The parameterization allows rapid access to these values for use in cloud models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Yuxin; Masuda, Kento; Suto, Yasushi, E-mail: yuxin@utap.phys.s.u-tokyo.ac.jp
We investigate the formation of close-in planets in near-coplanar eccentric hierarchical triple systems via the secular interaction between an inner planet and an outer perturber (Coplanar High-eccentricity Migration; CHEM). We generalize the previous work on the analytical condition for successful CHEM for point masses interacting only through gravity by taking into account the finite mass effect of the inner planet. We find that efficient CHEM requires that the systems should have m {sub 1}≪m {sub 0} and m {sub 1} ≪ m {sub 2}. In addition to the gravity for point masses, we examine the importance of the short-range forces,more » and provide an analytical estimate of the migration timescale. We perform a series of numerical simulations in CHEM for systems consisting of a Sun-like central star, giant gas inner planet, and planetary outer perturber, including the short-range forces and stellar and planetary dissipative tides. We find that most of such systems end up with a tidal disruption; a small fraction of the systems produce prograde hot Jupiters (HJs), but no retrograde HJ. In addition, we extend CHEM to super-Earth mass range, and show that the formation of close-in super-Earths in prograde orbits is also possible. Finally, we carry out CHEM simulation for the observed hierarchical triple and counter-orbiting HJ systems. We find that CHEM can explain a part of the former systems, but it is generally very difficult to reproduce counter-orbiting HJ systems.« less
The RiSE climbing robot: body and leg design
NASA Astrophysics Data System (ADS)
Saunders, A.; Goldman, D. I.; Full, R. J.; Buehler, M.
2006-05-01
The RiSE robot is a biologically inspired, six legged climbing robot, designed for general mobility in scansorial (vertical walls, horizontal ledges, ground level) environments. It exhibits ground reaction forces that are similar to animal climbers and does not rely on suction, magnets or other surface-dependent specializations to achieve adhesion and shear force. We describe RiSE's body and leg design as well as its electromechanical, communications and computational infrastructure. We review design iterations that enable RiSE to climb 90° carpeted, cork covered and (a growing range of) stucco surfaces in the quasi-static regime.
Toward an Integration of Deep Learning and Neuroscience
Marblestone, Adam H.; Wayne, Greg; Kording, Konrad P.
2016-01-01
Neuroscience has focused on the detailed implementation of computation, studying neural codes, dynamics and circuits. In machine learning, however, artificial neural networks tend to eschew precisely designed codes, dynamics or circuits in favor of brute force optimization of a cost function, often using simple and relatively uniform initial architectures. Two recent developments have emerged within machine learning that create an opportunity to connect these seemingly divergent perspectives. First, structured architectures are used, including dedicated systems for attention, recursion and various forms of short- and long-term memory storage. Second, cost functions and training procedures have become more complex and are varied across layers and over time. Here we think about the brain in terms of these ideas. We hypothesize that (1) the brain optimizes cost functions, (2) the cost functions are diverse and differ across brain locations and over development, and (3) optimization operates within a pre-structured architecture matched to the computational problems posed by behavior. In support of these hypotheses, we argue that a range of implementations of credit assignment through multiple layers of neurons are compatible with our current knowledge of neural circuitry, and that the brain's specialized systems can be interpreted as enabling efficient optimization for specific problem classes. Such a heterogeneously optimized system, enabled by a series of interacting cost functions, serves to make learning data-efficient and precisely targeted to the needs of the organism. We suggest directions by which neuroscience could seek to refine and test these hypotheses. PMID:27683554
Molecular Simulations in Astrobiology
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Wilson, Michael A.; Schweighofer, Karl; Chipot, Christophe; New, Michael H.; Vincenzi, Donald L. (Technical Monitor)
2001-01-01
One of the main goals of astrobiology is to understand the origin of cellular life. In the absence of any record of the earliest ancestors of contemporary cells, protocells, the most direct way to test our understanding of their characteristics is to construct laboratory models of protocells. Such efforts, currently underway in the NASA Astrobiology Program, are accompanied by computational studies aimed at explaining self-organization of simple molecules into ordered structures and developing designs of molecules that are capable of performing protocellular functions. Many of these functions, such as importing nutrients, capturing and storing energy, and responding to changes in the environment, are carried out by proteins bound to membranes. We use computer simulations to address the following, questions about these proteins: (1) How do small proteins (peptides) organize themselves into ordered structures at water-membrane interfaces and insert into membranes? (2) How do peptides aggregate to form membrane-spannin(y structures (e.g., channels)? (3) By what mechanisms do such aggregates perform their functions? The simulations are performed using the molecular dynamics (MD) method. In this method, Newton's equations of motion for each atom in the system are solved iteratively. At each time step, the forces exerted on each atom by the remaining atoms are evaluated by dividing them into two parts. Short-range forces are calculated directly in real space while long-range forces are evaluated in reciprocal space, usually using a particle-mesh algorithm which is of order O(NlnN). Currently, a time step of 2 femtoseconds is typically used, thereby making studies of problems occurring on multi-nanosecond time scales (10(exp 6) - 10(exp 8) time steps) accessible. To address a broader range of problems, simulations need to be extended by three orders of magnitude. Such an extension requires both algorithmic improvements and codes scalable to a large number of parallel processors. Work in this direction is in progress. Two specific series of simulations that demonstrate how peptides self-organize and function in membranes are discussed. In one series of simulations, it was shown that nonpolar peptides, disordered in water, translocate to the nonpolar interior of the membrane and, simultaneously, fold into two different helical structures, which remain in equilibrium. Once in the membrane, the peptides can readily change their orientation, especially in response to local electric fields. This structural and orientational flexibility of peptides with changing conditions may have provided a mechanism of transmitting signals between the environment and the interior of the protocell. In another series of simulations, the mechanism by which a simple protein channel efficiently mediates proton transport across membranes was investigated. This process is a key step in cellular bioenergetics. In the channel under study, proton transport is gated by four histidines that occlude the channel pore. The simulations demonstrate that protons move through the gate by a "shuttle" mechanism, wherein one histidine is protonated on the extracellular side and, subsequently, the proton bound on the opposite side is released.
Cotunneling and polaronic effect in granular systems
NASA Astrophysics Data System (ADS)
Ioselevich, A. S.; Sivak, V. V.
2017-06-01
We theoretically study the conductivity in arrays of metallic grains due to the variable-range multiple cotunneling of electrons with short-range (screened) Coulomb interaction. The system is supposed to be coupled to random stray charges in the dielectric matrix that are only loosely bounded to their spatial positions by elastic forces. The flexibility of the stray charges gives rise to a polaronic effect, which leads to the onset of Arrhenius-type conductivity behavior at low temperatures, replacing conventional Mott variable-range hopping. The effective activation energy logarithmically depends on temperature due to fluctuations of the polaron barrier heights. We present the unified theory that covers both weak and strong polaron effect regimes of hopping in granular metals and describes the crossover from elastic to inelastic cotunneling.
Convolutional virtual electric field for image segmentation using active contours.
Wang, Yuanquan; Zhu, Ce; Zhang, Jiawan; Jian, Yuden
2014-01-01
Gradient vector flow (GVF) is an effective external force for active contours; however, it suffers from heavy computation load. The virtual electric field (VEF) model, which can be implemented in real time using fast Fourier transform (FFT), has been proposed later as a remedy for the GVF model. In this work, we present an extension of the VEF model, which is referred to as CONvolutional Virtual Electric Field, CONVEF for short. This proposed CONVEF model takes the VEF model as a convolution operation and employs a modified distance in the convolution kernel. The CONVEF model is also closely related to the vector field convolution (VFC) model. Compared with the GVF, VEF and VFC models, the CONVEF model possesses not only some desirable properties of these models, such as enlarged capture range, u-shape concavity convergence, subject contour convergence and initialization insensitivity, but also some other interesting properties such as G-shape concavity convergence, neighboring objects separation, and noise suppression and simultaneously weak edge preserving. Meanwhile, the CONVEF model can also be implemented in real-time by using FFT. Experimental results illustrate these advantages of the CONVEF model on both synthetic and natural images.
Design of Bioprosthetic Aortic Valves using biaxial test data.
Dabiri, Y; Paulson, K; Tyberg, J; Ronsky, J; Ali, I; Di Martino, E; Narine, K
2015-01-01
Bioprosthetic Aortic Valves (BAVs) do not have the serious limitations of mechanical aortic valves in terms of thrombosis. However, the lifetime of BAVs is too short, often requiring repeated surgeries. The lifetime of BAVs might be improved by using computer simulations of the structural behavior of the leaflets. The goal of this study was to develop a numerical model applicable to the optimization of durability of BAVs. The constitutive equations were derived using biaxial tensile tests. Using a Fung model, stress and strain data were computed from biaxial test data. SolidWorks was used to develop the geometry of the leaflets, and ABAQUS finite element software package was used for finite element calculations. Results showed the model is consistent with experimental observations. Reaction forces computed by the model corresponded with experimental measurements when the biaxial test was simulated. As well, the location of maximum stresses corresponded to the locations of frequent tearing of BAV leaflets. Results suggest that BAV design can be optimized with respect to durability.
NASA Technical Reports Server (NTRS)
Gray, W H; Hallissy, J M , Jr
1950-01-01
Data on the aerodynamic excitation of first-order vibration occurring in a representative three-blade propeller having its thrust axis inclined to the air stream at angles of 0 degrees, 4.55 degrees, and 9.8 degrees are included in this paper. For several representative conditions the aerodynamic excitation has been computed and compared with the measured values. Blade stresses also were measured to permit the evaluation of the blade stress resulting from a given blade aerodynamic excitation. It was concluded that the section aerodynamic exciting force of a pitched propeller may be computed accurately at low rotational speeds. As section velocities approach the speed of sound, the accuracy of computation of section aerodynamic exciting force is not always so satisfactory. First-order blade vibratory stresses were computed with satisfactory accuracy from untilted-propeller loading data. A stress prediction which assumes a linear relation between first-order vibratory stress and the product of pitch angle and dynamic pressure and which is based on stresses at low rotational speeds will be conservative when the outer portions of the blade are in the transonic and low supersonic speed range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Peiyuan; Brown, Timothy; Fullmer, William D.
Five benchmark problems are developed and simulated with the computational fluid dynamics and discrete element model code MFiX. The benchmark problems span dilute and dense regimes, consider statistically homogeneous and inhomogeneous (both clusters and bubbles) particle concentrations and a range of particle and fluid dynamic computational loads. Several variations of the benchmark problems are also discussed to extend the computational phase space to cover granular (particles only), bidisperse and heat transfer cases. A weak scaling analysis is performed for each benchmark problem and, in most cases, the scalability of the code appears reasonable up to approx. 103 cores. Profiling ofmore » the benchmark problems indicate that the most substantial computational time is being spent on particle-particle force calculations, drag force calculations and interpolating between discrete particle and continuum fields. Hardware performance analysis was also carried out showing significant Level 2 cache miss ratios and a rather low degree of vectorization. These results are intended to serve as a baseline for future developments to the code as well as a preliminary indicator of where to best focus performance optimizations.« less
Arvidsson, Per M; Töger, Johannes; Carlsson, Marcus; Steding-Ehrenborg, Katarina; Pedrizzetti, Gianni; Heiberg, Einar; Arheden, Håkan
2017-02-01
Intracardiac blood flow is driven by hemodynamic forces that are exchanged between the blood and myocardium. Previous studies have been limited to 2D measurements or investigated only left ventricular (LV) forces. Right ventricular (RV) forces and their mechanistic contribution to asymmetric redirection of flow in the RV have not been measured. We therefore aimed to quantify 3D hemodynamic forces in both ventricles in a cohort of healthy subjects, using magnetic resonance imaging 4D flow measurements. Twenty five controls, 14 elite endurance athletes, and 2 patients with LV dyssynchrony were included. 4D flow data were used as input for the Navier-Stokes equations to compute hemodynamic forces over the entire cardiac cycle. Hemodynamic forces were found in a qualitatively consistent pattern in all healthy subjects, with variations in amplitude. LV forces were mainly aligned along the apical-basal longitudinal axis, with an additional component aimed toward the aortic valve during systole. Conversely, RV forces were found in both longitudinal and short-axis planes, with a systolic force component driving a slingshot-like acceleration that explains the mechanism behind the redirection of blood flow toward the pulmonary valve. No differences were found between controls and athletes when indexing forces to ventricular volumes, indicating that cardiac force expenditures are tuned to accelerate blood similarly in small and large hearts. Patients' forces differed from controls in both timing and amplitude. Normal cardiac pumping is associated with specific force patterns for both ventricles, and deviation from these forces may be a sensitive marker of ventricular dysfunction. Reference values are provided for future studies. NEW & NOTEWORTHY Biventricular hemodynamic forces were quantified for the first time in healthy controls and elite athletes (n = 39). Hemodynamic forces constitute a slingshot-like mechanism in the right ventricle, redirecting blood flow toward the pulmonary circulation. Force patterns were similar between healthy subjects and athletes, indicating potential utility as a cardiac function biomarker. Copyright © 2017 the American Physiological Society.
Developing Item Response Theory-Based Short Forms to Measure the Social Impact of Burn Injuries.
Marino, Molly E; Dore, Emily C; Ni, Pengsheng; Ryan, Colleen M; Schneider, Jeffrey C; Acton, Amy; Jette, Alan M; Kazis, Lewis E
2018-03-01
To develop self-reported short forms for the Life Impact Burn Recovery Evaluation (LIBRE) Profile. Short forms based on the item parameters of discrimination and average difficulty. A support network for burn survivors, peer support networks, social media, and mailings. Burn survivors (N=601) older than 18 years. Not applicable. The LIBRE Profile. Ten-item short forms were developed to cover the 6 LIBRE Profile scales: Relationships with Family & Friends, Social Interactions, Social Activities, Work & Employment, Romantic Relationships, and Sexual Relationships. Ceiling effects were ≤15% for all scales; floor effects were <1% for all scales. The marginal reliability of the short forms ranged from .85 to .89. The LIBRE Profile-Short Forms demonstrated credible psychometric properties. The short form version provides a viable alternative to administering the LIBRE Profile when resources do not allow computer or Internet access. The full item bank, computerized adaptive test, and short forms are all scored along the same metric, and therefore scores are comparable regardless of the mode of administration. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.