Structural properties of medium-range order in CuNiZr alloy
NASA Astrophysics Data System (ADS)
Gao, Tinghong; Hu, Xuechen; Xie, Quan; Li, Yidan; Ren, Lei
2017-10-01
The evolution characteristics of icosahedral clusters during the rapid solidification of Cu50Ni10Zr40 alloy at cooling rate of 1011 K s-1 are investigated based on molecular dynamics simulations. The structural properties of the short-range order and medium-range order of Cu50Ni10Zr40 alloy are analyzed by several structural characterization methods. The results reveal that the icosahedral clusters are the dominant short-range order structure, and that they assemble themselves into medium-range order by interpenetrating connections. The different morphologies of medium-range order are found in the system and include chain, triangle, tetrahedral, and their combination structures. The tetrahedral morphologies of medium-range order have excellent structural stability with decreasing temperature. The Zr atoms are favorable to form longer chains, while the Cu atoms are favorable to form shorter chains in the system. Those chains interlocked with each other to improve the structural stability.
Double scattering of light from Biophotonic Nanostructures with short-range order
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar
2010-07-28
We investigate the physical mechanism for color production by isotropic nanostructures with short-range order in bird feather barbs. While the primary peak in optical scattering spectra results from constructive interference of singly-scattered light, many species exhibit secondary peaks with distinct characteristic. Our experimental and numerical studies show that these secondary peaks result from double scattering of light by the correlated structures. Without an analog in periodic or random structures, such a phenomenon is unique for short-range ordered structures, and has been widely used by nature for non-iridescent structural coloration.
NASA Astrophysics Data System (ADS)
Klein, S.; Holland-Moritz, D.; Herlach, D. M.; Mauro, N. A.; Kelton, K. F.
2013-05-01
The short-range order in undercooled melts of the intermetallic Zr2Pd glass-forming alloy is investigated by combining electrostatic levitation (ESL) with high-energy X-ray diffraction and neutron diffraction. Experimentally determined structure factors are measured and analyzed with respect to various structures of short-range order. The comparative X-ray and neutron scattering experiments allow for investigations of topological and chemical short-range order. Based on these studies, no preference of a specific short-range order is found for the liquid Zr2Pd glass-forming alloy, even in the metastable state of the deeply undercooled melt. This is in agreement with an earlier report from X-ray diffraction and molecular-dynamics studies of a Zr75.5Pd24.5 liquid, which showed a broad distribution of cluster types. The results for the Zr2Pd liquid are discussed with respect to the glass-forming ability of this melt.
Magnetic structure in Mn1 -xCoxGe compounds
NASA Astrophysics Data System (ADS)
Altynbaev, E.; Siegfried, S.-A.; Strauß, P.; Menzel, D.; Heinemann, A.; Fomicheva, L.; Tsvyashchenko, A.; Grigoriev, S.
2018-04-01
The magnetic system of the pseudobinary compound Mn1 -xCoxGe has been studied using small-angle neutron scattering and susceptibility measurements. It is found that Mn1 -xCoxGe orders magnetically at low temperatures in the whole concentration range of x ∈[0 /0.9 ] . Four different states of the magnetic structure have been found at low temperatures: the long-range-ordered (LRO) short-period helical magnetic structure at x
Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid.
Um, I C; Kweon, H Y; Park, Y H; Hudson, S
2001-08-20
Structural characteristics and thermal and solution properties of the regenerated silk fibroin (SF) prepared from formic acid (FU) were compared with those of SF from water (AU). According to the turbidity and shear viscosity measurement, SF formic acid solution was stable and transparent, no molecular aggregations occurred. The sample FU exhibited the beta-sheet structure, while AU random coil conformation using Fourier transform infrared (FTIR), X-ray diffraction (XRD), and differential scanning calorimetry. The effects of methanol treatment on samples were also examined. According to the measurement of crystallinity (XRD) and crystallinity index (FTIR), the concept of long/short-range ordered structure formation was proposed. Long-range ordered crystallites are predominantly formed for methanol treated SF film while SF film cast from formic acid favors the formation of short-range ordered structure. The relaxation temperatures of SF films measured by dynamic thermomechanical analysis supported the above mechanism due to the sensitivity of relaxation temperature on the short-range order.
Amorphous photonic crystals with only short-range order.
Shi, Lei; Zhang, Yafeng; Dong, Biqin; Zhan, Tianrong; Liu, Xiaohan; Zi, Jian
2013-10-04
Distinct from conventional photonic crystals with both short- and long-range order, amorphous photonic crystals that possess only short-range order show interesting optical responses owing to their unique structural features. Amorphous photonic crystals exhibit unique light scattering and transport, which lead to a variety of interesting phenomena such as isotropic photonic bandgaps or pseudogaps, noniridescent structural colors, and light localization. Recent experimental and theoretical advances in the study of amorphous photonic crystals are summarized, focusing on their unique optical properties, artificial fabrication, bionspiration, and potential applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Siyuan; Cai, Panfu; Li, Xiaoxi; Chen, Ling; Li, Lin; Li, Bing
2016-12-10
To improve the water vapor resistance of starch-based films, Na-MMT (Na-montmorillonite) as nanofillers were fabricated into hydroxypropyl starch and the multi-scale structural changes (including intermolecular interaction, short-range conformation, long-range ordered structure and the aggregated structure of the film) were revealed. The elongation of the water vapor molecule pathway by tortuous path is generally recognized as the main reason for the improvement of water resistance. However this study observed the lowest water vapor permeability (WVP) was at the 3% Na-MMT/hydroxypropyl starch (HPS) ratio instead of 5% even nanofillers were partially exfoliated at both ratio. Except for the "tortuous path" caused by nanofillers, this observation proposed that the short-range conformation of HPS chains, long-range ordered structure and the aggregated structure likely influenced the water barrier property. The relationship between WVP and multi-scale structure of the film was investigated. The results suggested that a good balance of short-range conformationin the amorphous region, long-range ordered structure and the aggregated structure of the film was required for the improvement of water vapor barrier property. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mi, Guangbao; Li, Peijie; He, Liangju
2010-09-01
Based on the mechanism of metal solid-liquid phase change and the theory of liquid metal’s micro-inhomogeneity, a physical model is established between latent heats of fusion and vaporization and the numbers of residual bonds and short-range ordered atoms at the melting point inside a metal melt. Meanwhile, the mathematical derivation and proof are also offered. This model produces the numbers of residual bonds and short-range ordered atoms after the solid-liquid phase change only by using basic parameters and thermophysical properties of the crystal structure. Therefore, it presents a more effective way to analyze the melt’s structural information. By using this model, this study calculates the numbers of residual bonds and short-range ordered atoms in Al and Ni melts. The calculated results are consistent with the experimental results. Simultaneously, this study discusses the atomic number’s influence on the numbers of residual bonds and short-range ordered atoms in the melts within the first (IA) and second main group (IIA) elements.
Local atomic order of a metallic glass made visible by scanning tunneling microscopy
NASA Astrophysics Data System (ADS)
Luo, Yuansu; Samwer, Konrad
2018-06-01
Exploring the atomic level structure in amorphous materials by STM becomes extremely difficult due to the localized electronic states. Here we carried out STM studies on a quasi-low-dimensional film of metallic glass Zr65Cu27.5Al7.5 which is ‘ultrathin’ compared with the localization length and/or the length scale of short range order. The local electronic structure must appear more inherent, having states at E f available for tip-sample tunneling current. To enhance imaging contrasts between long-range and short-range orders, the highly oriented pyrolytic graphite was chosen as substrate, so that the structural heterogeneity arising from competition between the glass former ability and the epitaxy can be ascertained. A chemical order predicted for this system was observed in atomic ordered regimes (1–2 monolayers), accompanied with a superstructure with the period Zr–Cu(Al)–Zr along three hexagonal axes. The result implies a chemical short range order in disordered regimes, where polyhedral clusters are dominant with the solute atom Cu(Al) in the center. An attempt for the structural modelling was made based on high resolution STM images, giving icosahedral order on the surface and different Voronoi clusters in 3D space.
Intermediate- and short-range order in phosphorus-selenium glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bytchkov, Aleksei; Hennet, Louis; Price, David L.
2011-04-01
State-of-the-art neutron and x-ray diffraction measurements have been performed to provide a definitive picture of the intermediate- and short-range structures of P{sub x}Se{sub 1-x} glasses spanning two glass regions, x 0.025-0.54 and 0.64-0.84. Liquid P{sub 4}Se{sub 3} and amorphous red P and Se were also measured. Detailed information was obtained about the development with increasing phosphorous concentration of intermediate-range order on the length scale {approx}6 A ring , based on the behavior of the first sharp diffraction peak. Attention is also paid to the feature in the structure factor at 7.5 A ring {sup -1}, identified in earlier numerical simulations,more » provides further evidence of the existence of molecular units. The real-space transforms yield a reliable statistical picture of the changing short-range order as x increases, using the information about types and concentrations of local structural units provided by previous NMR measurements to interpret the trends observed.« less
On the structure of the disordered Bi 2Te 4O 11 phase
NASA Astrophysics Data System (ADS)
Masson, O.; Thomas, P.; Durand, O.; Hansen, T.; Champarnaud, J. C.; Mercurio, D.
2004-06-01
The structure of the disordered metastable Bi 2Te 4O 11 phase has been investigated using both neutron powder diffraction and reverse Monte Carlo (RMC) modelling. The average structure, of fluorite-type (space group Fm 3¯m ), is characterized by very high Debye-Waller parameters, especially for oxygen. Whereas the cations form a fairly well-defined FCC lattice, the oxygen sublattice is very disordered. It is shown that the local order is similar to that present in the stable monoclinic Bi 2Te 4O 11 phase. Clear differences are observed for the intermediate range order. The present phase is analogous to the "anti-glass" phases reported by Trömel in other tellurium-based mixed oxides. However, whereas Trömel defines anti-glass as having long range order but no short range order, it is shown here that this phase is best described as an intermediate state between the amorphous and crystalline states, i.e. having short and medium range order similar to that of tellurite glasses and a premise of long range order with the cations only.
Short range orders of an adsorbed layer: gold on the Si(111)7 × 7 surface
NASA Astrophysics Data System (ADS)
Takahashi, S.; Tanishiro, Y.; Takayanagi, K.
1991-02-01
Ordered phases of 5 × 2, 3× 3 and 6 × 6 structures formed by gold deposition on a Si(11)7 × 7 surface were observed by transmission electron diffraction (TED). Short-range orders of the 3× 3 phase of low and high coverages are analyzed from diffuse TED intensities. Phasons which displace the adsorption site by a at every translation of 6 a are found to be introduced in the 3× 3 structure of the saturation coverage. The phasons, which create 2 a correlation between gold clusters, prohibit formation of a completely ordered 3× 3 phase.
Field dependence of the magnetic correlations of the frustrated magnet SrDy 2 O 4
Gauthier, N.; Fennell, A.; Prévost, B.; ...
2017-05-30
Tmore » he frustrated magnet SrDy 2 O 4 exhibits a field-induced phase with a magnetization plateau at 1 / 3 of the saturation value for magnetic fields applied along the b axis. We report here a neutron scattering study of the nature and symmetry of the magnetic order in this field-induced phase. Below ≈ 0.5 K, there are strong hysteretic effects, and the order is short- or long-ranged for zero-field and field cooling, respectively. We find that the long-range ordered magnetic structure within the zigzag chains is identical to that expected for the one-dimensional axial next-nearest neighbor Ising (ANNNI) model in longitudinal fields. he long-range ordered structure in field contrasts with the short-range order found at zero field, and is most likely reached through enhanced quantum fluctuations with increasing fields.« less
Field dependence of the magnetic correlations of the frustrated magnet SrDy2O4
NASA Astrophysics Data System (ADS)
Gauthier, N.; Fennell, A.; Prévost, B.; Désilets-Benoit, A.; Dabkowska, H. A.; Zaharko, O.; Frontzek, M.; Sibille, R.; Bianchi, A. D.; Kenzelmann, M.
2017-05-01
The frustrated magnet SrDy2O4 exhibits a field-induced phase with a magnetization plateau at 1 /3 of the saturation value for magnetic fields applied along the b axis. We report here a neutron scattering study of the nature and symmetry of the magnetic order in this field-induced phase. Below T ≈0.5 K, there are strong hysteretic effects, and the order is short- or long-ranged for zero-field and field cooling, respectively. We find that the long-range ordered magnetic structure within the zigzag chains is identical to that expected for the one-dimensional axial next-nearest neighbor Ising (ANNNI) model in longitudinal fields. The long-range ordered structure in field contrasts with the short-range order found at zero field, and is probably reached through enhanced quantum fluctuations with increasing fields.
A modulation wave approach to the order hidden in disorder
Withers, Ray
2015-01-01
The usefulness of a modulation wave approach to understanding and interpreting the highly structured continuous diffuse intensity distributions characteristic of the reciprocal spaces of the very large family of inherently flexible materials which exhibit ordered ‘disorder’ is pointed out. It is shown that both longer range order and truly short-range order are simultaneously encoded in highly structured diffuse intensity distributions. The long-range ordered crystal chemical rules giving rise to such diffuse distributions are highlighted, along with the existence and usefulness of systematic extinction conditions in these types of structured diffuse distributions. PMID:25610629
NASA Astrophysics Data System (ADS)
Liu, Jian; Fernández-Serra, Maria V.; Allen, Philip B.
2016-02-01
This paper studies short-range order (SRO) in the semiconductor alloy (GaN) 1 -x(ZnO) x. Monte Carlo simulations performed on a density functional theory (DFT)-based cluster expansion model show that the heterovalent alloys exhibit strong SRO because of the energetic preference for the valence-matched nearest-neighbor Ga-N and Zn-O pairs. To represent the SRO-related structural correlations, we introduce the concept of special quasiordered structure (SQoS). Subsequent DFT calculations reveal the dramatic influence of SRO on the atomic, electronic, and vibrational properties of the (GaN) 1 -x(ZnO) x alloy. Due to the enhanced statistical presence of the energetically unfavored Zn-N bonds with the strong Zn 3 d -N 2 p repulsion, the disordered alloys exhibit much larger lattice bowing and band-gap reduction than those of the short-range ordered alloys. Lattice vibrational entropy tilts the alloy toward less SRO.
Structural short-range order of the β-Ti phase in bulk Ti-Fe-(Sn) nanoeutectic composites
NASA Astrophysics Data System (ADS)
Das, J.; Eckert, J.; Theissmann, R.
2006-12-01
The authors report lattice distortion and "ω-like" structural short-range order (SRO) of the β-Ti phase in a Ti-Fe-(Sn) bulk nanoeutectic composite prepared by slow cooling from the melt. The nanoeuetctic phases are chemically homogeneous, but the addition of Sn releases the local lattice strain, modifies the structural SRO, and prevents the formation of stacking faults in the body centered cubic (bcc) β-Ti phase resulting in improved plastic deformability. The elastic properties and the structural SRO of the β-Ti phase are proposed to be important parameters for developing advanced high strength, ductile Ti-base nanocomposite alloys.
NASA Astrophysics Data System (ADS)
Turner, K. M.; Rittman, D.; Heymach, R.; Turner, M.; Tracy, C.; Mao, W. L.; Ewing, R. C.
2017-12-01
Complex oxides with the pyrochlore (A2B2O7) and defect-fluorite ((A,B)4O7) structure-types undergo structural transformations under high-pressure. These compounds are under consideration for applications including as a proposed waste-form for actinides generated in the nuclear fuel cycle. High-pressure transformations in rare earth hafnates (A2Hf2O7, A=Sm, Eu, Gd, Dy, Y, Yb) and stannates (A2Sn2O7, A=Nd, Gd, Er) were investigated to 50 GPa by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Rare-earth hafnates form the pyrochlore structure for A=La-Tb and the defect-fluorite structure for A=Dy-Lu. Lanthanide stannates form the pyrochlore structure. Raman spectra revealed that at ambient pressure all compositions have pyrochlore-type short-range order. Stannate compositions show a larger degree of pyrochlore-type short-range ordering relative to hafnates. In situ high-pressure synchrotron XRD showed that rare earth hafnates and stannates underwent a pressure-induced phase transition to a cotunnite-like (Pnma) structure that begins between 18-25 GPa in hafnates and between 30-33 GPa in stannates. The phase transition is not complete at 50 GPa, and upon decompression, XRD indicates that all compositions transform to defect-fluorite with an amorphous component. In situ Raman spectroscopy showed that disordering in stannates and hafnates occurs gradually upon compression. Pyrochlore-structured hafnates retain short-range order to a higher pressure (30 GPa vs. <10 GPa) than defect-fluorite-structured hafnates. Hafnates and stannates decompressed from 50 GPa show Raman spectra consistent with weberite-type structures, also reported in irradiated stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of 250 GPa for hafnate compositions with the pyrochlore structure, and 400 GPa for hafnate compositions with the defect-fluorite structure. Stannates have a lower bulk modulus relative to hafnates (between 80-150 GPa). Stannate and hafnate pyrochlore compositions taken to high pressure show structural transformations consistent with irradiated pyrochlore, and compositionally disordered pyrochlore: a long-range structure best described by defect-fluorite, and a short-range structure best described by weberite.
Short, intermediate and long range order in amorphous ices
NASA Astrophysics Data System (ADS)
Martelli, Fausto; Torquato, Salvatore; Giovanbattista, Nicolas; Car, Roberto
Water exhibits polyamorphism, i.e., it exists in more than one amorphous state. The most common forms of glassy water are the low-density amorphous (LDA) and the high-density amorphous (HDA) ices. LDA, the most abundant form of ice in the Universe, transforms into HDA upon isothermal compression. We model the transformation of LDA into HDA under isothermal compression with classical molecular dynamics simulations. We analyze the molecular structures with a recently introduced scalar order metric to measure short and intermediate range order. In addition, we rank the structures by their degree of hyperuniformity, i.e.,the extent to which long range density fluctuations are suppressed. F.M. and R.C. acknowledge support from the Department of Energy (DOE) under Grant No. DE-SC0008626.
Local Structure and Short-Range Order in a NiCoCr Solid Solution Alloy
Zhang, F. X.; Zhao, Shijun; Jin, Ke; ...
2017-05-19
Multi-element solid solution alloys are intrinsically disordered on the atomic scale, and many of their advanced properties originate from the unique local structural characteristics. We measured the local structure of a NiCoCr solid solution alloy with X-ray/neutron total scattering and extended X-ray absorption fine structure (EXAFS) techniques. The atomic pair distribution function analysis (PDF) did not exhibit distinct structural distortion. But, EXAFS analysis suggested that the Cr atoms are favorably bonded with Ni and Co in the solid solution alloys. This short-range order (SRO) plays a role in the distinct low values of electrical and thermal conductivities in Ni-based solidmore » solution alloys when Cr is incorporated. Both the long-range and local structures of the NiCoCr alloy upon Ni ion irradiation were studied and an irradiation-induced enhancement of SRO was found.« less
Cooling rate dependence of structural order in Al90Sm10 metallic glass
NASA Astrophysics Data System (ADS)
Sun, Yang; Zhang, Yue; Zhang, Feng; Ye, Zhuo; Ding, Zejun; Wang, Cai-Zhuang; Ho, Kai-Ming
2016-07-01
The atomic structure of Al90Sm10 metallic glass is studied using molecular dynamics simulations. By performing a long sub-Tg annealing, we developed a glass model closer to the experiments than the models prepared by continuous cooling. Using the cluster alignment method, we found that "3661" cluster is the dominating short-range order in the glass samples. The connection and arrangement of "3661" clusters, which define the medium-range order in the system, are enhanced significantly in the sub-Tg annealed sample as compared with the fast cooled glass samples. Unlike some strong binary glass formers such as Cu64.5Zr35.5, the clusters representing the short-range order do not form an interconnected interpenetrating network in Al90Sm10, which has only marginal glass formability.
Cooling rate dependence of structural order in Al 90Sm 10 metallic glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yang; Zhang, Yue; Zhang, Feng
2016-07-07
Here, the atomic structure of Al 90Sm 10 metallic glass is studied using molecular dynamics simulations. By performing a long sub-T g annealing, we developed a glass model closer to the experiments than the models prepared by continuous cooling. Using the cluster alignment method, we found that “3661” cluster is the dominating short-range order in the glass samples. The connection and arrangement of “3661” clusters, which define the medium-range order in the system, are enhanced significantly in the sub-T g annealed sample as compared with the fast cooled glass samples. Unlike some strong binary glass formers such as Cu 64.5Zrmore » 35.5, the clusters representing the short-range order do not form an interconnected interpenetrating network in Al 90Sm 10, which has only marginal glass formability.« less
Cooling rate dependence of structural order in Al{sub 90}Sm{sub 10} metallic glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yang; Ames Laboratory, US Department of Energy, Ames, Iowa 50011; Zhang, Yue
2016-07-07
The atomic structure of Al{sub 90}Sm{sub 10} metallic glass is studied using molecular dynamics simulations. By performing a long sub-T{sub g} annealing, we developed a glass model closer to the experiments than the models prepared by continuous cooling. Using the cluster alignment method, we found that “3661” cluster is the dominating short-range order in the glass samples. The connection and arrangement of “3661” clusters, which define the medium-range order in the system, are enhanced significantly in the sub-T{sub g} annealed sample as compared with the fast cooled glass samples. Unlike some strong binary glass formers such as Cu{sub 64.5}Zr{sub 35.5},more » the clusters representing the short-range order do not form an interconnected interpenetrating network in Al{sub 90}Sm{sub 10,} which has only marginal glass formability.« less
Liu, Siyuan; Li, Xiaoxi; Chen, Ling; Li, Lin; Li, Bing; Zhu, Jie
2017-11-01
From the view of multi-scale structures of hydroxypropyl starch (HPS)/carbon nanotube (CNT) nanocomposite films, the film physicochemical properties were affected by comprehensive factors including molecular interaction, short range molecular conformation, crystalline structure and aggregated structure. The less original HPS hydrogen bonding that was broken, less decreased order of HPS short range molecular conformation, lower film crystallinity and larger size of micro-ordered regions contributed to higher tensile strength and Young's modulus of the film with CNT content of 0.5% (g/g, CNT in HPS). The higher film overall crystallinity and larger size of micro-ordered regions of the film with CNT content of 0.05%-0.3% compared with those of control contributed to better film barrier property. The addition of CNT with the content of 0.05%-0.5% broke the original HPS hydrogen bonding and decreased the order of starch short range molecular conformation, which counteracted the positive effect of CNT on the thermal stability of the material, thus thermal degradation temperature of these nanocomposite films did not increase. But the sharp increase of film crystallinity increased film thermal degradation temperature. This study provided a better understanding of film physicochemical properties changes which guides to rational design of starch-based nanocomposite films for packaging and coating application. Copyright © 2017. Published by Elsevier B.V.
Márk, Géza I; Vértesy, Zofia; Kertész, Krisztián; Bálint, Zsolt; Biró, László P
2009-11-01
In order to study local and global order in butterfly wing scales possessing structural colors, we have developed a direct space algorithm, based on averaging the local environment of the repetitive units building up the structure. The method provides the statistical distribution of the local environments, including the histogram of the nearest-neighbor distance and the number of nearest neighbors. We have analyzed how the different kinds of randomness present in the direct space structure influence the reciprocal space structure. It was found that the Fourier method is useful in the case of a structure randomly deviating from an ordered lattice. The direct space averaging method remains applicable even for structures lacking long-range order. Based on the first Born approximation, a link is established between the reciprocal space image and the optical reflectance spectrum. Results calculated within this framework agree well with measured reflectance spectra because of the small width and moderate refractive index contrast of butterfly scales. By the analysis of the wing scales of Cyanophrys remus and Albulina metallica butterflies, we tested the methods for structures having long-range order, medium-range order, and short-range order.
NASA Astrophysics Data System (ADS)
Márk, Géza I.; Vértesy, Zofia; Kertész, Krisztián; Bálint, Zsolt; Biró, László P.
2009-11-01
In order to study local and global order in butterfly wing scales possessing structural colors, we have developed a direct space algorithm, based on averaging the local environment of the repetitive units building up the structure. The method provides the statistical distribution of the local environments, including the histogram of the nearest-neighbor distance and the number of nearest neighbors. We have analyzed how the different kinds of randomness present in the direct space structure influence the reciprocal space structure. It was found that the Fourier method is useful in the case of a structure randomly deviating from an ordered lattice. The direct space averaging method remains applicable even for structures lacking long-range order. Based on the first Born approximation, a link is established between the reciprocal space image and the optical reflectance spectrum. Results calculated within this framework agree well with measured reflectance spectra because of the small width and moderate refractive index contrast of butterfly scales. By the analysis of the wing scales of Cyanophrys remus and Albulina metallica butterflies, we tested the methods for structures having long-range order, medium-range order, and short-range order.
Network structure of SiO2 and MgSiO3 in amorphous and liquid States
NASA Astrophysics Data System (ADS)
Lan, Mai Thi; Thuy Duong, Tran; Viet Huy, Nguyen; Van Hong, Nguyen
2017-03-01
Network structure of SiO2 and MgSiO3 at 300 K and 3200 K is investigated by molecular dynamics simulation and visualization of simulation data. Structural organization of SiO2 and MgSiO3 is clarified via analysis the short range order (SRO) and intermediate range order (IRO). Network topology is determined via analyzing the bond between structural units, the cluster of structural units as well as spatial distribution of structural units. The polyamorphism as well as structural and dynamic heterogeneities are also discussed in this work.
NASA Technical Reports Server (NTRS)
Berdahl, M.
1980-01-01
The use of a self pulsed laser system for accurately describing the surface shape of large space deployed antenna structures was evaluated. Tests with a breadboard system verified functional operation with short time resolution on the order of .2 mm, nonambiguous ranging, and a maximum range capability on the order of 150 m. The projected capability of the system is resolution of less than .1 mm over a reasonable time period and a range extension to over 300 m.
Bond-orientational order in liquid Si
NASA Technical Reports Server (NTRS)
Wang, Z. Q.; Stroud, D.
1991-01-01
Bond-orientational order in liquid Si via Monte Carlo simulation in conjuncation with empirical two- and three-body potentials of the form proposed by Stillinger and Weber are studied. Bond-orientational order (BOO) is described in terms of combinations of spherical harmonic functions. Liquid Si is found to have pronounced short-range BOO corresponding to l = 3, as expected for a structure with local tetrahedral order. No long-range BOO is found either in the equilibrium or the supercooled liquid. When the three-body potential is artificially removed, the tetrahedral bond-orientation order disappears and the liquid assumes a close-packed structure.
Similar local order in disordered fluorite and aperiodic pyrochlore structures
Shamblin, Jacob; Tracy, Cameron; Palomares, Raul; ...
2017-10-01
A major challenge to understanding the response of materials to extreme environments (e.g., nuclear fuels/waste forms and fusion materials) is to unravel the processes by which a material can incorporate atomic-scale disorder, and at the same time, remain crystalline. While it has long been known that all condensed matter, even liquids and glasses, possess short-range order, the relation between fully-ordered, disordered, and aperiodic structures over multiple length scales is not well understood. For example, when defects are introduced (via pressure or irradiation) into materials adopting the pyrochlore structure, these complex oxides either disorder over specific crystallographic sites, remaining crystalline, ormore » become aperiodic. Here we present neutron total scattering results characterizing the irradiation response of two pyrochlores, one that is known to disorder (Er2Sn2O7) and the other to amorphize (Dy2Sn2O7) under ion irradiation. The results demonstrate that in both cases, the local pyrochlore structure is transformed into similar short range configurations that are best fit by the orthorhombic weberite structure, even though the two compositions have distinctly different structures, aperiodic vs. disordered-crystalline, at longer length scales. Thus, a material's resistance to amorphization may not depend primarily on local defect formation energies, but rather on the structure's compatibility with meso-scale modulations of the local order in a way that maintains long-range periodicity.« less
NASA Astrophysics Data System (ADS)
Luo, Qiang; Schwarz, Björn; Swarbrick, Janine C.; Bednarčik, Jozef; Zhu, Yingcai; Tang, Meibo; Zheng, Lirong; Li, Ran; Shen, Jun; Eckert, Jürgen
2018-02-01
With increasing temperature, metallic glasses (MGs) undergo first glass transition without pronounced structural change and then crystallization with distinct variation in structure and properties. The present study shows a structural change of short-range order induced by an electron-delocalization transition, along with an unusual large-volume shrinkage in Ce-based MGs. An f -electron localization-delocalization transition with thermal hysteresis is observed from the temperature dependence of x-ray absorption spectroscopy and resonant inelastic x-ray scattering spectra, indicating an inheritance of the 4 f configuration of pure Ce. However, the delocalization transition becomes broadened due to the local structural heterogeneity and related fluctuation of 4 f levels in the Ce-based MGs. The amorphous structure regulated 4 f delocalization of Ce leads to bond shortening and abnormal structure change of the topological and chemical short-range orders. Due to the hierarchical bonding nature, the structure should change in a similar manner on different length scales (but not isostructurally like the Ce metal) in Ce-based MGs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Harishchandra, E-mail: singh85harish@gmail.com, E-mail: singh85harish@rrcat.gov.in; Ghosh, Haranath; Indus Synchrotrons Utilization Division, Raja Ramanna Center for Advanced Technology, Indore 452013
2016-01-28
We report observation of magneto-electric and magneto-dielectric couplings along with short range ferromagnetic order in ceramic Cobalt Tellurate (Co{sub 3}TeO{sub 6}, CTO) using magnetic, structural, dielectric, pyroelectric, and polarization studies. DC magnetization along with dielectric constant measurements indicate a coupling between magnetic order and electrical polarization. A strong anomaly in the dielectric constant at ∼17.4 K in zero magnetic field indicates spontaneous electric polarization, consistent with a recent neutron diffraction study. Observation of weak short range ferromagnetic order at lower temperatures is attributed to the Griffiths-like ferromagnetism. Furthermore, magnetic field dependence of the ferroelectric transition follows earlier theoretical predictions, applicable tomore » single crystal CTO. Finally, combined dielectric, pyroelectric, and polarization measurements suggest that the ground state of CTO may possess spontaneous symmetry breaking in the absence of magnetic field.« less
Short range structure of 0.35Sb2O3-0.65(Li2O-P2O5) glass: A neutron diffraction study
NASA Astrophysics Data System (ADS)
Shinde, A. B.; Krishna, P. S. R.
2018-04-01
Neutron diffraction studies on Li2O-P2O5 and 0.35Sb2O3-0.65(Li2O-P2O5) glass are performed up to a Qmax of 15 Å-1 on the High-Q diffractometer, Dhruva. MCGR method is used to find pair correlation functions (g(r)) functions from experimentally obtained S(Q). We found that the Li-O and first Sb-O correlations to be around 2.04 Å & 2.15 Å. The O-O correlation from Phosphate & Antimony networks are found to be around 2.7 Å. The short range order of Sb is similar to its crystalline polymorph of valentinite instead of senarmonite. The short range order and network connectivity in this glass implies a structure composed of chains of corner sharing SbO3 pyramidal units connected to PO4 tetrahedra while Li acts as a modifier.
Hub, Jochen S.; Salditt, Tim; Rheinstädter, Maikel C.; de Groot, Bert L.
2007-01-01
We present an extensive comparison of short-range order and short wavelength dynamics of a hydrated phospholipid bilayer derived by molecular dynamics simulations, elastic x-ray, and inelastic neutron scattering experiments. The quantities that are compared between simulation and experiment include static and dynamic structure factors, reciprocal space mappings, and electron density profiles. We show that the simultaneous use of molecular dynamics and diffraction data can help to extract real space properties like the area per lipid and the lipid chain ordering from experimental data. In addition, we assert that the interchain distance can be computed to high accuracy from the interchain correlation peak of the structure factor. Moreover, it is found that the position of the interchain correlation peak is not affected by the area per lipid, while its correlation length decreases linearly with the area per lipid. This finding allows us to relate a property of the structure factor quantitatively to the area per lipid. Finally, the short wavelength dynamics obtained from the simulations and from inelastic neutron scattering are analyzed and compared. The conventional interpretation in terms of the three-effective-eigenmode model is found to be only partly suitable to describe the complex fluid dynamics of lipid chains. PMID:17631531
Short-Time Glassy Dynamics in Viscous Protein Solutions with Competing Interactions
Godfrin, P. Douglas; Hudson, Steven; Hong, Kunlun; ...
2015-11-24
Although there have been numerous investigations of the glass transition for colloidal dispersions with only a short-ranged attraction, less is understood for systems interacting with a long-ranged repulsion in addition to this attraction, which is ubiquitous in aqueous protein solutions at low ionic strength. Highly puri ed concentrated lysozyme solutions are used as a model system and investigated over a large range of protein concentrations at very low ionic strength. Newtonian liquid behavior is observed at all concentrations, even up to 480 mg/mL, where the zero shear viscosity increases by more than three orders of magnitude with increasing concentration. Remarkably,more » despite this macroscopic liquid-like behavior, the measurements of the dynamics in the short-time limit shows features typical of glassy colloidal systems. Investigation of the inter-protein structure indicates that the reduced short-time mobility of the protein is caused by localized regions of high density within a heterogeneous density distribution. This structural heterogeneity occurs on intermediate range length scale, driven by the competing potential features, and is distinct from commonly studied colloidal gel systems in which a heterogeneous density distribution tends to extend to the whole system. The presence of long-ranged repulsion also allows for more mobility over large length and long time scales resulting in the macroscopic relaxation of the structure. The experimental results provide evidence for the need to explicitly include intermediate range order in theories for the macroscopic properties of protein solutions interacting via competing potential features.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Shengtong; Chevrier, Daniel M.; Zhang, Peng
Amorphous intermediate phases are vital precursors in the crystallization of many biogenic minerals. While inherent short-range orders have been found in amorphous calcium carbonates (ACCs) relating to different crystalline forms, it has never been clarified experimentally whether such orders already exist in very small clusters less than 2 nm in size. Here, we studied the stability and structure of 10,12-pentacosadiynoic acid (PCDA) protected ACC clusters with a core size of ca. 1.4 nm consisting of only seven CaCO 3 units. Ligand concentration and structure are shown to be key factors in stabilizing the ACC clusters. More importantly, even in suchmore » small CaCO 3 entities, a proto-calcite short-range order can be identified but with a relatively high degree of disorder that arises from the very small size of the CaCO 3 core. Our findings support the notion of a structural link between prenucleation clusters, amorphous intermediates, and final crystalline polymorphs, which appears central to the understanding of polymorph selection.« less
NASA Astrophysics Data System (ADS)
Harvey, Jean-Philippe; Gheribi, Aïmen E.; Chartrand, Patrice
2012-10-01
In this work, the glass forming ability of Al-Zr alloys is quantified using Monte Carlo (MC) and molecular dynamic (MD) simulations as well as classical thermodynamic calculations. The total energy of each studied structure of the Al-Zr system is described using the modified embedded atom model in the second-nearest-neighbour formalism. The parameterized Al-Zr cross potential which has been extensively validated using available experimental and ab initio data for several solid structures and for the liquid phase is used to evaluate thermodynamic, structural, and physical properties of the glass state and of the fully disordered (FD) face-centered cubic (FCC) solid solution with no short range order (SRO). The local environment of the Al-Zr amorphous phase is identified to be similar to that of a FCC solid structure with short range chemical order. A new approach to model the Gibbs energy of the amorphous phase based on the cluster variation method in the tetrahedron approximation is presented. The Gibbs energy of the fully disordered FCC solid solution with no short range order is determined and compared to the Gibbs energy of the amorphous phase. According to our volumetric and energetic criteria defined in our work to evaluate the possible formation of a glass structure at room temperature and zero pressure, a glass forming range of (0.25≤XZr≤0.75) and of (0.21≤XZr≤0.75) are identified, respectively. All the available quantitative experimental data regarding the amorphization of Al-Zr alloys are compared to the prediction of our MD/MC simulations throughout this study.
Szczecinski, Robert J; Chong, Samantha Y; Chater, Philip A; Hughes, Helen; Tucker, Matthew G; Claridge, John B; Rosseinsky, Matthew J
2014-04-08
The functional properties of materials can arise from local structural features that are not well determined or described by crystallographic methods based on long-range average structural models. The room temperature (RT) structure of the Bi perovskite Bi 2 Mn 4/3 Ni 2/3 O 6 has previously been modeled as a locally polar structure where polarization is suppressed by a long-range incommensurate antiferroelectric modulation. In this study we investigate the short-range local structure of Bi 2 Mn 4/3 Ni 2/3 O 6 , determined through reverse Monte Carlo (RMC) modeling of neutron total scattering data, and compare the results with the long-range incommensurate structure description. While the incommensurate structure has equivalent B site environments for Mn and Ni, the local structure displays a significantly Jahn-Teller distorted environment for Mn 3+ . The local structure displays the rock-salt-type Mn/Ni ordering of the related Bi 2 MnNiO 6 high pressure phase, as opposed to Mn/Ni clustering observed in the long-range average incommensurate model. RMC modeling reveals short-range ferroelectric correlations between Bi 3+ cations, giving rise to polar regions that are quantified for the first time as existing within a distance of approximately 12 Å. These local correlations persist in the commensurate high temperature (HT) phase, where the long-range average structure is nonpolar. The local structure thus provides information about cation ordering and B site structural flexibility that may stabilize Bi 3+ on the A site of the perovskite structure and reveals the extent of the local polar regions created by this cation.
NASA Astrophysics Data System (ADS)
Hosokawa, Shinya; Pilgrim, Wolf-Christian; Höhle, Astrid; Szubrin, Daniel; Boudet, Nathalie; Bérar, Jean-François; Maruyama, Kenji
2012-04-01
Laser-induced crystalline-amorphous phase change of Ge-Sb-Te alloys is the key mechanism enabling the fast and stable writing/erasing processes in rewritable optical storage devices, such as digital versatile disk (DVD) or blu-ray disk. Although the structural information in the amorphous phase is essential for clarifying this fast process, as well as long lasting stabilities of both the phases, experimental works were mostly limited to the short-range order by x ray absorption fine structure. Here we show both the short and intermediate-range atomic structures of amorphous DVD material, Ge2Sb2Te5 (GST), investigated by a combination of anomalous x ray scattering and reverse Monte Carlo modeling. From the obtained atomic configurations of amorphous GST, we have found that the Sb atoms and half of the Ge atoms play roles in the fast phase change process of order-disorder transition, while the remaining Ge atoms act for the proper activation energy of barriers between the amorphous and crystalline phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Combes, J.M.; Manceau, A.; Calas, G.
1989-03-01
X-ray absorption spectroscopy (XAS) was used to follow the evolution of local structural environments around ferric ions during the formation of ferric hydrous oxide gels from 1 M chloride and 0.1 M nitrate solutions. Fe K-XANES and EXAFS confirm that ferric ions remain 6-fold coordinated during this evolution. With increasing OH availability in the solution, Cl{sup {minus}} anions tend gradually to be exchanged for (O, OH, OH{sub 2}) ligands. Below OH/Fe = 1, no structural order is detected beyond the first coordination sphere. Above this ratio, two Fe-Fe distances at 3.05 {angstrom} and 3.44 {angstrom} are observed and correspond tomore » the presence of edge- and vertex-sharing Fe-octahedra. XAS results show that ferric gels and highly polymerized aqueous species are short-range ordered. The main contribution to disorder in the gels arises from the small size of coherently scattering domains also responsible for their X-ray amorphous character. From the initial to the final stage of hydrolysis, particles possess a nearly spherical shape with a minimum average diameter ranging from 10-30 {angstrom} for polymers formed from chloride and nitrate solutions. As polymerization proceeds, the local order extends to several tens of angstroms and the particle structures becomes progressively closer to that of akaganeite ({beta}-FeOOH) or goethite ({alpha}-FeOOH). This local structure is distinct from that of the lepidocrocite ({gamma}-FeOOH)-like structure of ferric gels precipitated after oxidation of divalent Fe solutions. The growth of the crystalline Fe-oxyhydroxides from gels takes place by the progressive long-range ordering in the ferric polymers without modifying the short-range order around Fe.« less
Positional short-range order in the nematic phase of n BABAs
NASA Astrophysics Data System (ADS)
Usha Deniz, K.; Pepy, G.; Parette, G.; Keller, P.
1991-10-01
The positional short-range order, SRO ⊥, perpendicular to the nematic director n̂ has been studied in the fibre-type nematics, nBABAs, by neutron diffraction. SRO ⊥ is found to be dependent on other types of nematic short-range order but not on the orientational long-range order.
Warren, Frederick J; Gidley, Michael J; Flanagan, Bernadine M
2016-03-30
Starch has a heterogeneous, semi-crystalline granular structure and the degree of ordered structure can affect its behaviour in foods and bioplastics. A range of methodologies are employed to study starch structure; differential scanning calorimetry, (13)C nuclear magnetic resonance, X-ray diffraction and Fourier transform infrared spectroscopy (FTIR). Despite the appeal of FTIR as a rapid, non-destructive methodology, there is currently no systematically defined quantitative relationship between FTIR spectral features and other starch structural measures. Here, we subject 61 starch samples to structural analysis, and systematically correlate FTIR spectra with other measures of starch structure. A hydration dependent peak position shift in the FTIR spectra of starch is observed, resulting from increased molecular order, but with complex, non-linear behaviour. We demonstrate that FTIR is a tool that can quantitatively probe short range interactions in starch structure. However, the assumptions of linear relationships between starch ordered structure and peak ratios are overly simplistic. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cooling rate dependence of structural order in Ni 62 Nb 38 metallic glass
Wen, Tongqi; Sun, Yang; Ye, Beilin; ...
2018-01-31
In this article, molecular dynamics (MD) simulations are performed to study the structure of Ni 62Nb 38 bulk metallic glass at the atomistic level. Structural analysis based on the cluster alignment method is carried out and a new Ni-centered distorted-icosahedra (DISICO) motif is excavated. We show that the short-range order and medium-range order in the glass are enhanced with lower cooling rate. Almost 50% of the clusters around the Ni atoms in the well-annealed Ni 62Nb 38 glass sample from our MD simulations can be classified as DISICO. It is revealed that the structural distortion with respect to the perfectmore » icosahedra is driven by chemical ordering in the distorted region of the DISICO motif. The relationship between the structure, energy, and dynamics in this glass-forming alloy during the cooling and annealing processes is also established.« less
Cooling rate dependence of structural order in Ni 62 Nb 38 metallic glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Tongqi; Sun, Yang; Ye, Beilin
In this article, molecular dynamics (MD) simulations are performed to study the structure of Ni 62Nb 38 bulk metallic glass at the atomistic level. Structural analysis based on the cluster alignment method is carried out and a new Ni-centered distorted-icosahedra (DISICO) motif is excavated. We show that the short-range order and medium-range order in the glass are enhanced with lower cooling rate. Almost 50% of the clusters around the Ni atoms in the well-annealed Ni 62Nb 38 glass sample from our MD simulations can be classified as DISICO. It is revealed that the structural distortion with respect to the perfectmore » icosahedra is driven by chemical ordering in the distorted region of the DISICO motif. The relationship between the structure, energy, and dynamics in this glass-forming alloy during the cooling and annealing processes is also established.« less
Cooling rate dependence of structural order in Ni62Nb38 metallic glass
NASA Astrophysics Data System (ADS)
Wen, Tongqi; Sun, Yang; Ye, Beilin; Tang, Ling; Yang, Zejin; Ho, Kai-Ming; Wang, Cai-Zhuang; Wang, Nan
2018-01-01
Molecular dynamics (MD) simulations are performed to study the structure of Ni62Nb38 bulk metallic glass at the atomistic level. Structural analysis based on the cluster alignment method is carried out and a new Ni-centered distorted-icosahedra (DISICO) motif is excavated. We show that the short-range order and medium-range order in the glass are enhanced with lower cooling rate. Almost 50% of the clusters around the Ni atoms in the well-annealed Ni62Nb38 glass sample from our MD simulations can be classified as DISICO. It is revealed that the structural distortion with respect to the perfect icosahedra is driven by chemical ordering in the distorted region of the DISICO motif. The relationship between the structure, energy, and dynamics in this glass-forming alloy during the cooling and annealing processes is also established.
Atomic-scale structural signature of dynamic heterogeneities in metallic liquids
NASA Astrophysics Data System (ADS)
Pasturel, Alain; Jakse, Noel
2017-08-01
With sufficiently high cooling rates, liquids will cross their equilibrium melting temperatures and can be maintained in a metastable undercooled state before solidifying. Studies of undercooled liquids reveal several intriguing dynamic phenomena and because explicit connections between liquid structure and liquids dynamics are difficult to identify, it remains a major challenge to capture the underlying structural link to these phenomena. Ab initio molecular dynamics (AIMD) simulations are yet especially powerful in providing atomic-scale details otherwise not accessible in experiments. Through the AIMD-based study of Cr additions in Al-based liquids, we evidence for the first time a close relationship between the decoupling of component diffusion and the emergence of dynamic heterogeneities in the undercooling regime. In addition, we demonstrate that the origin of both phenomena is related to a structural heterogeneity caused by a strong interplay between chemical short-range order (CSRO) and local fivefold topology (ISRO) at the short-range scale in the liquid phase that develops into an icosahedral-based medium-range order (IMRO) upon undercooling. Finally, our findings reveal that this structural signature is also captured in the temperature dependence of partial pair-distribution functions which opens up the route to more elaborated experimental studies.
NASA Astrophysics Data System (ADS)
Celtek, M.; Sengul, S.
2018-03-01
In the present work, the glass formation process and structural properties of Zr50Cu50-xCox (0 ≤ x ≤ 50) bulk metallic glasses were investigated by a molecular dynamics simulation with the many body tight-binding potentials. The evolution of structure and glass formation process with temperature were discussed using the coordination number, the radial distribution functions, the volume-temperature curve, icosahedral short-range order, glass transition temperature, Voronoi analysis, Honeycutt-Andersen pair analysis technique and the distribution of bond-angles. Results indicate that adding Co causes similar responses on the nature of the Zr50Cu50-xCox (0 ≤ x ≤ 50) alloys except for higher glass transition temperature and ideal icosahedral type ordered local atomic environment. Also, the differences of the atomic radii play the key role in influencing the atomic structure of these alloys. Both Cu and Co atoms play a significant role in deciding the chemical and topological short-range orders of the Zr50Cu50-xCox ternary liquids and amorphous alloys. The glass-forming ability of these alloys is supported by the experimental observations reported in the literature up to now.
NASA Astrophysics Data System (ADS)
Li, Xin; Song, Weiying; Yang, Kai; Krishnan, N. M. Anoop; Wang, Bu; Smedskjaer, Morten M.; Mauro, John C.; Sant, Gaurav; Balonis, Magdalena; Bauchy, Mathieu
2017-08-01
Although molecular dynamics (MD) simulations are commonly used to predict the structure and properties of glasses, they are intrinsically limited to short time scales, necessitating the use of fast cooling rates. It is therefore challenging to compare results from MD simulations to experimental results for glasses cooled on typical laboratory time scales. Based on MD simulations of a sodium silicate glass with varying cooling rate (from 0.01 to 100 K/ps), here we show that thermal history primarily affects the medium-range order structure, while the short-range order is largely unaffected over the range of cooling rates simulated. This results in a decoupling between the enthalpy and volume relaxation functions, where the enthalpy quickly plateaus as the cooling rate decreases, whereas density exhibits a slower relaxation. Finally, we show that, using the proper extrapolation method, the outcomes of MD simulations can be meaningfully compared to experimental values when extrapolated to slower cooling rates.
NASA Astrophysics Data System (ADS)
Bernazzani, Paul; Delmas, Genevieve
1998-03-01
Amylose, a major component of starch, is one of the most important biopolymers, being mainly associated with the pharmacological and food industries. Although widely studied, a complete control and understanding of the physical properties of amylose is still lacking. It is well known that structure and phase transition are important aspects of the functionality of biopolymers since they influence physical attributes such as appearance, digestibility, water holding capacity, etc. In the past, we have studied polyethylene phase composition by DSC in a very slow temperature (T) ramp (1K/h) and have demonstrated the presence and importance of short-range order on the polymer and its characteristics. In this study, we evaluated the phase composition of potato amylose and associated the thermodynamic properties with the presence of short-range order. Two methods were correlated, DSC (in a 1K/h T-ramp) and FTIR as a function of temperature, also in a 1K/h T-ramp. The effects of the various phases on thermodynamic properties such as gelation and enzyme or chemical resistance are discussed.
Pakhira, Santanu; Mazumdar, Chandan; Choudhury, Dibyasree; Ranganathan, R; Giri, S
2018-05-16
In this work, we report the successful synthesis of a new intermetallic compound Dy2Ni0.87Si2.95 forming in single phase only with a chemically disordered structure. The random distribution of Ni/Si and crystal defects create a variation in the local electronic environment between the magnetic Dy ions. In the presence of both disorder and competing exchange interactions driven magnetic frustration, originating due to c/a ∼ 1, the compound undergoes spin freezing behaviour below 5.6 K. In the non-equilibrium state below the spin freezing behaviour, the compound exhibits aging phenomena and magnetic memory effects. In the magnetically short-range ordered region, much above the freezing temperature, an unusual occurrence of considerable magnetic entropy change, -ΔSmaxM ∼ 21 J kg-1 K-1 with large cooling power RCP ∼ 531 J kg-1 and adiabatic temperature change, ΔTad ∼ 10 K for a field change of 70 kOe, is observed for this short range ordered cluster-glass compound without any magnetic hysteresis loss.
Evolution of short- and medium-range order in the melt-quenching amorphization of Ge 2 Sb 2 Te 5
Qiao, Chong; Guo, Y. R.; Dong, F.; ...
2018-01-01
Five structures (a tetrahedron and 3-, 4-, 5- and 6-fold octahedrons) are shown in the upper panel of the figure. Figures in the lower panel show the fractions of the five structures in Ge- and Sb-centered clusters with temperature.
Magnetism and atomic short-range order in Ni-Rh alloys
NASA Astrophysics Data System (ADS)
Carnegie, D. W., Jr.; Claus, H.
1984-07-01
Low-field ac susceptibility measurements of Ni-Rh samples of various concentrations are presented. Giant effects of the metallurgical state on the magnetic ordering temperature are associated with changes in the degree of atomic short-range order. By careful control of this degree of short-range order, it is possible to demonstrate the existence of a spin-glass state in Ni-Rh alloys.
NASA Astrophysics Data System (ADS)
Pakhira, Santanu; Mazumdar, Chandan; Ranganathan, R.
2017-12-01
In this work, we report the successful synthesis of a new intermetallic compound Tm2 Ni0.93 Si2.93 that forms in single phase only in defect crystal structure. The compound does not show any long range magnetic ordering down to 2 K. The material exhibits a large magnetic entropy change (-Δ S_M˜13.7 J kg-1 K-1) and adiabatic temperature change (Δ T_ad˜4.4 K) at 2.2 K for a field change of 20 kOe which can be realized by permanent magnets, thus being very beneficial for application purpose. In the absence of long-range magnetic ordering down to 2 K, the metastable nature of low-temperature spin dynamics and short-range magnetic correlations are considered to be responsible for such a large magnetocaloric effect over a wide temperature region.
Holmstrom, Eero; Haberl, Bianca; Pakarinen, Olli H.; ...
2016-02-20
Variability in the short-to-intermediate range order of pure amorphous silicon prepared by different experimental and computational techniques is probed by measuring mass density, atomic coordination, bond-angle deviation, and dihedral angle deviation. It is found that there is significant variability in order parameters at these length scales in this archetypal covalently bonded, monoatomic system. This diversity strongly reflects preparation technique and thermal history in both experimental and simulated systems. Experiment and simulation do not fully quantitatively agree, partly due to differences in the way parameters are accessed. However, qualitative agreement in the trends is identified. Relaxed forms of amorphous silicon closelymore » resemble continuous random networks generated by a hybrid method of bond-switching Monte Carlo and molecular dynamics simulation. As-prepared ion implanted amorphous silicon can be adequately modeled using a structure generated from amorphization via ion bombardement using energetic recoils. Preparation methods which narrowly avoid crystallization such as experimental pressure-induced amorphization or simulated melt-quenching result in inhomogeneous structures that contain regions with significant variations in atomic ordering. Ad hoc simulated structures containing small (1 nm) diamond cubic crystal inclusions were found to possess relatively high bond-angle deviations and low dihedral angle deviations, a trend that could not be reconciled with any experimental material.« less
An Avoidance Model for Short-Range Order Induced by Soft Repulsions in Systems of Rigid Rods
NASA Astrophysics Data System (ADS)
Han, Jining; Herzfeld, Judith
1996-03-01
The effects of soft repulsions on hard particle systems are calculated using an avoidance model which improves upon the simple mean field approximation. Avoidance reduces, but does not eliminate, the energy due to soft repulsions. On the other hand, it also reduces the configurational entropy. Under suitable conditions, this simple trade-off yields a free energy that is lower than the mean field value. In these cases, the variationally determined avoidance gives an estimate for the short-range positional order induced by soft repulsions. The results indicate little short-range order for isotropically oriented rods. However, for parallel rods, short-range order increases to significant levels as the particle axial ratio increases. The implications for long- range positional ordering are also discussed. In particular, avoidance may explain the smectic ordering of tobacco mosaic virus at volume fractions lower than those necessary for smectic ordering of hard particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stern, Edward A.
2007-02-02
This Festschrift is in honor of Dale Sayers who passed away in November 2004. Dale played a pivotal role in initiating the modern era of X-ray Absorption Fine Structure (XAFS) 35 years ago. The prehistory of XAFS before the modern era consisted of 40 years of confusion caused by Kronig's two different theories of the extended XAFS (EXAFS), the Short-Range Order (SRO) and Long-Range Order (LRO) theories. Dale's PhD thesis on EXAFS led to the idea of a Fourier transform to definitely prove that SRO is the correct theory and then to the development of XAFS as a structure determinationmore » technique.« less
Zhang, Feng; Sun, Yang; Ye, Zhuo; ...
2015-05-06
In this study, we have performed molecular dynamics simulations on a typical Al-based alloy Al 90Sm 10. The short-range and medium-range correlations of the system are reliably produced by ab initio calculations, whereas the long-range correlations are obtained with the assistance of a semi-empirical potential well-fitted to ab initio data. Our calculations show that a prepeak in the structure factor of this system emerges well above the melting temperature, and the intensity of the prepeak increases with increasing undercooling of the liquid. These results are in agreement with x-ray diffraction experiments. The interplay between the short-range order of the systemmore » originating from the large affinity between Al and Sm atoms, and the intrinsic repulsion between Sm atoms gives rise to a stronger correlation in the second peak than the first peak in the Sm–Sm partial pair correlation function (PPCF), which in turn produces the prepeak in the structure factor.« less
NASA Astrophysics Data System (ADS)
Gremaud, R.; Baldi, A.; Gonzalez-Silveira, M.; Dam, B.; Griessen, R.
2008-04-01
A multisite lattice gas approach is used to model pressure-optical-transmission isotherms (PTIs) recorded by hydrogenography on MgyTi1-yHx sputtered thin films. The model reproduces the measured PTIs well and allows us to determine the chemical short-range order parameter s . The s values are in good agreement with those determined from extended x-ray absorption fine structure measurements. Additionally, the PTI multisite modeling yields a parameter L that accounts for the local lattice deformations with respect to the average MgyTi1-y lattice given by Vegard’s law. It is thus possible to extract two essential characteristics of a metastable alloy from hydrogenographic data.
Simultaneous occurrence of multiferroism and short-range magnetic order in DyFeO 3
Wang, Jinchen; Liu, Juanjuan; Sheng, Jieming; ...
2016-04-06
In this paper, we present a combined neutron scattering and magnetization study on the multiferroic DyFeO 3, which shows a very strong magnetoelectric effect. Applying magnetic field along the c axis, the weak ferromagnetic order of the Fe ions is quickly recovered from a spin reorientation transition, and the long-range antiferromagnetic order of Dy becomes a short-range one. We found that the short-range order concurs with the multiferroic phase and is responsible for its sizable hysteresis. In conclusion, our H-T phase diagram suggests that the strong magnetoelectric effect in DyFeO 3 has to be understood with not only the weakmore » ferromagnetism of Fe but also the short-range antiferromagnetic order of Dy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scurti, Craig A.; Arenas, D. J.; Auvray, Nicolas
We present an electron diffraction study of three sillenites, Bi{sub 12}SiO{sub 20}, Bi{sub 25}FeO{sub 39}, and Bi{sub 25}InO{sub 39} synthesized using the solid-state method. We explore a hypothesis, inspired by optical studies in the literature, that suggests that trivalent sillenites have additional disorder not present in the tetravalent compounds. Electron diffraction patterns of Bi{sub 25}FeO{sub 39} and Bi{sub 25}InO{sub 39} show streaks that confirm deviations from the ideal sillenite structure. Multi-slice simulations of electron-diffraction patterns are presented for different perturbations to the sillenite structure - partial substitution of the M site by Bi{sup 3+}, random and ordered oxygen-vacancies, and amore » frozen-phonon model. Although comparison of experimental data to simulations cannot be conclusive, we consider the streaks as evidence of short-range ordered oxygen-vacancies.« less
Precipitation of coherent Ni{sub 2}(Cr, W) superlattice in an Ni–Cr–W superalloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Xiangyu; Hu, Rui, E-mail: rhu@nwpu.edu.cn; Zhang, Tiebang
2016-01-15
It is demonstrated that a nanometer-sized Ni{sub 2}(Cr, W) superlattice with a Pt{sub 2}Mo-type structure can precipitate in an Ni–Cr–W alloy by means of a simple aging treatment at 550 °C. The dark-field image of short-range order domains has been found for the first time experimentally. The mechanism of short-range order to long-range order transformation has been revealed based on transmission electron microscopy result and static concentration waves theory and found to be continuous ordering. The randomness of the transformation of static concentration waves leads to equiprobable occurrence of the different variants. The transformation of short-range order to long-range ordermore » gives rise to the Pt{sub 2}Mo-type Ni{sub 2}(Cr, W) superlattice. The interfaces between Ni{sub 2}(Cr, W) and Ni-based matrix and the different variants of Ni{sub 2}(Cr, W) have been investigated by high resolution transmission electron microscopy. The results reveal that the interfaces between Ni{sub 2}(Cr, W) and surrounding matrix are coherent at the atomic scale. - Highlights: • The DF image of SRO cluster has been found for the first time experimentally. • The transformation of SRO to LRO gives rise to the Pt{sub 2}Mo-type Ni{sub 2}(Cr, W). • Variants of Ni{sub 2}(Cr, W) occur equiprobably. • The interfaces between Ni{sub 2}(Cr, W) and matrix are coherent at the atomic scale.« less
Hong, H. L.; Wang, Q.; Dong, C.; Liaw, Peter K.
2014-01-01
Metallic alloys show complex chemistries that are not yet understood so far. It has been widely accepted that behind the composition selection lies a short-range-order mechanism for solid solutions. The present paper addresses this fundamental question by examining the face-centered-cubic Cu-Zn α-brasses. A new structural approach, the cluster-plus-glue-atom model, is introduced, which suits specifically for the description of short-range-order structures in disordered systems. Two types of formulas are pointed out, [Zn-Cu12]Zn1~6 and [Zn-Cu12](Zn,Cu)6, which explain the α-brasses listed in the American Society for Testing and Materials (ASTM) specifications. In these formulas, the bracketed parts represent the 1st-neighbor cluster, and each cluster is matched with one to six 2nd-neighbor Zn atoms or with six mixed (Zn,Cu) atoms. Such a cluster-based formulism describes the 1st- and 2nd-neighbor local atomic units where the solute and solvent interactions are ideally satisfied. The Cu-Ni industrial alloys are also explained, thus proving the universality of the cluster-formula approach in understanding the alloy selections. The revelation of the composition formulas for the Cu-(Zn,Ni) industrial alloys points to the common existence of simple composition rules behind seemingly complex chemistries of industrial alloys, thus offering a fundamental and practical method towards composition interpretations of all kinds of alloys. PMID:25399835
Hong, H. L.; Wang, Q.; Dong, C.; ...
2014-11-17
Metallic alloys show complex chemistries that are not yet understood so far. It has been widely accepted that behind the composition selection lies a short-range-order mechanism for solid solutions. The present paper addresses this fundamental question by examining the face-centered-cubic Cu-Zn α-brasses. A new structural approach, the cluster-plus-glue-atom model, is introduced, which suits specifically for the description of short-range-order structures in disordered systems. Two types of formulas are pointed out, [Zn-Cu 12]Zn 1~6 and [Zn-Cu 12](Zn,Cu) 6, which explain the α-brasses listed in the American Society for Testing and Materials (ASTM) specifications. In these formulas, the bracketed parts represent themore » 1 st-neighbor cluster, and each cluster is matched with one to six 2 nd-neighbor Zn atoms or with six mixed (Zn,Cu) atoms. Such a cluster-based formulism describes the 1 st- and 2 nd-neighbor local atomic units where the solute and solvent interactions are ideally satisfied. The Cu-Ni industrial alloys are also explained, thus proving the universality of the cluster-formula approach in understanding the alloy selections. As a result, the revelation of the composition formulas for the Cu-(Zn,Ni) industrial alloys points to the common existence of simple composition rules behind seemingly complex chemistries of industrial alloys, thus offering a fundamental and practical method towards composition interpretations of all kinds of alloys.« less
Local chiral potentials with Δ -intermediate states and the structure of light nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piarulli, M.; Girlanda, L.; Schiavilla, R.
We present fully local versions of the minimally non-local nucleon-nucleon potentials constructed in a previous paper [M. Piarulli et al., Phys. Rev. C 91, 024003 (2015)], and use them in hypersperical-harmonics and quantum Monte Carlo calculations of ground and excited states of 3H, 3He, 4He, 6He, and 6Li nuclei. The long-range part of these local potentials includes oneand two-pion exchange contributions without and with Δ isobars in the intermediate states up to order Q3 (Q denotes generically the low momentum scale) in the chiral expansion, while the short-range part consists of contact interactions up to order Q4. The low-energy constantsmore » multiplying these contact interactions are fitted to the 2013 Granada database in two different ranges of laboratory energies, either 0–125 MeV or 0–200 MeV, and to the deuteron binding energy and nn singlet scattering length. Fits to these data are performed for three models characterized by long- and short-range cutoffs, RL and RS respectively, ranging from (RL,RS) = (1.2, 0.8) fm down to (0.8, 0.6) fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.« less
NASA Astrophysics Data System (ADS)
Bera, A. K.; Yusuf, S. M.; Kumar, Amit; Ritter, C.
2017-03-01
The crystal structure, magnetic ground state, and the temperature-dependent microscopic spin-spin correlations of the frustrated honeycomb lattice antiferromagnet N a2C o2Te O6 have been investigated by powder neutron diffraction. A long-range antiferromagnetic (AFM) ordering has been found below TN˜24.8 K . The magnetic ground state, determined to be zigzag antiferromagnetic and characterized by a propagation vector k =(1 /2 0 0 ) , occurs due to the competing exchange interactions up to third-nearest neighbors within the honeycomb lattice. The exceptional existence of a limited magnetic correlation length along the c axis (perpendicular to the honeycomb layers in the a b planes) has been found even at 1.8 K, well below the TN˜24.8 K . The observed limited correlation along the c axis is explained by the disorder distribution of the Na ions within the intermediate layers between honeycomb planes. The reduced ordered moments mCo (1 )=2.77 (3 ) μB/C o2 + and mCo (2 )=2.45 (2 ) μB/C o2 + at 1.8 K reflect the persistence of spin fluctuations in the ordered state. Above TN˜24.8 K , the presence of short-range magnetic correlations, manifested by broad diffuse magnetic peaks in the diffraction patterns, has been found. Reverse Monte Carlo analysis of the experimental diffuse magnetic scattering data reveals that the spin correlations are mainly confined within the two-dimensional honeycomb layers (a b plane) with a correlation length of ˜12 Å at 25 K. The nature of the spin arrangements is found to be similar in both the short-range and long-range ordered magnetic states. This implies that the short-range correlation grows with decreasing temperature and leads to the zigzag AFM ordering at T ≤TN . The present study provides a comprehensive picture of the magnetic correlations over the temperature range above and below the TN and their relation to the crystal structure. The role of intermediate soft Na layers on the magnetic coupling between honeycomb planes is discussed.
Hard probes of short-range nucleon-nucleon correlations
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Arrington, D. W. Higinbotham, G. Rosner, M. Sargsian
2012-10-01
The strong interaction of nucleons at short distances leads to a high-momentum component to the nuclear wave function, associated with short-range correlations between nucleons. These short-range, high-momentum structures in nuclei are one of the least well understood aspects of nuclear matter, relating to strength outside of the typical mean-field approaches to calculating the structure of nuclei. While it is difficult to study these short-range components, significant progress has been made over the last decade in determining how to cleanly isolate short-range correlations in nuclei. We have moved from asking if such structures exist, to mapping out their strength in nucleimore » and studying their microscopic structure. A combination of several different measurements, made possible by high-luminosity and high-energy accelerators, coupled with an improved understanding of the reaction mechanism issues involved in studying these structures, has led to significant progress, and provided significant new information on the nature of these small, highly-excited structures in nuclei. We review the general issues related to short-range correlations, survey recent experiments aimed at probing these short-range structures, and lay out future possibilities to further these studies.« less
NASA Astrophysics Data System (ADS)
Narsinga Rao, G.; Sankar, R.; Panneer Muthuselvam, I.; Chou, F. C.
2014-12-01
We have investigated the magnetic ordering of the RCrTeO6 (R=Y, La, Tb and Er) samples comprising Cr3+ (S=3/2). The X-ray diffraction structure analysis revealed that all samples are a hexagonal structure with the space group P 3bar. The magnetic susceptibility χ(T) and heat capacity CP(T) measurement results reveal that both short range and long range antiferromagnetic (AFM) orderings exist in non-magnetic rare earth R=Y and La compounds. For isostructural compounds of R=Tb and Er, CP(T) curves show long range ordering at the same temperature as non-magnetic R=Y, which indicates that the super-super exchange of Cr spins dominates. For R elements of Tb and Er with large spins sitting between honeycomb sublattices composed of CrO6-TeO6 octahedra, the two sublattices of R and Cr appear to be independently magnetic.
Structural Evolution of Supercritical CO2 across the Frenkel Line.
Bolmatov, Dima; Zav'yalov, D; Gao, M; Zhernenkov, Mikhail
2014-08-21
Here, we study structural properties of the supercritical carbon dioxide and discover the existence of persistent medium-range order correlations, which make supercritical carbon dioxide nonuniform and heterogeneous on an intermediate length scale. We report on the CO2 heterogeneity shell structure where, in the first shell, both carbon and oxygen atoms experience gas-like-type interactions with short-range order correlations while within the second shell, oxygen atoms essentially exhibit a liquid-like type of interactions due to localization of transverse-like phonon packets. Importantly, we highlight a catalytic role of atoms inside of the nearest-neighbor heterogeneity shell in providing a mechanism for diffusion and proving the existence of an additional thermodynamic boundary in the supercritical carbon dioxide on an intermediate length scale. Finally, we discuss important implications for answering the intriguing question whether Venus may have had CO2 oceans and urge for an experimental detection of this persistent local-order heterogeneity.
Structural and magnetic properties of RTiNO{sub 2} (R=Ce, Pr, Nd) perovskite nitride oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, Spencer H.; Huang, Zhenguo, E-mail: zhenguo@uow.edu.au; Cheng, Zhenxiang
2015-03-15
Neutron powder diffraction indicates that CeTiNO{sub 2} and PrTiNO{sub 2} crystallize with orthorhombic Pnma symmetry (Ce: a=5.5580(5), b=7.8369(7), and c=5.5830(4) Å; Pr: a=5.5468(5), b=7.8142(5), and c=5.5514(5) Å) as a result of a{sup –}b{sup +}a{sup –} tilting of the titanium-centered octahedra. Careful examination of the NPD data, confirms the absence of long range anion order in both compounds, while apparent superstructure reflections seen in electron diffraction patterns provide evidence for short range anion order. Inverse magnetic susceptibility plots reveal that the RTiNO{sub 2} (R=Ce, Pr, Nd) compounds are paramagnetic with Weiss constants that vary from −28 to −42 K. Effective magneticmore » moments for RTiNO{sub 2} (R=Ce, Pr, Nd) are 2.43 μ{sub B}, 3.63 μ{sub B}, and 3.47 μ{sub B}, respectively, in line with values expected for free rare-earth ions. Deviations from Curie–Weiss behavior that occur below 150 K for CeTiNO{sub 2} and below 30 K for NdTiNO{sub 2} are driven by magnetic anisotropy, spin–orbit coupling, and crystal field effects. - Graphical abstract: The structure and magnetism of the oxide nitride perovskites RTiNO{sub 2} (R=Ce, Pr, Nd) have been explored. The average symmetry is shown to be Pnma with a random distribution of oxide and nitride ions and a{sup −}b{sup +}a{sup −} tilting of the titanium-centered octahedra, but electron diffraction shows evidence for short range anion order. All three compounds are paramagnetic but deviations from the Curie Weiss law are seen below 150 K for R=Ce and below 30 K for R=Nd. - Highlights: • The oxide nitride perovskites RTiNO{sub 2} (R=Ce, Pr) have been prepared and their structures determined. • Diffraction measurements indicate short range cis-order of O and N, but no long range order. • Compounds are paramagnetic with Weiss constants that vary from −28 to −42 K. • CeTiO{sub 2}N and NdTiO{sub 2}N deviate from Curie–Weiss behavior below 150 and 30 K, respectively.« less
NASA Astrophysics Data System (ADS)
Mazet, T.; Ihou-Mouko, H.; Marêché, J.-F.; Malaman, B.
2010-04-01
We have studied pseudo-layered ZrMn6Sn6-xGax intermetallics (0.55 ≤ x ≤ 0.81) using magnetic, magnetoresistivity and powder neutron diffraction measurements. All the alloys studied have magnetic ordering temperatures in the 450-490 K temperature range. They present complex temperature-dependent partially disordered magnetic structures whose ferromagnetic component develops upon increasing the Ga content. ZrMn6Sn6-xGax alloys with x ≤ 0.69 are essentially collinear antiferromagnets at high-temperature and adopt antifan-like arrangements at low temperature. For x ≥ 0.75, the alloys order ferromagnetically and evolve to a fan-like structure upon cooling. The intermediate compositions (x = 0.71 and 0.73) present a canted fan-like order at high temperature and another kind of antifan-like arrangement at low temperature. The degree of short-range order tends to increase upon approaching the intermediate compositions. The (x, T) phase diagram contains two triple points (x ~ 0.70; T ~ 460 K and x ~ 0.74; T ~ 455 K), where the paramagnetic, an incommensurate and a commensurate phases meet, which possess some of the features of Lifshitz point. Irreversibilities manifest in the low-temperature magnetization curves at the antifan-fan or fan-ferromagnetic boundaries as well as inside the fan region. Giant magnetoresistance is observed, even above room temperature.
NASA Astrophysics Data System (ADS)
Rovira-Esteva, M.; Murugan, N. A.; Pardo, L. C.; Busch, S.; Tamarit, J. Ll.; Pothoczki, Sz.; Cuello, G. J.; Bermejo, F. J.
2011-08-01
We report on the interplay between the short-range order of molecules in the liquid phase of 1,1,2,2-tetrachloro-1,2-difluoroethane and the possible molecular conformations, trans and gauche. Two complementary approaches have been used to get a comprehensive picture: analysis of neutron-diffraction data by a Bayesian fit algorithm and a molecular dynamics simulation. The results of both show that the population of trans and gauche conformers in the liquid state can only correspond to the gauche conformer being more stable than the trans conformer. Distinct conformer geometries induce distinct molecular short-range orders around them, suggesting that a deep intra- and intermolecular interaction coupling is energetically favoring one of the conformers by reducing the total molecular free energy.
NASA Astrophysics Data System (ADS)
Olvera de La Cruz, Monica; Sayar, Mehmet; Solis, Francisco J.; Stupp, Samuel I.
2001-03-01
Recent experimental studies in our group have shown that self assembled thin films of noncentrosymmetric supramolecular objects composed of triblock rodcoil molecules exhibit finite polar order. These aggregates have both long range dipolar and short range Ising-like interactions. We study the ground state of a simple model with these competing interactions. We find that the competition between Ising-like and dipolar forces yield a periodic domain structure, which can be controlled by adjusting the force constants and film thickness. When the surface forces are included in the potential, the system exhibits a finite macroscopic polar order.
NASA Astrophysics Data System (ADS)
Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya
2015-03-01
Short-range interconnection and/or data center networks require high capacity and a large number of channels in order to support numerous connections. Solutions employed to meet these requirements involve the use of alternative wavebands to increase the usable optical frequency range. We recently proposed the use of the T- and O-bands (Thousand band: 1000-1260 nm, Original band: 1260-1360 nm) as alternative wavebands because large optical frequency resources (>60 THz) can be easily employed. In addition, a simple and compact Gb/s-order high-speed optical modulator is a critical photonic device for short-range communications. Therefore, to develop an optical modulator that acts as a highfunctional photonic device, we focused on the use of self-assembled quantum dots (QDs) as a three-dimensional (3D) confined structure because QD structures are highly suitable for realizing broadband optical gain media in the T+O bands. In this study, we use the high-quality broadband QD optical gain to develop a monolithically integrated QD optical gain modulator (QD-OGM) device that has a semiconductor optical amplifier (QD-SOA) for Gb/s-order highspeed optical data generation in the 1.3-μm waveband. The insertion loss of the device can be compensated through the SOA, and we obtained an optical gain change of up to ~7 dB in the OGM section. Further, we successfully demonstrate a 10-Gb/s clear eye opening using the QD-OGM/SOA device with a clock-data recovery sequence at the receiver end. These results suggest that the monolithic QD-EOM/SOA is suitable for increasing the number of wavelength channels for smart short-range communications.
Hybrid Epitaxial Structures for Spintronics
2002-06-03
superlat- magnetic resonance (NMR) measurements on the short tice have a perpendicular magnetization, which are range chemical order in combination...Groot, EM. Mueller, PG. van Engen , K.H.J. Buschow, [76] EG. Monzon, M.L. Roukes, J. Magn. Magn. Mater. 198-199 Phys. Rev. Lett. 50 (1983) 2024-2027
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soyer-Uzun, S.; Benmore, C. J.; Siewenie, J. E.
2010-01-01
The experimental neutron and x-ray diffraction data for stoichiometric and S-deficient Ge{sub x}As{sub x}S{sub 100-2x} glasses with x = 18.2, 25.0, and 33.3 at.% have been modeled simultaneously using the reverse Monte Carlo (RMC) technique. Nearest-neighbor coordination environments, as obtained in previous x-ray absorption spectroscopy and diffraction experiments, have been employed as short-range order constraints in these simulations. The large scale three-dimensional structural models thus obtained from RMC simulation are used to investigate the nature and compositional evolution of intermediate-range structural order in these ternary glasses. The intermediate-range structural order is controlled by (1) a corner-shared three-dimensional network of AsS{submore » 3} pyramids and GeS{sub 4} tetrahedra in the stoichiometric Ge{sub 18.2}As{sub 18.2}S{sub 63.6} glass, (2) a heterogeneous structure that consists of homopolar bonded As-rich regions coexisting with a GeS{sub 2} network in the S-deficient Ge{sub 25}As{sub 25}S{sub 50} glass, and (3) a homogeneous structure resulting from the disruption of the topological continuity of the GeS{sub 2} network and As-rich clusters regions due to the formation of Ge-As bonds in the most S-deficient Ge{sub 33.3}As{sub 33.3}S{sub 33.3} glass. This scenario of the compositional evolution of intermediate-range structural order is consistent with and provides an atomistic explanation of the corresponding evolution in the position, width and intensity of the first sharp diffraction peak and the magnitude of small angle scattering in these glasses.« less
Robust edge states in amorphous gyromagnetic photonic lattices
NASA Astrophysics Data System (ADS)
Mansha, Shampy; Chong, Y. D.
2017-09-01
We numerically study amorphous analogs of a two-dimensional photonic Chern insulator. The amorphous lattices consist of gyromagnetic rods that break time-reversal symmetry, with the lattice sites generated by a close-packing algorithm. The level of short-range order is adjustable, and there is no long-range order. The topologically nontrivial gaps of the photonic Chern insulator are found to persist into the amorphous regime, so long as there is sufficient short-range order. Strongly nonreciprocal robust transmission occurs via edge states, which are shown to propagate ballistically despite the absence of long-range order, and to be exponentially localized along the lattice edge. Interestingly, there is an enhancement of nonreciprocal transmission even at very low levels of short-range order, where there are no discernible spectral gaps.
Local chiral potentials with Δ -intermediate states and the structure of light nuclei
Piarulli, M.; Girlanda, L.; Schiavilla, R.; ...
2016-11-28
In this paper, we present fully local versions of the minimally nonlocal nucleon-nucleon potentials constructed in a previous paper [Piarulli et al., Phys. Rev. C 91, 024003 (2015)], and use them in hypersperical harmonics and quantum Monte Carlo calculations of ground and excited states ofmore » $^3$H, $^3$He, $^4$He, $^6$He, and $^6$Li nuclei. The long-range part of these local potentials includes one- and two-pion exchange contributions without and with $$\\Delta$$-isobars in the intermediate states up to order $Q^3$ ($Q$ denotes generically the low momentum scale) in the chiral expansion, while the short-range part consists of contact interactions up to order $Q^4$. The low-energy constants multiplying these contact interactions are fitted to the 2013 Granada database in two different ranges of laboratory energies, either 0–125 MeV or 0–200 MeV, and to the deuteron binding energy and $nn$ singlet scattering length. Fits to these data are performed for three models characterized by long- and short-range cutoffs, $$R_{\\rm L}$$ and $$R_{\\rm S}$$, respectively, ranging from $$(R_{\\rm L},R_{\\rm S})=(1.2,0.8)$$ fm down to $(0.8,0.6)$ fm. Finally, the long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.« less
Local chiral potentials with Δ -intermediate states and the structure of light nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piarulli, M.; Girlanda, L.; Schiavilla, R.
In this paper, we present fully local versions of the minimally nonlocal nucleon-nucleon potentials constructed in a previous paper [Piarulli et al., Phys. Rev. C 91, 024003 (2015)], and use them in hypersperical harmonics and quantum Monte Carlo calculations of ground and excited states ofmore » $^3$H, $^3$He, $^4$He, $^6$He, and $^6$Li nuclei. The long-range part of these local potentials includes one- and two-pion exchange contributions without and with $$\\Delta$$-isobars in the intermediate states up to order $Q^3$ ($Q$ denotes generically the low momentum scale) in the chiral expansion, while the short-range part consists of contact interactions up to order $Q^4$. The low-energy constants multiplying these contact interactions are fitted to the 2013 Granada database in two different ranges of laboratory energies, either 0–125 MeV or 0–200 MeV, and to the deuteron binding energy and $nn$ singlet scattering length. Fits to these data are performed for three models characterized by long- and short-range cutoffs, $$R_{\\rm L}$$ and $$R_{\\rm S}$$, respectively, ranging from $$(R_{\\rm L},R_{\\rm S})=(1.2,0.8)$$ fm down to $(0.8,0.6)$ fm. Finally, the long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.« less
Large magnetoelectric coupling in magnetically short-range ordered Bi₅Ti₃FeO₁₅ film.
Zhao, Hongyang; Kimura, Hideo; Cheng, Zhenxiang; Osada, Minoru; Wang, Jianli; Wang, Xiaolin; Dou, Shixue; Liu, Yan; Yu, Jianding; Matsumoto, Takao; Tohei, Tetsuya; Shibata, Naoya; Ikuhara, Yuichi
2014-06-11
Multiferroic materials, which offer the possibility of manipulating the magnetic state by an electric field or vice versa, are of great current interest. However, single-phase materials with such cross-coupling properties at room temperature exist rarely in nature; new design of nano-engineered thin films with a strong magneto-electric coupling is a fundamental challenge. Here we demonstrate a robust room-temperature magneto-electric coupling in a bismuth-layer-structured ferroelectric Bi₅Ti₃FeO₁₅ with high ferroelectric Curie temperature of ~1000 K. Bi₅Ti₃FeO₁₅ thin films grown by pulsed laser deposition are single-phase layered perovskit with nearly (00l)-orientation. Room-temperature multiferroic behavior is demonstrated by a large modulation in magneto-polarization and magneto-dielectric responses. Local structural characterizations by transmission electron microscopy and Mössbauer spectroscopy reveal the existence of Fe-rich nanodomains, which cause a short-range magnetic ordering at ~620 K. In Bi₅Ti₃FeO₁₅ with a stable ferroelectric order, the spin canting of magnetic-ion-based nanodomains via the Dzyaloshinskii-Moriya interaction might yield a robust magneto-electric coupling of ~400 mV/Oe·cm even at room temperature.
Electronic self-organization in the single-layer manganite $$\\rm Pr_{1-x}Ca_{1+x}MnO4$$
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Feng; Chi, Songxue; Fernandez-Baca, Jaime A
We use neutron scattering to investigate the doping evolution of the magnetic correlations in the single-layer manganitemore » $$\\rm Pr_{\\it 1-x}Ca_{\\it 1+x}MnO_4$$, away from the $x=0.5$ composition where the CE-type commensurate antiferromagnetic (AF) structure is stable. We find that short-range incommensurate spin correlations develop as the system is electron doped ($x<0.5$), which coexist with the CE-type AF order. This suggests that electron doping in this system induces an inhomogeneous electronic self-organization, where commensurate AF patches with $x=0.5$ are separated by electron-rich domain walls with short range magnetic correlations. This behavior is strikingly different than for the three-dimensional $$\\rm Pr_{\\it 1-x}Ca_{\\it x}MnO_3$$, where the long-range CE-type commensurate AF structure is stable over a wide range of electron or hole doping around $x=0.5$.« less
Structural correlation of the chalcogenide Ge40Se60 glass
NASA Astrophysics Data System (ADS)
Moharram, A. H.
2017-01-01
Binary Ge40Se60 glass was prepared using the melt-quench technique. The total structure factors, S( K), are obtained using the X-ray diffraction in the wave vector interval 0.28 ≤ K ≤ 6.5 Å-1. The appearance of the first sharp diffraction peak (FSDP) in the structure factor indicates the presence of the intermediate range order. Radial distribution functions, RDF( r), have been obtained using either the conventional (Fourier) transformation or the Monte Carlo simulation of the experimental X-ray data. The short range order parameters deduced from the Monte Carlo total correlation, T( r), functions are better than those obtained from the conventional (Fourier) T( r) data. Gaussian analyses of the total correlation function show that Ge2(Se1/2)6 molecular units are the basic structural units for the investigated Ge40Se60 glass.
NASA Astrophysics Data System (ADS)
Stolpe, Moritz; Jonas, Isabell; Wei, Shuai; Evenson, Zach; Hembree, William; Yang, Fan; Meyer, Andreas; Busch, Ralf
2016-01-01
Using high energy synchrotron x-ray radiation combined with electrostatic levitation, in situ structural analysis of a bulk metallic glass forming liquid is performed from above the liquidus temperature down to the glass transition. The data indicate a liquid-liquid transition (LLT) in the deeply undercooled state at T /Tg˜1.2 which manifests as a maximum in the heat capacity and an abrupt shift in the first peak position of the total structure factor in the absence of a pronounced density change. Analysis of the corresponding real-space data shows that the LLT involves changes in short- and medium-range order. The structural changes on the length scale of medium-range order imply a fragile-strong transition in agreement with experimental viscosity data.
Short- and long-range magnetic order in LaMnAsO
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuire, Michael A.; Garlea, Vasile Ovidiu
2016-02-02
The magnetic properties of the layered oxypnictide LaMnAsO have been revisited using neutron scattering and magnetization measurements. The present measurements identify the Néel temperature T N = 360(1) K. Below T N the critical exponent describing the magnetic order parameter is β=0.33–0.35 , consistent with a three-dimensional Heisenberg model. Above this temperature, diffuse magnetic scattering indicative of short-range magnetic order is observed, and this scattering persists up to T SRO = 650(10) K. Morevoer, the magnetic susceptibility shows a weak anomaly at T SRO and no anomaly at T N. Analysis of the diffuse scattering data using a reverse Montemore » Carlo algorithm indicates that above T N nearly two-dimensional, short-range magnetic order is present with a correlation length of 9.3(3) Å within the Mn layers at 400 K. The inelastic scattering data reveal a spin gap of 3.5 meV in the long-range ordered state, and strong, low-energy (quasielastic) magnetic excitations emerging in the short-range ordered state. When we compared it with other related compounds correlates the distortion of the Mn coordination tetrahedra to the sign of the magnetic exchange along the layer-stacking direction, and suggests that short-range order above T N is a common feature in the magnetic behavior of layered Mn-based pnictides and oxypnictides.« less
NASA Astrophysics Data System (ADS)
Tian, Hua; Zhang, Chong; Wang, Lu; Zhao, JiJun; Dong, Chuang; Wen, Bin; Wang, Qing
2011-06-01
We have performed ab initio molecular dynamics simulation of Cu64Zr36 alloy at descending temperatures (from 2000 K to 400 K) and discussed the evolution of short-range order with temperature. The pair-correlation functions, coordination numbers, and chemical compositions of the most abundant local clusters have been analyzed. We found that icosahedral short-range order exists in the liquid, undercooled, and glass states, and it becomes dominant in the glass states. Moreover, we demonstrated the existence of Cu-centered Cu8Zr5 icosahedral clusters as the major local structural unit in the Cu64Zr36 amorphous alloy. This finding agrees well with our previous cluster model of Cu-Zr-based BMG as well as experimental evidences from synchrotron x ray and neutron diffraction measurements.
Orientational ordering of lamellar structures on closed surfaces
NASA Astrophysics Data System (ADS)
Pȩkalski, J.; Ciach, A.
2018-05-01
Self-assembly of particles with short-range attraction and long-range repulsion interactions on a flat and on a spherical surface is compared. Molecular dynamics simulations are performed for the two systems having the same area and the density optimal for formation of stripes of particles. Structural characteristics, e.g., a cluster size distribution, a number of defects, and an orientational order parameter (OP), as well as the specific heat, are obtained for a range of temperatures. In both cases, the cluster size distribution becomes bimodal and elongated clusters appear at the temperature corresponding to the maximum of the specific heat. When the temperature decreases, orientational ordering of the stripes takes place and the number of particles per cluster or stripe increases in both cases. However, only on the flat surface, the specific heat has another maximum at the temperature corresponding to a rapid change of the OP. On the sphere, the crossover between the isotropic and anisotropic structures occur in a much broader temperature interval; the orientational order is weaker and occurs at significantly lower temperature. At low temperature, the stripes on the sphere form spirals and the defects resemble defects in the nematic phase of rods adsorbed at a sphere.
NASA Astrophysics Data System (ADS)
Zou, M.; Pecharsky, V. K.; Gschneidner, K. A., Jr.; Schlagel, D. L.; Lograsso, T. A.
2008-07-01
Magnetic phase transitions in a Tb5Si2.2Ge1.8 single crystal have been studied as a function of temperature and magnetic field. Magnetic-field dependencies of the critical temperatures are highly anisotropic for both the main magnetic ordering process occurring around 120 K and a spin reorientation transition at ˜70K . Magnetic-field-induced phase transitions occur with the magnetic field applied isothermally along the a and b axes (but not along the c axis) between 1.8 and 70 K in fields below 70 kOe. Strong anisotropic thermal irreversibility is observed in the Griffiths phase regime between 120 and 200 K with applied fields ranging from 10 to 1000 Oe. Our data (1) show that the magnetic and structural phase transitions around 120 K are narrowly decoupled; (2) uncover the anisotropy of ferromagnetic short-range order in the Griffiths phase; and (3) reveal some unusual magnetic domain effects in the long-range ordered state of the Tb5Si2.2Ge1.8 compound. The temperature-magnetic field phase diagrams with field applied along the three major crystallographic directions have been constructed.
Stahl, Christian; Albe, Karsten
2012-01-01
Summary Nanoparticles of Pt–Rh were studied by means of lattice-based Monte Carlo simulations with respect to the stability of ordered D022- and 40-phases as a function of particle size and composition. By thermodynamic integration in the semi-grand canonical ensemble, phase diagrams for particles with a diameter of 7.8 nm, 4.3 nm and 3.1 nm were obtained. Size-dependent trends such as the lowering of the critical ordering temperature, the broadening of the compositional stability range of the ordered phases, and the narrowing of the two-phase regions were observed and discussed in the context of complete size-dependent nanoparticle phase diagrams. In addition, an ordered surface phase emerges at low temperatures and low platinum concentration. A decrease of platinum surface segregation with increasing global platinum concentration was observed, when a second, ordered phase is formed inside the core of the particle. The order–disorder transitions were analyzed in terms of the Warren–Cowley short-range order parameters. Concentration-averaged short-range order parameters were used to remove the surface segregation bias of the conventional short-range order parameters. Using this procedure, it was shown that the short-range order in the particles at high temperatures is bulk-like. PMID:22428091
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guguchia, Z.; Adachi, T.; Shermadini, Z.
High-pressure neutron powder diffraction, muon-spin rotation, and magnetization studies of the structural, magnetic, and the superconducting properties of the Ce-underdoped superconducting (SC) electron-doped cuprate system with the Nd 2 CuO 4 (the so-called T ' ) structure T ' - Pr 1.3 - x La 0.7 Ce x CuO 4 with x = 0.1 are reported. A strong reduction of the in-plane and out-of-plane lattice constants is observed under pressure. However, no indication of any pressure-induced phase transition from T ' to the K 2 NiF 4 (the so-called T) structure is observed up to the maximum applied pressure ofmore » p = 11 GPa. Large and nonlinear increase of the short-range magnetic order temperature T so in T ' - Pr 1.3 - x La 0.7 Ce x CuO 4 ( x = 0.1 ) was observed under pressure. Simultaneous pressure causes a nonlinear decrease of the SC transition temperature T c . All these experiments establish the short-range magnetic order as an intrinsic and competing phase in SC T ' - Pr 1.3 - x La 0.7 Ce x CuO 4 ( x = 0.1 ). The observed pressure effects may be interpreted in terms of the improved nesting conditions through the reduction of the in-plane and out-of-plane lattice constants upon hydrostatic pressure.« less
A structural model for surface-enhanced stabilization in some metallic glass formers
NASA Astrophysics Data System (ADS)
Levchenko, Elena V.; Evteev, Alexander V.; Yavari, Alain R.; Louzguine-Luzgin, Dmitri V.; Belova, Irina V.; Murch, Graeme E.
2013-01-01
A structural model for surface-enhanced stabilization in some metallic glass formers is proposed. In this model, the alloy surface structure is represented by five-layer Kagomé-net-based lateral ordering. Such surface structure has intrinsic abilities to stabilize icosahedral-like short-range order in the bulk, acting as 'a cloak of liquidity'. In particular, recent experimental observations of surface-induced lateral ordering and a very high glass forming ability of the liquid alloy Au49Ag5.5Pd2.3Cu26.9Si16.3 can be united using this structural model. This model may be useful for the interpretation of surface structure of other liquid alloys with a high glass forming ability. In addition, it suggests the possibility of guiding the design of the surface coating of solid containers for the stabilization of undercooled liquids.
Short-Range-Order for fcc-based Binary Alloys Revisited from Microscopic Geometry
NASA Astrophysics Data System (ADS)
Yuge, Koretaka
2018-04-01
Short-range order (SRO) in disordered alloys is typically interpreted as competition between chemical effect of negative (or positive) energy gain by mixing constituent elements and geometric effects comes from difference in effective atomic radius. Although we have a number of theoretical approaches to quantitatively estimate SRO at given temperatures, it is still unclear to systematically understand trends in SRO for binary alloys in terms of geometric character, e.g., effective atomic radius for constituents. Since chemical effect plays significant role on SRO, it has been believed that purely geometric character cannot capture the SRO trends. Despite these considerations, based on the density functional theory (DFT) calculations on fcc-based 28 equiatomic binary alloys, we find that while conventional Goldschmidt or DFT-based atomic radius for constituents have no significant correlation with SRO, atomic radius for specially selected structure, constructed purely from information about underlying lattice, can successfully capture the magnitude of SRO. These facts strongly indicate that purely geometric information of the system plays central role to determine characteristic disordered structure.
Local structure of NiPd solid solution alloys and its response to ion irradiation
Zhang, Fuxiang; Ullah, Mohammad Wali; Zhao, Shijun; ...
2018-04-27
The local structure of Ni$-$Pd solid solution alloys with compositions of Ni 80Pd 20 and Ni 50Pd 50 was investigated with anomalous X-ray diffraction, X-ray absorption and theoretical calculation/simulation. The fcc lattice is distorted for both alloys, and the Pd$-$Pd atomic pair distance is +4.4% and +1.4% larger than ideal values in Ni 80Pd 20 and Ni 50Pd 50 alloys, respectively. The corresponding atomic pair distance of Ni$-$Ni is -1.8% and -3.0% less than the ideal values. Different short-range orders in the alloys were quantitatively identified at the atomic level. In Ni 80Pd 20, Pd atoms are likely to formmore » Pd$-$Pd pairs, while Pd atoms are connected with Pd atoms in the second shell in the equiatomic solid solution alloy. Upon ion irradiation, little change of interatomic distance, but modification of chemical short-range order was observed. The number of Pd$-$Pd pairs decreases to the lowest value at 0.1 dpa, and further irradiation make it increase.« less
Local structure of NiPd solid solution alloys and its response to ion irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fuxiang; Ullah, Mohammad Wali; Zhao, Shijun
The local structure of Ni$-$Pd solid solution alloys with compositions of Ni 80Pd 20 and Ni 50Pd 50 was investigated with anomalous X-ray diffraction, X-ray absorption and theoretical calculation/simulation. The fcc lattice is distorted for both alloys, and the Pd$-$Pd atomic pair distance is +4.4% and +1.4% larger than ideal values in Ni 80Pd 20 and Ni 50Pd 50 alloys, respectively. The corresponding atomic pair distance of Ni$-$Ni is -1.8% and -3.0% less than the ideal values. Different short-range orders in the alloys were quantitatively identified at the atomic level. In Ni 80Pd 20, Pd atoms are likely to formmore » Pd$-$Pd pairs, while Pd atoms are connected with Pd atoms in the second shell in the equiatomic solid solution alloy. Upon ion irradiation, little change of interatomic distance, but modification of chemical short-range order was observed. The number of Pd$-$Pd pairs decreases to the lowest value at 0.1 dpa, and further irradiation make it increase.« less
Singh, Prashant; Smirnov, A. V.; Johnson, Duane D.
2018-05-31
From electronic-structure-based thermodynamic linear response, we establish chemical ordering behavior in complex solid solutions versus how Gibbs' space is traversed—applying it on prototype refractory A2 Ta-Nb-Mo-W high-entropy alloys. Near ideal stoichiometry, this alloy has anomalous, intricate chemical ordering tendencies, with long-ranged chemical interactions that produce competing short-range order (SRO) with a crossover to spinodal segregation. This atypical SRO arises from canonical band behavior that, with alloying, creates features near the Fermi surface (well defined even with disorder) that change to simple commensurate SRO with (un)filling of these states. In conclusion, our results reveal how complexity and competing electronic effects controlmore » ordering in these alloys.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Prashant; Smirnov, A. V.; Johnson, Duane D.
From electronic-structure-based thermodynamic linear response, we establish chemical ordering behavior in complex solid solutions versus how Gibbs' space is traversed—applying it on prototype refractory A2 Ta-Nb-Mo-W high-entropy alloys. Near ideal stoichiometry, this alloy has anomalous, intricate chemical ordering tendencies, with long-ranged chemical interactions that produce competing short-range order (SRO) with a crossover to spinodal segregation. This atypical SRO arises from canonical band behavior that, with alloying, creates features near the Fermi surface (well defined even with disorder) that change to simple commensurate SRO with (un)filling of these states. In conclusion, our results reveal how complexity and competing electronic effects controlmore » ordering in these alloys.« less
Multiscale structural changes of atomic order in severely deformed industrial aluminum
NASA Astrophysics Data System (ADS)
Samoilenko, Z. A.; Ivakhnenko, N. N.; Pushenko, E. I.; Pashinskaya, E. G.; Varyukhin, V. N.
2016-02-01
The regularities of multiscale structural changes in the atomic order of the aluminum alloy AD-1 after a severe cold plastic deformation by conventional rolling in smooth rolls or in rolls with relief recesses favorable for shear deformation have been investigated. It has been found that there are four types of structural fractions that differ in scale and perfection of atomic order: crystallographic planes with a long-range order; nanoscale fragments of the planes ( D = 100-300 Å) with an incipient long-range order; smaller groups of atoms ( D = 20-30 Å) of amorphized structure; and the least ordered structural fraction of intercluster medium, keeping only a short-range atomic order (2-3 interatomic distances, 10 Å). The presence of diffuse halo bands in the region of intense Debye lines indicates phase transitions of the order → disorder type with the formation of one to three groups of amorphous clusters with the dominance, in the nanometer scale, of the atomic order characteristic of the family of planes (111), (220), and (311) of crystalline aluminum. We have found a dynamic phase transition with the changing crystallographic order of aluminum, with the matrix structure of a face-centered cubic (FCC) lattice, in the form of nanosized local groups of atoms, that is, the deformation clusters of aluminum with a simple cubic K6 lattice. In the case of conventional rolling, the development of large clusters 50-500 Å in size is observed; however, in the use of rolls with relief recesses, the difference in the sizes of the clusters is one half as much: 50-250 Å. Based on the analysis of the integrated intensity of incoherent X-ray scattering by the samples, we have elucidated the nature of the lowest measured density for the sample subjected to conventional rolling, which consists in the volume concentration of disorderly arranged atoms, the highest of the compared structures, which indicates the formation therein of the greatest amount of fluctuation "voids."
Structural and chemical orders in N i 64.5 Z r 35.5 metallic glass by molecular dynamics simulation
Tang, L.; Wen, T. Q.; Wang, N.; ...
2018-03-06
The atomic structure of Ni 64.5Zr 35.5 metallic glass has been investigated by molecular dynamics (MD) simulations. The calculated structure factors from the MD glassy sample at room temperature agree well with the X-ray diffraction (XRD) and neutron diffraction (ND) experimental data. Using the pairwise cluster alignment and clique analysis methods, we show that there are three types dominant short-range order (SRO) motifs around Ni atoms in the glass sample of Ni 64.5Zr 35.5, i.e., Mixed- Icosahedron(ICO)-Cube, Twined-Cube and icosahedron-like clusters. Furthermore, chemical order and medium-range order (MRO) analysis show that the Mixed-ICOCube and Twined-Cube clusters exhibit the characteristics ofmore » the crystalline B2 phase. In conclusion, our simulation results suggest that the weak glass-forming ability (GFA) of Ni 64.5Zr 35.5 can be attributed to the competition between the glass forming ICO SRO and the crystalline Mixed-ICO-Cube and Twined-Cube motifs.« less
Structural and chemical orders in N i 64.5 Z r 35.5 metallic glass by molecular dynamics simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, L.; Wen, T. Q.; Wang, N.
The atomic structure of Ni 64.5Zr 35.5 metallic glass has been investigated by molecular dynamics (MD) simulations. The calculated structure factors from the MD glassy sample at room temperature agree well with the X-ray diffraction (XRD) and neutron diffraction (ND) experimental data. Using the pairwise cluster alignment and clique analysis methods, we show that there are three types dominant short-range order (SRO) motifs around Ni atoms in the glass sample of Ni 64.5Zr 35.5, i.e., Mixed- Icosahedron(ICO)-Cube, Twined-Cube and icosahedron-like clusters. Furthermore, chemical order and medium-range order (MRO) analysis show that the Mixed-ICOCube and Twined-Cube clusters exhibit the characteristics ofmore » the crystalline B2 phase. In conclusion, our simulation results suggest that the weak glass-forming ability (GFA) of Ni 64.5Zr 35.5 can be attributed to the competition between the glass forming ICO SRO and the crystalline Mixed-ICO-Cube and Twined-Cube motifs.« less
Structural and chemical orders in N i64.5Z r35.5 metallic glass by molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Tang, L.; Wen, T. Q.; Wang, N.; Sun, Y.; Zhang, F.; Yang, Z. J.; Ho, K. M.; Wang, C. Z.
2018-03-01
The atomic structure of N i64.5Z r35.5 metallic glass has been investigated by molecular dynamics (MD) simulations. The calculated structure factors from the MD glassy sample at room temperature agree well with the x-ray diffraction (XRD) and neutron diffraction (ND) experimental data. Using the pairwise cluster alignment and clique analysis methods, we show that there are three types of dominant short-range order (SRO) motifs around Ni atoms in the glass sample of N i64.5Z r35.5 , i.e., mixed-icosahedron(ICO)-cube, intertwined-cube, and icosahedronlike clusters. Furthermore, chemical order and medium-range order (MRO) analysis show that the mixed-ICO-cube and intertwined-cube clusters exhibit the characteristics of the crystalline B2 phase. Our simulation results suggest that the weak glass-forming ability (GFA) of N i64.5Z r35.5 can be attributed to the competition between the glass forming ICO SRO and the crystalline mixed-ICO-cube and intertwined-cube motifs.
How Noniridescent Colors Are Generated by Quasi-ordered Structures of Bird Feathers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar
2012-03-26
We investigate the mechanism of structural coloration by quasi-ordered nanostructures in bird feather barbs. Small-angle X-ray scattering (SAXS) data reveal the structures are isotropic and have short-range order on length scales comparable to optical wavelengths. We perform angle-resolved reflection and scattering spectrometry to fully characterize the colors under directional and omni-directional illumination of white light. Under directional lighting, the colors change with the angle between the directions of illumination and observation. The angular dispersion of the primary peaks in the scattering/reflection spectra can be well explained by constructive interference of light that is scattered only once in the quasi-ordered structures.more » Using the Fourier power spectra of structure from the SAXS data we calculate optical scattering spectra and explain why the light scattering peak is the highest in the backscattering direction. Under omni-directional lighting, colors from the quasi-ordered structures are invariant with the viewing angle. The non-iridescent coloration results from the isotropic nature of structures instead of strong backscattering.« less
Towards Long-Range RNA Structure Prediction in Eukaryotic Genes.
Pervouchine, Dmitri D
2018-06-15
The ability to form an intramolecular structure plays a fundamental role in eukaryotic RNA biogenesis. Proximate regions in the primary transcripts fold into a local secondary structure, which is then hierarchically assembled into a tertiary structure that is stabilized by RNA-binding proteins and long-range intramolecular base pairings. While the local RNA structure can be predicted reasonably well for short sequences, long-range structure at the scale of eukaryotic genes remains problematic from the computational standpoint. The aim of this review is to list functional examples of long-range RNA structures, to summarize current comparative methods of structure prediction, and to highlight their advances and limitations in the context of long-range RNA structures. Most comparative methods implement the “first-align-then-fold” principle, i.e., they operate on multiple sequence alignments, while functional RNA structures often reside in non-conserved parts of the primary transcripts. The opposite “first-fold-then-align” approach is currently explored to a much lesser extent. Developing novel methods in both directions will improve the performance of comparative RNA structure analysis and help discover novel long-range structures, their higher-order organization, and RNA⁻RNA interactions across the transcriptome.
X-ray Absorption Fine Structure (XAFS) Studies of Oxide Glasses—A 45-Year Overview
Zanotto, Edgar Dutra
2018-01-01
X-ray Absorption Fine Structure (XAFS) spectroscopy has been widely used to characterize the short-range order of glassy materials since the theoretical basis was established 45 years ago. Soon after the technique became accessible, mainly due to the existence of Synchrotron laboratories, a wide range of glassy materials was characterized. Silicate glasses have been the most studied because they are easy to prepare, they have commercial value and are similar to natural glasses, but borate, germanate, phosphate, tellurite and other less frequent oxide glasses have also been studied. In this manuscript, we review reported advances in the structural characterization of oxide-based glasses using this technique. A focus is on structural characterization of transition metal ions, especially Ti, Fe, and Ni, and their role in different properties of synthetic oxide-based glasses, as well as their important function in the formation of natural glasses and magmas, and in nucleation and crystallization. We also give some examples of XAFS applications for structural characterization of glasses submitted to high pressure, glasses used to store radioactive waste and medieval glasses. This updated, comprehensive review will likely serve as a useful guide to clarify the details of the short-range structure of oxide glasses. PMID:29382102
Pressure-Induced Phase Transitions in the Cd-Yb Periodic Approximant to a Quasicrystal
NASA Astrophysics Data System (ADS)
Watanuki, Tetsu; Machida, Akihiko; Ikeda, Tomohiro; Aoki, Katsutoshi; Kaneko, Hiroshi; Shobu, Takahisa; Sato, Taku J.; Tsai, An Pang
2006-03-01
The phase study of a Cd-Yb 1/1 approximant crystal over a wide pressure and temperature range is crucial for the comparison study between periodic and quasiperiodic crystals. The Cd4 tetrahedra, the most inner part of the atomic clusters, exhibited various structural ordering in the orientation sensitive to pressure and temperature. Five ordered phases appeared in a P-T span up to 5.2 GPa and down to 10 K. The propagation direction of ordering alternated from [110] to ⟨111⟩ at about 1.0 GPa and again to [110] at 3.5 4.3 GPa. The primarily ordered phases that appeared by cooling to 210 250 K between 1.0 5.2 GPa further transformed to finely ordered ones at 120 155 K. Besides the original short-range type interaction, a long-range type interaction was likely developed under pressure to lead to the primary ordering of Cd4 tetrahedra. Coexistence of these interactions is responsible for the complicated phase behavior.
Molecular Design of Branched and Binary Molecules at Ordered Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genson, Kirsten Larson
2005-01-01
This study examined five different branched molecular architectures to discern the effect of design on the ability of molecules to form ordered structures at interfaces. Photochromic monodendrons formed kinked packing structures at the air-water interface due to the cross-sectional area mismatch created by varying number of alkyl tails and the hydrophilic polar head group. The lower generations formed orthorhombic unit cell with long range ordering despite the alkyl tails tilted to a large degree. Favorable interactions between liquid crystalline terminal groups and the underlying substrate were observed to compel a flexible carbosilane dendrimer core to form a compressed elliptical conformationmore » which packed stagger within lamellae domains with limited short range ordering. A twelve arm binary star polymer was observed to form two dimensional micelles at the air-water interface attributed to the higher polystyrene block composition. Linear rod-coil molecules formed a multitude of packing structures at the air-water interface due to the varying composition. Tree-like rod-coil molecules demonstrated the ability to form one-dimensional structures at the air-water interface and at the air-solvent interface caused by the preferential ordering of the rigid rod cores. The role of molecular architecture and composition was examined and the influence chemically competing fragments was shown to exert on the packing structure. The amphiphilic balance of the different molecular series exhibited control on the ordering behavior at the air-water interface and within bulk structures. The shell nature and tail type was determined to dictate the preferential ordering structure and molecular reorganization at interfaces with the core nature effect secondary.« less
Synchrotron x-ray scattering study of charge-density-wave order in HgBa2CuO4 +δ
NASA Astrophysics Data System (ADS)
Tabis, W.; Yu, B.; Bialo, I.; Bluschke, M.; Kolodziej, T.; Kozlowski, A.; Blackburn, E.; Sen, K.; Forgan, E. M.; Zimmermann, M. v.; Tang, Y.; Weschke, E.; Vignolle, B.; Hepting, M.; Gretarsson, H.; Sutarto, R.; He, F.; Le Tacon, M.; Barišić, N.; Yu, G.; Greven, M.
2017-10-01
We present a detailed synchrotron x-ray scattering study of the charge-density-wave (CDW) order in simple tetragonal HgBa2CuO4 +δ (Hg1201). Resonant soft x-ray scattering measurements reveal that short-range order appears at a temperature that is distinctly lower than the pseudogap temperature and in excellent agreement with a prior transient reflectivity result. Despite considerable structural differences between Hg1201 and YBa2Cu3O6 +δ , the CDW correlations exhibit similar doping dependencies, and we demonstrate a universal relationship between the CDW wave vector and the size of the reconstructed Fermi pocket observed in quantum oscillation experiments. The CDW correlations in Hg1201 vanish already below optimal doping, once the correlation length is comparable to the CDW modulation period, and they appear to be limited by the disorder potential from unit cells hosting two interstitial oxygen atoms. A complementary hard x-ray diffraction measurement, performed on an underdoped Hg1201 sample in magnetic fields along the crystallographic c axis of up to 16 T, provides information on the form factor of the CDW order. As expected from the single-CuO2-layer structure of Hg1201, the CDW correlations vanish at half-integer values of L and appear to be peaked at integer L . We conclude that the atomic displacements associated with the short-range CDW order are mainly planar, within the CuO2 layers.
Pressure-induced structural modifications of rare-earth hafnate pyrochlore
NASA Astrophysics Data System (ADS)
Turner, Katlyn M.; Rittman, Dylan R.; Heymach, Rachel A.; Tracy, Cameron L.; Turner, Madison L.; Fuentes, Antonio F.; Mao, Wendy L.; Ewing, Rodney C.
2017-06-01
Complex oxides with the pyrochlore (A2B2O7) and defect-fluorite ((A,B)4O7) structure-types undergo structural transformations under high-pressure. Rare-earth hafnates (A2Hf2O7) form the pyrochlore structure for A = La-Tb and the defect-fluorite structure for A = Dy-Lu. High-pressure transformations in A2Hf2O7 pyrochlore (A = Sm, Eu, Gd) and defect-fluorite (A = Dy, Y, Yb) were investigated up to ~50 GPa and characterized by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Raman spectra at ambient pressure revealed that all compositions, including the defect-fluorites, have some pyrochlore-type short-range order. In situ high-pressure synchrotron XRD showed that all of the rare earth hafnates investigated undergo a pressure-induced phase transition to a cotunnite-like (orthorhombic) structure that begins between 18 and 25 GPa. The phase transition to the cotunnite-like structure is not complete at 50 GPa, and upon release of pressure, the hafnates transform to defect-fluorite with an amorphous component. For all compositions, in situ Raman spectroscopy showed that disordering occurs gradually with increasing pressure. Pyrochlore-structured hafnates retain their short-range order to a higher pressure (30 GPa vs. <10 GPa) than defect-fluorite-structured hafnates. Rare earth hafnates quenched from 50 GPa show Raman spectra consistent with weberite-type structures, as also reported for irradiated rare-earth stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of ~250 GPa for hafnates with the pyrochlore structure, and ~400 GPa for hafnates with the defect-fluorite structure. Dy2Hf2O7 is intermediate in its response, with some pyrochlore-type ordering, based on Raman spectroscopy and the equation of state, with a bulk modulus of ~300 GPa. As predicted based on the similar ionic radius of Zr4+ and Hf4+, rare-earth hafnates show similar behavior to that reported for rare earth zirconates at high pressure.
Pressure-induced structural modifications of rare-earth hafnate pyrochlore.
Turner, Katlyn M; Rittman, Dylan R; Heymach, Rachel A; Tracy, Cameron L; Turner, Madison L; Fuentes, Antonio F; Mao, Wendy L; Ewing, Rodney C
2017-06-28
Complex oxides with the pyrochlore (A 2 B 2 O 7 ) and defect-fluorite ((A,B) 4 O 7 ) structure-types undergo structural transformations under high-pressure. Rare-earth hafnates (A 2 Hf 2 O 7 ) form the pyrochlore structure for A = La-Tb and the defect-fluorite structure for A = Dy-Lu. High-pressure transformations in A 2 Hf 2 O 7 pyrochlore (A = Sm, Eu, Gd) and defect-fluorite (A = Dy, Y, Yb) were investigated up to ~50 GPa and characterized by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Raman spectra at ambient pressure revealed that all compositions, including the defect-fluorites, have some pyrochlore-type short-range order. In situ high-pressure synchrotron XRD showed that all of the rare earth hafnates investigated undergo a pressure-induced phase transition to a cotunnite-like (orthorhombic) structure that begins between 18 and 25 GPa. The phase transition to the cotunnite-like structure is not complete at 50 GPa, and upon release of pressure, the hafnates transform to defect-fluorite with an amorphous component. For all compositions, in situ Raman spectroscopy showed that disordering occurs gradually with increasing pressure. Pyrochlore-structured hafnates retain their short-range order to a higher pressure (30 GPa vs. <10 GPa) than defect-fluorite-structured hafnates. Rare earth hafnates quenched from 50 GPa show Raman spectra consistent with weberite-type structures, as also reported for irradiated rare-earth stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of ~250 GPa for hafnates with the pyrochlore structure, and ~400 GPa for hafnates with the defect-fluorite structure. Dy 2 Hf 2 O 7 is intermediate in its response, with some pyrochlore-type ordering, based on Raman spectroscopy and the equation of state, with a bulk modulus of ~300 GPa. As predicted based on the similar ionic radius of Zr 4+ and Hf 4+ , rare-earth hafnates show similar behavior to that reported for rare earth zirconates at high pressure.
Medium range order in aluminum-based metallic glasses
NASA Astrophysics Data System (ADS)
Yi, Feng
2011-12-01
Medium range order (MRO) is the structure order existing between the short range order and long range order in amorphous materials. Fluctuation electron microscopy (FEM) is an effective method to quantify MRO. The FEM signal depends on several effects. In this thesis, I will show how the probe coherence, sample thickness and energy filter affect the FEM signal. We have found that microalloying in Al-based glass has dramatic effect on the primary crystallization temperature and nanocrystal density after annealing treatment. FEM alone cannot uncover the details of MRO in these alloys. Therefore, I resort to modeling to solve the relationship between the variance signal and MRO structure. I improved Stratton and Voyles's analytical model. I also did computer simulation. I explored the effects of thermal disorder and hydrostatic strain on the variance. The extracted size d and volume fraction phi in Al88Y7Fe5, Al88Y6Fe 5Cu1 and Al87Y7Fe5Cu 1 as-spun samples reveals the relationship between MRO in as-quenched sample and thermal behaviors in these alloys. I also did FEM experiments in relaxed Al88Y7Fe 5 samples at various annealing times. MRO structure in these samples does not change. FEM was also done on Al87Y7Fe5Cu 1 to check MRO variation during transient nucleation period. The extracted (d, phi) based on combination of experimental data and simulation shows how MRO changes during this period.
NASA Astrophysics Data System (ADS)
Debela, Tekalign T.; Wang, X. D.; Cao, Q. P.; Zhang, D. X.; Jiang, J. Z.
2017-05-01
The crystallization process of liquid metals is studied using ab initio molecular dynamics simulations. The evolution of short-range order during quenching in Pb and Zn liquids is compared with body-centered cubic (bcc) Nb and V, and hexagonal closed-packed (hcp) Mg. We found that the fraction and type of the short-range order depends on the system under consideration, in which the icosahedral symmetry seems to dominate in the body-centered cubic metals. Although the local atomic structures in stable liquids are similar, liquid hcp-like Zn, bcc-like Nb and V can be deeply supercooled far below its melting point before crystallization while the supercooled temperature range in liquid Pb is limited. Further investigations into the nucleation process reveal the process of polymorph selection. In the body-centered cubic systems, the polymorph selection occurs in the supercooled state before the nucleation is initiated, while in the closed-packed systems it starts at the time of onset of crystallization. Atoms with bcc-like lattices in all studied supercooled liquids are always detected before the polymorph selection. It is also found that the bond orientational ordering is strongly correlated with the crystallization process in supercooled Zn and Pb liquids.
NASA Astrophysics Data System (ADS)
Roik, Oleksandr S.; Samsonnikov, Oleksiy; Kazimirov, Volodymyr; Sokolskii, Volodymyr
2010-01-01
A local short-to-intermediate range order of liquid Al80Co10Ni10, Al72.5Co14.5Ni13, and Al65Co17.5Ni17.5 alloys was examined by X-ray diffraction and the reverse Monte Carlo modelling. The comprehensive analysis of three-dimensional models of the liquid ternary alloys was performed by means of the Voronoi-Delaunay method. The existence of a prepeak on the S(Q) function of the liquid alloys is caused by medium range ordering of 3d-transition metal atoms in dense-packed polytetrahedral clusters at temperatures close to the liquidus. The non-crystalline clusters, represented by aggregates of pentagons that consist of good tetrahedra, and chemical short-range order lead to the formation of the medium range order in the liquid binary Al-Ni, Al-Co and ternary Al-Ni-Co alloys.
Study of the effect of short ranged ordering on the magnetism in FeCr alloys
NASA Astrophysics Data System (ADS)
Jena, Ambika Prasad; Sanyal, Biplab; Mookerjee, Abhijit
2014-01-01
For the study of magnetism in systems where the local environment plays an important role, we propose a marriage between the Monte Carlo simulation and Zunger's special quasi-random structures. We apply this technique on disordered FeCr alloys and show that our estimates of the transition temperature is in good agreement with earlier experiments.
Mg/Ti multilayers: Structural and hydrogen absorption properties
NASA Astrophysics Data System (ADS)
Baldi, A.; Pálsson, G. K.; Gonzalez-Silveira, M.; Schreuders, H.; Slaman, M.; Rector, J. H.; Krishnan, G.; Kooi, B. J.; Walker, G. S.; Fay, M. W.; Hjörvarsson, B.; Wijngaarden, R. J.; Dam, B.; Griessen, R.
2010-06-01
Mg-Ti alloys have uncommon optical and hydrogen absorbing properties, originating from a “spinodal-like” microstructure with a small degree of chemical short-range order in the atomic distribution. In the present study we artificially engineer short-range order by depositing Pd-capped Mg/Ti multilayers with different periodicities. Notwithstanding the large lattice mismatch between Mg and Ti, the as-deposited metallic multilayers show good structural coherence. On exposure to H2 gas a two-step hydrogenation process occurs with the Ti layers forming the hydride before Mg. From in situ measurements of the bilayer thickness Λ at different hydrogen pressures, we observe large out-of-plane expansions of Mg and Ti layers on hydrogenation, indicating strong plastic deformations in the films and a consequent shortening of the coherence length. On unloading at room temperature in air, hydrogen atoms remain trapped in the Ti layers due to kinetic constraints. Such loading/unloading sequence can be explained in terms of the different thermodynamic properties of hydrogen in Mg and Ti, as shown by diffusion calculations on a model multilayered systems. Absorption isotherms measured by hydrogenography can be interpreted as a result of the elastic clamping arising from strongly bonded Mg/Pd and broken Mg/Ti interfaces.
Al-centered icosahedral ordering in Cu46Zr46Al8 bulk metallic glass
NASA Astrophysics Data System (ADS)
Fang, H. Z.; Hui, X.; Chen, G. L.; Liu, Z. K.
2009-03-01
Icosahedral short-range order, of which Al atoms are caged in the center of icosahedra with Cu and Zr atoms being the vertices, has been evidenced in the Cu46Zr46Al8 glassy structure by ab initio molecular dynamics simulation. These Al-centered clusters distribute irregularly in the three-dimensional space and form a "backbone" structure of the Cu46Zr46Al8 glass alloy. It is suggested that this kind of local structural feature is attributed to the requirement of efficient dense packing and the chemical affinity between Zr-Zr, Zr-Al, and Cu-Zr atoms. Our calculated results are found to be in good agreement with the experimental data.
Granule-by-granule reconstruction of a sandpile from x-ray microtomography data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seidler, G. T.; Martinez, G.; Seeley, L. H.
2000-12-01
Mesoscale disordered materials are ubiquitous in industry and in the environment. Any fundamental understanding of the transport and mechanical properties of such materials must follow from a thorough understanding of their structure. However, in the overwhelming majority of cases, experimental characterization of such materials has been limited to first- and second-order structural correlation functions, i.e., the mean filling fraction and the structural autocorrelation function. We report here the successful combination of synchrotron x-ray microtomography and image processing to determine the full three-dimensional real-space structure of a model disordered material, a granular bed of relatively monodisperse glass spheres. Specifically, we determinemore » the center location and the local connectivity of each granule. This complete knowledge of structure can be used to calculate otherwise inaccessible high-order correlation functions. We analyze nematic order parameters for contact bonds to characterize the geometric anisotropy or fabric induced by the sample boundary conditions. Away from the boundaries we find short-range bond orientational order exhibiting characteristics of the underlying polytetrahedral structure.« less
NASA Astrophysics Data System (ADS)
Su, Yen-Shuo; Liu, Yu-Hsuan; I, Lin
2012-11-01
Whether the static microstructural order information is strongly correlated with the subsequent structural rearrangement (SR) and their predicting power for SR are investigated experimentally in the quenched dusty plasma liquid with microheterogeneities. The poor local structural order is found to be a good alarm to identify the soft spot and predict the short term SR. For the site with good structural order, the persistent time for sustaining the structural memory until SR has a large mean value but a broad distribution. The deviation of the local structural order from that averaged over nearest neighbors serves as a good second alarm to further sort out the short time SR sites. It has the similar sorting power to that using the temporal fluctuation of the local structural order over a small time interval.
Evolution of magnetism in LnCuGa3 (Ln = La-Nd, Sm-Gd) studied via μSR and specific heat
NASA Astrophysics Data System (ADS)
Graf, M. J.; Hettinger, J. D.; Nemeth, K.; Dally, R.; Baines, C.; Subbarao, U.; Peter, S. C.
2017-12-01
Muon spin rotation/relaxation (μSR) and specific heat measurements are presented for polycrystalline LnCuGa3, with Ln = La-Nd, and Sm-Gd. All materials undergo magnetic ordering transitions, apart from non-magnetic LaCuGa3, and PrCuGa3, which shows the onset of short range correlations below 3 K but no long-range magnetic order down to T = 25 mK. While magnetic order in the Ce and Nd compounds is incommensurate with the lattice, the order is commensurate for the Sm and Eu compounds. The strong damping in GdCuGa3 prevents us from determining the nature of magnetism in that system. SmCuGa3 exhibits two precessional frequencies, which appear at different temperatures, suggesting inhomogeneous magnetic ordering or a second magnetic/structural phase transition.
NASA Technical Reports Server (NTRS)
Reynaud, F.
1988-01-01
In electron diffraction patterns of nickel-rich beta-NiAl alloys, many anomalies are observed. One of these is the appearance of diffuse intensity maxima between the reflexions of the B2 structure. This is explained by the short-range ordering of the excess nickel atoms on the simple cubic sublattice occupied only by aluminum atoms in the stoichiometric, perfectly ordered NiAl alloy. After annealing Ni 37.5 atomic percent Al and Ni 37.75 atomic percent Al for 1 week at 300 and 400 C, the diffuse intensity maxima transformed into sharp superstructure reflexions. These reflexions are explained by the formation of the four possible variants of an ordered hexagonal superstructure corresponding to the Ni2Al composition. This structure is closely related to the Ni2Al3 structure (same space group) formed by the ordering of vacancies on the nickel sublattice in aluminum-rich beta-NiAl alloys.
NASA Astrophysics Data System (ADS)
Tracy, Cameron L.; Shamblin, Jacob; Park, Sulgiye; Zhang, Fuxiang; Trautmann, Christina; Lang, Maik; Ewing, Rodney C.
2016-08-01
A2S n2O7 (A =Nd ,Sm,Gd,Er,Yb,and Y) materials with the pyrochlore structure were irradiated with 2.2 GeV Au ions to systematically investigate disordering of this system in response to dense electronic excitation. Structural modifications were characterized, over multiple length scales, by transmission electron microscopy, x-ray diffraction, and Raman spectroscopy. Transformations to amorphous and disordered phases were observed, with disordering dominating the structural response of materials with small A -site cation ionic radii. Both the disordered and amorphous phases were found to possess weberite-type local ordering, differing only in that the disordered phase exhibits a long-range, modulated arrangement of weberite-type structural units into an average defect-fluorite structure, while the amorphous phase remains fully aperiodic. Comparison with the behavior of titanate and zirconate pyrochlores showed minimal influence of the high covalency of the Sn-O bond on this phase behavior. An analytical model of damage accumulation was developed to account for simultaneous amorphization and recrystallization of the disordered phase during irradiation.
Structural origin underlying poor glass forming ability of Al metallic glass
NASA Astrophysics Data System (ADS)
Li, F.; Liu, X. J.; Hou, H. Y.; Chen, G.; Chen, G. L.
2011-07-01
We performed molecular dynamics simulations to study the glass formation and local atomic structure of rapidly quenched Al. Both potential energy and structural parameters indicate that the glass transition temperature of amorphous Al is as low as 300 K, which may lead to the poor thermal stability of the amorphous Al as it is prone to crystallize even at room temperature. Voronoi polyhedra analysis reveals that the most popular polyhedron is the deformed body-centered cubic (bcc) cluster characterized by the index < 0, 3, 6, 4 > in the amorphous Al, while the icosahedron with the index < 0, 0, 12, 0 > is always predominant in bulk metallic glass formers with excellent glass forming ability (GFA). Moreover, these deformed-bcc short-range orders can make up medium-range orders via the linkage of vertex-, edge-, face-, intercrossed-shared atoms, which are believed to more easily transform into face-centered cubic (fcc) Al nanocrystal compared with the icosahedral clusters in terms of the symmetrical similarity between bcc and fcc structures. This finding could unveil the structural origin of poor GFA of Al-based alloys.
NASA Astrophysics Data System (ADS)
Jain, Aayushi; Dixit, R. C.
2018-05-01
Pressure induced structural phase transition of NaCl-type (B1) to CsCl-type (B2) structure in Sodium Chloride NaCl are presented. An effective interionic interaction potential (EIOP) with long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach with modified ionic charge is reported here. The reckon value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are compatible as compared with reported data. The variations of elastic constants and their combinations with pressure follow ordered behavior. The present approach has also succeeded in predicting the Born and relative stability criteria.
Correlation of atomic packing with the boson peak in amorphous alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, W. M.; Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201; School of Materials Science and Engineering, Southeast University, Nanjing 211189
2014-09-28
Boson peaks (BP) have been observed from phonon specific heats in 10 studied amorphous alloys. Two Einstein-type vibration modes were proposed in this work and all data can be fitted well. By measuring and analyzing local atomic structures of studied amorphous alloys and 56 reported amorphous alloys, it is found that (a) the BP originates from local harmonic vibration modes associated with the lengths of short-range order (SRO) and medium-range order (MRO) in amorphous alloys, and (b) the atomic packing in amorphous alloys follows a universal scaling law, i.e., the ratios of SRO and MRO lengths to solvent atomic diametermore » are 3 and 7, respectively, which exact match with length ratios of BP vibration frequencies to Debye frequency for the studied amorphous alloys. This finding provides a new perspective for atomic packing in amorphous materials, and has significant implications for quantitative description of the local atomic orders and understanding the structure-property relationship.« less
NASA Astrophysics Data System (ADS)
Levola, T.; Kleemann, W.
1985-10-01
High-resolution refractive index (RI) and linear birefringence (LB) measurements are performed on the one-dimensional antiferromagnet tetramethyl ammonium manganese trichloride (TMMC) in order to reveal the temperature dependence of the magnetic short-range order. In agreement with values obtained by other methods an exchange constant J/kB=-7.3 K is reliably extracted. Anomalies of the in-plane LB and of the ordinary RI at the hexagonal-to-monoclinic structural phase transition (Tc=126 K) are successfully described with the use of linear elasto-optic response theory and the Landau approximation, which accounts for symmetry-adapted coupling between the components of the order parameter and of the spontaneous strain. Cu2+ ions, substituting Mn2+ ions of TMMC at a rate exceeding x=1.5%, are shown to stabilize an intermediate, possibly incommensurate phase. Its stability range is marked by very drastic decreases &=145 K and &=55 K for x=4.5%, respectively.
NASA Astrophysics Data System (ADS)
Shcheblanov, N. S.; Povarnitsyn, M. E.; Mishchik, K. N.; Tanguy, A.
2018-02-01
We report an experimental and numerical study of femtosecond multipulse laser-induced densification in vitreous silica (v -SiO2 ) and its signature in Raman spectra. We compare the experimental findings to the recently developed molecular dynamics (MD) approach accounting for bond breaking due to laser irradiation, together with a dynamical matrix approach and bond polarizability model based on first-principles calculations for the estimation of Raman spectra. We observe two stages of the laser-induced densification and Raman spectrum evolution: growth during several hundreds of pulses followed by further saturation. At the medium range, the network connectivity change in v -SiO2 is expressed in reduction of the major ring fractions leading to more compacted structure. With the help of the Sen and Thorpe model, we also study the short-range order transformation and derive the interbonding Si-O-Si angle change from the Raman measurements. Experimental findings are in excellent agreement with our MD simulations and hence support a bond-breaking mechanism of laser-induced densification. Thus, our modeling explains well the laser-induced changes both in the short-range order caused by the appearance of Si coordination defects and medium-range order connected to evolution of the ring distribution. Finally, our findings disclose similarities between sheared, permanently densified, and laser-induced glass and suggest interesting future experiments in order to clarify the impact of the thermomechanical history on glasses under shear, cold and hot compression, and laser-induced densification.
NASA Astrophysics Data System (ADS)
Riest, Jonas; Nägele, Gerhard; Liu, Yun; Wagner, Norman J.; Godfrin, P. Douglas
2018-02-01
Recently, atypical static features of microstructural ordering in low-salinity lysozyme protein solutions have been extensively explored experimentally and explained theoretically based on a short-range attractive plus long-range repulsive (SALR) interaction potential. However, the protein dynamics and the relationship to the atypical SALR structure remain to be demonstrated. Here, the applicability of semi-analytic theoretical methods predicting diffusion properties and viscosity in isotropic particle suspensions to low-salinity lysozyme protein solutions is tested. Using the interaction potential parameters previously obtained from static structure factor measurements, our results of Monte Carlo simulations representing seven experimental lysoyzme samples indicate that they exist either in dispersed fluid or random percolated states. The self-consistent Zerah-Hansen scheme is used to describe the static structure factor, S(q), which is the input to our calculation schemes for the short-time hydrodynamic function, H(q), and the zero-frequency viscosity η. The schemes account for hydrodynamic interactions included on an approximate level. Theoretical predictions for H(q) as a function of the wavenumber q quantitatively agree with experimental results at small protein concentrations obtained using neutron spin echo measurements. At higher concentrations, qualitative agreement is preserved although the calculated hydrodynamic functions are overestimated. We attribute the differences for higher concentrations and lower temperatures to translational-rotational diffusion coupling induced by the shape and interaction anisotropy of particles and clusters, patchiness of the lysozyme particle surfaces, and the intra-cluster dynamics, features not included in our simple globular particle model. The theoretical results for the solution viscosity, η, are in qualitative agreement with our experimental data even at higher concentrations. We demonstrate that semi-quantitative predictions of diffusion properties and viscosity of solutions of globular proteins are possible given only the equilibrium structure factor of proteins. Furthermore, we explore the effects of changing the attraction strength on H(q) and η.
Study of cobalt mononitride thin films prepared using DC and high power impulse magnetron sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Rachana, E-mail: dr.rachana.gupta@gmail.com; Pandey, Nidhi; Behera, Layanta
2016-05-23
In this work we studied cobalt mononitride (CoN) thin films deposited using dc magnetron sputtering (dcMS) and high power impulse magnetron sputtering (HiPIMS). A Co target was sputtered using pure N{sub 2} gas alone as the sputtering medium. Obtained long-range structural ordering was studies using x-ray diffraction (XRD), short-range structure using Co L{sub 2,3} and N K absorption edges using soft x-ray absorption spectroscopy (XAS) and the surface morphology using atomic force microscopy (AFM). It was found that HiPIMS deposited films have better long-range ordering, better stoichiometric ratio for mononitride composition and smoother texture as compared to dcMS deposited films.more » In addition, the thermal stability of HiPIMS deposited CoN film seems to be better. On the basis of different type of plasma conditions generated in HiPIMS and dcMS process, obtained results are presented and discussed.« less
NASA Astrophysics Data System (ADS)
Zhang, Y.; Mendelev, M. I.; Wang, C. Z.; Ott, R.; Zhang, F.; Besser, M. F.; Ho, K. M.; Kramer, M. J.
2014-11-01
Despite numerous studies on the atomic structures of Cu-Zr metallic glasses (MGs), their inherent structural ordering, e.g., medium-range order (MRO), remains difficult to describe. Specifically lacking is an understanding of how the MRO responds to deformation and the associated changes in atomic mobility. In this paper, we focus on the impact of deformation on MRO and associated effect on diffusion in a well-relaxed C u64.5Z r35.5 MG by molecular dynamics simulations. The Cu-Zr MG exhibits a larger elastic limit of 0.035 and a yield stress of 3.5 GPa. The cluster alignment method was employed to characterize the icosahedral short-range order (ISRO) and Bergman-type medium-range order (BMRO) in the models upon loading and unloading. From this analysis, we find the disruption of both ISRO and BMRO occurs as the strain reaches about 0.02, well below the elastic limit. Within the elastic limit, the total fractions of ISRO or BMRO can be fully recovered upon unloading. The diffusivity increases six to eight times in regions undergoing plastic deformation, which is due to the dramatic disruption of the ISRO and BMRO. By mapping the spatial distributions of the mobile atoms, we demonstrate the increase in atomic mobility is due to the extended regions of disrupted ISRO and more importantly BMRO.
2017-01-01
We investigated the influence of molecular packing on the optical and electrical properties of the liquid crystalline dye 4,7-bis[5-(2-fluoro-4-pentyl-phenyl)-2-thienyl]-2,1,3-benzothiadiazole (FPPTB). FPPTB is crystalline at room temperature, exhibits a nematic phase at temperatures above 149 °C and is in an isotropic melt at temperatures above 230 °C. Solution processed FPPTB films were subject to thermal annealing through these phase transition temperatures and characterized with X-ray diffraction and polarized optical microscopy. Cooling FPPTB films from the nematic and isotropic phases increased crystal domain size, but also induced local structural variations in the molecular packing of crystalline FPPTB. The decrease in long-range order was correlated with an increase in short-range π–π interactions, leading to changes in molecular aggregation which persisted even when the FPPTB films were cooled to room temperature. Annealing-induced changes in molecular aggregation were confirmed with optical spectroscopy. The carrier mobility in FPPTB films increased over 2 orders of magnitude from (2.2 ± 0.4) × 10–5 cm2 V–1 s–1 in as-spun films to μ = (5.0 ± 0.8) × 10–3 cm2 V–1 s–1 in films cooled from the isotropic melt. We discuss the relationship between thermal stability and high carrier mobility values in terms of the interplay between long-range molecular order and increased π–π interactions between molecular pairs in the FPPTB film. PMID:28139915
NASA Astrophysics Data System (ADS)
Ding, Jun
Metallic glasses (MGs), discovered five decades ago as a newcomer in the family of glasses, are of current interest because of their unique structures and properties. There are also many fundamental materials science issues that remain unresolved for metallic glasses, as well as their predecessor above glass transition temperature, the supercooled liquids. In particular, it is a major challenge to characterize the local structure and unveil the structure-property relationship for these amorphous materials. This thesis presents a systematic study of the local structure of metallic glasses as well as supercooled liquids via classical and ab initio molecular dynamics simulations. Three typical MG models are chosen as representative candidate, Cu64 Zr36, Pd82Si18 and Mg65Cu 25Y10 systems, while the former is dominant with full icosahedra short-range order and the prism-type short-range order dominate for latter two. Furthermore, we move to unravel the underlying structural signature among several properties in metallic glasses. Firstly, the temperature dependence of specific heat and liquid fragility between Cu-Zr and Mg-Cu-Y (also Pd-Si) in supercooled liquids are quite distinct: gradual versus fast evolution of specific heat and viscosity/relaxation time with undercooling. Their local structural ordering are found to relate with the temperature dependence of specific heat and relaxation time. Then elastic heterogeneity has been studied to correlate with local structure in Cu-Zr MGs. Specifically, this part covers how the degree of elastic deformation correlates with the internal structure at the atomic level, how to quantitatively evaluate the local solidity/liquidity in MGs and how the network of interpenetrating connection of icosahedra determine the corresponding shear modulus. Finally, we have illustrated the structure signature of quasi-localized low-frequency vibrational normal modes, which resides the intriguing vibrational properties in MGs. Specifically, the local atomic packing structure in a model MG strongly correlate with the corresponding participation fraction in quasi-localized soft modes, while the highest and lowest participation correspond to geometrically unfavored motifs and ISRO respectively. In addition, we clearly demonstrate that quasi-localized low-frequency vibrational modes correlate strongly with fertile sites for shear transformations in a MG.
Interpretation of electron diffraction patterns from amorphous and fullerene-like carbon allotropes.
Czigány, Zsolt; Hultman, Lars
2010-06-01
The short range order in amorphous and fullerene-like carbon compounds has been characterized by selected area electron diffraction (SAED) patterns and compared with simulations of model nanoclusters. Broad rings in SAED pattern from fullerene-like CN(x) at approximately 1.2, approximately 2, and approximately 3.5A indicate short-range order similar to that in graphite, but peak shifts indicate sheet curvature in agreement with high-resolution transmission electron microscopy images. Fullerene-like CP(x) exhibits rings at approximately 1.6 and 2.6A, which can be explained if it consists of fragments with short-range order and high curvature similar to that of C(20). Copyright 2010 Elsevier B.V. All rights reserved.
Volume and structural relaxation in compressed sodium borate glass.
Svenson, Mouritz N; Youngman, Randall E; Yue, Yuanzheng; Rzoska, Sylwester J; Bockowski, Michal; Jensen, Lars R; Smedskjaer, Morten M
2016-11-21
The structure and properties of glass can be modified through compression near the glass transition temperature (T g ), and such modified structure and properties can be maintained at ambient temperature and pressure. However, once the compressed glass undergoes annealing near T g at ambient pressure, the modified structure and properties will relax. The challenging question is how the property relaxation is correlated with both the local and the medium-range structural relaxation. In this paper, we answer this question by studying the volume (density) and structural relaxation of a sodium borate glass that has first been pressure-quenched from its T g at 1 GPa, and then annealed at ambient pressure under different temperature-time conditions. Using 11 B MAS NMR and Raman spectroscopy, we find that the pressure-induced densification of the glass is accompanied by a conversion of six-membered rings into non-ring trigonal boron (B III ) units, i.e. a structural change in medium-range order, and an increase in the fraction of tetrahedral boron (B IV ), i.e. a structural change in short-range order. These pressure-induced structural conversions are reversible during ambient pressure annealing near T g , but exhibit a dependence on the annealing temperature, e.g. the ring/non-ring B III ratio stabilizes at different values depending on the applied annealing temperature. We find that conversions between structural units cannot account for the pressure-induced densification, and instead we suggest the packing of structural units as the main densification mechanism.
Short-range density functional correlation within the restricted active space CI method
NASA Astrophysics Data System (ADS)
Casanova, David
2018-03-01
In the present work, I introduce a hybrid wave function-density functional theory electronic structure method based on the range separation of the electron-electron Coulomb operator in order to recover dynamic electron correlations missed in the restricted active space configuration interaction (RASCI) methodology. The working equations and the computational algorithm for the implementation of the new approach, i.e., RAS-srDFT, are presented, and the method is tested in the calculation of excitation energies of organic molecules. The good performance of the RASCI wave function in combination with different short-range exchange-correlation functionals in the computation of relative energies represents a quantitative improvement with respect to the RASCI results and paves the path for the development of RAS-srDFT as a promising scheme in the computation of the ground and excited states where nondynamic and dynamic electron correlations are important.
Wuestite (Fe/1-x/O) - A review of its defect structure and physical properties
NASA Technical Reports Server (NTRS)
Hazen, R. M.; Jeanloz, R.
1984-01-01
Such complexities of the Wustite structure as nonstoichiometry, ferric iron variable site distribution, long and short range ordering, and exsolution, yield complex physical properties. Magnesiowustite, a phase which has been suggested to occur in the earth's lower mantle, is also expected to exhibit many of these complexities. Geophysical models including the properties of (Mg, Fe)O should accordingly take into account the uncertainties associated with the synthesis and measurement of iron-rich oxides. Given the variability of the Fe(1-x)O structure, it is important that future researchers define the structural state and extent of exsolution of their samples.
Low density mesostructures of confined dipolar particles in an external field
NASA Astrophysics Data System (ADS)
Richardi, J.; Weis, J.-J.
2011-09-01
Mesostructures formed by dipolar particles confined between two parallel walls and subjected to an external field are studied by Monte Carlo simulations. The main focus of the work is the structural behavior of the Stockmayer fluid in the low density regime. The dependence of cluster thickness and ordering is estimated as a function of density and wall separation, the two most influential parameters, for large dipole moments and high field strengths. The great sensitivity of the structure to details of the short-range part of the interactions is pointed out. In particular, the attractive part of the Lennard-Jones potential is shown to play a major role in driving chain aggregation. The effect of confinement, evaluated by comparison with results for a bulk system, is most pronounced for a short range hard sphere potential. No evidence is found for a novel "gel-like" phase recently uncovered in low density dipolar colloidal suspensions [A. K. Agarwal and A. Yethiraj, Phys. Rev. Lett. 102, 198301 (2009), 10.1103/PhysRevLett.102.198301].
Shen, Xuefeng; Mao, Wenting; Ma, Yanhang; Peng, Honggen; Xu, Dongdong; Wu, Peng; Han, Lu; Che, Shunai
2018-06-18
Mesoporous MFI zeolites (MMZs) have been constructed by using the surfactant-containing azobenzene segment in the hydrophobic tail. The cylindrical π-π stacking of azeobenzene groups is considered to be the key factor to form the ordered mesostructure through cooperative structural matching and the rearrangement of MFI frameworks. The mesostructure has been tuned from a disordered hierarchical arrangement into an ordered 2D square p4mm structure by changing the length of the alkyl chain between the diquaternary ammonium head group and azobenzene group. The geometric matching between the MFI zeolitic framework and the alkyl chain length plays an important role in the construction of the crystallographically correlated mesostructure with 2D square ordering. A combination of X-ray diffraction patterns and electron microscopy studies provides visible evidence for the mesostructural transformation from a short-range hexagonal or lamellar ordering to 2D square mesostructure. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Geometric structure of thin SiO xN y films on Si(100)
NASA Astrophysics Data System (ADS)
Behrens, K.-M.; Klinkenberg, E.-D.; Finster, J.; Meiwes-Broer, K.-H.
1998-05-01
Thin films of amorphous stoichometric SiO xN y are deposited on radiation-heated Si(100) by rapid thermal low-pressure chemical vapour deposition. We studied the whole range of possible compositions. In order to determine the geometric structure, we used EXAFS and photoelectron spectroscopy. Tetrahedrons constitute the short-range units with a central Si atom connected to N and O. The distribution of the possible tetrahedrons can be described by a mixture of the Random Bonding Model and the Random Mixture Model. For low oxygen contents x/( x+ y)≤0.3, the geometric structure of the film is almost the structure of a-Si 3N 4, with the oxygen preferably on top of Si-N 3 triangles. Higher oxygen contents induce changes in the bond lengths, bond angles and coordination numbers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smedskjaer, Morten M., E-mail: mos@bio.aau.dk; Bauchy, Mathieu; Mauro, John C.
The properties of glass are determined not only by temperature, pressure, and composition, but also by their complete thermal and pressure histories. Here, we show that glasses of identical composition produced through thermal annealing and through quenching from elevated pressure can result in samples with identical density and mean interatomic distances, yet different bond angle distributions, medium-range structures, and, thus, macroscopic properties. We demonstrate that hardness is higher when the density increase is obtained through thermal annealing rather than through pressure-quenching. Molecular dynamics simulations reveal that this arises because pressure-quenching has a larger effect on medium-range order, while annealing hasmore » a larger effect on short-range structures (sharper bond angle distribution), which ultimately determine hardness according to bond constraint theory. Our work could open a new avenue towards industrially useful glasses that are identical in terms of composition and density, but with differences in thermodynamic, mechanical, and rheological properties due to unique structural characteristics.« less
Atomistic cluster alignment method for local order mining in liquids and glasses
NASA Astrophysics Data System (ADS)
Fang, X. W.; Wang, C. Z.; Yao, Y. X.; Ding, Z. J.; Ho, K. M.
2010-11-01
An atomistic cluster alignment method is developed to identify and characterize the local atomic structural order in liquids and glasses. With the “order mining” idea for structurally disordered systems, the method can detect the presence of any type of local order in the system and can quantify the structural similarity between a given set of templates and the aligned clusters in a systematic and unbiased manner. Moreover, population analysis can also be carried out for various types of clusters in the system. The advantages of the method in comparison with other previously developed analysis methods are illustrated by performing the structural analysis for four prototype systems (i.e., pure Al, pure Zr, Zr35Cu65 , and Zr36Ni64 ). The results show that the cluster alignment method can identify various types of short-range orders (SROs) in these systems correctly while some of these SROs are difficult to capture by most of the currently available analysis methods (e.g., Voronoi tessellation method). Such a full three-dimensional atomistic analysis method is generic and can be applied to describe the magnitude and nature of noncrystalline ordering in many disordered systems.
Short, intermediate and mesoscopic range order in sulfur-rich binary glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bychkov, E.; Miloshova, M.; Price, D.L.
2008-09-29
Pulsed neutron and high-energy X-ray diffraction, small-angle neutron scattering, Raman spectroscopy and DSC were used to study structural changes on the short, intermediate and mesoscopic range scale for sulfur-rich AsS{sub x} (x {ge} 1.5) and GeS{sub x} (x {ge} 2) glasses. Two structural regions were found in the both systems. (1) Between stoichiometric (As{sub 2}S{sub 3} and GeS{sub 2}) and 'saturated' (AsS{sub 2.2} and GeS{sub 2.7}) compositions, excessive sulfur atoms form sulfur dimers and/or short chains, replacing bridging sulfur in corner-sharing AsS{sub 3/2} and GeS{sub 4/2} units. (2) Above the 'saturated' compositions at [As] < 30.5 at.% and [Ge]
Liu, Siyuan; Li, Xiaoxi; Chen, Ling; Li, Lin; Li, Bing; Zhu, Jie
2018-01-31
In order to control d-limonene permeability, cellulose nanocrystals (CNC) were used to regulate starch-based film multiscale structures. The effect of sphere-like cellulose nanocrystal (CS) and rod-like cellulose nanocrystal (CR) on starch molecular interaction, short-range molecular conformation, crystalline structure, and micro-ordered aggregated region structure were systematically discussed. CNC aspect ratio and content were proved to be independent variables to control d-limonene permeability via film-structure regulation. New hydrogen bonding formation and increased hydroxypropyl starch (HPS) relative crystallinity could be the reason for the lower d-limonene permeability compared with tortuous path model approximation. More hydrogen bonding formation, higher HPS relative crystallinity and larger size of micro-ordered aggregated region in CS0.5 and CR2 could explain the lower d-limonene permeability than CS2 and CR0.5, respectively. This study provided new insight for the control of the flavor release from starch-based films, which favored its application in biodegradable food packaging and flavor encapsulation.
Gugliuzza, Annarosa; Perrotta, Maria Luisa; Drioli, Enrico
2016-01-01
This work provides additional insights into the identification of operating conditions necessary to overcome a current limitation to the scale-up of the breath figure method, which is regarded as an outstanding manufacturing approach for structurally ordered porous films. The major restriction concerns, indeed, uncontrolled touching droplets at the boundary. Herein, the bulk of polymeric solutions are properly managed to generate honeycomb membranes with a long-range structurally ordered texture. Water uptake and dynamics are explored as chemical environments are changed with the intent to modify the hydrophilic/hydrophobic balance and local water floatation. In this context, a model surfactant such as the polyoxyethylene sorbitan monolaurate is used in combination with alcohols at different chain length extents and a traditional polymer such as the polyethersufone. Changes in the interfacial tension and kinematic viscosity taking place in the bulk of composite solutions are explored and examined in relation to competitive droplet nucleation and growth rate. As a result, extensive structurally ordered honeycomb textures are obtained with the rising content of the surfactant while a broad range of well-sized pores is targeted as a function of the hydrophilic-hydrophobic balance and viscosity of the composite polymeric mixture. The experimental findings confirm the consistency of the approach and are expected to give propulsion to the commercially production of breath figures films shortly. PMID:27196938
Gugliuzza, Annarosa; Perrotta, Maria Luisa; Drioli, Enrico
2016-05-16
This work provides additional insights into the identification of operating conditions necessary to overcome a current limitation to the scale-up of the breath figure method, which is regarded as an outstanding manufacturing approach for structurally ordered porous films. The major restriction concerns, indeed, uncontrolled touching droplets at the boundary. Herein, the bulk of polymeric solutions are properly managed to generate honeycomb membranes with a long-range structurally ordered texture. Water uptake and dynamics are explored as chemical environments are changed with the intent to modify the hydrophilic/hydrophobic balance and local water floatation. In this context, a model surfactant such as the polyoxyethylene sorbitan monolaurate is used in combination with alcohols at different chain length extents and a traditional polymer such as the polyethersufone. Changes in the interfacial tension and kinematic viscosity taking place in the bulk of composite solutions are explored and examined in relation to competitive droplet nucleation and growth rate. As a result, extensive structurally ordered honeycomb textures are obtained with the rising content of the surfactant while a broad range of well-sized pores is targeted as a function of the hydrophilic-hydrophobic balance and viscosity of the composite polymeric mixture. The experimental findings confirm the consistency of the approach and are expected to give propulsion to the commercially production of breath figures films shortly.
Mazur, D J; Merz, J F
1993-03-01
To assess how the manner of presentation of graphic data to older patients influences their treatment preferences. Cross-sectional structured interviews with patients. A university-based Department of Veterans Affairs Medical Center. One hundred sixty-six consecutive patients (mean age = 64.8 years, range of ages 29-82) seen in a Department of Veterans Affairs general medicine clinic. Five pairs of 5-year survival curves were presented to patients. Each pair was composed of two survival curves for alternative unidentified treatments for an unidentified medical condition. Curve A (LT = better long-term, worse short-term survival) was fixed throughout all curve pairs. Curve B (ST = better short-term, worse long-term survival) changed in each curve pair, showing incrementally better chances of short-term survival across the five curve pairs. Patients were randomly assigned to view the curve pairs in forward (increasing short-term survival) or backward (decreasing short-term survival) order. Order is a significant predictor of patients' initial preferences for the short-term survival curve (P = 0.0004) as well as their willingness to shift preferences during presentation of the five curve pairs. Patients > or = 65 were more likely to initially choose the ST curve in forward order presentation than patients < 65. More educated patients generally were less likely to prefer the ST curve under both elicitation orders. The data indicate that the method of eliciting patients' preferences strongly influenced their expressed preferences, and that these preferences may have predictable relationships with demographic characteristics such as age.
Fungal biomineralization of montmorillonite and goethite to short-range-ordered minerals
NASA Astrophysics Data System (ADS)
Li, Huan; Hu, Shuijin; Polizzotto, Matthew L.; Chang, Xiaoli; Shen, Qirong; Ran, Wei; Yu, Guanghui
2016-10-01
Highly reactive nano-scale minerals, e.g., short-range-ordered minerals (SROs) and other nanoparticles, play an important role in soil carbon (C) retention. Yet, the mechanisms that govern biomineralization from bulk minerals to highly reactive nano-scale minerals remain largely unexplored, which critically hinders our efforts toward managing nano-scale minerals for soil C retention. Here we report the results from a study that explores structural changes during Aspergillus fumigatus Z5 transformation of montmorillonite and goethite to SROs. We examined the morphology and structure of nano-scale minerals, using high-resolution transmission electron microscopy, time-resolved solid-state 27Al and 29Si NMR, and Fe K-edge X-ray absorption fine structure spectroscopy combined with two dimensional correlation spectroscopy (2D COS) analysis. Our results showed that after a 48-h cultivation of montmorillonite and goethite with Z5, new biogenic intracellular and extracellular reactive nano-scale minerals with a size of 3-5 nm became abundant. Analysis of 2D COS further suggested that montmorillonite and goethite were the precursors of the dominant biogenic nano-scale minerals. Carbon 1s near edge X-ray absorption fine structure (NEXAFS) spectra and their deconvolution results demonstrated that during fungus Z5 growth, carboxylic C (288.4-289.1 eV) was the dominant organic group, accounting for approximately 34% and 59% in the medium and aggregates, respectively. This result suggested that high percentage of the production of organic acids during the growth of Z5 was the driving factor for structural changes during biomineralization. This is, to the best of our knowledge, the first report of the structural characterization of nano-scale minerals by 2D COS, highlighting its potential to elucidate biomineralization pathways and thus identify the precursors of nano-scale minerals.
Evolution of short range order in Ar: Liquid to glass and solid transitions-A computational study
NASA Astrophysics Data System (ADS)
Shor, Stanislav; Yahel, Eyal; Makov, Guy
2018-04-01
The evolution of the short range order (SRO) as a function of temperature in a Lennard-Jones model liquid with Ar parameters was determined and juxtaposed with thermodynamic and kinetic properties obtained as the liquid was cooled (heated) and transformed between crystalline solid or glassy states and an undercooled liquid. The Lennard-Jones system was studied by non-equilibrium molecular dynamics simulations of large supercells (approximately 20000 atoms) rapidly cooled or heated at selected quenching rates and at constant pressure. The liquid to solid transition was identified by discontinuities in the atomic volume and molar enthalpy; the glass transition temperature range was identified from the temperature dependence of the self-diffusion. The SRO was studied within the quasi-crystalline model (QCM) framework and compared with the Steinhardt bond order parameters. Within the QCM it was found that the SRO evolves from a bcc-like order in the liquid through a bct-like short range order (c/a=1.2) in the supercooled liquid which persists into the glass and finally to a fcc-like ordering in the crystalline solid. The variation of the SRO that results from the QCM compares well with that obtained with Steinhardt's bond order parameters. The hypothesis of icosahedral order in liquids and glasses is not supported by our results.
Crystal pathologies in macromolecular crystallography.
Dauter, Zbigniew; Jaskólski, Mariusz
Macromolecules, such as proteins or nucleic acids, form crystals with a large volume fraction of water, ~50% on average. Apart from typical physical defects and rather trivial poor quality problems, macromolecular crystals, as essentially any crystals, can also suffer from several kinds of pathologies, in which everything seems to be perfect, except that from the structural point of view the interpretation may be very difficult, sometimes even impossible. A frequent nuisance is pseudosymmetry, or non-crystallographic symmetry (NCS), which is particularly nasty when it has translational character. Lattice-translocation defects, also called order-disorder twinning (OD-twinning), occur when molecules are packed regularly in layers but the layers are stacked (without rotation) in two (or more) discrete modes, with a unique translocation vector. Crystal twinning arises when twin domains have different orientations, incompatible with the symmetry of the crystal structure. There are also crystals in which the periodic (lattice) order is broken or absent altogether. When the strict short-range translational order from one unit cell to the next is lost but the long-range order is restored by a periodic modulation, we have a modulated crystal structure. In quasicrystals (not observed for macromolecules yet), the periodic order (in 3D space) is lost completely and the diffraction pattern (which is still discrete) cannot be even indexed using three hkl indices. In addition, there are other physical defects and phenomena (such as high mosaicity, diffraction anisotropy, diffuse scattering, etc.) which make diffraction data processing and structure solution difficult or even impossible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S.; Jang, H.M.
1997-08-01
A classification scheme of Pb(B{sup {prime}}{sub 1/2}B{sup {prime}{prime}}{sub 1/2})O{sub 3}-type perovskites with respect to the B-site order parameters was proposed based on the theoretical calculation of the short-range order parameter ({sigma}) using the pair-correlation model. The calculated order parameters predict that a Pb(B{sup {prime}}{sub 1/2}B{sup {prime}{prime}}{sub 1/2})O{sub 3}-type perovskite without any charge difference between B{sup {prime}} and B{sup {prime}{prime}} cations [e.g., Pb(Zr{sub 1/2}Ti{sub 1/2})O{sub 3} (PZT)] is represented by a completely disordered state with the absence of a finite coherence length. On the other hand, a Pb(B{sup {prime}}{sub 1/2}B{sup {prime}{prime}}{sub 1/2})O{sub 3} type perovskite system having different ionic charges ismore » characterized either by the short-range ordering with a nanoscale coherence length or by the macroscopic long-range ordering, depending on the magnitude of ionic charge difference between B{sup {prime}} and B{sup {prime}{prime}} ions. The normal ferroelectricity in Pb(B{sup {prime}}{sub 1/2}B{sup {prime}{prime}}{sub 1/2})O{sub 3}-type complex perovskites was then correlated either with a completely disordered state ({sigma}=0) or with a perfectly ordered state ({sigma}=1), whereas the relaxor behavior was attributed to the nanoscale short-range ordering (0{lt}{sigma}{lt}1) in the configuration of the B-site cations. {copyright} {ital 1997 Materials Research Society.}« less
Doping Evolution of Magnetic Order and Magnetic Excitations in (Sr1 -xLax)3Ir2O7
NASA Astrophysics Data System (ADS)
Lu, Xingye; McNally, D. E.; Moretti Sala, M.; Terzic, J.; Upton, M. H.; Casa, D.; Ingold, G.; Cao, G.; Schmitt, T.
2017-01-01
We use resonant elastic and inelastic x-ray scattering at the Ir-L3 edge to study the doping-dependent magnetic order, magnetic excitations, and spin-orbit excitons in the electron-doped bilayer iridate (Sr1 -xLax )3Ir2 O7 (0 ≤x ≤0.065 ). With increasing doping x , the three-dimensional long range antiferromagnetic order is gradually suppressed and evolves into a three-dimensional short range order across the insulator-to-metal transition from x =0 to 0.05, followed by a transition to two-dimensional short range order between x =0.05 and 0.065. Because of the interactions between the Jeff=1/2 pseudospins and the emergent itinerant electrons, magnetic excitations undergo damping, anisotropic softening, and gap collapse, accompanied by weakly doping-dependent spin-orbit excitons. Therefore, we conclude that electron doping suppresses the magnetic anisotropy and interlayer couplings and drives (Sr1 -xLax )3Ir2 O7 into a correlated metallic state with two-dimensional short range antiferromagnetic order. Strong antiferromagnetic fluctuations of the Jeff=1/2 moments persist deep in this correlated metallic state, with the magnon gap strongly suppressed.
Karalis, Konstantinos T.; Dellis, Dimitrios; Antipas, Georgios S. E.; Xenidis, Anthimos
2016-01-01
The thermodynamics, structural and transport properties (density, melting point, heat capacity, thermal expansion coefficient, viscosity and electrical conductivity) of a ferro-aluminosilicate slag have been studied in the solid and liquid state (1273–2273 K) using molecular dynamics. The simulations were based on a Buckingham-type potential, which was extended here, to account for the presence of Cr and Cu. The potential was optimized by fitting pair distribution function partials to values determined by Reverse Monte Carlo modelling of X-ray and neutron diffraction experiments. The resulting short range order features and ring statistics were in tight agreement with experimental data and created consensus for the accurate prediction of transport properties. Accordingly, calculations yielded rational values both for the average heat capacity, equal to 1668.58 J/(kg·K), and for the viscosity, in the range of 4.09–87.64 cP. The potential was consistent in predicting accurate values for mass density (i.e. 2961.50 kg/m3 vs. an experimental value of 2940 kg/m3) and for electrical conductivity (5.3–233 S/m within a temperature range of 1273.15–2273.15 K). PMID:27455915
New Results on Short-Range Correlations in Nuclei
Fomin, Nadia; Higinbotham, Douglas; Sargsian, Misak; ...
2017-10-12
Nuclear dynamics at short distances is one of the most fascinating topics of strong interaction physics. The physics of it is closely related to the understanding of the role of the QCD in generating nuclear forces at short distances, as well as of the dynamics of the superdense cold nuclear matter relevant to the interior of neutron stars. The emergence of high-energy electron and proton beams has led to significant recent progress in high-energy nuclear scattering experiments investigating the short-range structure of nuclei. These experiments, in turn, have stimulated new theoretical studies resulting in the observation of several new phenomenamore » specific to the short-range structure of nuclei. In this article, we review recent theoretical and experimental progress in studies of short-range correlations in nuclei and discuss their importance for advancing our understanding of the dynamics of nuclear interactions at short distances.« less
New Results on Short-Range Correlations in Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fomin, Nadia; Higinbotham, Douglas; Sargsian, Misak
Nuclear dynamics at short distances is one of the most fascinating topics of strong interaction physics. The physics of it is closely related to the understanding of the role of the QCD in generating nuclear forces at short distances, as well as of the dynamics of the superdense cold nuclear matter relevant to the interior of neutron stars. The emergence of high-energy electron and proton beams has led to significant recent progress in high-energy nuclear scattering experiments investigating the short-range structure of nuclei. These experiments, in turn, have stimulated new theoretical studies resulting in the observation of several new phenomenamore » specific to the short-range structure of nuclei. In this article, we review recent theoretical and experimental progress in studies of short-range correlations in nuclei and discuss their importance for advancing our understanding of the dynamics of nuclear interactions at short distances.« less
The influence of magnetic order on the magnetoresistance anisotropy of Fe1 + δ-x Cu x Te
NASA Astrophysics Data System (ADS)
Helm, T.; Valdivia, P. N.; Bourret-Courchesne, E.; Analytis, J. G.; Birgeneau, R. J.
2017-07-01
We performed resistance measurements on \\text{F}{{\\text{e}}1+δ -x} Cu x Te with {{x}\\text{EDX}}≤slant 0.06 in the presence of in-plane applied magnetic fields, revealing a resistance anisotropy that can be induced at a temperature far below the structural and magnetic zero-field transition temperatures. The observed resistance anisotropy strongly depends on the field orientation with respect to the crystallographic axes, as well as on the field-cooling history. Our results imply a correlation between the observed features and the low-temperature magnetic order. Hysteresis in the angle-dependence indicates a strong pinning of the magnetic order within a temperature range that varies with the Cu content. The resistance anisotropy vanishes at different temperatures depending on whether an external magnetic field or a remnant field is present: the closing temperature is higher in the presence of an external field. For {{x}\\text{EDX}}=0.06 the resistance anisotropy closes above the structural transition, at the same temperature at which the zero-field short-range magnetic order disappears and the sample becomes paramagnetic. Thus we suggest that under an external magnetic field the resistance anisotropy mirrors the magnetic order parameter. We discuss similarities to nematic order observed in other iron pnictide materials.
The influence of magnetic order on the magnetoresistance anisotropy of Fe 1+δ–xCu xTe
Helm, T.; Valdivia, P. N.; Bourret-Courchesne, E.; ...
2017-06-08
We performed resistance measurements on [Formula: see text]Cu x Te with [Formula: see text] in the presence of in-plane applied magnetic fields, revealing a resistance anisotropy that can be induced at a temperature far below the structural and magnetic zero-field transition temperatures. The observed resistance anisotropy strongly depends on the field orientation with respect to the crystallographic axes, as well as on the field-cooling history. Our results imply a correlation between the observed features and the low-temperature magnetic order. Hysteresis in the angle-dependence indicates a strong pinning of the magnetic order within a temperature range that varies with the Cumore » content. The resistance anisotropy vanishes at different temperatures depending on whether an external magnetic field or a remnant field is present: the closing temperature is higher in the presence of an external field. For [Formula: see text] the resistance anisotropy closes above the structural transition, at the same temperature at which the zero-field short-range magnetic order disappears and the sample becomes paramagnetic. Thus we suggest that under an external magnetic field the resistance anisotropy mirrors the magnetic order parameter. We discuss similarities to nematic order observed in other iron pnictide materials.« less
Structural-Phase Transformations of CuZn Alloy Under Thermal-Impact Cycling
NASA Astrophysics Data System (ADS)
Potekaev, A. I.; Chaplygina, A. A.; Kulagina, V. V.; Chaplygin, P. A.; Starostenkov, M. D.; Grinkevich, L. S.
2017-02-01
Using the Monte Carlo method, special features of structural - phase transformations in β-brass are investigated during thermal impact using thermal cycling as an example (a number of successive order - disorder and disorder - order phase transitions in the course of several heating - cooling cycles). It is shown that a unique hysteresis is observed after every heating and cooling cycle, whose presence indicates irreversibility of the processes, which suggests a difference in the structural - phase states both in the heating and cooling stages. A conclusion is drawn that the structural - phase transformations in the heating and cooling stages occur within different temperature intervals, where the thermodynamic stimuli of one or the other structural - phase state are low. This is also demonstrated both in the plots of configurational energy, long- and short-range order parameter, atomic structure variations, and structural - phase state distributions. Simultaneously, there coexist ordered and disordered phases and a certain collection of superstructure domains. This implies the presence of low - stability states in the vicinity of the order - disorder phase transition. The results of investigations demonstrate that the structural - phase transitions within two successive heating and cooling cycles at the same temperature are different in both stages. These changes, though not revolutionary, occur in every cycle and decrease with the increasing cycle number. In fact, the system undergoes training with a tendency towards a certain sequence of structural - phase states.
NASA Astrophysics Data System (ADS)
Zorko, A.; Pregelj, M.; Berger, H.; Arčon, D.
2010-05-01
Local-probe weak-transverse-field and zero-field μSR measurements have been employed to investigate magnetic ordering in the new magnetoelectric compound FeTe2O5Br. Below the Néel transition temperature TN=10.6 K a static local magnetic field starts to develop at the μ+ sites. Fast μ+ polarization decay below TN speaks in favor of a broad distribution of internal magnetic fields, in agreement with the incommensurate magnetic structure suggested by neutron diffraction experiments. Above TN the presence of short-range order is detected as high as at 2TN, which suggests only weak interlayer magnetic coupling. On the other hand, strong Fe3+ spin fluctuations likely reflect geometrically frustrated structure of [Fe4O16]20- spin clusters, which are the main building blocks of the layered FeTe2O5Br structure.
NASA Astrophysics Data System (ADS)
Shabashov, V. A.; Korshunov, L. G.; Zamatovskii, A. E.; Litvinov, A. V.
2007-10-01
A large plastic deformation of Hadfield steel (frictional action, shear under pressure, filing, and rolling) leads to the growth of an internal effective field at 57Fe nuclei, magnetic-degeneracy removal in the spectra, and delay of the paraprocess up to room temperature. In the Mössbauer spectrum of the 120G13 Hadfield steel, the reversible formation of a hyperfine structure, which is supposedly connected with magnetic ordering, has been detected in situ upon quasi-hydrostatic compression to 26 GPa. The observed growth of magnetic characteristics upon deformation and under high pressure is explained by the deformation-induced redistribution of carbon with the formation of short-range ordering of oxygen and manganese.
Classical Spin Nematic Transition in LiGa0.95In0.05Cr4O8
NASA Astrophysics Data System (ADS)
Wawrzyńczak, R.; Tanaka, Y.; Yoshida, M.; Okamoto, Y.; Manuel, P.; Casati, N.; Hiroi, Z.; Takigawa, M.; Nilsen, G. J.
2017-08-01
We present the results of a combined 7Li -NMR and diffraction study on LiGa0.95In0.05Cr4O8, a member of the LiGa1 -xInxCr4O8 "breathing" pyrochlore family. Via specific heat and NMR measurements, we find that the complex sequence of first-order transitions observed for LiGaCr4O8 is replaced by a single second-order transition at Tf=11 K . Neutron and x-ray diffraction rule out both structural symmetry lowering and magnetic long-range order as the origin of this transition. Instead, reverse Monte Carlo fitting of the magnetic diffuse scattering indicates that the low-temperature phase may be described as a collinear spin nematic state, characterized by a quadrupolar order parameter. This state also shows signs of short-range order between collinear spin arrangements on tetrahedra, revealed by mapping the reverse Monte Carlo spin configurations onto a three-state color model.
Ab-initio molecular dynamics simulations of liquid Hg-Pb alloys
NASA Astrophysics Data System (ADS)
Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.
2014-04-01
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-Pb alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-Pb mixtures (Hg30Pb70, Hg50Pb50 and Hg90Pb10) at 600K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and lead (l-Pb). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered three alloys. Among the all considered alloys, Hg50Pb50 alloy shows presence of more chemical ordering and presence of hetero-coordination.
Microscopic theory of vortex interaction in two-band superconductors and type-1.5 superconductivity
NASA Astrophysics Data System (ADS)
Silaev, Mihail; Babaev, Egor
2011-03-01
In the framework of self-consistent microscopic theory we study the structure and interaction of vortices in two-gap superconductor taking into account the interband Josephson coupling. The asymptotical behavior of order parameter densities and magnetic field is studied analytically within the microscopic theory at low temperature. At higher temperatures, results consistent with Ginzburg-Landau theory are obtained. It is shown that under quite general conditions and in a wide temperature ranges (in particular outside the validity of the Ginzburg-Landau theory) there can exist an additional characteristic length scale of the order parameter density variation which exceeds the London penetration length of magnetic field due to the multi-component nature of superconducting state. Such behavior of order parameter density variation leads to the attractive long-range and repulsive short-range interaction between vortices. Supported by NSF CAREER Award DMR-0955902, Knut and Alice Wallenberg Foundation through the Royal Swedish Academy of Sciences and Swedish Research Council, ''Dynasty'' foundation and Russian Foundation for Basic Research.
Simplified Models for Accelerated Structural Prediction of Conjugated Semiconducting Polymers
Henry, Michael M.; Jones, Matthew L.; Oosterhout, Stefan D.; ...
2017-11-08
We perform molecular dynamics simulations of poly(benzodithiophene-thienopyrrolodione) (BDT-TPD) oligomers in order to evaluate the accuracy with which unoptimized molecular models can predict experimentally characterized morphologies. The predicted morphologies are characterized using simulated grazing-incidence X-ray scattering (GIXS) and compared to the experimental scattering patterns. We find that approximating the aromatic rings in BDT-TPD with rigid bodies, rather than combinations of bond, angle, and dihedral constraints, results in 14% lower computational cost and provides nearly equivalent structural predictions compared to the flexible model case. The predicted glass transition temperature of BDT-TPD (410 +/- 32 K) is found to be in agreement withmore » experiments. Predicted morphologies demonstrate short-range structural order due to stacking of the chain backbones (p-p stacking around 3.9 A), and long-range spatial correlations due to the self-organization of backbone stacks into 'ribbons' (lamellar ordering around 20.9 A), representing the best-to-date computational predictions of structure of complex conjugated oligomers. We find that expensive simulated annealing schedules are not needed to predict experimental structures here, with instantaneous quenches providing nearly equivalent predictions at a fraction of the computational cost of annealing. We therefore suggest utilizing rigid bodies and fast cooling schedules for high-throughput screening studies of semiflexible polymers and oligomers to utilize their significant computational benefits where appropriate.« less
Simplified Models for Accelerated Structural Prediction of Conjugated Semiconducting Polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, Michael M.; Jones, Matthew L.; Oosterhout, Stefan D.
We perform molecular dynamics simulations of poly(benzodithiophene-thienopyrrolodione) (BDT-TPD) oligomers in order to evaluate the accuracy with which unoptimized molecular models can predict experimentally characterized morphologies. The predicted morphologies are characterized using simulated grazing-incidence X-ray scattering (GIXS) and compared to the experimental scattering patterns. We find that approximating the aromatic rings in BDT-TPD with rigid bodies, rather than combinations of bond, angle, and dihedral constraints, results in 14% lower computational cost and provides nearly equivalent structural predictions compared to the flexible model case. The predicted glass transition temperature of BDT-TPD (410 +/- 32 K) is found to be in agreement withmore » experiments. Predicted morphologies demonstrate short-range structural order due to stacking of the chain backbones (p-p stacking around 3.9 A), and long-range spatial correlations due to the self-organization of backbone stacks into 'ribbons' (lamellar ordering around 20.9 A), representing the best-to-date computational predictions of structure of complex conjugated oligomers. We find that expensive simulated annealing schedules are not needed to predict experimental structures here, with instantaneous quenches providing nearly equivalent predictions at a fraction of the computational cost of annealing. We therefore suggest utilizing rigid bodies and fast cooling schedules for high-throughput screening studies of semiflexible polymers and oligomers to utilize their significant computational benefits where appropriate.« less
Measurement and modeling of short and medium range order in amorphous Ta 2O 5 thin films
Shyam, Badri; Stone, Kevin H.; Bassiri, Riccardo; ...
2016-08-26
Here, amorphous films and coatings are rapidly growing in importance. Yet, there is a dearth of high-quality structural data on sub-micron films. Not understanding how these materials assemble at atomic scale limits fundamental insights needed to improve their performance. Here, we use grazing-incidence x-ray total scattering measurements to examine the atomic structure of the top 50–100 nm of Ta 2O 5 films; mirror coatings that show high promise to significantly improve the sensitivity of the next generation of gravitational-wave detectors. Our measurements show noticeable changes well into medium range, not only between crystalline and amorphous, but also between as-deposited, annealedmore » and doped amorphous films. It is a further challenge to quickly translate the structural information into insights into mechanisms of packing and disorder. Here, we illustrate a modeling approach that allows translation of observed structural features to a physically intuitive packing of a primary structural unit based on a kinked Ta-O-Ta backbone. Our modeling illustrates how Ta-O-Ta units link to form longer 1D chains and even 2D ribbons, and how doping and annealing influences formation of 2D order. We also find that all the amorphousTa 2O 5 films studied in here are not just poorly crystalline but appear to lack true 3D order.« less
Local Chemical Ordering and Negative Thermal Expansion in PtNi Alloy Nanoparticles.
Li, Qiang; Zhu, He; Zheng, Lirong; Fan, Longlong; Wang, Na; Rong, Yangchun; Ren, Yang; Chen, Jun; Deng, Jinxia; Xing, Xianran
2017-12-13
An atomic insight into the local chemical ordering and lattice strain is particular interesting to recent emerging bimetallic nanocatalysts such as PtNi alloys. Here, we reported the atomic distribution, chemical environment, and lattice thermal evolution in full-scale structural description of PtNi alloy nanoparticles (NPs). The different segregation of elements in the well-faceted PtNi nanoparticles is convinced by extended X-ray absorption fine structure (EXAFS). Atomic pair distribution function (PDF) study evidences the coexistence of the face-centered cubic and tetragonal ordering parts in the local environment of PtNi nanoparticles. Further reverse Monte Carlo (RMC) simulation with PDF data obviously exposed the segregation as Ni and Pt in the centers of {111} and {001} facets, respectively. Layer-by-layer statistical analysis up to 6 nm for the local atomic pairs revealed the distribution of local tetragonal ordering on the surface. This local coordination environment facilitates the distribution of heteroatomic Pt-Ni pairs, which plays an important role in the negative thermal expansion of Pt 41 Ni 59 NPs. The present study on PtNi alloy NPs from local short-range coordination to long-range average lattice provides a new perspective on tailoring physical properties in nanomaterials.
Spin and orbital disordering by hole doping in P r1 -xC axV O3
NASA Astrophysics Data System (ADS)
Reehuis, M.; Ulrich, C.; Abdala, P. M.; Pattison, P.; Khaliullin, G.; Fujioka, J.; Miyasaka, S.; Tokura, Y.; Keimer, B.
2016-09-01
High-resolution powder x-ray diffraction and single-crystal neutron diffraction were used to investigate the crystal structure and magnetic ordering of the compound P r1 -xC axV O3 (0 ≤x ≤0.3 ), which undergoes an insulator-to-metal transition for x ˜0.23 . Since the ionic radii of P r3 + and C a2 + are almost identical and structural disorder is minimal, P r1 -xC axV O3 is a good model system for the influence of hole doping on the spin and orbital correlations in transition metal oxides. The end member PrV O3 is a Mott-Hubbard insulator, which exhibits a structural phase transition at TS=180 K from an orthorhombic to a monoclinic structure with space groups Pbnm and P 21/b , respectively. This transition is associated with the onset of orbital ordering and strong Jahn-Teller distortions of the V O6 octahedra. Antiferromagnetic C -type order with vanadium moments oriented in the a b plane is observed below TN=140 K . Upon cooling, the vanadium moments induce a progressive magnetic polarization of the praseodymium sublattice, resulting in a ferrimagnetic structure with coexisting modes (Cx, Fy) and (Fx, Cy). In the insulating range of the P r1 -xC axV O3 phase diagram, Ca doping reduces both the orbital and magnetic transition temperatures so that TS=108 K and TN=95 K for x =0.20 . The Jahn-Teller distortions and ordered vanadium moments also decrease upon doping. In a metallic sample with x =0.30 , Jahn-Teller distortions and long-range orbital ordering are no longer observable, and the average crystal structure remains orthorhombic down to low temperature. However, broadening of some lattice Bragg reflections indicate a significant increase in lattice strain. Antiferromagnetic short-range order with a weak ordered moment of 0.14(3) μB per vanadium atom could still be observed on the vanadium site below T ˜60 K . We discuss these observations in terms of doping-induced spin-orbital polaron formation.
Structure Evolution and Thermoelectric Properties of Carbonized Polydopamine Thin Films.
Li, Haoqi; Aulin, Yaroslav V; Frazer, Laszlo; Borguet, Eric; Kakodkar, Rohit; Feser, Joseph; Chen, Yan; An, Ke; Dikin, Dmitriy A; Ren, Fei
2017-03-01
Carbonization of nature-inspired polydopamine can yield thin films with high electrical conductivity. Understanding of the structure of carbonized PDA (cPDA) is therefore highly desired. In this study, neutron diffraction, Raman spectroscopy, and other techniques indicate that cPDA samples are mainly amorphous with some short-range ordering and graphite-like structure that emerges with increasing heat treatment temperature. The electrical conductivity and the Seebeck coefficient show different trends with heat treatment temperature, while the thermal conductivity remains insensitive. The largest room-temperature ZT of 2 × 10 -4 was obtained on samples heat-treated at 800 °C, which is higher than that of reduced graphene oxide.
Dependence of Coulomb Sum Rule on the Short Range Correlation by Using Av18 Potential
NASA Astrophysics Data System (ADS)
Modarres, M.; Moeini, H.; Moshfegh, H. R.
The Coulomb sum rule (CSR) and structure factor are calculated for inelastic electron scattering from nuclear matter at zero and finite temperature in the nonrelativistic limit. The effect of short-range correlation (SRC) is presented by using lowest order constrained variational (LOCV) method and the Argonne Av18 and Δ-Reid soft-core potentials. The effects of different potentials as well as temperature are investigated. It is found that the nonrelativistic version of Bjorken scaling approximately sets in at the momentum transfer of about 1.1 to 1.2 GeV/c and the increase of temperature makes it to decrease. While different potentials do not significantly change CSR, the SRC improves the Coulomb sum rule and we get reasonably close results to both experimental data and others theoretical predictions.
Quantitative force measurements in liquid using frequency modulation atomic force microscopy
NASA Astrophysics Data System (ADS)
Uchihashi, Takayuki; Higgins, Michael J.; Yasuda, Satoshi; Jarvis, Suzanne P.; Akita, Seiji; Nakayama, Yoshikazu; Sader, John E.
2004-10-01
The measurement of short-range forces with the atomic force microscope (AFM) typically requires implementation of dynamic techniques to maintain sensitivity and stability. While frequency modulation atomic force microscopy (FM-AFM) is used widely for high-resolution imaging and quantitative force measurements in vacuum, quantitative force measurements using FM-AFM in liquids have proven elusive. Here we demonstrate that the formalism derived for operation in vacuum can also be used in liquids, provided certain modifications are implemented. To facilitate comparison with previous measurements taken using surface forces apparatus, we choose a model system (octamethylcyclotetrasiloxane) that is known to exhibit short-ranged structural ordering when confined between two surfaces. Force measurements obtained are found to be in excellent agreement with previously reported results. This study therefore establishes FM-AFM as a powerful tool for the quantitative measurement of forces in liquid.
First-principles study on phase transition and ferroelectricity in lithium niobate and tantalate
NASA Astrophysics Data System (ADS)
Toyoura, Kazuaki; Ohta, Masataka; Nakamura, Atsutomo; Matsunaga, Katsuyuki
2015-08-01
The phase transitions and ferroelectricity of LiNbO3 and LiTaO3 have been investigated theoretically from first principles. The phonon analyses and the molecular dynamics simulations revealed that the ferroelectric phase transition is not conventional displacive type but order-disorder type with strong correlation between cation displacements. According to the evaluated potential energy surfaces around the paraelectric structures, the large difference in ferroelectricity between the two oxides results from the little difference in short-range interionic interaction between Nb-O and Ta-O. As the results of the crystal orbital overlap population analyses, the different short-range interaction originates from the difference in covalency between Nb4d-O2p and Ta5d-O2p orbitals, particularly dxz-px/dyz-py orbitals (π orbitals), from the electronic point of view.
Cumulative bibliography and index to The Mountain Geologist, 1975 through 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwochow, S.D.
1992-10-01
This cumulative index to The Mountain Geologist covers Volumes 12 (1975) through 28 (1991) and consists of three sections-Author Index, Geographical Index, and Topical Index. The Author Index is an author-alphabetical listing of full bibliographic citations of all authored articles, discussions and replies, road logs, indexes, and dissertation lists. Coauthors are listed alphabetically with a cross-reference to the senior author. Mountain Geologist is cited as the implied author for annual indexes whose compilers were not cited. In the Geographical Index (page 110) are listed the primary regional locations or areas of study of each article - principally basins, plateaus, andmore » mountain ranges. Also included are several regional structural features that exhibit no distinct topographic expression. For articles describing foreign locales, when no specific basins or ranges have been mentioned or can be inferred, the respective country names have been used. The indexing hierarchy consists of first-order headings followed by one or more short bibliographic citations consisting of author and data - for example, Eaton, 1990; Eaton and others, 1990; Kluth and Nelson, 1988; Stone, 1984a, 1984b. After locating the desired indexing term and short citations, refer to the Author Index for the corresponding full bibliographic citations and identify the respective source volume, number, and pages. The Topical Index (page 113) is primarily a formation and structure locator. Many formation names are cross-referenced to their respective group names and appear as second-order headings under those group (first-order) names. Members and informally named stratigraphic units, when described, similarly are cross-referenced to and indexed under respective formation names. The description of a formation or member in a source article may include any or all of the following aspects-stratigraphic position, correlation, age, lithology, internal structures, and depositional history and environments.« less
Astrophysical materials science: Theory
NASA Technical Reports Server (NTRS)
Ashcroft, N. W.
1984-01-01
A method of structural expansions for use in determining the equation of state of metallic hydrogen (and indeed other metals) up to the 4th order in the perturbation theory was developed. The electrical and thermal transport properties of the planetary interior of Jupiter were calculated. The nature of the interaction between molecules at short range and the importance of multicenter terms in arriving at an adequate description of the thermodynamic functions of condensed molecular hydrogen were also investigated.
An FPGA-based reconfigurable DDC algorithm
NASA Astrophysics Data System (ADS)
Juszczyk, B.; Kasprowicz, G.
2016-09-01
This paper describes implementation of reconfigurable digital down converter in an FPGA structure. System is designed to work with quadrature signals. One of the main criteria of the project was to provied wide range of reconfiguration in order to fulfill various application rage. Potential applications include: software defined radio receiver, passive noise radars and measurement data compression. This document contains general system overview, short description of hardware used in the project and gateware implementation.
Properties of plasmonic arrays produced by pulsed-laser nanostructuring of thin Au films
Siuzdak, Katarzyna; Atanasov, Peter A; Bittencourt, Carla; Dikovska, Anna; Nedyalkov, Nikolay N; Śliwiński, Gerard
2014-01-01
Summary A brief description of research advances in the area of short-pulse-laser nanostructuring of thin Au films is followed by examples of experimental data and a discussion of our results on the characterization of structural and optical properties of gold nanostructures. These consist of partially spherical or spheroidal nanoparticles (NPs) which have a size distribution (80 ± 42 nm) and self-organization characterized by a short-distance order (length scale ≈140 nm). For the NP shapes produced, an observably broader tuning range (of about 150 nm) of the surface plasmon resonance (SPR) band is obtained by renewal thin film deposition and laser annealing of the NP array. Despite the broadened SPR bands, which indicate damping confirmed by short dephasing times not exceeding 4 fs, the self-organized Au NP structures reveal quite a strong enhancement of the optical signal. This was consistent with the near-field modeling and micro-Raman measurements as well as a test of the electrochemical sensing capability. PMID:25551038
NASA Astrophysics Data System (ADS)
Pavlov, Ihor; Tokel, Onur; Yavuz, Ozgun; Makey, Ghaith; Ilday, Omer; Omer Ilday Team
Laser Induced Periodic Surface Structuring (LIPSS) is one of the most prominent directions in laser-material interaction due to both practical and theoretical importance, especially after the discovery of Nonlinear Laser Lithography (NLL), which opens new area for industrial application of LIPSS as an effective tool for controllable, highly ordered large area nanostructuring. LIPSS appear on the surface under laser beam in the form of periodical lines. The LIPSS, that appear perpendicular to laser polarization are called ``normal'', in contrast to ``anomalous'' LIPSS appearing parallel to the polarization. Although, NLL technique was already demonstrated for ``normal'' and ``anomalous'' LIPSS separately, up to now, there is no clear understanding of switching mechanism between these two modes. In presented paper we have shown that the mechanism relies on interplay between two feedbacks: long range, low intensity dipole-like scattering of light along the surface, and short range, high intensity plasmon-polariton wave. For the first time, we are able to create both types of LIPSS on the same surface by controlling these two feedbacks, obtaining highly-ordered large-area structured patterns in both modes.
Wang, Shujun; Sun, Yue; Wang, Jinrong; Wang, Shuo; Copeland, Les
2016-02-01
The molecular disassembly of starch during thermal processing is a major determinant for the susceptibility of starch to enzymatic digestion. In the present study, the effects of thermal processing on the disassembly of the granular structure and the in vitro enzymatic digestibility of rice and lotus starches were investigated. After heating at 50 °C, rice and lotus starches did not show significant changes in granular morphology, long-range crystallinity and short-range molecular order. As the temperature increased to 60 °C, rice starch underwent a partial gelatinization followed by an incomplete disruption of granular morphology, crystallites and molecular order. In contrast, lotus starch was almost completely gelatinized at 60 °C. At 70 °C or higher, both starches were fully gelatinized with complete disruption of the micro and macro structures. Our results show that gelatinization greatly increased the in vitro enzymatic digestibility of both starches, but that the degree of disassembly of the starch structure during thermal processing was not a major determinant of the digestibility of gelatinized starch.
Correlations between dynamics and atomic structures in Cu64.5Zr35.5 metallic glass
NASA Astrophysics Data System (ADS)
Wang, C. Z.; Zhang, Y.; Zhang, F.; Mendelev, M. I.; Kramer, M. J.; Ho, K. M.
2015-03-01
The atomic structure of Cu-Zr metallic glasses (MGs) has been widely accepted to be heterogeneous and dominated by icosahedral short range order (ISRO). However, the correlations between dynamics and atomic structures in Cu-Zr MGs remain an enigma. Using molecular dynamics (MD) simulations, we investigated the correlations between dynamics and atomic structures in Cu64.5Zr35.5 MG. The atomic structures are characterized using ISRO and the Bergman-type medium range order (BMRO). The simulation and analysis results show that the majority of the mobile atoms are not involved in ISRO or BMRO, indicating that the dynamical heterogeneity has a strong correlation to structural heterogeneity. Moreover, we found that the localized soft vibration modes below 1.0 THz are mostly concentrated on the mobile atoms. The diffusion was studied using the atomic trajectory collected in an extended time interval of 1.2 μs at 700 K in MD simulations. It was found that the long range diffusion in MGs is highly heterogeneous, which is confined to the liquid-like regions and strongly avoids the ISRO and the Bergman-type MRO. All These results clearly demonstrate strong correlations between dynamics (in terms of dynamical heterogeneity and diffusion) and atomic structures in Cu64.5Zr35.5 MGs. This work was supported by the U.S. Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering under the Contract No. DE-AC02-07CH11358.
NASA Astrophysics Data System (ADS)
Turnbull, Matthew J.; Vaccarello, Daniel; Yiu, Yun Mui; Sham, Tsun-Kong; Ding, Zhifeng
2016-11-01
Solar cell performance is most affected by the quality of the light absorber layer. For thin-film devices, this becomes a two-fold problem of maintaining a low-cost design with well-ordered nanocrystal (NC) structure. The use of Cu2ZnSnS4 (CZTS) NCs as the light absorber films forms an ideal low-cost design, but the quaternary structure makes it difficult to maintain a well-ordered layer without the use of high-temperature treatments. There is little understanding of how CZTS NC structures affect the photoconversion efficiency, the charge-carriers, and therefore the performance of the device manufactured from it. To examine these relationships, the measured photoresponse from the photo-generation of charge-carrier electron-hole pairs was compared against the crystal structure, as short-range and long-range crystal orders for the films. The photoresponse simplifies the electronic properties into three basic steps that can be associated with changes in energy levels within the band structure. These changes result in the formation of barriers to charge-carrier flow. The extent of these barriers was determined using synchrotron-based X-ray absorbance fine structure to probe the individual metal centers in the film, and comparing these to molecular simulations of the ideal extended x-ray absorbance fine structure scattering. This allowed for the quantification of bond lengths, and thus an interpretation of the distortions in the crystal lattice. The various characteristics of the photoresponse were then correlated to the crystallographic order and used to gain physical insight into barriers to charge-carriers in the bulk and surface regions of CZTS films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perevalova, Olga; Konovalova, Elena, E-mail: knv123@yandex.ru; Koneva, Nina
2016-01-15
The grain boundary structure of the Ni{sub 3}(Fe,Cr) alloy is studied in states with a short and long-range order formed at the phase transition A1→L1{sub 2}. It is found that the new boundaries of general and special types are formed during an ordering annealing, wherein the special boundaries share increases. The spectrum of special boundaries is changed due to decreasing of ∑3 boundary share. It leads to weakening of the texture in the alloy with atomic long-range order. The features of change of the special boundaries spectrum at the phase transition A1→L1{sub 2} in the Ni{sub 3}(Fe,Cr) alloy are determinedmore » by decreasing of the stacking fault energy and the atomic mean square displacement at the chromium doping.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helm, T.; Valdivia, P. N.; Bourret-Courchesne, E.
In this study, e performed resistance measurements onmore » $$\\text{F}{{\\text{e}}_{1+\\delta -x}}$$ Cu x Te with $${{x}_{\\text{EDX}}}\\leqslant 0.06$$ in the presence of in-plane applied magnetic fields, revealing a resistance anisotropy that can be induced at a temperature far below the structural and magnetic zero-field transition temperatures. The observed resistance anisotropy strongly depends on the field orientation with respect to the crystallographic axes, as well as on the field-cooling history. Our results imply a correlation between the observed features and the low-temperature magnetic order. Hysteresis in the angle-dependence indicates a strong pinning of the magnetic order within a temperature range that varies with the Cu content. The resistance anisotropy vanishes at different temperatures depending on whether an external magnetic field or a remnant field is present: the closing temperature is higher in the presence of an external field. For $${{x}_{\\text{EDX}}}=0.06$$ the resistance anisotropy closes above the structural transition, at the same temperature at which the zero-field short-range magnetic order disappears and the sample becomes paramagnetic. Finally, we suggest that under an external magnetic field the resistance anisotropy mirrors the magnetic order parameter. We discuss similarities to nematic order observed in other iron pnictide materials.« less
Berger, Or; Adler-Abramovich, Lihi; Levy-Sakin, Michal; Grunwald, Assaf; Liebes-Peer, Yael; Bachar, Mor; Buzhansky, Ludmila; Mossou, Estelle; Forsyth, V Trevor; Schwartz, Tal; Ebenstein, Yuval; Frolow, Felix; Shimon, Linda J W; Patolsky, Fernando; Gazit, Ehud
2015-04-01
The two main branches of bionanotechnology involve the self-assembly of either peptides or DNA. Peptide scaffolds offer chemical versatility, architectural flexibility and structural complexity, but they lack the precise base pairing and molecular recognition available with nucleic acid assemblies. Here, inspired by the ability of aromatic dipeptides to form ordered nanostructures with unique physical properties, we explore the assembly of peptide nucleic acids (PNAs), which are short DNA mimics that have an amide backbone. All 16 combinations of the very short di-PNA building blocks were synthesized and assayed for their ability to self-associate. Only three guanine-containing di-PNAs-CG, GC and GG-could form ordered assemblies, as observed by electron microscopy, and these di-PNAs efficiently assembled into discrete architectures within a few minutes. The X-ray crystal structure of the GC di-PNA showed the occurrence of both stacking interactions and Watson-Crick base pairing. The assemblies were also found to exhibit optical properties including voltage-dependent electroluminescence and wide-range excitation-dependent fluorescence in the visible region.
Large Deviations in Weakly Interacting Boundary Driven Lattice Gases
NASA Astrophysics Data System (ADS)
van Wijland, Frédéric; Rácz, Zoltán
2005-01-01
One-dimensional, boundary-driven lattice gases with local interactions are studied in the weakly interacting limit. The density profiles and the correlation functions are calculated to first order in the interaction strength for zero-range and short-range processes differing only in the specifics of the detailed-balance dynamics. Furthermore, the effective free-energy (large-deviation function) and the integrated current distribution are also found to this order. From the former, we find that the boundary drive generates long-range correlations only for the short-range dynamics while the latter provides support to an additivity principle recently proposed by Bodineau and Derrida.
Directing self-assembly of gold nanoparticles in diblock copolymer scaffold
NASA Astrophysics Data System (ADS)
Li, Qifang; He, Jinbo; Glogowski, Elizabeth; Emrick, Todd; Russell, Thomas
2007-03-01
A versatile hierarchical approach for directing self -assembly of gold nanostructures with size 2-3nm in diblock copolymer scaffolds is found. Diblock copolymer polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) is used to form a regular scaffold of highly anisotropic, stripe-like domains, and controlled differential wetting by dichloromethane and thermal annealing guides gold nanoparticles with half hydrophilic ligand to aggregate selectively along the scaffold, producing highly organized metal nanostructures. In as-cast block-copolymer and gold nanoparticles thin films, micelle structure and gold nanoparticles random distribution on scaffold are typically observed. However, samples annealed in dichloromethane exhibit well-defined short-range ordered nanostructure with gold nanoparticles located at the interface of PS and P2VP nanoscale domain. After annealing at 170 C, the gold nanoparticles at interface migrated into the middle of P2VP phase and exhibited long-range ordered hierarchical structures. Synergistic interactions between the gold nanoparticles and the PS-b-P2VP caused an orientation of the microdomains normal to the film surface.
Clustering and assembly dynamics of a one-dimensional microphase former.
Hu, Yi; Charbonneau, Patrick
2018-05-23
Both ordered and disordered microphases ubiquitously form in suspensions of particles that interact through competing short-range attraction and long-range repulsion (SALR). While ordered microphases are more appealing materials targets, understanding the rich structural and dynamical properties of their disordered counterparts is essential to controlling their mesoscale assembly. Here, we study the disordered regime of a one-dimensional (1D) SALR model, whose simplicity enables detailed analysis by transfer matrices and Monte Carlo simulations. We first characterize the signature of the clustering process on macroscopic observables, and then assess the equilibration dynamics of various simulation algorithms. We notably find that cluster moves markedly accelerate the mixing time, but that event chains are of limited help in the clustering regime. These insights will inspire further study of three-dimensional microphase formers.
Atomic force microscopy of hydrated phosphatidylethanolamine bilayers.
Zasadzinski, J A; Helm, C A; Longo, M L; Weisenhorn, A L; Gould, S A; Hansma, P K
1991-01-01
We present images of the polar or headgroup regions of bilayers of dimyristoyl-phosphatidylethanolamine (DMPE), deposited by Langmuir-Blodgett deposition onto mica substrates at high surface pressures and imaged under water at room temperature with the optical lever atomic force microscope. The lattice structure of DMPE is visualized with sufficient resolution that the location of individual headgroups can be determined. The forces are sufficiently small that the same area can be repeatedly imaged with a minimum of damage. The DMPE molecules in the bilayer appear to have relatively good long-range orientational order, but rather short-range and poor positional order. These results are in good agreement with x-ray measurements of unsupported lipid monolayers on the water surface, and with electron diffraction of adsorbed monolayers. Images FIGURE 1 FIGURE 2 PMID:2049529
The nuclear contacts and short range correlations in nuclei
NASA Astrophysics Data System (ADS)
Weiss, R.; Cruz-Torres, R.; Barnea, N.; Piasetzky, E.; Hen, O.
2018-05-01
Atomic nuclei are complex strongly interacting systems and their exact theoretical description is a long-standing challenge. An approximate description of nuclei can be achieved by separating its short and long range structure. This separation of scales stands at the heart of the nuclear shell model and effective field theories that describe the long-range structure of the nucleus using a mean-field approximation. We present here an effective description of the complementary short-range structure using contact terms and stylized two-body asymptotic wave functions. The possibility to extract the nuclear contacts from experimental data is presented. Regions in the two-body momentum distribution dominated by high-momentum, close-proximity, nucleon pairs are identified and compared to experimental data. The amount of short-range correlated (SRC) nucleon pairs is determined and compared to measurements. Non-combinatorial isospin symmetry for SRC pairs is identified. The obtained one-body momentum distributions indicate dominance of SRC pairs above the nuclear Fermi-momentum.
Ramachandran, Pradeep L; Lovett, Janet E; Carl, Patrick J; Cammarata, Marco; Lee, Jae Hyuk; Jung, Yang Ouk; Ihee, Hyotcherl; Timmel, Christiane R; van Thor, Jasper J
2011-06-22
The signaling state of the photoactive yellow protein (PYP) photoreceptor is transiently developed via isomerization of its blue-light-absorbing chromophore. The associated structural rearrangements have large amplitude but, due to its transient nature and chemical exchange reactions that complicate NMR detection, its accurate three-dimensional structure in solution has been elusive. Here we report on direct structural observation of the transient signaling state by combining double electron electron resonance spectroscopy (DEER), NMR, and time-resolved pump-probe X-ray solution scattering (TR-SAXS/WAXS). Measurement of distance distributions for doubly spin-labeled photoreceptor constructs using DEER spectroscopy suggests that the signaling state is well ordered and shows that interspin-label distances change reversibly up to 19 Å upon illumination. The SAXS/WAXS difference signal for the signaling state relative to the ground state indicates the transient formation of an ordered and rearranged conformation, which has an increased radius of gyration, an increased maximum dimension, and a reduced excluded volume. Dynamical annealing calculations using the DEER derived long-range distance restraints in combination with short-range distance information from (1)H-(15)N HSQC perturbation spectroscopy give strong indication for a rearrangement that places part of the N-terminal domain in contact with the exposed chromophore binding cleft while the terminal residues extend away from the core. Time-resolved global structural information from pump-probe TR-SAXS/WAXS data supports this conformation and allows subsequent structural refinement that includes the combined energy terms from DEER, NMR, and SAXS/WAXS together. The resulting ensemble simultaneously satisfies all restraints, and the inclusion of TR-SAXS/WAXS effectively reduces the uncertainty arising from the possible spin-label orientations. The observations are essentially compatible with reduced folding of the I(2)' state (also referred to as the 'pB' state) that is widely reported, but indicates it to be relatively ordered and rearranged. Furthermore, there is direct evidence for the repositioning of the N-terminal region in the I(2)' state, which is structurally modeled by dynamical annealing and refinement calculations.
NASA Astrophysics Data System (ADS)
Mergelsberg, S. T.; Ulrich, R. N.; Michel, F. M.; Dove, P. M.
2016-12-01
Calcium carbonate minerals are an essential component in the exoskeletons of crustaceans and mollusks. The onset of exoskeleton mineralization includes the precipitation of amorphous calcium carbonate (ACC) as a reactive intermediate that later transforms to produce diverse structures. Despite the importance of ACC as a critical phase during skeleton formation, the chemical and physical properties are not well characterized at conditions that approximate biological environments. Of particular interest are the solubility of ACC, the short-range structure at the time of formation, and the evolution of ACC structure to final products. Recent advances showing the widespread occurrence of multistep pathways to mineralization in biological and geological settings (De Yoreo et al., 2015) underline the importance of understanding amorphous intermediates. Using quantitative laboratory techniques developed by our research group (Blue et al., 2013; Blue and Dove, 2015; Blue et al., in press), this experimental study quantifies the solubility of ACC in parallel with the physical characterization of the corresponding structure. We measured ACC solubility at specific time points during the precipitation and during its subsequent evolution under the mild pH conditions that approximate biological and environmental conditions. In parallel experiments, structural data were collected from in situ pair distribution function (PDF) analyses were conducted to follow the evolution of individual samples from initial precipitation to final product. The measurements are leading to a quantitative solubility function for ACC with variable Mg contents and an x-ray based understanding of ACC structure in the same particles. We are also finding temporal changes in the short-range order of ACC after precipitation and this order is dependent upon Mg content. Moreover, the data show Mg distribution through the ACC particles is dependent upon total alkalinity. Insights from this study hold promise for better understanding the nature of the initial ACC that forms and factors that influence its structural evolution to final products.
Frequency effects on charge ordering in Y0.5Ca0.5MnO3 by impedance spectroscopy
NASA Astrophysics Data System (ADS)
Sarwar, Tuba; Qamar, Afzaal; Nadeem, Muhammad
2015-02-01
In this work, structural and electrical properties of Y0.5Ca0.5MnO3 are investigated by employing X-ray diffraction and impedance spectroscopy, respectively. Applied ac electric field showed the charge ordering transition temperature around 265 K and below this temperature the heteromorphic behavior of the sample is discussed in the proximity of TCO. With frequency effects the volume of robust charge orbital ordering (COO) domains diminishes due to different competing phases along with Jahn Teller distortions. Comprehensive melting and collapse of charge orbital ordering occurs below TN(125 K), where a colossal drop in the value of impedance is observed. The change in profile of modulus plane plots determines the spreading of relaxation time of intermingled phases. Hopping mechanism is elaborated in terms of strong electron phonon coupling. Variable range hopping model and Arrhenius model are used to discuss the short and long range hopping between Mn3+ and Mn4+ channels assessing the activation energy Ea.
Magnetic order tuned by Cu substitution in Fe 1.1–zCu zTe
Wen, Jinsheng; Xu, Zhijun; Xu, Guangyong; ...
2012-07-02
We study the effects of Cu substitution in Fe₁.₁Te, the nonsuperconducting parent compound of the iron-based superconductor, Fe₁₊ yTe₁₋ xSe x, utilizing neutron scattering techniques. It is found that the structural and magnetic transitions, which occur at ~60 K without Cu, are monotonically depressed with increasing Cu content. By 10% Cu for Fe, the structural transition is hardly detectable, and the system becomes a spin glass below 22 K, with a slightly incommensurate ordering wave vector of (0.5–δ, 0, 0.5) with δ being the incommensurability of 0.02, and correlation length of 12 Å along the a axis and 9 Åmore » along the c axis. With 4% Cu, both transition temperatures are at 41 K, though short-range incommensurate order at (0.42, 0, 0.5) is present at 60 K. With further cooling, the incommensurability decreases linearly with temperature down to 37 K, below which there is a first-order transition to a long-range almost-commensurate antiferromagnetic structure. A spin anisotropy gap of 4.5 meV is also observed in this compound. Our results show that the weakly magnetic Cu has a large effect on the magnetic correlations; it is suggested that this is caused by the frustration of the exchange interactions between the coupled Fe spins.« less
NASA Astrophysics Data System (ADS)
Kaseman, Derrick Charles
Chalcogenide glasses constitute an important class of materials that are sulfides, selenides or tellurides of group IV and/or V elements, namely Ge, As, P and Si with minor concentrations of other elements such as Ga, Sb, In. Because of their infrared transparency that can be tuned by changing chemistry and can be actively altered by exposure to band gap irradiation, chalcogenide glasses find use in passive and active optical devices for applications in the areas of photonics, remote sensing and memory technology. Therefore, it is important to establish predictive models of structure-property relationships for these materials for optimization of their physical properties for various applications. Structural elucidation of chalcogenide glasses is experimentally challenging and in order to make predictive structural models, structural units at both short and intermediate -range length scales must be identified and quantified. Nuclear Magnetic Resonance (NMR) spectroscopy is an element-specific structural probe that is uniquely suited for this task, but resolution and sensitivity issues have severely limited the applications of such techniques in the past. The recent development of multi-dimensional solid-state NMR techniques, such as Phase Adjusted Spinning Sidebands (PASS) and Magic Angle Turning (MAT) can potentially alleviate such issues. In this study novel two-dimensional, high-resolution 77Se and 125Te MATPASS NMR spectroscopic techniques are utilized to elucidate quantitatively the compositional evolution of the short- and intermediate- range atomic structure in three binary chalcogenide glass-forming systems, namely: GexSe100-x, AsxSe100-x , and AsxTe100-x. The spectroscopic results provide unambiguous site speciation and quantification for short- and intermediate-range structural motifs present in these glasses. In turn, for all systems, robust structural models and the corresponding structure-property relationships are successfully established as a function of composition. The results indicate that the physical properties are intimately tied to the topology and chemical order present in each system. Finally, a dynamic version of the two-dimensional 31P PASS NMR spectroscopy is used to study the molecular motion in a supercooled chalcogenide liquid of composition P5Se3. The results clearly display the presence of isotropic rotational reorientation of the constituent molecules at timescales significantly decoupled from that of the structural relaxation near and above Tg. This behavior is atypical of conventional molecular glasses in organic systems in which rotational and translational dynamics remain coupled near Tg. When taken together with previous reports on the dynamics of other globular inorganic molecules, the results support the existence of a "plastic glass" phase where the molecules perform rapid rotation without significant translation.
Comparative study of the magnetic properties of La3Ni2B‧O9 for B‧ = Nb, Taor Sb
NASA Astrophysics Data System (ADS)
Chin, Chun-Mann; Battle, Peter D.; Blundell, Stephen J.; Hunter, Emily; Lang, Franz; Hendrickx, Mylène; Paria Sena, Robert; Hadermann, Joke
2018-02-01
Polycrystalline samples of La3Ni2NbO9 and La3Ni2TaO9 have been characterised by X-ray and neutron diffraction, electron microscopy, magnetometry and muon spin relaxation (μSR); the latter technique was also applied to La3Ni2SbO9. On the length scale of a neutron diffraction experiment, the six-coordinate sites of the monoclinic perovskite structure are occupied in a 1:1 ordered manner by Ni and a random ⅓Ni/⅔B‧ mixture. Electron microscopy demonstrated that this 1:1 ordering is maintained over microscopic distances, although diffuse scattering indicative of short-range ordering on the mixed site was observed. No magnetic Bragg scattering was observed in neutron diffraction patterns collected from La3Ni2B‧O9 (B‧ = Nb or Ta) at 5 K although in each case μSR identified the presence of static spins below 30 K. Magnetometry showed that La3Ni2NbO9 behaves as a spin glass below 29 K but significant short-range interactions are present in La3Ni2TaO9 below 85 K. The contrasting properties of these compounds are discussed in terms of their microstructure.
Short-range correlations control the G/K and Poisson ratios of amorphous solids and metallic glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaccone, Alessio; Terentjev, Eugene M.
2014-01-21
The bulk modulus of many amorphous materials, such as metallic glasses, behaves nearly in agreement with the assumption of affine deformation, namely that the atoms are displaced just by the amount prescribed by the applied strain. In contrast, the shear modulus behaves as for nonaffine deformations, with additional displacements due to the structural disorder which induce a marked material softening to shear. The consequence is an anomalously large ratio of the bulk modulus to the shear modulus for disordered materials characterized by dense atomic packing, but not for random networks with point atoms. We explain this phenomenon with a microscopicmore » derivation of the elastic moduli of amorphous solids accounting for the interplay of nonaffinity and short-range particle correlations due to excluded volume. Short-range order is responsible for a reduction of the nonaffinity which is much stronger under compression, where the geometric coupling between nonaffinity and the deformation field is strong, whilst under shear this coupling is weak. Predictions of the Poisson ratio based on this model allow us to rationalize the trends as a function of coordination and atomic packing observed with many amorphous materials.« less
NASA Astrophysics Data System (ADS)
Donner, Tobias
2015-03-01
A Bose-Einstein condensate whose motional degrees of freedom are coupled to a high-finesse optical cavity via a transverse pump beam constitutes a dissipative quantum many-body system with long range interactions. These interactions can induce a structural phase transition from a flat to a density-modulated state. The transverse pump field simultaneously represents a probe of the atomic density via cavity- enhanced Bragg scattering. By spectrally analyzing the light field leaking out of the cavity, we measure non-destructively the dynamic structure factor of the fluctuating atomic density while the system undergoes the phase transition. An observed asymmetry in the dynamic structure factor is attributed to the coupling to dissipative baths. Critical exponents for both sides of the phase transition can be extracted from the data. We further discuss our progress in adding strong short-range interactions to this system, in order to explore Bose-Hubbard physics with cavity-mediated long-range interactions and self-organization in lower dimensions.
Computer simulations of disordering kinetics in irradiated intermetallic compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spaczer, M.; Caro, A.; Victoria, M.
1994-11-01
Molecular-dynamics computer simulations of collision cascades in intermetallic Cu[sub 3]Au, Ni[sub 3]Al, and NiAl have been performed to study the nature of the disordering processes in the collision cascade. The choice of these systems was suggested by the quite accurate description of the thermodynamic properties obtained using embedded-atom-type potentials. Since melting occurs in the core of the cascades, interesting effects appear as a result of the superposition of the loss (and subsequent recovery) of the crystalline order and the evolution of the chemical order, both processes being developed on different time scales. In our previous simulations on Ni[sub 3]Al andmore » Cu[sub 3]Au [T. Diaz de la Rubia, A. Caro, and M. Spaczer, Phys. Rev. B 47, 11 483 (1993)] we found a significant difference between the time evolution of the chemical short-range order (SRO) and the crystalline order in the cascade core for both alloys, namely the complete loss of the crystalline structure but only partial chemical disordering. Recent computer simulations in NiAl show the same phenomena. To understand these features we study the liquid phase of these three alloys and present simulation results concerning the dynamical melting of small samples, examining the atomic mobility, the relaxation time, and the saturation value of the chemical short-range order. An analytic model for the time evolution of the SRO is given.« less
Short-Arc Analysis of Intersatellite Tracking Data in a Gravity Mapping Mission
NASA Technical Reports Server (NTRS)
Rowlands, David D.; Ray, Richard D.; Chinn, Douglas S.; Lemoine, Frank G.; Smith, David E. (Technical Monitor)
2001-01-01
A technique for the analysis of low-low intersatellite range-rate data in a gravity mapping mission is explored. The technique is based on standard tracking data analysis for orbit determination but uses a spherical coordinate representation of the 12 epoch state parameters describing the baseline between the two satellites. This representation of the state parameters is exploited to allow the intersatellite range-rate analysis to benefit from information provided by other tracking data types without large simultaneous multiple data type solutions. The technique appears especially valuable for estimating gravity from short arcs (e.g., less than 15 minutes) of data. Gravity recovery simulations which use short arcs are compared with those using arcs a day in length. For a high-inclination orbit, the short-arc analysis recovers low-order gravity coefficients remarkably well, although higher order terms, especially sectorial terms, are less accurate. Simulations suggest that either long or short arcs of GRACE data are likely to improve parts of the geopotential spectrum by orders of magnitude.
The influence of magnetic order on the magnetoresistance anisotropy of Fe 1 + δ–xCu xTe
Helm, T.; Valdivia, P. N.; Bourret-Courchesne, E.; ...
2017-05-17
In this study, e performed resistance measurements onmore » $$\\text{F}{{\\text{e}}_{1+\\delta -x}}$$ Cu x Te with $${{x}_{\\text{EDX}}}\\leqslant 0.06$$ in the presence of in-plane applied magnetic fields, revealing a resistance anisotropy that can be induced at a temperature far below the structural and magnetic zero-field transition temperatures. The observed resistance anisotropy strongly depends on the field orientation with respect to the crystallographic axes, as well as on the field-cooling history. Our results imply a correlation between the observed features and the low-temperature magnetic order. Hysteresis in the angle-dependence indicates a strong pinning of the magnetic order within a temperature range that varies with the Cu content. The resistance anisotropy vanishes at different temperatures depending on whether an external magnetic field or a remnant field is present: the closing temperature is higher in the presence of an external field. For $${{x}_{\\text{EDX}}}=0.06$$ the resistance anisotropy closes above the structural transition, at the same temperature at which the zero-field short-range magnetic order disappears and the sample becomes paramagnetic. Finally, we suggest that under an external magnetic field the resistance anisotropy mirrors the magnetic order parameter. We discuss similarities to nematic order observed in other iron pnictide materials.« less
First-principles study on phase transition and ferroelectricity in lithium niobate and tantalate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toyoura, Kazuaki, E-mail: toyoura@numse.nagoya-u.ac.jp; Ohta, Masataka; Nakamura, Atsutomo
2015-08-14
The phase transitions and ferroelectricity of LiNbO{sub 3} and LiTaO{sub 3} have been investigated theoretically from first principles. The phonon analyses and the molecular dynamics simulations revealed that the ferroelectric phase transition is not conventional displacive type but order-disorder type with strong correlation between cation displacements. According to the evaluated potential energy surfaces around the paraelectric structures, the large difference in ferroelectricity between the two oxides results from the little difference in short-range interionic interaction between Nb-O and Ta-O. As the results of the crystal orbital overlap population analyses, the different short-range interaction originates from the difference in covalency betweenmore » Nb4d-O2p and Ta5d-O2p orbitals, particularly d{sub xz}-p{sub x}/d{sub yz}-p{sub y} orbitals (π orbitals), from the electronic point of view.« less
P-T phase diagram and structural transformations of molten P2O5 under pressure
NASA Astrophysics Data System (ADS)
Brazhkin, V. V.; Katayama, Y.; Lyapin, A. G.; Saitoh, H.
2014-03-01
The P2O5 compound is an archetypical glass-forming oxide with a record high hygroscopicity, which makes its study extremely difficult. We present the in situ x-ray diffraction study of the pressure-temperature phase diagram of P2O5 and, particularly, of the liquid P2O5 structure under high pressure up to 10 GPa. Additionally, quenching from the melt has been used to extend the melting curve up to 15 GPa. We found that structural transformation in the liquid P2O5 under pressure is unique and includes three stages: first, the disappearance of the intermediate range order of the melt together with a slow increase in the average first-coordination number
Development of Coarse Grained Models for Long Chain Alkanes
NASA Astrophysics Data System (ADS)
Gyawali, Gaurav; Sternfield, Samuel; Hwang, In Chul; Rick, Steven; Kumar, Revati; Rick Group Team; Kumar Group Team
Modeling aggregation in aqueous solution is a challenge for molecular simulations as it involves long time scales, a range of length scales, and the correct balance of hydrophobic and hydrophilic interactions. We have developed a coarse-grained model fast enough for the rapid testing of molecular structures for their aggregation properties. This model, using the Stillinger-Weber potential, achieves efficiency through a reduction in the number of interaction sites and the use of short-ranged interactions. The model can be two to three orders of magnitude more efficient than conventional all atom simulations, yet through a careful parameterization process and the use of many-body interactions can be remarkably accurate. We have developed models for long chain alkanes in water that reproduce the thermodynamics and structure of water-alkane and liquid alkane systems.
Structure and Stability of One-Dimensional Detonations in Ethylene-Air Mixtures
NASA Technical Reports Server (NTRS)
Yungster, S.; Radhakrishnan, K.; Perkins, High D. (Technical Monitor)
2003-01-01
The propagation of one-dimensional detonations in ethylene-air mixtures is investigated numerically by solving the one-dimensional Euler equations with detailed finite-rate chemistry. The numerical method is based on a second-order spatially accurate total-variation-diminishing scheme and a point implicit, first-order-accurate, time marching algorithm. The ethylene-air combustion is modeled with a 20-species, 36-step reaction mechanism. A multi-level, dynamically adaptive grid is utilized, in order to resolve the structure of the detonation. Parametric studies over an equivalence ratio range of 0.5 less than phi less than 3 for different initial pressures and degrees of detonation overdrive demonstrate that the detonation is unstable for low degrees of overdrive, but the dynamics of wave propagation varies with fuel-air equivalence ratio. For equivalence ratios less than approximately 1.2 the detonation exhibits a short-period oscillatory mode, characterized by high-frequency, low-amplitude waves. Richer mixtures (phi greater than 1.2) exhibit a low-frequency mode that includes large fluctuations in the detonation wave speed; that is, a galloping propagation mode is established. At high degrees of overdrive, stable detonation wave propagation is obtained. A modified McVey-Toong short-period wave-interaction theory is in excellent agreement with the numerical simulations.
Structure evolution and thermoelectric properties of carbonized polydopamine thin films
Li, Haoqi; Aulin, Yaroslav V.; Frazer, Laszlo; ...
2017-02-13
Carbonization of nature-inspired polydopamine can yield thin films with high electrical conductivity. Understanding of the structure of carbonized PDA (cPDA) is therefore highly desired. In this study, neutron diffraction, Raman spectroscopy, and other techniques indicate that cPDA samples are mainly amorphous with some short-range ordering and graphite-like structure that emerges with increasing heat treatment temperature. The electrical conductivity and the Seebeck coefficient show different trends with heat treatment temperature, while the thermal conductivity remains insensitive. Finally, the largest room-temperature ZT of 2 × 10 –4 was obtained on samples heat-treated at 800 °C, which is higher than that of reducedmore » graphene oxide.« less
Evolution of structural and magnetic properties of amorphous CoFeB film with thermal annealing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Ranjeeta; Gupta, Ajay; Gupta, Mukul
2013-08-14
Evolution of structural and magnetic properties of amorphous Co{sub 68}Fe{sub 14}B{sub 18} thin film with thermal annealing has been studied. Initially, the film exhibits a structural relaxation as evidenced by annihilation of excess free volume and an increase in topological short range order. Annealing at 473 K results in precipitation of primary phase followed by formation of boride phase at a still higher temperature of 598 K. Iron preferentially precipitates out in the primary phase, resulting in the formation of bcc Co{sub 58}Fe{sub 41}. This suggests an affinity of Co towards B. Such affinity between Co and B is evidencedmore » even in the as-deposited film, using hard x-ray photoelectron spectroscopy (HAXPES) measurements. As-deposited film exhibits an in-plane uniaxial magnetic anisotropy which disappears at a temperature well beyond crystallization temperature, suggesting that the origin of anisotropy is mainly a chemical short range order in the system. Variation in the coercivity with thermal annealing can be understood in terms of random anisotropy model. Precise measurement of Fe self-diffusion using neutron reflectivity shows that diffusion length associated with annihilation of excess free volume in the film is about 0.5 nm. This agrees with the length scale of structural fluctuations in amorphous alloys. Secondary ion mass spectrometry measurements show that thermal annealing results in depletion of B in the region of the interface with the substrate, with associated faster Fe diffusion in this region. This faster diffusion of Fe may be a possible cause of preferential crystallization of the film in the interfacial region as seen in some earlier studies.« less
Role of Short-Range Chemical Ordering in (GaN) 1–x (ZnO) x for Photodriven Oxygen Evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dennis P.; Neuefeind, Joerg C.; Koczkur, Kallum M.
(GaN)1–x(ZnO)x (GZNO) is capable of visible-light driven water splitting, but its bandgap at x ≤ 0.15 (>2.7 eV) results in poor visible-light absorption. Unfortunately, methods to narrow its bandgap by incorporating higher ZnO concentrations are accompanied by extensive Urbach tailing near the absorption-edge, which is indicative of structural disorder or chemical inhomogeneities. We evaluated whether this disorder is intrinsic to the bond-length distribution in GZNO or is a result of defects introduced from the loss of Zn during nitridation. Here, the synthesis of GZNO derived from layered double hydroxide (LDH) precursors is described which minimizes Zn loss and chemical inhomogeneitiesmore » and enhances visible-light absorption. The average and local atomic structures of LDH-derived GZNO were investigated using X-ray and neutron scattering and are correlated with their oxygen evolution rates. An isotope-contrasted neutron-scattering experiment was conducted in conjunction with reverse Monte Carlo (RMC) simulations. We showed that a bond-valence bias in the RMC refinements reproduces the short-range ordering (SRO) observed in structure refinements using isotope-contrasted neutron data. The findings suggest that positional disorder of cation–anion pairs in GZNO partially arises from SRO and influences local bond relaxations. Furthermore, particle-based oxygen evolution reactions (OERs) in AgNO3 solution reveal that the crystallite size of GZNO correlates more than positional disorder with oxygen evolution rate. These findings illustrate the importance of examining the local structure of multinary photocatalysts to identify dominant factors in particulate-based photodriven oxygen evolution.« less
Possible bicollinear nematic state with monoclinic lattice distortions in iron telluride compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, Christopher B.; Herbrych, Jacek W.; Dagotto, Elbio R.
2017-07-15
Here, iron telluride (FeTe) is known to display bicollinear magnetic order at low temperatures together with a monoclinic lattice distortion. Because the bicollinear order can involve two different wave vectors (π/2,π/2) and (π/2,–π/2), symmetry considerations allow for the possible stabilization of a nematic state with short-range bicollinear order coupled to monoclinic lattice distortions at a T S higher than the temperature T N where long-range bicollinear order fully develops. As a concrete example, the three-orbital spin-fermion model for iron telluride is studied with an additional coupling ˜λ 12 between the monoclinic lattice strain and an orbital-nematic order parameter with Bmore » 2g symmetry. Monte Carlo simulations show that with increasing ˜λ 12 the first-order transition characteristic of FeTe splits and bicollinear nematicity is stabilized in a (narrow) temperature range. In this new regime, the lattice is monoclinically distorted and short-range spin and orbital order breaks rotational invariance. A discussion of possible realizations of this exotic state is provided.« less
Magnetic order of intermetallic FeGa3 -yGey studied by μ SR and 57Fe Mössbauer spectroscopy
NASA Astrophysics Data System (ADS)
Munevar, J.; Cabrera-Baez, M.; Alzamora, M.; Larrea, J.; Bittar, E. M.; Baggio-Saitovitch, E.; Litterst, F. J.; Ribeiro, R. A.; Avila, M. A.; Morenzoni, E.
2017-03-01
Temperature-dependent magnetization, muon spin rotation, and 57Fe Mössbauer spectroscopy experiments performed on crystals of intermetallic FeGa3 -yGey (y =0.11 ,0.14 ,0.17 ,0.22 ,0.27 ,0.29 ,0.32 ) are reported. Whereas at y =0.11 even a sensitive magnetic microprobe such as μ SR does not detect magnetism, all other samples display weak ferromagnetism with a magnetic moment of up to 0.22 μB per Fe atom. As a function of doping and of temperature, a crossover from short-range to long-range magnetic order is observed, characterized by a broadly distributed spontaneous internal field. However, y =0.14 and 0.17 remain in the short-range-ordered state down to the lowest investigated temperature. The transition from short-range to long-range order appears to be accompanied by a change of the character of the spin fluctuations, which exhibit a spin-wave excitation signature in the long-range-order part of the phase diagram. Mössbauer spectroscopy for y =0.27 and 0.32 indicates that the internal field lies in the plane perpendicular to the crystallographic c axis. The field distribution and its evolution with doping suggest that the details of the Fe magnetic moment formation and the consequent magnetic state are determined not only by the dopant concentration, but also by the way the replacement of the Ga atoms surrounding the Fe is accomplished.
Short-range structure and cation bonding in calcium-aluminum metaphosphate glasses.
Schneider, J; Oliveira, S L; Nunes, L A O; Bonk, F; Panepucci, H
2005-01-24
Comprehension of short- and medium-range order of phosphate glasses is a topic of interest, due to the close relation between network structure and mechanical, thermal, and optical properties. In this work, the short-range structure of glasses (1 - x)Ca(PO(3))(2).xAl(PO(3))(3) with 0 < or = x < or = 0.47 was studied using solid-state nuclear magnetic resonance spectroscopy, Raman spectroscopy, density measurements, and differential scanning calorimetry. The bonding between a network modifier species, Al, and the network forming phosphate groups was probed using high-resolution nuclear magnetic resonance spectroscopy of (27)Al and (31)P. Changes in the compositional behavior of the density, glass transition temperature, PO(2) symmetric vibrations, and Al coordination number were verified at around x = 0.30. (31)P NMR spectra show the presence of phosphorus in Q(2) sites with nonbridging oxygens (NBOs) coordinated by Ca ions and also Q(2) sites with one NBO coordinated by Al (namely, Q(2)(1Al)). The changes in the properties as a function of x can be understood by considering the mean coordination number measured for Al and the formation of only Q(2) and Q(2)(1Al) species. It is possible to calculate that a network formed only by Q(2)(1Al) phosphates can just exist up to the upper limit of x = 0.48. Above this value, Q(2)(2Al) species should appear, imposing a major reorganization of the network. Above x = 0.30 the network undergoes a progressive reorganization to incorporate Al ions, maintaining the condition that only Q(2)(1Al) species are formed. These observations support the idea that bonding principles for cationic species inferred originally in binary phosphate glasses can also be extended to ternary systems.
NASA Astrophysics Data System (ADS)
Voegelin, A.; Frommer, J.; Vantelon, D.; Kaegi, R.; Hug, S. J.
2009-04-01
The oxidation of Fe(II) in water leads to the formation of Fe(III)-precipitates that strongly affect the fate of nutrients and contaminants in natural and engineered systems. Examples include the cycling of As in rice fields irrigated with As-rich groundwater or the treatment of drinking water for As removal. Knowledge of the types of Fe(III)-precipitates forming in such systems is essential for the quantitative modeling of nutrient and contaminant dynamics and for the optimization of water purification techniques on the basis of a mechanistic understanding of the relevant biogeochemical processes. In this study, we investigated the local coordination of Fe, P, and Ca in Fe(III)-precipitates formed by aeration of synthetic Fe(II)-containing groundwater with variable composition (pH 7, 2-30 mg/L Fe(II), 2-20 mg/L phosphate-P, 2-20 mg/L silicate-Si, 8 mM Na-bicarbonate or 2.5 mM Ca-&1.5 mM Mg-bicarbonate). After 4 hours of oxidation, Fe(III)-precipitates were collected on 0.2 µm nylon filters and dried. The precipitates were analyzed by Fe K-edge EXAFS (XAS beamline, ANKA, Germany) and by P and Ca K-edge XANES spectroscopy (LUCIA beamline, SLS, Switzerland). The Fe K-edge EXAFS spectra indicated that local Fe coordination in the precipitates systematically shifted with water composition. As long as water contained P, mainly short-range-ordered Fe(III)-phosphate formed (with molar P/Fe ~0.5). In the absence of P, Fe(III) precipitated as hydrous ferric oxide at high Si/Fe>0.5, as ferrihydrite at intermediate Si/Fe, and mainly as lepidocrocite at Si/Fe<0.2. Analysis of the EXAFS by shell-fitting indicated that Fe(III)-phosphates mainly contained mono- or oligomeric (edge- or corner-sharing) Fe and that the linkage between neighboring Fe(III)-octahedra changed from predominantly edge-sharing in Si-rich hydrous ferric oxide to edge- and corner-sharing in ferrihydrite. Electron microscopic data showed that changes in local precipitate structure were systematically reflected in particle morphology and SAED patterns. The P K-edge XANES spectra revealed that phosphate was bound to both Fe as well as Ca (if present). The Ca K-edge XANES spectra showed that the mode of Ca uptake by the Fe(III)-precipitates shifted from mainly adsorption at high Fe/P to coprecipitation at low Fe/P ratio. Despite oversaturation, neither calcite nor hydroxyapatite formed to a significant extent. The results from this study indicated that, depending on water composition, Fe(II) oxidation in natural waters leads to different types of short-range-ordered Fe(III)-phases. Since these phases are expected to differ in their effect on contaminant and nutrient dynamics, their specific physical and chemical properties warrant further research. Methodologically, this work demonstrated the usefulness of investigating the local structure of short-range-ordered precipitates along compositional gradients and by combining the element-selective information from different X-ray absorption edges.
Copper-tuned magnetic order and excitations in iron-based superconductors Fe1+yTe1-xSex
NASA Astrophysics Data System (ADS)
Wen, Jinsheng; Xu, Zhijun; Xu, Guangyong; Lumsden, Mark; Matsuda, Masaaki; Valdivia, Patrick; Bourret, Edith; Lee, Dunghai; Gu, Genda; Tranquada, John; Birgeneau, Robert
2012-02-01
We report neutron scattering results on the Cu-substitution effects in the iron-based superconductors, Fe1+yTe1-xSex. In the parent compound, it is found that Cu drives the low-temperature magnetic ground state from long-range commensurate antiferromagnetic order in Fe1.06TeCu0.04 to short-range incommensurate order in FeTeCu0.1. In the former sample, the structural and magnetic ordering temperature is 40 K; in FeTeCu0.1, the structural phase transition is not obvious and a transition to the spin-glass state is found at 22 K. Cu suppresses superconductivity in FeTe0.5Se0.5---Tc is reduced to 7 K with a 2% Cu doping, and no superconductivity is found in the 10% Cu-doped sample. In the meantime, the intensity and energy of the resonance mode are suppressed in the 2% Cu-doped sample, while there is no resonance in the non-superconducting sample. Besides, the low-temperature magnetic excitation spectra are distinct for these two samples, with the superconducting one having an ``hour-glass" shape and the other one having a ``waterfall" shape. Our results provide further insights on the interplay between magnetism and superconductivity in the iron-based superconductors.
Intricate Short-Range Ordering and Strongly Anisotropic Transport Properties of Li 1–x Sn 2+x As 2
Lee, Kathleen; Kaseman, Derrick; Sen, Sabyasachi; ...
2015-02-22
A new ternary compound, Li 1-xSn 2+xAs 2, 0.2 < x < 0.4, was synthesized via solid-state reaction of elements. The compound crystallizes in a layered structure in the Rmore » $$\\overline{3}m$$ space group (No. 166) with Sn-As layers separated by layers of jointly occupied Li/Sn. The Sn-As layers are comprised of Sn 3As 3 puckered hexagons in a chair conformation that share all edges. Li/Sn atoms in the interlayer space are surrounded by a regular As 6 octahedron. Thorough investigations by synchrotron x-ray and neutron powder diffraction indicate no long-range Li/Sn ordering. In contrast, local Sn/Li ordering was revealed by synergistic investigations via solid-state 6,7Li NMR spectroscopy, HR-TEM, and neutron and X-ray pair distribution function analyses. Due to their different chemical natures, Li and Sn atoms tend to segregate into Li-rich and Sn-rich regions creating substantial inhomogeneity on the nanoscale. Inhomogeneous local structure has high impact on the physical properties of the synthesized compounds: local Li/Sn ordering and multiple nanoscale interfaces result in unexpectedly low thermal conductivity and highly anisotropic resistivity in Li 1-xSn 2+xAs 2.« less
Amorphous diamond-structured photonic crystal in the feather barbs of the scarlet macaw
Yin, Haiwei; Dong, Biqin; Liu, Xiaohan; Zhan, Tianrong; Shi, Lei; Zi, Jian; Yablonovitch, Eli
2012-01-01
Noniridescent coloration by the spongy keratin in parrot feather barbs has fascinated scientists. Nonetheless, its ultimate origin remains as yet unanswered, and a quantitative structural and optical description is still lacking. Here we report on structural and optical characterizations and numerical simulations of the blue feather barbs of the scarlet macaw. We found that the sponge in the feather barbs is an amorphous diamond-structured photonic crystal with only short-range order. It possesses an isotropic photonic pseudogap that is ultimately responsible for the brilliant noniridescent coloration. We further unravel an ingenious structural optimization for attaining maximum coloration apparently resulting from natural evolution. Upon increasing the material refractive index above the level provided by nature, there is an interesting transition from a photonic pseudogap to a complete bandgap. PMID:22615350
Ferroelectrics under the Synchrotron Light: A Review.
Fuentes-Cobas, Luis E; Montero-Cabrera, María E; Pardo, Lorena; Fuentes-Montero, Luis
2015-12-30
Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO₃ perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr) appear as promising candidates. Understanding the structure-function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS) and X-ray absorption fine structure (XAFS) experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described.
Wang, Shujun; Li, Peiyan; Yu, Jinglin; Guo, Peng; Wang, Shuo
2017-09-01
The structural and functional properties of starches from three rice grains differing in amylose content (19.9, 13.4 and 0.8% for Japonica, Indica hybrid and waxy rice, respectively) were investigated using a range of characterization methods Indica hybrid starch (IHS) had the highest proportion of intermediate (DP 13-24) and long branch chains (DP≥37) and the lowest proportion of short branch chains (DP 6-12), whereas the opposite results were observed for Japonica starch (JS). The results for waxy rice starch (WS) were between those of IHS and JS. Rice starches showed a typical A-type X-ray diffraction pattern with the relative crystallinity ranging from 33.4% for JS to 39.4% for WS. Significant differences were observed in lamellar distance and short-range molecular order characterized by IR ratio of absorbances at 1047/1022cm -1 and full width of half maximum (FWHM) of the band at 480cm -1 . WS showed a higher swelling power and a lower close packing concentration at temperatures from 60 to 90°C. The lower peak viscosity of WS was attributed to the formation of less rigid swollen granules at a concentrated regime. WS showed a higher in vitro digestibility compared with IHS and JS. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Barton, Phillip; Seshadri, Ram; Knöller, Andrea; Rosseinsky, Matthew
2012-02-01
We have prepared the complete delafossite solid solution between diamagnetic CuAlO2 and the t2g^3 frustrated antiferromagnet CuCrO2. The crystal structure and magnetism were studied with powder x-ray diffraction and magnetometry. The unit cell parameters follow the V'egard law and μeff is equal to the Cr^3+ spin-only S = 3/2 value. θCW is negative and its magnitude increases with Cr substitution. For dilute Cr compositions, JBB was estimated by mean-field theory to be 3.0,eV. Despite the sizable θCW, long-range antiferromagnetic order does not develop until x is almost 1, and is preceeded by glassy behavior. For all samples, the 5,isothermal magnetization is sub-Brillouin and does not saturate in fields up to 5,. A scaled inverse susceptibility plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO2 above its N'eel temperature. Additionally, the Al-substituted samples exhibit uncompensated short-range behavior and x = 0.75 shows glassy characteristics. It is suggested that reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as do chemical disorder and dilution of magnetic exchange.
The origin of and conditions for clustering in fluids with competing interactions
NASA Astrophysics Data System (ADS)
Jadrich, Ryan; Bollinger, Jonathan; Truskett, Thomas
2015-03-01
Fluids with competing short-range attractions and long-range repulsions exhibit a rich phase behavior characterized by intermediate range order (IRO), as quantified via the static structure factor. This phase behavior includes cluster formation depending upon density-controlled packing effects and the magnitude and range of the attractive and repulsive interactions. Such model systems mimic (to zeroth order) screened, charge-stabilized, aqueous colloidal dispersions of, e.g., proteins. We employ molecular dynamics simulations and integral equation theory to elucidate a more fundamental microscopic explanation for IRO-driven clustering. A simple criterion is identified that indicates when dynamic, amorphous clustering emerges in a polydisperse system, namely when the Ornstein-Zernike thermal correlation length in the system exceeds the repulsive potential tail range. Remarkably, this criterion also appears tightly correlated to crystalline cluster formation in a monodisperse system. Our new gauge is compared to another phenomenological condition for clustering which is when the IRO peak magnitude exceeds ~ 2.7. Ramifications of crystalline versus amorphous clustering are discussed and potential ways of using our new measure in experiment are put forward.
NASA Astrophysics Data System (ADS)
Mergelsberg, S. T.; Ulrich, R. N.; Michel, F. M.; Dove, P. M.
2017-12-01
Recent advances in high-resolution imaging show the widespreadd occurrence of multistep pathways to mineralization in biological and geological settings (De Yoreo et al., 2015, Science). For example, carbonate biomineralization often involves precipitation of amorphous calcium carbonate (ACC) as a reactive intermediate that subsequently transforms to crystalline products with diverse structures. Although current carbonate mineral proxies are based upon the composition of final crystalline products, the final signatures may be recording the properties of the initial amorphous phase. Thus, it is critical to establish the physical properties of ACC and understand the factors that influence its evolution to final products at conditions that approximate biological environments. This disconnect limits our ability to build a process-based understanding of when/how minor and trace elements are recorded in mineral composition proxies. In this experimental study, we quantified the chemical and physical properties of ACC and its evolution to final products. We first determined ACC solubility under controlled chemical conditions using a new type of flow-through reactor developed by our research group (Blue and Dove, 2015, GCA; Blue et al., 2017, GCA). The experimental design varied Mg concentration and total alkalinity while maintaining a mild pH that approximates biological environments. ACC solubility was measured at specific time points during the precipitation (from super- and undersaturated conditions) and during its subsequent evolution. Parallel experiments characterized the structure of the corresponding amorphous products using in situ pair distribution function (PDF) and small-angle x-ray scattering (SAXS) analyses. The measurements demonstrate at least two types of ACC can be produced by tuning Mg concentration and alkalinity. Each "phase" exhibits distinct short-range ordering that demonstrates structure-specific solubility. We also find temporal changes in the short-range order of each type of ACC that are dependent upon Mg content. Insights from this study hold promise for quantifying the chemical and structural properties of ACC and reconcile discrepancies in the literature.
NASA Astrophysics Data System (ADS)
Bates, Jefferson; Laricchia, Savio; Ruzsinszky, Adrienn
The Random Phase Approximation (RPA) is quickly becoming a standard method beyond semi-local Density Functional Theory that naturally incorporates weak interactions and eliminates self-interaction error. RPA is not perfect, however, and suffers from self-correlation error as well as an incorrect description of short-ranged correlation typically leading to underbinding. To improve upon RPA we introduce a short-ranged, exchange-like kernel that is one-electron self-correlation free for one and two electron systems in the high-density limit. By tuning the one free parameter in our model to recover an exact limit of the homogeneous electron gas correlation energy we obtain a non-local, energy-optimized kernel that reduces the errors of RPA for both homogeneous and inhomogeneous solids. To reduce the computational cost of the standard kernel-corrected RPA, we also implement RPA renormalized perturbation theory for extended systems, and demonstrate its capability to describe the dominant correlation effects with a low-order expansion in both metallic and non-metallic systems. Furthermore we stress that for norm-conserving implementations the accuracy of RPA and beyond RPA structural properties compared to experiment is inherently limited by the choice of pseudopotential. Current affiliation: King's College London.
Effective band structure of random III-V alloys
NASA Astrophysics Data System (ADS)
Popescu, Voicu; Zunger, Alex
2010-03-01
Random substitutional alloys have no long range order (LRO) or translational symmetry so rigorously speaking they have no E(k) band structure or manifestations thereof. Yet, many experiments on alloys are interpreted using the language of band theory, e.g. inferring Van Hove singularities, band dispersion and effective masses. Many standard alloy theories (VCA- or CPA-based) have the LRO imposed on the alloy Hamiltonian, assuming only on-site disorder, so they can not be used to judge the extent of LRO that really exists. We adopt the opposite way, by using large (thousand atom) randomly generated supercells in which chemically identical alloy atoms are allowed to have different local environments (a polymorphous representation). This then drives site-dependent atomic relaxation as well as potential fluctuations. The eigenstates from such supercells are then mapped onto the Brillouin zone (BZ) of the primitive cell, producing effective band dispersion. Results for (In,Ga)X show band-like behaviour only near the centre and faces of the BZ but rapidly lose such characteristics away from γ or for higher bands. We further analyse the effects of stoichiometry variation, internal relaxation, and short-range order on the alloy band structure.
Liquid Structures and Physical Properties -- Ground Based Studies for ISS Experiments
NASA Technical Reports Server (NTRS)
Kelton, K. F.; Bendert, J. C.; Mauro, N. A.
2012-01-01
Studies of electrostatically-levitated supercooled liquids have demonstrated strong short- and medium-range ordering in transition metal and alloy liquids, which can influence phase transitions like crystal nucleation and the glass transition. The structure is also related to the liquid properties. Planned ISS experiments will allow a deeper investigation of these results as well as the first investigations of a new type of coupling in crystal nucleation in primary crystallizing liquids, resulting from a linking of the stochastic processes of diffusion with interfacial-attachment. A brief description of the techniques used for ground-based studies and some results relevant to planned ISS investigations are discussed.
Structural and elastic properties of InX (X = P, As, Sb) at pressure and room temperature
NASA Astrophysics Data System (ADS)
Pawar, Pooja; Singh, Sadhna
2018-06-01
We have investigated the pressure-induced phase transition of InX (X = P, As, Sb) from Zinc-Blende (ZB) to NaCl structure by using realistic interaction potential model involving the effect of temperature. This model consists of Coulomb interaction, three-body interaction and short-range overlap repulsive interaction upto the second nearest neighbor involving temperature. Phase-transition pressure is associated with a sudden collapse in volume, showing the incidence of first-order phase transition. The phase-transition pressure is associated with volume collapses, and the elastic constants obtained from the present model indicate good agreement with the available experimental and theoretical data.
2013-03-27
part of a new generation of ferroelectric materials used in a multitude of piezoelectric applications. This work examines the short and long range...2211 15. SUBJECT TERMS Na0.5Bi0.5TiO3, ferroelectric , structure, Rietveld, local structure Elena Aksel, Jennifer S. Forrester, Juan C. Nino, Katharine...a new generation of ferroelectric materials used in a multitude of piezoelectric applications. This work examines the short and long range structure
Alarcón-Waess, O
2010-04-14
The self-orientational structure factor as well as the short-time self-orientational diffusion coefficient is computed for colloids composed by nonspherical molecules. To compute the short-time dynamics the hydrodynamic interactions are not taken into account. The hard molecules with at least one symmetry axis considered are: rods, spherocylinders, and tetragonal parallelepipeds. Because both orientational properties in study are written in terms of the second and fourth order parameters, these automatically hold the features of the order parameters. That is, they present a discontinuity for first order transitions, determining in this way the spinodal line. In order to analyze the nematic phase only, we choose the appropriate values for the representative quantities that characterize the molecules. Different formalisms are used to compute the structural properties: de Gennes-Landau approach, Smoluchowski equation and computer simulations. Some of the necessary inputs are taken from literature. Our results show that the self-orientational properties play an important role in the characterization and the localization of axially symmetric phases. While the self-structure decreases throughout the nematics, the short-time self-diffusion does not decrease but rather increases. We study the evolution of the second and fourth order parameters; we find different responses for axial and biaxial nematics, predicting the possibility of a biaxial nematics in tetragonal parallelepiped molecules. By considering the second order in the axial-biaxial phase transition, with the support of the self-orientational structure factor, we are able to propose the density at which this occurs. The short-time dynamics is able to predict a different value in the axial and the biaxial phases. Because the different behavior of the fourth order parameter, the diffusion coefficient is lower for a biaxial phase than for an axial one. Therefore the self-structure factor is able to localize continuous phase transitions involving axially symmetric phases and the short-time self-orientational diffusion is able to distinguish the ordered phase by considering the degree of alignment, that is, axial or biaxial.
Short range smectic order driving long range nematic order: Example of cuprates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markiewicz, R. S.; Lorenzana, J.; Seibold, G.
We present a model for describing the combined presence of nematic and ‘smectic’ or stripe-like orders seen in recent scanning tunneling microscopy (STM) experiments on cuprates. The smectic order is treated as an electronic charge density wave with an associated Peierls distortion or a ‘Pomeranchuk wave’. This primary order is restricted to nanoscale domains by disorder effects, while the secondary coupling to strain generates the nematic order with a considerably longer range. Lastly, a variety of experimental results are shown to be consistent with our theoretical predictions.
Short range smectic order driving long range nematic order: Example of cuprates
Markiewicz, R. S.; Lorenzana, J.; Seibold, G.; ...
2016-01-27
We present a model for describing the combined presence of nematic and ‘smectic’ or stripe-like orders seen in recent scanning tunneling microscopy (STM) experiments on cuprates. The smectic order is treated as an electronic charge density wave with an associated Peierls distortion or a ‘Pomeranchuk wave’. This primary order is restricted to nanoscale domains by disorder effects, while the secondary coupling to strain generates the nematic order with a considerably longer range. Lastly, a variety of experimental results are shown to be consistent with our theoretical predictions.
Predicting supramolecular self-assembly on reconstructed metal surfaces
NASA Astrophysics Data System (ADS)
Roussel, Thomas J.; Barrena, Esther; Ocal, Carmen; Faraudo, Jordi
2014-06-01
The prediction of supramolecular self-assembly onto solid surfaces is still challenging in many situations of interest for nanoscience. In particular, no previous simulation approach has been capable to simulate large self-assembly patterns of organic molecules over reconstructed surfaces (which have periodicities over large distances) due to the large number of surface atoms and adsorbing molecules involved. Using a novel simulation technique, we report here large scale simulations of the self-assembly patterns of an organic molecule (DIP) over different reconstructions of the Au(111) surface. We show that on particular reconstructions, the molecule-molecule interactions are enhanced in a way that long-range order is promoted. Also, the presence of a distortion in a reconstructed surface pattern not only induces the presence of long-range order but also is able to drive the organization of DIP into two coexisting homochiral domains, in quantitative agreement with STM experiments. On the other hand, only short range order is obtained in other reconstructions of the Au(111) surface. The simulation strategy opens interesting perspectives to tune the supramolecular structure by simulation design and surface engineering if choosing the right molecular building blocks and stabilising the chosen reconstruction pattern.The prediction of supramolecular self-assembly onto solid surfaces is still challenging in many situations of interest for nanoscience. In particular, no previous simulation approach has been capable to simulate large self-assembly patterns of organic molecules over reconstructed surfaces (which have periodicities over large distances) due to the large number of surface atoms and adsorbing molecules involved. Using a novel simulation technique, we report here large scale simulations of the self-assembly patterns of an organic molecule (DIP) over different reconstructions of the Au(111) surface. We show that on particular reconstructions, the molecule-molecule interactions are enhanced in a way that long-range order is promoted. Also, the presence of a distortion in a reconstructed surface pattern not only induces the presence of long-range order but also is able to drive the organization of DIP into two coexisting homochiral domains, in quantitative agreement with STM experiments. On the other hand, only short range order is obtained in other reconstructions of the Au(111) surface. The simulation strategy opens interesting perspectives to tune the supramolecular structure by simulation design and surface engineering if choosing the right molecular building blocks and stabilising the chosen reconstruction pattern. GA image adapted from refs: (a) Phys. Chem. Chem. Phys., 2001, 3, 3399-3404, with permission from the PCCP Owner Societies, and (b) J. Phys. Chem. C, 2008, 112 (18), 7168-7172, reprinted with permission from the American Chemical Society, copyright © 2008.
Ultrasonic nonlinear guided wave inspection of microscopic damage in a composite structure
NASA Astrophysics Data System (ADS)
Zhang, Li; Borigo, Cody; Owens, Steven; Lissenden, Clifford; Rose, Joseph; Hakoda, Chris
2017-02-01
Sudden structural failure is a severe safety threat to many types of military and industrial composite structures. Because sudden structural failure may occur in a composite structure shortly after macroscale damage initiates, reliable early diagnosis of microdamage formation in the composite structure is critical to ensure safe operation and to reduce maintenance costs. Ultrasonic guided waves have been widely used for long-range defect detection in various structures. When guided waves are generated under certain excitation conditions, in addition to the traditional linear wave mode (known as the fundamental harmonic wave mode), a number of nonlinear higher-order harmonic wave modes are also be generated. Research shows that the nonlinear parameters of a higher-order harmonic wave mode could have excellent sensitivity to microstructural changes in a material. In this work, we successfully employed a nonlinear guided wave structural health monitoring (SHM) method to detect microscopic impact damage in a 32-layer carbon/epoxy fiber-reinforced composite plate. Our effort has demonstrated that, utilizing appropriate transducer design, equipment, excitation signals, and signal processing techniques, nonlinear guided wave parameter measurements can be reliably used to monitor microdamage initiation and growth in composite structures.
Atomistic clustering-ordering and high-strain deformation of an Al0.1CrCoFeNi high-entropy alloy
Sharma, Aayush; Singh, Prashant; Johnson, Duane D.; Liaw, Peter K.; Balasubramanian, Ganesh
2016-01-01
Computational investigations of structural, chemical, and deformation behavior in high-entropy alloys (HEAs), which possess notable mechanical strength, have been limited due to the absence of applicable force fields. To extend investigations, we propose a set of intermolecular potential parameters for a quinary Al-Cr-Co-Fe-Ni alloy, using the available ternary Embedded Atom Method and Lennard-Jones potential in classical molecular-dynamics simulations. The simulation results are validated by a comparison to first-principles Korringa-Kohn-Rostoker (KKR) - Coherent Potential Approximation (CPA) [KKR-CPA] calculations for the HEA structural properties (lattice constants and bulk moduli), relative stability, pair probabilities, and high-temperature short-range ordering. The simulation (MD)-derived properties are in quantitative agreement with KKR-CPA calculations (first-principles) and experiments. We study AlxCrCoFeNi for Al ranging from 0 ≤ x ≤2 mole fractions, and find that the HEA shows large chemical clustering over a wide temperature range for x < 0.5. At various temperatures high-strain compression promotes atomistic rearrangements in Al0.1CrCoFeNi, resulting in a clustering-to-ordering transition that is absent for tensile loading. Large fluctuations under stress, and at higher temperatures, are attributed to the thermo-plastic instability in Al0.1CrCoFeNi. PMID:27498807
Atomistic clustering-ordering and high-strain deformation of an Al 0.1CrCoFeNi high-entropy alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Aayush; Singh, Prashant; Johnson, Duane D.
2016-08-08
Here, computational investigations of structural, chemical, and deformation behavior in high-entropy alloys (HEAs), which possess notable mechanical strength, have been limited due to the absence of applicable force fields. To extend investigations, we propose a set of intermolecular potential parameters for a quinary Al-Cr-Co-Fe-Ni alloy, using the available ternary Embedded Atom Method and Lennard-Jones potential in classical molecular-dynamics simulations. The simulation results are validated by a comparison to first-principles Korringa-Kohn-Rostoker (KKR) - Coherent Potential Approximation (CPA) [KKR-CPA] calculations for the HEA structural properties (lattice constants and bulk moduli), relative stability, pair probabilities, and high-temperature short-range ordering. The simulation (MD)-derived propertiesmore » are in quantitative agreement with KKR-CPA calculations (first-principles) and experiments. We study Al xCrCoFeNi for Al ranging from 0 ≤ x ≤2 mole fractions, and find that the HEA shows large chemical clustering over a wide temperature range for x < 0.5. At various temperatures high-strain compression promotes atomistic rearrangements in Al 0.1CrCoFeNi, resulting in a clustering-to-ordering transition that is absent for tensile loading. Large fluctuations under stress, and at higher temperatures, are attributed to the thermo-plastic instability in Al 0.1CrCoFeNi.« less
Long-Range Order in Nanocrystal Assemblies Determines Charge Transport of Films
Sainato, Michela; Shevitski, Brian; Sahu, Ayaskanta; ...
2017-07-18
Self-assembly of semiconductor nanocrystals (NCs) into two-dimensional patterns or three-dimensional (2- 3D) superstructures has emerged as a promising low-cost route to generate thin-film transistors and solar cells with superior charge transport because of enhanced electronic coupling between the NCs. Here, we show that lead sulfide (PbS) NCs solids featuring either short-range (disordered glassy solids, GSs) or long-range (superlattices, SLs) packing order are obtained solely by controlling deposition conditions of colloidal solution of NCs. In this study, we demonstrate the use of the evaporation-driven self-assembly method results in PbS NC SL structures that are observed over an area of 1 mmmore » × 100 μm, with long-range translational order of up to 100 nm. A number of ordered domains appear to have nucleated simultaneously and grown together over the whole area, imparting a polycrystalline texture to the 3D SL films. By contrast, a conventional, optimized spin-coating deposition method results in PbS NC glassy films with no translational symmetry and much shorter-range packing order in agreement with state-of-the-art reports. Further, we investigate the electronic properties of both SL and GS films, using a field-effect transistor configuration as a test platform. The long-range ordering of the PbS NCs into SLs leads to semiconducting NC-based solids, the mobility (μ) of which is 3 orders of magnitude higher than that of the disordered GSs. Furthemore, although spin-cast GSs of PbS NCs have weak ambipolar behavior with limited gate tunability, SLs of PbS NCs show a clear p-type behavior with significantly higher conductivities.« less
Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics
NASA Astrophysics Data System (ADS)
Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.
2015-05-01
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg10In90, Hg30In70, Hg50In50, Hg70In30 and Hg90In10) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.
How to describe disordered structures
Nishio, Kengo; Miyazaki, Takehide
2016-01-01
Disordered structures such as liquids and glasses, grains and foams, galaxies, etc. are often represented as polyhedral tilings. Characterizing the associated polyhedral tiling is a promising strategy to understand the disordered structure. However, since a variety of polyhedra are arranged in complex ways, it is challenging to describe what polyhedra are tiled in what way. Here, to solve this problem, we create the theory of how the polyhedra are tiled. We first formulate an algorithm to convert a polyhedron into a codeword that instructs how to construct the polyhedron from its building-block polygons. By generalizing the method to polyhedral tilings, we describe the arrangements of polyhedra. Our theory allows us to characterize polyhedral tilings, and thereby paves the way to study from short- to long-range order of disordered structures in a systematic way. PMID:27064833
How to describe disordered structures
NASA Astrophysics Data System (ADS)
Nishio, Kengo; Miyazaki, Takehide
2016-04-01
Disordered structures such as liquids and glasses, grains and foams, galaxies, etc. are often represented as polyhedral tilings. Characterizing the associated polyhedral tiling is a promising strategy to understand the disordered structure. However, since a variety of polyhedra are arranged in complex ways, it is challenging to describe what polyhedra are tiled in what way. Here, to solve this problem, we create the theory of how the polyhedra are tiled. We first formulate an algorithm to convert a polyhedron into a codeword that instructs how to construct the polyhedron from its building-block polygons. By generalizing the method to polyhedral tilings, we describe the arrangements of polyhedra. Our theory allows us to characterize polyhedral tilings, and thereby paves the way to study from short- to long-range order of disordered structures in a systematic way.
Short and medium range structures of 80GeSe2–20Ga2Se3 chalcogenide glasses
NASA Astrophysics Data System (ADS)
Petracovschi, Elena; Calvez, Laurent; Cormier, Laurent; Le Coq, David; Du, Jincheng
2018-05-01
The short and medium range structures of 80GeSe2–20Ga2Se3 (or Ge23.5Ga11.8Se64.7) chalcogenide glasses have been studied by combining ab initio molecular dynamics (AIMD) simulations and experimental neutron diffraction studies. The structure factor and total correlation function were calculated from glass structures generated from AIMD simulations and compared with neutron diffraction experiments showing reasonable agreement. The atomic structures of ternary chalcogenide glasses were analyzed in detail, and it was found that gallium atoms are four-fold coordinated by selenium (Se) and form [GaSe4] tetrahedra. Germanium atoms on average also have four-fold coordination, among which Se is 3.5 with the remaining being Ge–Ge homo-nuclear bonds. Ga and Ge tetrahedra link together mainly through corner-sharing and some edge-sharing of Se. No homo-nuclear bonds were observed among Ga atoms or between Ge and Ga. In addition, Se–Se homo-nuclear bonds and Se chains with various lengths were observed. A small fraction of Se atom triclusters that bond to three cations of Ge and Ga were also observed, confirming earlier proposals from 77Se solid state nuclear magnetic resonance studies. Furthermore, the electronic structures of ternary chalcogenide glasses were studied in terms of atomic charge and electronic density of states in order to gain insights into the chemical bonding and electronic properties, as well as to provide an explanation of the observed atomic structures in these ternary chalcogenide glasses.
NASA Astrophysics Data System (ADS)
Mandal, Aparajita; Kole, Arindam; Dasgupta, Arup; Chaudhuri, Partha
2016-11-01
Electrical transport in the transverse direction has been studied through a series of hydrogenated silicon carbon alloy multilayers (SiC-MLs) deposited by plasma enhanced chemical vapor deposition method. Each SiC-ML consists of 30 cycles of the alternating layers of a nearly amorphous silicon carbide (a-SiC:H) and a microcrystalline silicon carbide (μc-SiC:H) that contains high density of silicon quantum dots (Si-QDs). A detailed investigation by cross sectional TEM reveals preferential growth of densely packed Si-QDs of regular sizes ∼4.8 nm in diameter in a vertically aligned columnar structure within the SiC-ML. More than six orders of magnitude increase in transverse current through the SiC-ML structure were observed for decrease in the a-SiC:H layer thickness from 13 nm to 2 nm. The electrical transport mechanism was established to be a combination of grain boundary or band tail hopping and Frenkel-Poole (F-P) type conduction depending on the temperature and externally applied voltage ranges. Evaluation of trap concentration within the multilayer structures from the fitted room temperature current voltage characteristics by F-P function shows reduction up-to two orders of magnitude indicating an improvement in the short range order in the a-SiC:H matrix for decrease in the thickness of a-SiC:H layer.
Micro-structure and motion of two-dimensional dense short spherocylinder liquids
NASA Astrophysics Data System (ADS)
Wang, Wen; Lin, Jyun-Ting; Su, Yen-Shuo; I, Lin
2018-03-01
We numerically investigate the micro-structure and motion of 2D liquids composed of dense short spherocylinders, by reducing the shape aspect ratio from 3. It is found that reducing shape aspect ratio from 3 causes a smooth transition from heterogeneous structures composed of crystalline ordered domains with good tetratic alignment order to those with good hexagonal bond-orientational order at an aspect ratio equaling 1.35. In the intermediate regime, both structural orders are strongly deteriorated, and the translational hopping rate reaches a maximum due to the poor particle interlocking of the disordered structure. Shortening rod length allows easier rotation, induces monotonic increase of rotational hopping rates, and resumes the separation of rotational and translational hopping time scales at the small aspect ratio end, after the crossover of their rates in the intermediate regime. At the large shape aspect ratio end, the poor local tetratic order has the same positive effects on facilitating local rotational and translational hopping. In contrast, at the small shape aspect ratio end, the poor local bond orientational order has the opposite effects on facilitating local rotational and translational hopping.
Local structure order in Pd 78Cu 6Si 16 liquid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, G. Q.; Zhang, Y.; Sun, Y.
2015-02-05
The short-range order (SRO) in Pd 78Cu 6Si 16 liquid was studied by high energy x-ray diffraction and ab initio molecular dynamics (MD) simulations. The calculated pair correlation functions at different temperatures agree well with the experimental results. The partial pair correlation functions from ab intio MD simulations indicate that Si atoms prefer to be uniformly distributed while Cu atoms tend to aggregate. By performing structure analysis using Honeycutt-Andersen index, Voronoi tessellation, and atomic cluster alignment method, we show that the icosahedron and face-centered cubic SRO increase upon cooling. The dominant SRO is the Pd-centered Pd 9Si 2 motif, namelymore » the structure of which motif is similar to the structure of Pd-centered clusters in the Pd 9Si 2 crystal. The study further confirms the existence of trigonal prism capped with three half-octahedra that is reported as a structural unit in Pd-based amorphous alloys. The majority of Cu-centered clusters are icosahedra, suggesting that the presence of Cu is benefit to promote the glass forming ability.« less
Total Scattering and Pair Distribution Function Analysis in Modelling Disorder in PZN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitfield, Ross E.; Goossens, Darren J; Welberry, T. R.
2016-01-01
The ability of the pair distribution function (PDF) analysis of total scattering (TS) from a powder to determine the local ordering in ferroelectric PZN (PbZn 1/3Nb 2/3O 3) has been explored by comparison with a model established using single-crystal diffuse scattering (SCDS). While X-ray PDF analysis is discussed, the focus is on neutron diffraction results because of the greater extent of the data and the sensitivity of the neutron to oxygen atoms, the behaviour of which is important in PZN. The PDF was shown to be sensitive to many effects not apparent in the average crystal structure, including variations inmore » the B-site—O separation distances and the fact that (110) Pb 2+ displacements are most likely. A qualitative comparison between SCDS and the PDF shows that some features apparent in SCDS were not apparent in the PDF. These tended to pertain to short-range correlations in the structure, rather than to interatomic separations. For example, in SCDS the short-range alternation of the B-site cations was quite apparent in diffuse scattering at (½ ½ ½), whereas it was not apparent in the PDF.« less
Thermal helium clusters at 3.2 Kelvin in classical and semiclassical simulations
NASA Astrophysics Data System (ADS)
Schulte, J.
1993-03-01
The thermodynamic stability of4He4-13 at 3.2 K is investigated with the classical Monte Carlo method, with the semiclassical path-integral Monte Carlo (PIMC) method, and with the semiclassical all-order many-body method. In the all-order many-body simulation the dipole-dipole approximation including short-range correction is used. The resulting stability plots are discussed and related to recent TOF experiments by Stephens and King. It is found that with classical Monte Carlo of course the characteristics of the measured mass spectrum cannot be resolved. With PIMC, switching on more and more quantum mechanics. by raising the number of virtual time steps results in more structure in the stability plot, but this did not lead to sufficient agreement with the TOF experiment. Only the all-order many-body method resolved the characteristic structures of the measured mass spectrum, including magic numbers. The result shows the influence of quantum statistics and quantum mechanics on the stability of small neutral helium clusters.
NASA Astrophysics Data System (ADS)
Rubinstein, A.; Sabirianov, R. F.; Mei, W. N.; Namavar, F.; Khoynezhad, A.
2010-08-01
Using a nonlocal electrostatic approach that incorporates the short-range structure of the contacting media, we evaluated the electrostatic contribution to the energy of the complex formation of two model proteins. In this study, we have demonstrated that the existence of an ordered interfacial water layer at the protein-solvent interface reduces the charging energy of the proteins in the aqueous solvent, and consequently increases the electrostatic contribution to the protein binding (change in free energy upon the complex formation of two proteins). This is in contrast with the finding of the continuum electrostatic model, which suggests that electrostatic interactions are not strong enough to compensate for the unfavorable desolvation effects.
Rubinstein, A; Sabirianov, R F; Mei, W N; Namavar, F; Khoynezhad, A
2010-08-01
Using a nonlocal electrostatic approach that incorporates the short-range structure of the contacting media, we evaluated the electrostatic contribution to the energy of the complex formation of two model proteins. In this study, we have demonstrated that the existence of an ordered interfacial water layer at the protein-solvent interface reduces the charging energy of the proteins in the aqueous solvent, and consequently increases the electrostatic contribution to the protein binding (change in free energy upon the complex formation of two proteins). This is in contrast with the finding of the continuum electrostatic model, which suggests that electrostatic interactions are not strong enough to compensate for the unfavorable desolvation effects.
DNA viewed as an out-of-equilibrium structure
NASA Astrophysics Data System (ADS)
Provata, A.; Nicolis, C.; Nicolis, G.
2014-05-01
The complexity of the primary structure of human DNA is explored using methods from nonequilibrium statistical mechanics, dynamical systems theory, and information theory. A collection of statistical analyses is performed on the DNA data and the results are compared with sequences derived from different stochastic processes. The use of χ2 tests shows that DNA can not be described as a low order Markov chain of order up to r =6. Although detailed balance seems to hold at the level of a binary alphabet, it fails when all four base pairs are considered, suggesting spatial asymmetry and irreversibility. Furthermore, the block entropy does not increase linearly with the block size, reflecting the long-range nature of the correlations in the human genomic sequences. To probe locally the spatial structure of the chain, we study the exit distances from a specific symbol, the distribution of recurrence distances, and the Hurst exponent, all of which show power law tails and long-range characteristics. These results suggest that human DNA can be viewed as a nonequilibrium structure maintained in its state through interactions with a constantly changing environment. Based solely on the exit distance distribution accounting for the nonequilibrium statistics and using the Monte Carlo rejection sampling method, we construct a model DNA sequence. This method allows us to keep both long- and short-range statistical characteristics of the native DNA data. The model sequence presents the same characteristic exponents as the natural DNA but fails to capture spatial correlations and point-to-point details.
DNA viewed as an out-of-equilibrium structure.
Provata, A; Nicolis, C; Nicolis, G
2014-05-01
The complexity of the primary structure of human DNA is explored using methods from nonequilibrium statistical mechanics, dynamical systems theory, and information theory. A collection of statistical analyses is performed on the DNA data and the results are compared with sequences derived from different stochastic processes. The use of χ^{2} tests shows that DNA can not be described as a low order Markov chain of order up to r=6. Although detailed balance seems to hold at the level of a binary alphabet, it fails when all four base pairs are considered, suggesting spatial asymmetry and irreversibility. Furthermore, the block entropy does not increase linearly with the block size, reflecting the long-range nature of the correlations in the human genomic sequences. To probe locally the spatial structure of the chain, we study the exit distances from a specific symbol, the distribution of recurrence distances, and the Hurst exponent, all of which show power law tails and long-range characteristics. These results suggest that human DNA can be viewed as a nonequilibrium structure maintained in its state through interactions with a constantly changing environment. Based solely on the exit distance distribution accounting for the nonequilibrium statistics and using the Monte Carlo rejection sampling method, we construct a model DNA sequence. This method allows us to keep both long- and short-range statistical characteristics of the native DNA data. The model sequence presents the same characteristic exponents as the natural DNA but fails to capture spatial correlations and point-to-point details.
NASA Astrophysics Data System (ADS)
Bakovets, V. V.; Zolotova, E. S.; Antonova, O. V.; Korol'kov, I. V.; Yushina, I. V.
2016-12-01
The specific features of the photoluminescence of [ nCaWO4-(1- n)CaMoO4]:Eu3+ solid solutions with the scheelite structure are examined using X-ray phase analysis and photoluminescence, Raman scattering, and diffuse reflectance spectroscopy. The studied features are associated with a change in the long- and short-range orders of the crystal lattice upon variations in the composition of solutions in the range n = 0-1.0 (with a pitch of 0.2) at a concentration of red photoluminescence activator Eu3+ of 2 mol %. The mechanism of the modification of photoluminescence of solid solutions upon variations in their composition has been discussed. Anomalies in the variations in parameters of the crystal lattice, its short-range order, and luminescence spectra have been observed in the transition from pure compounds CaMoO4:Eu3+ and CaWO4:Eu3+ to solutions; the concentration of Eu3+ ions in the centrosymmetric localization increases (decreases) in the transition from the molybdate (tungstate). It has been demonstrated that the spectral radiant emittance of solid solution [0.4CaWO4-0.6CaMoO4]:Eu3+ (2 mol %) is the closest to that of an incandescent lamp.
Regularization in Short-Term Memory for Serial Order
ERIC Educational Resources Information Center
Botvinick, Matthew; Bylsma, Lauren M.
2005-01-01
Previous research has shown that short-term memory for serial order can be influenced by background knowledge concerning regularities of sequential structure. Specifically, it has been shown that recall is superior for sequences that fit well with familiar sequencing constraints. The authors report a corresponding effect pertaining to serial…
Recent Advances in the Theory and Simulation of Model Colloidal Microphase Formers.
Zhuang, Yuan; Charbonneau, Patrick
2016-08-18
This mini-review synthesizes our understanding of the equilibrium behavior of particle-based models with short-range attractive and long-range repulsive (SALR) interactions. These models, which can form stable periodic microphases, aim to reproduce the essence of colloidal suspensions with competing interparticle interactions. Ordered structures, however, have yet to be obtained in experiments. In order to better understand the hurdles to periodic microphase assembly, marked theoretical and simulation advances have been made over the past few years. Here, we present recent progress in the study of microphases in models with SALR interactions using liquid-state theory and density-functional theory as well as numerical simulations. Combining these various approaches provides a description of periodic microphases, and gives insights into the rich phenomenology of the surrounding disordered regime. Ongoing research directions in the thermodynamics of models with SALR interactions are also presented.
Doping effect on charge ordering in the spinel compound AlV_2-xCr_xO_4
NASA Astrophysics Data System (ADS)
Horibe, Yoichi; Kurushima, Kosuke; Mori, Shigeo; Shingu, Masao; Katsufuji, Takuro
2004-03-01
It is reported that AlV_2O4 with the spinel-type structure shows the charge-ordering (CO) behavior below 700K.[1] Because the average valence of V is V^2.5+ in this compound, the CO structure is characterized by the unique CO pattern with V^2+:V^4+=3:1. In this talk, we will report doping effect on the CO structure in AlV_2O_4. In particular, we will focus on changes of microstructure related to the CO structure by Cr doping by transmission electron microscopy. Firstly we confirmed that AlV_2O4 has a long-ranged CO structure characterized by a single wave vector q=(1/2)[111]. On the other hand, we found the presence of diffuse scatterings at the (1/2)[111] and (1/2)[1-11]-type positions in AlV_1.875Cr_0.125O4 at room temperature. This means that the CO structure in AlV_1.875Cr_0.125O4 has two wave vectors of q=(1/2)[111] and q=the (1/2)[1-11]. Furthermore, the long-ranged CO structure in AlV_2O4 changes into the short-ranged one by substituting Cr ions into the V ones. The correlation length of CO in x=0.125 can be estimated to be about 5 nm. Our results suggest that the Cr doping destroyed the CO correlation effectively. It is revealed that by substituting Cr ions to V ones, the CO state is suppressed drastically and disappeared with x > 0.125. [1] K. Matsuno et al., J. Phys. Soc. Jpn 70, 1456 (2001)
Controlling Self-Assembly of Engineered Peptides on Graphite by Rational Mutation
So, Christopher R.; Hayamizu, Yuhei; Yazici, Hilal; Gresswell, Carolyn; Khatayevich, Dmitriy; Tamerler, Candan; Sarikaya, Mehmet
2012-01-01
Self-assembly of proteins on surfaces is utilized in many fields to integrate intricate biological structures and diverse functions with engineered materials. Controlling proteins at bio-solid interfaces relies on establishing key correlations between their primary sequences and resulting spatial organizations on substrates. Protein self-assembly, however, remains an engineering challenge. As a novel approach, we demonstrate here that short dodecapeptides selected by phage display are capable of self-assembly on graphite and form long-range ordered biomolecular nanostructures. Using atomic force microscopy and contact angle studies, we identify three amino-acid domains along the primary sequence that steer peptide ordering and lead to nanostructures with uniformly displayed residues. The peptides are further engineered via simple mutations to control fundamental interfacial processes, including initial binding, surface aggregation and growth kinetics, and intermolecular interactions. Tailoring short peptides via their primary sequence offers versatile control over molecular self-assembly, resulting in well-defined surface properties essential in building engineered, chemically rich, bio-solid interfaces. PMID:22233341
Thermal kinetics and short range order parameters of Se80X20 (X = Te, Sb) binary glasses
NASA Astrophysics Data System (ADS)
Moharram, A. H.; Abu El-Oyoun, M.; Abdel-Baset, A. M.
2014-06-01
Bulk Se80Te20 and Se80Sb20 glasses were prepared using the melt-quench technique. Differential scanning calorimetry (DSC) curves measured at different heating rates (5 K/min≤ α≤50 K/min) and X-ray diffraction (XRD) are used to characterize the as-quenched specimens. Based on the obtained results, the activation energy of glass transition and the activation energy of crystallization ( E g, E c) of the Se80Te20 glass are (137.5, 105.1 kJ/mol) higher than the corresponding values of the Se80Sb20 glass (106.8, 71.2 kJ/mol). An integer n value ( n=2) of the Se80Te20 glass indicates that only one crystallization mechanism is occurring while a non-integer exponent ( n=1.79) in the Se80Sb20 glass means that two mechanisms are working simultaneously during the amorphous-crystalline transformations. The total structure factor, S( K), indicates the presence of the short-range order (SRO) and the absence of the medium-range order (MRO) inside the as-quenched alloys. In an opposite way to the activation energies, the values of the first peak position and the total coordination number ( r 1, η 1), obtained from a Gaussian fit of the radial distribution function, of the Se80Te20 glass are (2.42 nm, 1.99 atom) lower than the corresponding values (2.55 nm, 2.36 atom) of the Se80Sb20 specimens.
Long-range stripe nanodomains in epitaxial (110) BiFeO 3 thin films on (100) NdGaO 3 substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Yogesh; Agarwal, Radhe; Phatak, Charudatta
Here, we report the observation of ferroelectric and ferroelastic nanodomains in (110)-oriented BiFeO 3 (BFO) thin films epitaxially grown on low symmetric (100) NdGaO 3 (NGO) substrate. We observed long range ordering of ferroelectric 109° stripe nanodomains separated by periodic vertical domain walls in as-grown 130 nm thick BFO films. The effect of La 0.67Sr 0.33CoO 3 (LSCO) conducting interlayer on domain configurations in BFO/NGO film was also observed with relatively short range-ordering of stripe domains due to the modified electrostatic boundary conditions in BFO/LSCO/NGO film. Additional studies on B-site doping of Nb ions in BFO films showed change inmore » the domain structures due to doping induced change in lattice anisotropy while maintaining the stripe domain morphology with 109° domain wall. Finally, this long-range array of ferroelectric and ferroelastic domains can be useful for optoelectronic devices and ferroelastic templates for strain coupled artificial magnetoelectric heterostructures.« less
Long-range stripe nanodomains in epitaxial (110) BiFeO 3 thin films on (100) NdGaO 3 substrate
Sharma, Yogesh; Agarwal, Radhe; Phatak, Charudatta; ...
2017-07-07
Here, we report the observation of ferroelectric and ferroelastic nanodomains in (110)-oriented BiFeO 3 (BFO) thin films epitaxially grown on low symmetric (100) NdGaO 3 (NGO) substrate. We observed long range ordering of ferroelectric 109° stripe nanodomains separated by periodic vertical domain walls in as-grown 130 nm thick BFO films. The effect of La 0.67Sr 0.33CoO 3 (LSCO) conducting interlayer on domain configurations in BFO/NGO film was also observed with relatively short range-ordering of stripe domains due to the modified electrostatic boundary conditions in BFO/LSCO/NGO film. Additional studies on B-site doping of Nb ions in BFO films showed change inmore » the domain structures due to doping induced change in lattice anisotropy while maintaining the stripe domain morphology with 109° domain wall. Finally, this long-range array of ferroelectric and ferroelastic domains can be useful for optoelectronic devices and ferroelastic templates for strain coupled artificial magnetoelectric heterostructures.« less
Local structural aspects of metal-metal transition in IrTe2 from x-ray PDF
NASA Astrophysics Data System (ADS)
Yu, Runze; Abeykoon, Milinda; Zhou, Haidong; Yin, Weiguo; Bozin, Emil S.
Evolution of local atomic structure across the metal-metal transition in IrTe2 is explored by pair distribution function (PDF) analysis of x-ray total scattering data over 80 K
High-pressure behavior of A 2 B 2 O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye
2017-01-24
In situ high-pressure X-ray diffraction and Raman spectroscopy were used to determine the influence of composition on the high-pressure behavior of A 2B 2O 7 pyrochlore (A = Eu, Dy; B = Ti, Zr) up to ~50 GPa. Based on X-ray diffraction results, all compositions transformed to the high-pressure cotunnite structure. The B-site cation species had a larger effect on the transition pressure than the A-site cation species, with the onset of the phase transformation occurring at ~41 GPa for B = Ti and ~16 GPa B = Zr. But, the A-site cation affected the kinetics of the phase transformation,more » with the transformation for compositions with the smaller ionic radii, i.e., A = Dy, proceeding faster than those with a larger ionic radii, i.e., A = Eu. Our results were consistent with previous work in which the radius-ratio of the A- and B-site cations determined the energetics of disordering, and compositions with more similarly sized A- and B-site cations had a lower defect formation energy. Raman spectra revealed differences in the degree of short-range order of the different compositions. Due to the large phase fraction of cotunnite at high pressure for B = Zr compositions, Raman modes for cotunnite could be observed, with more modes recorded for A = Eu than A = Dy. These additional modes are attributed to increased short-to-medium range ordering in the initially pyrochlore structured Eu 2Zr 2O 7 as compared with the initially defect-fluorite structured Dy 2Zr 2O 7.« less
High-pressure behavior of A 2 B 2 O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye
2017-01-28
In situ high-pressure X-ray diffraction and Raman spectroscopy were used to determine the influence of composition on the high-pressure behavior of A 2B 2O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr) up to ~50GPa. Based on X-ray diffraction results, all compositions transformed to the high-pressure cotunnite structure. The B-site cation species had a larger effect on the transition pressure than the A-site cation species, with the onset of the phase transformation occurring at ~41 GPa for B=Ti and ~16 GPa B=Zr. However, the A-site cation affected the kinetics of the phase transformation, with the transformation for compositions with the smaller ionicmore » radii, i.e., A=Dy, proceeding faster than those with a larger ionic radii, i.e., A=Eu. These results were consistent with previous work in which the radius-ratio of the A- and B-site cations determined the energetics of disordering, and compositions with more similarly sized A- and B-site cations had a lower defect formation energy. Raman spectra revealed differences in the degree of short-range order of the different compositions. Due to the large phase fraction of cotunnite at high pressure for B=Zr compositions, Raman modes for cotunnite could be observed, with more modes recorded for A=Eu than A=Dy. These additional modes are attributed to increased short-to-medium range ordering in the initially pyrochlore structured Eu 2Zr 2O 7 as compared with the initially defect-fluorite structured Dy 2Zr 2O 7.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Dongbin, E-mail: dongbin.xu@seagate.com; Department of Materials Science and Engineering, National University of Singapore, Singapore 117576; Sun, Cheng-Jun, E-mail: cjsun@aps.anl.gov, E-mail: msecgm@nus.edu.sg
2014-10-14
In structurally ordered magnetic thin films, the Curie temperature (T{sub C}) of ferromagnetic films depends on the exchange integral of the short range ordered neighboring atoms. The exchange integral may be adjusted by controlling the elemental substitutional concentration at the lattice site of interest. We show how to control the T{sub C} in high anisotropy L1{sub 0} Fe{sub 50}Pt{sub 50} magnetic thin films by substituting Rh into the Pt site. Rh substitution in L1{sub 0} FePt modified the local atomic environment and the corresponding electronic properties, while retaining the ordered L1{sub 0} phase. The analysis of extended x-ray Absorption Finemore » Structure spectra shows that Rh uniformly substitutes for Pt in L1{sub 0} FePt. A model of antiferromagnetic defects caused by controlled Rh substitution of the Pt site, reducing the T{sub C,} is proposed to interpret this phenomenon and its validity is further examined by ab initio density functional calculations.« less
[Three-dimensional genome organization: a lesson from the Polycomb-Group proteins].
Bantignies, Frédéric
2013-01-01
As more and more genomes are being explored and annotated, important features of three-dimensional (3D) genome organization are just being uncovered. In the light of what we know about Polycomb group (PcG) proteins, we will present the latest findings on this topic. The PcG proteins are well-conserved chromatin factors that repress transcription of numerous target genes. They bind the genome at specific sites, forming chromatin domains of associated histone modifications as well as higher-order chromatin structures. These 3D chromatin structures involve the interactions between PcG-bound regulatory regions at short- and long-range distances, and may significantly contribute to PcG function. Recent high throughput "Chromosome Conformation Capture" (3C) analyses have revealed many other higher order structures along the chromatin fiber, partitioning the genomes into well demarcated topological domains. This revealed an unprecedented link between linear epigenetic domains and chromosome architecture, which might be intimately connected to genome function. © Société de Biologie, 2013.
Carbon-coated nanoparticle superlattices for energy applications
NASA Astrophysics Data System (ADS)
Li, Jun; Yiliguma, Affa; Wang, Yifei; Zheng, Gengfeng
2016-07-01
Nanoparticle (NP) superlattices represent a unique material architecture for energy conversion and storage. Recent reports on carbon-coated NP superlattices have shown exciting electrochemical properties attributed to their rationally designed compositions and structures, fast electron transport, short diffusion length, and abundant reactive sites via enhanced coupling between close-packed NPs, which are distinctive from their isolated or disordered NP or bulk counterparts. In this minireview, we summarize the recent developments of highly-ordered and interconnected carbon-coated NP superlattices featuring high surface area, tailorable and uniform doping, high conductivity, and structure stability. We then introduce the precisely-engineered NP superlattices by tuning/studying specific aspects, including intermetallic structures, long-range ordering control, and carbon coating methods. In addition, these carbon-coated NP superlattices exhibit promising characteristics in energy-oriented applications, in particular, in the fields of lithium-ion batteries, fuel cells, and electrocatalysis. Finally, the challenges and perspectives are discussed to further explore the carbon-coated NP superlattices for optimized electrochemical performances.
Liquid structure and temperature invariance of sound velocity in supercooled Bi melt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emuna, M.; Mayo, M.; Makov, G.
2014-03-07
Structural rearrangement of liquid Bi in the vicinity of the melting point has been proposed due to the unique temperature invariant sound velocity observed above the melting temperature, the low symmetry of Bi in the solid phase and the necessity of overheating to achieve supercooling. The existence of this structural rearrangement is examined by measurements on supercooled Bi. The sound velocity of liquid Bi was measured into the supercooled region to high accuracy and it was found to be invariant over a temperature range of ∼60°, from 35° above the melting point to ∼25° into the supercooled region. The structuralmore » origin of this phenomenon was explored by neutron diffraction structural measurements in the supercooled temperature range. These measurements indicate a continuous modification of the short range order in the melt. The structure of the liquid is analyzed within a quasi-crystalline model and is found to evolve continuously, similar to other known liquid pnictide systems. The results are discussed in the context of two competing hypotheses proposed to explain properties of liquid Bi near the melting: (i) liquid bismuth undergoes a structural rearrangement slightly above melting and (ii) liquid Bi exhibits a broad maximum in the sound velocity located incidentally at the melting temperature.« less
Thermodynamic and structural properties of hcp bulk and nano-precipitated Ag-Al.
NASA Astrophysics Data System (ADS)
Zarkevich, Nikolai; Johnson, Duane; Smirnov, Andrei
2002-03-01
We study the short- and long- range chemical ordering in hcp bulk Ag_2Al using the Monte Carlo method based on a Hamiltonian constructed via structural formation energies from ab initio electronic-structure calculations. We find that the ground-state structure and thermodynamic properties of bulk Ag_2Al is that determined from the X-ray experimental data. We also address the influence of the interface, coherency strain, and off-stoichiometric disorder on the structure of metastable γ' nano-precipitates in fcc Al matrix. We show that γ' precipitates are off-stoichiometric and provide a new Al-rich structure that reproduces the observed TEM image. We acknowledge our support in part by an ALCOA Foundation Grant, the U.S. Department of Energy through the Frederick Seitz Materials Research Laboratory at UIUC under grant DEFG02-91ER45439, and the UIUC Materials Computation Center under National Science Foundation grant DMR-9976550.
Brittle-to-Ductile Transition in Metallic Glass Nanowires.
Şopu, D; Foroughi, A; Stoica, M; Eckert, J
2016-07-13
When reducing the size of metallic glass samples down to the nanoscale regime, experimental studies on the plasticity under uniaxial tension show a wide range of failure modes ranging from brittle to ductile ones. Simulations on the deformation behavior of nanoscaled metallic glasses report an unusual extended strain softening and are not able to reproduce the brittle-like fracture deformation as found in experiments. Using large-scale molecular dynamics simulations we provide an atomistic understanding of the deformation mechanisms of metallic glass nanowires and differentiate the extrinsic size effects and aspect ratio contribution to plasticity. A model for predicting the critical nanowire aspect ratio for the ductile-to-brittle transition is developed. Furthermore, the structure of brittle nanowires can be tuned to a softer phase characterized by a defective short-range order and an excess free volume upon systematic structural rejuvenation, leading to enhanced tensile ductility. The presented results shed light on the fundamental deformation mechanisms of nanoscaled metallic glasses and demarcate ductile and catastrophic failure.
Ebbinghaus, Simon; Meister, Konrad; Prigozhin, Maxim B; Devries, Arthur L; Havenith, Martina; Dzubiella, Joachim; Gruebele, Martin
2012-07-18
Short-range ice binding and long-range solvent perturbation both have been implicated in the activity of antifreeze proteins and antifreeze glycoproteins. We study these two mechanisms for activity of winter flounder antifreeze peptide. Four mutants are characterized by freezing point hysteresis (activity), circular dichroism (secondary structure), Förster resonance energy transfer (end-to-end rigidity), molecular dynamics simulation (structure), and terahertz spectroscopy (long-range solvent perturbation). Our results show that the short-range model is sufficient to explain the activity of our mutants, but the long-range model provides a necessary condition for activity: the most active peptides in our data set all have an extended dynamical hydration shell. It appears that antifreeze proteins and antifreeze glycoproteins have reached different evolutionary solutions to the antifreeze problem, utilizing either a few precisely positioned OH groups or a large quantity of OH groups for ice binding, assisted by long-range solvent perturbation. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Determination of the Effects of Magnesium on the Structural Order of Amorphous Calcium Phosphate
NASA Astrophysics Data System (ADS)
Hoeher, A.; Michel, F. M.; Rakovan, J. F.; Borkiewicz, O.; Klysubun, W.
2016-12-01
Determining the pathways and mechanisms of calcium phosphate formation is important for understanding bone mineralization and advancing potential biological applications such as coatings on internal prosthetics. Studies show that amorphous calcium phosphate (ACP) is a precursor phase in the low temperature crystallization of hydroxylapatite, the primary mineral component found in bone and teeth of most modern vertebrates. ACP has been shown to have a structural order out to about 1 nm. Our recent extended x-ray absorption fine structure (EXAFS) spectroscopy analysis of synthetic ACP showed that the local structure of calcium in ACP differed from that in hydroxylapatite. Phosphorus EXAFS, however, indicated that the local structure in ACP is similar to hydroxylapatite (i.e., tetrahedrally coordinated with oxygen). EXAFS results were limited to only the first and second nearest neighbors in these samples, so the intermediate range order in ACP is yet unexplored. Furthermore, it remains unclear how ACP structure varies as a function of initial solution chemistry, how common impurities such as Mg are incorporated, and what role they play in determining the structural and physical characteristics of the final crystalline solid. We are using synchrotron x-ray total scattering for pair distribution function (PDF) analysis to investigate the influence of initial solution chemistry and Mg content on the structure of ACP. Magnesium is commonly used to stabilize the amorphous nature of the material, preventing crystallization. Ex situ samples synthesized at pH 10, with Ca:Mg ratios of 2:1, and freeze-dried are structurally similar to hydroxylapatite. Samples synthesized in identical conditions without Mg are structurally similar to another calcium phosphate mineral, brushite. In situ PDF measurements done at similar conditions in a custom mixed-flow reactor reveal that the short range order of ACP after 10 minutes of reacting is structurally different from ACP formed ex situ in the laboratory. Future analysis is aimed at quantifying the influence of these differences and to determine the validity of competing structural models proposed for ACP. This information is essential to further develop our understanding of the ACP transformation process into hydroxylapatite.
Suspended mid-infrared fiber-to-chip grating couplers for SiGe waveguides
NASA Astrophysics Data System (ADS)
Favreau, Julien; Durantin, Cédric; Fédéli, Jean-Marc; Boutami, Salim; Duan, Guang-Hua
2016-03-01
Silicon photonics has taken great importance owing to the applications in optical communications, ranging from short reach to long haul. Originally dedicated to telecom wavelengths, silicon photonics is heading toward circuits handling with a broader spectrum, especially in the short and mid-infrared (MIR) range. This trend is due to potential applications in chemical sensing, spectroscopy and defense in the 2-10 μm range. We previously reported the development of a MIR photonic platform based on buried SiGe/Si waveguide with propagation losses between 1 and 2 dB/cm. However the low index contrast of the platform makes the design of efficient grating couplers very challenging. In order to achieve a high fiber-to-chip efficiency, we propose a novel grating coupler structure, in which the grating is locally suspended in air. The grating has been designed with a FDTD software. To achieve high efficiency, suspended structure thicknesses have been jointly optimized with the grating parameters, namely the fill factor, the period and the grating etch depth. Using the Efficient Global Optimization (EGO) method we obtained a configuration where the fiber-to-waveguide efficiency is above 57 %. Moreover the optical transition between the suspended and the buried SiGe waveguide has been carefully designed by using an Eigenmode Expansion software. Transition efficiency as high as 86 % is achieved.
Neutron polarization analysis study of the frustrated magnetic ground state of β-Mn1-xAlx
NASA Astrophysics Data System (ADS)
Stewart, J. R.; Andersen, K. H.; Cywinski, R.
2008-07-01
We have performed a neutron polarization analysis study of the short-range nuclear and magnetic correlations present in the dilute alloy, β-Mn1-xAlx with 0.03≤x≤0.16 , in order to study the evolution of the magnetic ground state of this system as it achieves static spin-glass order at concentrations x>0.09 . To this end we have developed a reverse-Monte Carlo algorithm which has enabled us to extract Warren-Cowley nuclear short-range order parameters and magnetic spin correlations. Using conventional neutron powder diffraction, we show that the nonmagnetic Al substituents preferentially occupy the magnetic site II Wyckoff positions in the β-Mn structure—resulting in a reduction of the magnetic topological frustration of the Mn atoms. These Al impurities are found to display strong anticlustering behavior. The magnetic spin correlations are predominantly antiferromagnetic, persisting over a short range which is similar for all the samples studied—above and below the spin-liquid-spin-glass boundary—while the observed static (disordered) moment is shown to increase with increasing Al concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anton, Eva-Maria; Schmitt, Ljubomira Ana; Hinterstein, Manuel
2014-05-28
Structure and phase transitions of (1-y)((1-x)Bi 1/2Na 1/2TiO 3-xBi 1/2K 1/2TiO 3)-yK 0.5Na 0.5NbO 3 (x; y) piezoceramics (0.1 ≤ x ≤ 0.4; 0 ≤ y ≤ 0.05) were investigated by transmission electron microscopy, neutron diffraction, temperature-dependent x-ray diffraction, and Raman spectroscopy. The local crystallographic structure at room temperature (RT) does not change by adding K 0.5Na 0.5NbO 3 to Bi 1/2Na 1/2TiO 3-xBi 1/2K 1/2TiO 3 for x = 0.2 and 0.4. The average crystal structure and microstructure on the other hand develop from mainly long-range polar order with ferroelectric domains to short-range order with polar nanoregions displaying amore » more pronounced relaxor character. The (0.1; 0) and (0.1; 0.02) compositions exhibit monoclinic Cc space group symmetry, which transform into Cc + P4bm at 185 and 130 °C, respectively. This high temperature phase is stable at RT for the morphotropic phase boundary compositions of (0.1; 0.05) and all compositions with x = 0.2. For the compositions of (0.1; 0) and (0.1; 0.02), local structural changes on heating are evidenced by Raman; for all other compositions, changes in the long-range average crystal structure were observed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalaskar, Abhijeet; Rao, Badari Narayana; Ranjan, Rajeev, E-mail: rajeev@materials.iisc.ernet.in
2015-06-28
Eu{sup +3} was incorporated into the lattice of a lead-free ferroelectric Na{sub 1/2}Bi{sub 1/2}TiO{sub 3} (NBT) as per the nominal formula Na{sub 0.5}Bi{sub 0.5−x}Eu{sub x}TiO{sub 3}. This system was investigated with regard to the Eu{sup +3} photoluminescence (PL) and structural behaviour as a function of composition and electric field. Electric field was found to irreversibly change the features in the PL spectra and also in the x-ray diffraction patterns below the critical composition x = 0.025. Detailed analysis revealed that below the critical composition, electric field irreversibly suppresses the structural heterogeneity inherent of the host matrix NBT and brings about a longmore » range ferroelectric state with rhombohedral (R3c) distortion. It is shown that the structural disorder on the nano-scale opens a new channel for radiative transition which manifests as a new emission line branching off from the main {sup 5}D{sub 0}→{sup 7}F{sub 0} line along with a concomitant change in the relative intensity of the other crystal field induced Stark lines with different J values. The study suggests that Eu{sup +3} luminescence can be used to probe the relative degree of field induced structural ordering in relaxor ferroelectrics and also in high performance piezoelectric alloys where electric field couples very strongly with the lattice and structural degrees of freedom.« less
Method for thermal and structural evaluation of shallow intense-beam deposition in matter
NASA Astrophysics Data System (ADS)
Pilan Zanoni, André
2018-05-01
The projected range of high-intensity proton and heavy-ion beams at energies below a few tens of MeV/A in matter can be as short as a few micrometers. For the evaluation of temperature and stresses from a shallow beam energy deposition in matter conventional numerical 3D models require minuscule element sizes for acceptable element aspect ratio as well as extremely short time steps for numerical convergence. In order to simulate energy deposition using a manageable number of elements this article presents a method using layered elements. This method is applied to beam stoppers and accidental intense-beam impact onto UHV sector valves. In those cases the thermal results from the new method are congruent to those from conventional solid-element and adiabatic models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gafner, Yu. Ya., E-mail: ygafner@khsu.ru; Gafner, S. L.; Chepkasov, I. V.
2010-10-15
The condensation of 85000 Cu or Ni atoms from the high-temperature gas phase has been simulated by molecular dynamics with the tight binding potential. The efect of the subsequent thermal treatment on the shape and structure of synthesized particles was studied by simulating their gradual heating in a range of 100-1200 K. Some tendencies are revealed that are characteristic of the influence of heat treatment on the nanoparticles synthesized from the gas phase. It is concluded that short-term heating leads to significant ordering of the internal structure in 70% of agglomerated nanoparticles with the predominant formation of spherical shapes. Inmore » order to explain this result, the main mechanisms of cluster formation from the gas phase have been analyzed and it is found that the agglomeration temperature plays the main role in the formation of clusters with unified shape and structure. This opens the fundamental possibility of obtaining Cu and Ni nanoclusters with preset size, shape, and structure and, hence, predictable physical properties.« less
Characterization of nanoscale oxide and oxyhydroxide powders using EXAFS spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darab, J.G.; Linehan, J.C.; Matson, D.W.
1993-06-01
Extended x-ray absorption fine structure (EXAFS) spectroscopy has been used to determine the structural environment local to iron(HI) and zircorium(IV) cations in respectively, nanoscale iron oxyhydroxide and nanoscale zirconium oxide powders. The iron oxyhydroxide powder, produced by the modified reverse micelle (MRM) technology, was found to have a short-range structure most similar to that of goethite ([alpha]-FeOOH). The short-range structure of the zirconium oxide powder, produced using the rapid thermal decomposition of solutes (RTDS) technology, was found to be a mixture of monoclinic zirconia and cubic zirconia environments.
Characterization of nanoscale oxide and oxyhydroxide powders using EXAFS spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darab, J.G.; Linehan, J.C.; Matson, D.W.
1993-06-01
Extended x-ray absorption fine structure (EXAFS) spectroscopy has been used to determine the structural environment local to iron(HI) and zircorium(IV) cations in respectively, nanoscale iron oxyhydroxide and nanoscale zirconium oxide powders. The iron oxyhydroxide powder, produced by the modified reverse micelle (MRM) technology, was found to have a short-range structure most similar to that of goethite ({alpha}-FeOOH). The short-range structure of the zirconium oxide powder, produced using the rapid thermal decomposition of solutes (RTDS) technology, was found to be a mixture of monoclinic zirconia and cubic zirconia environments.
Bera, Mrinal K.; Qiao, Baofu; Seifert, Soenke; ...
2015-12-15
Charged colloids and proteins in aqueous solutions interact via short-range attractions and long-range repulsions (SALR) and exhibit complex structural phases. These include homogeneously dispersed monomers, percolated monomers, clusters, and percolated clusters. We report the structural architectures of simple charged systems in the form of spherical, Keggin-type heteropolyanions (HPAs) by small-angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations. Structure factors obtained from the SAXS measurements show that the HPAs interact via SALR. Concentration and temperature dependences of the structure factors for HPAs with –3e (e is the charge of an electron) charge are consistent with a mixture of nonassociated monomersmore » and associated randomly percolated monomers, whereas those for HPAs with –4e and –5e charges exhibit only nonassociated monomers in aqueous solutions. Our experiments show that the increase in magnitude of the charge of the HPAs increases their repulsive interactions and inhibits their aggregation in aqueous solutions. MD simulations were done to reveal the atomistic scale origins of SALR between HPAs. As a result, the short-range attractions result from water or proton-mediated hydrogen bonds between neighboring HPAs, whereas the long-range repulsions are due to the distributions of ions surrounding the HPAs.« less
Thermally Tunable Hydrogels Displaying Angle-Independent Structural Colors.
Ohtsuka, Yumiko; Seki, Takahiro; Takeoka, Yukikazu
2015-12-14
We report the preparation of thermally tunable hydrogels displaying angle-independent structural colors. The porous structures were formed with short-range order using colloidal amorphous array templates and a small amount of carbon black (CB). The resultant porous hydrogels prepared using colloidal amorphous arrays without CB appeared white, whereas the hydrogels with CB revealed bright structural colors. The brightly colored hydrogels rapidly changed hues in a reversible manner, and the hues varied widely depending on the water temperature. Moreover, the structural colors were angle-independent under diffusive lighting because of the isotropic nanostructure generated from the colloidal amorphous arrays. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
NASA Astrophysics Data System (ADS)
Eriş, Rasim; Mekhrabov, Amdulla O.; Akdeniz, M. Vedat
2017-10-01
Remarkable high-temperature mechanical properties of nickel-based superalloys are correlated with the arrangement of ternary alloying elements in L12-type-ordered γ‧-Ni3Al intermetallics. In the current study, therefore, high-temperature site occupancy preference and energetic-structural characteristics of atomic short-range ordering (SRO) of ternary alloying X elements (X = Mo, W, Ta, Hf, Re, Ru, Pt or Co) in Ni75Al21.875X3.125 alloy systems have been studied by combining the statistico-thermodynamical theory of ordering and electronic theory of alloys in the pseudopotential approximation. Temperature dependence of site occupancy tendencies of alloying X element atoms has been predicted by calculating partial ordering energies and SRO parameters of Ni-Al, Ni-X and Al-X atomic pairs. It is shown that, all ternary alloying element atoms (except Pt) tend to occupy Al, whereas Pt atoms prefer to substitute for Ni sub-lattice sites of Ni3Al intermetallics. However, in contrast to other X elements, sub-lattice site occupancy characteristics of Re atoms appear to be both temperature- and composition-dependent. Theoretical calculations reveal that site occupancy preference of Re atoms switches from Al to both Ni and Al sites at critical temperatures, Tc, for Re > 2.35 at%. Distribution of Re atoms at both Ni and Al sub-lattice sites above Tc may lead to localised supersaturation of the parent Ni3Al phase and makes possible the formation of topologically close-packed (TCP) phases. The results of the current theoretical and simulation study are consistent with other theoretical and experimental investigations published in the literature.
Disordered amorphous calcium carbonate from direct precipitation
Farhadi Khouzani, Masoud; Chevrier, Daniel M.; Güttlein, Patricia; ...
2015-06-01
Amorphous calcium carbonate (ACC) is known to play a prominent role in biomineralization. Different studies on the structure of biogenic ACCs have illustrated that they can have distinct short-range orders. However, the origin of so-called proto-structures in synthetic and additive-free ACCs is not well understood. In the current work, ACC has been synthesised in iso-propanolic media by direct precipitation from ionic precursors, and analysed utilising a range of different techniques. The data suggest that this additive-free type of ACC does not resemble clear proto-structural motifs relating to any crystalline polymorph. This can be explained by the undefined pH value inmore » iso-propanolic media, and the virtually instantaneous precipitation. Altogether, this work suggests that aqueous systems and pathways involving pre-nucleation clusters are required for the generation of clear proto-structural features in ACC. Experiments on the ACC-to-crystalline transformation in solution with and without ethanol highlight that polymorph selection is under kinetic control, while the presence of ethanol can control dissolution re-crystallisation pathways.« less
Genetically tunable M13 phage films utilizing evaporating droplets.
Alberts, Erik; Warner, Chris; Barnes, Eftihia; Pilkiewicz, Kevin; Perkins, Edward; Poda, Aimee
2018-01-01
This effort utilizes a genetically tunable system of bacteriophage to evaluate the effect of charge, temperature and particle concentration on biomaterial synthesis utilizing the coffee ring (CR) effect. There was a 1.6-3 fold suppression of the CR at higher temperatures while maintaining self-assembled structures of thin films. This suppression was observed in phage with charged and uncharged surface chemistry, which formed ordered and disordered assemblies respectively, indicating CR suppression is not dependent on short-range ordering or surface chemistry. Analysis of the drying process suggests weakened capillary flow at elevated temperatures caused CR suppression and could be further enhanced for controlled assembly for advanced biomaterials. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Atalay, Bora; Berker, A. Nihat
2018-05-01
Discrete-spin systems with maximally random nearest-neighbor interactions that can be symmetric or asymmetric, ferromagnetic or antiferromagnetic, including off-diagonal disorder, are studied, for the number of states q =3 ,4 in d dimensions. We use renormalization-group theory that is exact for hierarchical lattices and approximate (Migdal-Kadanoff) for hypercubic lattices. For all d >1 and all noninfinite temperatures, the system eventually renormalizes to a random single state, thus signaling q ×q degenerate ordering. Note that this is the maximally degenerate ordering. For high-temperature initial conditions, the system crosses over to this highly degenerate ordering only after spending many renormalization-group iterations near the disordered (infinite-temperature) fixed point. Thus, a temperature range of short-range disorder in the presence of long-range order is identified, as previously seen in underfrustrated Ising spin-glass systems. The entropy is calculated for all temperatures, behaves similarly for ferromagnetic and antiferromagnetic interactions, and shows a derivative maximum at the short-range disordering temperature. With a sharp immediate contrast of infinitesimally higher dimension 1 +ɛ , the system is as expected disordered at all temperatures for d =1 .
NASA Astrophysics Data System (ADS)
Hoy, Robert S.; Harwayne-Gidansky, Jared; O'Hern, Corey S.
2012-05-01
We analyze the geometric structure and mechanical stability of a complete set of isostatic and hyperstatic sphere packings obtained via exact enumeration. The number of nonisomorphic isostatic packings grows exponentially with the number of spheres N, and their diversity of structure and symmetry increases with increasing N and decreases with increasing hyperstaticity H≡Nc-NISO, where Nc is the number of pair contacts and NISO=3N-6. Maximally contacting packings are in general neither the densest nor the most symmetric. Analyses of local structure show that the fraction f of nuclei with order compatible with the bulk (rhcp) crystal decreases sharply with increasing N due to a high propensity for stacking faults, five- and near-fivefold symmetric structures, and other motifs that preclude rhcp order. While f increases with increasing H, a significant fraction of hyperstatic nuclei for N as small as 11 retain non-rhcp structure. Classical theories of nucleation that consider only spherical nuclei, or only nuclei with the same ordering as the bulk crystal, cannot capture such effects. Our results provide an explanation for the failure of classical nucleation theory for hard-sphere systems of N≲10 particles; we argue that in this size regime, it is essential to consider nuclei of unconstrained geometry. Our results are also applicable to understanding kinetic arrest and jamming in systems that interact via hard-core-like repulsive and short-ranged attractive interactions.
Hydroxyl migration disorders the surface structure of hydroxyapatite nanoparticles
NASA Astrophysics Data System (ADS)
Cheng, Xiajie; Wu, Hong; Zhang, Li; Ma, Xingtao; Zhang, Xingdong; Yang, Mingli
2017-09-01
The surface structure of nano-hydroxyapatite (HAP) was investigated using a combined simulated annealing and molecular dynamics method. The stationary structures of nano-HAP with 4-7 nm in diameter and annealed under different temperatures were analyzed in terms of pair distribution function, structural factor, mean square displacement and atomic coordination number. The particles possess different structures from bulk crystal. A clear radial change in their atomic arrangements was noted. From core to surface the structures change from ordered to disordered. A three-shell model was proposed to describe the structure evolution of nano-HAP. Atoms in the core zone keep their arrangements as in crystal, while atoms in the surface shell are in short-range order and long-range disorder, adopting a typically amorphous structure. Atoms in the middle shell have small displacements and/or deflections but basically retain their original locations as in crystal. The disordered shell is about 1 nm in thickness, in agreement with experimental observations. The disordering mainly stems from hydroxyl migration during which hydroxyls move to the surface and bond with the exposed Ca ions, and their left vacancies bring about a rearrangement of nearby atoms. The disordering is to some extent different for particles unannealed under different temperatures, resulting from fewer number of migrated hydroxyls at lower temperatures. Particles with different sizes have similar surface structures, and their surface energy decreases with increasing size. Moreover, the surface energy is reduced by hydroxyl migration because the exposed Ca ions on the surface are ionically bonded with the migrated hydroxyls. Our calculations proposed a new structure model for nano-HAP, which indicates a surface structure with activities different from those without surface reorganization. This is particularly interesting because most bioactivities of biomaterials are dominated by their surface activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sainato, Michela; Shevitski, Brian; Sahu, Ayaskanta
Self-assembly of semiconductor nanocrystals (NCs) into two-dimensional patterns or three-dimensional (2- 3D) superstructures has emerged as a promising low-cost route to generate thin-film transistors and solar cells with superior charge transport because of enhanced electronic coupling between the NCs. Here, we show that lead sulfide (PbS) NCs solids featuring either short-range (disordered glassy solids, GSs) or long-range (superlattices, SLs) packing order are obtained solely by controlling deposition conditions of colloidal solution of NCs. In this study, we demonstrate the use of the evaporation-driven self-assembly method results in PbS NC SL structures that are observed over an area of 1 mmmore » × 100 μm, with long-range translational order of up to 100 nm. A number of ordered domains appear to have nucleated simultaneously and grown together over the whole area, imparting a polycrystalline texture to the 3D SL films. By contrast, a conventional, optimized spin-coating deposition method results in PbS NC glassy films with no translational symmetry and much shorter-range packing order in agreement with state-of-the-art reports. Further, we investigate the electronic properties of both SL and GS films, using a field-effect transistor configuration as a test platform. The long-range ordering of the PbS NCs into SLs leads to semiconducting NC-based solids, the mobility (μ) of which is 3 orders of magnitude higher than that of the disordered GSs. Furthemore, although spin-cast GSs of PbS NCs have weak ambipolar behavior with limited gate tunability, SLs of PbS NCs show a clear p-type behavior with significantly higher conductivities.« less
Computational Fluid Dynamics (CFD) techniques are increasingly being applied to air quality modeling of short-range dispersion, especially the flow and dispersion around buildings and other geometrically complex structures. The proper application and accuracy of such CFD techniqu...
NASA Astrophysics Data System (ADS)
Belov, S. Yu.; Belova, I. N.
2017-11-01
Monitoring of the earth's surface by remote sensing in the short-wave band can provide quick identification of some characteristics of natural systems. This band range allows one to diagnose subsurface aspects of the earth, as the scattering parameter is affected by irregularities in the dielectric permittivity of subsurface structures. This method based on the organization of the monitoring probe may detect changes in these environments, for example, to assess seismic hazard, hazardous natural phenomena such as earthquakes, as well as some man-made hazards and etc. The problem of measuring and accounting for the scattering power of the earth's surface in the short-range of radio waves is important for a number of purposes, such as diagnosing properties of the medium, which is of interest for geological, environmental studies. In this paper, we propose a new method for estimating the parameters of incoherent signal/noise ratio. The paper presents the results of comparison of the measurement method from the point of view of their admissible relative analytical errors. The new method is suggested. Analysis of analytical error of estimation of this parameter allowed to recommend new method instead of standard method. A comparative analysis and shows that the analytical (relative) accuracy of the determination of this parameter new method on the order exceeds the widely-used standard method.
Acquiring Complex Focus-Marking: Finnish 4- to 5-Year-Olds Use Prosody and Word Order in Interaction
Arnhold, Anja; Chen, Aoju; Järvikivi, Juhani
2016-01-01
Using a language game to elicit short sentences in various information structural conditions, we found that Finnish 4- to 5-year-olds already exhibit a characteristic interaction between prosody and word order in marking information structure. Providing insights into the acquisition of this complex system of interactions, the production data showed interesting parallels to adult speakers of Finnish on the one hand and to children acquiring other languages on the other hand. Analyzing a total of 571 sentences produced by 16 children, we found that children rarely adjusted input word order, but did systematically avoid marked OVS order in contrastive object focus condition. Focus condition also significantly affected four prosodic parameters, f0, duration, pauses and voice quality. Differing slightly from effects displayed in adult Finnish speech, the children produced larger f0 ranges for words in contrastive focus and smaller ones for unfocused words, varied only the duration of object constituents to be longer in focus and shorter in unfocused condition, inserted more pauses before and after focused constituents and systematically modified their use of non-modal voice quality only in utterances with narrow focus. Crucially, these effects were modulated by word order. In contrast to comparable data from children acquiring Germanic languages, the present findings reflect the more central role of word order and of interactions between word order and prosody in marking information structure in Finnish. Thus, the study highlights the role of the target language in determining linguistic development. PMID:27990130
2012-01-01
Background The three-dimensional structure of a protein can be described as a graph where nodes represent residues and the strength of non-covalent interactions between them are edges. These protein contact networks can be separated into long and short-range interactions networks depending on the positions of amino acids in primary structure. Long-range interactions play a distinct role in determining the tertiary structure of a protein while short-range interactions could largely contribute to the secondary structure formations. In addition, physico chemical properties and the linear arrangement of amino acids of the primary structure of a protein determines its three dimensional structure. Here, we present an extensive analysis of protein contact subnetworks based on the London van der Waals interactions of amino acids at different length scales. We further subdivided those networks in hydrophobic, hydrophilic and charged residues networks and have tried to correlate their influence in the overall topology and organization of a protein. Results The largest connected component (LCC) of long (LRN)-, short (SRN)- and all-range (ARN) networks within proteins exhibit a transition behaviour when plotted against different interaction strengths of edges among amino acid nodes. While short-range networks having chain like structures exhibit highly cooperative transition; long- and all-range networks, which are more similar to each other, have non-chain like structures and show less cooperativity. Further, the hydrophobic residues subnetworks in long- and all-range networks have similar transition behaviours with all residues all-range networks, but the hydrophilic and charged residues networks don’t. While the nature of transitions of LCC’s sizes is same in SRNs for thermophiles and mesophiles, there exists a clear difference in LRNs. The presence of larger size of interconnected long-range interactions in thermophiles than mesophiles, even at higher interaction strength between amino acids, give extra stability to the tertiary structure of the thermophiles. All the subnetworks at different length scales (ARNs, LRNs and SRNs) show assortativity mixing property of their participating amino acids. While there exists a significant higher percentage of hydrophobic subclusters over others in ARNs and LRNs; we do not find the assortative mixing behaviour of any the subclusters in SRNs. The clustering coefficient of hydrophobic subclusters in long-range network is the highest among types of subnetworks. There exist highly cliquish hydrophobic nodes followed by charged nodes in LRNs and ARNs; on the other hand, we observe the highest dominance of charged residues cliques in short-range networks. Studies on the perimeter of the cliques also show higher occurrences of hydrophobic and charged residues’ cliques. Conclusions The simple framework of protein contact networks and their subnetworks based on London van der Waals force is able to capture several known properties of protein structure as well as can unravel several new features. The thermophiles do not only have the higher number of long-range interactions; they also have larger cluster of connected residues at higher interaction strengths among amino acids, than their mesophilic counterparts. It can reestablish the significant role of long-range hydrophobic clusters in protein folding and stabilization; at the same time, it shed light on the higher communication ability of hydrophobic subnetworks over the others. The results give an indication of the controlling role of hydrophobic subclusters in determining protein’s folding rate. The occurrences of higher perimeters of hydrophobic and charged cliques imply the role of charged residues as well as hydrophobic residues in stabilizing the distant part of primary structure of a protein through London van der Waals interaction. PMID:22720789
Sayles, Mark; Winter, Ian Michael
2007-09-26
Spike trains were recorded from single units in the ventral cochlear nucleus of the anaesthetised guinea-pig in response to dynamic iterated rippled noise with positive and negative gain. The short-term running waveform autocorrelation functions of these stimuli show peaks at integer multiples of the time-varying delay when the gain is +1, and troughs at odd-integer multiples and peaks at even-integer multiples of the time-varying delay when the gain is -1. In contrast, the short-term autocorrelation of the Hilbert envelope shows peaks at integer multiples of the time-varying delay for both positive and negative gain stimuli. A running short-term all-order interspike interval analysis demonstrates the ability of single units to represent the modulated pitch contour in their short-term interval statistics. For units with low best frequency (approximate < or = 1.1 kHz) the temporal discharge pattern reflected the waveform fine structure regardless of unit classification (Primary-like, Chopper). For higher best frequency units the pattern of response varied according to unit type. Chopper units with best frequency approximate > or = 1.1 kHz responded to envelope modulation; showing no difference between their response to stimuli with positive and negative gain. Primary-like units with best frequencies in the range 1-3 kHz were still able to represent the difference in the temporal fine structure between dynamic rippled noise with positive and negative gain. No unit with a best frequency above 3 kHz showed a response to the temporal fine structure. Chopper units in this high frequency group showed significantly greater representation of envelope modulation relative to primary-like units with the same range of best frequencies. These results show that at the level of the cochlear nucleus there exists sufficient information in the time domain to represent the time-varying pitch associated with dynamic iterated rippled noise.
Influence of the Ag concentration on the medium-range order in a CuZrAlAg bulk metallic glass
Gammer, C.; Escher, B.; Ebner, C.; ...
2017-03-21
Fluctuation electron microscopy of bulk metallic glasses of CuZrAl(Ag) demonstrates that medium-range order is sensitive to minor compositional changes. Furthermore, by analyzing nanodiffraction patterns medium-range order is detected with crystal-like motifs based on the B2 CuZr structure and its distorted structures resembling the martensitic ones. This result thus demonstrates some structural homology between the metallic glass and its high temperature crystalline phase. The amount of medium-range order seems slightly affected with increasing Ag concentration (0, 2, 5 at.%) but the structural motifs of the medium-range ordered clusters become more diverse at the highest Ag concentration. The decrease of dominant clustersmore » is consistent with the destabilization of the B2 structure measured by calorimetry and accounts for the increased glass-forming ability.« less
Influence of the Ag concentration on the medium-range order in a CuZrAlAg bulk metallic glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gammer, C.; Escher, B.; Ebner, C.
Fluctuation electron microscopy of bulk metallic glasses of CuZrAl(Ag) demonstrates that medium-range order is sensitive to minor compositional changes. Furthermore, by analyzing nanodiffraction patterns medium-range order is detected with crystal-like motifs based on the B2 CuZr structure and its distorted structures resembling the martensitic ones. This result thus demonstrates some structural homology between the metallic glass and its high temperature crystalline phase. The amount of medium-range order seems slightly affected with increasing Ag concentration (0, 2, 5 at.%) but the structural motifs of the medium-range ordered clusters become more diverse at the highest Ag concentration. The decrease of dominant clustersmore » is consistent with the destabilization of the B2 structure measured by calorimetry and accounts for the increased glass-forming ability.« less
Penetrable square-well fluids: exact results in one dimension.
Santos, Andrés; Fantoni, Riccardo; Giacometti, Achille
2008-05-01
We introduce a model of attractive penetrable spheres by adding a short-range attractive square well outside a penetrable core, and we provide a detailed analysis of structural and thermodynamical properties in one dimension using the exact impenetrable counterpart as a starting point. The model is expected to describe star polymers in regimes of good and moderate solvent under dilute conditions. We derive the exact coefficients of a low-density expansion up to second order for the radial distribution function and up to fourth order in the virial expansion. These exact results are used as a benchmark to test the reliability of approximate theories (Percus-Yevick and hypernetted chain). Notwithstanding the lack of an exact solution for arbitrary densities, our results are expected to be rather precise within a wide range of temperatures and densities. A detailed analysis of some limiting cases is carried out. In particular, we provide a complete solution of the sticky penetrable-sphere model in one dimension up to the same order in density. The issue of Ruelle's thermodynamics stability is analyzed and the region of a well-defined thermodynamic limit is identified.
Wang, Lang; Wang, Zheng; Jiang, Run; Yin, Yuhua; Li, Baohui
2017-03-15
The thermodynamic behaviors of a strongly charged polyelectrolyte chain in a poor solvent are studied using replica-exchange Monte-Carlo simulations on a lattice model, focusing on the effects of finite chain length and the solvent quality on the chain conformation and conformation transitions. The neutralizing counterions and solvent molecules are considered explicitly. The thermodynamic quantities that vary continuously with temperature over a wide range are computed using the multiple histogram reweighting method. Our results suggest that the strength of the short-range hydrophobic interaction, the chain length, and the temperature of the system, characterized by ε, N, and T, respectively, are important parameters that control the conformations of a charged chain. When ε is moderate, the competition between the electrostatic energy and the short-range hydrophobic interaction leads to rich conformations and conformation transitions for a longer chain with a fixed length. Our results have unambiguously demonstrated the stability of the n-pearl-necklace structures, where n has a maximum value and decreases with decreasing temperature. The maximum n value increases with increasing chain length. Our results have also demonstrated the first-order nature of the conformation transitions between the m-pearl and the (m-1)-pearl necklaces. With the increase of ε, the transition temperature increases and the first-order feature becomes more pronounced. It is deduced that at the thermodynamic limit of infinitely long chain length, the conformational transitions between the m-pearl and the (m-1)-pearl necklaces may remain first order when ε > 0 and m = 2 or 3. Pearl-necklace conformations cannot be observed when either ε is too large or N is too small. To observe a pearl-necklace conformation, the T value needs to be carefully chosen for simulations performed at only a single temperature.
Computational Fluid Dynamics (CFD) techniques are increasingly being applied to air quality modeling of short-range dispersion, especially the flow and dispersion around buildings and other geometrically complex structures. The proper application and accuracy of such CFD techniqu...
Whitfield, Ross E.; Goossens, Darren J.; Welberry, T. Richard
2016-01-01
The ability of the pair distribution function (PDF) analysis of total scattering (TS) from a powder to determine the local ordering in ferroelectric PZN (PbZn1/3Nb2/3O3) has been explored by comparison with a model established using single-crystal diffuse scattering (SCDS). While X-ray PDF analysis is discussed, the focus is on neutron diffraction results because of the greater extent of the data and the sensitivity of the neutron to oxygen atoms, the behaviour of which is important in PZN. The PDF was shown to be sensitive to many effects not apparent in the average crystal structure, including variations in the B-site—O separation distances and the fact that 〈110〉 Pb2+ displacements are most likely. A qualitative comparison between SCDS and the PDF shows that some features apparent in SCDS were not apparent in the PDF. These tended to pertain to short-range correlations in the structure, rather than to interatomic separations. For example, in SCDS the short-range alternation of the B-site cations was quite apparent in diffuse scattering at (½ ½ ½), whereas it was not apparent in the PDF. PMID:26870378
Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; ...
2012-05-30
Measurements from the CMS experiment at the LHC of dihadron correlations for charged particles produced in PbPb collisions at a nucleon-nucleon centre-of-mass energy of 2. 76 TeV are presented. The results are reported as a function of the particle transverse momenta (p T ) and collision centrality over a broad range in relative pseudorapidity (Δη) and the full range of relative azimuthal angle (Δmore » $$\\phi$$). The observed two-dimensional correlation structure in Δη and Δ$$\\phi$$ is characterised by a narrow peak at (Δη,Δ$$\\phi$$)≈(0,0) from jet-like correlations and a long-range structure that persists up to at least |Δη|=4. An enhancement of the magnitude of the short-range jet peak is observed with increasing centrality, especially for particles of p T around 1-2 GeV/c. The long-range azimuthal dihadron correlations are extensively studied using a Fourier decomposition analysis. The extracted Fourier coefficients are found to factorise into a product of single-particle azimuthal anisotropies up to p T ≈3-3. 5 GeV/c for at least one particle from each pair, except for the second-order harmonics in the most central PbPb events. Various orders of the single-particle azimuthal anisotropy harmonics are extracted for associated particle p T of 1-3 GeV/c, as a function of the trigger particle p T up to 20 GeV/c and over the full centrality range.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brinckmann, Jan; Woelfle, Peter
2004-11-01
The nearest-neighbor quantum antiferromagnetic (AF) Heisenberg model for spin-1/2 on a two-dimensional square lattice is studied in the auxiliary-fermion representation. Expressing spin operators by canonical fermionic particles requires a constraint on the fermion charge Q{sub i}=1 on each lattice site i, which is imposed approximately through the thermal average. The resulting interacting fermion system is first treated in mean-field theory (MFT), which yields an AF ordered ground state and spin waves in quantitative agreement with conventional spin-wave theory. At finite temperature a self-consistent approximation beyond mean field is required in order to fulfill the Mermin-Wagner theorem. We first discuss amore » fully self-consistent approximation, where fermions are renormalized due to fluctuations of their spin density, in close analogy to FLEX. While static properties like the correlation length, {xi}(T){proportional_to}exp(aJ/T), come out correctly, the dynamical response lacks the magnon-like peaks which would reflect the appearance of short-range order at low T. This drawback, which is caused by overdamping, is overcome in a 'minimal self-consistent approximation' (MSCA), which we derive from the equations of motion. The MSCA features dynamical scaling at small energy and temperature and is qualitatively correct both in the regime of order-parameter relaxation at long wavelengths {lambda}>{xi} and in the short-range-order regime at {lambda}<{xi}. We also discuss the impact of vertex corrections and the problem of pseudo-gap formation in the single-particle density of states due to long-range fluctuations. Finally we show that the (short-range) magnetic order in MFT and MSCA helps to fulfill the constraint on the local fermion occupancy.« less
Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Nalini; Ahluwalia, P. K.; Thakur, Anil
2015-05-15
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70}, Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30} and Hg{sub 90}In{sub 10}) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factormore » shows the presence of liquid state in the considered alloys.« less
NASA Technical Reports Server (NTRS)
Palosz, B.; Grzanka, E.; Stelmakh, S.; Gierlotka, S.; Weber, H.-P.; Proffen, T.; Palosz, W.
2002-01-01
The real atomic structure of nanocrystals determines unique, key properties of the materials. Determination of the structure presents a challenge due to inherent limitations of standard powder diffraction techniques when applied to nanocrystals. Alternate methodology of the structural analysis of nanocrystals (several nanometers in size) based on Bragg-like scattering and called the "apparent lattice parameter" (alp) is proposed. Application of the alp methodology to examination of the core-shell model of nanocrystals will be presented. The results of application of the alp method to structural analysis of several nanopowders were complemented by those obtained by determination of the Atomic Pair Distribution Function, PDF. Based on synchrotron and neutron diffraction data measured in a large diffraction vector of up to Q = 25 Angstroms(exp -1), the surface stresses in nanocrystalline diamond and SiC were evaluated.
Harmonic component detection: Optimized Spectral Kurtosis for operational modal analysis
NASA Astrophysics Data System (ADS)
Dion, J.-L.; Tawfiq, I.; Chevallier, G.
2012-01-01
This work is a contribution in the field of Operational Modal Analysis to identify the modal parameters of mechanical structures using only measured responses. The study deals with structural responses coupled with harmonic components amplitude and frequency modulated in a short range, a common combination for mechanical systems with engines and other rotating machines in operation. These harmonic components generate misleading data interpreted erroneously by the classical methods used in OMA. The present work attempts to differentiate maxima in spectra stemming from harmonic components and structural modes. The detection method proposed is based on the so-called Optimized Spectral Kurtosis and compared with others definitions of Spectral Kurtosis described in the literature. After a parametric study of the method, a critical study is performed on numerical simulations and then on an experimental structure in operation in order to assess the method's performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pardo, Luis Carlos; Tamarit, Josep Lluis; Veglio, Nestor
2007-10-01
The short-range order (SRO) correlations in liquid- and rotator-phase states of carbon tetrachloride are revisited here. The correlation of some angular magnitudes is used to evaluate the positional and orientational correlations in the liquid as well as in the rotator phase. The results show significant similitudes in the relative position of the molecules surrounding a central one but striking differences in their relative orientations, which could explain the changes in SRO between the two phases and the puzzling behavior of the local density in the liquid and rotator phases.
Short-range order in the quantum XXZ honeycomb lattice material BaCo2(PO4)2
NASA Astrophysics Data System (ADS)
Nair, Harikrishnan S.; Brown, J. M.; Coldren, E.; Hester, G.; Gelfand, M. P.; Podlesnyak, A.; Huang, Q.; Ross, K. A.
2018-04-01
We present observations of highly frustrated quasi-two-dimensional (2D) magnetic correlations in the honeycomb lattice layers of the Seff =1 /2 compound γ -BaCo2(PO4)2 (γ -BCPO). Specific heat shows a broad peak comprised of two weak kink features at TN 1˜6 K and TN 2˜3.5 K, the relative weights of which can be modified by sample annealing. Neutron powder diffraction measurements reveal short range quasi-2D order that is established below TN 1 and TN 2, at which two separate, incompatible, short range magnetic orders onset: commensurate antiferromagnetic correlations with correlation length ξc=60 ±2 Å (TN 1) and in quasi-2D helical domains with ξh=350 ±11 Å (TN 2). The ac magnetic susceptibility response lacks frequency dependence, ruling out spin freezing. Inelastic neutron scattering data on γ -BCPO is compared with linear spin wave theory, and two separate parameter regions of the XXZ J1-J2-J3 model with ferromagnetic nearest-neighbor exchange J1 are favored, both near regions of high classical degeneracy. High energy coherent excitations (˜10 meV) persist up to at least 40 K, suggesting strong in-plane correlations persist above TN. These data show that γ -BCPO is a rare highly frustrated, quasi-2D Seff =1 /2 honeycomb lattice material which resists long range magnetic order and spin freezing.
Search for Lorentz Violation in a Short-Range Gravity Experiment
NASA Astrophysics Data System (ADS)
Bennett, D.; Skavysh, V.; Long, J.
2011-12-01
An experimental test of the Newtonian inverse square law at short range has been used to set limits on Lorentz violation in the pure gravity sector of the Standard-Model Extension. On account of the planar test mass geometry, nominally null with respect to 1/r2 forces, the limits derived for the SME coefficients of Lorentz violation are on the order bar sJK ˜ 104 .
NASA Astrophysics Data System (ADS)
Chekalin, S. V.; Kompanets, V. O.; Dormidonov, A. E.; Kandidov, V. P.
2017-04-01
The influence of the occurrence of a structure consisting of long-lived colour centres, formed in an LiF crystal upon filamentation of femtosecond mid-IR radiation, on the supercontinuum characteristics is investigated. With an increase in the number of incident pulses, the length and transverse size of the structure of colour centres induced in LiF increase, and the supercontinuum spectrum in the short-wavelength region is markedly transformed due to the occurrence of the waveguide propagation regime, absorption, and scattering of radiation from the newly formed structure of colour centres. Under these conditions, the intensity of the anti-Stokes wing decreases by two orders of magnitude after several tens of pulses. Spectral components arise in the visible range, the angular divergence of which increases with increasing wavelength.
Fine, Daniel; Grattoni, Alessandro; Hosali, Sharath; Ziemys, Arturas; De Rosa, Enrica; Gill, Jaskaran; Medema, Ryan; Hudson, Lee; Kojic, Milos; Milosevic, Miljan; Brousseau Iii, Louis; Goodall, Randy; Ferrari, Mauro; Liu, Xuewu
2010-11-21
This manuscript demonstrates a mechanically robust implantable nanofluidic membrane capable of tunable long-term zero-order release of therapeutic agents in ranges relevant for clinical applications. The membrane, with nanochannels as small as 5 nm, allows for the independent control of both dosage and mechanical strength through the integration of high-density short nanochannels parallel to the membrane surface with perpendicular micro- and macrochannels for interfacing with the ambient solutions. These nanofluidic membranes are created using precision silicon fabrication techniques on silicon-on-insulator substrates enabling exquisite control over the monodispersed nanochannel dimensions and surface roughness. Zero-order release of analytes is achieved by exploiting molecule to surface interactions which dominate diffusive transport when fluids are confined to the nanoscale. In this study we investigate the nanofluidic membrane performance using custom diffusion and gas testing apparatuses to quantify molecular release rate and process uniformity as well as mechanical strength using a gas based burst test. The kinetics of the constrained zero-order release is probed with molecules presenting a range of sizes, charge states, and structural conformations. Finally, an optimal ratio of the molecular hydrodynamic diameter to the nanochannel dimension is determined to assure zero-order release for each tested molecule.
NASA Astrophysics Data System (ADS)
Kurbakov, A. I.; Korshunov, A. N.; Podchezertsev, S. Yu.; Malyshev, A. L.; Evstigneeva, M. A.; Damay, F.; Park, J.; Koo, C.; Klingeler, R.; Zvereva, E. A.; Nalbandyan, V. B.
2017-07-01
The magnetic structure of L i3N i2Sb O6 has been determined by low-temperature neutron diffraction, and the crystal structure has been refined by a combination of synchrotron and neutron powder diffraction. The monoclinic (C 2 /m ) symmetry, assigned previously to this pseudohexagonal layered structure, has been unambiguously proven by peak splitting in the synchrotron diffraction pattern. The structure is based on essentially hexagonal honeycomb-ordered N i2Sb O6 layers alternating with L i3 layers, all cations and anions being in an octahedral environment. The compound orders antiferromagnetically below TN=15 K , with the magnetic supercell being a 2 a ×2 b multiple of the crystal cell. The magnetic structure within the honeycomb layer consists of zigzag ferromagnetic spin chains coupled antiferromagnetically. The ordered magnetic moment amounts to 1.62 (2 ) μB/Ni , which is slightly lower than the full theoretical value. Upon cooling below TN, the spins tilt from the c axis, with a maximum tilting angle of 15 .6∘ at T =1.5 K . Our data imply non-negligible ferromagnetic interactions between the honeycomb layers. The observed antiferromagnetic resonance modes are in agreement with the two-sublattice model derived from the neutron data. Orthorhombic anisotropy shows up in zero-field splitting of Δ =198 ±4 and 218 ±4 GHz . Above TN, the electron spin resonance data imply short-range antiferromagnetic order up to about 80 K.
NASA Astrophysics Data System (ADS)
Van Cise, Amy
The evolutionary ecology of a species is driven by a combination of random events, ecological and environmental mechanisms, and social behavior. Gene-culture coevolutionary theory attempts to understand the evolutionary trajectory of a species by examining the interactions between these potential drivers. Further, our choice of data type will affect the patterns we observe, therefore by integrating several types of data we achieve a holistic understanding of the various aspects of evolutionary ecology within a species. In order to understand population structure in short-finned pilot whales, I use a combination of genetic and acoustic data to examine structure on evolutionary (genetic) and cultural (acoustic) timescales. I first examine structure among geographic populations in the Pacific Ocean. Using genetic sequences from the mitochondrial control region, I show that two genetically and morphologically distinct types of short-finned pilot whale, described off the coast of Japan, have non-overlapping distributions throughout their range in the Pacific Ocean. Analysis of the acoustic features of their social calls indicates that they are acoustically differentiated, possibly due to limited communication between the two types. This evidence supports the hypothesis that the two types may be separate species or subspecies. Next, I examine structure among island communities and social groups within the Hawaiian Island population of short-finned pilot whales. Using a combination of mitochondrial and nuclear DNA, I showed that the hierarchical social structure in Hawaiian pilot whales is driven by genetic relatedness; individuals remain in groups with their immediate family members, and preferentially associate with relatives. Similarly, social structure affects genetic differentiation, likely by restricting access to mates. Acoustic differentiation among social groups indicates that social structure may also restrict the flow of cultural information, such as vocal repertoire or dialect. The qualitative correlation between social structure, cultural information transfer, and genetic structure suggest that gene-culture coevolution may be an important mechanism to the evolutionary ecology of short-finned pilot whales. Further research may reveal a similar structure in the transmission of ecological behaviors, such as diet preference, habitat use, or movements. The results of this research underscore the applicability of gene-culture coevolutionary theory to non-human taxa.
On the Origin of Charge Order in RuCl3
NASA Astrophysics Data System (ADS)
Berlijn, Tom
RuCl3 has been proposed to be a spin-orbit assisted Mott insulator close to the Kitaev-spin-liquid ground state, an exotic state of matter that could protect information in quantum computers. Recent STM experiments [M. Ziatdinov et al, Nature Communications (in press)] however, show the presence of a puzzling short-range charge order in this quasi two dimensional material. Understanding the nature of this charge order may provide a pathway towards tuning RuCl3 into the Kitaev-spin-liquid ground state. Based on first principles calculations I investigate the possibility that the observed charge order is caused by a combination of short-range magnetic correlations and strong spin-orbit coupling. From a general perspective such a mechanism could offer the exciting possibility of probing local magnetic correlations with standard STM. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.
Order of wetting transitions in electrolyte solutions.
Ibagon, Ingrid; Bier, Markus; Dietrich, S
2014-05-07
For wetting films in dilute electrolyte solutions close to charged walls we present analytic expressions for their effective interface potentials. The analysis of these expressions renders the conditions under which corresponding wetting transitions can be first- or second-order. Within mean field theory we consider two models, one with short- and one with long-ranged solvent-solvent and solvent-wall interactions. The analytic results reveal in a transparent way that wetting transitions in electrolyte solutions, which occur far away from their critical point (i.e., the bulk correlation length is less than half of the Debye length) are always first-order if the solvent-solvent and solvent-wall interactions are short-ranged. In contrast, wetting transitions close to the bulk critical point of the solvent (i.e., the bulk correlation length is larger than the Debye length) exhibit the same wetting behavior as the pure, i.e., salt-free, solvent. If the salt-free solvent is governed by long-ranged solvent-solvent as well as long-ranged solvent-wall interactions and exhibits critical wetting, adding salt can cause the occurrence of an ion-induced first-order thin-thick transition which precedes the subsequent continuous wetting as for the salt-free solvent.
Intensity modulation photonic crystal fiber based refractometer in the visible wavelength range
NASA Astrophysics Data System (ADS)
Liu, Yun; Chen, Shimeng; Zhang, Xinpu; Gong, Zhenfeng; Peng, Wei
2014-11-01
A novel evanescent field refractometer based on a two-core photonic crystal fiber (TWPCF) sandwiched between multimode fibers(MMFs) is demonstrated. Through splicing a short piece of TWPCF between two MMFs, a simple structure and high sensitivity RI sensor can be constructed. Instead of using wavelength information as sensor signal, we focus more on the light intensity signal different from most PCF based RI sensor. The TWPCF section functions as a tailorable bridge between the excited high order modes and the surrounding refractive index (SRI). With a light filter inserting in the front of white light, the transmission spectrum of the light through the sensing region occurs in a welldefined wavelength bands. As a result, the peak power of the transmission light is tailored with the SRI perturbation via the MMF-TWPCF-MMF structure. The experiment result shows a quadratic relation between the light intensity and samples within RI range of 1.33-1.41 while a linear response can be achieved from the 1.33-1.35 which is a most used RI range for biologically sensing.
The 4th order GISS model of the global atmosphere
NASA Technical Reports Server (NTRS)
Kalnay-Rivas, E.; Bayliss, A.; Storch, J.
1977-01-01
The new GISS 4th order model of the global atmosphere is described. It is based on 4th order quadratically conservative differences with the periodic application of a 16th order filter on the sea level pressure and potential temperature equations, a combination which is approximately enstrophy conserving. Several short range forecasts indicate a significant improvement over 2nd order forecasts with the same resolution (approximately 400 km). However the 4th order forecasts are somewhat inferior to 2nd order forecasts with double resolution. This is probably due to the presence of short waves in the range between 1000 km and 2000 km, which are computed more accurately by the 2nd order high resolution model. An operation count of the schemes indicates that with similar code optimization, the 4th order model will require approximately the same amount of computer time as the 2nd order model with the same resolution. It is estimated that the 4th order model with a grid size of 200 km provides enough accuracy to make horizontal truncation errors negligible over a period of a week for all synoptic scales (waves longer than 1000 km).
Emergent Rotational Symmetries in Disordered Magnetic Domain Patterns
NASA Astrophysics Data System (ADS)
Su, Run; Seu, Keoki A.; Parks, Daniel; Kan, Jimmy J.; Fullerton, Eric E.; Roy, Sujoy; Kevan, Stephen D.
2011-12-01
Uniaxial systems often form labyrinthine domains that exhibit short-range order but are macroscopically isotropic and would not be expected to exhibit precise symmetries. However, their underlying frustration results in a multitude of metastable configurations of comparable energy, and driving such a system externally might lead to pattern formation. We find that soft x-ray speckle diffraction patterns of the labyrinthine domains in CoPd/IrMn heterostructures reveal a diverse array of hidden rotational symmetries about the magnetization axis, thereby suggesting an unusual form of emergent order in an otherwise disordered system. These symmetries depend on applied magnetic field, magnetization history, and scattering wave vector. Maps of rotational symmetry exhibit intriguing structures that can be controlled by manipulating the applied magnetic field in concert with the exchange bias condition.
Emergent rotational symmetries in disordered magnetic domain patterns.
Su, Run; Seu, Keoki A; Parks, Daniel; Kan, Jimmy J; Fullerton, Eric E; Roy, Sujoy; Kevan, Stephen D
2011-12-16
Uniaxial systems often form labyrinthine domains that exhibit short-range order but are macroscopically isotropic and would not be expected to exhibit precise symmetries. However, their underlying frustration results in a multitude of metastable configurations of comparable energy, and driving such a system externally might lead to pattern formation. We find that soft x-ray speckle diffraction patterns of the labyrinthine domains in CoPd/IrMn heterostructures reveal a diverse array of hidden rotational symmetries about the magnetization axis, thereby suggesting an unusual form of emergent order in an otherwise disordered system. These symmetries depend on applied magnetic field, magnetization history, and scattering wave vector. Maps of rotational symmetry exhibit intriguing structures that can be controlled by manipulating the applied magnetic field in concert with the exchange bias condition. © 2011 American Physical Society
Description of the atomic disorder (local order) in crystals by the mixed-symmetry method
NASA Astrophysics Data System (ADS)
Dudka, A. P.; Novikova, N. E.
2017-11-01
An approach to the description of local atomic disorder (short-range order) in single crystals by the mixed-symmetry method based on Bragg scattering data is proposed, and the corresponding software is developed. In defect-containing crystals, each atom in the unit cell can be described by its own symmetry space group. The expression for the calculated structural factor includes summation over different sets of symmetry operations for different atoms. To facilitate the search for new symmetry elements, an "atomic disorder expert" was developed, which estimates the significance of tested models. It is shown that the symmetry lowering for some atoms correlates with the existence of phase transitions (in langasite family crystals) and the anisotropy of physical properties (in rare-earth dodecaborides RB12).
NASA Astrophysics Data System (ADS)
Venugopalan, Ramani; Roy, Mainak; Thomas, Susy; Patra, A. K.; Sathiyamoorthy, D.; Tyagi, A. K.
2013-02-01
Carbon-carbon composites may find applications in critical parts of advanced nuclear reactors. A series of carbon-carbon composites were prepared using polyacrylonitrile (PAN) based carbon fibers. The materials were densified by impregnating two-dimensional (2D) preforms with liquid phenol formaldehyde resin at different pressures and for different periods of time and then carbonizing those by slowly heating at 1000 °C. Effects of the processing parameters on the structure of the composites were extensively studied. The study showed conclusively that open porosity decreased with increasing impregnation pressure, whereas impregnation time had lesser effect. Matrix-resin bonding also improved at higher pressure. d002 spacing decreased and ordering along c-axis increased with concomitant increase in sp2-carbon fraction at higher impregnation pressures. The fiber reinforced composites exhibited short range ordering of carbon atoms and satisfied structural conditions (d002 values) of amorphous carbon according to the turbostratic model for non-graphitic carbon materials. The composites had pellet-density of ˜85% of the theoretical value, low thermal expansion and negligible neutron-poisoning. They maintained structural integrity and retained disordered nature even on heat-treatment at ca. 1800 °C.
X-ray investigation of molten crystal hydrates H2SO4(nH2O) and HNO3(nH2O)
NASA Technical Reports Server (NTRS)
Romanova, A. V.; Skryshevskiy, A. F.
1979-01-01
Integral analysis of the intensity of the electron density distribution curve in molten crystal hydrates provided by X-ray analysis, permits the following conclusions on the structure of the complex SO and NO ions, and the short-range order in the structure of the solution. The SO4 ion in the solution has a tetrahedral structure with an S to O distance equal to 1.5 A. For the NO3 in the solution, a planar triangular shape is probable, with an N to O distance equal to 1.2 A. Preferential distances between each of the oxygens of the SO ion and the nearest molecules of water proved near to the corresponding distances in solid crystal hydrates. For an (H2SO4)(H2O) solution, the average number of water molecules surrounding each oxygen atom of the SO4 (--) ion was on the order of 1.3 molecules. Hence the preferential distances between the water molecules and the oxygen atoms of the SO ion, and the preference of their mutual position, correspond to the fixed position of these same elements of the structure in the solid crystal hydrate.
Usher, Tedi -Marie; Levin, Igor; Daniels, John E.; ...
2015-10-01
In this study, the atomic-scale response of dielectrics/ferroelectrics to electric fields is central to their functionality. Here we introduce an in situ characterization method that reveals changes in the local atomic structure in polycrystalline materials under fields. The method employs atomic pair distribution functions (PDFs), determined from X-ray total scattering that depends on orientation relative to the applied field, to probe structural changes over length scales from sub-Ångstrom to several nanometres. The PDF is sensitive to local ionic displacements and their short-range order, a key uniqueness relative to other techniques. The method is applied to representative ferroelectrics, BaTiO 3 andmore » Na ½Bi ½TiO 3, and dielectric SrTiO 3. For Na ½Bi ½TiO 3, the results reveal an abrupt field-induced monoclinic to rhombohedral phase transition, accompanied by ordering of the local Bi displacements and reorientation of the nanoscale ferroelectric domains. For BaTiO 3 and SrTiO 3, the local/nanoscale structural changes observed in the PDFs are dominated by piezoelectric lattice strain and ionic polarizability, respectively.« less
Second harmonic generation from metallo-dielectric multilayered structures in the plasmonic regime.
Mattiucci, Nadia; D'Aguanno, Giuseppe; Bloemer, Mark J
2010-11-08
We present a theoretical study on second harmonic generation from metallo-dielectric multilayered structures in the plasmonic regime. In particular we analyze the behavior of structures made of Ag (silver) and MgF2 (magnesium-fluoride) due to the straightforward procedure to grow these materials with standard sputtering or thermal evaporation techniques. A systematic study is performed which analyzes four different kinds of elementary cells--namely (Ag/MgF2)N, (MgF2/Ag)N, (Ag/MgF2/Ag)N and (MgF2/Ag/MgF2)N--as function of the number of periods (N) and the thickness of the layers. We predict the conversion efficiency to be up to three orders of magnitude greater than the conversion efficiency found in the non-plasmonic regime and we point out the best geometries to achieve these conversion efficiencies. We also underline the role played by the short-range/long-range plasmons and leaky waves in the generation process. We perform a statistical study to demonstrate the robustness of the SH process in the plasmonic regime against the inevitable variations in the thickness of the layers. Finally, we show that a proper choice of the output medium can further improve the conversion efficiency reaching an enhancement of almost five orders of magnitude with respect to the non plasmonic regime.
NASA Technical Reports Server (NTRS)
Carter, John; Kelly, John; Jones, Dan; Lee, James
2013-01-01
There is a national effort to expedite advanced space technologies on new space systems for both government and commercial applications. In order to lower risk, these technologies should be demonstrated in a relevant environment before being installed in new space systems. This presentation introduces several low cost, short schedule space technology demonstrations using airborne and range facilities available at the Dryden Flight Research Center.
Glass formation and short-range order structures in the BaS + La 2S 3 + GeS 2 system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, Josh R.; Martin, Steve W.; Ballato, John
Here, infrared (IR) optical materials have enabled a broad range of optical sensing and measurement applications in the mid-wave and long-wave IR. Many IR transmitting glasses are based on covalently-bonded selenides and tellurides, such as As 2Se 3 and GeTe 2, which typically have relatively low glass transition temperatures ( T g) on the order of 200 to 350 °C. Many applications have working temperatures above the T g of these materials, which compels the development of new IR materials. This work studies the underlying short-range order (SRO) structure and glass formability of a new family of ionically-bonded sulfide glasses,more » xBaS + yLa 2S 3 + (1 – x – y)GeS 2, to develop high T g optical materials with a broad IR transmission range. These sulfide glasses were produced by melting sulfide materials inside evacuated and sealed carbon-coated silica ampoules at 1150 °C for 12 h and quenching to room temperature to form glass. Glass samples were then characterized by IR and Raman spectroscopies and differential thermal analysis (DTA). It was found that by increasing the modifier concentration, the predominantly Ge 4 SRO units, the superscript defines the number of bridging sulfur (BS) ions in the tetrahedral network found in GeS 2 glasses, are ultimately converted to Ge 0 units at >40 mol% network modifier content through the generation of non-bridging sulfur (NBS) ions. These molecular ionic units still form a glassy network, with some of the highest reported T g values to date for a pure sulfide glass. This suggests that this composition has strong ionic bonds between negatively-charged tetrahedral SRO units and the positively-charged modifier cations. While the glass network is depolymerized in the high modifier content glasses though the formation of a high concentration of molecular ionic Ge 0 SRO groups, they are, nevertheless, homogeneous glassy materials that exhibit the largest T g and Δ T (difference between crystallization temperature, T c, and T g) values of glasses in this system, making them the optimal glasses for high T g IR optical components, including, potentially, refractory IR optical fibers.« less
Glass formation and short-range order structures in the BaS + La 2S 3 + GeS 2 system
Roth, Josh R.; Martin, Steve W.; Ballato, John; ...
2018-06-01
Here, infrared (IR) optical materials have enabled a broad range of optical sensing and measurement applications in the mid-wave and long-wave IR. Many IR transmitting glasses are based on covalently-bonded selenides and tellurides, such as As 2Se 3 and GeTe 2, which typically have relatively low glass transition temperatures ( T g) on the order of 200 to 350 °C. Many applications have working temperatures above the T g of these materials, which compels the development of new IR materials. This work studies the underlying short-range order (SRO) structure and glass formability of a new family of ionically-bonded sulfide glasses,more » xBaS + yLa 2S 3 + (1 – x – y)GeS 2, to develop high T g optical materials with a broad IR transmission range. These sulfide glasses were produced by melting sulfide materials inside evacuated and sealed carbon-coated silica ampoules at 1150 °C for 12 h and quenching to room temperature to form glass. Glass samples were then characterized by IR and Raman spectroscopies and differential thermal analysis (DTA). It was found that by increasing the modifier concentration, the predominantly Ge 4 SRO units, the superscript defines the number of bridging sulfur (BS) ions in the tetrahedral network found in GeS 2 glasses, are ultimately converted to Ge 0 units at >40 mol% network modifier content through the generation of non-bridging sulfur (NBS) ions. These molecular ionic units still form a glassy network, with some of the highest reported T g values to date for a pure sulfide glass. This suggests that this composition has strong ionic bonds between negatively-charged tetrahedral SRO units and the positively-charged modifier cations. While the glass network is depolymerized in the high modifier content glasses though the formation of a high concentration of molecular ionic Ge 0 SRO groups, they are, nevertheless, homogeneous glassy materials that exhibit the largest T g and Δ T (difference between crystallization temperature, T c, and T g) values of glasses in this system, making them the optimal glasses for high T g IR optical components, including, potentially, refractory IR optical fibers.« less
Kumar, Vineet; Dixit, Nitin; Zhou, Liqiang Lisa; Fraunhofer, Wolfgang
2011-12-12
The purpose of this work was to determine the nature of long and short-range forces governing protein aggregation kinetics at low and high concentrations for a monoclonal antibody (IgG1) and a dual-variable-domain immunoglobulin (DVD-Ig). Protein-protein interactions (PPI) were studied under dilute conditions by utilizing the methods of static (B(22)) and dynamic light scattering (k(D)). PPI in solutions containing minimal ionic strengths were characterized to get detailed insights into the impact of ionic strength on aggregation. Microcalorimetry and susceptibility to denature at air-liquid interface were used to assess the tertiary structure and quiescent stability studies were conducted to study aggregation characteristics. Results for IgG1 showed that electrostatic interactions governed protein aggregation kinetics both under dilute and concentrated conditions (i.e., 5 mg/mL and 150 mg/mL). For DVD-Ig molecules, on the other hand, although electrostatic interactions governed protein aggregation under dilute conditions, hydrophobic forces clearly determined the kinetics at high concentrations. This manuscript shows for the first time that short-range hydrophobic interactions can outweigh electrostatic forces and play an important role in determining protein aggregation at high concentrations. Additionally, results show that although higher-order virial coefficients become significant under low ionic strength conditions, removal of added charges may be used to enhance the aggregation stability of dilute protein formulations. Copyright © 2011 Elsevier B.V. All rights reserved.
Structure-property relationships of multiferroic materials: A nano perspective
NASA Astrophysics Data System (ADS)
Bai, Feiming
The integration of sensors, actuators, and control systems is an ongoing process in a wide range of applications covering automotive, medical, military, and consumer electronic markets. Four major families of ceramic and metallic actuators are under development: piezoelectrics, electrostrictors, magnetostrictors, and shape-memory alloys. All of these materials undergo at least two phase transformations with coupled thermodynamic order parameters. These transformations lead to complex domain wall behaviors, which are driven by electric fields (ferroelectrics), magnetic fields (ferromagnetics), or mechanical stress (ferroelastics) as they transform from nonferroic to ferroic states, contributing to the sensing and actuating capabilities. This research focuses on two multiferroic crystals, Pb(Mg1/3Nb 2/3)O3-PbTiO3 and Fe-Ga, which are characterized by the co-existence and coupling of ferroelectric polarization and ferroelastic strain, or ferro-magnetization and ferroelastic strain. These materials break the conventional boundary between piezoelectric and electrostrictors, or magnetostrictors and shape-memory alloys. Upon applying field or in a poled condition, they yield not only a large strain but also a large strain over field ratio, which is desired and much benefits for advanced actuator and sensor applications. In this thesis, particular attention has been given to understand the structure-property relationships of these two types of materials from atomic to the nano/macro scale. X-ray and neutron diffraction were used to obtain the lattice structure and phase transformation characteristics. Piezoresponse and magnetic force microscopy were performed to establish the dependence of domain configurations on composition, thermal history and applied fields. It has been found that polar nano regions (PNRs) make significant contributions to the enhanced electromechanical properties of PMN-x%PT crystals via assisting intermediate phase transformation. With increasing PT concentration, an evolution of PNR→PND (polar nano domains)→ micron-domains→macro-domains was found. In addition, a domain hierarchy was observed for the compositions near a morphotropic phase boundary (MPB) on various length scales ranging from nanometer to millimeter. The existence of a domain hierarchy down to the nm scale fulfills the requirement of low domain wall energy, which is necessary for polarization rotation. Thus, upon applying an E-field along <001> direction(s) in a composition near the MPB, low symmetry phase transitions (monoclinic or orthorhombic) can easily be induced. For PMN-30%PT, a complete E-T (electric field vs temperature) diagram has been established. As for Fe-x at.% Ga alloys, short-range Ga-pairs serve as both magnetic and magnetoelastic defects, coupling magnetic domains with bulk elastic strain, and contributing to enhanced magnetostriction. Such short-range ordering was evidenced by a clear 2theta peak broadening on neutron scattering profiles near A2-DO3 phase boundary. In addition, a strong degree of preferred [100] orientation was found in the magnetic domains of Fe-12 at.%Ga and Fe-20 at.%Ga alloys with the A2 or A2+DO3 structures, which clearly indicates a deviation from cubic symmetry; however, no domain alignment was found in Fe-25 at.%Ga with the DO3 structure. Furthermore, an increasing degree of domain fluctuations was found during magnetization rotation, which may be related to short-range Ga-pairs cluster with a large local anisotropy constant, due to a lower-symmetry structure.
Mahoney, J. Matthew; Titiz, Ali S.; Hernan, Amanda E.; Scott, Rod C.
2016-01-01
Hippocampal neural systems consolidate multiple complex behaviors into memory. However, the temporal structure of neural firing supporting complex memory consolidation is unknown. Replay of hippocampal place cells during sleep supports the view that a simple repetitive behavior modifies sleep firing dynamics, but does not explain how multiple episodes could be integrated into associative networks for recollection during future cognition. Here we decode sequential firing structure within spike avalanches of all pyramidal cells recorded in sleeping rats after running in a circular track. We find that short sequences that combine into multiple long sequences capture the majority of the sequential structure during sleep, including replay of hippocampal place cells. The ensemble, however, is not optimized for maximally producing the behavior-enriched episode. Thus behavioral programming of sequential correlations occurs at the level of short-range interactions, not whole behavioral sequences and these short sequences are assembled into a large and complex milieu that could support complex memory consolidation. PMID:26866597
Effect of long-range repulsive Coulomb interactions on packing structure of adhesive particles.
Chen, Sheng; Li, Shuiqing; Liu, Wenwei; Makse, Hernán A
2016-02-14
The packing of charged micron-sized particles is investigated using discrete element simulations based on adhesive contact dynamic model. The formation process and the final obtained structures of ballistic packings are studied to show the effect of interparticle Coulomb force. It is found that increasing the charge on particles causes a remarkable decrease of the packing volume fraction ϕ and the average coordination number 〈Z〉, indicating a looser and chainlike structure. Force-scaling analysis shows that the long-range Coulomb interaction changes packing structures through its influence on particle inertia before they are bonded into the force networks. Once contact networks are formed, the expansion effect caused by repulsive Coulomb forces are dominated by short-range adhesion. Based on abundant results from simulations, a dimensionless adhesion parameter Ad*, which combines the effects of the particle inertia, the short-range adhesion and the long-range Coulomb interaction, is proposed and successfully scales the packing results for micron-sized particles within the latest derived adhesive loose packing (ALP) regime. The structural properties of our packings follow well the recent theoretical prediction which is described by an ensemble approach based on a coarse-grained volume function, indicating some kind of universality in the low packing density regime of the phase diagram regardless of adhesion or particle charge. Based on the comprehensive consideration of the complicated inter-particle interactions, our findings provide insight into the roles of short-range adhesion and repulsive Coulomb force during packing formation and should be useful for further design of packings.
Rodríguez-Navarro, Alejandro B; Marie, Pauline; Nys, Yves; Hincke, Maxwell T; Gautron, Joel
2015-06-01
Avian eggshell mineralization is the fastest biogenic calcification process known in nature. How this is achieved while producing a highly crystalline material composed of large calcite columnar single crystals remains largely unknown. Here we report that eggshell mineral originates from the accumulation of flat disk-shaped amorphous calcium carbonate (ACC) particles on specific organic sites on the eggshell membrane, which are rich in proteins and sulfated proteoglycans. These structures known as mammillary cores promote the nucleation and stabilization of a amorphous calcium carbonate with calcitic short range order which predetermine the calcite composition of the mature eggshell. The amorphous nature of the precursor phase was confirmed by the diffuse scattering of X-rays and electrons. The nascent calcitic short-range order of this transient mineral phase was revealed by infrared spectroscopy and HRTEM. The ACC mineral deposited around the mammillary core sites progressively transforms directly into calcite crystals without the occurrence of any intermediate phase. Ionic speciation data suggest that the uterine fluid is equilibrated with amorphous calcium carbonate, throughout the duration of eggshell mineralization process, supporting that this mineral phase is constantly forming at the shell mineralization front. On the other hand, the transient amorphous calcium carbonate mineral deposits, as well as the calcite crystals into which they are converted, form by the ordered aggregation of nanoparticles that support the rapid mineralization of the eggshell. The results of this study alter our current understanding of avian eggshell calcification and provide new insights into the genesis and formation of calcium carbonate biominerals in vertebrates. Copyright © 2015 Elsevier Inc. All rights reserved.
Hybrid density functional theory band structure engineering in hematite
NASA Astrophysics Data System (ADS)
Pozun, Zachary D.; Henkelman, Graeme
2011-06-01
We present a hybrid density functional theory (DFT) study of doping effects in α-Fe2O3, hematite. Standard DFT underestimates the band gap by roughly 75% and incorrectly identifies hematite as a Mott-Hubbard insulator. Hybrid DFT accurately predicts the proper structural, magnetic, and electronic properties of hematite and, unlike the DFT+U method, does not contain d-electron specific empirical parameters. We find that using a screened functional that smoothly transitions from 12% exact exchange at short ranges to standard DFT at long range accurately reproduces the experimental band gap and other material properties. We then show that the antiferromagnetic symmetry in the pure α-Fe2O3 crystal is broken by all dopants and that the ligand field theory correctly predicts local magnetic moments on the dopants. We characterize the resulting band gaps for hematite doped by transition metals and the p-block post-transition metals. The specific case of Pd doping is investigated in order to correlate calculated doping energies and optical properties with experimentally observed photocatalytic behavior.
NASA Astrophysics Data System (ADS)
Baró, Jordi; Dixon, Steve; Edwards, Rachel S.; Fan, Yichao; Keeble, Dean S.; Mañosa, Lluís; Planes, Antoni; Vives, Eduard
2013-11-01
We present simultaneous measurements of acoustic emission and magnetic Barkhausen noise during the thermally induced martensitic transition in a Ni-Mn-Ga single crystal. The range where structural acoustic emission avalanches are detected extends for more than 50 K for both cooling and heating ramps, with a hysteresis of ˜10 K. The magnetic activity occurs during the structural transition, exhibiting similar hysteresis, but concentrated in the lower half of the temperature range. Statistical analysis of individual signals allows characterization of the broad distributions of acoustic emission and Barkhausen amplitudes. By studying the times of arrival of the avalanche events we detect the existence of correlations between the two kinds of signals, with a number of acoustic emission signals occurring shortly after a Barkhausen signal. The order of magnitude of the observed delays is compatible with the time needed for the propagation of ultrasound through the sample, showing correlation of some of the signals.
Hierarchical structures of amorphous solids characterized by persistent homology
Hiraoka, Yasuaki; Nakamura, Takenobu; Hirata, Akihiko; Escolar, Emerson G.; Matsue, Kaname; Nishiura, Yasumasa
2016-01-01
This article proposes a topological method that extracts hierarchical structures of various amorphous solids. The method is based on the persistence diagram (PD), a mathematical tool for capturing shapes of multiscale data. The input to the PDs is given by an atomic configuration and the output is expressed as 2D histograms. Then, specific distributions such as curves and islands in the PDs identify meaningful shape characteristics of the atomic configuration. Although the method can be applied to a wide variety of disordered systems, it is applied here to silica glass, the Lennard-Jones system, and Cu-Zr metallic glass as standard examples of continuous random network and random packing structures. In silica glass, the method classified the atomic rings as short-range and medium-range orders and unveiled hierarchical ring structures among them. These detailed geometric characterizations clarified a real space origin of the first sharp diffraction peak and also indicated that PDs contain information on elastic response. Even in the Lennard-Jones system and Cu-Zr metallic glass, the hierarchical structures in the atomic configurations were derived in a similar way using PDs, although the glass structures and properties substantially differ from silica glass. These results suggest that the PDs provide a unified method that extracts greater depth of geometric information in amorphous solids than conventional methods. PMID:27298351
Effect of sub-Tg annealing on CuZr and AlSm glasses: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Sun, Yang; Zhang, Feng; Zhang, Yue; Ye, Zhuo; Mendelev, Mikhail; Wang, Cai-Zhuang; Ho, Kai-Ming
Cu65Zr35 and Al90Sm10 glasses, which represent strong and marginal binary metallic glass formers, respectively, were developed with a sub-Tg annealing method using Molecular Dynamics simulations. The short-range order (SRO) in both systems was characterized based on the concept of ``crystal gene'' that we established recently. Furthermore, we found that while the local clusters representing the dominant short-range order form an ever-more pronounced interpenetrating network with slower cooling rates in Cu65Zr35 glasses, the interpenetration of SRO in Al90Sm10 glasses only shows a weak dependence on the cooling rate. This clear difference in the connectivity of the SRO, which can characterize the medium-range order (MRO), could contribute to the different glass forming abilities of both systems. Work at Ames Laboratory was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Science and Engineering Division, under Contract No. DE-AC02-07CH11358.
NASA Astrophysics Data System (ADS)
He, Mingquan; Wang, Liran; Hardy, Frédéric; Xu, Liping; Wolf, Thomas; Adelmann, Peter; Meingast, Christoph
2018-03-01
The nature of the nematic state in FeSe remains one of the major unsolved mysteries in Fe-based superconductors. Both spin and orbital physics have been invoked to explain the origin of this phase. Here we present experimental evidence for frustrated, short-range magnetic order, as suggested by several recent theoretical works, in the nematic state of FeSe. We use a combination of magnetostriction, susceptibility, and resistivity measurements to probe the in-plane anisotropies of the nematic state and its associated fluctuations. Despite the absence of long-range magnetic order in FeSe, we observe a sizable in-plane magnetic susceptibility anisotropy, which is responsible for the field-induced in-plane distortion inferred from magnetostriction measurements. Further we demonstrate that all three anisotropies in FeSe are very similar to those of BaFe2As2 , which strongly suggests that the nematic phase in FeSe is also of magnetic origin.
Simulation study of short-channel effects of tunnel field-effect transistors
NASA Astrophysics Data System (ADS)
Fukuda, Koichi; Asai, Hidehiro; Hattori, Junichi; Mori, Takahiro; Morita, Yukinori; Mizubayashi, Wataru; Masahara, Meishoku; Migita, Shinji; Ota, Hiroyuki; Endo, Kazuhiro; Matsukawa, Takashi
2018-04-01
Short-channel effects of tunnel field-effect transistors (FETs) are investigated in detail using simulations of a nonlocal band-to-band tunneling model. Discussion is limited to silicon. Several simulation scenarios were considered to address different effects, such as source overlap and drain offset effects. Adopting the drain offset to suppress the drain leakage current suppressed the short channel effects. The physical mechanism underlying the short-channel behavior of the tunnel FETs (TFETs) was very different from that of metal-oxide-semiconductor FETs (MOSFETs). The minimal gate lengths that do not lose on-state current by one order are shown to be 3 nm for single-gate structures and 2 nm for double gate structures, as determined from the drain offset structure.
NASA Astrophysics Data System (ADS)
Trice, Justin; Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, R.
2006-03-01
Irradiating ultrathin Co films (1 to 10 nm) by a short-pulsed UV laser leads to pattern formation with both short- and long-range order (SRO, LRO). Single beam irradiation produces SRO, while two-beam interference irradiation produces a quasi-2D arrangement of nanoparticles with LRO and SRO. The pattern formation primarily occurs in the molten phase. An estimate of the thermal behavior of the film/substrate composite following a laser pulse is presented. The thermal behavior includes the lifetime of the liquid phase and the thermal gradient during interference heating. Based on this evidence, the SRO is attributed to spinodal dewetting of the film while surface tension gradients induced by the laser interference pattern appear to influence LRO [1]. [1] C.Favazza, J.Trice, H.Krishna, R.Sureshkumar, and R.Kalyanaraman, unpublished.
Thin Films and Interfaces of AN Organic Semiconductor: Perylenetetracarboxylic Dianhydride
NASA Astrophysics Data System (ADS)
Hirose, Yutaka
Structural and electronic properties of thin films of an archetype organic molecular semiconductor, 3,4,9,10 -perylenetetracarboxylic dianhydride, (PTCDA) and of their interfaces are investigated. The first part of the thesis focuses on the growth of PTCDA thin films on graphite and GaAs. Molecular order in the direction parallel to the substrate is found to depend critically on the substrate surface properties, as revealed by marked differences in the crystallinity of films grown on graphite and Se-passivated GaAs surfaces (long range order), on the c(4 x 4) GaAs surface (medium range order), and on the (2 x 4)-c(2 x 8) GaAs surface (short range order). These results are discussed in terms of interface bonding between molecules and the substrate. The second part deals with the electronic and chemical structure of PTCDA thin films and the band lineup of the PTCDA/GaAs heterojunction investigated by Ultraviolet - and X-ray Photoemission Spectroscopies. A basic understanding of the valence band structure and chemical states is obtained with the help of a semi-empirical molecular orbital calculation. At the PTCDA/GaAs interface, the PTCDA highest occupied molecular orbital is found to be ~0.7 eV below the GaAs valence band maximum. This result is discussed in light of previous electrical measurements. Third, chemistry of metal deposition on PTCDA is investigated by synchrotron radiation photoemission spectroscopy. Al, Ti, In, and Sn are found to be highly reactive against PTCDA, yielding a considerable interfacial layer with a large density of states in the PTCDA gap. Ag and Au are found to be inert against PTCDA, producing abrupt interfaces. These results are found to be directly correlated with the electrical properties. Finally, chemistry of contacts formed by reversing the sequence of deposition, i.e. PTCDA on reactive metals (In, Sn, and Ti) is explored. The interfacial layers are found to be considerably smaller than for metals on PTCDA, in accordance with the reverse order of heats of adsorption of the two materials. The resulting interfaces are more abrupt presumably leading to more rectifying character of the electrical contacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Manrong; Retuerto, Maria; Bok Go, Yong
2013-01-15
Single crystals of Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} were prepared from NaCl+KCl flux. This compound adopts KSbO{sub 3}-type crystal structure as evidenced by electron and single crystal X-ray diffraction analysis. The three-dimensional channel structure is formed by corner-sharing octahedral (Mn{sub 0.63}Te{sub 0.37}){sub 2}O{sub 10} dimers and two identical (Bi1){sub 4}(Bi2){sub 2} interpenetrating lattices. The intra-dimer Mn/Te-Mn/Te distances in Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} are short and are consistent with weak metal-metal interactions. The mixed oxidation state of manganese and the edge-sharing octahedral features are confirmed by X-ray near edge absorption spectroscopy measurements, which indicate Bi{sub 3}(Mn{sup III}{sub 1.1}Mn{sup IV}{sub 0.8})Te{supmore » VI}{sub 1.1}O{sub 11} with 57.7% Mn{sup 3+} and 42.3% Mn{sup 4+}. The partial substitution of Te for Mn perturbs long-range magnetic interactions, thereby destroying the ferromagnetic ordering found in Bi{sub 3}Mn{sub 3}O{sub 11} (T{sub C}=150 K). - Graphical abstract: Single crystal of Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} was grown from NaCl+KCl binary flux, suggesting that the high pressure Bi{sub 3}Mn{sub 3}O{sub 11} phase can be stabilized by partial substitution of Mn by Te at ambient pressure. Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} adopts a typical three dimensional KSbO{sub 3}-type crystal structure with three interpenetrating lattices and weak intra-dimmer metal-metal interaction caused by the d electrons of Mn. The edge-shared (Mn{sub 0.63}Te{sub 0.37}){sub 2}O{sub 10} octahedral dimer and mixed oxidation state of manganese (Bi{sub 3}(Mn{sup III}{sub 1.1}Mn{sup IV}{sub 0.8})Te{sup VI}{sub 1.1}O{sub 11} with 57.7% Mn{sup 3+} and 42.3% Mn{sup 4+}) features were evidenced by X-ray absorption near edge spectroscopy. Compared with Bi{sub 3}Mn{sub 3}O{sub 11}, the Te substituted Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} relaxes the crystal structure, but destroys the long-range magnetic ordering and gives short-range magnetic ordering below 5 K. Highlights: Black-Right-Pointing-Pointer High pressure Bi{sub 3}Mn{sub 3}O{sub 11} is stabilized by partial Te substitution at ambient pressure. Black-Right-Pointing-Pointer New KSbO{sub 3}-type Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} single crystal was grown from binary flux. Black-Right-Pointing-Pointer The presence of mixed oxidation state of manganese is evidenced by XANES study. Black-Right-Pointing-Pointer The Te-substitution destroys the long-range magnetic ordering and relaxes the structure.« less
Liu, Xiaoqing; Wang, Yongli; Song, Xin; Chen, Feng; Ouyang, Hongping; Zhang, Xueao; Cai, Yingxiang; Liu, Xiaoming; Wang, Li
2013-01-01
The role of dynamic processes on self-assembled structures of 4′-([2,2′:6′, 2″-terpyridin]-4′-yl)-[1,1′-biphenyl]-4-carboxylic acid (l) molecules on Au(III) has been studied by scanning tunneling microscopy. The as-deposited monolayer is closed-packed and periodic in a short-range due to dipole forces. A thermal annealing process at 110 degrees drives such disordered monolayer into ordered chain-like structures, determined by the combination of the dipole forces and hydrogen bonding. Further annealing at 130 degrees turns the whole monolayer into a bowknot-like structure in which hydrogen bonding plays the dominant role in the formation of assembled structures. Such dependence of an assembled structure on the process demonstrates that an assembled structure can be regulated and controlled not only by the molecular structure but also by the thermal process to form the assembled structure. PMID:23478440
Short-range order in the quantum XXZ honeycomb lattice material BaCo 2 ( PO 4 ) 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nair, Harikrishnan S.; Brown, J; Coldren, E.
In this paper, we present observations of highly frustrated quasi-two-dimensional (2D) magnetic correlations in the honeycomb lattice layers of the S eff =1/2 compound γ-BaCo 2(PO 4) 2 (γ-BCPO). Specific heat shows a broad peak comprised of two weak kink features at T N1~6 K and T N2~3.5 K, the relative weights of which can be modified by sample annealing. Neutron powder diffraction measurements reveal short range quasi-2D order that is established below T N1 and T N2, at which two separate, incompatible, short range magnetic orders onset: commensurate antiferromagnetic correlations with correlation length ξ c=60±2 Å (T N1) andmore » in quasi-2D helical domains with ξ h=350±11 Å (T N2). The ac magnetic susceptibility response lacks frequency dependence, ruling out spin freezing. Inelastic neutron scattering data on γ-BCPO is compared with linear spin wave theory, and two separate parameter regions of the XXZ J 1-J 2-J 3 model with ferromagnetic nearest-neighbor exchange J 1 are favored, both near regions of high classical degeneracy. High energy coherent excitations (~10 meV) persist up to at least 40 K, suggesting strong in-plane correlations persist above TN. Finally, these data show that γ-BCPO is a rare highly frustrated, quasi-2D S eff =1/2 honeycomb lattice material which resists long range magnetic order and spin freezing.« less
Short-range order in the quantum XXZ honeycomb lattice material BaCo 2 ( PO 4 ) 2
Nair, Harikrishnan S.; Brown, J; Coldren, E.; ...
2018-04-12
In this paper, we present observations of highly frustrated quasi-two-dimensional (2D) magnetic correlations in the honeycomb lattice layers of the S eff =1/2 compound γ-BaCo 2(PO 4) 2 (γ-BCPO). Specific heat shows a broad peak comprised of two weak kink features at T N1~6 K and T N2~3.5 K, the relative weights of which can be modified by sample annealing. Neutron powder diffraction measurements reveal short range quasi-2D order that is established below T N1 and T N2, at which two separate, incompatible, short range magnetic orders onset: commensurate antiferromagnetic correlations with correlation length ξ c=60±2 Å (T N1) andmore » in quasi-2D helical domains with ξ h=350±11 Å (T N2). The ac magnetic susceptibility response lacks frequency dependence, ruling out spin freezing. Inelastic neutron scattering data on γ-BCPO is compared with linear spin wave theory, and two separate parameter regions of the XXZ J 1-J 2-J 3 model with ferromagnetic nearest-neighbor exchange J 1 are favored, both near regions of high classical degeneracy. High energy coherent excitations (~10 meV) persist up to at least 40 K, suggesting strong in-plane correlations persist above TN. Finally, these data show that γ-BCPO is a rare highly frustrated, quasi-2D S eff =1/2 honeycomb lattice material which resists long range magnetic order and spin freezing.« less
Structural Coloration of a Colloidal Amorphous Array is Intensified by Carbon Nanolayers.
Takeoka, Yukikazu; Iwata, Masanori; Seki, Takahiro; Nueangnoraj, Khanin; Nishihara, Hirotomo; Yoshioka, Shinya
2018-04-10
In this study, we introduce the possibility of applying a colloidal amorphous array composed of fine silica particles as a structural-color material to invisible information technology. The appearance of a thick filmlike colloidal amorphous array formed from fine silica particles is considerably influenced by incoherent light scattering across the entire visible region. Therefore, regardless of the diameter of the fine silica particles, the thick colloidal amorphous array exhibits a white color to the naked eye. When carbon is uniformly deposited in the colloidal amorphous array by a pressure-pulsed chemical vapor deposition method, incoherent light scattering in the colloidal amorphous array is suppressed. As a result, coherent light scattering due to the short-range order in the colloidal amorphous array becomes conspicuous and the array exhibits a vivid structural color. As structures, such as letters and pictures, can be drawn using this technology, the colloidal amorphous array as a structural-colored material may also be applicable for invisible information technology.
Atomic and electronic structures of an extremely fragile liquid.
Kohara, Shinji; Akola, Jaakko; Patrikeev, Leonid; Ropo, Matti; Ohara, Koji; Itou, Masayoshi; Fujiwara, Akihiko; Yahiro, Jumpei; Okada, Junpei T; Ishikawa, Takehiko; Mizuno, Akitoshi; Masuno, Atsunobu; Watanabe, Yasuhiro; Usuki, Takeshi
2014-12-18
The structure of high-temperature liquids is an important topic for understanding the fragility of liquids. Here we report the structure of a high-temperature non-glass-forming oxide liquid, ZrO2, at an atomistic and electronic level. The Bhatia-Thornton number-number structure factor of ZrO2 does not show a first sharp diffraction peak. The atomic structure comprises ZrO5, ZrO6 and ZrO7 polyhedra with a significant contribution of edge sharing of oxygen in addition to corner sharing. The variety of large oxygen coordination and polyhedral connections with short Zr-O bond lifetimes, induced by the relatively large ionic radius of zirconium, disturbs the evolution of intermediate-range ordering, which leads to a reduced electronic band gap and increased delocalization in the ionic Zr-O bonding. The details of the chemical bonding explain the extremely low viscosity of the liquid and the absence of a first sharp diffraction peak, and indicate that liquid ZrO2 is an extremely fragile liquid.
Atomic and electronic structures of an extremely fragile liquid
Kohara, Shinji; Akola, Jaakko; Patrikeev, Leonid; Ropo, Matti; Ohara, Koji; Itou, Masayoshi; Fujiwara, Akihiko; Yahiro, Jumpei; Okada, Junpei T.; Ishikawa, Takehiko; Mizuno, Akitoshi; Masuno, Atsunobu; Watanabe, Yasuhiro; Usuki, Takeshi
2014-01-01
The structure of high-temperature liquids is an important topic for understanding the fragility of liquids. Here we report the structure of a high-temperature non-glass-forming oxide liquid, ZrO2, at an atomistic and electronic level. The Bhatia–Thornton number–number structure factor of ZrO2 does not show a first sharp diffraction peak. The atomic structure comprises ZrO5, ZrO6 and ZrO7 polyhedra with a significant contribution of edge sharing of oxygen in addition to corner sharing. The variety of large oxygen coordination and polyhedral connections with short Zr–O bond lifetimes, induced by the relatively large ionic radius of zirconium, disturbs the evolution of intermediate-range ordering, which leads to a reduced electronic band gap and increased delocalization in the ionic Zr–O bonding. The details of the chemical bonding explain the extremely low viscosity of the liquid and the absence of a first sharp diffraction peak, and indicate that liquid ZrO2 is an extremely fragile liquid. PMID:25520236
EXAFS: New tool for study of battery and fuel cell materials
NASA Technical Reports Server (NTRS)
Mcbreen, James; Ogrady, William E.; Pandya, Kaumudi I.
1987-01-01
Extended X ray absorption fine structure (EXAFS) is a powerful technique for probing the local atomic structure of battery and fuel cell materials. The major advantages of EXAFS are that both the probe and the signal are X rays and the technique is element selective and applicable to all states of matter. This permits in situ studies of electrodes and determination of the structure of single components in composite electrodes, or even complete cells. EXAFS specifically probes short range order and yields coordination numbers, bond distances, and chemical identity of nearest neighbors. Thus, it is ideal for structural studies of ions in solution and the poorly crystallized materials that are often the active materials or catalysts in batteries and fuel cells. Studies on typical battery and fuel cell components are used to describe the technique and the capability of EXAFS as a structural tool in these applications. Typical experimental and data analysis procedures are outlined. The advantages and limitations of the technique are also briefly discussed.
Access to long-term optical memories using photon echoes retrieved from semiconductor spins
NASA Astrophysics Data System (ADS)
Langer, L.; Poltavtsev, S. V.; Yugova, I. A.; Salewski, M.; Yakovlev, D. R.; Karczewski, G.; Wojtowicz, T.; Akimov, I. A.; Bayer, M.
2014-11-01
The ability to store optical information is important for both classical and quantum communication. Achieving this in a comprehensive manner (converting the optical field into material excitation, storing this excitation, and releasing it after a controllable time delay) is greatly complicated by the many, often conflicting, properties of the material. More specifically, optical resonances in semiconductor quantum structures with high oscillator strength are inevitably characterized by short excitation lifetimes (and, therefore, short optical memory). Here, we present a new experimental approach to stimulated photon echoes by transferring the information contained in the optical field into a spin system, where it is decoupled from the optical vacuum field and may persist much longer. We demonstrate this for an n-doped CdTe/(Cd,Mg)Te quantum well, the storage time of which could be increased by more than three orders of magnitude, from the picosecond range up to tens of nanoseconds.
Helium Irradiation and Implantation Effects on the Structure of Amorphous Silicon Oxycarbide
Su, Qing; Inoue, Shinsuke; Ishimaru, Manabu; ...
2017-06-20
Despite recent interest in amorphous ceramics for a variety of nuclear applications, many details of their structure before and after irradiation/implantation remain unknown. Here we investigated the short-range order of amorphous silicon oxycarbide (SiOC) alloys by using the atomic pair-distribution function (PDF) obtained from electron diffraction. The PDF results show that the structure of SiOC alloys are nearly unchanged after both irradiation up to 30 dpa and He implantation up to 113 at%. TEM characterization shows no sign of crystallization, He bubble or void formation, or segregation in all irradiated samples. Irradiation results in a decreased number of Si-O bondsmore » and an increased number of Si-C and C-O bonds. This study sheds light on the design of radiation-tolerant materials that do not experience helium swelling for advanced nuclear reactor applications.« less
Helium Irradiation and Implantation Effects on the Structure of Amorphous Silicon Oxycarbide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Qing; Inoue, Shinsuke; Ishimaru, Manabu
Despite recent interest in amorphous ceramics for a variety of nuclear applications, many details of their structure before and after irradiation/implantation remain unknown. Here we investigated the short-range order of amorphous silicon oxycarbide (SiOC) alloys by using the atomic pair-distribution function (PDF) obtained from electron diffraction. The PDF results show that the structure of SiOC alloys are nearly unchanged after both irradiation up to 30 dpa and He implantation up to 113 at%. TEM characterization shows no sign of crystallization, He bubble or void formation, or segregation in all irradiated samples. Irradiation results in a decreased number of Si-O bondsmore » and an increased number of Si-C and C-O bonds. This study sheds light on the design of radiation-tolerant materials that do not experience helium swelling for advanced nuclear reactor applications.« less
Short-range structure and thermal properties of barium tellurite glasses
NASA Astrophysics Data System (ADS)
Kaur, Amarjot; Khanna, Atul; Gonzàlez, Fernando
2017-05-01
BaO-TeO2 glasses containing 10 to 20 BaO mol% were prepared and characterized by X-ray diffraction, density measurements, differential scanning calorimetry and Raman spectroscopy. Glass density decreases with increase in BaO concentration from 10 to 20 mol%, due to replacement of heavier TeO2 by lighter BaO, however glass transition temperature (Tg) increases significantly from a value of 318°C to 327°C due to increase in average single bond enthalpy of the tellurite network. Raman studies found that glass short-range structure consists of TeO4 and TeO3 structural units and BaO modifies the network by producing the structural transformation: TeO4→ TeO3.
Interactions of Oxygen and Hydrogen on Pd(111) surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demchenko, D.O.; Sacha, G.M.; Salmeron, M.
2008-06-25
The coadsorption and interactions of oxygen and hydrogen on Pd(1 1 1) was studied by scanning tunneling microscopy and density functional theory calculations. In the absence of hydrogen oxygen forms a (2 x 2) ordered structure. Coadsorption of hydrogen leads to a structural transformation from (2 x 2) to a ({radical}3 x {radical}3)R30 degree structure. In addition to this transformation, hydrogen enhances the mobility of oxygen. To explain these observations, the interaction of oxygen and hydrogen on Pd(1 1 1) was studied within the density functional theory. In agreement with the experiment the calculations find a total energy minimum formore » the oxygen (2 x 2) structure. The interaction between H and O atoms was found to be repulsive and short ranged, leading to a compression of the O islands from (2 x 2) to ({radical}3 x {radical}3)R30 degree ordered structure at high H coverage. The computed energy barriers for the oxygen diffusion were found to be reduced due to the coadsorption of hydrogen, in agreement with the experimentally observed enhancement of oxygen mobility. The calculations also support the finding that at low temperatures the water formation reaction does not occur on Pd(1 1 1).« less
Atomic Scale Medium Range Order and Relaxation Dynamics in Metallic Glass
NASA Astrophysics Data System (ADS)
Zhang, Pei
We studied the atomic scale structure of bulk metallic glass (BMG) with the combination of fluctuation electron microscopy (FEM) and hybrid reverse Monte Carlo (HRMC) simulation. Medium range order (MRO), which occupies the length scale between short range order (SRO) and long-range order, plays an important role on the properties of metallic glass, but the characterization of MRO in experiment is difficult because conventional techniques are not sensitive to the structure at MRO scale. Compared with the X-ray and neutron which can measure SRO by two-body correlation functions, FEM is an effective way to detect MRO structure through three and four-body correlation functions, providing information about the size, distribution, and internal structure of MRO combing HRMC modeling. Thickness estimation is necessary in FEM experiment and HRMC calculation, so in Chapter 3, we measured the elastic and inelastic mean free paths of metallic glass alloys based on focused ion beam prepared thin samples with measured thickness gradients. We developed a model based on the Wentzel atomic model to predict the elastic mean free path for other amorphous materials. In Chapter 4, we studied the correlation of MRO and glass forming ability ZrCuAl alloy. Results from Variable resolution fluctuation microscopy show that in Zr50Cu35Al15 the crystal-like clusters shrink but become more ordered, while icosahedral-like clusters grow. Compared with Zr50Cu45Al5, Zr50Cu35Al15 with poorer glass forming ability exhibits more stable crystal-like structure under annealing, indicating that destabilizing crystal-like structures is important to achieve better glass forming ability in this alloy. In Chapter 5, we studied the crystallization and MRO structural in deformed and quenched Ni60Nb40 metallic glass. The deformed Ni60Nb40 contains fewer icosahedral-like Voronoi clusters and more crystal-like and bcc-like Voronoi clusters. The crystal-like and bcc-like medium range order clusters may be the structural origin for its lower crystallization temperature compared with quenched alloy. Dynamics heterogeneity is proposed to be the microscopic origin of the dynamic nature of glass transition. Some experimental evidence and simulation have indicated that different regions of materials indeed relax at fast or slow rate. However, the spatial distribution of relaxation time visualized from the experiment as the direct evidence of heterogeneous dynamics is still challenging. We proposed to measure the structural dynamics of supercooled metallic glasses with electron correlation microscopy (ECM) technique at the nanometer scale. ECM was developed as a way to measure structural relaxation times of liquids with nanometer-scale spatial resolution using the coherent electron scattering equivalent of photon correlation spectroscopy. In chapter 6, we studied the experimental requirements of ECM to obtain reliable results. For example, the trajectory length must be at least 40 times the relaxation time to obtain a well-converged g2( t), and the time per frame must be less than 0.1 time the relaxation time to obtain sufficient sampling. ECM experiment was firstly realized in scanning transmission electron microscopy (STEM) mode and applied to measure the structural relaxation time of Pd based metallic glass. In order to overcome the drift problem and capture the spatial information, we developed ECM experiment in dark field (DF) mode. In Chapter 7, through DF-ECM, we visualized the spatially heterogeneous dynamics by in-situ heating Pt57.5Cu14.7Ni 5.3P22.5 nanowire into supercooled liquid state, and quantify the size of the heterogeneity by four-point correlation function. The thickness effect and temporal evolution of the heterogeneous domain were also discussed. Additionally, a fast near-surface dynamics was discovered, providing an effective mechanism for surface crystallization of liquids by homogeneous nucleation.
Synthesis and structure of a stuffed derivative of α-quartz, Mg 0.5AlSiO 4
Xu, Hongwu; Heaney, Peter J.; Yu, Ping; ...
2015-10-01
A structural derivative of quartz with the composition Mg 0.5AlSiO 4 has been grown from glass and characterized using synchrotron X-ray diffraction (XRD), transmission electron microscopy (TEM), and 29Si nuclear magnetic resonance (NMR) spectroscopy. Rietveld analysis of the XRD data indicates that the framework of Mg 0.5AlSiO 4 is isostructural with α-quartz, rather than β-quartz, as is consistent with previous theoretical modeling (Sternitzke and Müller 1991). Al and Si exhibit long-range disorder over the framework tetrahedral sites, indicated by the absence of the superlattice reflections corresponding to the doubling of c relative to that of quartz. Nevertheless, 29Si NMR measurementsmore » show that Al and Si exhibit partial short-range order with an ordering degree of 56%. Electron diffraction reveals superlattice reflections indicative of doubled periodicities along the a-axes. In conclusion, Fourier electron density maps show that Mg occupies channel sites that each are bonded to six O atoms, in contrast to the tetrahedral coordination of Li in the β-quartz-type framework for β-eucryptite, LiAlSiO 4. Furthermore, the concentrations of Mg in adjacent channels are different, resulting in framework distortions that generate the superstructures along a.« less
Information Status and Word Order in Croatian Sign Language
ERIC Educational Resources Information Center
Milkovic, Marina; Bradaric-Joncic, Sandra; Wilbur, Ronnie B.
2007-01-01
This paper presents the results of research on information structure and word order in narrative sentences taken from signed short stories in Croatian Sign Language (HZJ). The basic word order in HZJ is SVO. Factors that result in other word orders include: reversible arguments, verb categories, locative constructions, contrastive focus, and prior…
NASA Astrophysics Data System (ADS)
Kalfarisi, Rony G.
Solid-state Nuclear Magnetic Resonance (ssNMR) spectroscopy has proven to be a powerful method to probe the local structure and dynamics of a system. In powdered solids, the nuclear spins experience various anisotropic interactions which depend on the molecular orientation. These anisotropic interactions make ssNMR very useful as they give a specific appearance to the resonance lines of the spectra. The position and shape of these resonance lines can be related to local structure and dynamics of the system under study. My research interest has focused around studying local structures and dynamics of quadrupolar nuclei in materials using ssNMR spectroscopy. 7Li and 93Nb ssNMR magic angle spinning (MAS) spectra, acquired at 17.6 and 7.06 T, have been used to evaluate the structural and dynamical properties of cation-ordered microwave dielectric materials. Microwave dielectric materials are essential in the application of wireless telecommunication, biomedical engineering, and other scientific and industrial implementations that use radio and microwave signals. The study of the local environment with respect to average structure, such as X-ray diffraction study, is essential for the better understanding of the correlations between structures and properties of these materials. The investigation for short and medium range can be performed with the use of ssNMR techniques. Even though XRD results show cationic ordering at the B-site (third coordination sphere), NMR spectra show a presence of disorder materials. This was indicated by the observation of a distribution in NMR parameters derived from experimental . {93}Nb NMR spectraand supported by theoretical calculations.
The structure of liquid metals probed by XAS
NASA Astrophysics Data System (ADS)
Filipponi, Adriano; Di Cicco, Andrea; Iesari, Fabio; Trapananti, Angela
2017-08-01
X-ray absorption spectroscopy (XAS) is a powerful technique to investigate the short-range order around selected atomic species in condensed matter. The theoretical framework and previous applications to undercooled elemental liquid metals are briefly reviewed. Specific results on undercooled liquid Ni obtained using a peak fitting approach validated on the spectra of solid Ni are presented. This method provides a clear evidence that a signature from close packed triangular configurations of nearest neighbors survives in the liquid state and is clearly detectable below k ≈ 5 Å-1, stimulating the improvement of data-analysis methods that account properly for the ensemble average, such as Reverse Monte Carlo.
Molecular Simulations in Astrobiology
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Wilson, Michael A.; Schweighofer, Karl; Chipot, Christophe; New, Michael H.
2000-01-01
One of the main goals of astrobiology is to understand the origin of cellular life. The most direct approach to this problem is to construct laboratory models of protocells. Such efforts, currently underway in the NASA Astrobiology Program, are accompanied by computational studies aimed at explaining self-organization of simple molecules into ordered structures that are capable of performing protocellular functions. Many of these functions, such as importing nutrients, capturing energy and responding to changes in the environment, are carried out by proteins bound to membranes. We use computer simulations to address the following questions about these proteins: (1) How do small proteins self-organize into ordered structures at water-membrane interfaces and insert into membranes? (2) How do peptides form membrane-spanning structures (e.g. channels)? (3) By what mechanisms do such structures perform their functions? The simulations are performed using the molecular dynamics method. In this method, Newton's equations of motion for each atom in the system are solved iteratively. At each time step, the forces exerted on each atom by the remaining atoms are evaluated by dividing them into two parts. Short-range forces are calculated in real space while long-range forces are evaluated in reciprocal space, using a particle-mesh algorithm which is of order O(NInN). With a time step of 2 femtoseconds, problems occurring on multi-nanosecond time scales (10(exp 6)-10(exp 8) time steps) are accessible. To address a broader range of problems, simulations need to be extended by three orders of magnitude, which requires algorithmic improvements and codes scalable to a large number of processors. Work in this direction is in progress. Two series of simulations are discussed. In one series, it is shown that nonpolar peptides, disordered in water, translocate to the nonpolar interior of the membrane and fold into helical structures (see Figure). Once in the membrane, the peptides exhibit orientational flexibility with changing conditions, which may have provided a mechanism of transmitting signals between the protocell and its environment. In another series of simulations, the mechanism by which a simple protein channel efficiently mediates proton transport across membranes was investigated. This process is a key step in cellular bioenergetics. In the channel under study, proton transport is gated by four histidines that occlude the channel pore. The simulations identify the mechanisms by which protons move through the gate.
Describing temporal variability of the mean Estonian precipitation series in climate time scale
NASA Astrophysics Data System (ADS)
Post, P.; Kärner, O.
2009-04-01
Applicability of the random walk type models to represent the temporal variability of various atmospheric temperature series has been successfully demonstrated recently (e.g. Kärner, 2002). Main problem in the temperature modeling is connected to the scale break in the generally self similar air temperature anomaly series (Kärner, 2005). The break separates short-range strong non-stationarity from nearly stationary longer range variability region. This is an indication of the fact that several geophysical time series show a short-range non-stationary behaviour and a stationary behaviour in longer range (Davis et al., 1996). In order to model series like that the choice of time step appears to be crucial. To characterize the long-range variability we can neglect the short-range non-stationary fluctuations, provided that we are able to model properly the long-range tendencies. The structure function (Monin and Yaglom, 1975) was used to determine an approximate segregation line between the short and the long scale in terms of modeling. The longer scale can be called climate one, because such models are applicable in scales over some decades. In order to get rid of the short-range fluctuations in daily series the variability can be examined using sufficiently long time step. In the present paper, we show that the same philosophy is useful to find a model to represent a climate-scale temporal variability of the Estonian daily mean precipitation amount series over 45 years (1961-2005). Temporal variability of the obtained daily time series is examined by means of an autoregressive and integrated moving average (ARIMA) family model of the type (0,1,1). This model is applicable for daily precipitation simulating if to select an appropriate time step that enables us to neglet the short-range non-stationary fluctuations. A considerably longer time step than one day (30 days) is used in the current paper to model the precipitation time series variability. Each ARIMA (0,1,1) model can be interpreted to be consisting of random walk in a noisy environment (Box and Jenkins, 1976). The fitted model appears to be weakly non-stationary, that gives us the possibility to use stationary approximation if only the noise component from that sum of white noise and random walk is exploited. We get a convenient routine to generate a stationary precipitation climatology with a reasonable accuracy, since the noise component variance is much larger than the dispersion of the random walk generator. This interpretation emphasizes dominating role of a random component in the precipitation series. The result is understandable due to a small territory of Estonia that is situated in the mid-latitude cyclone track. References Box, J.E.P. and G. Jenkins 1976: Time Series Analysis, Forecasting and Control (revised edn.), Holden Day San Francisco, CA, 575 pp. Davis, A., Marshak, A., Wiscombe, W. and R. Cahalan 1996: Multifractal characterizations of intermittency in nonstationary geophysical signals and fields.in G. Trevino et al. (eds) Current Topics in Nonsstationarity Analysis. World-Scientific, Singapore, 97-158. Kärner, O. 2002: On nonstationarity and antipersistency in global temperature series. J. Geophys. Res. D107; doi:10.1029/2001JD002024. Kärner, O. 2005: Some examples on negative feedback in the Earth climate system. Centr. European J. Phys. 3; 190-208. Monin, A.S. and A.M. Yaglom 1975: Statistical Fluid Mechanics, Vol 2. Mechanics of Turbulence , MIT Press Boston Mass, 886 pp.
Collective Dynamics and Strong Pinning near the Onset of Charge Order in La1.48Nd0.4Sr0.12CuO4
NASA Astrophysics Data System (ADS)
Baity, P. G.; Sasagawa, T.; Popović, Dragana
2018-04-01
The dynamics of charge-ordered states is one of the key issues in underdoped cuprate high-temperature superconductors, but static short-range charge-order (CO) domains have been detected in almost all cuprates. We probe the dynamics across the CO (and structural) transition in La1.48Nd0.4Sr0.12CuO4 by measuring nonequilibrium charge transport, or resistance R as the system responds to a change in temperature and to an applied magnetic field. We find evidence for metastable states, collective behavior, and criticality. The collective dynamics in the critical regime indicates strong pinning by disorder. Surprisingly, nonequilibrium effects, such as avalanches in R , are revealed only when the critical region is approached from the charge-ordered phase. Our results on La1.48Nd0.4Sr0.12CuO4 provide the long-sought evidence for the fluctuating order across the CO transition, and also set important constraints on theories of dynamic stripes.
Chiral photonic crystal fibers with single mode and single polarization
NASA Astrophysics Data System (ADS)
Li, She; Li, Junqing
2015-12-01
Chiral photonic crystal fiber (PCF) with a solid core is numerically investigated by a modified chiral plane-wave expansion method. The effects of structural parameters and chirality strength are analyzed on single-polarization single-mode range and polarization states of guided modes. The simulation demonstrates that the chiral photonic crystal fiber compared to its achiral counterpart possesses another single-circular-polarization operation range, which is located in the short-wavelength region. The original single-polarization operation range in the long-wavelength region extends to the short wavelength caused by introducing chirality. Then this range becomes a broadened one with elliptical polarization from linear polarization. With increase of chirality, the two single-polarization single-mode ranges may fuse together. By optimizing the structure, an ultra-wide single-circular-polarization operation range from 0.5 μm to 1.67 μm for chiral PCF can be realized with moderate chirality strength.
Short-pulse laser interactions with disordered materials and liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phinney, L.M.; Goldman, C.H.; Longtin, J.P.
High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regimemore » in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.« less
NASA Astrophysics Data System (ADS)
Benedek, G.; Nardelli, G. F.
1967-03-01
Lattice response functions, such as the thermal conductivity and dielectric susceptibility of an imperfect crystal with rocksalt structure, are evaluated in terms of the irreducible T matrix accounting for the phonon scattering. It is shown that the effect of defects on thermal conductivity and dielectric susceptibility can be accounted for by expressions which have essentially the same structure. The T matrix for a defect which affects both the mass and the short-range interaction is analyzed according to the irreducible representations of the point group which pertains to the perturbation, and the resonance conditions for Γ1, Γ12, and Γ15 irreducible representations are considered in detail for any positive impurity in KBr crystals. Hardy's deformation-dipole (DD) model is employed for the description of the host-lattice dynamics. A comparison is made with simplified models, such as diatomic linear chains with nearest-neighbor interaction; it is shown that in polar crystals an effective-force constant has to be used in order to give a reliable description of the short-range interaction between the impurity and the host lattice. An attempt is made to define such effective force constants in the framework of the DD model. The numerical calculations concern positive monovalent impurities in KBr crystals. Γ1, Γ12, and Γ15 resonance frequencies are evaluated as a function of the change of mass and nearest-neighbor force constant. For KBr:Li+ and KBr:Ag+ we also evaluate the band shape of the absorption spectrum at infrared frequencies; good agreement is found between the theoretical prediction and the experimental data on KBr:Li+. It is shown that some structures actually observed in the spectrum are due to peaks in the projected density of states of the host lattice, and have nothing to do with resonance scattering. Good agreement is found between the impurity-host-lattice interaction as estimated from a priori calculations and as deduced by fitting the Γ15 resonance frequency to the experimental data. A simple explanation of the off-center position of small ions is also suggested. Finally, concentration and stress effects on the absorption coefficient are briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Dongbin; Sun, Cheng-Jun; Chen, Jing-Sheng
2014-10-14
In structurally ordered magnetic thin films, the Curie temperature (TC) of ferromagnetic films depends on the exchange integral of the short range ordered neighboring atoms. The exchange integral may be adjusted by controlling elemental substitutional concentration at the lattice site of interest. We show how to control the TC in high anisotropy L10 Fe50Pt50 magnetic thin films by substituting Rh into the Pt site. Rh substitution in L10 FePt modified the local atomic environment and corresponding electronic properties while retaining the ordered L10 phase. The analysis of extended x-ray Absorption Fine Structure (EXAFS) spectra shows that Rh uniformly substitutes formore » Pt in L10 FePt. With 15 at. % of Rh substitution, temperature-dependent magnetic measurements show that the saturation magnetization (Ms) decreases from 1152 emu/cc to 670 emu/cc, the magnetocrystalline anisotropy (Ku) drops from 5×107 erg/cc to 2×107 erg/cc, and TC decreased from 750 to 500 K. A model of antiferromagnetic (AFM) defects caused by controlled Rh substitution of the Pt site, reducing the TC, is proposed to interpret this phenomenon and the validity is further examined by ab initio density functional calculations.« less
Pathways toward unidirectional alignment in block copolymer thin films on faceted surfaces
NASA Astrophysics Data System (ADS)
Gunkel, Ilja; Gu, Xiaodan; Sarje, Abhinav; Hexemer, Alexander; Russell, Thomas
2015-03-01
Solvent vapor annealing (SVA) has been shown recently to be an effective means to produce long-range lateral order in block copolymer (BCP) thin films in relatively short times. Furthermore, using substrates with faceted surfaces allows for generating unidirectionally aligned BCP microdomains on the size scale of an entire wafer. While in recent years SVA has been largely demystified, the detailed pathways toward obtaining unidirectional alignment still remain unclear. Grazing-incidence X-ray scattering (GISAXS) is a very powerful tool for characterizing the structure and morphology of BCPs in thin films, and is particularly useful for studying structural changes in BCP thin films during SVA. We here present in situ GISAXS experiments on cylinder-forming PS-b-P2VP BCP thin films on faceted Sapphire substrates during annealing in THF. We show that the degree of alignment of cylindrical microdomains is greatly enhanced at solvent concentrations close to the order-disorder transition of the copolymer. Furthermore, we observed that inducing disorder by further increasing the solvent concentration and subsequent quenching to the ordered (not yet glassy) state induced the highest degree of alignment with nearly unidirectional alignment of the microdomains in less than 30 min.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, Artee; Asthagiri, D.; Cox, Kenneth R.
A mixture of solvent particles with short-range, directional interactions and solute particles with short-range, isotropic interactions that can bond multiple times is of fundamental interest in understanding liquids and colloidal mixtures. Because of multi-body correlations, predicting the structure and thermodynamics of such systems remains a challenge. Earlier Marshall and Chapman [J. Chem. Phys. 139, 104904 (2013)] developed a theory wherein association effects due to interactions multiply the partition function for clustering of particles in a reference hard-sphere system. The multi-body effects are incorporated in the clustering process, which in their work was obtained in the absence of the bulk medium.more » The bulk solvent effects were then modeled approximately within a second order perturbation approach. However, their approach is inadequate at high densities and for large association strengths. Based on the idea that the clustering of solvent in a defined coordination volume around the solute is related to occupancy statistics in that defined coordination volume, we develop an approach to incorporate the complete information about hard-sphere clustering in a bulk solvent at the density of interest. The occupancy probabilities are obtained from enhanced sampling simulations but we also develop a concise parametric form to model these probabilities using the quasichemical theory of solutions. We show that incorporating the complete reference information results in an approach that can predict the bonding state and thermodynamics of the colloidal solute for a wide range of system conditions.« less
Structure of aqueous proline via parallel tempering molecular dynamics and neutron diffraction.
Troitzsch, R Z; Martyna, G J; McLain, S E; Soper, A K; Crain, J
2007-07-19
The structure of aqueous L-proline amino acid has been the subject of much debate centering on the validity of various proposed models, differing widely in the extent to which local and long-range correlations are present. Here, aqueous proline is investigated by atomistic, replica exchange molecular dynamics simulations, and the results are compared to neutron diffraction and small angle neutron scattering (SANS) data, which have been reported recently (McLain, S.; Soper, A.; Terry, A.; Watts, A. J. Phys. Chem. B 2007, 111, 4568). Comparisons between neutron experiments and simulation are made via the static structure factor S(Q) which is measured and computed from several systems with different H/D isotopic compositions at a concentration of 1:20 molar ratio. Several different empirical water models (TIP3P, TIP4P, and SPC/E) in conjunction with the CHARMM22 force field are investigated. Agreement between experiment and simulation is reasonably good across the entire Q range although there are significant model-dependent variations in some cases. In general, agreement is improved slightly upon application of approximate quantum corrections obtained from gas-phase path integral simulations. Dimers and short oligomeric chains formed by hydrogen bonds (frequently bifurcated) coexist with apolar (hydrophobic) contacts. These emerge as the dominant local motifs in the mixture. Evidence for long-range association is more equivocal: No long-range structures form spontaneously in the MD simulations, and no obvious low-Q signature is seen in the SANS data. Moreover, associations introduced artificially to replicate a long-standing proposed mesoscale structure for proline correlations as an initial condition are annealed out by parallel tempering MD simulations. However, some small residual aggregates do remain, implying a greater degree of long-range order than is apparent in the SANS data.
NASA Astrophysics Data System (ADS)
Ganeev, R. A.
2017-08-01
The nonlinear spectroscopy using harmonic generation in the extreme ultraviolet range became a versatile tool for the analysis of the optical, structural and morphological properties of matter. The carbon-contained materials have shown the advanced properties among other studied species, which allowed both the definition of the role of structural properties on the nonlinear optical response and the analysis of the fundamental features of carbon as the attractive material for generation of coherent short-wavelength radiation. We review the studies of the high-order harmonic generation by focusing ultrashort pulses into the plasmas produced during laser ablation of various organic compounds. We discuss the role of ionic transitions of ablated carbon-containing molecules on the harmonic yield. We also show the similarities and distinctions of the harmonic and plasma spectra of organic compounds and graphite. We discuss the studies of the generation of harmonics up to the 27th order (λ = 29.9 nm) of 806 nm radiation in the boron carbide plasma and analyze the advantages and disadvantages of this target compared with the ingredients comprising B4C (solid boron and graphite) by comparing plasma emission and harmonic spectra from three species. We also show that the coincidence of harmonic and plasma emission wavelengths in most cases does not cause the enhancement or decrease of the conversion efficiency of this harmonic.
Pretransitional phenomena and pinning in liquid-crystalline blue phases
NASA Astrophysics Data System (ADS)
Demikhov, E.; Stegemeyer, H.; Tsukruk, V.
1992-10-01
Blue phases (BP's) in liquid-crystalline systems of high chirality exhibiting a short cholesteric temperature interval are investigated. In a BP I supercooled with respect to the cholesteric phase, the orientation of the cubic lattice with the (1,1,0) wave vector perpendicular to the substrate is spontaneously turned to a [200] orientation within small areas of several tenths of micrometers in diameter. A pinning of BP I lattice temperature waves is observed on the [200] orientational inhomogeneities. The pinning effect explains the observed saturation of the BP I lattice constant on decreasing temperature and its dependence on the cooling rate observed in supercooled region. A different type of cubic blue phase, BP S (``S'' represents supercooled), is observed transforming reversibly from the supercooled BP I but metastable with respect to the cholesteric phase. The BP S has two scales of order: a long-range orientational blue-phase-like order and a short-range positional smecticlike order.
NASA Astrophysics Data System (ADS)
Loot, A.; Hizhnyakov, V.
2018-05-01
A numerical study of the enhancement of the spontaneous parametric down-conversion in plasmonic and dielectric structures is considered. The modeling is done using a nonlinear transfer-matrix method which is extended to include vacuum fluctuations and realistic waves (e.g. Gaussian beam). The results indicate that in the case of short-range surface plasmon polaritons, the main limiting factor of the enhancement is the short length of the coherent buildup. In the case of long-range surface plasmon polaritons or dielectric guided waves, the very narrow resonances are the main limiting factor instead.
Validation of the Spanish Short Self-Regulation Questionnaire (SSSRQ) through Rasch Analysis.
Garzón Umerenkova, Angélica; de la Fuente Arias, Jesús; Martínez-Vicente, José Manuel; Zapata Sevillano, Lucía; Pichardo, Mari Carmen; García-Berbén, Ana Belén
2017-01-01
Background: The aim of the study was to psychometrically characterize the Spanish Short Self-Regulation Questionnaire (SSSRQ) through Rasch analysis. Materials and Methods: 831 Spaniard university students (262 men), between 17 and 39 years of age and ranging from the first to the 5th year of studies, completed the SSSRQ questionnaire. Confirmatory factor analysis (CFA) was carried out in order to establish structural adequacy. Afterward, by means of the Rasch model, a study of each sub scale was conducted to test for dimensionality, fit of the sample questions, functionality of the response categories, reliability and estimation of Differential Item Functioning by gender and course. Results: The four sub-scales comply with the unidimensionality criteria, the questions are in line with the model, the response categories operate properly and the reliability of the sample is acceptable. Nonetheless, the test could benefit from the inclusion of additional items of both high and low difficulty in order to increase construct validity, discrimination and reliability for the respondents. Several items with differences in gender and course were also identified. Discussion: The results evidence the need and adequacy of this complementary psychometric analysis strategy, in relation to the CFA to enhance the instrument.
Validation of the Spanish Short Self-Regulation Questionnaire (SSSRQ) through Rasch Analysis
Garzón Umerenkova, Angélica; de la Fuente Arias, Jesús; Martínez-Vicente, José Manuel; Zapata Sevillano, Lucía; Pichardo, Mari Carmen; García-Berbén, Ana Belén
2017-01-01
Background: The aim of the study was to psychometrically characterize the Spanish Short Self-Regulation Questionnaire (SSSRQ) through Rasch analysis. Materials and Methods: 831 Spaniard university students (262 men), between 17 and 39 years of age and ranging from the first to the 5th year of studies, completed the SSSRQ questionnaire. Confirmatory factor analysis (CFA) was carried out in order to establish structural adequacy. Afterward, by means of the Rasch model, a study of each sub scale was conducted to test for dimensionality, fit of the sample questions, functionality of the response categories, reliability and estimation of Differential Item Functioning by gender and course. Results: The four sub-scales comply with the unidimensionality criteria, the questions are in line with the model, the response categories operate properly and the reliability of the sample is acceptable. Nonetheless, the test could benefit from the inclusion of additional items of both high and low difficulty in order to increase construct validity, discrimination and reliability for the respondents. Several items with differences in gender and course were also identified. Discussion: The results evidence the need and adequacy of this complementary psychometric analysis strategy, in relation to the CFA to enhance the instrument. PMID:28298898
Short-range structure and thermal properties of lead tellurite glasses
NASA Astrophysics Data System (ADS)
Hirdesh, Kaur, Amarjot; Khanna, Atul; Gonzàlez, Fernando
2017-05-01
PbO-TeO2 glasses having composition: xPbO-(100 - x)TeO2 (x = 10, 15 and 20 mol%) were prepared by melt quenching and characterized by X-ray diffraction, density measurements, differential scanning calorimetry and Raman spectroscopy. Glass density increases from 5.89 to 6.22 g cm-3 with increase in PbO concentration from 10 to 20 mol%, due to the replacement of TeO2 by heavier PbO. DSC studies found that glass transition temperature (Tg) decreases from a value of 295°C to 281°C. Raman studies found that glass short-range structure consists of TeO4 and TeO3 structural units and that PbO modifies the network by the structural transformation: TeO4 to TeO3.
Thermal ageing and short-range ordering of Alloy 690 between 350 and 550 °C
NASA Astrophysics Data System (ADS)
Mouginot, Roman; Sarikka, Teemu; Heikkilä, Mikko; Ivanchenko, Mykola; Ehrnstén, Ulla; Kim, Young Suk; Kim, Sung Soo; Hänninen, Hannu
2017-03-01
Thermal ageing of Alloy 690 triggers an intergranular (IG) carbide precipitation and is known to promote an ordering reaction causing lattice contraction. It may affect the long-term primary water stress corrosion cracking (PWSCC) resistance of pressurized water reactor (PWR) components. Four conditions of Alloy 690 (solution annealed, cold-rolled and/or heat-treated) were aged between 350 and 550 °C for 10 000 h and characterized. Although no direct observation of ordering was made, variations in hardness and lattice parameter were attributed to the formation of short-range ordering (SRO) in all conditions with a peak level at 420 °C, consistent with the literature. Prior heat treatment induced ordering before thermal ageing. At higher temperatures, stress relaxation, recrystallization and α-Cr precipitation were observed in the cold-worked samples, while a disordering reaction was inferred in all samples based on a decrease in hardness. IG precipitation of M23C6 carbides increased with increasing ageing temperature in all conditions, as well as diffusion-induced grain boundary migration (DIGM).
Dynamics of Disorder-Order Transitions in Hard Sphere Colloidal Dispersions in micro-g
NASA Technical Reports Server (NTRS)
Zhu, J. X.; Li, M.; Phan, S. E.; Russel, W. B.; Chaikin, Paul M.; Rogers, Rick; Meyers, W.
1996-01-01
We performed a series of experiments on 0.518 millimeter PMMA spheres suspended in an index matching mixture of decalin and tetralin the microgravity environment provided by the Shuttle Columbia on mission STS-73. The samples ranged in concentration from 0.49 to 0.62. volume fraction (phi) of spheres, which covers the range in which liquid, coexistence, solid and glass phases are expected from Earth bound experiments. Light scattering was used to probe the static structure, and the particle dynamics. Digital and 35 mm photos provided information on the morphology of the crystals. In general, the crystallites grew considerably larger (roughly an order of magnitude larger) than the same samples with identical treatment in 1 g. The dynamic light scattering shows the typical short time diffusion and long time caging effects found in 1 g. The surprises that were encountered in microgravity include the preponderance of random hexagonal close packed (RHCP) structures and the complete absence of the expected face centered cubic (FCC) structure, existence of large dendritic crystals floating in the coexistence samples (where liquid and solid phases coexist) and the rapid crystallization of samples which exist only in glass phase under the influence of one g. These results suggest that colloidal crystal growth is profoundly effected by gravity in yet unrecognized ways. We suspect that the RCHP structure is related to the nonequilibrium growth that is evident from the presence of dendrites. An analysis of the dendritic growth instabilities is presented within the framework of the Ackerson-Schatzel equation.
Lead(ii) soaps: crystal structures, polymorphism, and solid and liquid mesophases.
Martínez-Casado, F J; Ramos-Riesco, M; Rodríguez-Cheda, J A; Redondo-Yélamos, M I; Garrido, L; Fernández-Martínez, A; García-Barriocanal, J; da Silva, I; Durán-Olivencia, M; Poulain, A
2017-07-05
The long-chain members of the lead(ii) alkanoate series or soaps, from octanoate to octadecanoate, have been thoroughly characterized by means of XRD, PDF analysis, DSC, FTIR, ssNMR and other techniques, in all their phases and mesophases. The crystal structures at room temperature of all of the members of the series are now solved, showing the existence of two polymorphic forms in the room temperature crystal phase, different to short and long-chain members. Only nonanoate and decanoate present both forms, and this polymorphism is proven to be monotropic. At higher temperature, these compounds present a solid mesophase, defined as rotator, a liquid crystal phase and a liquid phase, all of which have a similar local arrangement. Since some lead(ii) soaps appear as degradation compounds in oil paintings, the solved crystal structures of lead(ii) soaps can now be used as fingerprints for their detection using X-ray diffraction. Pair distribution function analysis on these compounds is very similar in the same phases and mesophases for the different members, showing the same short range order. This observation suggests that this technique could also be used in the detection of these compounds in disordered phases or in the initial stages of formation in paintings.
NASA Astrophysics Data System (ADS)
Assi, I. A.; Sous, A. J.
2018-05-01
The goal of this work is to derive a new class of short-range potentials that could have a wide range of physical applications, specially in molecular physics. The tridiagonal representation approach has been developed beyond its limitations to produce new potentials by requiring the representation of the Schrödinger wave operator to be multidiagonal and symmetric. This produces a family of Hulthén potentials that has a specific structure, as mentioned in the introduction. As an example, we have solved the nonrelativistic wave equation for the new four-parameter short-range screening potential numerically using the asymptotic iteration method, where we tabulated the eigenvalues for both s -wave and arbitrary l -wave cases in tables.
Liu, Bo; He, Junxia; Zeng, Fanjiang; Lei, Jiaqiang; Arndt, Stefan K
2016-07-01
The terminal branch orders of plant root systems have been proposed as short-lived 'ephemeral' modules specialized for resource absorption. The occurrence of ephemeral root modules has so far only been reported for a temperate tree species and it is unclear if the concept also applies to other woody (shrub, tree) and herb species. Fine roots of 12 perennial dicotyledonous herb, shrub and tree species were monitored for two growing seasons using a branch-order classification, sequential sampling and rhizotrons in the Taklamakan desert. Two root modules existed in all three plant functional groups. Among the first five branch orders, the first two (perennial herbs, shrubs) or three (trees) root orders were ephemeral and had a primary anatomical structure, high nitrogen (N) concentrations, high respiration rates and very short life spans of 1-4 months, whereas the last two branch orders in all functional groups were perennial, with thicker diameters, no or collapsed cortex, distinct secondary growth, low N concentrations, low respiration rates, but much longer life spans. Ephemeral, short-lived root modules and long-lived, persistent root modules seem to be a general feature across many plant functional groups and could represent a basic root system design. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Hedeman, H; Brøndsted, H; Müllertz, A; Frokjaer, S
1996-05-01
Structured lipids (1,3-specific triglycerides) are new chemical entities made by enzymatic transesterification of the fatty acids in the 1,3 positions of the triglyceride. The purpose of this study is to characterize structured lipids with either short chain fatty acids or medium chain fatty acids in the 1,3 positions with regard to their hydrophobicity, and investigate the in vivo fate in order to evaluate the potential of structured lipids as core material in fat emulsions used as parenteral drug delivery system. The lipids were characterized by employing reversed phase high performance liquid chromatography. The biodistribution of radioactively labeled emulsions was studied in rats. By employing high performance liquid chromatography a rank order of the hydrophobicities of the lipids could be given, with the triglycerides containing long chain fatty acids being the most hydrophobic and the structured lipid with short chain fatty acids in the 1,3 positions the least. When formulated as fat emulsions, the emulsion based on structured lipids with short fatty acids in the 1,3 positions was removed slower from the general blood circulation compared to emulsions based on lipids with long chain fatty acids in the 1,3 positions. The type of core material influences the in vivo circulation time of fat emulsions.
NASA Astrophysics Data System (ADS)
Saikia, D.; Borah, J. P.
2018-03-01
Systematic experimental and theoretical calculations have been performed to investigate the origin of the carrier-induced ferromagnetism in the Co-doped ZnS-diluted magnetic semiconductors. The crystalline structure, morphology of the chemically synthesized Co-doped ZnS nanoparticles are evaluated using X-ray diffraction (XRD) and transmission electron microscopy (TEM) and obtained the average crystallite size in the range 5-8 nm. Fourier transform-infrared spectra reveal the characteristic Zn-S vibrations of cubic ZnS and also show the splitting of peaks with increasing Co concentration which indicates that the Co-doping level beyond 3% affects the structure of ZnS. The room temperature ferromagnetic behavior analyzed by M- H curve exhibited up to the doping level 5%, achieving due to the indirect ` p- d' exchange interactions between the localized ` d' spins of Co2+ ion and the free-delocalized carriers in the host lattice. The existence of the antiferromagnetic coupling is discernable beyond the 5% doping level, owing to the short-range super-exchange interactions between the characteristic ` d' spins of the Co2+ ions which minimize the ferromagnetic ordering. Band structure and density of states (DOS) calculations demonstrate the p- d hybridization mechanism in Co-doped ZnS system which is the main cause of realizing ferromagnetic ordering in the system and also shows the half-metallic characteristics with the combination of semiconducting and metallic nature in the spin-up and spin-down states, respectively.
Quasi-one-dimensional magnetism in MnxFe1-xNb2O6 compounds: From Heisenberg to Ising chains
NASA Astrophysics Data System (ADS)
Hneda, M. L.; Oliveira Neto, S. R.; da Cunha, J. B. M.; Gusmão, M. A.; Isnard, O.
2018-06-01
A series of MnxFe1-xNb2O6 compounds (0 ⩽ x ⩽ 1) is investigated by both X-ray and neutron powder diffraction, as well as specific-heat and magnetic measurements. The samples present orthorhombic Pbcn crystal symmetry, and exhibit weakly coupled magnetic chains. These chains are of Heisenberg type (weak anisotropy) on the Mn-rich side, and Ising-like (strong anisotropy) on the Fe-rich side. Except for 100% Fe (x = 0) , which has weakly-interacting ferromagnetic Ising chains, a negative Curie-Weiss temperature is obtained from the magnetic susceptibility, indicating dominant antiferromagnetic interactions. At the lowest probed temperature, T = 1.5K , true long-range magnetic order is only observed for x = 1 , 0.8, and 0. Although the ordering is globally antiferromagnetic in all cases, the first two are characterized by a two-sublattice structure with propagation vector k = (0, 0, 0) , while the latter presents alternatingly oriented ferromagnetic chains described by k = (0,1/2, 0) . For other compositions, short-range magnetic correlations are extracted from diffuse neutron-scattering data.
Silva, Veronica; Loredo, Jorge; Fernández-Martínez, Rodolfo; Larios, Raquel; Ordóñez, Almudena; Gómez, Belén; Rucandio, Isabel
2014-10-01
Tailings from abandoned mercury mines represent an important pollution source by metals and metalloids. Mercury mining in Asturias (north-western Spain) has been carried out since Roman times until the 1970s. Specific and non-specific arsenic minerals are present in the paragenesis of the Hg ore deposit. As a result of intensive mining operations, waste materials contain high concentrations of As, which can be geochemically dispersed throughout surrounding areas. Arsenic accumulation, mobility and availability in soils and sediments are strongly affected by the association of As with solid phases and granular size composition. The objective of this study was to examine phase associations of As in the fine grain size subsamples of mine wastes (La Soterraña mine site) and stream sediments heavily affected by acid mine drainage (Los Rueldos mine site). An arsenic-selective sequential procedure, which categorizes As content into seven phase associations, was applied. In spite of a higher As accumulation in the finest particle-size subsamples, As fractionation did not seem to depend on grain size since similar distribution profiles were obtained for the studied granulometric fractions. The presence of As was relatively low in the most mobile forms in both sites. As was predominantly linked to short-range ordered Fe oxyhydroxides, coprecipitated with Fe and partially with Al oxyhydroxides and associated with structural material in mine waste samples. As incorporated into short-range ordered Fe oxyhydroxides was the predominant fraction at sediment samples, representing more than 80% of total As.
Shang, C; Caldwell, D E; Stewart, J W; Tiessen, H; Huang, P M
1996-01-01
A nonreductive community-level study of P availability was conducted using various forms of adsorbed P. Orthophosphate (Pi), inositol hexaphosphate (IHP), and glucose 6-phosphate (G6P) were adsorbed to a short-range ordered Al precipitate. These bound phosphates provided a P source sufficient to support the growth of microbial communities from acidic Brazilian soils (oxisols). Adsorbed IHP, the most abundant form of organic phosphate in most soils, had the lowest bioavailability among the three phosphates studied. Adsorbed G6P and Pi were almost equally available. The amount of adsorbed Pi (1 cmol P kg(-1)) required to support microbial growth was at least 30 times less than that of IHP (30 cmol P kg(-1)). With increased surface coverage, adsorbed IHP became more bioavailable. This availability was attributed to a change in the structure of surface complexes and presumably resulted from the decreased number of high-affinity surface sites remaining at high levels of coverage. It thus appears that the bioavailability of various forms of adsorbed phosphate was determined primarily by the stability of the phosphate-surface complexes that they formed, rather than by the total amount of phosphate adsorbed. IHP, having the potential to form stable multiple-ring complexes, had the highest surface affinity and the lowest bioavailability. Bioaggregates consisting of bacteria and Al precipitate were observed and may be necessary for effective release of adsorbed P. Bacteria in the genera Enterobacter and Pseudomonas were the predominate organisms selected during these P-limited enrichments.
Short-Range-Order Mineral Physical Protection On Black Carbon Stabilization
NASA Astrophysics Data System (ADS)
Liang, B.; Weng, Y. T.; Wang, C. C.; Song, Y. F.; Lehmann, J.; Wang, C. H.
2015-12-01
Soil organic matter is one of the largest reservoirs in global carbon cycle, and black carbon (BC) represents a chemical resistant component. Black C plays an important role in global climate change. Generally considered recalcitrant due to high aromaticity, the reactive surface and functional groups of BC are crucial for carbon sequestration in soils. Mineral sorption and physical protection is an important mechanism for BC long term stabilization and sequestration in environments. Previous studies on mineral protection of BC were limited to analysis techniques in two-dimensions, for example, by SEM, TEM, and NanoSIMS. Little is known about the scope of organo-mineral association, the in-situ distribution and forms of minerals, and the ultimate interplay of BC and minerals. The aim of this study is to investigate the three-dimensional interaction of organic C and minerals in submicron scale using synchrotron-based Transmission X-ray Microcopy (TXM) and Fourier-Transform Infrared Spectroscopy (FTIR). Abundant poorly-crystallined nano-minerals particles were observed. These short-range-order (SRO) minerals also aggregate into clusters and sheets, and form envelops-like structures on the surface of BC. On top of large surface contact area, the intimate interplay between BC and minerals reinforces the stability of both organic C and minerals, resulting from chemical bonding through cation bridging and ligand exchange. The mineral protection enhances BC stabilization and sequestration and lowers its bioavailability in environment. The results suggest that mineral physical protection for BC sequestration may be more important than previous understanding.
Kim, Jong Hun; Kim, Jiyeon; Park, Eun Young; Kim, Jong-Yea
2017-07-15
To modify starch granular structure, normal maize starch was subjected to dry heating with various amounts of 1.0M HCl (1.2, 1.4 or 1.6mL) and different treatment times (2, 4 or 8h). For all reaction conditions, at least 80% of the starch substance was recovered, and amylose and amylopectin B1 chains were preferentially cleaved. As acidic condition and/or treatment time increased, the treated granules were readily fragmented by homogenization. The treatment appeared to alter short-range crystalline structure (FT-IR), but long-range crystalline structure (XRD) remained intact. Homogenization for 60min fragmented the treated starch granules (subjected to reaction condition of 1.4mL/4h, 1.6mL/2h, and 1.6mL/4h) into nanoparticles consisting of individual platelet-like and spherical particles with diameters less than 100nm. However, the fragmentation caused obvious damage in the long-range crystalline structure of starch nanoparticles, while the short-range chain associations remained relatively intact. Copyright © 2017 Elsevier Ltd. All rights reserved.
Frandsen, Benjamin A.; Billinge, Simon J. L.; Ross, Kathryn A.; ...
2017-12-29
Here, we present time-of-flight neutron total scattering and polarized neutron scattering measurements of the magnetically frustrated compounds NaCaCo 2F 7 and NaSrCo 2F 7, which belong to a class of recently discovered pyrochlore compounds based on transition metals and fluorine. The magnetic pair distribution function (mPDF) technique is used to analyze and model the total scattering data in real space. We find that a previously-proposed model of short-range XY-like correlations with a length scale of 10-15 Å, combined with nearest-neighbor collinear antiferromagnetic correlations, accurately describes the mPDF data at low temperature, confirming the magnetic ground state in these materials. Thismore » model is further verified by the polarized neutron scattering data. From an analysis of the temperature dependence of the mPDF and polarized neutron scattering data, we find that short-range correlations persist on the nearest-neighbor length scale up to 200 K, approximately two orders of magnitude higher than the spin freezing temperatures of these compounds. These results highlight the opportunity presented by these new pyrochlore compounds to study the effects of geometric frustration at relatively high temperatures, while also advancing the mPDF technique and providing a novel opportunity to investigate a genuinely short-range-ordered magnetic ground state directly in real space.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frandsen, Benjamin A.; Billinge, Simon J. L.; Ross, Kathryn A.
Here, we present time-of-flight neutron total scattering and polarized neutron scattering measurements of the magnetically frustrated compounds NaCaCo 2F 7 and NaSrCo 2F 7, which belong to a class of recently discovered pyrochlore compounds based on transition metals and fluorine. The magnetic pair distribution function (mPDF) technique is used to analyze and model the total scattering data in real space. We find that a previously-proposed model of short-range XY-like correlations with a length scale of 10-15 Å, combined with nearest-neighbor collinear antiferromagnetic correlations, accurately describes the mPDF data at low temperature, confirming the magnetic ground state in these materials. Thismore » model is further verified by the polarized neutron scattering data. From an analysis of the temperature dependence of the mPDF and polarized neutron scattering data, we find that short-range correlations persist on the nearest-neighbor length scale up to 200 K, approximately two orders of magnitude higher than the spin freezing temperatures of these compounds. These results highlight the opportunity presented by these new pyrochlore compounds to study the effects of geometric frustration at relatively high temperatures, while also advancing the mPDF technique and providing a novel opportunity to investigate a genuinely short-range-ordered magnetic ground state directly in real space.« less
The Gravitational Origin of the Higgs Boson Mass
NASA Astrophysics Data System (ADS)
Winterberg, Friedwardt
2014-06-01
The Lorentzian interpretation of the special theory of relativity explains all the relativistic effects by true deformations of rods and clocks in absolute motion against a preferred reference system, and where Lorentz invariance is a dynamic symmetry with the Galilei group the more fundamental kinematic symmetry of nature. In an exactly nonrelativistic quantum field theory the particle number operator commutes with the Hamilton operator which permits to introduce negative besides positive masses as the fundamental constituents of matter. Assuming that space is densely filled with an equal number of positive and negative locally interacting Planck mass particles, with those of equal sign repelling and those of opposite sign attracting each other, all the particles except the Planck mass particles are quasiparticles of this positive-negative-mass Planck mass plasma. Very much as the Van der Waals forces is the residual short-range electromagnetic force holding condensed matter together, and the strong nuclear force the residual short range gluon force holding together nuclear matter, it is conjectured that the Higgs field is the residual short range gravitational force holding together pre-quark matter made up from large positive and negative masses of the order ±1013 GeV. This hypothesis supports a theory by Dehnen and Frommert who have shown that the Higgs field acts like a short range gravitational field, with a strength about 32 orders of magnitude larger than one would expect in the absence of the positive-negative pre-quark mass hypothesis.
NASA Astrophysics Data System (ADS)
Frandsen, Benjamin A.; Ross, Kate A.; Krizan, Jason W.; Nilsen, Gøran J.; Wildes, Andrew R.; Cava, Robert J.; Birgeneau, Robert J.; Billinge, Simon J. L.
2017-12-01
We present time-of-flight neutron total scattering and polarized neutron scattering measurements of the magnetically frustrated compounds NaCaCo2F7 and NaSrCo2F7 , which belong to a class of recently discovered pyrochlore compounds based on transition metals and fluorine. The magnetic pair distribution function (mPDF) technique is used to analyze and model the total scattering data in real space. We find that a previously proposed model of short-range XY-like correlations with a length scale of 10-15 Å, combined with nearest-neighbor collinear antiferromagnetic correlations, accurately describes the mPDF data at low temperature, confirming the magnetic ground state in these materials. This model is further verified by the polarized neutron scattering data. From an analysis of the temperature dependence of the mPDF and polarized neutron scattering data, we find that short-range correlations persist on the nearest-neighbor length scale up to 200 K, approximately two orders of magnitude higher than the spin freezing temperatures of these compounds. These results highlight the opportunity presented by these new pyrochlore compounds to study the effects of geometric frustration at relatively high temperatures, while also advancing the mPDF technique and providing an opportunity to investigate a genuinely short-range-ordered magnetic ground state directly in real space.
Calibration of short rate term structure models from bid-ask coupon bond prices
NASA Astrophysics Data System (ADS)
Gomes-Gonçalves, Erika; Gzyl, Henryk; Mayoral, Silvia
2018-02-01
In this work we use the method of maximum entropy in the mean to provide a model free, non-parametric methodology that uses only market data to provide the prices of the zero coupon bonds, and then, a term structure of the short rates. The data used consists of the prices of the bid-ask ranges of a few coupon bonds quoted in the market. The prices of the zero coupon bonds obtained in the first stage, are then used as input to solve a recursive set of equations to determine a binomial recombinant model of the short term structure of the interest rates.
Short-range second order screened exchange correction to RPA correlation energies
NASA Astrophysics Data System (ADS)
Beuerle, Matthias; Ochsenfeld, Christian
2017-11-01
Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.
Short-range second order screened exchange correction to RPA correlation energies.
Beuerle, Matthias; Ochsenfeld, Christian
2017-11-28
Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.
Breen, Andrew J; Moody, Michael P; Ceguerra, Anna V; Gault, Baptiste; Araullo-Peters, Vicente J; Ringer, Simon P
2015-12-01
The following manuscript presents a novel approach for creating lattice based models of Sb-doped Si directly from atom probe reconstructions for the purposes of improving information on dopant positioning and directly informing quantum mechanics based materials modeling approaches. Sophisticated crystallographic analysis techniques are used to detect latent crystal structure within the atom probe reconstructions with unprecedented accuracy. A distortion correction algorithm is then developed to precisely calibrate the detected crystal structure to the theoretically known diamond cubic lattice. The reconstructed atoms are then positioned on their most likely lattice positions. Simulations are then used to determine the accuracy of such an approach and show that improvements to short-range order measurements are possible for noise levels and detector efficiencies comparable with experimentally collected atom probe data. Copyright © 2015 Elsevier B.V. All rights reserved.
Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamm, Artur; Aabloo, Alvo; Klintenberg, Mattias
2015-08-26
The aim of our study is to characterize some atomic-scale properties of Ni-based FCC multicomponent alloys. For this purpose, we use Monte Carlo method combined with density functional theory calculations to study short-range order (SRO), atomic displacements, electronic density of states, and magnetic moments in equimolar ternary NiCrCo, and quaternary NiCrCoFe alloys. The salient features for the ternary alloy are a negative SRO parameter between Ni Cr and a positive between Cr Cr pairs as well as a weakly magnetic state. For the quaternary alloy we predict negative SRO parameter for Ni Cr and Ni Fe pairs and positive formore » Cr Cr and Fe Fe pairs. Atomic displacements for both ternary and quaternary alloys are negligible. In contrast to the ternary, the quaternary alloy shows a complex magnetic structure. The electronic structure of the ternary and quaternary alloys shows differences near the Fermi energy between a random solid solution and the predicted structure with SRO. Despite that, the calculated EXAFS spectra does not show enough contrast to discriminate between random and ordered structures. Finally, the predicted SRO has an impact on point-defect energetics, electron phonon coupling and thermodynamic functions and thus, SRO should not be neglected when studying properties of these two alloys.« less
Refusing to Twist: Demonstration of a Line Hexatic Phase in DNA Liquid Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strey, H. H.; NICHD/LPSB, National Institutes of Health, Building 12A/2041, Bethesda, Maryland 20892-5626; Wang, J.
2000-04-03
We report conclusive high resolution small angle x-ray scattering evidence that long DNA fragments form an untwisted line hexatic phase between the cholesteric and the crystalline phases. The line hexatic phase is a liquid-crystalline phase with long-range hexagonal bond-orientational order, long-range nematic order, but liquidlike, i.e., short-range, positional order. So far, it has not been seen in any other three dimensional system. By line-shape analysis of x-ray scattering data we found that positional order decreases when the line hexatic phase is compressed. We suggest that such anomalous behavior is a result of the chiral nature of DNA molecules. (c) 2000more » The American Physical Society.« less
NASA Astrophysics Data System (ADS)
Gackowski, Mariusz; Kuterasiński, Łukasz; Podobiński, Jerzy; Sulikowski, Bogdan; Datka, Jerzy
2018-03-01
Ammonia treatment of ultrastable zeolite Y has a great impact on its features. XRD showed a partial loss of crystallinity coupled with a loss of long-distance zeolite ordering. However, a typical short-range zeolite ordering, in the light of 29Si NMR studies, was largely preserved. 27Al MAS NMR spectra evidenced that most of Al was located in zeolitic tetrahedral positions, but some of them adopted a distorted configuration. Evolution of zeolites acidity was followed quantitatively by using IR. In particular, such studies revealed the presence of strongly acidic Sisbnd OHsbnd Al groups. IR studies suggest also heterogeneity of these OH groups. The heterogeneity of Sisbnd OHsbnd Al groups was a consequence of the less ordered structure of zeolites treated with ammonia solutions. It was also found that the treatment with ammonia solutions yields hierarchical material. The samples revealed promising catalytic properties in the liquid phase isomerization of α-pinene. Zeolites desilicated with ammonia may constitute an inexpensive route yielding viable hierarchical catalysts.
Structure, Hydrodynamics, and Phase Transition of Freely Suspended Liquid Crystals
NASA Technical Reports Server (NTRS)
Clark, Noel A.
2000-01-01
Smectic liquid crystals are phases of rod shaped molecules organized into one dimensionally (1D) periodic arrays of layers, each layer being between one and two molecular lengths thick. In the least ordered smectic phases, the smectics A and C, each layer is a two dimensional (2D) liquid. Additionally there are a variety of more ordered smectic phases having hexatic short range translational order or 2D crystalline quasi long range translational order within the layers. The inherent fluid-layer structure and low vapor pressure of smectic liquid crystals enable the long term stabilization of freely suspended, single component, layered fluid films as thin as 30A, a single molecular layer. The layering forces the films to be an integral number of smectic layers thick, quantizing their thickness in layer units and forcing a film of a particular number of layers to be physically homogeneous with respect to its layer structure over its entire area. Optical reflectivity enables the precise determination of the number of layers. These ultrathin freely suspended liquid crystal films are structures of fundamental interest in condensed matter and fluid physics. They are the thinnest known stable condensed phase fluid structures and have the largest surface-to-volume ratio of any stable fluid preparation, making them ideal for the study of the effects of reduced dimensionality on phase behavior and on fluctuation and interface phenomena. Their low vapor pressure and quantized thickness enable the effective use of microgravity to extend the study of basic capillary phenomena to ultrathin fluid films. Freely suspended films have been a wellspring of new liquid crystal physics. They have been used to provide unique experimental conditions for the study of condensed phase transitions in two dimensions. They are the only system in which the hexatic has been unambiguously identified as a phase of matter, and the only physical system in which fluctuations of a 2D XY system and Kosterlitz Thouless phase transition has been observed and 2D XY quasi long range order verified. Smectic films have enabled the precise determination of smectic layer electron density and positional fluctuation profile and have been used to show that the interlayer interactions in anti-ferroelectric tilted smectics do not extend significantly beyond nearest neighbors. The interactions which are operative in liquid crystals are generally weak in comparison to those in crystalline phases, leading to the facile manipulation of the order in liquid crystals by external agents such as applied fields and surfaces. Effects arising from weak ordering are significantly enhanced in ultrathin free films and filaments wherein the intermolecular coupling is effectively reduced by loss of neighbors. Over the past four years this research, which we now detail, has produced a host of exciting new discoveries and unexpected results, maintaining the position of the study of freely suspended liquid crystal structures as one of most exciting and fruitful areas of complex fluid physics. In addition, several potentially interesting microgravity free film experiments have been identified.
NASA Astrophysics Data System (ADS)
Nwosu, Chinomso; Pandey, Tara; Herring, Andrew; Coughlin, Edward; University of Massachusetts, Amherst Collaboration; Colorado School of Mines Collaboration
Backbone-to-backbone spacing in polymers is known to be dictated by the length of the pendant side-chains. Dipole forces in random polyelectrolytes lead to ionic clusters with a characteristic spacing that can be observed by SAXS. Repulsion due to side-chain sterics will compete with dipole forces driving cluster formation in random polyelectrolytes. A model study on short range order in anion exchange membranes (AEMs) of quaternized P4VP-ran-PI is presented. Quaternization of P4VP with alkyl bromides having different numbers of carbons, CnBr, introduces pendant side-chains as well as charges. X-ray scattering performed on PQ4VP-ran-PI(CnBr) show that when n <5 the dipole forces dominate leading to the formation of ionic clusters. However, when n >4, the chains remain separated due to sterics, forming a distinct backbone-to-backbone spacing morphology. For n=3, both dipole clustering and backbone spacing can coexist. Crosslinking of the isoprene units increased the coexistence window from n=3 to n=6. Impedance measurements show that a maximum conductivity of 110mS/cm was obtained for PQ4VP-ran-PI(C3Br). A discussion on short range order due to competition, or counter balancing, of steric repulsion and dipole forces will be presented. US Army MURI project (W911NF1010520).
NASA Astrophysics Data System (ADS)
Tripathi, Shweta
2016-10-01
In the present work, a two-dimensional (2D) analytical framework of triple material symmetrical gate stack (TMGS) DG-MOSFET is presented in order to subdue the short channel effects. A lightly doped channel along with triple material gate having different work functions and symmetrical gate stack structure, showcases substantial betterment in quashing short channel effects to a good extent. The device functioning amends in terms of improved exemption to threshold voltage roll-off, thereby suppressing the short channel effects. The encroachments of respective device arguments on the threshold voltage of the proposed structure are examined in detail. The significant outcomes are compared with the numerical simulation data obtained by using 2D ATLAS™ device simulator to affirm and formalize the proposed device structure.
NASA Astrophysics Data System (ADS)
Perlt, Eva; Ray, Promit; Hansen, Andreas; Malberg, Friedrich; Grimme, Stefan; Kirchner, Barbara
2018-05-01
Ionic liquids raise interesting but complicated questions for theoretical investigations due to the fact that a number of different inter-molecular interactions, e.g., hydrogen bonding, long-range Coulomb interactions, and dispersion interactions, need to be described properly. Here, we present a detailed study on the ionic liquids ethylammonium nitrate and 1-ethyl-3-methylimidazolium acetate, in which we compare different dispersion corrected density functional approximations to accurate local coupled cluster data in static calculations on ionic liquid clusters. The efficient new composite method B97-3c is tested and has been implemented in CP2K for future studies. Furthermore, tight-binding based approaches which may be used in large scale simulations are assessed. Subsequently, ab initio as well as classical molecular dynamics simulations are conducted and structural analyses are presented in order to shed light on the different short- and long-range structural patterns depending on the method and the system size considered in the simulation. Our results indicate the presence of strong hydrogen bonds in ionic liquids as well as the aggregation of alkyl side chains due to dispersion interactions.
Thermal rejuvenation in metallic glasses
NASA Astrophysics Data System (ADS)
Saida, Junji; Yamada, Rui; Wakeda, Masato; Ogata, Shigenobu
2017-12-01
Structural rejuvenation in metallic glasses by a thermal process (i.e. through recovery annealing) was investigated experimentally and theoretically for various alloy compositions. An increase in the potential energy, a decrease in the density, and a change in the local structure as well as mechanical softening were observed after thermal rejuvenation. Two parameters, one related to the annealing temperature, Ta/Tg, and the other related to the cooling rate during the recovery annealing process, Vc/Vi, were proposed to evaluate the rejuvenation phenomena. A rejuvenation map was constructed using these two parameters. Since the thermal history of metallic glasses is reset above 1.2Tg, accompanied by a change in the local structure, it is essential that the condition of Ta/Tg ≥ 1.2 is satisfied during annealing. The glassy structure transforms into a more disordered state with the decomposition of icosahedral short-range order within this temperature range. Therefore, a new glassy structure (rejuvenation) depending on the subsequent quenching rate is generated. Partial rejuvenation also occurs in a Zr55Al10Ni5Cu30 bulk metallic glass when annealing is performed at a low temperature (Ta/Tg 1.07) followed by rapid cooling. This behavior probably originates from disordering in the weakly bonded (loosely packed) region. This study provides a novel approach to improving the mechanical properties of metallic glasses by controlling their glassy structure.
Self-assembly of three-dimensional open structures using patchy colloidal particles.
Rocklin, D Zeb; Mao, Xiaoming
2014-10-14
Open structures can display a number of unusual properties, including a negative Poisson's ratio, negative thermal expansion, and holographic elasticity, and have many interesting applications in engineering. However, it is a grand challenge to self-assemble open structures at the colloidal scale, where short-range interactions and low coordination number can leave them mechanically unstable. In this paper we discuss the self-assembly of three-dimensional open structures using triblock Janus particles, which have two large attractive patches that can form multiple bonds, separated by a band with purely hard-sphere repulsion. Such surface patterning leads to open structures that are stabilized by orientational entropy (in an order-by-disorder effect) and selected over close-packed structures by vibrational entropy. For different patch sizes the particles can form into either tetrahedral or octahedral structural motifs which then compose open lattices, including the pyrochlore, the hexagonal tetrastack and the perovskite lattices. Using an analytic theory, we examine the phase diagrams of these possible open and close-packed structures for triblock Janus particles and characterize the mechanical properties of these structures. Our theory leads to rational designs of particles for the self-assembly of three-dimensional colloidal structures that are possible using current experimental techniques.
[Passive ranging of infrared target using oxygen A-band and Elsasser model].
Li, Jin-Hua; Wang, Zhao-Ba; Wang Zhi
2014-09-01
Passive ranging method of short range and single band was developed based on target radiation and attenuation characteristic of oxygen spectrum absorption. The relation between transmittance of oxygen A band and range of measured target was analyzed. Radiation strength distribution of measured target can be obtained according to the distribution law of absorption coefficient with environmental parameters. Passive ranging mathematical model of short ranges was established using Elsasser model with Lorentz line shape based on the computational methods of band average transmittance and high-temperature gas radiation narrowband model. The range of measured object was obtained using transmittance fitting with test data calculation and theoretical model. Besides, ranging precision was corrected considering the influence of oxygen absorption with enviromental parameter. The ranging experiment platform was established. The source was a 10 watt black body, and a grating spectrometer with 17 cm(-1) resolution was used. In order to improve the light receiving efficiency, light input was collected with 23 mm calibre telescope. The test data was processed for different range in 200 m. The results show that the transmittance accuracy was better than 2.18% in short range compared to the test data with predicted value in the same conditions.
Damped spin waves in the intermediate ordered phases in Ni 3V 2O 8
Ehlers, Georg; Podlesnyak, Andrey A.; Frontzek, Matthias D.; ...
2015-06-09
Here, spin dynamics in the intermediate ordered phases (between 4 and 9 K) in Ni 3V 2O 8 have been studied with inelastic neutron scattering. It is found that the spin waves are very diffuse, indicative of short lived correlations and the coexistence of paramagnetic moments with the long-range ordered state.
Espíndola-Heredia, Rodolfo; del Río, Fernando; Malijevsky, Anatol
2009-01-14
The free energy of square-well (SW) systems of hard-core diameter sigma with ranges 1 < or = lambda < or = 3 is expanded in a perturbation series. This interval covers most ranges of interest, from short-ranged SW fluids (lambda approximately 1.2) used in modeling colloids to long ranges (lambda approximately 3) where the van der Waals classic approximation holds. The first four terms are evaluated by means of extensive Monte Carlo simulations. The calculations are corrected for the thermodynamic limit and care is taken to evaluate and to control the various sources of error. The results for the first two terms in the series confirm well-known independent results but have an increased estimated accuracy and cover a wider set of well ranges. The results for the third- and fourth-order terms are novel. The free-energy expansion for systems with short and intermediate ranges, 1 < or = lambda < or = 2, is seen to have properties similar to those of systems with longer ranges, 2 < or = lambda < or = 3. An equation of state (EOS) is built to represent the free-energy data. The thermodynamics given by this EOS, confronted against independent computer simulations, is shown to predict accurately the internal energy, pressure, specific heat, and chemical potential of the SW fluids considered and for densities 0 < or = rho sigma(3) < or = 0.9 including subcritical temperatures. This fourth-order theory is estimated to be accurate except for a small region at high density, rho sigma(3) approximately 0.9, and low temperature where terms of still higher order might be needed.
Narumi, Takayuki; Tokuyama, Michio
2017-03-01
For short-range attractive colloids, the phase diagram of the kinetic glass transition is studied by time-convolutionless mode-coupling theory (TMCT). Using numerical calculations, TMCT is shown to recover all the remarkable features predicted by the mode-coupling theory for attractive colloids: the glass-liquid-glass reentrant, the glass-glass transition, and the higher-order singularities. It is also demonstrated through the comparisons with the results of molecular dynamics for the binary attractive colloids that TMCT improves the critical values of the volume fraction. In addition, a schematic model of three control parameters is investigated analytically. It is thus confirmed that TMCT can describe the glass-glass transition and higher-order singularities even in such a schematic model.
Weak ferromagnetism and short range polar order in NaMnF3 thin films
NASA Astrophysics Data System (ADS)
KC, Amit; Borisov, Pavel; Shvartsman, Vladimir V.; Lederman, David
2017-02-01
The orthorhombically distorted perovskite NaMnF3 has been predicted to become ferroelectric if an a = c distortion of the bulk Pnma structure is imposed. In order to test this prediction, NaMnF3 thin films were grown on SrTiO3 (001) single crystal substrates via molecular beam epitaxy. The best films were smooth and single phase with four different twin domains. In-plane magnetization measurements revealed the presence of antiferromagnetic ordering with weak ferromagnetism below the Néel temperature TN = 66 K. For the dielectric studies, NaMnF3 films were grown on a 30 nm SrRuO3 (001) layer used as a bottom electrode grown via pulsed laser deposition. The complex permittivity as a function of frequency indicated a strong Debye-like relaxation contribution characterized by a distribution of relaxation times. A power-law divergence of the characteristic relaxation time revealed an order-disorder phase transition at 8 K. The slow relaxation dynamics indicated the formation of super-dipoles (superparaelectric moments) that extend over several unit cells, similar to polar nanoregions of relaxor ferroelectrics.
Kondo, Masaki; Kiyomizu, Kensuke; Goto, Fumiyuki; Kitahara, Tadashi; Imai, Takao; Hashimoto, Makoto; Shimogori, Hiroaki; Ikezono, Tetsuo; Nakayama, Meiho; Watanabe, Norio; Akechi, Tatsuo
2015-01-22
Dizziness or vertigo is associated with both vestibular-balance and psychological factors. A common assessment tool is the Vertigo Symptom Scale (VSS) -short form, which has two subscales: vestibular-balance and autonomic-anxiety. Despite frequent use, the factor structure of the VSS-short form has yet to be confirmed. Here, we clarified the factor structure of the VSS-short form, and assessed the validity and reliability of the Japanese version of this tool. We conducted a cross-sectional, multicenter, psychometric evaluation of patients with non-central dizziness or vertigo persisting for longer than 1 month. Participants completed the VSS-short form, the Dizziness Handicap Inventory, and the Hospital Anxiety and Depression Scale. They also completed the VSS-short form a second time 1-3 days later. The questionnaire was translated into Japanese and cross-culturally adapted. We conducted a confirmatory factor analysis followed by an exploratory factor analysis. Convergent and discriminant validity, internal consistency, and test-retest reliability were evaluated. The total sample and retest sample consisted of 159 and 79 participants, respectively. Model-fitting for a two-subscale structure in a confirmatory factor analysis was poor. An exploratory factor analysis produced a three-factor structure: long-duration vestibular-balance symptoms, short-duration vestibular-balance symptoms, and autonomic-anxiety symptoms. Regarding convergent and discriminant validity, all hypotheses were clearly supported. We obtained high Cronbach's α coefficients for the total score and subscales, ranging from 0.758 to 0.866. Total score and subscale interclass correlation coefficients for test-retest reliability were acceptable, ranging from 0.867 to 0.897. The VSS-short form has a three-factor structure that was cross-culturally well-matched with previous data from the VSS-long version. Thus, it was suggested that vestibular-balance symptoms can be analyzed separately according to symptom duration, which may reflect pathophysiological factors. The VSS-short form can be used to evaluate vestibular-balance symptoms and autonomic-anxiety symptoms, as well as the duration of vestibular-balance symptoms. Further research using the VSS-short form should be required in other languages and populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karthik, Chinnathambi, E-mail: Karthikchinnathambi@boisestate.edu; Center for Advanced Energy Studies, 995 University Blvd, Idaho Falls, ID 83415; Anderson, Thomas J.
2012-10-15
A structural transition in rare earth pyrohafnates, Ln{sub 2}Hf{sub 2}O{sub 7} (Ln=Y, La, Pr, Nd, Tb, Dy, Yb and Lu), has been identified. Neutron diffraction showed that the structure transforms from well-ordered pyrochloric to fully fluoritic through the lanthanide series from La to Lu with a corresponding increase in the position parameter x of the 48f (Fd3{sup Macron }m) oxygen site from 0.330 to 0.375. As evidenced by the selected area electron diffraction, La{sub 2}Hf{sub 2}O{sub 7}, Pr{sub 2}Hf{sub 2}O{sub 7} and Nd{sub 2}Hf{sub 2}O{sub 7} exhibited a well-ordered pyrocholoric structure with the presence of intense superlattice spots, which becamemore » weak and diffuse (in Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}) before disappearing completely as the series progressed towards the Lu end. High resolution electron microscopic studies showed the breakdown of the pyrochlore ordering in the form of antiphase domains resulting in diffused smoke-like superlattice spots in the case of Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}. - Graphical abstract: Transmission electron microscopic studies showed the ordered pyrochlore to defect fluorite transition in rare-earth pyrohafnates to occur via the formation of anti-phase domains to start with. Highlights: Black-Right-Pointing-Pointer Pyrochlore to fluorite structural transition in rare earth pyrohafnates. Black-Right-Pointing-Pointer La{sub 2}Hf{sub 2}O{sub 7}, Pr{sub 2}Hf{sub 2}O{sub 7} and Nd{sub 2}Hf{sub 2}O{sub 7} showed well ordered pyrochlore structure. Black-Right-Pointing-Pointer Short range ordering in Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}. Black-Right-Pointing-Pointer Break down of pyrochlore ordering due to antiphase boundaries. Black-Right-Pointing-Pointer Rest of the series showed fluoritic structure.« less
Polar order in nanostructured organic materials
NASA Astrophysics Data System (ADS)
Sayar, M.; Olvera de la Cruz, M.; Stupp, S. I.
2003-02-01
Achiral multi-block liquid crystals are not expected to form polar domains. Recently, however, films of nanoaggregates formed by multi-block rodcoil molecules were identified as the first example of achiral single-component materials with macroscopic polar properties. By solving an Ising-like model with dipolar and asymmetric short-range interactions, we show here that polar domains are stable in films composed of aggregates as opposed to isolated molecules. Unlike classical molecular systems, these nanoaggregates have large intralayer spacings (a approx 8 nm), leading to a reduction in the repulsive dipolar interactions which oppose polar order within layers. In finite-thickness films of nanostructures, this effect enables the formation of polar domains. We compute exactly the energies of the possible structures consistent with the experiments as a function of film thickness at zero temperature (T). We also provide Monte Carlo simulations at non-zero T for a disordered hexagonal lattice that resembles the smectic-like packing in these nanofilms.
On Some Interesting Trends in Research of Steel and Composite Structures
NASA Astrophysics Data System (ADS)
Marcinowski, Jakub
2017-06-01
This paper is a kind of introduction to the special issue of CEER devoted to metal and composite structures. Papers collected in this issue were ordered from Authors who took part in International Conference on Metal Structures which was held in Zielona Góra in 2016. Selection of Authors and theme of ordered papers were done in cooperation with Metal Structures Section of the Civil Engineering Committee of the Polish Academy of Sciences. Selected papers included in this special issue of CEER were shortly presented in this editorial.
Tuning of magnetic ordering by Y substitution onto Tb site in the nanocrystalline TbMnO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Keka R., E-mail: kekarc@barc.gov.in, E-mail: smyusuf@barc.gov.in; Mukadam, M. D.; Yusuf, S. M., E-mail: kekarc@barc.gov.in, E-mail: smyusuf@barc.gov.in
2015-10-28
We report the magnetic properties, of nano-crystalline powders Tb{sub 1−x}Y{sub x}MnO{sub 3} (x = 0, 0.1, 0.2, 0.3 and 0.4), as perceived by neutron diffraction, and elucidate the effect of Tb site substitution on the magnetic structure of TbMnO{sub 3}. All samples crystallized in the orthorhombic structure conforming to space group Pnma, and exhibited an incommensurate collinear antiferromagnetic ordering of the Mn ions below ∼40 K. Furthermore, at T ≤ 20 K, all these samples showed a change in magnetic structure (of Mn moments) to a spiral ordering down to 2 K, the lowest measured temperature. For the samples with x = 0, 0.1, and 0.2, a short-ranged twomore » dimensional (2D) ordering of Tb moments was also observed at 2 K. However, for the other samples (x = 0.3 and 0.4), no magnetic ordering of Tb moments was found down to 2 K. So with Y substitution, a crossover from 2D ordering to a disordering of Tb moments was observed. The moments at the Mn site were found to be lower than the full Mn{sup 3+} (4μ{sub B}) moment for all the samples below 40 K. The magnetic properties of all the samples studied by us in nano form are more pronounced than those of the reported single crystals of same compositions [V. Yu. Ivanov et al., JETP Lett. 91, 392–397 (2010)].« less
Experimental investigation of the ordering pathway in a Ni-33 at.%Cr alloy
Gwalani, B.; Alam, T.; Miller, C.; ...
2016-06-17
The present study involves a detailed experimental investigation of the concurrent compositional clustering and long-range ordering tendencies in a Ni-33 at.%Cr alloy, carried out by coupling synchrotron-based X-ray diffraction (XRD), transmission electron microscopy (TEM), and atom probe tomography (APT). Synchrotron-based XRD results clearly exhibited progressively increasing lattice contraction in the matrix with increasing isothermal aging time, at 475 degrees C, eventually leading to the development of long-range ordering (LRO) of the Pt2Mo-type. Detailed TEM and APT investigations revealed that this LRO in the matrix is manifested in the form of nanometer-scale ordered domains, and the spatial distribution, size, morphology andmore » compositional evolution of these domains have been carefully investigated. Here, the APT results also revealed the early stages of compositional clustering prior to the onset of long-range ordering in this alloy and such compositional clustering can potentially be correlated to the lattice contraction and previously proposed short-range ordering tendencies.« less
Mesoscopic structure of neuronal tracts from time-dependent diffusion
Burcaw, Lauren M.; Fieremans, Els; Novikov, Dmitry S.
2015-01-01
Interpreting brain diffusion MRI measurements in terms of neuronal structure at a micrometer level is an exciting unresolved problem. Here we consider diffusion transverse to a bundle of fibers, and show theoretically, as well as using Monte Carlo simulations and measurements in a phantom made of parallel fibers mimicking axons, that the time dependent diffusion coefficient approaches its macroscopic limit slowly, in a (lnt)/t fashion. The logarithmic singularity arises due to short range disorder in the fiber packing. We identify short range disorder in axonal fibers based on histological data from the splenium, and argue that the time dependent contribution to the overall diffusion coefficient from the extra-axonal water dominates that of the intra-axonal water. This dominance may explain the bias in measuring axon diameters in clinical settings. The short range disorder is also reflected in the linear frequency dependence of the diffusion coefficient measured with oscillating gradients, in agreement with recent experiments. Our results relate the measured diffusion to the mesoscopic structure of neuronal tissue, uncovering the sensitivity of diffusion metrics to axonal arrangement within a fiber tract, and providing an alternative interpretation of axonal diameter mapping techniques. PMID:25837598
Mesoscopic structure of neuronal tracts from time-dependent diffusion.
Burcaw, Lauren M; Fieremans, Els; Novikov, Dmitry S
2015-07-01
Interpreting brain diffusion MRI measurements in terms of neuronal structure at a micrometer level is an exciting unresolved problem. Here we consider diffusion transverse to a bundle of fibers, and show theoretically, as well as using Monte Carlo simulations and measurements in a phantom made of parallel fibers mimicking axons, that the time dependent diffusion coefficient approaches its macroscopic limit slowly, in a (ln t)/t fashion. The logarithmic singularity arises due to short range disorder in the fiber packing. We identify short range disorder in axonal fibers based on histological data from the splenium, and argue that the time dependent contribution to the overall diffusion coefficient from the extra-axonal water dominates that of the intra-axonal water. This dominance may explain the bias in measuring axon diameters in clinical settings. The short range disorder is also reflected in the asymptotically linear frequency dependence of the diffusion coefficient measured with oscillating gradients, in agreement with recent experiments. Our results relate the measured diffusion to the mesoscopic structure of neuronal tissue, uncovering the sensitivity of diffusion metrics to axonal arrangement within a fiber tract, and providing an alternative interpretation of axonal diameter mapping techniques. Copyright © 2015 Elsevier Inc. All rights reserved.
Digital Compositing Techniques for Coronal Imaging (Invited review)
NASA Astrophysics Data System (ADS)
Espenak, F.
2000-04-01
The solar corona exhibits a huge range in brightness which cannot be captured in any single photographic exposure. Short exposures show the bright inner corona and prominences, while long exposures reveal faint details in equatorial streamers and polar brushes. For many years, radial gradient filters and other analog techniques have been used to compress the corona's dynamic range in order to study its morphology. Such techniques demand perfect pointing and tracking during the eclipse, and can be difficult to calibrate. In the past decade, the speed, memory and hard disk capacity of personal computers have rapidly increased as prices continue to drop. It is now possible to perform sophisticated image processing of eclipse photographs on commercially available CPU's. Software programs such as Adobe Photoshop permit combining multiple eclipse photographs into a composite image which compresses the corona's dynamic range and can reveal subtle features and structures. Algorithms and digital techniques used for processing 1998 eclipse photographs will be discussed which are equally applicable to the recent eclipse of 1999 August 11.
NASA Astrophysics Data System (ADS)
Bannenberg, L. J.; Kakurai, K.; Falus, P.; Lelièvre-Berna, E.; Dalgliesh, R.; Dewhurst, C. D.; Qian, F.; Onose, Y.; Endoh, Y.; Tokura, Y.; Pappas, C.
2017-04-01
We present a comprehensive small angle neutron scattering and neutron spin echo spectroscopy study of the structural and dynamical aspects of the helimagnetic transition in Fe1 -xCoxSi with x =0.30 . In contrast to the sharp transition observed in the archetype chiral magnet MnSi, the transition in Fe1 -xCoxSi is gradual, and long-range helimagnetic ordering coexists with short-range correlations over a wide temperature range. The dynamics are more complex than in MnSi and involve long relaxation times with a stretched exponential relaxation which persists even under magnetic field. These results in conjunction with an analysis of the hierarchy of the relevant length scales show that the helimagnetic transition in Fe1 -xCoxSi differs substantially from the transition in MnSi and question the validity of a universal approach to the helimagnetic transition in chiral magnets.
Short-Range Nucleon-Nucleon Correlations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglas Higinbotham
2011-10-01
Valence-shell nucleon knock-out experiments, such as 12C(e,e'p)11B, measure less strength then is predicted by independent particle shell model calculations. The theoretical solution to this problem is to include the correlations between the nucleons in the nucleus in the calculations. Motivated by these results, many electron scattering experiments have tried to directly observe these correlations in order to gain new insight into the short-range part of the nucleon-nucleon potential. Unfortunately, many competing mechanisms can cause the same observable final-state as an initial-state correlation, making truly isolating the signal extremely challenging. This paper reviews the recent experimental evidence for short-range correlations, asmore » well as explores the possibility that such correlations are responsible for the EMC effect in the 0.3 < xB < 0.7 deep inelastic scattering ratios.« less
NASA Astrophysics Data System (ADS)
Barberis, Lucas; Peruani, Fernando
2016-12-01
We study a minimal cognitive flocking model, which assumes that the moving entities navigate using the available instantaneous visual information exclusively. The model consists of active particles, with no memory, that interact by a short-ranged, position-based, attractive force, which acts inside a vision cone (VC), and lack velocity-velocity alignment. We show that this active system can exhibit—due to the VC that breaks Newton's third law—various complex, large-scale, self-organized patterns. Depending on parameter values, we observe the emergence of aggregates or millinglike patterns, the formation of moving—locally polar—files with particles at the front of these structures acting as effective leaders, and the self-organization of particles into macroscopic nematic structures leading to long-ranged nematic order. Combining simulations and nonlinear field equations, we show that position-based active models, as the one analyzed here, represent a new class of active systems fundamentally different from other active systems, including velocity-alignment-based flocking systems. The reported results are of prime importance in the study, interpretation, and modeling of collective motion patterns in living and nonliving active systems.
Barberis, Lucas; Peruani, Fernando
2016-12-09
We study a minimal cognitive flocking model, which assumes that the moving entities navigate using the available instantaneous visual information exclusively. The model consists of active particles, with no memory, that interact by a short-ranged, position-based, attractive force, which acts inside a vision cone (VC), and lack velocity-velocity alignment. We show that this active system can exhibit-due to the VC that breaks Newton's third law-various complex, large-scale, self-organized patterns. Depending on parameter values, we observe the emergence of aggregates or millinglike patterns, the formation of moving-locally polar-files with particles at the front of these structures acting as effective leaders, and the self-organization of particles into macroscopic nematic structures leading to long-ranged nematic order. Combining simulations and nonlinear field equations, we show that position-based active models, as the one analyzed here, represent a new class of active systems fundamentally different from other active systems, including velocity-alignment-based flocking systems. The reported results are of prime importance in the study, interpretation, and modeling of collective motion patterns in living and nonliving active systems.
Effect of nitrogen on high temperature low cycle fatigue behaviors in type 316L stainless steel
NASA Astrophysics Data System (ADS)
Kim, Dae Whan; Ryu, Woo-Seog; Hong, Jun Hwa; Choi, Si-Kyung
1998-04-01
Strain-controlled low cycle fatigue (LCF) tests were conducted in the temperature range of RT-600°C and air atmosphere to investigate the nitrogen effect on LCF behavior of type 316L stainless steels with different nitrogen contents (0.04-0.15%). The waveform of LCF was a symmetrical triangle with a strain amplitude of ±0.5% and a constant strain rate of 2×10 -3/s was employed for most tests. Cyclic stress response of the alloys exhibited a gradual cyclic softening at RT, but a cyclic hardening at an early stage of fatigue life at 300-600°C. The hardening at high temperature was attributed to dynamic strain aging (DSA). Nitrogen addition decreased hardening magnitude (maximum cyclic stress — first cyclic stress) because nitrogen retarded DSA for these conditions. The dislocation structures were changed from cell to planar structure with increasing temperature and nitrogen addition by DSA and short range order (SRO). Fatigue life was a maximum at 0.1% nitrogen content, which was attributed to the balance between DSA and SRO.
Reflections on the value of electron microscopy in the study of heterogeneous catalysts
2017-01-01
Electron microscopy (EM) is arguably the single most powerful method of characterizing heterogeneous catalysts. Irrespective of whether they are bulk and multiphasic, or monophasic and monocrystalline, or nanocluster and even single-atom and on a support, their structures in atomic detail can be visualized in two or three dimensions, thanks to high-resolution instruments, with sub-Ångstrom spatial resolutions. Their topography, tomography, phase-purity, composition, as well as the bonding, and valence-states of their constituent atoms and ions and, in favourable circumstances, the short-range and long-range atomic order and dynamics of the catalytically active sites, can all be retrieved by the panoply of variants of modern EM. The latter embrace electron crystallography, rotation and precession electron diffraction, X-ray emission and high-resolution electron energy-loss spectra (EELS). Aberration-corrected (AC) transmission (TEM) and scanning transmission electron microscopy (STEM) have led to a revolution in structure determination. Environmental EM is already playing an increasing role in catalyst characterization, and new advances, involving special cells for the study of solid catalysts in contact with liquid reactants, have recently been deployed. PMID:28265196
The MOLDY short-range molecular dynamics package
NASA Astrophysics Data System (ADS)
Ackland, G. J.; D'Mellow, K.; Daraszewicz, S. L.; Hepburn, D. J.; Uhrin, M.; Stratford, K.
2011-12-01
We describe a parallelised version of the MOLDY molecular dynamics program. This Fortran code is aimed at systems which may be described by short-range potentials and specifically those which may be addressed with the embedded atom method. This includes a wide range of transition metals and alloys. MOLDY provides a range of options in terms of the molecular dynamics ensemble used and the boundary conditions which may be applied. A number of standard potentials are provided, and the modular structure of the code allows new potentials to be added easily. The code is parallelised using OpenMP and can therefore be run on shared memory systems, including modern multicore processors. Particular attention is paid to the updates required in the main force loop, where synchronisation is often required in OpenMP implementations of molecular dynamics. We examine the performance of the parallel code in detail and give some examples of applications to realistic problems, including the dynamic compression of copper and carbon migration in an iron-carbon alloy. Program summaryProgram title: MOLDY Catalogue identifier: AEJU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 2 No. of lines in distributed program, including test data, etc.: 382 881 No. of bytes in distributed program, including test data, etc.: 6 705 242 Distribution format: tar.gz Programming language: Fortran 95/OpenMP Computer: Any Operating system: Any Has the code been vectorised or parallelized?: Yes. OpenMP is required for parallel execution RAM: 100 MB or more Classification: 7.7 Nature of problem: Moldy addresses the problem of many atoms (of order 10 6) interacting via a classical interatomic potential on a timescale of microseconds. It is designed for problems where statistics must be gathered over a number of equivalent runs, such as measuring thermodynamic properities, diffusion, radiation damage, fracture, twinning deformation, nucleation and growth of phase transitions, sputtering etc. In the vast majority of materials, the interactions are non-pairwise, and the code must be able to deal with many-body forces. Solution method: Molecular dynamics involves integrating Newton's equations of motion. MOLDY uses verlet (for good energy conservation) or predictor-corrector (for accurate trajectories) algorithms. It is parallelised using open MP. It also includes a static minimisation routine to find the lowest energy structure. Boundary conditions for surfaces, clusters, grain boundaries, thermostat (Nose), barostat (Parrinello-Rahman), and externally applied strain are provided. The initial configuration can be either a repeated unit cell or have all atoms given explictly. Initial velocities are generated internally, but it is also possible to specify the velocity of a particular atom. A wide range of interatomic force models are implemented, including embedded atom, Morse or Lennard-Jones. Thus the program is especially well suited to calculations of metals. Restrictions: The code is designed for short-ranged potentials, and there is no Ewald sum. Thus for long range interactions where all particles interact with all others, the order- N scaling will fail. Different interatomic potential forms require recompilation of the code. Additional comments: There is a set of associated open-source analysis software for postprocessing and visualisation. This includes local crystal structure recognition and identification of topological defects. Running time: A set of test modules for running time are provided. The code scales as order N. The parallelisation shows near-linear scaling with number of processors in a shared memory environment. A typical run of a few tens of nanometers for a few nanoseconds will run on a timescale of days on a multiprocessor desktop.
Internal structure of acceptor-bound excitons in wide-band-gap wurtzite semiconductors
NASA Astrophysics Data System (ADS)
Gil, Bernard; Bigenwald, Pierre; Paskov, Plamen P.; Monemar, Bo
2010-02-01
We describe the internal structure of acceptor-bound excitons in wurtzite semiconductors. Our approach consists in first constructing, in the context of angular momentum algebra, the wave functions of the two-hole system that fulfill Pauli’s exclusion’s principle. Second, we construct the acceptor-bound exciton states by adding the electron states in a similar manner that two-hole states are constructed. We discuss the optical selection rules for the acceptor-bound exciton recombination. Finally, we compare our theory with experimental data for CdS and GaN. In the specific case of CdS for which much experimental information is available, we demonstrate that, compared with cubic semiconductors, the sign of the short-range hole-exchange interaction is reversed and more than one order of magnitude larger. The whole set of data is interpreted in the context of a large value of the short-range hole-exchange interaction Ξ0=3.4±0.2meV . This value dictates the splitting between the ground-state line I1 and the other transitions. The values we find for the electron-hole spin-exchange interaction and of the crystal-field splitting of the two-hole state are, respectively, -0.4±0.1 and 0.2±0.1meV . In the case of GaN, the experimental data for the acceptor-bound excitons in the case of Mg and Zn acceptors, show more than one bound-exciton line. We discuss a possible assignment of these states.
Minimally nonlocal nucleon-nucleon potentials with chiral two-pion exchange including Δ resonances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piarulli, M.; Girlanda, L.; Schiavilla, R.
In this study, we construct a coordinate-space chiral potential, including Δ-isobar intermediate states in its two-pion-exchange component up to order Q 3 (Q denotes generically the low momentum scale). The contact interactions entering at next-to-leading and next-to-next-to-next-to-leading orders (Q 2 and Q 4, respectively) are rearranged by Fierz transformations to yield terms at most quadratic in the relative momentum operator of the two nucleons. The low-energy constant multiplying these contact interactions are fitted to the 2013 Granada database, consisting of 2309 pp and 2982 np data (including, respectively, 148 and 218 normalizations) in the laboratory-energy range 0–300 MeV. For themore » total 5291 $pp$ and $np$ data in this range, we obtain a Χ 2 /datum of roughly 1.3 for a set of three models characterized by long- and short-range cutoffs, R L and R S respectively, ranging from (R L,R S)=(1.2,0.8) fm down to (0.8,0.6) fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.« less
Minimally nonlocal nucleon-nucleon potentials with chiral two-pion exchange including Δ resonances
Piarulli, M.; Girlanda, L.; Schiavilla, R.; ...
2015-02-26
In this study, we construct a coordinate-space chiral potential, including Δ-isobar intermediate states in its two-pion-exchange component up to order Q 3 (Q denotes generically the low momentum scale). The contact interactions entering at next-to-leading and next-to-next-to-next-to-leading orders (Q 2 and Q 4, respectively) are rearranged by Fierz transformations to yield terms at most quadratic in the relative momentum operator of the two nucleons. The low-energy constant multiplying these contact interactions are fitted to the 2013 Granada database, consisting of 2309 pp and 2982 np data (including, respectively, 148 and 218 normalizations) in the laboratory-energy range 0–300 MeV. For themore » total 5291 $pp$ and $np$ data in this range, we obtain a Χ 2 /datum of roughly 1.3 for a set of three models characterized by long- and short-range cutoffs, R L and R S respectively, ranging from (R L,R S)=(1.2,0.8) fm down to (0.8,0.6) fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.« less
Ab initio study of the structure and dynamics of bulk liquid Fe
NASA Astrophysics Data System (ADS)
Marqués, M.; González, L. E.; González, D. J.
2015-10-01
Several static and dynamic properties of bulk liquid Fe at a thermodynamic state near its triple point have been evaluated by ab initio molecular dynamics simulations. The calculated static structure shows very good agreement with the available experimental data, including an asymmetric second peak in the structure factor which underlines a substantial local icosahedral short-range order in the liquid. The dynamical structure reveals propagating density fluctuations, with an associated dispersion relation which closely follows the experimental data. The dynamic structure factors S (q ,ω ) show a good agreement with their experimental counterparts which have been recently measured by an inelastic x-ray scattering experiment. The dynamical processes behind the S (q ,ω ) have been analyzed by using a model with two decay channels (a fast and a slow) associated with the relaxations of the collective excitations. The recent finding of transverselike excitation modes in the IXS data is analyzed by using the present ab initio simulation results. Several transport coefficients have been evaluated and the results are compared with the available experimental data.
Frequency-specific insight into short-term memory capacity.
Feurra, Matteo; Galli, Giulia; Pavone, Enea Francesco; Rossi, Alessandro; Rossi, Simone
2016-07-01
The digit span is one of the most widely used memory tests in clinical and experimental neuropsychology for reliably measuring short-term memory capacity. In the forward version, sequences of digits of increasing length have to be reproduced in the order in which they are presented, whereas in the backward version items must be reproduced in the reversed order. Here, we assessed whether transcranial alternating current stimulation (tACS) increases the memory span for digits of young and midlife adults. Imperceptibly weak electrical currents in the alpha (10 Hz), beta (20 Hz), theta (5 Hz), and gamma (40 Hz) range, as well as a sham stimulation, were delivered over the left posterior parietal cortex, a cortical region thought to sustain maintenance processes in short-term memory through oscillatory brain activity in the beta range. We showed a frequency-specific effect of beta-tACS that robustly increased the forward memory span of young, but not middle-aged, healthy individuals. The effect correlated with age: the younger the subjects, the greater the benefit arising from parietal beta stimulation. Our results provide evidence of a short-term memory capacity improvement in young adults by online frequency-specific tACS application. Copyright © 2016 the American Physiological Society.
Ferroelectrics under the Synchrotron Light: A Review
Fuentes-Cobas, Luis E.; Montero-Cabrera, María E.; Pardo, Lorena; Fuentes-Montero, Luis
2015-01-01
Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO3 perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr) appear as promising candidates. Understanding the structure–function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS) and X-ray absorption fine structure (XAFS) experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described. PMID:28787814
Bulk and surface properties of liquid Al-Cr and Cr-Ni alloys.
Novakovic, R
2011-06-15
The energetics of mixing and structural arrangement in liquid Al-Cr and Cr-Ni alloys has been analysed through the study of surface properties (surface tension and surface segregation), dynamic properties (chemical diffusion) and microscopic functions (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) in the framework of statistical mechanical theory in conjunction with quasi-lattice theory. The Al-Cr phase diagram exhibits the existence of different intermetallic compounds in the solid state, while that of Cr-Ni is a simple eutectic-type phase diagram at high temperatures and includes the low-temperature peritectoid reaction in the range near a CrNi(2) composition. Accordingly, the mixing behaviour in Al-Cr and Cr-Ni alloy melts was studied using the complex formation model in the weak interaction approximation and by postulating Al(8)Cr(5) and CrNi(2) chemical complexes, respectively, as energetically favoured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Chenyang; Niu, Liangliang; Chen, Nanjun
A grand challenge in material science is to understand the correlation between intrinsic properties and defect dynamics. Radiation tolerant materials are in great demand for safe operation and advancement of nuclear and aerospace systems. Unlike traditional approaches that rely on microstructural and nanoscale features to mitigate radiation damage, this study demonstrates enhancement of radiation tolerance with the suppression of void formation by two orders magnitude at elevated temperatures in equiatomic single-phase concentrated solid solution alloys, and more importantly, reveals its controlling mechanism through a detailed analysis of the depth distribution of defect clusters and an atomistic computer simulation. The enhancedmore » swelling resistance is attributed to the tailored interstitial defect cluster motion in the alloys from a long-range one-dimensional mode to a short-range three-dimensional mode, which leads to enhanced point defect recombination. Finally, the results suggest design criteria for next generation radiation tolerant structural alloys.« less
Ab initio simulations of molten Ni alloys
NASA Astrophysics Data System (ADS)
Woodward, Christopher; Asta, Mark; Trinkle, Dallas R.; Lill, James; Angioletti-Uberti, Stefano
2010-06-01
Convective instabilities responsible for misoriented grains in directionally solidified turbine airfoils are produced by variations in liquid-metal density with composition and temperature across the solidification zone. Here, fundamental properties of molten Ni-based alloys, required for modeling these instabilities, are calculated using ab initio molecular dynamics simulations. Equations of state are derived from constant number-volume-temperature ensembles at 1830 and 1750 K for elemental, binary (Ni-X, X=Al, W, Re, and Ta) and ternary (Ni-Al-X, X=W, Re, and Ta) Ni alloys. Calculated molar volumes agree to within 0.6%-1.8% of available measurements. Predictions are used to investigate the range of accuracy of a parameterization of molar volumes with composition and temperature based on measurements of binary alloys. Structural analysis reveals a pronounced tendency for icosahedral short-range order for Ni-W and Ni-Re alloys and the calculations provide estimates of diffusion rates and their dependence on compositions and temperature.
Distribution and abundance of nesting ospreys in the United States
Henny, C.J.
1983-01-01
Nesting Ospreys (Pandion haliaetus) in the contiguous United States now number about 8,000 pairs. Five regional populations exist (in order of abundance): Atlantic Coast, Florida and Gulf Coast, Pacific Northwest, Western Interior, and Great Lakes. Pesticides severely impacted the populations in the northern portion of the Atlantic Coast (Boston to Cape May) and the Great Lakes, but both are now recovering. During recent years in the west, especially in the Western Interior, reservoirs have been responsible for a range expansion and, perhaps, a population increase. However, a strong fidelity to ancestral breeding areas (short dispersal distance) has slowed the range expansion. Unique introductions to distant reservoirs (from breeding populations) are now being made and followed with intense interest. Ospreys adapted to man, his structures, and many of his habitat changes, but proved sensitive to his chemical pollutants. These characteristics make the Osprey an excellent environmental indicator species.
NASA Astrophysics Data System (ADS)
Lu, Chenyang; Niu, Liangliang; Chen, Nanjun; Jin, Ke; Yang, Taini; Xiu, Pengyuan; Zhang, Yanwen; Gao, Fei; Bei, Hongbin; Shi, Shi; He, Mo-Rigen; Robertson, Ian M.; Weber, William J.; Wang, Lumin
2016-12-01
A grand challenge in material science is to understand the correlation between intrinsic properties and defect dynamics. Radiation tolerant materials are in great demand for safe operation and advancement of nuclear and aerospace systems. Unlike traditional approaches that rely on microstructural and nanoscale features to mitigate radiation damage, this study demonstrates enhancement of radiation tolerance with the suppression of void formation by two orders magnitude at elevated temperatures in equiatomic single-phase concentrated solid solution alloys, and more importantly, reveals its controlling mechanism through a detailed analysis of the depth distribution of defect clusters and an atomistic computer simulation. The enhanced swelling resistance is attributed to the tailored interstitial defect cluster motion in the alloys from a long-range one-dimensional mode to a short-range three-dimensional mode, which leads to enhanced point defect recombination. The results suggest design criteria for next generation radiation tolerant structural alloys.
NASA Astrophysics Data System (ADS)
Yuryev, A. A.; Gelchinski, B. R.; Vatolin, N. A.
2018-03-01
The specific features pertinent to the temperature dependence of the electronic and atomic properties of liquid bismuth that have been observed in experiments are investigated according to the ab initio molecular dynamics method using the SIESTA open software package. The density of electronic states, the radial distribution function of atoms, and the self-diffusion coefficient are calculated for the temperature range from the melting point equal to 545 K to 1500 K. The calculated data are in good agreement with the experimental data. It is found that the position of the first peak in the radial distribution function of atoms and the self-diffusion coefficient are characterized by a nonmonotonic dependence under the conditions of superheating by approximately 150 K above the melting temperature. In the authors' opinion, this dependence feature is attributed to a change in the liquid short-range order structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yuanhang; Beran, Gregory J. O., E-mail: gregory.beran@ucr.edu
2015-07-28
Three-body and higher intermolecular interactions can play an important role in molecular condensed phases. Recent benchmark calculations found problematic behavior for many widely used density functional approximations in treating 3-body intermolecular interactions. Here, we demonstrate that the combination of second-order Møller-Plesset (MP2) perturbation theory plus short-range damped Axilrod-Teller-Muto (ATM) dispersion accurately describes 3-body interactions with reasonable computational cost. The empirical damping function used in the ATM dispersion term compensates both for the absence of higher-order dispersion contributions beyond the triple-dipole ATM term and non-additive short-range exchange terms which arise in third-order perturbation theory and beyond. Empirical damping enables this simplemore » model to out-perform a non-expanded coupled Kohn-Sham dispersion correction for 3-body intermolecular dispersion. The MP2 plus ATM dispersion model approaches the accuracy of O(N{sup 6}) methods like MP2.5 or even spin-component-scaled coupled cluster models for 3-body intermolecular interactions with only O(N{sup 5}) computational cost.« less
Colloquium: Zoo of quantum-topological phases of matter
NASA Astrophysics Data System (ADS)
Wen, Xiao-Gang
2017-10-01
What are topological phases of matter? First, they are phases of matter at zero temperature. Second, they have a nonzero energy gap for the excitations above the ground state. Third, they are disordered liquids that seem to have no feature. But those disordered liquids actually can have rich patterns of many-body entanglement representing new kinds of order. This Colloquium gives a simple introduction and a brief survey of topological phases of matter. First topological phases with topological order (i.e., with long-range entanglement) are discussed. Then topological phases without topological order (i.e., with short-range entanglement) are covered.
Jia, Jiangyong; Radhakrishnan, Sooraj; Zhou, Mingliang
2016-04-18
In this paper, an analysis method is proposed to study the forward-backward (FB) multiplicity fluctuation in high-energy nuclear collisions, built on the earlier work of Bzdak and Teaney [Phys. Rev. C 87, 024906 (2013)]. The method allows the decomposition of the centrality dependence of average multiplicity from the dynamical event-by-event (EbyE) fluctuation of multiplicity in pseudorapidity. Application of the method to AMPT (A Multi-Phase Transport model) and HIJING (Heavy Ion Jet INteraction Generator) models shows that the long-range component of the FB correlation is captured by a few longitudinal harmonics, with the first component driven by the asymmetry in themore » number of participating nucleons in the two colliding nuclei. The higher-order longitudinal harmonics are found to be strongly damped in AMPT compared to HIJING, due to weaker short-range correlations as well as the final-state effects present in the AMPT model. Two-particle pseudorapidity correlation reveals interesting charge-dependent short-range structures that are absent in HIJING model. Lastly, the proposed method opens an avenue to elucidate the particle production mechanism and early time dynamics in heavy-ion collisions. Future analysis directions and prospects of using the pseudorapidity correlation function to understand the centrality bias in p + p, p + A, and A + A collisions are discussed.« less
Elastic properties and short-range structural order in mixed network former glasses.
Wang, Weimin; Christensen, Randilynn; Curtis, Brittany; Hynek, David; Keizer, Sydney; Wang, James; Feller, Steve; Martin, Steve W; Kieffer, John
2017-06-21
Elastic properties of alkali containing glasses are of great interest not only because they provide information about overall structural integrity but also they are related to other properties such as thermal conductivity and ion mobility. In this study, we investigate two mixed-network former glass systems, sodium borosilicate 0.2Na 2 O + 0.8[xBO 1.5 + (1 - x)SiO 2 ] and sodium borogermanate 0.2Na 2 O + 0.8[xBO 1.5 + (1 - x)GeO 2 ] glasses. By mixing network formers, the network topology can be changed while keeping the network modifier concentration constant, which allows for the effect of network structure on elastic properties to be analyzed over a wide parametric range. In addition to non-linear, non-additive mixed-glass former effects, maxima are observed in longitudinal, shear and Young's moduli with increasing atomic number density. By combining results from NMR spectroscopy and Brillouin light scattering with a newly developed statistical thermodynamic reaction equilibrium model, it is possible to determine the relative proportions of all network structural units. This new analysis reveals that the structural characteristic predominantly responsible for effective mechanical load transmission in these glasses is a high density of network cations coordinated by four or more bridging oxygens, as it provides for establishing a network of covalent bonds among these cations with connectivity in three dimensions.
Ab Initio Molecular-Dynamics Simulation of Neuromorphic Computing in Phase-Change Memory Materials.
Skelton, Jonathan M; Loke, Desmond; Lee, Taehoon; Elliott, Stephen R
2015-07-08
We present an in silico study of the neuromorphic-computing behavior of the prototypical phase-change material, Ge2Sb2Te5, using ab initio molecular-dynamics simulations. Stepwise changes in structural order in response to temperature pulses of varying length and duration are observed, and a good reproduction of the spike-timing-dependent plasticity observed in nanoelectronic synapses is demonstrated. Short above-melting pulses lead to instantaneous loss of structural and chemical order, followed by delayed partial recovery upon structural relaxation. We also investigate the link between structural order and electrical and optical properties. These results pave the way toward a first-principles understanding of phase-change physics beyond binary switching.
Properties of tetrahedral clusters and medium range order in GaN during rapid solidification
NASA Astrophysics Data System (ADS)
Gao, Tinghong; Li, Yidan; Yao, Zhenzhen; Hu, Xuechen; Xie, Quan
2017-12-01
The solidification process of liquid gallium nitride has been studied by molecular dynamics simulation using the Stillinger-Weber potential at cooling rate of 10 K/ps. The structural properties of gallium nitride during the rapid cooling process were investigated in detail by the radial distribution functions, Voronoi polyhedron index and the visualization technology. The amorphous structures were formed with many medium range order structures at 200 K. The <4 0 0 0> polyhedron as the main polyhedron was more stable than other polyhedron in GaN during the quenching process. The cubic and hexahedral medium range order structures were formed by the close link between <4 0 0 0> polyhedron. The cubic crystal structures grew up through the crystalline surface by a layer-by-layer method to become more stable structures during the quenching process.
The FLAME-slab method for electromagnetic wave scattering in aperiodic slabs
NASA Astrophysics Data System (ADS)
Mansha, Shampy; Tsukerman, Igor; Chong, Y. D.
2017-12-01
The proposed numerical method, "FLAME-slab," solves electromagnetic wave scattering problems for aperiodic slab structures by exploiting short-range regularities in these structures. The computational procedure involves special difference schemes with high accuracy even on coarse grids. These schemes are based on Trefftz approximations, utilizing functions that locally satisfy the governing differential equations, as is done in the Flexible Local Approximation Method (FLAME). Radiation boundary conditions are implemented via Fourier expansions in the air surrounding the slab. When applied to ensembles of slab structures with identical short-range features, such as amorphous or quasicrystalline lattices, the method is significantly more efficient, both in runtime and in memory consumption, than traditional approaches. This efficiency is due to the fact that the Trefftz functions need to be computed only once for the whole ensemble.
Cooling rate dependence of simulated Cu{sub 64.5}Zr{sub 35.5} metallic glass structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryltsev, R. E.; Ural Federal University, 19 Mira Str., 620002 Ekaterinburg; L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, 2 Kosygina Str., 119334 Moscow
Using molecular dynamics simulations with embedded atom model potential, we study structural evolution of Cu{sub 64.5}Zr{sub 35.5} alloy during the cooling in a wide range of cooling rates γ ∈ (1.5 ⋅ 10{sup 9}, 10{sup 13}) K/s. Investigating short- and medium-range orders, we show that the structure of Cu{sub 64.5}Zr{sub 35.5} metallic glass essentially depends on cooling rate. In particular, a decrease of the cooling rate leads to an increase of abundances of both the icosahedral-like clusters and Frank-Kasper Z16 polyhedra. The amounts of these clusters in the glassy state drastically increase at the γ{sub min} = 1.5 ⋅ 10{supmore » 9} K/s. Analysing the structure of the glass at γ{sub min}, we observe the formation of nano-sized crystalline grain of Cu{sub 2}Zr intermetallic compound with the structure of Cu{sub 2}Mg Laves phase. The structure of this compound is isomorphous with that for Cu{sub 5}Zr intermetallic compound. Both crystal lattices consist of two types of clusters: Cu-centered 13-atom icosahedral-like cluster and Zr-centered 17-atom Frank-Kasper polyhedron Z16. That suggests the same structural motifs for the metallic glass and intermetallic compounds of Cu–Zr system and explains the drastic increase of the abundances of these clusters observed at γ{sub min}.« less
Pressure effect on the Raman and photoluminescence spectra of Eu3+-doped Na2Ti6O13 nanorods
NASA Astrophysics Data System (ADS)
Zeng, Q. G.; Yang, G. T.; Chen, F.; Luo, J. Y.; Zhang, Z. M.; Leung, C. W.; Ding, Z. J.; Sheng, Y. Q.
2013-12-01
Eu3+-doped Na2Ti6O13 (Na2Ti6O13:Eu) nanorods with diameters of 30 nm and lengths 400 nm were synthesized by hydrothermal and heat treatment methods. Raman spectra at ambient conditions indicated a pure monoclinic phase (space group C2/m) of the nanorods. The relations between structural and optical properties of Na2Ti6O13:Eu nanorods under high pressures were obtained by photoluminescence and Raman spectra. Two structural transition points at 1.39 and 15.48 GPa were observed when the samples were pressurized. The first transition point was attributed to the crystalline structural distortion. The later transition point was the result of pressure-induced amorphization, and the high-density amorphous (HDA) phase formed after 15.48 GPa was structurally related to the monoclinic baddeleyite structured TiO2 (P21/c). However, the site symmetry of the local environment around the Eu3+ ions in Na2Ti6O13 increased with the rising pressure. These above results indicate the occurrence of short-range order for the local asymmetry around the Eu3+ ions and long-range disorder for the crystalline structure of Na2Ti6O13:Eu nanorods by applying pressure. After releasing the pressure from 22.74 GPa, the HDA phase is transformed to low-density amorphous form, which is attributed to be structurally related to the α-PbO2-type TiO2.
Long-Range Near-Side Angular Correlations in Proton-Proton Interactions in CMS.
None
2017-12-09
The CMS Collaboration Results on two-particle angular correlations for charged particles emitted in proton-proton collisions at center of mass energies of 0.9, 2.36 and 7TeV over a broad range of pseudorapidity (?) and azimuthal angle (f) are presented using data collected with the CMS detector at the LHC. Short-range correlations in ??, which are studied in minimum bias events, are characterized using a simple independent cluster parameterization in order to quantify their strength (cluster size) and their extent in ? (cluster decay width). Long-range azimuthal correlations are studied more differentially as a function of charged particle multiplicity and particle transverse momentum using a 980nb-1 data set at 7TeV. In high multiplicity events, a pronounced structure emerges in the two-dimensional correlation function for particles in intermediate pTâs of 1-3GeV/c, 2.0< |??|<4.8 and ?fË0. This is the ?rst observation of such a ridge-like feature in two-particle correlation functions in pp or p-pbar collisions. EVO Universe, password "seminar"; Phone Bridge ID: 2330444 Password: 5142
NASA Astrophysics Data System (ADS)
Das, Subir K.; Horbach, Jürgen; Voigtmann, Thomas
2008-08-01
Molecular dynamics computer simulations are performed to study structure and structural relaxation in the glassforming metallic alloy Al80Ni20 . The interactions between the particles are modeled by an effective potential of the embedded atom type. Our model of Al80Ni20 exhibits chemical short-range order (CSRO) that is reflected in a broad prepeak around a wave number of 1.8Å-1 in the partial static structure factor for the Ni-Ni correlations. The CSRO is due to the preference of Ni atoms to have Al rather than Ni atoms as nearest neighbors. By analyzing incoherent and coherent intermediate scattering functions as well as self-diffusion constants and shear viscosity, we discuss how the chemical ordering is reflected in the dynamics of the deeply undercooled melt. The q dependence of the α relaxation time as well as the Debye-Waller factor for the Al-Al correlations show oscillations at the location of the prepeak in the partial static structure factor for the Ni-Ni correlations. The latter feature of the Debye-Waller factor is well reproduced by a calculation in the framework of the mode coupling theory (MCT) of the glass transition, using the partial static structure factors from the simulation as input. We also check the validity of the Stokes-Einstein-Sutherland formula that relates the self-diffusion coefficients with the shear viscosity. We show that it breaks down already far above the mode coupling critical temperature Tc . The failure of the Stokes-Einstein-Sutherland relation is not related to the specific chemical ordering in Al80Ni20 .
Progress in thin-film silicon solar cells based on photonic-crystal structures
NASA Astrophysics Data System (ADS)
Ishizaki, Kenji; De Zoysa, Menaka; Tanaka, Yoshinori; Jeon, Seung-Woo; Noda, Susumu
2018-06-01
We review the recent progress in thin-film silicon solar cells with photonic crystals, where absorption enhancement is achieved by using large-area resonant effects in photonic crystals. First, a definitive guideline for enhancing light absorption in a wide wavelength range (600–1100 nm) is introduced, showing that the formation of multiple band edges utilizing higher-order modes confined in the thickness direction and the introduction of photonic superlattice structures enable significant absorption enhancement, exceeding that observed for conventional random scatterers. Subsequently, experimental evidence of this enhancement is demonstrated for a variety of thin-film Si solar cells: ∼500-nm-thick ultrathin microcrystalline silicon cells, few-µm-thick microcrystalline silicon cells, and ∼20-µm-thick thin single-crystalline silicon cells. The high short-circuit current densities and/or efficiencies observed for each cell structure confirm the effectiveness of using multiple band-edge resonant modes of photonic crystals for enhancing broadband absorption in actual solar cells.
NASA Astrophysics Data System (ADS)
Durandurdu, Murat
2018-03-01
We generate an amorphous MgCu model using the rapid solidification of the melt through a first-principles molecular dynamics approach within a generalised gradient approximation and reveal, for the first time, its structural features and mechanical properties in details. The liquid and glassy MgCu are found to acquire slightly distinct local structures. Yet in both forms of MgCu, most Cu atoms have a tendency to form the ideal and defective icosahedrons while Mg atoms are arranged in complex configurations. The mean coordination number of Cu and Mg at 300 K is 11.31 and 13.73, respectively. The short-range order of MgCu glass is projected to be different than the known crystalline MgCu and Mg2Cu phases. The mechanical properties of MgCu glass and the CsCl-type MgCu crystal are computed and compared. On the basis of the enthalpy analyses, a possible pressure-induced crystallisation of the MgCu glass into a CsCl-type structure is proposed to occur at around 11 GPa.
Diffuse Scattering from Lead-Containing Ferroelectric Perovskite Oxides
Goossens, D. J.
2013-01-01
Ferroelectric materials rely on some type of non-centrosymmetric displacement correlations to give rise to a macroscopic polarisation. These displacements can show short-range order (SRO) that is reflective of the local chemistry, and so studying it reveals important information about how the structure gives rise to the technologically useful properties. A key means of exploring this SRO is diffuse scattering. Conventional structural studies use Bragg peak intensitiesto determine the average structure. In a single crystal diffuse scattering (SCDS) experiment, the coherent scattered intensity is measured at non-integer Miller indices, and can be used to examine the population of local configurations. Thismore » is because the diffuse scattering is sensitive to two-body averages, whereas the Bragg intensity gives single-body averages. This review outlines key results of SCDS studies on several materials and explores the similarities and differences in their diffuse scattering. Random strains are considered, as are models based on a phonon-like picture or a more local-chemistry oriented picture. Limitations of the technique are discussed.« less
A new oxytelluride: Perovskite and CsCl intergrowth in Ba 3Yb 2O 5Te
Whalen, J. B.; Besara, T.; Vasquez, R.; ...
2013-04-27
The new oxytelluride Ba 3Yb 2O 5Te was obtained from an alkaline earth flux. Ba3Yb2O5Te crystallizes in the tetragonal space group P4/ mmm (#123), with a=4.3615(3) Å and c=11.7596(11) angstrom, Z=1. The structure combines two distinct building blocks, a Ba 2Yb 2O 5 perovskite-like double layer with square bipyramidal coordination of the ytterbium ions, and a CsCl-type BaTe layer. Short range magnetic order is apparent at below 5 K, with the magnetic behavior above this temperature dominated by crystal field effects. The structure may be considered as an analog to the Ruddlesden-Popper phases, where the NaCl-type layer has been replacedmore » by the CsCl-type layer. Finally, the two-dimensional magnetic behavior is expected based on the highly anisotropic nature of the structure.« less
Structural efficiencies of various aluminum, titanium, and steel alloys at elevated temperatures
NASA Technical Reports Server (NTRS)
Heimerl, George J; Hughes, Philip J
1953-01-01
Efficient temperature ranges are indicated for two high-strength aluminum alloys, two titanium alloys, and three steels for some short-time compression-loading applications at elevated temperatures. Only the effects of constant temperatures and short exposure to temperature are considered, and creep is assumed not to be a factor. The structural efficiency analysis is based upon preliminary results of short-time elevated-temperature compressive stress-strain tests of the materials. The analysis covers strength under uniaxial compression, elastic stiffness, column buckling, and the buckling of long plates in compression or in shear.
Dynamic decoupling and local atomic order of a model multicomponent metallic glass-former.
Kim, Jeongmin; Sung, Bong June
2015-06-17
The dynamics of multicomponent metallic alloys is spatially heterogeneous near glass transition. The diffusion coefficient of one component of the metallic alloys may also decouple from those of other components, i.e., the diffusion coefficient of each component depends differently on the viscosity of metallic alloys. In this work we investigate the dynamic heterogeneity and decoupling of a model system for multicomponent Pd43Cu27Ni10P20 melts by using a hard sphere model that considers the size disparity of alloys but does not take chemical effects into account. We also study how such dynamic behaviors would relate to the local atomic structure of metallic alloys. We find, from molecular dynamics simulations, that the smallest component P of multicomponent Pd43Cu27Ni10P20 melts becomes dynamically heterogeneous at a translational relaxation time scale and that the largest major component Pd forms a slow subsystem, which has been considered mainly responsible for the stabilization of amorphous state of alloys. The heterogeneous dynamics of P atoms accounts for the breakdown of Stokes-Einstein relation and also leads to the dynamic decoupling of P and Pd atoms. The dynamically heterogeneous P atoms decrease the lifetime of the local short-range atomic orders of both icosahedral and close-packed structures by orders of magnitude.
NASA Astrophysics Data System (ADS)
Lyubutin, I. S.; Starchikov, S. S.; Gavriliuk, A. G.; Troyan, I. A.; Nikiforova, Yu. A.; Ivanova, A. G.; Chumakov, A. I.; Rüffer, R.
2017-01-01
The high-pressure properties of a new multiferroic of the langasite family Ba3TaFe3Si2O14 were investigated in diamond-anvil cells (DAC) in the temperature range of 4.2-295 K by a new method of synchrotron Mössbauer spectroscopy. Strong enhancement of the Néel temperature T N was observed at pressures above 20 GPa associated with the structural transformation. The highest value of T N is about 130 K which is almost five times larger than the value at ambient pressure (about 27 K). It was suggested that the high value of T N appears due to redistribution of Fe ions over 3 f and 2 d tetrahedral sites of the langasite structure. In this case, the short Fe-O distances and favorable Fe-O-Fe bond angles create conditions for strong superexchange interactions between iron ions, and effective two-dimensional (2D) magnetic ordering appears in the ( ab) plane. The separation of the sample into two magnetic phases with different T N values of about 50 and 130 K was revealed, which can be explained by the strong 2D magnetic ordering in the ab plane and 3D ordering involving inter-plane interaction.
2016-01-01
Abstract When the brain is stimulated, for example, by sensory inputs or goal-oriented tasks, the brain initially responds with activities in specific areas. The subsequent pattern formation of functional networks is constrained by the structural connectivity (SC) of the brain. The extent to which information is processed over short- or long-range SC is unclear. Whole-brain models based on long-range axonal connections, for example, can partly describe measured functional connectivity dynamics at rest. Here, we study the effect of SC on the network response to stimulation. We use a human whole-brain network model comprising long- and short-range connections. We systematically activate each cortical or thalamic area, and investigate the network response as a function of its short- and long-range SC. We show that when the brain is operating at the edge of criticality, stimulation causes a cascade of network recruitments, collapsing onto a smaller space that is partly constrained by SC. We found both short- and long-range SC essential to reproduce experimental results. In particular, the stimulation of specific areas results in the activation of one or more resting-state networks. We suggest that the stimulus-induced brain activity, which may indicate information and cognitive processing, follows specific routes imposed by structural networks explaining the emergence of functional networks. We provide a lookup table linking stimulation targets and functional network activations, which potentially can be useful in diagnostics and treatments with brain stimulation. PMID:27752540
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Xiang; Zhang, Shuai; Jiao, Fang
Two-step nucleation pathways in which disordered, amorphous, or dense liquid states precede appearance of crystalline phases have been reported for a wide range of materials, but the dynamics of such pathways are poorly understood. Moreover, whether these pathways are general features of crystallizing systems or a consequence of system-specific structural details that select for direct vs two-step processes is unknown. Using atomic force microscopy to directly observe crystallization of sequence-defined polymers, we show that crystallization pathways are indeed sequence dependent. When a short hydrophobic region is added to a sequence that directly forms crystalline particles, crystallization instead follows a two-stepmore » pathway that begins with creation of disordered clusters of 10-20 molecules and is characterized by highly non-linear crystallization kinetics in which clusters transform into ordered structures that then enter the growth phase. The results shed new light on non-classical crystallization mechanisms and have implications for design of self-assembling polymer systems.« less
Effect of simple solutes on the long range dipolar correlations in liquid water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baul, Upayan, E-mail: upayanb@imsc.res.in; Anishetty, Ramesh, E-mail: ramesha@imsc.res.in; Vemparala, Satyavani, E-mail: vani@imsc.res.in
2016-03-14
Intermolecular correlations in liquid water at ambient conditions have generally been characterized through short range density fluctuations described through the atomic pair distribution functions. Recent numerical and experimental results have suggested that such a description of order or structure in liquid water is incomplete and there exist considerably longer ranged orientational correlations in water that can be studied through dipolar correlations. In this study, using large scale classical, atomistic molecular dynamics simulations using TIP4P-Ew and TIP3P models of water, we show that salts such as sodium chloride (NaCl), potassium chloride (KCl), caesium chloride (CsCl), and magnesium chloride (MgCl{sub 2}) havemore » a long range effect on the dipolar correlations, which cannot be explained by the notion of structure making and breaking by dissolved ions. Observed effects are explained through orientational stratification of water molecules around ions and their long range coupling to the global hydrogen bond network by virtue of the sum rule for water. The observations for single hydrophilic solutes are contrasted with the same for a single methane (CH{sub 4}) molecule. We observe that even a single small hydrophobe can result in enhancement of long range orientational correlations in liquid water, contrary to the case of dissolved ions, which have been observed to have a reducing effect. The observations from this study are discussed in the context of hydrophobic effect.« less
A GPR system for the high-resolution inspection of walls and structures
NASA Astrophysics Data System (ADS)
Manacorda, Guido; Simi, Alessandro; Barsacchi, Giorgio
2014-05-01
Nowadays GPR systems are used in a broad range of applications, including the non-destructive inspection of man-made concrete structures such as pillars and bridge decks. Concrete inspection involves several aspects including: location of reinforced bars in walls and floors, concrete condition assessment, concrete cover detection, etc. These surveys are very demanding as far as the system is concerned, because of the strict requirements in terms of resolution and accuracy. Specifically, a key GPR application concerns the condition assessment of a structure that has undergone rehabilitation (e.g. for the removal of architectural barriers or new openings); in this case, the current practice requires to re-check the stability of the entire structure that includes the identification of the number of rebars in reinforced concrete beams location of pre-tensioned cables and early detection of corrosion. This can be done by verification holes (coring) that is costly and intrusive practice or by using a pachometer, but this tool has a limited field of investigation (up to 7-8 cm from the surface). GPR can instead be a useful investigative tool especially when the surface of the beam is not accessible because it is covered by screed or floor. The need of detecting rebars with diameter in the millimeter range as well as the identification of small cavities and cracks, require the development of GPR antennas featuring linear phase and constant polarization, and capable to radiate a very short pulse (i.e. with a duration in the order of few hundreds of picosecond) with no ring-down in order to achieve a high range resolution. A novel 3 GHz center frequency antenna has been recently developed and tested; it has been found capable of providing a very clear image of the concrete internal structure that helps in locating targets and enables an early detection of damages, thus providing a fast and efficient maintenance of the structure itself. The Authors thank COST for funding COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar".
Testing different versions of the Affective Neuroscience Personality Scales in a clinical sample.
Pedersen, Geir; Geir, Pedersen; Selsbakk, Johansen Merete; Theresa, Wilberg; Sigmund, Karterud
2014-01-01
As a tool to investigate the experiences of six primary emotions, Davis, Panksepp, and Normansell developed the Affective Neuroscience Personality Scales (ANPS). However, the psychometric properties of the ANPS have been questioned, and in particular the factor structure. This study replicates earlier psychometric studies on ANPS in a sample of (546) personality disordered patients, and also includes ANPS-S, a recent short version of ANPS by Pingault and colleagues, and a truncated version of BANPS by Barrett and colleagues. The study of the full ANPS revealed acceptable internal consistencies of the primary emotion subscales, ranging from 0.74-0.87. However, factor analyses revealed poor to mediocre fit for a six factor solution. Correlational analyses, in addition, revealed too high correlations between PLAY and SEEK, and between SADNESS and FEAR. The two short versions displayed better psychometric properties. The range of internal consistency was 0.61-0.80 for the BANPS scales and 0.65-84 for the ANPS-S. Backward Cronbach Alpha Curves indicated potentials for improvement on all three versions of the questionnaire. Items retained in the short versions did not systematically cover the full theoretical content of the long scales, in particular for CARE and SADNESS in the BANPS. The major problems seem to reside in the operationalization of the CARE and SADNESS subscales of ANPS. Further work needs to be done in order to realize a psychometrically sound instrument for the assessment of primary emotional experiences.
On the representation of many-body interactions in water
Medders, Gregory R.; Gotz, Andreas W.; Morales, Miguel A.; ...
2015-09-09
Our recent work has shown that the many-body expansion of the interactionenergy can be used to develop analytical representations of global potential energy surfaces (PESs) for water. In this study, the role of short- and long-range interactions at different orders is investigated by analyzing water potentials that treat the leading terms of the many-body expansion through implicit (i.e., TTM3-F and TTM4-F PESs) and explicit (i.e., WHBB and MB-pol PESs) representations. Moreover, it is found that explicit short-range representations of 2-body and 3-body interactions along with a physically correct incorporation of short- and long-range contributions are necessary for an accurate representationmore » of the waterinteractions from the gas to the condensed phase. Likewise, a complete many-body representation of the dipole moment surface is found to be crucial to reproducing the correct intensities of the infrared spectrum of liquid water.« less
NASA Astrophysics Data System (ADS)
Nonoyama, Yoshito; Maekawa, Yukiko; Kobayashi, Akito; Suzumura, Yoshikazu; Yamada, Jun-ichi
2008-10-01
Mechanisms of superconductivity in quasi-two-dimensional organic conductors have been investigated using an extended Hubbard model by using the transfer energies between BDA-TTP molecules for β-(BDA-TTP)2I3 based on the X-ray experiment data and the extended Hückel calculation. We obtain several mean-field solutions with charge orderings which may represent short-range orderings or low-energy fluctuations in the low-dimensional electronic system. In the pressure-temperature phase diagram, a charge ordered metal state almost degenerates with a normal metal state between an insulating phase with charge ordering and the normal metal phase. Using the random phase approximation (RPA) and the linearized gap equation, the transition temperature of the superconducting state is estimated for the charge-ordered metal state and the normal metal state. It is found that transition temperature of the superconductivity induced by spin fluctuations in the charge-ordered metal state is much higher than that of the normal metal state and that the superconductivity in the charge-ordered metal state is the gapless d-wave. This suggests that the short range charge ordering may also contribute to an enhancement of spin-fluctuation-mediated superconductivity. The difference in the superconducting states between β-(BDA-TTP)2I3 and β-(BDA-TTP)2SbF6 are briefly discussed.
Direct Immersion Annealing of Thin Block Copolymer Films.
Modi, Arvind; Bhaway, Sarang M; Vogt, Bryan D; Douglas, Jack F; Al-Enizi, Abdullah; Elzatahry, Ahmed; Sharma, Ashutosh; Karim, Alamgir
2015-10-07
We demonstrate ordering of thin block copolymer (BCP) films via direct immersion annealing (DIA) at enhanced rate leading to stable morphologies. The BCP films are immersed in carefully selected mixtures of good and marginal solvents that can impart enhanced polymer mobility, while inhibiting film dissolution. DIA is compatible with roll-to-roll assembly manufacturing and has distinct advantages over conventional thermal annealing and batch processing solvent-vapor annealing methods. We identify three solvent composition-dependent BCP film ordering regimes in DIA for the weakly interacting polystyrene-poly(methyl methacrylate) (PS-PMMA) system: rapid short-range order, optimal long-range order, and a film instability regime. Kinetic studies in the "optimal long-range order" processing regime as a function of temperature indicate a significant reduction of activation energy for BCP grain growth compared to oven annealing at conventional temperatures. An attractive feature of DIA is its robustness to ordering other BCP (e.g. PS-P2VP) and PS-PMMA systems exhibiting spherical, lamellar and cylindrical ordering.
NASA Astrophysics Data System (ADS)
Stout, Christopher
Plasma methods offer a variety of advantages to nanomaterials synthesis. The process is robust, allowing varying particle sizes and phases to be generated simply by modifying key parameters. The work here demonstrates a novel approach to nanopowder synthesis using inductively-coupled plasma to decompose precursor, which are then quenched to produce a variety of boron nitride (BN)-phase nanoparticles, including cubic phase, along with short-range-order nanospheres (e.g., nano-onions) and BN nanotubes. Cubic BN (c-BN) powders can be generated through direct deposition onto a chilled substrate. The extremely-high pyrolysis temperatures afforded by the equilibrium plasma offer a unique particle growth environment, accommodating long deposition times while exposing resulting powders to temperatures in excess of 5000K without any additional particle nucleation and growth. Such conditions can yield short-range ordered amorphous BN structures in the form of 20nm diameter nanospheres. Finally, when introducing a rapid-quenching counter-flow gas against the plasma jet, high aspect ratio nanotubes are synthesized, which are collected on substrate situated radially. The benefits of these morphologies are also evident in high-pressure/high-temperature consolidation experiments, where nanoparticle phases can offer a favorable conversion route to super-hard c-BN while maintaining nanocrystallinity. Experiments using these morphologies are shown to begin to yield c-BN conversion at conditions as low as 2.0 GPa and 1500°C when using micron sized c-BN seeding to create localized regions of high pressures due to Hertzian forces acting on the nanoparticles.
Nanometer scale atomic structure of zirconium based bulk metallic glass
NASA Astrophysics Data System (ADS)
Hwang, Jinwoo
We have studied the nanometer scale structure of bulk metallic glass (BMG) using fluctuation electron microscopy (FEM). The nanometer scale medium range order (MRO) in BMG is of significant interest because of its possible relationship to the properties, but the experimental study of the MRO is difficult because conventional diffraction techniques are not sensitive to the MRO scale. FEM is a quantitative transmission electron microscopy technique which measures the nanoscale structural fluctuation associated with MRO in amorphous materials, and provides information about the size, distribution, and internal structure of MRO. In this work, we developed an improved method for FEM using energy-filtered STEM nanodiffraction with highly coherent probes with size up to 11nm in a state-of-the-art Cs- corrected STEM. We also developed an effective way to eliminate the effect of sample thickness variation to the FEM data by using Z-contrast images as references. To study the detailed structure of MRO, we developed a hybrid reverse Monte Carlo (H-RMC) simulation which combines an empirical atomic potential and the FEM data. H-RMC generated model structures that match the experimental data at short and medium range. In addition, the subtle rotational symmetries in the FEM nanodiffraction patterns were analyzed by angular correlation function to reveal more details of the internal structure of MRO. Our experiments and simulations show that Zr-based BMG contains pseudo-planar, crystal-like MRO as well as icosahedral clusters in its nanoscale structure. We found that some icosahedral clusters may be connected, and that structural relaxation by annealing increases the population of icosahedral clusters.
Molecular dynamics simulations of oxide memory resistors (memristors).
Savel'ev, S E; Alexandrov, A S; Bratkovsky, A M; Williams, R Stanley
2011-06-24
Reversible bipolar nanoswitches that can be set and read electronically in a solid-state two-terminal device are very promising for applications. We have performed molecular dynamics simulations that mimic systems with oxygen vacancies interacting via realistic potentials and driven by an external bias voltage. The competing short- and long-range interactions among charged mobile vacancies lead to density fluctuations and short-range ordering, while illustrating some aspects of observed experimental behavior, such as memristor polarity inversion. The simulations show that the 'localized conductive filaments' and 'uniform push/pull' models for memristive switching are actually two extremes of the one stochastic mechanism.
Englert, Francois
2018-05-24
- Physics, as we know it, attempts to interpret the diverse natural phenomena as particular manifestations of general laws. This vision of a world ruled by general testable laws is relatively recent in the history of mankind. Basically it was initiated by the Galilean inertial principle. The subsequent rapid development of large-scale physics is certainly tributary to the fact that gravitational and electromagnetic forces are long-range and hence can be perceived directly without the mediation of highly sophisticated technical devices. - The discovery of subatomic structures and of the concomitant weak and strong short-range forces raised the question of how to cope with short-range forces in relativistic quantum field theory. The Fermi theory of weak interactions, formulated in terms of point-like current-current interaction, was well-defined in lowest order perturbation theory and accounted for existing experimental data.However, it was inconsistent in higher orders because of uncontrollable divergent quantum fluctuations. In technical terms, in contradistinction to quantum electrodynamics, the Fermi theorywas not ârenormalizableâ. This difficulty could not be solved by smoothing the point-like interaction by a massive, and therefore short-range, charged âvectorâ particle exchange: theories with massive charged vector bosons were not renormalizable either. In the early nineteen sixties, there seemed to be insuperable obstacles to formulating a consistent theory with short-range forces mediated by massive vectors. - The breakthrough came from the notion of spontaneous symmetry breaking which arose in the study of phase transitions and was introduced in field theory by Nambu in 1960. - Ferromagnets illustrate the notion in phase transitions. Although no direction is dynamically preferred, the magnetization selects a global orientation. This is a spontaneous broken symmetry(SBS)of rotational invariance. Such continuous SBS imply the existence of âmasslessâ modes (here spin-waves), which are the ancestors of the NG bosons discussed below. Fluctuations of the order parameter (the magnetization) are described by a âmassiveâ SBS mode. - In field theory, Nambu showed that broken chiral symmetry from a spontaneous generation of hadron masses induces massless pseudoscalar modes (identified with a massless limit of pion fields). This illustrates a general phenomenon made explicit by Goldstone: massless Nambu-Goldstone (NG) bosons are a necessary concomitant of spontaneously broken continuous symmetries. Massive SBS scalars bosons describe, as in phase transitions, the fluctuations of the SBS order parameters. - In 1964, with Robert Brout, we discovered a mechanism based on SBS by which short range interactions are generated from long range ones. A similar proposal was then made independently by Higgs in a different approach. Qualitatively, our mechanism works as follows. The long range fundamental electromagnetic and gravitational interactions are governed by extended symmetries,called gauge symmetries, which were supposed to guarantee that the elementary field constituents which transmit the forces, photons or gravitons, be massless. We considered a generalization of the electromagnetic âvectorâ field, known as Yang-Mills fields, and coupled them to fields which acquire from SBS constant values in the vacuum. These fields pervade space, as did magnetization, but they have no spatial orientation: they are âscalarââ fields. The vector Yang-Mills fields which interact with the scalar fields become massive and hence the forces they mediate become short ranged. We also showed that the mechanism can survive in absence of elementary scalar fields. - Because of the extended symmetries, the nature of SBS is profoundly altered: the NG fields are absorbed into the massive vector Yang-Mills fields and restore the gauge symmetry. This has a dramatic consequence. To confront precision experiments, the mechanism should be consistent at the quantum mechanical level, or in technical terms, should yield a ârenormalizableâ theory. From our analysis of the preserved gauge symmetry, we suggested in 1966 that this is indeed the case, in contradistinction to the aforementioned earlier theories of charged massive vector fields. The full proof of ârenormalizabilityâ is subtle and was achieved in the impressive work of ât Hooft and Veltman. One gains some insight into the subtleties by making explicit the equivalence of Higgsâ approach with ours. - To a large extend, the LHC was build to detect the massive SBS scalar boson, i.e. the fluctuations of the scalar field. More elaborate realizations of the mechanism without elementary scalars are possible, but their experimental confirmation may (or may not) be outside the scope of present available technology. - The mechanism of Brout, Englert and Higgs unified in the same theoretical framework short- and long-range forces. It became the cornerstone of the electroweak theory and opened the way to a modern view on unified laws of nature.
Effects of the interaction range on structural phases of flexible polymers.
Gross, J; Neuhaus, T; Vogel, T; Bachmann, M
2013-02-21
We systematically investigate how the range of interaction between non-bonded monomers influences the formation of structural phases of elastic, flexible polymers. Massively parallel replica-exchange simulations of a generic, coarse-grained model, performed partly on graphics processing units and in multiple-gaussian modified ensembles, pave the way for the construction of the structural phase diagram, parametrized by interaction range and temperature. Conformational transitions between gas-like, liquid, and diverse solid (pseudo) phases are identified by microcanonical statistical inflection-point analysis. We find evidence for finite-size effects that cause the crossover of "collapse" and "freezing" transitions for very short interaction ranges.
Structural evolution in the crystallization of rapid cooling silver melt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Z.A., E-mail: ze.tian@gmail.com; Laboratory for Simulation and Modelling of Particulate Systems School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052; Dong, K.J.
2015-03-15
The structural evolution in a rapid cooling process of silver melt has been investigated at different scales by adopting several analysis methods. The results testify Ostwald’s rule of stages and Frank conjecture upon icosahedron with many specific details. In particular, the cluster-scale analysis by a recent developed method called LSCA (the Largest Standard Cluster Analysis) clarified the complex structural evolution occurred in crystallization: different kinds of local clusters (such as ico-like (ico is the abbreviation of icosahedron), ico-bcc like (bcc, body-centred cubic), bcc, bcc-like structures) in turn have their maximal numbers as temperature decreases. And in a rather wide temperaturemore » range the icosahedral short-range order (ISRO) demonstrates a saturated stage (where the amount of ico-like structures keeps stable) that breeds metastable bcc clusters. As the precursor of crystallization, after reaching the maximal number bcc clusters finally decrease, resulting in the final solid being a mixture mainly composed of fcc/hcp (face-centred cubic and hexagonal-closed packed) clusters and to a less degree, bcc clusters. This detailed geometric picture for crystallization of liquid metal is believed to be useful to improve the fundamental understanding of liquid–solid phase transition. - Highlights: • A comprehensive structural analysis is conducted focusing on crystallization. • The involved atoms in our analysis are more than 90% for all samples concerned. • A series of distinct intermediate states are found in crystallization of silver melt. • A novelty icosahedron-saturated state breeds the metastable bcc state.« less
Madaria, Anuj R; Yao, Maoqing; Chi, Chunyung; Huang, Ningfeng; Lin, Chenxi; Li, Ruijuan; Povinelli, Michelle L; Dapkus, P Daniel; Zhou, Chongwu
2012-06-13
Vertically aligned, catalyst-free semiconducting nanowires hold great potential for photovoltaic applications, in which achieving scalable synthesis and optimized optical absorption simultaneously is critical. Here, we report combining nanosphere lithography (NSL) and selected area metal-organic chemical vapor deposition (SA-MOCVD) for the first time for scalable synthesis of vertically aligned gallium arsenide nanowire arrays, and surprisingly, we show that such nanowire arrays with patterning defects due to NSL can be as good as highly ordered nanowire arrays in terms of optical absorption and reflection. Wafer-scale patterning for nanowire synthesis was done using a polystyrene nanosphere template as a mask. Nanowires grown from substrates patterned by NSL show similar structural features to those patterned using electron beam lithography (EBL). Reflection of photons from the NSL-patterned nanowire array was used as a measure of the effect of defects present in the structure. Experimentally, we show that GaAs nanowires as short as 130 nm show reflection of <10% over the visible range of the solar spectrum. Our results indicate that a highly ordered nanowire structure is not necessary: despite the "defects" present in NSL-patterned nanowire arrays, their optical performance is similar to "defect-free" structures patterned by more costly, time-consuming EBL methods. Our scalable approach for synthesis of vertical semiconducting nanowires can have application in high-throughput and low-cost optoelectronic devices, including solar cells.
Environmental degradation of composites for marine structures: new materials and new applications
2016-01-01
This paper describes the influence of seawater ageing on composites used in a range of marine structures, from boats to tidal turbines. Accounting for environmental degradation is an essential element in the multi-scale modelling of composite materials but it requires reliable test data input. The traditional approach to account for ageing effects, based on testing samples after immersion for different periods, is evolving towards coupled studies involving strong interactions between water diffusion and mechanical loading. These can provide a more realistic estimation of long-term behaviour but still require some form of acceleration if useful data, for 20 year lifetimes or more, are to be obtained in a reasonable time. In order to validate extrapolations from short to long times, it is essential to understand the degradation mechanisms, so both physico-chemical and mechanical test data are required. Examples of results from some current studies on more environmentally friendly materials including bio-sourced composites will be described first. Then a case study for renewable marine energy applications will be discussed. In both cases, studies were performed first on coupons at the material level, then during structural testing and analysis of large components, in order to evaluate their long-term behaviour. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242304
NASA Astrophysics Data System (ADS)
Jia, Junjun; Torigoshi, Yoshifumi; Suko, Ayaka; Nakamura, Shin-ichi; Kawashima, Emi; Utsuno, Futoshi; Shigesato, Yuzo
2017-02-01
Indium-tin-zinc oxide (ITZO) films were deposited at various nitrogen flow ratios using magnetron sputtering. At a nitrogen flow ratio of 40%, the structure of ITZO film changed from amorphous, with a short-range-ordered In2O3 phase, to a c-axis oriented InN polycrystalline phase, where InN starts to nucleate from an amorphous In2O3 matrix. Whereas, nitrogen addition had no obvious effect on the structure of indium-gallium-zinc oxide (IGZO) films even at a nitrogen flow ratio of 100%. Nitrogen addition also suppressed the formation of oxygen-related vacancies in ITZO films when the nitrogen flow ratio was less than 20%, and higher nitrogen addition led to an increase in carrier density. Moreover, a red-shift in the optical band edge was observed as the nitrogen flow ratio increased, which could be attributed to the generation of InN crystallites. We anticipate that the present findings demonstrating nitrogen-addition induced structural changes can help to understand the environment-dependent instability in amorphous IGZO or ITZO based thin-film transistors (TFTs).
Li, Qingsong; Zhang, Yafeng; Shi, Lei; Qiu, Huihui; Zhang, Suming; Qi, Ning; Hu, Jianchen; Yuan, Wei; Zhang, Xiaohua; Zhang, Ke-Qin
2018-04-24
Artificial structural colors based on short-range-ordered amorphous photonic structures (APSs) have attracted great scientific and industrial interest in recent years. However, the previously reported methods of self-assembling colloidal nanoparticles lack fine control of the APS coating and fixation on substrates and poorly realize three-dimensional (3D) conformal coatings for objects with irregular or highly curved surfaces. In this paper, atomization deposition of silica colloidal nanoparticles with poly(vinyl alcohol) as the additive is proposed to solve the above problems. By finely controlling the thicknesses of APS coatings, additive mixing of noniridescent structural colors is easily realized. Based on the intrinsic omnidirectional feature of atomization, a one-step 3D homogeneous conformal coating is also readily realized on various irregular or highly curved surfaces, including papers, resins, metal plates, ceramics, and flexible silk fabrics. The vivid coatings on silk fabrics by atomization deposition possess robust mechanical properties, which are confirmed by rubbing and laundering tests, showing great potential in developing an environmentally friendly coloring technique in the textile industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parent, Lucas R.; Robinson, David B.; Cappillino, Patrick J.
2014-02-11
The prevalent approach to developing new nanomaterials is a trial and error process of iteratively altering synthesis procedures and then characterizing the resulting nanostructures. This is fundamentally limited in that the growth processes that occur during synthesis can only be inferred from the final synthetic structure. Directly observing real-time nanomaterial growth provides unprecedented insight into the relationship between synthesis conditions and product evolution, and facilitates a mechanistic approach to nanomaterial development. Here we use in situ liquid stage scanning transmission electron microscopy to observe the growth of mesoporous palladium in a solvated block copolymer (BCP) template under various synthesis conditions,more » and ultimately determine a refined synthesis procedure that yields ordered pores. We find that at low organic solvent (tetrahydrofuran, THF) content, the BCP assembles into a rigid, cylindrical micelle array with a high degree of short-range order, but poor long-range order. Upon slowing the THF evaporation rate using a solvent-vapor anneal step, the long-range order is greatly improved. The electron beam induces nucleation of small particles in the aqueous phase around the micelles. The small particles then flocculate and grow into denser structures that surround the micelles, forming an ordered mesoporous structure. The microscope observations revealed that template disorder can be addressed prior to reaction, and is not invariably induced by the growth process itself, allowing us to more quickly optimize the synthetic method. This work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under contract DE-AC05-76RL01830. This research was funded in part by: the Presidential Early Career Award for Scientist and Engineers for I.A., the University of California Academic Senate and the University of California Laboratory fee research grant, the Laboratory-Directed Research and Development program at Sandia National Laboratories, and the Chemical Imaging Initiative at Pacific Northwest National Laboratory. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.« less
Water clusters in amorphous pharmaceuticals.
Authelin, Jean-Rene; MacKenzie, Alan P; Rasmussen, Don H; Shalaev, Evgenyi Y
2014-09-01
Amorphous materials, although lacking the long-range translational and rotational order of crystalline and liquid crystalline materials, possess certain local (short-range) structure. This paper reviews the distribution of one particular component present in all amorphous pharmaceuticals, that is, water. Based on the current understanding of the structure of water, water molecules can exist in either unclustered form or as aggregates (clusters) of different sizes and geometries. Water clusters are reported in a range of amorphous systems including carbohydrates and their aqueous solutions, synthetic polymers, and proteins. Evidence of water clustering is obtained by various methods that include neutron and X-ray scattering, molecular dynamics simulation, water sorption isotherm, concentration dependence of the calorimetric Tg , dielectric relaxation, and nuclear magnetic resonance. A review of the published data suggests that clustering depends on water concentration, with unclustered water molecules existing at low water contents, whereas clusters form at intermediate water contents. The transition from water clusters to unclustered water molecules can be expected to change water dependence of pharmaceutical properties, such as rates of degradation. We conclude that a mechanistic understanding of the impact of water on the stability of amorphous pharmaceuticals would require systematic studies of water distribution and clustering, while such investigations are lacking. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
NASA Astrophysics Data System (ADS)
Groń, T.; Tomaszewicz, E.; Berkowski, M.; Głowacki, M.; Oboz, M.; Kusz, J.; Sawicki, B.; Kukuła, Z.; Duda, H.
2018-06-01
Single crystal of new cadmium and ytterbium molybdato-tungstate (Cd0.9706⎕0.0098Yb0.0196(MoO4)0.9706(WO4)0.0294, where ⎕ denotes cationic vacancies) has been successfully grown by the Czochralski method in air and under 1 MPa. X-ray crystallographic analysis reveals that the as-grown single crystal belongs to a scheelite-type structure (a = b = 5.15539(12) and c = 11.1919(3) Å, space group I41/a), in which Yb3+ ions do not show long-range order and are randomly distributed in the unit cell, substituting the Cd2+ ones. The as-grown single crystal does not show anisotropy of optical properties, i.e. its direct band gap reaches Eg = 1.76 or 1.75 eV along (100) and (001) crystallographic directions, respectively. The single crystal exhibits paramagnetic state with short-range antiferromagnetic and long-range ferrimagnetic interactions, a magnetization with zero coercivity and, a remanence that is almost a universal function of H/T, characterizing superparamagnetic-like behaviour. Electrical studies of the new ytterbium-doped cadmium molybdato-tungstate single crystal show a relatively small dielectric constant (εr<12), large lossiness of Joule-Lenz type observed at low frequencies as well as nonlinear I-V characteristics of Schottky or Maxwell-Wagner type.
Jiang, Jing; Jacobs, Alan G; Wenning, Brandon; Liedel, Clemens; Thompson, Michael O; Ober, Christopher K
2017-09-20
Laser spike annealing was applied to PS-b-PDMS diblock copolymers to induce short-time (millisecond time scale), high-temperature (300 to 700 °C) microphase segregation and directed self-assembly of sub-10 nm features. Conditions were identified that enabled uniform microphase separation in the time frame of tens of milliseconds. Microphase ordering improved with increased temperature and annealing time, whereas phase separation contrast was lost for very short annealing times at high temperature. PMMA brush underlayers aided ordering under otherwise identical laser annealing conditions. Good long-range order for sub-10 nm cylinder morphology was achieved using graphoepitaxy coupled with a 20 ms dwell laser spike anneal above 440 °C.
Friedl, Christian; Renger, Thomas; Berlepsch, Hans V; Ludwig, Kai; Schmidt Am Busch, Marcel; Megow, Jörg
2016-09-01
Cryogenic transmission electron microscopy (cryo-TEM) studies suggest that TTBC molecules self-assemble in aqueous solution to form single-walled tubes with a diameter of about 35 Å. In order to reveal the arrangement and mutual orientations of the individual molecules in the tube, we combine information from crystal structure data of this dye with a calculation of linear absorbance and linear dichroism spectra and molecular dynamics simulations. We start with wrapping crystal planes in different directions to obtain tubes of suitable diameter. This set of tube models is evaluated by comparing the resulting optical spectra with experimental data. The tubes that can explain the spectra are investigated further by molecular dynamics simulations, including explicit solvent molecules. From the trajectories of the most stable tube models, the short-range ordering of the dye molecules is extracted and the optimization of the structure is iteratively completed. The final structural model is a tube of rings with 6-fold rotational symmetry, where neighboring rings are rotated by 30° and the transition dipole moments of the chromophores form an angle of 74° with respect to the symmetry axis of the tube. This model is in agreement with cryo-TEM images and can explain the optical spectra, consisting of a sharp red-shifted J-band that is polarized parallel to to the symmetry axis of the tube and a broad blue-shifted H-band polarized perpendicular to this axis. The general structure of the homogeneous spectrum of this hybrid HJ-aggregate is described by an analytical model that explains the difference in redistribution of oscillator strength inside the vibrational manifolds of the J- and H-bands and the relative intensities and excitation energies of those bands. In addition to the particular system investigated here, the present methodology can be expected to aid the structure prediction for a wide range of self-assembled dye aggregates.
NASA Astrophysics Data System (ADS)
Raab, N.; Ballak, K.-E.; Dietze, T.; Ekmedzič, M.; Hauf, S.; Januschek, F.; Kaukher, A.; Kuster, M.; Lang, P. M.; Münnich, A.; Schmitt, R.; Sztuk-Dambietz, J.; Turcato, M.
2016-12-01
The European X-ray Free Electron Laser (XFEL.EU) will provide unprecedented peak brilliance and ultra-short and spatially coherent X-ray pulses in an energy range of 0.25 to 25 keV . The pulse timing structure is unique with a burst of 2700 pulses of 100 fs length at a temporal distance of 220 ns followed by a 99.4 ms gap. To make optimal use of this timing structure and energy range a great variety of detectors are being developed for use at XFEL.EU, including 2D X-ray imaging cameras that are able to detect images at a rate of 4.5 MHz, provide dynamic ranges up to 105 photons per pulse per pixel under different operating conditions and covering a large range of angular resolution \\cite{requirements,Markus}. In order to characterize, commission and calibrate this variety of detectors and for testing of detector prototypes the XFEL.EU detector group is building up an X-ray test laboratory that allows testing of detectors with X-ray photons under conditions that are as similar to the future beam line conditions at the XFEL.EU as is possible with laboratory sources [1]. A total of four test environments provide the infrastructure for detector tests and calibration: two portable setups that utilize low power X-ray sources and radioactive isotopes, a test environment where a commercial high power X-ray generator is in use, and a pulsed X-ray/electron source which will provide pulses as short as 25 ns in XFEL.EU burst mode combined with target anodes of different materials. The status of the test environments, three of which are already in use while one is in commissioning phase, will be presented as well as first results from performance tests and characterization of the sources.
NASA Astrophysics Data System (ADS)
Tao, Yuefei
Organic electronics are of great interest in manufacturing light weight, mechanical flexible, and inexpensive large area devices. While significant improvements have been made over the last several years and it is now clear that morphology on the lengthscale of exciton diffusion (10nm) is of crucial importance, a clear relationship between structure and device properties has not emerged. This lack of understanding largely emerges from an inability to control morphology on this lengthscale. This thesis will center around an approach, based on block copolymer self-assembly, to generate equilibrium nanostructures on the 10 nm lengthscale of exciton diffusion and study their effects on device performance. Self-assembly of semiconducting block copolymers is complicated by the non-classical chain shape of conjugated polymers. Unlike classical polymers, the chains do not assume a Gaussian coil shape which is stretched near block copolymer interfaces, instead the chains are elongated and liquid crystalline. Previous work has demonstrated how these new molecular interactions and shapes control the phase diagram of so-called rod-coil block copolymers. Here, we will focus on controlling domain size, orientation, and chemical structure. While domain size can be controlled directly through molecular weight, this requires significant additional synthesis of domain size is to be varied. Here, the domain size is controlled by blending homopolymers into a self-assembling rod-coil block copolymer. When coil-like blocks are incorporated, the domains swell, as expected. When rod-like blocks are incorporated, they interdigitate with the rods of the block copolymers. This results in an increase in interfacial area which forces the coils to rearrange and an overall decrease in domain size with increasing rod content. Control over lamellar orientation is crucial in order to design and control charge transport pathways and exciton recombination or separation interfaces. While numerous techniques have been demonstrated for classical block copolymers, the pi conjugation in the rod blocks allow for additional control mechanisms. Liquid crystals are traditionally aligned in magnetic fields. Here, it is demonstrated that if the rod-like blocks are aligned unidirectionally, the block copolymer interfaces follow to create macroscopic alignment of the nanostructures. Organic Light Emitting Diodes (OLEDs) are generally composed of electron transporting and hole transporting moieties to balance charge recombination. Here, a new multifunctional bipolar rod-coil block copolymer containing the hole transporting and electron transporting materials is synthesized. Self-assembly of this new block copolymer results in 15nm lamellae oriented in grains both parallel and perpendicula to the anode. The self-assembled block copolymer shows superior device performance to controls consisting of a luminescent, analogous homopolymer, and a blend of the two component homopolymers. The effects of the morphologies and chemical structure on photovoltaics is explored with a rod-coil block copolymer, (poly(3-hexylthiophene-b-acrylic perylene)). By varying the kinetics of self-assembly through processing, the block copolymer can be disordered, ordered with only short range registry between the nanodomains, or with long-range order. The short range ordered samples showed the best device performance suggesting that the connectivity that is a biproduct of poor order is beneficial for device performance.
Thermodynamic Identities and Symmetry Breaking in Short-Range Spin Glasses
NASA Astrophysics Data System (ADS)
Arguin, L.-P.; Newman, C. M.; Stein, D. L.
2015-10-01
We present a technique to generate relations connecting pure state weights, overlaps, and correlation functions in short-range spin glasses. These are obtained directly from the unperturbed Hamiltonian and hold for general coupling distributions. All are satisfied in phases with simple thermodynamic structure, such as the droplet-scaling and chaotic pairs pictures. If instead nontrivial mixed-state pictures hold, the relations suggest that replica symmetry is broken as described by a Derrida-Ruelle cascade, with pure state weights distributed as a Poisson-Dirichlet process.
Chan Hwang, Gil; Joo Shin, Tae; Blom, Douglas A.; Vogt, Thomas; Lee, Yongjae
2015-01-01
Systematic studies of pressure-induced amorphization of natrolites (PIA) containing monovalent extra-framework cations (EFC) Li+, Na+, K+, Rb+, Cs+ allow us to assess the role of two different EFC-H2O configurations within the pores of a zeolite: one arrangement has H2O molecules (NATI) and the other the EFC (NATII) in closer proximity to the aluminosilicate framework. We show that NATI materials have a lower onset pressure of PIA than the NATII materials containing Rb and Cs as EFC. The onset pressure of amorphization (PA) of NATII materials increases linearly with the size of the EFC, whereas their initial bulk moduli (P1 phase) decrease linearly. Only Cs- and Rb-NAT reveal a phase separation into a dense form (P2 phase) under pressure. High-Angle Annular Dark Field Scanning Transmission Electron Microscopy (HAADF-STEM) imaging shows that after recovery from pressures near 25 and 20 GPa long-range ordered Rb-Rb and Cs-Cs correlations continue to be present over length scales up to 100 nm while short-range ordering of the aluminosilicate framework is significantly reduced—this opens a new way to form anti-glass structures. PMID:26455345
Chan Hwang, Gil; Joo Shin, Tae; Blom, Douglas A; Vogt, Thomas; Lee, Yongjae
2015-10-12
Systematic studies of pressure-induced amorphization of natrolites (PIA) containing monovalent extra-framework cations (EFC) Li(+), Na(+), K(+), Rb(+), Cs(+) allow us to assess the role of two different EFC-H2O configurations within the pores of a zeolite: one arrangement has H2O molecules (NATI) and the other the EFC (NATII) in closer proximity to the aluminosilicate framework. We show that NATI materials have a lower onset pressure of PIA than the NATII materials containing Rb and Cs as EFC. The onset pressure of amorphization (PA) of NATII materials increases linearly with the size of the EFC, whereas their initial bulk moduli (P1 phase) decrease linearly. Only Cs- and Rb-NAT reveal a phase separation into a dense form (P2 phase) under pressure. High-Angle Annular Dark Field Scanning Transmission Electron Microscopy (HAADF-STEM) imaging shows that after recovery from pressures near 25 and 20 GPa long-range ordered Rb-Rb and Cs-Cs correlations continue to be present over length scales up to 100 nm while short-range ordering of the aluminosilicate framework is significantly reduced-this opens a new way to form anti-glass structures.
Magnetic and thermodynamic properties of Nd3NiGe2
NASA Astrophysics Data System (ADS)
Matsumoto, Keisuke T.; Hiraoka, Koichi
2018-05-01
We here report the magnetization, M, and specific heat, C, of Nd3NiGe2 , which crystallizes in the orthorhombic Gd3NiSi2 -type structure. Nd ions occupy three nonequivalent sites in a unit cell. Upon cooling, magnetization divided by magnetic field, M / B , increased sharply at the Curie temperature, TC, of 87 K and below 40 K. The former result indicates that the increase in M / B observed at TC is due to the long-range ferromagnetic order. The increase below 40 K is derived from a short-range correlation because of the absence of clear anomaly in C (T) . At 10 K and 2 K, the values of M undergo metamagnetic transitions. The value of magnetic specific heat divided by temperature shows a shoulder-like anomaly at around 20 K, which is attributed to antiferromagnetic behavior. Furthermore, two peaks in C (T) were observed at 4.5 K and 3.8 K, and these peaks occurred at lower temperatures in the presence of a magnetic field. This behavior is typical of materials with antiferromagnetic order. These observations are attributed to the competition between ferromagnetic and antiferromagnetic interactions, which is a result of the three nonequivalent Nd sites.
Farmer, B.; Bhat, V. S.; Balk, A.; ...
2016-04-25
Here, we have used scanning electron microscopy with polarization analysis and photoemission electron microscopy to image the two-dimensional magnetization of permalloy films patterned into Penrose P2 tilings (P2T). The interplay of exchange interactions in asymmetrically coordinated vertices and short-range dipole interactions among connected film segments stabilize magnetically ordered, spatially distinct sublattices that coexist with frustrated sublattices at room temperature. Numerical simulations that include long-range dipole interactions between sublattices agree with images of as-grown P2T samples and predict a magnetically ordered ground state for a two-dimensional quasicrystal lattice of classical Ising spins.
Multiscale mobility networks and the spatial spreading of infectious diseases.
Balcan, Duygu; Colizza, Vittoria; Gonçalves, Bruno; Hu, Hao; Ramasco, José J; Vespignani, Alessandro
2009-12-22
Among the realistic ingredients to be considered in the computational modeling of infectious diseases, human mobility represents a crucial challenge both on the theoretical side and in view of the limited availability of empirical data. To study the interplay between short-scale commuting flows and long-range airline traffic in shaping the spatiotemporal pattern of a global epidemic we (i) analyze mobility data from 29 countries around the world and find a gravity model able to provide a global description of commuting patterns up to 300 kms and (ii) integrate in a worldwide-structured metapopulation epidemic model a timescale-separation technique for evaluating the force of infection due to multiscale mobility processes in the disease dynamics. Commuting flows are found, on average, to be one order of magnitude larger than airline flows. However, their introduction into the worldwide model shows that the large-scale pattern of the simulated epidemic exhibits only small variations with respect to the baseline case where only airline traffic is considered. The presence of short-range mobility increases, however, the synchronization of subpopulations in close proximity and affects the epidemic behavior at the periphery of the airline transportation infrastructure. The present approach outlines the possibility for the definition of layered computational approaches where different modeling assumptions and granularities can be used consistently in a unifying multiscale framework.
NASA Astrophysics Data System (ADS)
Rubinstein, Alexander; Sabirianov, Renat
2011-03-01
Using a non-local electrostatic approach that incorporates the short-range structure of the contacting media, we evaluated the electrostatic contribution to the energy of the complex formation of two model proteins. In this study, we have demonstrated that the existence of an low-dielectric interfacial water layer at the protein-solvent interface reduces the charging energy of the proteins in the aqueous solvent, and consequently increases the electrostatic contribution to the protein binding (change in free energy upon the complex formation of two proteins). This is in contrast with the finding of the continuum electrostatic model, which suggests that electrostatic interactions are not strong enough to compensate for the unfavorable desolvation effects.
The Long Range Persistence of Wakes Behind a Row of Roughness Elements
NASA Technical Reports Server (NTRS)
Goldstein, M. E.; Sescu, Adrian; Duck, Peter W.; Choudhari, Meelan
2010-01-01
We consider a periodic array of relatively small roughness elements whose spanwise separation is of the order of the local boundary-layer thickness and construct a local asymptotic high-Reynolds-number solution that is valid in the vicinity of the roughness. The resulting flow decays on the very short streamwise length scale of the roughness, but the solution eventually becomes invalid at large downstream distances and a new solution has to be constructed in the downstream region. This latter result shows that the roughness-generated wakes can persist over very long streamwise distances, which are much longer than the distance between the roughness elements and the leading edge. Detailed numerical results are given for the far wake structure.
Raman Scattering in a New Carbon Material
NASA Technical Reports Server (NTRS)
Voronov, O. A.; Street, K. W., Jr.
2010-01-01
Samples of a new carbon material, Diamonite-B, were fabricated under high pressure from a commercial carbon black--identified as mixed fullerenes. The new material is neither graphite-like nor diamond-like, but exhibits electrical properties close to graphite and mechanical properties close to diamond. The use of Raman spectroscopy to investigate the vibrational dynamics of this new carbon material and to provide structural characterization of its short-, medium- and long-range order is reported. We also provide the results of investigations of these samples by high-resolution electron microscopy and X-ray diffraction. Hardness, electrical conductivity, thermal conductivity and other properties of this new material are compared with synthetic graphite-like and diamond-like materials, two other phases of synthetic bulk carbon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yaoting; Li, Siming; Gogotsi, Natalie
Two species of monodisperse nanocrystals (NCs) can self-assemble into a variety of complex 2D and 3D periodic structures, or binary NC superlattice (BNSL) films, based on the relative number and size of the NCs. BNSL films offer great promise for both fundamental scientific studies and optoelectronic applications; however, the utility of as-assembled structures has been limited by the insulating ligands that originate from the synthesis of NCs. Here we report the application of an in situ ligand exchange strategy at a liquid–air interface to replace the long synthesis ligands with short ligands while preserving the long-range order of BNSL films.more » This approach is demonstrated for BNSL structures consisting of PbSe NCs of different size combinations and ligands of interest for photovoltaic devices, infrared detectors, and light-emitting diodes. To confirm enhanced coupling introduced by ligand exchange, we show ultrafast (~1 ps) directional carrier transfer across the type-I heterojunction formed by NCs of different sizes within ligand-exchanged BNSL films. In conclusion, this approach shows the potential promise of functional BNSL films, where the local and long-range energy landscape and electronic coupling can be adjusted by tuning NC composition, size, and interparticle spacing.« less
One-dimensional long-range percolation: A numerical study
NASA Astrophysics Data System (ADS)
Gori, G.; Michelangeli, M.; Defenu, N.; Trombettoni, A.
2017-07-01
In this paper we study bond percolation on a one-dimensional chain with power-law bond probability C /rd +σ , where r is the distance length between distinct sites and d =1 . We introduce and test an order-N Monte Carlo algorithm and we determine as a function of σ the critical value Cc at which percolation occurs. The critical exponents in the range 0 <σ <1 are reported. Our analysis is in agreement, up to a numerical precision ≈10-3 , with the mean-field result for the anomalous dimension η =2 -σ , showing that there is no correction to η due to correlation effects. The obtained values for Cc are compared with a known exact bound, while the critical exponent ν is compared with results from mean-field theory, from an expansion around the point σ =1 and from the ɛ -expansion used with the introduction of a suitably defined effective dimension deff relating the long-range model with a short-range one in dimension deff. We finally present a formulation of our algorithm for bond percolation on general graphs, with order N efficiency on a large class of graphs including short-range percolation and translationally invariant long-range models in any spatial dimension d with σ >0 .
Active hydrodynamics of synchronization and ordering in moving oscillators
NASA Astrophysics Data System (ADS)
Banerjee, Tirthankar; Basu, Abhik
2017-08-01
The nature of emergent collective behaviors of moving interacting physical agents is a long-standing open issue in physical and biological systems alike. This calls for studies on the control of synchronization and the degree of order in a collection of diffusively moving noisy oscillators. We address this by constructing a generic hydrodynamic theory for active phase fluctuations in a collection of a large number of nearly-phase-coherent moving oscillators in two dimensions. Our theory describes the general situation where phase fluctuations and oscillator mobility mutually affect each other. We show that the interplay between the active effects and the mobility of the oscillators leads to a variety of phenomena, ranging from synchronization with long-range, nearly-long-range, and quasi-long-range orders to instabilities and desynchronization with short-range order of the oscillator phases. We highlight the complex dependences of synchronization on the active effects. These should be testable in wide-ranging systems, e.g., oscillating chemical reactions in the presence of different reaction inhibitors and facilitators, live oriented cytoskeletal extracts, and vertebrate segmentation clocks.
ERIC Educational Resources Information Center
Arens, A. Katrin; Yeung, Alexander Seeshing; Craven, Rhonda G.; Hasselhorn, Marcus
2013-01-01
This study aims to develop a short German version of the Self Description Questionnaire (SDQ I-GS) in order to present a robust economical instrument for measuring German preadolescents' multidimensional self-concept. A full German version of the SDQ I (SDQ I-G) that maintained the original structure and thus length of the English original SDQ I…
Cleary, Katherine A; Waits, Lisette P; Hohenlohe, Paul A
2016-01-01
Rapid anthropogenic land use change threatens the primary habitat of the Chestnut short-tailed bat (Carollia castanea) throughout much of its range. Information on population genetic structure can inform management strategies for this widespread frugivorous bat, and effective protection of C. castanea will also benefit the more than 20 mutualistic plant species of which this bat is the primary seed disperser. To facilitate understanding of population genetic structure in this species, fourteen novel microsatellite markers were developed using restriction-site-associated DNA libraries and Illumina sequencing and tested on 28 individuals from 13 locations in Costa Rica. These are the first microsatellite markers developed for C. castanea. All loci were polymorphic, with number of alleles ranging from 2-11 and average observed heterozygosity of 0.631. Markers were also cross-amplified in three additional frugivorous bat species threatened by habitat loss and fragmentation: Sowell's short-tailed bat (Carollia sowelli), Seba's short-tailed bat (Carollia perspicillata), and the Jamaican fruit bat (Artibeus jamaicensis), and 10, 11, and 8 were polymorphic, respectively.
Ab initio study of several static and dynamic properties of bulk liquid Ni near melting
NASA Astrophysics Data System (ADS)
del Rio, B. G.; González, L. E.; González, D. J.
2017-01-01
Several static and dynamic properties of bulk liquid Ni at a thermodynamic state near its triple point have been evaluated by ab initio molecular dynamics simulations. The calculated static structure shows very good agreement with the available experimental data, including an asymmetric second peak in the static structure factor, which underlines a marked local icosahedral short-range order in the liquid. The dynamical structure reveals propagating density fluctuations, and the calculated dynamic structure factors, S (q ,ω ) , show a good agreement with the inelastic x-ray scattering measurements. The obtained dispersion relation closely follows that obtained from the inelastic x-ray scattering measurements; moreover we analyze the possible reasons behind its discrepancy with respect to the dispersion relation derived from the inelastic neutron scattering data. The dynamical processes behind the S (q ,ω ) have been analyzed by using a model with two decay channels (a fast and a slow) associated with the relaxations of the collective excitations. We have found that the transverse current spectral functions exhibit some features which, so far, had previously been shown by high pressure liquid metals only. Furthermore, the calculated S (q ,ω ) show, within some q-range, the appearance of transverse-like excitation modes, similar to those recently found in other liquid metals. Finally, results are also reported for several transport coefficients.
Direct Immersion Annealing of Thin Block Copolymer Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modi, Arvind; Bhaway, Sarang M.; Vogt, Bryan D.
2015-09-09
We demonstrate ordering of thin block copolymer (BCP) films via direct immersion annealing (DIA) at enhanced rate leading to stable morphologies. The BCP films are immersed in carefully selected mixtures of good and marginal solvents that can impart enhanced polymer mobility, while inhibiting film dissolution. DIA is compatible with roll-to-roll assembly manufacturing and has distinct advantages over conventional thermal annealing and batch processing solvent-vapor annealing methods. We identify three solvent composition-dependent BCP film ordering regimes in DIA for the weakly interacting polystyrene–poly(methyl methacrylate) (PS–PMMA) system: rapid short-range order, optimal long-range order, and a film instability regime. Kinetic studies in themore » “optimal long-range order” processing regime as a function of temperature indicate a significant reduction of activation energy for BCP grain growth compared to oven annealing at conventional temperatures. An attractive feature of DIA is its robustness to ordering other BCP (e.g. PS-P2VP) and PS-PMMA systems exhibiting spherical, lamellar and cylindrical ordering.« less
Exploring the free-energy landscape of a short peptide using an average force
NASA Astrophysics Data System (ADS)
Chipot, Christophe; Hénin, Jérôme
2005-12-01
The reversible folding of deca-alanine is chosen as a test case for characterizing a method that uses an adaptive biasing force (ABF) to escape from the minima and overcome the barriers of the free-energy landscape. This approach relies on the continuous estimation of a biasing force that yields a Hamiltonian in which no average force is exerted along the ordering parameter ξ. Optimizing the parameters that control how the ABF is applied, the method is shown to be extremely effective when a nonequivocal ordering parameter can be defined to explore the folding pathway of the peptide. Starting from a β-turn motif and restraining ξ to a region of the conformational space that extends from the α-helical state to an ensemble of extended structures, the ABF scheme is successful in folding the peptide chain into a compact α helix. Sampling of this conformation is, however, marginal when the range of ξ values embraces arrangements of greater compactness, hence demonstrating the inherent limitations of free-energy methods when ambiguous ordering parameters are utilized.
Liu, Jian; Pedroza, Luana S; Misch, Carissa; Fernández-Serra, Maria V; Allen, Philip B
2014-07-09
We present total energy and force calculations for the (GaN)1-x(ZnO)x alloy. Site-occupancy configurations are generated from Monte Carlo (MC) simulations, on the basis of a cluster expansion model proposed in a previous study. Local atomic coordinate relaxations of surprisingly large magnitude are found via density-functional calculations using a 432-atom periodic supercell, for three representative configurations at x = 0.5. These are used to generate bond-length distributions. The configurationally averaged composition- and temperature-dependent short-range order (SRO) parameters of the alloys are discussed. The entropy is approximated in terms of pair distribution statistics and thus related to SRO parameters. This approximate entropy is compared with accurate numerical values from MC simulations. An empirical model for the dependence of the bond length on the local chemical environments is proposed.
Magnetic properties of four Cu(ii)-amino acid salts
NASA Astrophysics Data System (ADS)
Calvo, Rafael
1984-03-01
We report a comparative study of magnetic properties of the Cu(II) salts of the amino acids l-alanine, dl-α-amino-n-butyric acid, α-amino isobutyric acid, and l-isoleucine. The position of the EPR lines of these quasi-two-dimensional magnetic systems was measured as a function of temperature T between 293 and 1.5 K, at 9.3 GHz and for magnetic fields applied along three axes of single crystal samples. Large changes of the gyromagnetic factor with T have been observed. They are attributed to an internal mean field, proportional to the applied field, which appears when the temperature is lowered due to short range magnetic order in the paramagnetic phase of the salts. The problem of short range magnetic order and g shifts in Cu-amino acid salts is discussed and compared with previous observations in Mn one-dimensional systems.
NASA Astrophysics Data System (ADS)
Siqueira, Kisla P. F.; Dias, Anderson
2011-11-01
Microwave synthesis was used to produce nanosized transition-metal tungstates in environmentally friendly conditions not yet reported by the literature: 110 and 150 °C, for times of 10 and 20 min. X-ray diffraction evidenced incipient crystallized materials, while transmission electron microscopy indicates nanostructured regions of about 2-5 nm inside an amorphous matrix. Raman spectroscopy was used to probe short-range ordering in the achieved samples and also to obtain a reliable set of spectra containing all the Raman-active bands predicted by group-theory calculations. The vibrational spectra showed no extra feature, indicating that the microwave processing was able to produce short-range ordered materials without tetrahedral distortions. These distortions are frequently reported when commercially modified kitchen microwave units are employed. In this work, the syntheses were conducted in a commercial apparatus especially designed for fully controlled temperature-time-pressure conditions.
NASA Astrophysics Data System (ADS)
Thanh, Tran Dang; Nanto, Dwi; Tuyen, Ngo Thi Uyen; Nan, Wen-Zhe; Yu, YiKyung; Tartakovsky, Daniel M.; Yu, S. C.
2015-11-01
In this work, we prepared nanocrystalline Fe2Mn1-xCuxAl (x=0.0, 0.1 and 0.3) powders by the high energy ball milling technique, and then studied their critical properties. Our analysis reveals that the increase of Cu-doping concentration (up to x=0.3) in these powders leads to a gradual increase of the ferromagnetic-paramagnetic transition temperature from 406 to 452 K. The Banerjee criterion suggests that all the samples considered undergo a second-order phase transition. A modified Arrott plot and scaling analysis indicate that the critical exponents (β=0.419 and 0.442, γ=1.082 and 1.116 for x=0.0 and 0.1, respectively) are located in between those expected for the 3D-Heisenberg and the mean-field models; the values of β=0.495 and γ=1.046 for x=0.3 sample are very close to those of the mean-field model. These features reveal the coexistence of the short- and long-range ferromagnetic order in the nanocrystalline Fe2Mn1-xCuxAl powders. Particularly, as the concentration of Cu increases, values of the critical exponent shift towards those of the mean-field model. Such results prove the Cu doping favors establishing a long-range ferromagnetic order.
Test of Newtonian gravity at short range using pico-precision displacement sensor
NASA Astrophysics Data System (ADS)
Akiyama, Takashi; Hata, Maki; Ninomiya, Kazufumi; Nishio, Hironori; Ogawa, Naruya; Sekiguchi, Yuta; Watanabe, Kentaro; Murata, Jiro
2009-10-01
Recent theoretical models of physics beyond the standard model, including attempts to resolve the hierarchy problem, predict deviations from the Newtonian gravity at short distances below millimeters. Present NEWTON project aims an experimental test of the inverse-square law at the millimeter scale, using a torsion pendulum with a pico-precision displacement sensor, which was originally developed for the micron precision optical alignment system (OASys) for the PHENIX muon tracking chambers at RHIC, using digital image analysis technique. In order to examine the gravitational force at short range scale around micrometers, we have developed a new apparatus NEWTON-III, which can determine the local gravitational acceleration by measuring the motion of the torsion pendulum. In this presentation, the development status and the results of the NEWTON-experiment will be reported.
A Short Note on Rules and Higher Order Rules.
ERIC Educational Resources Information Center
Scandura, Joseph M.
This brief paper argues that structural analysis--an extended form of cognitive task analysis--demonstrates that both domain dependent and domain independent knowledge can be derived from specific content domains. It is noted that the major difference between the two is that lower order rules (specific knowledge) are derived directly from specific…
Zuo, Tingting; Gao, Michael C.; Ouyang, Lizhi; ...
2017-03-07
Magnetic materials with excellent performances are desired for functional applications. Based on the high-entropy effect, a system of CoFeMnNiX (X = Al, Cr, Ga, and Sn) magnetic alloys are designed and investigated. The dramatic change in phase structures from face-centered-cubic (FCC) to ordered body-centered-cubic (BCC) phases, caused by adding Al, Ga, and Sn in CoFeMnNiX alloys, originates from the potent short-range chemical order in the liquid state predicted by ab initio molecular dynamics (AIMD) simulations. This phase transition leads to the significant enhancement of the saturation magnetization (M s), e.g., the CoFeMnNiAl alloy has M s of 147.86 Am 2/kg.more » In conclusion, first-principles density functional theory (DFT) calculations on the electronic and magnetic structures reveal that the anti-ferromagnetism of Mn atoms in CoFeMnNi is suppressed especially in the CoFeMnNiAl HEA because Al changes the Fermi level and itinerant electron-spin coupling that lead to ferromagnetism.« less
Phase stability and B-site ordering in La{sub 2}NiMnO{sub 6} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Xiao-Wei; Lu, Lu; Liu, Ming
2016-07-18
Thin films of multiferroic double-perovskite La{sub 2}NiMnO{sub 6} are prepared on (001)-oriented SrTiO{sub 3}, (La{sub 0.289}Sr{sub 0.712})(Al{sub 0.633}Ta{sub 0.356})O{sub 3}, and LaSrAlO{sub 4} substrates by pulsed laser deposition. Microstructure investigation by advanced electron microscopy shows that the La{sub 2}NiMnO{sub 6} films have a monoclinic structure on the SrTiO{sub 3} substrates and a rhombohedral structure on the (La{sub 0.289}Sr{sub 0.712})(Al{sub 0.633}Ta{sub 0.356})O{sub 3} and LaSrAlO{sub 4} substrates. Atomic-scale elemental maps of the monoclinic and rhombohedral phases reveal a short-range and/or partial ordering of the B-sites. In addition, domains and columnar grains are found in the films. Our results demonstrate that themore » phase and microstructure of the La{sub 2}NiMnO{sub 6} films can be tuned by epitaxial strains induced by different substrates.« less
Electrical resistivity of V-Cr-Ti alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zinkle, S.J.; Gubbi, A.N.; Eatherly, W.S.
1997-04-01
Room temperature electrical resistivity measurements have been performed on vanadium alloys containing 3-6%Cr and 3-6%Ti in order to evaluate the microstructural stability of these alloys. A nonlinear dependence on Cr and Ti concentration was observed, which suggests that either short range ordering or solute precipitation (perhaps in concert with interstitial solute clustering) has occurred in V-6Cr-6Ti.
Venus mesospheric sulfur dioxide measurement retrieved from SOIR on board Venus Express
NASA Astrophysics Data System (ADS)
Mahieux, A.; Vandaele, A. C.; Robert, S.; Wilquet, V.; Drummond, R.; Chamberlain, S.; Belyaev, D.; Bertaux, J. L.
2015-08-01
SOIR on board Venus Express sounds the Venus upper atmosphere using the solar occultation technique. It detects the signature from many Venus atmosphere species, including those of SO2 and CO2. SO2 has a weak absorption structure at 4 μm, from which number density profiles are regularly inferred. SO2 volume mixing ratios (VMR) are calculated from the total number density that are also derived from the SOIR measurements. This work is an update of the previous work by Belyaev et al. (2012), considering the SO2 profiles on a broader altitude range, from 65 to 85 km. Positive detection VMR profiles are presented. In 68% of the occultation spectral datasets, SO2 is detected. The SO2 VMR profiles show a large variability up to two orders of magnitude, on a short term time scales. We present mean VMR profiles for various bins of latitudes, and study the latitudinal variations; the mean latitude variations are much smaller than the short term temporal variations. A permanent minimum showing a weak latitudinal structure is observed. Long term temporal trends are also considered and discussed. The trend observed by Marcq et al. (2013) is not observed in this dataset. Our results are compared to literature data and generally show a good agreement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chithra Lekha, P.; Ramesh, G.; Revathi, V.
2014-05-01
Graphical abstract: - Highlights: • Mechanism driving polarization in MgFe{sub 2}O{sub 4} is the Maxwell–Wagner polarization. • But Raman studies confirm the existence of local P4{sub 1}22/P4{sub 3}22 symmetry in MgFe{sub 2}O{sub 4}. • Ba{sup 2+} substitution increases ferroelectric ordering, ΔT{sub m} span, and masks electronic contribution. - Abstract: Using the molten salt method, pristine and Ba{sup 2+} substituted MgFe{sub 2}O{sub 4} are prepared. The relaxor-like behaviour observed in the dielectric dispersion indicates the existence of B-site short-range ordering with the local P4{sub 1}22/P4{sub 3}22 symmetry which is confirmed by the Raman spectroscopy. The paper further analyses the origin ofmore » polarization using Maxwell–Wagner fit and Nyquist plot. This work suggests a possible way to increase the relaxor-like ferroelectric ordering, larger span of relaxation temperature (ΔT{sub m}) and the effective masking of electronic contribution by the substitution of Ba{sup 2+} ion.« less
A hydrodynamic mechanism for spontaneous formation of ordered drop arrays in confined shear flow
NASA Astrophysics Data System (ADS)
Singha, Sagnik; Zurita-Gotor, Mauricio; Loewenberg, Michael; Migler, Kalman; Blawzdziewicz, Jerzy
2017-11-01
It has been experimentally demonstrated that a drop monolayer driven by a confined shear flow in a Couette device can spontaneously arrange into a flow-oriented parallel chain microstructure. However, the hydrodynamic mechanism of this puzzling self-assembly phenomenon has so far eluded explanation. In a recent publication we suggested that the observed spontaneous drop ordering may arise from hydrodynamic interparticle interactions via a far-field quadrupolar Hele-Shaw flow associated with drop deformation. To verify this conjecture we have developed a simple numerical-simulation model that includes the far-field Hele-Shaw flow quadrupoles and a near-field short-range repulsion. Our simulations show that an initially disordered particle configuration self-organizes into a system of particle chains, similar to the experimentally observed drop-chain structures. The initial stage of chain formation is fast; subsequently, microstructural defects in a partially ordered system are removed by slow annealing, leading to an array of equally spaced parallel chains with a small number of defects. The microstructure evolution is analyzed using angular and spatial order parameters and correlation functions. Supported by NSF Grants No. CBET 1603627 and CBET 1603806.
First principles statistical mechanics of alloys and magnetism
NASA Astrophysics Data System (ADS)
Eisenbach, Markus; Khan, Suffian N.; Li, Ying Wai
Modern high performance computing resources are enabling the exploration of the statistical physics of phase spaces with increasing size and higher fidelity of the Hamiltonian of the systems. For selected systems, this now allows the combination of Density Functional based first principles calculations with classical Monte Carlo methods for parameter free, predictive thermodynamics of materials. We combine our locally selfconsistent real space multiple scattering method for solving the Kohn-Sham equation with Wang-Landau Monte-Carlo calculations (WL-LSMS). In the past we have applied this method to the calculation of Curie temperatures in magnetic materials. Here we will present direct calculations of the chemical order - disorder transitions in alloys. We present our calculated transition temperature for the chemical ordering in CuZn and the temperature dependence of the short-range order parameter and specific heat. Finally we will present the extension of the WL-LSMS method to magnetic alloys, thus allowing the investigation of the interplay of magnetism, structure and chemical order in ferrous alloys. This research was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division and it used Oak Ridge Leadership Computing Facility resources at Oak Ridge National Laboratory.
NASA Astrophysics Data System (ADS)
Boettcher, Igor; Herbut, Igor F.
2018-02-01
We investigate unconventional superconductivity in three-dimensional electronic systems with the chemical potential close to a quadratic band touching point in the band dispersion. Short-range interactions can lead to d -wave superconductivity, described by a complex tensor order parameter. We elucidate the general structure of the corresponding Ginzburg-Landau free energy and apply these concepts to the case of an isotropic band touching point. For a vanishing chemical potential, the ground state of the system is given by the superconductor analogue of the uniaxial nematic state, which features line nodes in the excitation spectrum of quasiparticles. In contrast to the theory of real tensor order in liquid crystals, however, the ground state is selected here by the sextic terms in the free energy. At a finite chemical potential, the nematic state has an additional instability at weak coupling and low temperatures. In particular, the one-loop coefficients in the free energy indicate that at weak coupling genuinely complex orders, which break time-reversal symmetry, are energetically favored. We relate our analysis to recent measurements in the half-Heusler compound YPtBi and discuss the role of cubic crystal symmetry.
Concentration Waves in High-Entropy Alloys - a new alloy design approach
NASA Astrophysics Data System (ADS)
Singh, Prashant; Johnson, Duane D.
2015-03-01
Chemical short-range order (SRO) in solid solutions can be interpreted as a ``concentration wave'' - a Fourier decomposition of nascent order - identified experimentally via Warren-Cowley SRO parameters. We present a rigorous thermodynamic theory to predict and uniquely interpret the SRO in N -component alloys. Based on KKR-CPA electronic structure, we implemented this method using thermodynamic linear-response to include all alloying effects, e.g., band-filling, hybridization, Fermi -surface nesting and van Hove instabilities. We apply this first-principles method to high-entropy alloys (HEAs), i.e., solid solutions with N >4 that inhibit small-cell order due to large entropy competing against ordering enthalpy, as their properties are sensitive to SRO. We validated theory with comparison to experiments in A2 Nb-Al-Ti and A1 Cu-Ni-Zn . We then predict and analyze SRO and mechanical trends in Ni-Ti-Zr-Cu-Al and Co-Cr-Fe-Mn-Ni systems - showcasing this new first-principles-based alloy design method. Work was supported by the USDoE, Office of Sci., Basic Energy Sci., Materials Sci. and Eng. Division for `Materials Discovery.' Research was performed at Ames Lab, operated by Iowa State University under Contract #DE-AC02-07CH11358.
Structure and Dynamics of Freely Suspended Liquid Crystals
NASA Technical Reports Server (NTRS)
Clark, Noel A.
2004-01-01
Smectic liquid crystals are phases of rod shaped molecules organized into one dimensionally (1 D) periodic arrays of layers, each layer being between one and two molecular lengths thick. In the least ordered smectic phases, the smectics A and C, each layer is a two dimensional (2D) liquid. Additionally there are a variety of more ordered smectic phases having hexatic short range translational order or 2D crystalline or quasi long range translational order within the layers. The inherent fluid-layer structure and low vapor pressure of smectic liquid crystals enables the long term stabilization of freely suspended, single component, layered fluid films as thin as 30A, a single molecular layer. The layering forces the films to be an integral number of smectic layers thick, quantizing their thickness in layer units and forcing a film of a particular number of layers to be physically homogeneous with respect to its layer structure over its entire area. Optical reflectivity enables the precise determination of the number of layers. These ultrathin freely suspended liquid crystal films are structures of fundamental interest in condensed matter and fluid physics. They are the thinnest known stable fluid structures and have the largest surface-to-volume ratio of any stable fluid preparation, making them ideal for the study of the effects of reduced dimensionality on phase behavior and on fluctuation and interface phenomena. Their low vapor pressure and quantized thickness enable the effective use of microgravity to extend the study of basic capillary phenomena to ultrathin fluid films. Freely suspended films have been a wellspring of new LC physics. They have been used to provide unique experimental conditions for the study of condensed phase transitions in two dimensions. They are the only system in which the hexatic has been unambiguously identified as a phase of matter, and the only physical system in which fluctuations of a 2D XY system and Kosterlitz Thouless phase transition has been observed and 2D XY quasi long range order verified. Smectic films have enabled the precise determination of smectic layer electron density and positional fluctuation profiles and have been used to show that the interlayer interactions in antiferroelectric tilted smectics do not extend significantly beyond nearest neighbors. Freely suspended films played a pivotal role in the recent discovery of macroscopic chiral-polar ordering in fluids of achiral molecules. The interactions which are operative in liquid crystals are generally weak in comparison to those in crystalline phases, leading to the facile manipulation of the order in liquid crystals by external agents such as applied fields and surfaces. Effects arising from weak ordering are significantly enhanced in ultrathin free films and filaments, in which the intermolecular coupling is effectively further reduced by loss of neighbors. Over the past four years this research, which we now detail, has produced a host of exciting new discoveries and unexpected results, maintaining the study of freely suspended liquid crystal structures as one of most exciting and fruitful areas of complex fluid physics. In addition, a class of experiments on the behavior of 1D interfaces in 2D films have been pursued with results that point to potentially quite interesting effects in microgravity.
Influence of spin and charge fluctuations on spectra of the two-dimensional Hubbard model
NASA Astrophysics Data System (ADS)
Sherman, A.
2018-05-01
The influence of spin and charge fluctuations on spectra of the two-dimensional fermionic Hubbard model is considered using the strong coupling diagram technique. Infinite sequences of diagrams containing ladder inserts, which describe the interaction of electrons with these fluctuations, are summed, and obtained equations are self-consistently solved for the ranges of Hubbard repulsions , temperatures and electron concentrations with t the intersite hopping constant. For all considered U the system exhibits a transition to the long-range antiferromagnetic order at . At the same time no indication of charge ordering is observed. Obtained solutions agree satisfactorily with results of other approaches and obey moments sum rules. In the considered region of the U-T plane, the curve separating metallic solutions passes from at the highest temperatures to U = 2t at for half-filling. If only short-range fluctuations are allowed for the remaining part of this region is occupied by insulating solutions. Taking into account long-range fluctuations leads to strengthening of maxima tails, which transform a part of insulating solutions into bad-metal states. For low T, obtained results allow us to trace the gradual transition from the regime of strong correlations with the pronounced four-band structure and well-defined Mott gap for to the Slater regime of weak correlations with the spectral intensity having a dip along the boundary of the magnetic Brillouin zone due to an antiferromagnetic ordering for . For and doping leads to the occurrence of a pseudogap near the Fermi level, which is a consequence of the splitting out of a narrow band from a Hubbard subband. Obtained spectra feature waterfalls and Fermi arcs, which are similar to those observed in hole-doped cuprates.
Wang, Zhuo; Dong, Zhaogang; Zhu, Hai; Jin, Lei; Chiu, Ming-Hui; Li, Lain-Jong; Xu, Qing-Hua; Eda, Goki; Maier, Stefan A; Wee, Andrew T S; Qiu, Cheng-Wei; Yang, Joel K W
2018-02-27
Monolayer two-dimensional transition-metal dichalcogenides (2D TMDCs) exhibit promising characteristics in miniaturized nonlinear optical frequency converters, due to their inversion asymmetry and large second-order nonlinear susceptibility. However, these materials usually have very short light interaction lengths with the pump laser because they are atomically thin, such that second-harmonic generation (SHG) is generally inefficient. In this paper, we fabricate a judiciously structured 150 nm-thick planar surface consisting of monolayer tungsten diselenide and sub-20 nm-wide gold trenches on flexible substrates, reporting ∼7000-fold SHG enhancement without peak broadening or background in the spectra as compared to WSe 2 on as-grown sapphire substrates. Our proof-of-concept experiment yields effective second-order nonlinear susceptibility of 2.1 × 10 4 pm/V. Three orders of magnitude enhancement is maintained with pump wavelength ranging from 800 to 900 nm, breaking the limitation of narrow pump wavelength range for cavity-enhanced SHG. In addition, SHG amplitude can be dynamically controlled via selective excitation of the lateral gap plasmon by rotating the laser polarization. Such a fully open, flat, and ultrathin profile enables a great variety of functional samples with high SHG from one patterned silicon substrate, favoring scalable production of nonlinear converters. The surface accessibility also enables integration with other optical components for information processing in an ultrathin and flexible form.
Dynamics and diffusion mechanism of low-density liquid silicon
Shen, B.; Wang, Z. Y.; Dong, F.; ...
2015-11-05
A first-order phase transition from a high-density liquid to a low-density liquid has been proposed to explain the various thermodynamic anomies of water. It also has been proposed that such liquid–liquid phase transition would exist in supercooled silicon. Computer simulation studies show that, across the transition, the diffusivity drops roughly 2 orders of magnitude, and the structures exhibit considerable tetrahedral ordering. The resulting phase is a highly viscous, low-density liquid silicon. Investigations on the atomic diffusion of such a novel form of liquid silicon are of high interest. Here we report such diffusion results from molecular dynamics simulations using themore » classical Stillinger–Weber (SW) potential of silicon. We show that the atomic diffusion of the low-density liquid is highly correlated with local tetrahedral geometries. We also show that atoms diffuse through hopping processes within short ranges, which gradually accumulate to an overall random motion for long ranges as in normal liquids. There is a close relationship between dynamical heterogeneity and hopping process. We point out that the above diffusion mechanism is closely related to the strong directional bonding nature of the distorted tetrahedral network. Here, our work offers new insights into the complex behavior of the highly viscous low density liquid silicon, suggesting similar diffusion behaviors in other tetrahedral coordinated liquids that exhibit liquid–liquid phase transition such as carbon and germanium.« less
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Ye, Feng; Tian, Wei; Cao, Huibo; Chi, Songxue; Hu, Biao; Diao, Zhenyu; Tennant, David A.; Jin, Rongying; Zhang, Jiandi; Plummer, Ward
2017-06-01
Bilayered S r3R u2O7 is an unusual metamagnetic metal with inherently antiferromagnetic (AFM) and ferromagnetic (FM) fluctuations. Partial substitution of Ru by Mn results in the establishment of a metal-insulator transition (MIT) at TMIT and AFM ordering at TM in S r3(Ru1-xM nx) 2O7 . Using elastic neutron scattering, we investigated the effect of Mn doping on the magnetic structure, in-plane magnetic correlation lengths and their correlation to the MIT in S r3(Ru1-xM nx) 2O7 (x =0.06 and 0.12). With the increase of Mn doping (x ) from 0.06 to 0.12 or the decrease of temperatures for x =0.12 , an evolution from an in-plane short-range to long-range antiferromagnetic (AFM) ground state occurs. For both compounds, the magnetic ordering has a double-stripe configuration, and the onset of magnetic correlation with an anisotropic behavior coincides with the sharp rise in electrical resistivity and specific heat. Since it does not induce a measurable lattice distortion, the double-stripe antiferromagnetic order with anisotropic spin texture breaks symmetry from a C4 v crystal lattice to a C2 v magnetic sublattice. These observations shed light on an age-old question regarding the Slater versus Mott-type MIT.