Sample records for short-range ordered state

  1. Magnetism and atomic short-range order in Ni-Rh alloys

    NASA Astrophysics Data System (ADS)

    Carnegie, D. W., Jr.; Claus, H.

    1984-07-01

    Low-field ac susceptibility measurements of Ni-Rh samples of various concentrations are presented. Giant effects of the metallurgical state on the magnetic ordering temperature are associated with changes in the degree of atomic short-range order. By careful control of this degree of short-range order, it is possible to demonstrate the existence of a spin-glass state in Ni-Rh alloys.

  2. Robust edge states in amorphous gyromagnetic photonic lattices

    NASA Astrophysics Data System (ADS)

    Mansha, Shampy; Chong, Y. D.

    2017-09-01

    We numerically study amorphous analogs of a two-dimensional photonic Chern insulator. The amorphous lattices consist of gyromagnetic rods that break time-reversal symmetry, with the lattice sites generated by a close-packing algorithm. The level of short-range order is adjustable, and there is no long-range order. The topologically nontrivial gaps of the photonic Chern insulator are found to persist into the amorphous regime, so long as there is sufficient short-range order. Strongly nonreciprocal robust transmission occurs via edge states, which are shown to propagate ballistically despite the absence of long-range order, and to be exponentially localized along the lattice edge. Interestingly, there is an enhancement of nonreciprocal transmission even at very low levels of short-range order, where there are no discernible spectral gaps.

  3. Short- and long-range magnetic order in LaMnAsO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, Michael A.; Garlea, Vasile Ovidiu

    2016-02-02

    The magnetic properties of the layered oxypnictide LaMnAsO have been revisited using neutron scattering and magnetization measurements. The present measurements identify the Néel temperature T N = 360(1) K. Below T N the critical exponent describing the magnetic order parameter is β=0.33–0.35 , consistent with a three-dimensional Heisenberg model. Above this temperature, diffuse magnetic scattering indicative of short-range magnetic order is observed, and this scattering persists up to T SRO = 650(10) K. Morevoer, the magnetic susceptibility shows a weak anomaly at T SRO and no anomaly at T N. Analysis of the diffuse scattering data using a reverse Montemore » Carlo algorithm indicates that above T N nearly two-dimensional, short-range magnetic order is present with a correlation length of 9.3(3) Å within the Mn layers at 400 K. The inelastic scattering data reveal a spin gap of 3.5 meV in the long-range ordered state, and strong, low-energy (quasielastic) magnetic excitations emerging in the short-range ordered state. When we compared it with other related compounds correlates the distortion of the Mn coordination tetrahedra to the sign of the magnetic exchange along the layer-stacking direction, and suggests that short-range order above T N is a common feature in the magnetic behavior of layered Mn-based pnictides and oxypnictides.« less

  4. Short-range order of undercooled melts of PdZr2 intermetallic compound studied by X-ray and neutron scattering experiments

    NASA Astrophysics Data System (ADS)

    Klein, S.; Holland-Moritz, D.; Herlach, D. M.; Mauro, N. A.; Kelton, K. F.

    2013-05-01

    The short-range order in undercooled melts of the intermetallic Zr2Pd glass-forming alloy is investigated by combining electrostatic levitation (ESL) with high-energy X-ray diffraction and neutron diffraction. Experimentally determined structure factors are measured and analyzed with respect to various structures of short-range order. The comparative X-ray and neutron scattering experiments allow for investigations of topological and chemical short-range order. Based on these studies, no preference of a specific short-range order is found for the liquid Zr2Pd glass-forming alloy, even in the metastable state of the deeply undercooled melt. This is in agreement with an earlier report from X-ray diffraction and molecular-dynamics studies of a Zr75.5Pd24.5 liquid, which showed a broad distribution of cluster types. The results for the Zr2Pd liquid are discussed with respect to the glass-forming ability of this melt.

  5. Pb(B{sup {prime}}{sub 1/2}B{sup {prime}{prime}}{sub 1/2})O{sub 3}-type perovskites: Part II. Short-range order parameter as a criterion of the distinction between relaxor and normal ferroelectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S.; Jang, H.M.

    1997-08-01

    A classification scheme of Pb(B{sup {prime}}{sub 1/2}B{sup {prime}{prime}}{sub 1/2})O{sub 3}-type perovskites with respect to the B-site order parameters was proposed based on the theoretical calculation of the short-range order parameter ({sigma}) using the pair-correlation model. The calculated order parameters predict that a Pb(B{sup {prime}}{sub 1/2}B{sup {prime}{prime}}{sub 1/2})O{sub 3}-type perovskite without any charge difference between B{sup {prime}} and B{sup {prime}{prime}} cations [e.g., Pb(Zr{sub 1/2}Ti{sub 1/2})O{sub 3} (PZT)] is represented by a completely disordered state with the absence of a finite coherence length. On the other hand, a Pb(B{sup {prime}}{sub 1/2}B{sup {prime}{prime}}{sub 1/2})O{sub 3} type perovskite system having different ionic charges ismore » characterized either by the short-range ordering with a nanoscale coherence length or by the macroscopic long-range ordering, depending on the magnitude of ionic charge difference between B{sup {prime}} and B{sup {prime}{prime}} ions. The normal ferroelectricity in Pb(B{sup {prime}}{sub 1/2}B{sup {prime}{prime}}{sub 1/2})O{sub 3}-type complex perovskites was then correlated either with a completely disordered state ({sigma}=0) or with a perfectly ordered state ({sigma}=1), whereas the relaxor behavior was attributed to the nanoscale short-range ordering (0{lt}{sigma}{lt}1) in the configuration of the B-site cations. {copyright} {ital 1997 Materials Research Society.}« less

  6. Possible bicollinear nematic state with monoclinic lattice distortions in iron telluride compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, Christopher B.; Herbrych, Jacek W.; Dagotto, Elbio R.

    2017-07-15

    Here, iron telluride (FeTe) is known to display bicollinear magnetic order at low temperatures together with a monoclinic lattice distortion. Because the bicollinear order can involve two different wave vectors (π/2,π/2) and (π/2,–π/2), symmetry considerations allow for the possible stabilization of a nematic state with short-range bicollinear order coupled to monoclinic lattice distortions at a T S higher than the temperature T N where long-range bicollinear order fully develops. As a concrete example, the three-orbital spin-fermion model for iron telluride is studied with an additional coupling ˜λ 12 between the monoclinic lattice strain and an orbital-nematic order parameter with Bmore » 2g symmetry. Monte Carlo simulations show that with increasing ˜λ 12 the first-order transition characteristic of FeTe splits and bicollinear nematicity is stabilized in a (narrow) temperature range. In this new regime, the lattice is monoclinically distorted and short-range spin and orbital order breaks rotational invariance. A discussion of possible realizations of this exotic state is provided.« less

  7. Doping Evolution of Magnetic Order and Magnetic Excitations in (Sr1 -xLax)3Ir2O7

    NASA Astrophysics Data System (ADS)

    Lu, Xingye; McNally, D. E.; Moretti Sala, M.; Terzic, J.; Upton, M. H.; Casa, D.; Ingold, G.; Cao, G.; Schmitt, T.

    2017-01-01

    We use resonant elastic and inelastic x-ray scattering at the Ir-L3 edge to study the doping-dependent magnetic order, magnetic excitations, and spin-orbit excitons in the electron-doped bilayer iridate (Sr1 -xLax )3Ir2 O7 (0 ≤x ≤0.065 ). With increasing doping x , the three-dimensional long range antiferromagnetic order is gradually suppressed and evolves into a three-dimensional short range order across the insulator-to-metal transition from x =0 to 0.05, followed by a transition to two-dimensional short range order between x =0.05 and 0.065. Because of the interactions between the Jeff=1/2 pseudospins and the emergent itinerant electrons, magnetic excitations undergo damping, anisotropic softening, and gap collapse, accompanied by weakly doping-dependent spin-orbit excitons. Therefore, we conclude that electron doping suppresses the magnetic anisotropy and interlayer couplings and drives (Sr1 -xLax )3Ir2 O7 into a correlated metallic state with two-dimensional short range antiferromagnetic order. Strong antiferromagnetic fluctuations of the Jeff=1/2 moments persist deep in this correlated metallic state, with the magnon gap strongly suppressed.

  8. Short-Arc Analysis of Intersatellite Tracking Data in a Gravity Mapping Mission

    NASA Technical Reports Server (NTRS)

    Rowlands, David D.; Ray, Richard D.; Chinn, Douglas S.; Lemoine, Frank G.; Smith, David E. (Technical Monitor)

    2001-01-01

    A technique for the analysis of low-low intersatellite range-rate data in a gravity mapping mission is explored. The technique is based on standard tracking data analysis for orbit determination but uses a spherical coordinate representation of the 12 epoch state parameters describing the baseline between the two satellites. This representation of the state parameters is exploited to allow the intersatellite range-rate analysis to benefit from information provided by other tracking data types without large simultaneous multiple data type solutions. The technique appears especially valuable for estimating gravity from short arcs (e.g., less than 15 minutes) of data. Gravity recovery simulations which use short arcs are compared with those using arcs a day in length. For a high-inclination orbit, the short-arc analysis recovers low-order gravity coefficients remarkably well, although higher order terms, especially sectorial terms, are less accurate. Simulations suggest that either long or short arcs of GRACE data are likely to improve parts of the geopotential spectrum by orders of magnitude.

  9. Local atomic order of a metallic glass made visible by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Luo, Yuansu; Samwer, Konrad

    2018-06-01

    Exploring the atomic level structure in amorphous materials by STM becomes extremely difficult due to the localized electronic states. Here we carried out STM studies on a quasi-low-dimensional film of metallic glass Zr65Cu27.5Al7.5 which is ‘ultrathin’ compared with the localization length and/or the length scale of short range order. The local electronic structure must appear more inherent, having states at E f available for tip-sample tunneling current. To enhance imaging contrasts between long-range and short-range orders, the highly oriented pyrolytic graphite was chosen as substrate, so that the structural heterogeneity arising from competition between the glass former ability and the epitaxy can be ascertained. A chemical order predicted for this system was observed in atomic ordered regimes (1–2 monolayers), accompanied with a superstructure with the period Zr–Cu(Al)–Zr along three hexagonal axes. The result implies a chemical short range order in disordered regimes, where polyhedral clusters are dominant with the solute atom Cu(Al) in the center. An attempt for the structural modelling was made based on high resolution STM images, giving icosahedral order on the surface and different Voronoi clusters in 3D space.

  10. On the structure of the disordered Bi 2Te 4O 11 phase

    NASA Astrophysics Data System (ADS)

    Masson, O.; Thomas, P.; Durand, O.; Hansen, T.; Champarnaud, J. C.; Mercurio, D.

    2004-06-01

    The structure of the disordered metastable Bi 2Te 4O 11 phase has been investigated using both neutron powder diffraction and reverse Monte Carlo (RMC) modelling. The average structure, of fluorite-type (space group Fm 3¯m ), is characterized by very high Debye-Waller parameters, especially for oxygen. Whereas the cations form a fairly well-defined FCC lattice, the oxygen sublattice is very disordered. It is shown that the local order is similar to that present in the stable monoclinic Bi 2Te 4O 11 phase. Clear differences are observed for the intermediate range order. The present phase is analogous to the "anti-glass" phases reported by Trömel in other tellurium-based mixed oxides. However, whereas Trömel defines anti-glass as having long range order but no short range order, it is shown here that this phase is best described as an intermediate state between the amorphous and crystalline states, i.e. having short and medium range order similar to that of tellurite glasses and a premise of long range order with the cations only.

  11. On the Origin of Charge Order in RuCl3

    NASA Astrophysics Data System (ADS)

    Berlijn, Tom

    RuCl3 has been proposed to be a spin-orbit assisted Mott insulator close to the Kitaev-spin-liquid ground state, an exotic state of matter that could protect information in quantum computers. Recent STM experiments [M. Ziatdinov et al, Nature Communications (in press)] however, show the presence of a puzzling short-range charge order in this quasi two dimensional material. Understanding the nature of this charge order may provide a pathway towards tuning RuCl3 into the Kitaev-spin-liquid ground state. Based on first principles calculations I investigate the possibility that the observed charge order is caused by a combination of short-range magnetic correlations and strong spin-orbit coupling. From a general perspective such a mechanism could offer the exciting possibility of probing local magnetic correlations with standard STM. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  12. Possible mechanism to enhance spin-fluctuation-mediated superconductivity in two-dimensional organic conductor

    NASA Astrophysics Data System (ADS)

    Nonoyama, Yoshito; Maekawa, Yukiko; Kobayashi, Akito; Suzumura, Yoshikazu; Yamada, Jun-ichi

    2008-10-01

    Mechanisms of superconductivity in quasi-two-dimensional organic conductors have been investigated using an extended Hubbard model by using the transfer energies between BDA-TTP molecules for β-(BDA-TTP)2I3 based on the X-ray experiment data and the extended Hückel calculation. We obtain several mean-field solutions with charge orderings which may represent short-range orderings or low-energy fluctuations in the low-dimensional electronic system. In the pressure-temperature phase diagram, a charge ordered metal state almost degenerates with a normal metal state between an insulating phase with charge ordering and the normal metal phase. Using the random phase approximation (RPA) and the linearized gap equation, the transition temperature of the superconducting state is estimated for the charge-ordered metal state and the normal metal state. It is found that transition temperature of the superconductivity induced by spin fluctuations in the charge-ordered metal state is much higher than that of the normal metal state and that the superconductivity in the charge-ordered metal state is the gapless d-wave. This suggests that the short range charge ordering may also contribute to an enhancement of spin-fluctuation-mediated superconductivity. The difference in the superconducting states between β-(BDA-TTP)2I3 and β-(BDA-TTP)2SbF6 are briefly discussed.

  13. Comparison of short-range-order in liquid- and rotator-phase states of a simple molecular liquid: A reverse Monte Carlo and molecular dynamics analysis of neutron diffraction data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pardo, Luis Carlos; Tamarit, Josep Lluis; Veglio, Nestor

    2007-10-01

    The short-range order (SRO) correlations in liquid- and rotator-phase states of carbon tetrachloride are revisited here. The correlation of some angular magnitudes is used to evaluate the positional and orientational correlations in the liquid as well as in the rotator phase. The results show significant similitudes in the relative position of the molecules surrounding a central one but striking differences in their relative orientations, which could explain the changes in SRO between the two phases and the puzzling behavior of the local density in the liquid and rotator phases.

  14. Local chiral potentials with Δ -intermediate states and the structure of light nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piarulli, M.; Girlanda, L.; Schiavilla, R.

    We present fully local versions of the minimally non-local nucleon-nucleon potentials constructed in a previous paper [M. Piarulli et al., Phys. Rev. C 91, 024003 (2015)], and use them in hypersperical-harmonics and quantum Monte Carlo calculations of ground and excited states of 3H, 3He, 4He, 6He, and 6Li nuclei. The long-range part of these local potentials includes oneand two-pion exchange contributions without and with Δ isobars in the intermediate states up to order Q3 (Q denotes generically the low momentum scale) in the chiral expansion, while the short-range part consists of contact interactions up to order Q4. The low-energy constantsmore » multiplying these contact interactions are fitted to the 2013 Granada database in two different ranges of laboratory energies, either 0–125 MeV or 0–200 MeV, and to the deuteron binding energy and nn singlet scattering length. Fits to these data are performed for three models characterized by long- and short-range cutoffs, RL and RS respectively, ranging from (RL,RS) = (1.2, 0.8) fm down to (0.8, 0.6) fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.« less

  15. Evidence for short-range magnetic order in the nematic phase of FeSe from anisotropic in-plane magnetostriction and susceptibility measurements

    NASA Astrophysics Data System (ADS)

    He, Mingquan; Wang, Liran; Hardy, Frédéric; Xu, Liping; Wolf, Thomas; Adelmann, Peter; Meingast, Christoph

    2018-03-01

    The nature of the nematic state in FeSe remains one of the major unsolved mysteries in Fe-based superconductors. Both spin and orbital physics have been invoked to explain the origin of this phase. Here we present experimental evidence for frustrated, short-range magnetic order, as suggested by several recent theoretical works, in the nematic state of FeSe. We use a combination of magnetostriction, susceptibility, and resistivity measurements to probe the in-plane anisotropies of the nematic state and its associated fluctuations. Despite the absence of long-range magnetic order in FeSe, we observe a sizable in-plane magnetic susceptibility anisotropy, which is responsible for the field-induced in-plane distortion inferred from magnetostriction measurements. Further we demonstrate that all three anisotropies in FeSe are very similar to those of BaFe2As2 , which strongly suggests that the nematic phase in FeSe is also of magnetic origin.

  16. Magnetic order of intermetallic FeGa3 -yGey studied by μ SR and 57Fe Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Munevar, J.; Cabrera-Baez, M.; Alzamora, M.; Larrea, J.; Bittar, E. M.; Baggio-Saitovitch, E.; Litterst, F. J.; Ribeiro, R. A.; Avila, M. A.; Morenzoni, E.

    2017-03-01

    Temperature-dependent magnetization, muon spin rotation, and 57Fe Mössbauer spectroscopy experiments performed on crystals of intermetallic FeGa3 -yGey (y =0.11 ,0.14 ,0.17 ,0.22 ,0.27 ,0.29 ,0.32 ) are reported. Whereas at y =0.11 even a sensitive magnetic microprobe such as μ SR does not detect magnetism, all other samples display weak ferromagnetism with a magnetic moment of up to 0.22 μB per Fe atom. As a function of doping and of temperature, a crossover from short-range to long-range magnetic order is observed, characterized by a broadly distributed spontaneous internal field. However, y =0.14 and 0.17 remain in the short-range-ordered state down to the lowest investigated temperature. The transition from short-range to long-range order appears to be accompanied by a change of the character of the spin fluctuations, which exhibit a spin-wave excitation signature in the long-range-order part of the phase diagram. Mössbauer spectroscopy for y =0.27 and 0.32 indicates that the internal field lies in the plane perpendicular to the crystallographic c axis. The field distribution and its evolution with doping suggest that the details of the Fe magnetic moment formation and the consequent magnetic state are determined not only by the dopant concentration, but also by the way the replacement of the Ga atoms surrounding the Fe is accomplished.

  17. Neutron polarization analysis study of the frustrated magnetic ground state of β-Mn1-xAlx

    NASA Astrophysics Data System (ADS)

    Stewart, J. R.; Andersen, K. H.; Cywinski, R.

    2008-07-01

    We have performed a neutron polarization analysis study of the short-range nuclear and magnetic correlations present in the dilute alloy, β-Mn1-xAlx with 0.03≤x≤0.16 , in order to study the evolution of the magnetic ground state of this system as it achieves static spin-glass order at concentrations x>0.09 . To this end we have developed a reverse-Monte Carlo algorithm which has enabled us to extract Warren-Cowley nuclear short-range order parameters and magnetic spin correlations. Using conventional neutron powder diffraction, we show that the nonmagnetic Al substituents preferentially occupy the magnetic site II Wyckoff positions in the β-Mn structure—resulting in a reduction of the magnetic topological frustration of the Mn atoms. These Al impurities are found to display strong anticlustering behavior. The magnetic spin correlations are predominantly antiferromagnetic, persisting over a short range which is similar for all the samples studied—above and below the spin-liquid-spin-glass boundary—while the observed static (disordered) moment is shown to increase with increasing Al concentration.

  18. Magnetic structure in Mn1 -xCoxGe compounds

    NASA Astrophysics Data System (ADS)

    Altynbaev, E.; Siegfried, S.-A.; Strauß, P.; Menzel, D.; Heinemann, A.; Fomicheva, L.; Tsvyashchenko, A.; Grigoriev, S.

    2018-04-01

    The magnetic system of the pseudobinary compound Mn1 -xCoxGe has been studied using small-angle neutron scattering and susceptibility measurements. It is found that Mn1 -xCoxGe orders magnetically at low temperatures in the whole concentration range of x ∈[0 /0.9 ] . Four different states of the magnetic structure have been found at low temperatures: the long-range-ordered (LRO) short-period helical magnetic structure at x

  19. Local chiral potentials with Δ -intermediate states and the structure of light nuclei

    DOE PAGES

    Piarulli, M.; Girlanda, L.; Schiavilla, R.; ...

    2016-11-28

    In this paper, we present fully local versions of the minimally nonlocal nucleon-nucleon potentials constructed in a previous paper [Piarulli et al., Phys. Rev. C 91, 024003 (2015)], and use them in hypersperical harmonics and quantum Monte Carlo calculations of ground and excited states ofmore » $^3$H, $^3$He, $^4$He, $^6$He, and $^6$Li nuclei. The long-range part of these local potentials includes one- and two-pion exchange contributions without and with $$\\Delta$$-isobars in the intermediate states up to order $Q^3$ ($Q$ denotes generically the low momentum scale) in the chiral expansion, while the short-range part consists of contact interactions up to order $Q^4$. The low-energy constants multiplying these contact interactions are fitted to the 2013 Granada database in two different ranges of laboratory energies, either 0–125 MeV or 0–200 MeV, and to the deuteron binding energy and $nn$ singlet scattering length. Fits to these data are performed for three models characterized by long- and short-range cutoffs, $$R_{\\rm L}$$ and $$R_{\\rm S}$$, respectively, ranging from $$(R_{\\rm L},R_{\\rm S})=(1.2,0.8)$$ fm down to $(0.8,0.6)$ fm. Finally, the long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.« less

  20. Local chiral potentials with Δ -intermediate states and the structure of light nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piarulli, M.; Girlanda, L.; Schiavilla, R.

    In this paper, we present fully local versions of the minimally nonlocal nucleon-nucleon potentials constructed in a previous paper [Piarulli et al., Phys. Rev. C 91, 024003 (2015)], and use them in hypersperical harmonics and quantum Monte Carlo calculations of ground and excited states ofmore » $^3$H, $^3$He, $^4$He, $^6$He, and $^6$Li nuclei. The long-range part of these local potentials includes one- and two-pion exchange contributions without and with $$\\Delta$$-isobars in the intermediate states up to order $Q^3$ ($Q$ denotes generically the low momentum scale) in the chiral expansion, while the short-range part consists of contact interactions up to order $Q^4$. The low-energy constants multiplying these contact interactions are fitted to the 2013 Granada database in two different ranges of laboratory energies, either 0–125 MeV or 0–200 MeV, and to the deuteron binding energy and $nn$ singlet scattering length. Fits to these data are performed for three models characterized by long- and short-range cutoffs, $$R_{\\rm L}$$ and $$R_{\\rm S}$$, respectively, ranging from $$(R_{\\rm L},R_{\\rm S})=(1.2,0.8)$$ fm down to $(0.8,0.6)$ fm. Finally, the long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.« less

  1. Zigzag antiferromagnetic ground state with anisotropic correlation lengths in the quasi-two-dimensional honeycomb lattice compound N a2C o2Te O6

    NASA Astrophysics Data System (ADS)

    Bera, A. K.; Yusuf, S. M.; Kumar, Amit; Ritter, C.

    2017-03-01

    The crystal structure, magnetic ground state, and the temperature-dependent microscopic spin-spin correlations of the frustrated honeycomb lattice antiferromagnet N a2C o2Te O6 have been investigated by powder neutron diffraction. A long-range antiferromagnetic (AFM) ordering has been found below TN˜24.8 K . The magnetic ground state, determined to be zigzag antiferromagnetic and characterized by a propagation vector k =(1 /2 0 0 ) , occurs due to the competing exchange interactions up to third-nearest neighbors within the honeycomb lattice. The exceptional existence of a limited magnetic correlation length along the c axis (perpendicular to the honeycomb layers in the a b planes) has been found even at 1.8 K, well below the TN˜24.8 K . The observed limited correlation along the c axis is explained by the disorder distribution of the Na ions within the intermediate layers between honeycomb planes. The reduced ordered moments mCo (1 )=2.77 (3 ) μB/C o2 + and mCo (2 )=2.45 (2 ) μB/C o2 + at 1.8 K reflect the persistence of spin fluctuations in the ordered state. Above TN˜24.8 K , the presence of short-range magnetic correlations, manifested by broad diffuse magnetic peaks in the diffraction patterns, has been found. Reverse Monte Carlo analysis of the experimental diffuse magnetic scattering data reveals that the spin correlations are mainly confined within the two-dimensional honeycomb layers (a b plane) with a correlation length of ˜12 Å at 25 K. The nature of the spin arrangements is found to be similar in both the short-range and long-range ordered magnetic states. This implies that the short-range correlation grows with decreasing temperature and leads to the zigzag AFM ordering at T ≤TN . The present study provides a comprehensive picture of the magnetic correlations over the temperature range above and below the TN and their relation to the crystal structure. The role of intermediate soft Na layers on the magnetic coupling between honeycomb planes is discussed.

  2. Maximally random discrete-spin systems with symmetric and asymmetric interactions and maximally degenerate ordering

    NASA Astrophysics Data System (ADS)

    Atalay, Bora; Berker, A. Nihat

    2018-05-01

    Discrete-spin systems with maximally random nearest-neighbor interactions that can be symmetric or asymmetric, ferromagnetic or antiferromagnetic, including off-diagonal disorder, are studied, for the number of states q =3 ,4 in d dimensions. We use renormalization-group theory that is exact for hierarchical lattices and approximate (Migdal-Kadanoff) for hypercubic lattices. For all d >1 and all noninfinite temperatures, the system eventually renormalizes to a random single state, thus signaling q ×q degenerate ordering. Note that this is the maximally degenerate ordering. For high-temperature initial conditions, the system crosses over to this highly degenerate ordering only after spending many renormalization-group iterations near the disordered (infinite-temperature) fixed point. Thus, a temperature range of short-range disorder in the presence of long-range order is identified, as previously seen in underfrustrated Ising spin-glass systems. The entropy is calculated for all temperatures, behaves similarly for ferromagnetic and antiferromagnetic interactions, and shows a derivative maximum at the short-range disordering temperature. With a sharp immediate contrast of infinitesimally higher dimension 1 +ɛ , the system is as expected disordered at all temperatures for d =1 .

  3. Short range ferromagnetic, magneto-electric, and magneto-dielectric effect in ceramic Co{sub 3}TeO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Harishchandra, E-mail: singh85harish@gmail.com, E-mail: singh85harish@rrcat.gov.in; Ghosh, Haranath; Indus Synchrotrons Utilization Division, Raja Ramanna Center for Advanced Technology, Indore 452013

    2016-01-28

    We report observation of magneto-electric and magneto-dielectric couplings along with short range ferromagnetic order in ceramic Cobalt Tellurate (Co{sub 3}TeO{sub 6}, CTO) using magnetic, structural, dielectric, pyroelectric, and polarization studies. DC magnetization along with dielectric constant measurements indicate a coupling between magnetic order and electrical polarization. A strong anomaly in the dielectric constant at ∼17.4 K in zero magnetic field indicates spontaneous electric polarization, consistent with a recent neutron diffraction study. Observation of weak short range ferromagnetic order at lower temperatures is attributed to the Griffiths-like ferromagnetism. Furthermore, magnetic field dependence of the ferroelectric transition follows earlier theoretical predictions, applicable tomore » single crystal CTO. Finally, combined dielectric, pyroelectric, and polarization measurements suggest that the ground state of CTO may possess spontaneous symmetry breaking in the absence of magnetic field.« less

  4. Short, intermediate and long range order in amorphous ices

    NASA Astrophysics Data System (ADS)

    Martelli, Fausto; Torquato, Salvatore; Giovanbattista, Nicolas; Car, Roberto

    Water exhibits polyamorphism, i.e., it exists in more than one amorphous state. The most common forms of glassy water are the low-density amorphous (LDA) and the high-density amorphous (HDA) ices. LDA, the most abundant form of ice in the Universe, transforms into HDA upon isothermal compression. We model the transformation of LDA into HDA under isothermal compression with classical molecular dynamics simulations. We analyze the molecular structures with a recently introduced scalar order metric to measure short and intermediate range order. In addition, we rank the structures by their degree of hyperuniformity, i.e.,the extent to which long range density fluctuations are suppressed. F.M. and R.C. acknowledge support from the Department of Energy (DOE) under Grant No. DE-SC0008626.

  5. Evolution of short range order in Ar: Liquid to glass and solid transitions-A computational study

    NASA Astrophysics Data System (ADS)

    Shor, Stanislav; Yahel, Eyal; Makov, Guy

    2018-04-01

    The evolution of the short range order (SRO) as a function of temperature in a Lennard-Jones model liquid with Ar parameters was determined and juxtaposed with thermodynamic and kinetic properties obtained as the liquid was cooled (heated) and transformed between crystalline solid or glassy states and an undercooled liquid. The Lennard-Jones system was studied by non-equilibrium molecular dynamics simulations of large supercells (approximately 20000 atoms) rapidly cooled or heated at selected quenching rates and at constant pressure. The liquid to solid transition was identified by discontinuities in the atomic volume and molar enthalpy; the glass transition temperature range was identified from the temperature dependence of the self-diffusion. The SRO was studied within the quasi-crystalline model (QCM) framework and compared with the Steinhardt bond order parameters. Within the QCM it was found that the SRO evolves from a bcc-like order in the liquid through a bct-like short range order (c/a=1.2) in the supercooled liquid which persists into the glass and finally to a fcc-like ordering in the crystalline solid. The variation of the SRO that results from the QCM compares well with that obtained with Steinhardt's bond order parameters. The hypothesis of icosahedral order in liquids and glasses is not supported by our results.

  6. Intermediate- and short-range order in phosphorus-selenium glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bytchkov, Aleksei; Hennet, Louis; Price, David L.

    2011-04-01

    State-of-the-art neutron and x-ray diffraction measurements have been performed to provide a definitive picture of the intermediate- and short-range structures of P{sub x}Se{sub 1-x} glasses spanning two glass regions, x 0.025-0.54 and 0.64-0.84. Liquid P{sub 4}Se{sub 3} and amorphous red P and Se were also measured. Detailed information was obtained about the development with increasing phosphorous concentration of intermediate-range order on the length scale {approx}6 A ring , based on the behavior of the first sharp diffraction peak. Attention is also paid to the feature in the structure factor at 7.5 A ring {sup -1}, identified in earlier numerical simulations,more » provides further evidence of the existence of molecular units. The real-space transforms yield a reliable statistical picture of the changing short-range order as x increases, using the information about types and concentrations of local structural units provided by previous NMR measurements to interpret the trends observed.« less

  7. Short-range magentic correlations and dynamic orbital ordering in the thermally activated spin state of LaCoO3

    NASA Astrophysics Data System (ADS)

    Rosenkranz, S.; Phelan, D.; Louca, D.; Lee, S. H.; Chupas, P. J.; Osborn, R.; Zheng, H.; Mitchell, J. F.

    2006-03-01

    The cobalt perovskites La1-xSrxCoO3 show intriguing spin, lattice, and orbital properties similar to the ones observed in colossal magnetoresistive manganites. The x=0 parent compound is a non-magnetic insulator at low temperatures, but shows evidence of a spin-state transition of the cobalt ions above 50K from a low-spin to an intermediate or high-spin configuration. Using high resolution, inelastic neutron scattering, we observe a distinct low energy excitation at 0.6meV coincident with the thermally induced spin state transition observed in susceptibility measurements. The thermal activation of this excited spin state also leads to short-range, dynamic ferro- and antiferromagnetic correlations. These observations are consistent with the activation of a zero-field split intermediate spin state as well as the presence of dynamic orbital ordering of these excited states. Work supported by US DOE BES-DMS W-31-109-ENG-38 and NSF DMR-0454672

  8. Short-Range Nucleon-Nucleon Correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas Higinbotham

    2011-10-01

    Valence-shell nucleon knock-out experiments, such as 12C(e,e'p)11B, measure less strength then is predicted by independent particle shell model calculations. The theoretical solution to this problem is to include the correlations between the nucleons in the nucleus in the calculations. Motivated by these results, many electron scattering experiments have tried to directly observe these correlations in order to gain new insight into the short-range part of the nucleon-nucleon potential. Unfortunately, many competing mechanisms can cause the same observable final-state as an initial-state correlation, making truly isolating the signal extremely challenging. This paper reviews the recent experimental evidence for short-range correlations, asmore » well as explores the possibility that such correlations are responsible for the EMC effect in the 0.3 < xB < 0.7 deep inelastic scattering ratios.« less

  9. Auxiliary-fermion approach to critical fluctuations in the two-dimensional quantum antiferromagnetic Heisenberg model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinckmann, Jan; Woelfle, Peter

    2004-11-01

    The nearest-neighbor quantum antiferromagnetic (AF) Heisenberg model for spin-1/2 on a two-dimensional square lattice is studied in the auxiliary-fermion representation. Expressing spin operators by canonical fermionic particles requires a constraint on the fermion charge Q{sub i}=1 on each lattice site i, which is imposed approximately through the thermal average. The resulting interacting fermion system is first treated in mean-field theory (MFT), which yields an AF ordered ground state and spin waves in quantitative agreement with conventional spin-wave theory. At finite temperature a self-consistent approximation beyond mean field is required in order to fulfill the Mermin-Wagner theorem. We first discuss amore » fully self-consistent approximation, where fermions are renormalized due to fluctuations of their spin density, in close analogy to FLEX. While static properties like the correlation length, {xi}(T){proportional_to}exp(aJ/T), come out correctly, the dynamical response lacks the magnon-like peaks which would reflect the appearance of short-range order at low T. This drawback, which is caused by overdamping, is overcome in a 'minimal self-consistent approximation' (MSCA), which we derive from the equations of motion. The MSCA features dynamical scaling at small energy and temperature and is qualitatively correct both in the regime of order-parameter relaxation at long wavelengths {lambda}>{xi} and in the short-range-order regime at {lambda}<{xi}. We also discuss the impact of vertex corrections and the problem of pseudo-gap formation in the single-particle density of states due to long-range fluctuations. Finally we show that the (short-range) magnetic order in MFT and MSCA helps to fulfill the constraint on the local fermion occupancy.« less

  10. Influence of electron doping on the ground state of (Sr 1-xLa x) 2IrO 4

    DOE PAGES

    Chen, Xiang; Hogan, Tom; Walkup, D.; ...

    2015-08-17

    The evolution of the electronic properties of electron-doped (Sr 1-xLa x) 2IrO 4 is experimentally explored as the doping limit of La is approached. As electrons are introduced, the electronic ground state transitions from a spin-orbit Mott phase into an electronically phase separated state, where long-range magnetic order vanishes beyond x = 0:02 and charge transport remains percolative up to the limit of La substitution (x =0:06). In particular, the electronic ground state remains inhomogeneous even beyond the collapse of the parent state's long-range antiferromagnetic order, while persistent short-range magnetism survives up to the highest La-substitution levels. Furthermore, as electronsmore » are doped into Sr 2IrO 4, we observe the appearance of a low temperature magnetic glass-like state intermediate to the complete suppression of antiferromagnetic order. Universalities and di erences in the electron-doped phase diagrams of single layer and bilayer Ruddlesden-Popper strontium iridates are discussed.« less

  11. Positional short-range order in the nematic phase of n BABAs

    NASA Astrophysics Data System (ADS)

    Usha Deniz, K.; Pepy, G.; Parette, G.; Keller, P.

    1991-10-01

    The positional short-range order, SRO ⊥, perpendicular to the nematic director n̂ has been studied in the fibre-type nematics, nBABAs, by neutron diffraction. SRO ⊥ is found to be dependent on other types of nematic short-range order but not on the orientational long-range order.

  12. Ab initio molecular dynamics simulation of binary Cu64Zr36 bulk metallic glass: Validation of the cluster-plus-glue-atom model

    NASA Astrophysics Data System (ADS)

    Tian, Hua; Zhang, Chong; Wang, Lu; Zhao, JiJun; Dong, Chuang; Wen, Bin; Wang, Qing

    2011-06-01

    We have performed ab initio molecular dynamics simulation of Cu64Zr36 alloy at descending temperatures (from 2000 K to 400 K) and discussed the evolution of short-range order with temperature. The pair-correlation functions, coordination numbers, and chemical compositions of the most abundant local clusters have been analyzed. We found that icosahedral short-range order exists in the liquid, undercooled, and glass states, and it becomes dominant in the glass states. Moreover, we demonstrated the existence of Cu-centered Cu8Zr5 icosahedral clusters as the major local structural unit in the Cu64Zr36 amorphous alloy. This finding agrees well with our previous cluster model of Cu-Zr-based BMG as well as experimental evidences from synchrotron x ray and neutron diffraction measurements.

  13. Damped spin waves in the intermediate ordered phases in Ni 3V 2O 8

    DOE PAGES

    Ehlers, Georg; Podlesnyak, Andrey A.; Frontzek, Matthias D.; ...

    2015-06-09

    Here, spin dynamics in the intermediate ordered phases (between 4 and 9 K) in Ni 3V 2O 8 have been studied with inelastic neutron scattering. It is found that the spin waves are very diffuse, indicative of short lived correlations and the coexistence of paramagnetic moments with the long-range ordered state.

  14. Observation of short range order driven large refrigerant capacity in chemically disordered single phase compound Dy2Ni0.87Si2.95.

    PubMed

    Pakhira, Santanu; Mazumdar, Chandan; Choudhury, Dibyasree; Ranganathan, R; Giri, S

    2018-05-16

    In this work, we report the successful synthesis of a new intermetallic compound Dy2Ni0.87Si2.95 forming in single phase only with a chemically disordered structure. The random distribution of Ni/Si and crystal defects create a variation in the local electronic environment between the magnetic Dy ions. In the presence of both disorder and competing exchange interactions driven magnetic frustration, originating due to c/a ∼ 1, the compound undergoes spin freezing behaviour below 5.6 K. In the non-equilibrium state below the spin freezing behaviour, the compound exhibits aging phenomena and magnetic memory effects. In the magnetically short-range ordered region, much above the freezing temperature, an unusual occurrence of considerable magnetic entropy change, -ΔSmaxM ∼ 21 J kg-1 K-1 with large cooling power RCP ∼ 531 J kg-1 and adiabatic temperature change, ΔTad ∼ 10 K for a field change of 70 kOe, is observed for this short range ordered cluster-glass compound without any magnetic hysteresis loss.

  15. Real-space investigation of short-range magnetic correlations in fluoride pyrochlores NaCaCo 2F 7 and NaSrCo 2F 7 with magnetic pair distribution function analysis

    DOE PAGES

    Frandsen, Benjamin A.; Billinge, Simon J. L.; Ross, Kathryn A.; ...

    2017-12-29

    Here, we present time-of-flight neutron total scattering and polarized neutron scattering measurements of the magnetically frustrated compounds NaCaCo 2F 7 and NaSrCo 2F 7, which belong to a class of recently discovered pyrochlore compounds based on transition metals and fluorine. The magnetic pair distribution function (mPDF) technique is used to analyze and model the total scattering data in real space. We find that a previously-proposed model of short-range XY-like correlations with a length scale of 10-15 Å, combined with nearest-neighbor collinear antiferromagnetic correlations, accurately describes the mPDF data at low temperature, confirming the magnetic ground state in these materials. Thismore » model is further verified by the polarized neutron scattering data. From an analysis of the temperature dependence of the mPDF and polarized neutron scattering data, we find that short-range correlations persist on the nearest-neighbor length scale up to 200 K, approximately two orders of magnitude higher than the spin freezing temperatures of these compounds. These results highlight the opportunity presented by these new pyrochlore compounds to study the effects of geometric frustration at relatively high temperatures, while also advancing the mPDF technique and providing a novel opportunity to investigate a genuinely short-range-ordered magnetic ground state directly in real space.« less

  16. Real-space investigation of short-range magnetic correlations in fluoride pyrochlores NaCaCo 2F 7 and NaSrCo 2F 7 with magnetic pair distribution function analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frandsen, Benjamin A.; Billinge, Simon J. L.; Ross, Kathryn A.

    Here, we present time-of-flight neutron total scattering and polarized neutron scattering measurements of the magnetically frustrated compounds NaCaCo 2F 7 and NaSrCo 2F 7, which belong to a class of recently discovered pyrochlore compounds based on transition metals and fluorine. The magnetic pair distribution function (mPDF) technique is used to analyze and model the total scattering data in real space. We find that a previously-proposed model of short-range XY-like correlations with a length scale of 10-15 Å, combined with nearest-neighbor collinear antiferromagnetic correlations, accurately describes the mPDF data at low temperature, confirming the magnetic ground state in these materials. Thismore » model is further verified by the polarized neutron scattering data. From an analysis of the temperature dependence of the mPDF and polarized neutron scattering data, we find that short-range correlations persist on the nearest-neighbor length scale up to 200 K, approximately two orders of magnitude higher than the spin freezing temperatures of these compounds. These results highlight the opportunity presented by these new pyrochlore compounds to study the effects of geometric frustration at relatively high temperatures, while also advancing the mPDF technique and providing a novel opportunity to investigate a genuinely short-range-ordered magnetic ground state directly in real space.« less

  17. Real-space investigation of short-range magnetic correlations in fluoride pyrochlores NaCaCo2F7 and NaSrCo2F7 with magnetic pair distribution function analysis

    NASA Astrophysics Data System (ADS)

    Frandsen, Benjamin A.; Ross, Kate A.; Krizan, Jason W.; Nilsen, Gøran J.; Wildes, Andrew R.; Cava, Robert J.; Birgeneau, Robert J.; Billinge, Simon J. L.

    2017-12-01

    We present time-of-flight neutron total scattering and polarized neutron scattering measurements of the magnetically frustrated compounds NaCaCo2F7 and NaSrCo2F7 , which belong to a class of recently discovered pyrochlore compounds based on transition metals and fluorine. The magnetic pair distribution function (mPDF) technique is used to analyze and model the total scattering data in real space. We find that a previously proposed model of short-range XY-like correlations with a length scale of 10-15 Å, combined with nearest-neighbor collinear antiferromagnetic correlations, accurately describes the mPDF data at low temperature, confirming the magnetic ground state in these materials. This model is further verified by the polarized neutron scattering data. From an analysis of the temperature dependence of the mPDF and polarized neutron scattering data, we find that short-range correlations persist on the nearest-neighbor length scale up to 200 K, approximately two orders of magnitude higher than the spin freezing temperatures of these compounds. These results highlight the opportunity presented by these new pyrochlore compounds to study the effects of geometric frustration at relatively high temperatures, while also advancing the mPDF technique and providing an opportunity to investigate a genuinely short-range-ordered magnetic ground state directly in real space.

  18. Nonlocal Coulomb correlations in pure and electron-doped Sr2IrO4 : Spectral functions, Fermi surface, and pseudo-gap-like spectral weight distributions from oriented cluster dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    Martins, Cyril; Lenz, Benjamin; Perfetti, Luca; Brouet, Veronique; Bertran, François; Biermann, Silke

    2018-03-01

    We address the role of nonlocal Coulomb correlations and short-range magnetic fluctuations in the high-temperature phase of Sr2IrO4 within state-of-the-art spectroscopic and first-principles theoretical methods. Introducing an "oriented-cluster dynamical mean-field scheme", we compute momentum-resolved spectral functions, which we find to be in excellent agreement with angle-resolved photoemission spectra. We show that while short-range antiferromagnetic fluctuations are crucial to accounting for the electronic properties of Sr2IrO4 even in the high-temperature paramagnetic phase, long-range magnetic order is not a necessary ingredient of the insulating state. Upon doping, an exotic metallic state is generated, exhibiting cuprate-like pseudo-gap spectral properties, for which we propose a surprisingly simple theoretical mechanism.

  19. Optimized equation of the state of the square-well fluid of variable range based on a fourth-order free-energy expansion.

    PubMed

    Espíndola-Heredia, Rodolfo; del Río, Fernando; Malijevsky, Anatol

    2009-01-14

    The free energy of square-well (SW) systems of hard-core diameter sigma with ranges 1 < or = lambda < or = 3 is expanded in a perturbation series. This interval covers most ranges of interest, from short-ranged SW fluids (lambda approximately 1.2) used in modeling colloids to long ranges (lambda approximately 3) where the van der Waals classic approximation holds. The first four terms are evaluated by means of extensive Monte Carlo simulations. The calculations are corrected for the thermodynamic limit and care is taken to evaluate and to control the various sources of error. The results for the first two terms in the series confirm well-known independent results but have an increased estimated accuracy and cover a wider set of well ranges. The results for the third- and fourth-order terms are novel. The free-energy expansion for systems with short and intermediate ranges, 1 < or = lambda < or = 2, is seen to have properties similar to those of systems with longer ranges, 2 < or = lambda < or = 3. An equation of state (EOS) is built to represent the free-energy data. The thermodynamics given by this EOS, confronted against independent computer simulations, is shown to predict accurately the internal energy, pressure, specific heat, and chemical potential of the SW fluids considered and for densities 0 < or = rho sigma(3) < or = 0.9 including subcritical temperatures. This fourth-order theory is estimated to be accurate except for a small region at high density, rho sigma(3) approximately 0.9, and low temperature where terms of still higher order might be needed.

  20. Classical Spin Nematic Transition in LiGa0.95In0.05Cr4O8

    NASA Astrophysics Data System (ADS)

    Wawrzyńczak, R.; Tanaka, Y.; Yoshida, M.; Okamoto, Y.; Manuel, P.; Casati, N.; Hiroi, Z.; Takigawa, M.; Nilsen, G. J.

    2017-08-01

    We present the results of a combined 7Li -NMR and diffraction study on LiGa0.95In0.05Cr4O8, a member of the LiGa1 -xInxCr4O8 "breathing" pyrochlore family. Via specific heat and NMR measurements, we find that the complex sequence of first-order transitions observed for LiGaCr4O8 is replaced by a single second-order transition at Tf=11 K . Neutron and x-ray diffraction rule out both structural symmetry lowering and magnetic long-range order as the origin of this transition. Instead, reverse Monte Carlo fitting of the magnetic diffuse scattering indicates that the low-temperature phase may be described as a collinear spin nematic state, characterized by a quadrupolar order parameter. This state also shows signs of short-range order between collinear spin arrangements on tetrahedra, revealed by mapping the reverse Monte Carlo spin configurations onto a three-state color model.

  1. Long-time predictability in disordered spin systems following a deep quench

    NASA Astrophysics Data System (ADS)

    Ye, J.; Gheissari, R.; Machta, J.; Newman, C. M.; Stein, D. L.

    2017-04-01

    We study the problem of predictability, or "nature vs nurture," in several disordered Ising spin systems evolving at zero temperature from a random initial state: How much does the final state depend on the information contained in the initial state, and how much depends on the detailed history of the system? Our numerical studies of the "dynamical order parameter" in Edwards-Anderson Ising spin glasses and random ferromagnets indicate that the influence of the initial state decays as dimension increases. Similarly, this same order parameter for the Sherrington-Kirkpatrick infinite-range spin glass indicates that this information decays as the number of spins increases. Based on these results, we conjecture that the influence of the initial state on the final state decays to zero in finite-dimensional random-bond spin systems as dimension goes to infinity, regardless of the presence of frustration. We also study the rate at which spins "freeze out" to a final state as a function of dimensionality and number of spins; here the results indicate that the number of "active" spins at long times increases with dimension (for short-range systems) or number of spins (for infinite-range systems). We provide theoretical arguments to support these conjectures, and also study analytically several mean-field models: the random energy model, the uniform Curie-Weiss ferromagnet, and the disordered Curie-Weiss ferromagnet. We find that for these models, the information contained in the initial state does not decay in the thermodynamic limit—in fact, it fully determines the final state. Unlike in short-range models, the presence of frustration in mean-field models dramatically alters the dynamical behavior with respect to the issue of predictability.

  2. Long-time predictability in disordered spin systems following a deep quench.

    PubMed

    Ye, J; Gheissari, R; Machta, J; Newman, C M; Stein, D L

    2017-04-01

    We study the problem of predictability, or "nature vs nurture," in several disordered Ising spin systems evolving at zero temperature from a random initial state: How much does the final state depend on the information contained in the initial state, and how much depends on the detailed history of the system? Our numerical studies of the "dynamical order parameter" in Edwards-Anderson Ising spin glasses and random ferromagnets indicate that the influence of the initial state decays as dimension increases. Similarly, this same order parameter for the Sherrington-Kirkpatrick infinite-range spin glass indicates that this information decays as the number of spins increases. Based on these results, we conjecture that the influence of the initial state on the final state decays to zero in finite-dimensional random-bond spin systems as dimension goes to infinity, regardless of the presence of frustration. We also study the rate at which spins "freeze out" to a final state as a function of dimensionality and number of spins; here the results indicate that the number of "active" spins at long times increases with dimension (for short-range systems) or number of spins (for infinite-range systems). We provide theoretical arguments to support these conjectures, and also study analytically several mean-field models: the random energy model, the uniform Curie-Weiss ferromagnet, and the disordered Curie-Weiss ferromagnet. We find that for these models, the information contained in the initial state does not decay in the thermodynamic limit-in fact, it fully determines the final state. Unlike in short-range models, the presence of frustration in mean-field models dramatically alters the dynamical behavior with respect to the issue of predictability.

  3. An Avoidance Model for Short-Range Order Induced by Soft Repulsions in Systems of Rigid Rods

    NASA Astrophysics Data System (ADS)

    Han, Jining; Herzfeld, Judith

    1996-03-01

    The effects of soft repulsions on hard particle systems are calculated using an avoidance model which improves upon the simple mean field approximation. Avoidance reduces, but does not eliminate, the energy due to soft repulsions. On the other hand, it also reduces the configurational entropy. Under suitable conditions, this simple trade-off yields a free energy that is lower than the mean field value. In these cases, the variationally determined avoidance gives an estimate for the short-range positional order induced by soft repulsions. The results indicate little short-range order for isotropically oriented rods. However, for parallel rods, short-range order increases to significant levels as the particle axial ratio increases. The implications for long- range positional ordering are also discussed. In particular, avoidance may explain the smectic ordering of tobacco mosaic virus at volume fractions lower than those necessary for smectic ordering of hard particles.

  4. Simultaneous occurrence of multiferroism and short-range magnetic order in DyFeO 3

    DOE PAGES

    Wang, Jinchen; Liu, Juanjuan; Sheng, Jieming; ...

    2016-04-06

    In this paper, we present a combined neutron scattering and magnetization study on the multiferroic DyFeO 3, which shows a very strong magnetoelectric effect. Applying magnetic field along the c axis, the weak ferromagnetic order of the Fe ions is quickly recovered from a spin reorientation transition, and the long-range antiferromagnetic order of Dy becomes a short-range one. We found that the short-range order concurs with the multiferroic phase and is responsible for its sizable hysteresis. In conclusion, our H-T phase diagram suggests that the strong magnetoelectric effect in DyFeO 3 has to be understood with not only the weakmore » ferromagnetism of Fe but also the short-range antiferromagnetic order of Dy.« less

  5. Colloquium: Zoo of quantum-topological phases of matter

    NASA Astrophysics Data System (ADS)

    Wen, Xiao-Gang

    2017-10-01

    What are topological phases of matter? First, they are phases of matter at zero temperature. Second, they have a nonzero energy gap for the excitations above the ground state. Third, they are disordered liquids that seem to have no feature. But those disordered liquids actually can have rich patterns of many-body entanglement representing new kinds of order. This Colloquium gives a simple introduction and a brief survey of topological phases of matter. First topological phases with topological order (i.e., with long-range entanglement) are discussed. Then topological phases without topological order (i.e., with short-range entanglement) are covered.

  6. Impact of the charge density wave state in the electrodynamic response of ZrTe3 -xSex : Optical evidence for a pseudogap phase

    NASA Astrophysics Data System (ADS)

    Chinotti, M.; Ethiraj, J.; Mirri, C.; Zhu, Xiangde; Li, Lijun; Petrovic, C.; Degiorgi, L.

    2018-01-01

    The emergence of superconductivity upon progressively suppressing the long-range, charge-density-wave (CDW) order characterizes the phase diagram of several materials of interest in the on-going solid-state physics research. Se-doped ZrTe3 compounds provide the most recent, suitable arena in order to investigate the interplay of otherwise competing orders in layeredlike two-dimensional systems. We present an optical study of the CDW state in ZrTe3 -xSex at selected Se dopings, based on the measurement of the reflectivity from the far-infrared up to the ultraviolet, as a function of temperature. We particularly focus our attention to the redistribution of the spectral weight, which images the impact of the CDW state within the optical conductivity across the phase diagram of the title compounds. The electrodynamic response is consistent with a scenario based on a long-range CDW condensate at low Se doping. Upon increasing the Se content, this then gives way to local, short-range order CDW segments. Our spectral weight analysis reveals the presence of a pseudogap phase, as fingerprint of the CDW precursor effects and thus shaping the charge dynamics of the title compounds in their normal state, preceding the onset of superconductivity.

  7. Molecular dynamics simulations of oxide memory resistors (memristors).

    PubMed

    Savel'ev, S E; Alexandrov, A S; Bratkovsky, A M; Williams, R Stanley

    2011-06-24

    Reversible bipolar nanoswitches that can be set and read electronically in a solid-state two-terminal device are very promising for applications. We have performed molecular dynamics simulations that mimic systems with oxygen vacancies interacting via realistic potentials and driven by an external bias voltage. The competing short- and long-range interactions among charged mobile vacancies lead to density fluctuations and short-range ordering, while illustrating some aspects of observed experimental behavior, such as memristor polarity inversion. The simulations show that the 'localized conductive filaments' and 'uniform push/pull' models for memristive switching are actually two extremes of the one stochastic mechanism.

  8. Interplay between intramolecular and intermolecular structures of 1,1,2,2-tetrachloro-1,2-difluoroethane

    NASA Astrophysics Data System (ADS)

    Rovira-Esteva, M.; Murugan, N. A.; Pardo, L. C.; Busch, S.; Tamarit, J. Ll.; Pothoczki, Sz.; Cuello, G. J.; Bermejo, F. J.

    2011-08-01

    We report on the interplay between the short-range order of molecules in the liquid phase of 1,1,2,2-tetrachloro-1,2-difluoroethane and the possible molecular conformations, trans and gauche. Two complementary approaches have been used to get a comprehensive picture: analysis of neutron-diffraction data by a Bayesian fit algorithm and a molecular dynamics simulation. The results of both show that the population of trans and gauche conformers in the liquid state can only correspond to the gauche conformer being more stable than the trans conformer. Distinct conformer geometries induce distinct molecular short-range orders around them, suggesting that a deep intra- and intermolecular interaction coupling is energetically favoring one of the conformers by reducing the total molecular free energy.

  9. Modelling Polar Self Assembly

    NASA Astrophysics Data System (ADS)

    Olvera de La Cruz, Monica; Sayar, Mehmet; Solis, Francisco J.; Stupp, Samuel I.

    2001-03-01

    Recent experimental studies in our group have shown that self assembled thin films of noncentrosymmetric supramolecular objects composed of triblock rodcoil molecules exhibit finite polar order. These aggregates have both long range dipolar and short range Ising-like interactions. We study the ground state of a simple model with these competing interactions. We find that the competition between Ising-like and dipolar forces yield a periodic domain structure, which can be controlled by adjusting the force constants and film thickness. When the surface forces are included in the potential, the system exhibits a finite macroscopic polar order.

  10. Direct imaging of coexisting ordered and frustrated sublattices in artificial ferromagnetic quasicrystals

    DOE PAGES

    Farmer, B.; Bhat, V. S.; Balk, A.; ...

    2016-04-25

    Here, we have used scanning electron microscopy with polarization analysis and photoemission electron microscopy to image the two-dimensional magnetization of permalloy films patterned into Penrose P2 tilings (P2T). The interplay of exchange interactions in asymmetrically coordinated vertices and short-range dipole interactions among connected film segments stabilize magnetically ordered, spatially distinct sublattices that coexist with frustrated sublattices at room temperature. Numerical simulations that include long-range dipole interactions between sublattices agree with images of as-grown P2T samples and predict a magnetically ordered ground state for a two-dimensional quasicrystal lattice of classical Ising spins.

  11. X-ray Diffraction Study of Order-Disorder Phase Transition in CuMPt6 (M=3d Elements) Alloys

    NASA Astrophysics Data System (ADS)

    Ahmed, Ejaz; Takahashi, Miwako; Iwasaki, Hiroshi; Ohshima, Ken-ichi

    2009-01-01

    We investigated the ordering behavior of ternary CuMPt6 alloys with M=Ti, V, Cr, Mn, Fe, Co, and Ni by high-temperature polycrystalline X-ray diffraction. The alloys undergo a phase transition from the fcc disordered state to the Cu3Au-type ordered state, except for the alloy with M=Ni, in which only short-range order forms. The transition temperature Tc is highest (1593 K) for M=Ti and decreases almost monotonically with increasing atomic number to 1153 K for M=Co. The observed dependence of ordering tendency on the atomic number of M is discussed in the light of the theory of ordering in transition-metal alloys and its significance for the study of ordering in ternary alloys.

  12. Nonequilibrium Tricritical Point in a System with Long-Range Interactions

    NASA Astrophysics Data System (ADS)

    Antoniazzi, Andrea; Fanelli, Duccio; Ruffo, Stefano; Yamaguchi, Yoshiyuki Y.

    2007-07-01

    Systems with long-range interactions display a short-time relaxation towards quasistationary states whose lifetime increases with system size. With reference to the Hamiltonian mean field model, we here show that a maximum entropy principle, based on Lynden-Bell’s pioneering idea of “violent relaxation,” predicts the presence of out-of-equilibrium phase transitions separating the relaxation towards homogeneous (zero magnetization) or inhomogeneous (nonzero magnetization) quasistationary states. When varying the initial condition within a family of “water bags” with different initial magnetization and energy, first- and second-order phase transition lines are found that merge at an out-of-equilibrium tricritical point. Metastability is theoretically predicted and numerically checked around the first-order phase transition line.

  13. Magnetic phase transitions and ferromagnetic short-range correlations in single-crystal Tb5Si2.2Ge1.8

    NASA Astrophysics Data System (ADS)

    Zou, M.; Pecharsky, V. K.; Gschneidner, K. A., Jr.; Schlagel, D. L.; Lograsso, T. A.

    2008-07-01

    Magnetic phase transitions in a Tb5Si2.2Ge1.8 single crystal have been studied as a function of temperature and magnetic field. Magnetic-field dependencies of the critical temperatures are highly anisotropic for both the main magnetic ordering process occurring around 120 K and a spin reorientation transition at ˜70K . Magnetic-field-induced phase transitions occur with the magnetic field applied isothermally along the a and b axes (but not along the c axis) between 1.8 and 70 K in fields below 70 kOe. Strong anisotropic thermal irreversibility is observed in the Griffiths phase regime between 120 and 200 K with applied fields ranging from 10 to 1000 Oe. Our data (1) show that the magnetic and structural phase transitions around 120 K are narrowly decoupled; (2) uncover the anisotropy of ferromagnetic short-range order in the Griffiths phase; and (3) reveal some unusual magnetic domain effects in the long-range ordered state of the Tb5Si2.2Ge1.8 compound. The temperature-magnetic field phase diagrams with field applied along the three major crystallographic directions have been constructed.

  14. Machine learning topological states

    NASA Astrophysics Data System (ADS)

    Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.

    2017-11-01

    Artificial neural networks and machine learning have now reached a new era after several decades of improvement where applications are to explode in many fields of science, industry, and technology. Here, we use artificial neural networks to study an intriguing phenomenon in quantum physics—the topological phases of matter. We find that certain topological states, either symmetry-protected or with intrinsic topological order, can be represented with classical artificial neural networks. This is demonstrated by using three concrete spin systems, the one-dimensional (1D) symmetry-protected topological cluster state and the 2D and 3D toric code states with intrinsic topological orders. For all three cases, we show rigorously that the topological ground states can be represented by short-range neural networks in an exact and efficient fashion—the required number of hidden neurons is as small as the number of physical spins and the number of parameters scales only linearly with the system size. For the 2D toric-code model, we find that the proposed short-range neural networks can describe the excited states with Abelian anyons and their nontrivial mutual statistics as well. In addition, by using reinforcement learning we show that neural networks are capable of finding the topological ground states of nonintegrable Hamiltonians with strong interactions and studying their topological phase transitions. Our results demonstrate explicitly the exceptional power of neural networks in describing topological quantum states, and at the same time provide valuable guidance to machine learning of topological phases in generic lattice models.

  15. Impact of the charge density wave state in the electrodynamic response of ZrTe 3 - x Se x : Optical evidence for a pseudogap phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinotti, M.; Ethiraj, J.; Mirri, C.

    The emergence of superconductivity upon progressively suppressing the long-range, charge-density-wave (CDW) order characterizes the phase diagram of several materials of interest in the on-going solid-state physics research. Se-doped ZrTe 3 compounds provide the most recent, suitable arena in order to investigate the interplay of otherwise competing orders in layeredlike two-dimensional systems. We present an optical study of the CDW state in ZrTe 3-xSe x at selected Se dopings, based on the measurement of the reflectivity from the far-infrared up to the ultraviolet, as a function of temperature. We particularly focus our attention to the redistribution of the spectral weight, whichmore » images the impact of the CDW state within the optical conductivity across the phase diagram of the title compounds. The electrodynamic response is consistent with a scenario based on a long-range CDW condensate at low Se doping. Upon increasing the Se content, this then gives way to local, short-range order CDW segments. Thus, our spectral weight analysis reveals the presence of a pseudogap phase, as fingerprint of the CDW precursor effects and thus shaping the charge dynamics of the title compounds in their normal state, preceding the onset of superconductivity.« less

  16. Impact of the charge density wave state in the electrodynamic response of ZrTe 3 - x Se x : Optical evidence for a pseudogap phase

    DOE PAGES

    Chinotti, M.; Ethiraj, J.; Mirri, C.; ...

    2018-01-12

    The emergence of superconductivity upon progressively suppressing the long-range, charge-density-wave (CDW) order characterizes the phase diagram of several materials of interest in the on-going solid-state physics research. Se-doped ZrTe 3 compounds provide the most recent, suitable arena in order to investigate the interplay of otherwise competing orders in layeredlike two-dimensional systems. We present an optical study of the CDW state in ZrTe 3-xSe x at selected Se dopings, based on the measurement of the reflectivity from the far-infrared up to the ultraviolet, as a function of temperature. We particularly focus our attention to the redistribution of the spectral weight, whichmore » images the impact of the CDW state within the optical conductivity across the phase diagram of the title compounds. The electrodynamic response is consistent with a scenario based on a long-range CDW condensate at low Se doping. Upon increasing the Se content, this then gives way to local, short-range order CDW segments. Thus, our spectral weight analysis reveals the presence of a pseudogap phase, as fingerprint of the CDW precursor effects and thus shaping the charge dynamics of the title compounds in their normal state, preceding the onset of superconductivity.« less

  17. Network structure of SiO2 and MgSiO3 in amorphous and liquid States

    NASA Astrophysics Data System (ADS)

    Lan, Mai Thi; Thuy Duong, Tran; Viet Huy, Nguyen; Van Hong, Nguyen

    2017-03-01

    Network structure of SiO2 and MgSiO3 at 300 K and 3200 K is investigated by molecular dynamics simulation and visualization of simulation data. Structural organization of SiO2 and MgSiO3 is clarified via analysis the short range order (SRO) and intermediate range order (IRO). Network topology is determined via analyzing the bond between structural units, the cluster of structural units as well as spatial distribution of structural units. The polyamorphism as well as structural and dynamic heterogeneities are also discussed in this work.

  18. Ta-Nb-Mo-W refractory high-entropy alloys: Anomalous ordering behavior and its intriguing electronic origin

    DOE PAGES

    Singh, Prashant; Smirnov, A. V.; Johnson, Duane D.

    2018-05-31

    From electronic-structure-based thermodynamic linear response, we establish chemical ordering behavior in complex solid solutions versus how Gibbs' space is traversed—applying it on prototype refractory A2 Ta-Nb-Mo-W high-entropy alloys. Near ideal stoichiometry, this alloy has anomalous, intricate chemical ordering tendencies, with long-ranged chemical interactions that produce competing short-range order (SRO) with a crossover to spinodal segregation. This atypical SRO arises from canonical band behavior that, with alloying, creates features near the Fermi surface (well defined even with disorder) that change to simple commensurate SRO with (un)filling of these states. In conclusion, our results reveal how complexity and competing electronic effects controlmore » ordering in these alloys.« less

  19. Ta-Nb-Mo-W refractory high-entropy alloys: Anomalous ordering behavior and its intriguing electronic origin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Prashant; Smirnov, A. V.; Johnson, Duane D.

    From electronic-structure-based thermodynamic linear response, we establish chemical ordering behavior in complex solid solutions versus how Gibbs' space is traversed—applying it on prototype refractory A2 Ta-Nb-Mo-W high-entropy alloys. Near ideal stoichiometry, this alloy has anomalous, intricate chemical ordering tendencies, with long-ranged chemical interactions that produce competing short-range order (SRO) with a crossover to spinodal segregation. This atypical SRO arises from canonical band behavior that, with alloying, creates features near the Fermi surface (well defined even with disorder) that change to simple commensurate SRO with (un)filling of these states. In conclusion, our results reveal how complexity and competing electronic effects controlmore » ordering in these alloys.« less

  20. Absence of long range order in SrDy2O4 frustrated magnet due to trapped defects from a dimensionality crossover

    NASA Astrophysics Data System (ADS)

    Gauthier, Nicolas; Fennell, Amy; Uldry, Anne-Christine; Delley, Bernard; Sibille, Romain; White, Jonathan; Niedermayer, Christof; Pomjakushin, Vladimir; Kenzelmann, Michel; Prevost, Bobby; Desilets-Benoit, Alexandre; Bianchi, Andrea D.; Dabkowska, Hanna A.; Nilsen, Goran; Regnault, Louis-Pierre

    The simultaneous occurence of geometrical frustration and low dimensionality can lead to strongly correlated fluctuating ground states. In the SrLn2O4 compounds, the Ln magnetic ions form one-dimensional (1D) zig-zag chains that have both of these characteristics, offering a playground to study novel states of matter. In SrDy2O4, the two inequivalent Dy3+ sites are Ising-like with perpendicular easy-axes, favouring the decoupling of neighbouring zig-zag chains. No long range order is observed down to T = 60 mK in zero field but diffuse neutron scattering indicates short range correlations that are consistent with those of the 1D Ising zig-zag chain model. AC susceptibility measurements indicate a slowing down of the fluctuations at low temperatures. We attribute this behaviour to the domain walls in the zig-zag chains. Experimental evidence of a dimensionality crossover at low temperatures in SrDy2O4 suggest that the domains walls are trapped because of interchain interactions, precluding long-range order to the lowest temperatures.

  1. Elastic interaction among transition metals in one-dimensional spin-crossover solids

    NASA Astrophysics Data System (ADS)

    Boukheddaden, K.; Miyashita, S.; Nishino, M.

    2007-03-01

    We present an exact examination of a one-dimensional (1D) spin-phonon model describing the thermodynamical properties of spin-crossover (SC) solids. This model has the advantage of giving a physical mechanism for the interaction between the SC units. The origin of the interaction comes from the fact that the elastic constant of the spring linking two atoms depends on their electronic states. This leads to local variation of the elastic constant. Up to now, all the statistical studies of this model have been performed in the frame of the mean-field (MF) approach, which is not adequate to describe 1D systems with short-range interactions. An alternative method, based on the variational approach and taking into account the short-range correlations between neighboring molecules, was also suggested, but it consists in an extension of the previous MF approximation. Here, we solve exactly this Hamiltonian in the frame of classical statistical mechanics using the transfer-matrix technique. The temperature dependence of the high spin fraction and that of the total energy are obtained analytically. Our results clearly show that there is a clear tendency to a sharp transition when we tune the elastic constants adequately, which indicates that first-order phase transition takes place at higher dimensions. In addition, we demonstrate the existence of an interesting isomorphism between the present model and Ising model under effective interaction and effective ligand field energy, in which both depend linearly on temperature and both come from the phonon contribution. We have also studied the effect of the pressure (the tension) on the thermodynamical properties of the high spin (HS) fraction and have found a nontrivial pressure effect that while for weak tension values, the low spin state is stabilized for the pressure above a threshold value, it enhances the interaction between the HS states. Finally, we have also introduced elastic interactions between the chains. Treating exactly (in mean field) the intrachain (interchain) contributions, we found that our model leads us to obtain first-order spin transitions when both short- and long-range interactions are ferroelastic. We show also that competing (antiferroelastic short-range and ferroelastic long-range) interactions between spin-state ions reproduce qualitatively the two-step-like spin-crossover transitions.

  2. A long-range-corrected density functional that performs well for both ground-state properties and time-dependent density functional theory excitation energies, including charge-transfer excited states.

    PubMed

    Rohrdanz, Mary A; Martins, Katie M; Herbert, John M

    2009-02-07

    We introduce a hybrid density functional that asymptotically incorporates full Hartree-Fock exchange, based on the long-range-corrected exchange-hole model of Henderson et al. [J. Chem. Phys. 128, 194105 (2008)]. The performance of this functional, for ground-state properties and for vertical excitation energies within time-dependent density functional theory, is systematically evaluated, and optimal values are determined for the range-separation parameter, omega, and for the fraction of short-range Hartree-Fock exchange. We denote the new functional as LRC-omegaPBEh, since it reduces to the standard PBEh hybrid functional (also known as PBE0 or PBE1PBE) for a certain choice of its two parameters. Upon optimization of these parameters against a set of ground- and excited-state benchmarks, the LRC-omegaPBEh functional fulfills three important requirements: (i) It outperforms the PBEh hybrid functional for ground-state atomization energies and reaction barrier heights; (ii) it yields statistical errors comparable to PBEh for valence excitation energies in both small and medium-sized molecules; and (iii) its performance for charge-transfer excitations is comparable to its performance for valence excitations. LRC-omegaPBEh, with the parameters determined herein, is the first density functional that satisfies all three criteria. Notably, short-range Hartree-Fock exchange appears to be necessary in order to obtain accurate ground-state properties and vertical excitation energies using the same value of omega.

  3. Size-dependent phase diagrams of metallic alloys: A Monte Carlo simulation study on order–disorder transitions in Pt–Rh nanoparticles

    PubMed Central

    Stahl, Christian; Albe, Karsten

    2012-01-01

    Summary Nanoparticles of Pt–Rh were studied by means of lattice-based Monte Carlo simulations with respect to the stability of ordered D022- and 40-phases as a function of particle size and composition. By thermodynamic integration in the semi-grand canonical ensemble, phase diagrams for particles with a diameter of 7.8 nm, 4.3 nm and 3.1 nm were obtained. Size-dependent trends such as the lowering of the critical ordering temperature, the broadening of the compositional stability range of the ordered phases, and the narrowing of the two-phase regions were observed and discussed in the context of complete size-dependent nanoparticle phase diagrams. In addition, an ordered surface phase emerges at low temperatures and low platinum concentration. A decrease of platinum surface segregation with increasing global platinum concentration was observed, when a second, ordered phase is formed inside the core of the particle. The order–disorder transitions were analyzed in terms of the Warren–Cowley short-range order parameters. Concentration-averaged short-range order parameters were used to remove the surface segregation bias of the conventional short-range order parameters. Using this procedure, it was shown that the short-range order in the particles at high temperatures is bulk-like. PMID:22428091

  4. Minimally nonlocal nucleon-nucleon potentials with chiral two-pion exchange including Δ resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piarulli, M.; Girlanda, L.; Schiavilla, R.

    In this study, we construct a coordinate-space chiral potential, including Δ-isobar intermediate states in its two-pion-exchange component up to order Q 3 (Q denotes generically the low momentum scale). The contact interactions entering at next-to-leading and next-to-next-to-next-to-leading orders (Q 2 and Q 4, respectively) are rearranged by Fierz transformations to yield terms at most quadratic in the relative momentum operator of the two nucleons. The low-energy constant multiplying these contact interactions are fitted to the 2013 Granada database, consisting of 2309 pp and 2982 np data (including, respectively, 148 and 218 normalizations) in the laboratory-energy range 0–300 MeV. For themore » total 5291 $pp$ and $np$ data in this range, we obtain a Χ 2 /datum of roughly 1.3 for a set of three models characterized by long- and short-range cutoffs, R L and R S respectively, ranging from (R L,R S)=(1.2,0.8) fm down to (0.8,0.6) fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.« less

  5. Minimally nonlocal nucleon-nucleon potentials with chiral two-pion exchange including Δ resonances

    DOE PAGES

    Piarulli, M.; Girlanda, L.; Schiavilla, R.; ...

    2015-02-26

    In this study, we construct a coordinate-space chiral potential, including Δ-isobar intermediate states in its two-pion-exchange component up to order Q 3 (Q denotes generically the low momentum scale). The contact interactions entering at next-to-leading and next-to-next-to-next-to-leading orders (Q 2 and Q 4, respectively) are rearranged by Fierz transformations to yield terms at most quadratic in the relative momentum operator of the two nucleons. The low-energy constant multiplying these contact interactions are fitted to the 2013 Granada database, consisting of 2309 pp and 2982 np data (including, respectively, 148 and 218 normalizations) in the laboratory-energy range 0–300 MeV. For themore » total 5291 $pp$ and $np$ data in this range, we obtain a Χ 2 /datum of roughly 1.3 for a set of three models characterized by long- and short-range cutoffs, R L and R S respectively, ranging from (R L,R S)=(1.2,0.8) fm down to (0.8,0.6) fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.« less

  6. Spin susceptibility of charge-ordered YBa2Cu3Oy across the upper critical field

    NASA Astrophysics Data System (ADS)

    Zhou, Rui; Hirata, Michihiro; Wu, Tao; Vinograd, Igor; Mayaffre, Hadrien; Krämer, Steffen; Reyes, Arneil P.; Kuhns, Philip L.; Liang, Ruixing; Hardy, W. N.; Bonn, D. A.; Julien, Marc-Henri

    2017-12-01

    The value of the upper critical field Hc2, a fundamental characteristic of the superconducting state, has been subject to strong controversy in high-Tc copper oxides. Since the issue has been tackled almost exclusively by macroscopic techniques so far, there is a clear need for local-probe measurements. Here, we use 17O NMR to measure the spin susceptibility χspin of the CuO2 planes at low temperature in charge-ordered YBa2Cu3Oy. We find that χspin increases (most likely linearly) with magnetic field H and saturates above field values ranging from 20 T to 40 T. This result is consistent with the lowest Hc2 values claimed previously and with the interpretation that the charge density wave (CDW) reduces Hc2 in underdoped YBa2Cu3Oy. Furthermore, the absence of marked deviation in χspin(H) at the onset of long-range CDW order indicates that this Hc2 reduction and the Fermi-surface reconstruction are primarily rooted in the short-range CDW order already present in zero field, not in the field-induced long-range CDW order. Above Hc2, the relatively low values of T= 2 K show that the pseudogap is a ground-state property, independent of the superconducting gap.

  7. Extinction of quasiparticle interference in underdoped cuprates with coexisting order

    NASA Astrophysics Data System (ADS)

    Andersen, Brian M.; Hirschfeld, P. J.

    2009-04-01

    Scanning tunneling spectroscopy (STS) measurements [Y. Kohsaka , Nature (London) 454, 1072 (2008)] have shown that dispersing quasiparticle interference (QPI) peaks in Fourier-transformed conductance maps disappear as the bias voltage exceeds a certain threshold corresponding to the coincidence of the contour of constant quasiparticle energy with the period-doubled (e.g., antiferromagnetic) zone boundary. Here we show that this may be caused by coexisting order present in the d -wave superconducting phase. We show explicitly how QPI peaks are extinguished in the situation with coexisting long-range spin-density wave order and discuss the connection with the more realistic case where short-range order is created by quenched disorder. Since it is the localized QPI peaks rather than the underlying antinodal states themselves which are destroyed at a critical bias, our proposal resolves a conflict between STS and photoemission spectroscopy regarding the nature of these states. We also study the momentum-summed density of states in the coexisting phase and show how the competing order produces a kink inside the “V”-shaped d -wave superconducting gap in agreement with recent STS measurements [J. W. Alldredge , Nat. Phys. 4, 319 (2008)].

  8. Attitude algorithm and initial alignment method for SINS applied in short-range aircraft

    NASA Astrophysics Data System (ADS)

    Zhang, Rong-Hui; He, Zhao-Cheng; You, Feng; Chen, Bo

    2017-07-01

    This paper presents an attitude solution algorithm based on the Micro-Electro-Mechanical System and quaternion method. We completed the numerical calculation and engineering practice by adopting fourth-order Runge-Kutta algorithm in the digital signal processor. The state space mathematical model of initial alignment in static base was established, and the initial alignment method based on Kalman filter was proposed. Based on the hardware in the loop simulation platform, the short-range flight simulation test and the actual flight test were carried out. The results show that the error of pitch, yaw and roll angle is fast convergent, and the fitting rate between flight simulation and flight test is more than 85%.

  9. Stretch-collapse transition of polyelectrolyte brushes in a poor solvent

    NASA Astrophysics Data System (ADS)

    von Goeler, F.; Muthukumar, M.

    1996-12-01

    This paper describes the behavior of charged, polymer brushes in electrolyte solutions of varying solvent quality. The brush height, d, dependence on the chain length, L (=Nl, where l is the Kuhn length), the grafting density σ, and solvent conditions is determined. We consider a monomer-monomer potential consisting of three components: (1) a long-ranged, screened Coulombic component of strength v¯/l (l is the Kuhn length) and range κ-1; (2) a short-ranged, two-body component of strength w¯l; and (3) a short-ranged, three-body component of strength ūl3. In particular, we examine the transition from a stretched state to a collapsed state in a poor solvent (w¯<0) as the solvent quality is decreased. Using dimensional analysis, Monte Carlo methods, and a variational technique, a first order transition is observed as predicted by the scaling arguments of Ross et al. and Borisov et al. for high charge/grafting densities. Using a variational procedure, we derive an analytical expression for the brush size and determine, quantitatively, the critical conditions for a first order transition in terms of key dimensionless variables, vN5/2, κlN1/2, wN3/2, and uN2 (where v=2πσl2v¯, w=σl2w¯, and u=σ2l4ū).

  10. Comparative study of crystallization process in metallic melts using ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Debela, Tekalign T.; Wang, X. D.; Cao, Q. P.; Zhang, D. X.; Jiang, J. Z.

    2017-05-01

    The crystallization process of liquid metals is studied using ab initio molecular dynamics simulations. The evolution of short-range order during quenching in Pb and Zn liquids is compared with body-centered cubic (bcc) Nb and V, and hexagonal closed-packed (hcp) Mg. We found that the fraction and type of the short-range order depends on the system under consideration, in which the icosahedral symmetry seems to dominate in the body-centered cubic metals. Although the local atomic structures in stable liquids are similar, liquid hcp-like Zn, bcc-like Nb and V can be deeply supercooled far below its melting point before crystallization while the supercooled temperature range in liquid Pb is limited. Further investigations into the nucleation process reveal the process of polymorph selection. In the body-centered cubic systems, the polymorph selection occurs in the supercooled state before the nucleation is initiated, while in the closed-packed systems it starts at the time of onset of crystallization. Atoms with bcc-like lattices in all studied supercooled liquids are always detected before the polymorph selection. It is also found that the bond orientational ordering is strongly correlated with the crystallization process in supercooled Zn and Pb liquids.

  11. Double scattering of light from Biophotonic Nanostructures with short-range order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar

    2010-07-28

    We investigate the physical mechanism for color production by isotropic nanostructures with short-range order in bird feather barbs. While the primary peak in optical scattering spectra results from constructive interference of singly-scattered light, many species exhibit secondary peaks with distinct characteristic. Our experimental and numerical studies show that these secondary peaks result from double scattering of light by the correlated structures. Without an analog in periodic or random structures, such a phenomenon is unique for short-range ordered structures, and has been widely used by nature for non-iridescent structural coloration.

  12. Amorphous photonic crystals with only short-range order.

    PubMed

    Shi, Lei; Zhang, Yafeng; Dong, Biqin; Zhan, Tianrong; Liu, Xiaohan; Zi, Jian

    2013-10-04

    Distinct from conventional photonic crystals with both short- and long-range order, amorphous photonic crystals that possess only short-range order show interesting optical responses owing to their unique structural features. Amorphous photonic crystals exhibit unique light scattering and transport, which lead to a variety of interesting phenomena such as isotropic photonic bandgaps or pseudogaps, noniridescent structural colors, and light localization. Recent experimental and theoretical advances in the study of amorphous photonic crystals are summarized, focusing on their unique optical properties, artificial fabrication, bionspiration, and potential applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Switching plastic crystals of colloidal rods with electric fields

    PubMed Central

    Liu, Bing; Besseling, Thijs H.; Hermes, Michiel; Demirörs, Ahmet F.; Imhof, Arnout; van Blaaderen, Alfons

    2014-01-01

    When a crystal melts into a liquid both long-ranged positional and orientational order are lost, and long-time translational and rotational self-diffusion appear. Sometimes, these properties do not change at once, but in stages, allowing states of matter such as liquid crystals or plastic crystals with unique combinations of properties. Plastic crystals/glasses are characterized by long-ranged positional order/frozen-in-disorder but short-ranged orientational order, which is dynamic. Here we show by quantitative three-dimensional studies that charged rod-like colloidal particles form three-dimensional plastic crystals and glasses if their repulsions extend significantly beyond their length. These plastic phases can be reversibly switched to full crystals by an electric field. These new phases provide insight into the role of rotations in phase behaviour and could be useful for photonic applications. PMID:24446033

  14. Switching plastic crystals of colloidal rods with electric fields

    NASA Astrophysics Data System (ADS)

    Liu, Bing; Besseling, Thijs H.; Hermes, Michiel; Demirörs, Ahmet F.; Imhof, Arnout; van Blaaderen, Alfons

    2014-01-01

    When a crystal melts into a liquid both long-ranged positional and orientational order are lost, and long-time translational and rotational self-diffusion appear. Sometimes, these properties do not change at once, but in stages, allowing states of matter such as liquid crystals or plastic crystals with unique combinations of properties. Plastic crystals/glasses are characterized by long-ranged positional order/frozen-in-disorder but short-ranged orientational order, which is dynamic. Here we show by quantitative three-dimensional studies that charged rod-like colloidal particles form three-dimensional plastic crystals and glasses if their repulsions extend significantly beyond their length. These plastic phases can be reversibly switched to full crystals by an electric field. These new phases provide insight into the role of rotations in phase behaviour and could be useful for photonic applications.

  15. Low-Field-Triggered Large Magnetostriction in Iron-Palladium Strain Glass Alloys.

    PubMed

    Ren, Shuai; Xue, Dezhen; Ji, Yuanchao; Liu, Xiaolian; Yang, Sen; Ren, Xiaobing

    2017-09-22

    Development of miniaturized magnetostriction-associated devices requires low-field-triggered large magnetostriction. In this study, we acquired a large magnetostriction (800 ppm) triggered by a low saturation field (0.8 kOe) in iron-palladium (Fe-Pd) alloys. Magnetostriction enhancement jumping from 340 to 800 ppm was obtained with a slight increase in Pd concentration from 31.3 to 32.3 at. %. Further analysis showed that such a slight increase led to suppression of the long-range ordered martensitic phase and resulted in a frozen short-range ordered strain glass state. This strain glass state possessed a two-phase nanostructure with nanosized frozen strain domains embedded in the austenite matrix, which was responsible for the unique magnetostriction behavior. Our study provides a way to design novel magnetostrictive materials with low-field-triggered large magnetostriction.

  16. Structural properties of medium-range order in CuNiZr alloy

    NASA Astrophysics Data System (ADS)

    Gao, Tinghong; Hu, Xuechen; Xie, Quan; Li, Yidan; Ren, Lei

    2017-10-01

    The evolution characteristics of icosahedral clusters during the rapid solidification of Cu50Ni10Zr40 alloy at cooling rate of 1011 K s-1 are investigated based on molecular dynamics simulations. The structural properties of the short-range order and medium-range order of Cu50Ni10Zr40 alloy are analyzed by several structural characterization methods. The results reveal that the icosahedral clusters are the dominant short-range order structure, and that they assemble themselves into medium-range order by interpenetrating connections. The different morphologies of medium-range order are found in the system and include chain, triangle, tetrahedral, and their combination structures. The tetrahedral morphologies of medium-range order have excellent structural stability with decreasing temperature. The Zr atoms are favorable to form longer chains, while the Cu atoms are favorable to form shorter chains in the system. Those chains interlocked with each other to improve the structural stability.

  17. Analysis of Nuclear Lifetimes Using the Gamma-ray Induced Doppler Shift Attenuation Method

    NASA Astrophysics Data System (ADS)

    Crespi, F. C. L.

    2018-05-01

    Lifetime measurements allow extraction of fundamental information on the nature of the excited states of a nuclear system. Since nuclear lifetimes cover many orders of magnitude, a number of experimental techniques and detection setups have been developed depending on the range of the lifetime of interest. The Gamma-ray Induced Doppler Shift Attenuation (GRIDSA) Method presented here is applied to the measurement of very short lifetimes, in the femtosecond range. It allows determining the nuclear lifetime by measuring the Doppler shift of a gamma ray emitted from the state of interest, in different directions with respect to a coincident preceding gamma ray, populating the same state and inducing a recoil of the nucleus in the target material with velocities of the order of 104-105 m/s. We realized an experiment in order to test the GRIDSA technique for the measurement of fs lifetimes after (n,γ) reactions. The measurement was performed at the Institut Laue-Langevin (ILL) with the 8 Ge-clover detectors of the FIPPS array. Preliminary results are discussed.

  18. High-lying intermediate excitations in the nuclear effective interaction with a super-soft-core potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goode, P.R.; Barrett, B.R.; Portilho, O.

    1979-02-01

    The earlier calculations of Goode and Barrett are repeated using the super-soft-core potential of Gogny, Pires, and de Tourreil. The particular third-order folded diagram which they calculated now converges in its intermediate-state energy summation, because of the suppression of the strong short-range repulsive effects present in earlier calculations.

  19. Environmental Assessment for the South Gate Improvement Project Travis Air Force Base Solano County, California

    DTIC Science & Technology

    2005-12-01

    3-11 De Minimis Levels for Exemption from General Confonnity Rule Requirements...Confonnity Rule de minimis levels. Therefore, not No significant impact. Noise -------1---=c=--onsidered a significant impact. Temporary, short...required under state law. This combined element is intended to guide long-range growth and de - velopment in an orderly manner that protects the

  20. Electron diffraction study of the sillenites Bi{sub 12}SiO{sub 20}, Bi{sub 25}FeO{sub 39} and Bi{sub 25}InO{sub 39}: Evidence of short-range ordering of oxygen-vacancies in the trivalent sillenites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scurti, Craig A.; Arenas, D. J.; Auvray, Nicolas

    We present an electron diffraction study of three sillenites, Bi{sub 12}SiO{sub 20}, Bi{sub 25}FeO{sub 39}, and Bi{sub 25}InO{sub 39} synthesized using the solid-state method. We explore a hypothesis, inspired by optical studies in the literature, that suggests that trivalent sillenites have additional disorder not present in the tetravalent compounds. Electron diffraction patterns of Bi{sub 25}FeO{sub 39} and Bi{sub 25}InO{sub 39} show streaks that confirm deviations from the ideal sillenite structure. Multi-slice simulations of electron-diffraction patterns are presented for different perturbations to the sillenite structure - partial substitution of the M site by Bi{sup 3+}, random and ordered oxygen-vacancies, and amore » frozen-phonon model. Although comparison of experimental data to simulations cannot be conclusive, we consider the streaks as evidence of short-range ordered oxygen-vacancies.« less

  1. Short and Medium-Range Order in Liquid Ternary Al80Co10Ni10, Al72.5Co14.5Ni13, and Al65Co17.5Ni17.5 Alloys

    NASA Astrophysics Data System (ADS)

    Roik, Oleksandr S.; Samsonnikov, Oleksiy; Kazimirov, Volodymyr; Sokolskii, Volodymyr

    2010-01-01

    A local short-to-intermediate range order of liquid Al80Co10Ni10, Al72.5Co14.5Ni13, and Al65Co17.5Ni17.5 alloys was examined by X-ray diffraction and the reverse Monte Carlo modelling. The comprehensive analysis of three-dimensional models of the liquid ternary alloys was performed by means of the Voronoi-Delaunay method. The existence of a prepeak on the S(Q) function of the liquid alloys is caused by medium range ordering of 3d-transition metal atoms in dense-packed polytetrahedral clusters at temperatures close to the liquidus. The non-crystalline clusters, represented by aggregates of pentagons that consist of good tetrahedra, and chemical short-range order lead to the formation of the medium range order in the liquid binary Al-Ni, Al-Co and ternary Al-Ni-Co alloys.

  2. Spin susceptibility of charge-ordered YBa2Cu3Oy across the upper critical field

    PubMed Central

    Zhou, Rui; Hirata, Michihiro; Wu, Tao; Vinograd, Igor; Mayaffre, Hadrien; Krämer, Steffen; Reyes, Arneil P.; Kuhns, Philip L.; Liang, Ruixing; Hardy, W. N.; Bonn, D. A.; Julien, Marc-Henri

    2017-01-01

    The value of the upper critical field Hc2, a fundamental characteristic of the superconducting state, has been subject to strong controversy in high-Tc copper oxides. Since the issue has been tackled almost exclusively by macroscopic techniques so far, there is a clear need for local-probe measurements. Here, we use 17O NMR to measure the spin susceptibility χspin of the CuO2 planes at low temperature in charge-ordered YBa2Cu3Oy. We find that χspin increases (most likely linearly) with magnetic field H and saturates above field values ranging from 20 T to 40 T. This result is consistent with the lowest Hc2 values claimed previously and with the interpretation that the charge density wave (CDW) reduces Hc2 in underdoped YBa2Cu3Oy. Furthermore, the absence of marked deviation in χspin(H) at the onset of long-range CDW order indicates that this Hc2 reduction and the Fermi-surface reconstruction are primarily rooted in the short-range CDW order already present in zero field, not in the field-induced long-range CDW order. Above Hc2, the relatively low values of χspin at T= 2 K show that the pseudogap is a ground-state property, independent of the superconducting gap. PMID:29183974

  3. The pressure-induced structural response of rare earth hafnate and stannate pyrochlore from 0.1-50 GPa

    NASA Astrophysics Data System (ADS)

    Turner, K. M.; Rittman, D.; Heymach, R.; Turner, M.; Tracy, C.; Mao, W. L.; Ewing, R. C.

    2017-12-01

    Complex oxides with the pyrochlore (A2B2O7) and defect-fluorite ((A,B)4O7) structure-types undergo structural transformations under high-pressure. These compounds are under consideration for applications including as a proposed waste-form for actinides generated in the nuclear fuel cycle. High-pressure transformations in rare earth hafnates (A2Hf2O7, A=Sm, Eu, Gd, Dy, Y, Yb) and stannates (A2Sn2O7, A=Nd, Gd, Er) were investigated to 50 GPa by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Rare-earth hafnates form the pyrochlore structure for A=La-Tb and the defect-fluorite structure for A=Dy-Lu. Lanthanide stannates form the pyrochlore structure. Raman spectra revealed that at ambient pressure all compositions have pyrochlore-type short-range order. Stannate compositions show a larger degree of pyrochlore-type short-range ordering relative to hafnates. In situ high-pressure synchrotron XRD showed that rare earth hafnates and stannates underwent a pressure-induced phase transition to a cotunnite-like (Pnma) structure that begins between 18-25 GPa in hafnates and between 30-33 GPa in stannates. The phase transition is not complete at 50 GPa, and upon decompression, XRD indicates that all compositions transform to defect-fluorite with an amorphous component. In situ Raman spectroscopy showed that disordering in stannates and hafnates occurs gradually upon compression. Pyrochlore-structured hafnates retain short-range order to a higher pressure (30 GPa vs. <10 GPa) than defect-fluorite-structured hafnates. Hafnates and stannates decompressed from 50 GPa show Raman spectra consistent with weberite-type structures, also reported in irradiated stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of 250 GPa for hafnate compositions with the pyrochlore structure, and 400 GPa for hafnate compositions with the defect-fluorite structure. Stannates have a lower bulk modulus relative to hafnates (between 80-150 GPa). Stannate and hafnate pyrochlore compositions taken to high pressure show structural transformations consistent with irradiated pyrochlore, and compositionally disordered pyrochlore: a long-range structure best described by defect-fluorite, and a short-range structure best described by weberite.

  4. Avoided ferromagnetic quantum critical point: unusual short-range ordered state in CeFePO.

    PubMed

    Lausberg, S; Spehling, J; Steppke, A; Jesche, A; Luetkens, H; Amato, A; Baines, C; Krellner, C; Brando, M; Geibel, C; Klauss, H-H; Steglich, F

    2012-11-21

    Cerium 4f electronic spin dynamics in single crystals of the heavy-fermion system CeFePO is studied by means of ac susceptibility, specific heat, and muon-spin relaxation (μSR). Short-range static magnetism occurs below the freezing temperature T(g) ≈ 0.7 K, which prevents the system from accessing a putative ferromagnetic quantum critical point. In the μSR, the sample-averaged muon asymmetry function is dominated by strongly inhomogeneous spin fluctuations below 10 K and exhibits a characteristic time-field scaling relation expected from glassy spin dynamics, strongly evidencing cooperative and critical spin fluctuations. The overall behavior can be ascribed neither to canonical spin glasses nor other disorder-driven mechanisms.

  5. Nuclear shapes studied with low-energy Coulomb excitation

    NASA Astrophysics Data System (ADS)

    Zielińska, Magda; Hadyńska-Klȩk, Katarzyna

    2018-05-01

    Coulomb excitation is one of the rare methods available to obtain information on static electromagnetic moments of short-lived excited nuclear states, including collective non-yrast levels. It is thus an ideal tool to study shape coexistence and shape evolution throughout the nuclear chart. Historically, these experiments were limited to stable isotopes, however the advent of new facilities, providing intense beams of short-lived radioactive species, has opened the possibility to apply this powerful technique to a much wider range of nuclei. Here, we present some recent complex Coulomb-excitation studies and use the example of superdeformed states in 42Ca to demonstrate the sensitivity of the method to second-order effects such as relative signs of electromagnetic matrix elements and quadrupole moments.

  6. Relationship between Magnetic Anisotropy below Pseudogap Temperature and Short-Range Antiferromagnetic Order in High-Temperature Cuprate Superconductor

    NASA Astrophysics Data System (ADS)

    Morinari, Takao

    2018-06-01

    The central issue in high-temperature cuprate superconductors is the pseudogap state appearing below the pseudogap temperature T*, which is well above the superconducting transition temperature. In this study, we theoretically investigate the rapid increase of the magnetic anisotropy below the pseudogap temperature detected by the recent torque-magnetometry measurements on YBa2Cu3Oy [Y. Sato et al., Nat. Phys. 13, 1074 (2017)]. Applying the spin Green's function formalism including the Dzyaloshinskii-Moriya interaction arising from the buckling of the CuO2 plane, we obtain results that are in good agreement with the experiment and find a scaling relationship. Our analysis suggests that the characteristic temperature associated with the magnetic anisotropy, which coincides with T*, is not a phase transition temperature but a crossover temperature associated with the short-range antiferromagnetic order.

  7. Free energy of singular sticky-sphere clusters.

    PubMed

    Kallus, Yoav; Holmes-Cerfon, Miranda

    2017-02-01

    Networks of particles connected by springs model many condensed-matter systems, from colloids interacting with a short-range potential and complex fluids near jamming, to self-assembled lattices and various metamaterials. Under small thermal fluctuations the vibrational entropy of a ground state is given by the harmonic approximation if it has no zero-frequency vibrational modes, yet such singular modes are at the epicenter of many interesting behaviors in the systems above. We consider a system of N spherical particles, and directly account for the singularities that arise in the sticky limit where the pairwise interaction is strong and short ranged. Although the contribution to the partition function from singular clusters diverges in the limit, its asymptotic value can be calculated and depends on only two parameters, characterizing the depth and range of the potential. The result holds for systems that are second-order rigid, a geometric characterization that describes all known ground-state (rigid) sticky clusters. To illustrate the applications of our theory we address the question of emergence: how does crystalline order arise in large systems when it is strongly disfavored in small ones? We calculate the partition functions of all known rigid clusters up to N≤21 and show the cluster landscape is dominated by hyperstatic clusters (those with more than 3N-6 contacts); singular and isostatic clusters are far less frequent, despite their extra vibrational and configurational entropies. Since the most hyperstatic clusters are close to fragments of a close-packed lattice, this underlies the emergence of order in sticky-sphere systems, even those as small as N=10.

  8. Free energy of singular sticky-sphere clusters

    NASA Astrophysics Data System (ADS)

    Kallus, Yoav; Holmes-Cerfon, Miranda

    2017-02-01

    Networks of particles connected by springs model many condensed-matter systems, from colloids interacting with a short-range potential and complex fluids near jamming, to self-assembled lattices and various metamaterials. Under small thermal fluctuations the vibrational entropy of a ground state is given by the harmonic approximation if it has no zero-frequency vibrational modes, yet such singular modes are at the epicenter of many interesting behaviors in the systems above. We consider a system of N spherical particles, and directly account for the singularities that arise in the sticky limit where the pairwise interaction is strong and short ranged. Although the contribution to the partition function from singular clusters diverges in the limit, its asymptotic value can be calculated and depends on only two parameters, characterizing the depth and range of the potential. The result holds for systems that are second-order rigid, a geometric characterization that describes all known ground-state (rigid) sticky clusters. To illustrate the applications of our theory we address the question of emergence: how does crystalline order arise in large systems when it is strongly disfavored in small ones? We calculate the partition functions of all known rigid clusters up to N ≤21 and show the cluster landscape is dominated by hyperstatic clusters (those with more than 3 N -6 contacts); singular and isostatic clusters are far less frequent, despite their extra vibrational and configurational entropies. Since the most hyperstatic clusters are close to fragments of a close-packed lattice, this underlies the emergence of order in sticky-sphere systems, even those as small as N =10 .

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondo, Takeshi; Palczewski, Ari; Hamaya, Yoichiro

    We use angle-resolved photoemission spectroscopy and a new quantitative approach based on the partial density of states to study properties of seemingly disconnected portions of the Fermi surface (FS) that are present in the pseudogap state of cuprates called Fermi arcs. We find that the normal state FS collapses very abruptly into Fermi arcs at the pseudogap temperature (T*). Surprisingly, the length of the Fermi arcs remains constant over an extended temperature range between (T*) and T pair, consistent with the presence of an ordered state below T*. These arcs collapse again at the temperature below which pair formation occursmore » (T pair) either to a point or a very short arc, whose length is limited by our experimental resolution. The tips of the arcs span between points defining a set of wave vectors in momentum space, which are the fingerprints of the ordered state that causes the pseudogap.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondo, Takeshi; Palczewski, Ari D.; Hamaya, Yoichiro

    We use angle-resolved photoemission spectroscopy and a new quantitative approach based on the partial density of states to study properties of seemingly disconnected portions of the Fermi surface (FS) that are present in the pseudogap state of cuprates called Fermi arcs. We find that the normal state FS collapses very abruptly into Fermi arcs at the pseudogap temperature (T*). Surprisingly, the length of the Fermi arcs remains constant over an extended temperature range between T* and Tpair, consistent with the presence of an ordered state below T*. These arcs collapse again at the temperature below which pair formation occurs (Tpair)more » either to a point or a very short arc, whose length is limited by our experimental resolution. The tips of the arcs span between points defining a set of wave vectors in momentum space, which are the fingerprints of the ordered state that causes the pseudogap.« less

  11. Structure and property of metal melt I: The number of residual bonds after solid-liquid phase changes

    NASA Astrophysics Data System (ADS)

    Mi, Guangbao; Li, Peijie; He, Liangju

    2010-09-01

    Based on the mechanism of metal solid-liquid phase change and the theory of liquid metal’s micro-inhomogeneity, a physical model is established between latent heats of fusion and vaporization and the numbers of residual bonds and short-range ordered atoms at the melting point inside a metal melt. Meanwhile, the mathematical derivation and proof are also offered. This model produces the numbers of residual bonds and short-range ordered atoms after the solid-liquid phase change only by using basic parameters and thermophysical properties of the crystal structure. Therefore, it presents a more effective way to analyze the melt’s structural information. By using this model, this study calculates the numbers of residual bonds and short-range ordered atoms in Al and Ni melts. The calculated results are consistent with the experimental results. Simultaneously, this study discusses the atomic number’s influence on the numbers of residual bonds and short-range ordered atoms in the melts within the first (IA) and second main group (IIA) elements.

  12. On the determination of the glass forming ability of AlxZr1-x alloys using molecular dynamics, Monte Carlo simulations, and classical thermodynamics

    NASA Astrophysics Data System (ADS)

    Harvey, Jean-Philippe; Gheribi, Aïmen E.; Chartrand, Patrice

    2012-10-01

    In this work, the glass forming ability of Al-Zr alloys is quantified using Monte Carlo (MC) and molecular dynamic (MD) simulations as well as classical thermodynamic calculations. The total energy of each studied structure of the Al-Zr system is described using the modified embedded atom model in the second-nearest-neighbour formalism. The parameterized Al-Zr cross potential which has been extensively validated using available experimental and ab initio data for several solid structures and for the liquid phase is used to evaluate thermodynamic, structural, and physical properties of the glass state and of the fully disordered (FD) face-centered cubic (FCC) solid solution with no short range order (SRO). The local environment of the Al-Zr amorphous phase is identified to be similar to that of a FCC solid structure with short range chemical order. A new approach to model the Gibbs energy of the amorphous phase based on the cluster variation method in the tetrahedron approximation is presented. The Gibbs energy of the fully disordered FCC solid solution with no short range order is determined and compared to the Gibbs energy of the amorphous phase. According to our volumetric and energetic criteria defined in our work to evaluate the possible formation of a glass structure at room temperature and zero pressure, a glass forming range of (0.25≤XZr≤0.75) and of (0.21≤XZr≤0.75) are identified, respectively. All the available quantitative experimental data regarding the amorphization of Al-Zr alloys are compared to the prediction of our MD/MC simulations throughout this study.

  13. Short-range density functional correlation within the restricted active space CI method

    NASA Astrophysics Data System (ADS)

    Casanova, David

    2018-03-01

    In the present work, I introduce a hybrid wave function-density functional theory electronic structure method based on the range separation of the electron-electron Coulomb operator in order to recover dynamic electron correlations missed in the restricted active space configuration interaction (RASCI) methodology. The working equations and the computational algorithm for the implementation of the new approach, i.e., RAS-srDFT, are presented, and the method is tested in the calculation of excitation energies of organic molecules. The good performance of the RASCI wave function in combination with different short-range exchange-correlation functionals in the computation of relative energies represents a quantitative improvement with respect to the RASCI results and paves the path for the development of RAS-srDFT as a promising scheme in the computation of the ground and excited states where nondynamic and dynamic electron correlations are important.

  14. Interpretation of electron diffraction patterns from amorphous and fullerene-like carbon allotropes.

    PubMed

    Czigány, Zsolt; Hultman, Lars

    2010-06-01

    The short range order in amorphous and fullerene-like carbon compounds has been characterized by selected area electron diffraction (SAED) patterns and compared with simulations of model nanoclusters. Broad rings in SAED pattern from fullerene-like CN(x) at approximately 1.2, approximately 2, and approximately 3.5A indicate short-range order similar to that in graphite, but peak shifts indicate sheet curvature in agreement with high-resolution transmission electron microscopy images. Fullerene-like CP(x) exhibits rings at approximately 1.6 and 2.6A, which can be explained if it consists of fragments with short-range order and high curvature similar to that of C(20). Copyright 2010 Elsevier B.V. All rights reserved.

  15. Large magnetoelectric coupling in magnetically short-range ordered Bi₅Ti₃FeO₁₅ film.

    PubMed

    Zhao, Hongyang; Kimura, Hideo; Cheng, Zhenxiang; Osada, Minoru; Wang, Jianli; Wang, Xiaolin; Dou, Shixue; Liu, Yan; Yu, Jianding; Matsumoto, Takao; Tohei, Tetsuya; Shibata, Naoya; Ikuhara, Yuichi

    2014-06-11

    Multiferroic materials, which offer the possibility of manipulating the magnetic state by an electric field or vice versa, are of great current interest. However, single-phase materials with such cross-coupling properties at room temperature exist rarely in nature; new design of nano-engineered thin films with a strong magneto-electric coupling is a fundamental challenge. Here we demonstrate a robust room-temperature magneto-electric coupling in a bismuth-layer-structured ferroelectric Bi₅Ti₃FeO₁₅ with high ferroelectric Curie temperature of ~1000 K. Bi₅Ti₃FeO₁₅ thin films grown by pulsed laser deposition are single-phase layered perovskit with nearly (00l)-orientation. Room-temperature multiferroic behavior is demonstrated by a large modulation in magneto-polarization and magneto-dielectric responses. Local structural characterizations by transmission electron microscopy and Mössbauer spectroscopy reveal the existence of Fe-rich nanodomains, which cause a short-range magnetic ordering at ~620 K. In Bi₅Ti₃FeO₁₅ with a stable ferroelectric order, the spin canting of magnetic-ion-based nanodomains via the Dzyaloshinskii-Moriya interaction might yield a robust magneto-electric coupling of ~400 mV/Oe·cm even at room temperature.

  16. The short-lived signaling state of the photoactive yellow protein photoreceptor revealed by combined structural probes.

    PubMed

    Ramachandran, Pradeep L; Lovett, Janet E; Carl, Patrick J; Cammarata, Marco; Lee, Jae Hyuk; Jung, Yang Ouk; Ihee, Hyotcherl; Timmel, Christiane R; van Thor, Jasper J

    2011-06-22

    The signaling state of the photoactive yellow protein (PYP) photoreceptor is transiently developed via isomerization of its blue-light-absorbing chromophore. The associated structural rearrangements have large amplitude but, due to its transient nature and chemical exchange reactions that complicate NMR detection, its accurate three-dimensional structure in solution has been elusive. Here we report on direct structural observation of the transient signaling state by combining double electron electron resonance spectroscopy (DEER), NMR, and time-resolved pump-probe X-ray solution scattering (TR-SAXS/WAXS). Measurement of distance distributions for doubly spin-labeled photoreceptor constructs using DEER spectroscopy suggests that the signaling state is well ordered and shows that interspin-label distances change reversibly up to 19 Å upon illumination. The SAXS/WAXS difference signal for the signaling state relative to the ground state indicates the transient formation of an ordered and rearranged conformation, which has an increased radius of gyration, an increased maximum dimension, and a reduced excluded volume. Dynamical annealing calculations using the DEER derived long-range distance restraints in combination with short-range distance information from (1)H-(15)N HSQC perturbation spectroscopy give strong indication for a rearrangement that places part of the N-terminal domain in contact with the exposed chromophore binding cleft while the terminal residues extend away from the core. Time-resolved global structural information from pump-probe TR-SAXS/WAXS data supports this conformation and allows subsequent structural refinement that includes the combined energy terms from DEER, NMR, and SAXS/WAXS together. The resulting ensemble simultaneously satisfies all restraints, and the inclusion of TR-SAXS/WAXS effectively reduces the uncertainty arising from the possible spin-label orientations. The observations are essentially compatible with reduced folding of the I(2)' state (also referred to as the 'pB' state) that is widely reported, but indicates it to be relatively ordered and rearranged. Furthermore, there is direct evidence for the repositioning of the N-terminal region in the I(2)' state, which is structurally modeled by dynamical annealing and refinement calculations.

  17. Fe-induced enhancement of antiferromagnetic spin correlations in Mn2-xFexBO4

    NASA Astrophysics Data System (ADS)

    Kazak, N. V.; Platunov, M. S.; Knyazev, Yu. V.; Moshkina, E. M.; Gavrilkin, S. Yu.; Bayukov, O. A.; Gorev, M. V.; Pogoreltsev, E. I.; Zeer, G. M.; Zharkov, S. M.; Ovchinnikov, S. G.

    2018-04-01

    Fe substitution effect on the magnetic behavior of Mn2-xFexBO4 (x = 0.3, 0.5, 0.7) warwickites has been investigated combining Mössbauer spectroscopy, dc magnetization, ac magnetic susceptibility, and heat capacity measurements. The Fe3+ ions distribution over two crystallographic nonequivalent sites is studied. The Fe introduction breaks a long-range antiferromagnetic order and leads to onset of spin-glass ground state. The antiferromagnetic short-range-order spin correlations persist up to temperatures well above TSG reflecting in increasing deviations from the Curie-Weiss law, the reduced effective magnetic moment and "missing" entropy. The results are interpreted in the terms of the progressive increase of the frustration effect and the formation of spin-correlated regions.

  18. Absence of long-range order in the frustrated magnet SrDy2O4 due to trapped defects from a dimensionality crossover

    NASA Astrophysics Data System (ADS)

    Gauthier, N.; Fennell, A.; Prévost, B.; Uldry, A.-C.; Delley, B.; Sibille, R.; Désilets-Benoit, A.; Dabkowska, H. A.; Nilsen, G. J.; Regnault, L.-P.; White, J. S.; Niedermayer, C.; Pomjakushin, V.; Bianchi, A. D.; Kenzelmann, M.

    2017-04-01

    Magnetic frustration and low dimensionality can prevent long-range magnetic order and lead to exotic correlated ground states. SrDy2O4 consists of magnetic Dy3 + ions forming magnetically frustrated zigzag chains along the c axis and shows no long-range order to temperatures as low as T =60 mK. We carried out neutron scattering and ac magnetic susceptibility measurements using powder and single crystals of SrDy2O4 . Diffuse neutron scattering indicates strong one-dimensional (1D) magnetic correlations along the chain direction that can be qualitatively accounted for by the axial next-nearest-neighbor Ising model with nearest-neighbor and next-nearest-neighbor exchange J1=0.3 meV and J2=0.2 meV, respectively. Three-dimensional (3D) correlations become important below T*≈0.7 K. At T =60 mK, the short-range correlations are characterized by a putative propagation vector k1 /2=(0 ,1/2 ,1/2 ) . We argue that the absence of long-range order arises from the presence of slowly decaying 1D domain walls that are trapped due to 3D correlations. This stabilizes a low-temperature phase without long-range magnetic order, but with well-ordered chain segments separated by slowly moving domain walls.

  19. Atomic-scale structural signature of dynamic heterogeneities in metallic liquids

    NASA Astrophysics Data System (ADS)

    Pasturel, Alain; Jakse, Noel

    2017-08-01

    With sufficiently high cooling rates, liquids will cross their equilibrium melting temperatures and can be maintained in a metastable undercooled state before solidifying. Studies of undercooled liquids reveal several intriguing dynamic phenomena and because explicit connections between liquid structure and liquids dynamics are difficult to identify, it remains a major challenge to capture the underlying structural link to these phenomena. Ab initio molecular dynamics (AIMD) simulations are yet especially powerful in providing atomic-scale details otherwise not accessible in experiments. Through the AIMD-based study of Cr additions in Al-based liquids, we evidence for the first time a close relationship between the decoupling of component diffusion and the emergence of dynamic heterogeneities in the undercooling regime. In addition, we demonstrate that the origin of both phenomena is related to a structural heterogeneity caused by a strong interplay between chemical short-range order (CSRO) and local fivefold topology (ISRO) at the short-range scale in the liquid phase that develops into an icosahedral-based medium-range order (IMRO) upon undercooling. Finally, our findings reveal that this structural signature is also captured in the temperature dependence of partial pair-distribution functions which opens up the route to more elaborated experimental studies.

  20. Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid.

    PubMed

    Um, I C; Kweon, H Y; Park, Y H; Hudson, S

    2001-08-20

    Structural characteristics and thermal and solution properties of the regenerated silk fibroin (SF) prepared from formic acid (FU) were compared with those of SF from water (AU). According to the turbidity and shear viscosity measurement, SF formic acid solution was stable and transparent, no molecular aggregations occurred. The sample FU exhibited the beta-sheet structure, while AU random coil conformation using Fourier transform infrared (FTIR), X-ray diffraction (XRD), and differential scanning calorimetry. The effects of methanol treatment on samples were also examined. According to the measurement of crystallinity (XRD) and crystallinity index (FTIR), the concept of long/short-range ordered structure formation was proposed. Long-range ordered crystallites are predominantly formed for methanol treated SF film while SF film cast from formic acid favors the formation of short-range ordered structure. The relaxation temperatures of SF films measured by dynamic thermomechanical analysis supported the above mechanism due to the sensitivity of relaxation temperature on the short-range order.

  1. Bona-fide method for the determination of short range order and transport properties in a ferro-aluminosilicate slag

    PubMed Central

    Karalis, Konstantinos T.; Dellis, Dimitrios; Antipas, Georgios S. E.; Xenidis, Anthimos

    2016-01-01

    The thermodynamics, structural and transport properties (density, melting point, heat capacity, thermal expansion coefficient, viscosity and electrical conductivity) of a ferro-aluminosilicate slag have been studied in the solid and liquid state (1273–2273 K) using molecular dynamics. The simulations were based on a Buckingham-type potential, which was extended here, to account for the presence of Cr and Cu. The potential was optimized by fitting pair distribution function partials to values determined by Reverse Monte Carlo modelling of X-ray and neutron diffraction experiments. The resulting short range order features and ring statistics were in tight agreement with experimental data and created consensus for the accurate prediction of transport properties. Accordingly, calculations yielded rational values both for the average heat capacity, equal to 1668.58 J/(kg·K), and for the viscosity, in the range of 4.09–87.64 cP. The potential was consistent in predicting accurate values for mass density (i.e. 2961.50 kg/m3 vs. an experimental value of 2940 kg/m3) and for electrical conductivity (5.3–233 S/m within a temperature range of 1273.15–2273.15 K). PMID:27455915

  2. Unconventional Superconductivity in Luttinger Semimetals: Theory of Complex Tensor Order and the Emergence of the Uniaxial Nematic State

    NASA Astrophysics Data System (ADS)

    Boettcher, Igor; Herbut, Igor F.

    2018-02-01

    We investigate unconventional superconductivity in three-dimensional electronic systems with the chemical potential close to a quadratic band touching point in the band dispersion. Short-range interactions can lead to d -wave superconductivity, described by a complex tensor order parameter. We elucidate the general structure of the corresponding Ginzburg-Landau free energy and apply these concepts to the case of an isotropic band touching point. For a vanishing chemical potential, the ground state of the system is given by the superconductor analogue of the uniaxial nematic state, which features line nodes in the excitation spectrum of quasiparticles. In contrast to the theory of real tensor order in liquid crystals, however, the ground state is selected here by the sextic terms in the free energy. At a finite chemical potential, the nematic state has an additional instability at weak coupling and low temperatures. In particular, the one-loop coefficients in the free energy indicate that at weak coupling genuinely complex orders, which break time-reversal symmetry, are energetically favored. We relate our analysis to recent measurements in the half-Heusler compound YPtBi and discuss the role of cubic crystal symmetry.

  3. Microscopic theory of vortex interaction in two-band superconductors and type-1.5 superconductivity

    NASA Astrophysics Data System (ADS)

    Silaev, Mihail; Babaev, Egor

    2011-03-01

    In the framework of self-consistent microscopic theory we study the structure and interaction of vortices in two-gap superconductor taking into account the interband Josephson coupling. The asymptotical behavior of order parameter densities and magnetic field is studied analytically within the microscopic theory at low temperature. At higher temperatures, results consistent with Ginzburg-Landau theory are obtained. It is shown that under quite general conditions and in a wide temperature ranges (in particular outside the validity of the Ginzburg-Landau theory) there can exist an additional characteristic length scale of the order parameter density variation which exceeds the London penetration length of magnetic field due to the multi-component nature of superconducting state. Such behavior of order parameter density variation leads to the attractive long-range and repulsive short-range interaction between vortices. Supported by NSF CAREER Award DMR-0955902, Knut and Alice Wallenberg Foundation through the Royal Swedish Academy of Sciences and Swedish Research Council, ''Dynasty'' foundation and Russian Foundation for Basic Research.

  4. Astrophysical materials science: Theory

    NASA Technical Reports Server (NTRS)

    Ashcroft, N. W.

    1984-01-01

    A method of structural expansions for use in determining the equation of state of metallic hydrogen (and indeed other metals) up to the 4th order in the perturbation theory was developed. The electrical and thermal transport properties of the planetary interior of Jupiter were calculated. The nature of the interaction between molecules at short range and the importance of multicenter terms in arriving at an adequate description of the thermodynamic functions of condensed molecular hydrogen were also investigated.

  5. Analyzing the Fierz rearrangement freedom for local chiral two-nucleon potentials

    NASA Astrophysics Data System (ADS)

    Huth, L.; Tews, I.; Lynn, J. E.; Schwenk, A.

    2017-11-01

    Chiral effective field theory is a framework to derive systematic nuclear interactions. It is based on the symmetries of quantum chromodynamics and includes long-range pion physics explicitly, while shorter-range physics is expanded in a general operator basis. The number of low-energy couplings at a particular order in the expansion can be reduced by exploiting the fact that nucleons are fermions and therefore obey the Pauli exclusion principle. The antisymmetry permits the selection of a subset of the allowed contact operators at a given order. When local regulators are used for these short-range interactions, however, this "Fierz rearrangement freedom" is violated. In this paper, we investigate the impact of this violation at leading order (LO) in the chiral expansion. We construct LO and next-to-leading order (NLO) potentials for all possible LO-operator pairs and study their reproduction of phase shifts, the 4He ground-state energy, and the neutron-matter energy at different densities. We demonstrate that the Fierz rearrangement freedom is partially restored at NLO where subleading contact interactions enter. We also discuss implications for local chiral three-nucleon interactions.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markiewicz, R. S.; Buda, I. G.; Mistark, P.

    Here, we propose a new approach to understand the origin of the pseudogap in the cuprates, in terms of bosonic entropy. The near-simultaneous softening of a large number of different q-bosons yields an extended range of short-range order, wherein the growth of magnetic correlations with decreasing temperature T is anomalously slow. These entropic effects cause the spectral weight associated with the Van Hove singularity (VHS) to shift rapidly and nearly linearly toward half filling at higher T, consistent with a picture of the VHS driving the pseudogap transition at a temperature ~T*. As a byproduct, we develop an order-parameter classificationmore » scheme that predicts supertransitions between families of order parameters. As one example, we find that by tuning the hopping parameters, it is possible to drive the cuprates across a transition between Mott and Slater physics, where a spin-frustrated state emerges at the crossover.« less

  7. The chromium doping of Ni{sub 3}Fe alloy and restructuring of grain boundary ensemble at the phase transition A1→L1{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perevalova, Olga; Konovalova, Elena, E-mail: knv123@yandex.ru; Koneva, Nina

    2016-01-15

    The grain boundary structure of the Ni{sub 3}(Fe,Cr) alloy is studied in states with a short and long-range order formed at the phase transition A1→L1{sub 2}. It is found that the new boundaries of general and special types are formed during an ordering annealing, wherein the special boundaries share increases. The spectrum of special boundaries is changed due to decreasing of ∑3 boundary share. It leads to weakening of the texture in the alloy with atomic long-range order. The features of change of the special boundaries spectrum at the phase transition A1→L1{sub 2} in the Ni{sub 3}(Fe,Cr) alloy are determinedmore » by decreasing of the stacking fault energy and the atomic mean square displacement at the chromium doping.« less

  8. Entropic Origin of Pseudogap Physics and a Mott-Slater Transition in Cuprates

    DOE PAGES

    Markiewicz, R. S.; Buda, I. G.; Mistark, P.; ...

    2017-03-22

    Here, we propose a new approach to understand the origin of the pseudogap in the cuprates, in terms of bosonic entropy. The near-simultaneous softening of a large number of different q-bosons yields an extended range of short-range order, wherein the growth of magnetic correlations with decreasing temperature T is anomalously slow. These entropic effects cause the spectral weight associated with the Van Hove singularity (VHS) to shift rapidly and nearly linearly toward half filling at higher T, consistent with a picture of the VHS driving the pseudogap transition at a temperature ~T*. As a byproduct, we develop an order-parameter classificationmore » scheme that predicts supertransitions between families of order parameters. As one example, we find that by tuning the hopping parameters, it is possible to drive the cuprates across a transition between Mott and Slater physics, where a spin-frustrated state emerges at the crossover.« less

  9. Photoemission studies of amorphous silicon induced by P + ion implantation

    NASA Astrophysics Data System (ADS)

    Petö, G.; Kanski, J.

    1995-12-01

    An amorphous Si layer was formed on a Si (1 0 0) surface by P + implantation at 80 keV. This layer was investigated by means of photoelectron spectroscopy. The resulting spectra are different from earlier spectra on amorphous Si prepared by e-gun evaporation or cathode sputtering. The differences consist of a decreased intensity in the spectral region corresponding to p-states, and appearace of new states at higher binding energy. Qualitativity similar results have been reported for Sb implanted amorphous Ge and the modification seems to be due to the changed short range order.

  10. Magnetic field-temperature phase diagram of multiferroic [(CH3)2NH2] Mn (HCOO) 3

    NASA Astrophysics Data System (ADS)

    Clune, A. J.; Hughey, K. D.; Lee, C.; Abhyankar, N.; Ding, X.; Dalal, N. S.; Whangbo, M.-H.; Singleton, J.; Musfeldt, J. L.

    2017-09-01

    We combined pulsed field magnetization and first-principles spin-density calculations to reveal the magnetic field-temperature phase diagram and spin state character in multiferroic [(CH3)2NH2] Mn (HCOO) 3 . Despite similarities with the rare earth manganites, the phase diagram is analogous to other Mn-based quantum magnets with a 0.31 T spin flop, a 15.3 T transition to the fully polarized state, and short-range correlations that persist above the ordering temperature. The experimentally accessible saturation field opens the door to exploration of the high-field phase.

  11. Thermal or nonthermal? That is the question for ultrafast spin switching in GdFeCo.

    PubMed

    Zhang, G P; George, Thomas F

    2013-09-11

    GdFeCo is among the most interesting magnets for producing laser-induced femtosecond magnetism, where light can switch its spin moment from one direction to another. This paper aims to set a criterion for the thermal/nonthermal mechanism: we propose to use the Fermi-Dirac distribution function as a reliable criterion. A precise value for the thermalization time is needed, and through a two-level model, we show that since there is no direct connection between the laser helicity and the definition of thermal/nonthermal processes, the helicity is a poor criterion for differentiating a thermal from a nonthermal process. In addition, we propose a four-site model system (Gd2Fe2) for investigating the transient ferromagnetic ordering between Gd and Fe ions. We find that states of two different kinds can allow such an ordering. One state is a pure ferromagnetic state with ferromagnetic ordering among all the ions, and the other is the short-ranged ferromagnetic ordering of a pair of Gd and Fe ions.

  12. Field dependence of the magnetic correlations of the frustrated magnet SrDy 2 O 4

    DOE PAGES

    Gauthier, N.; Fennell, A.; Prévost, B.; ...

    2017-05-30

    Tmore » he frustrated magnet SrDy 2 O 4 exhibits a field-induced phase with a magnetization plateau at 1 / 3 of the saturation value for magnetic fields applied along the b axis. We report here a neutron scattering study of the nature and symmetry of the magnetic order in this field-induced phase. Below ≈ 0.5 K, there are strong hysteretic effects, and the order is short- or long-ranged for zero-field and field cooling, respectively. We find that the long-range ordered magnetic structure within the zigzag chains is identical to that expected for the one-dimensional axial next-nearest neighbor Ising (ANNNI) model in longitudinal fields. he long-range ordered structure in field contrasts with the short-range order found at zero field, and is most likely reached through enhanced quantum fluctuations with increasing fields.« less

  13. Field dependence of the magnetic correlations of the frustrated magnet SrDy2O4

    NASA Astrophysics Data System (ADS)

    Gauthier, N.; Fennell, A.; Prévost, B.; Désilets-Benoit, A.; Dabkowska, H. A.; Zaharko, O.; Frontzek, M.; Sibille, R.; Bianchi, A. D.; Kenzelmann, M.

    2017-05-01

    The frustrated magnet SrDy2O4 exhibits a field-induced phase with a magnetization plateau at 1 /3 of the saturation value for magnetic fields applied along the b axis. We report here a neutron scattering study of the nature and symmetry of the magnetic order in this field-induced phase. Below T ≈0.5 K, there are strong hysteretic effects, and the order is short- or long-ranged for zero-field and field cooling, respectively. We find that the long-range ordered magnetic structure within the zigzag chains is identical to that expected for the one-dimensional axial next-nearest neighbor Ising (ANNNI) model in longitudinal fields. The long-range ordered structure in field contrasts with the short-range order found at zero field, and is probably reached through enhanced quantum fluctuations with increasing fields.

  14. A meta-GGA level screened range-separated hybrid functional by employing short range Hartree-Fock with a long range semilocal functional.

    PubMed

    Jana, Subrata; Samal, Prasanjit

    2018-03-28

    The range-separated hybrid density functionals are very successful in describing a wide range of molecular and solid-state properties accurately. In principle, such functionals are designed from spherically averaged or system averaged as well as reverse engineered exchange holes. In the present attempt, the screened range-separated hybrid functional scheme has been applied to the meta-GGA rung by using the density matrix expansion based semilocal exchange hole (or functional). The hybrid functional proposed here utilizes the spherically averaged density matrix expansion based exchange hole in the range separation scheme. For slowly varying density correction the range separation scheme is employed only through the local density approximation based exchange hole coupled with the corresponding fourth order gradient approximate Tao-Mo enhancement factor. The comprehensive testing and performance of the newly constructed functional indicates its applicability in describing several molecular properties. The most appealing feature of this present screened hybrid functional is that it will be practically very useful in describing solid-state properties at the meta-GGA level.

  15. Conventional magnetic superconductors

    DOE PAGES

    Wolowiec, C. T.; White, B. D.; Maple, M. B.

    2015-07-01

    We discuss several classes of conventional magnetic superconductors including the ternary rhodium borides and molybdenum chalcogenides (or Chevrel phases), and the quaternary nickel-borocarbides. These materials exhibit some exotic phenomena related to the interplay between superconductivity and long-range magnetic order including: the coexistence of superconductivity and antiferromagnetic order; reentrant and double reentrant superconductivity, magnetic field induced superconductivity, and the formation of a sinusoidally-modulated magnetic state that coexists with superconductivity. We introduce the article with a discussion of the binary and pseudobinary superconducting materials containing magnetic impurities which at best exhibit short-range “glassy” magnetic order. Early experiments on these materials led tomore » the idea of a magnetic exchange interaction between the localized spins of magnetic impurity ions and the spins of the conduction electrons which plays an important role in understanding conventional magnetic superconductors. Furthermore, these advances provide a natural foundation for investigating unconventional superconductivity in heavy-fermion compounds, cuprates, and other classes of materials in which superconductivity coexists with, or is in proximity to, a magnetically-ordered phase.« less

  16. EFFECT OF PRE-ALLOYING CONDITION ON THE BULK AMORPHOUS ALLOY ND(60)FE(30)AL(10).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OCONNOR,A.S.; LEWIS,L.H.; MCCALLUM,R.W.

    Bulk metallic glasses are materials that require only modest cooling rates to obtain amorphous solids directly from the melt. Nd{sub 60}Fe{sub 30}Al{sub 10} has been reported to be a ferromagnetic bulk metallic glass that exhibits high coercivity, a combination unlike conventional Nd-based amorphous magnetic alloys. To clarify the relationship between short-range order and high coercivity in glassy Nd{sub 60}Fe{sub 30}Al{sub 10}, experiments were performed to verify the existence of a homogeneous liquid state prior to rapid solidification. Alloys were prepared by various pre-alloying routes and then melt-spun. Arc-melted alloys were prepared for melt spinning using three different protocols involving: (1)more » alloying all three elements at once, (2) forming a Nd-Fe alloy which was subsequently alloyed with Al, and (3) forming a Fe-Al alloy for subsequent alloying with Nd. XRD, DTA, and magnetic measurement data from the resultant ribbons indicate significant differences in both the glassy fraction and the crystalline phase present in the as-spun material. These observed differences are attributed to the presence of highly stable nanoscopic aluminide-and/or silicide-phases, or motes, present in the melt prior to solidification. These motes would affect the short-range order and coercivity of the resultant glassy state and are anticipated to provide heterogeneous nucleation sites for crystallization.« less

  17. Large Deviations in Weakly Interacting Boundary Driven Lattice Gases

    NASA Astrophysics Data System (ADS)

    van Wijland, Frédéric; Rácz, Zoltán

    2005-01-01

    One-dimensional, boundary-driven lattice gases with local interactions are studied in the weakly interacting limit. The density profiles and the correlation functions are calculated to first order in the interaction strength for zero-range and short-range processes differing only in the specifics of the detailed-balance dynamics. Furthermore, the effective free-energy (large-deviation function) and the integrated current distribution are also found to this order. From the former, we find that the boundary drive generates long-range correlations only for the short-range dynamics while the latter provides support to an additivity principle recently proposed by Bodineau and Derrida.

  18. Effects of short-range order on electronic properties of Zr-Ni glasses as seen from low-temperature specific heat

    NASA Astrophysics Data System (ADS)

    Kroeger, D. M.; Koch, C. C.; Scarbrough, J. O.; McKamey, C. G.

    1984-02-01

    Measurements of the low-temperature specific heat Cp of liquid-quenched Zr-Ni glasses for a large number of compositions in the range from 55 to 74 at.% Zr revealed an unusual composition dependence of the density of states at the Fermi level, N(EF). Furthermore, for some compositions the variation of Cp near the superconducting transition temperature Tc indicated the presence of two superconducting phases, i.e., two superconducting transitions were detected. Comparison of the individual Tc's in phase-separated samples to the composition dependence of Tc for all of the samples suggests that amorphous phases with compositions near 60 and 66.7 at.% Zr occur. We discuss these results in terms of an "association model" for liquid alloys (due to Sommer), in which associations of unlike atoms with definite stoichiometries are assumed to exist in equilibrium with unassociated atoms. We conclude that in the composition range studied, associate clusters with the compositions Zr3Ni2 and Zr2Ni occur. In only a few cases are the clusters sufficiently large, compared with the superconducting coherence length, for separate superconducting transitions to be observed. The variation of N(EF) with composition is discussed, as well as the effects of this chemical short-range ordering on the crystallization behavior and glass-forming tendency.

  19. Crossover from Polaronic to Magnetically Phase-Separated Behavior in La1-xSrxCoO3

    NASA Astrophysics Data System (ADS)

    Phelan, D.; El Khatib, S.; Wang, S.; Barker, J.; Zhao, J.; Zheng, H.; Mitchell, J. F.; Leighton, C.

    2013-03-01

    Dilute hole-doping in La1-xSrxCoO3 leads to the formation of ``spin-state polarons'' where a non-zero spin-state is stabilized on the nearest Co3+ ions surrounding a hole. Here, we discuss the development of electronic/magnetic properties of this system from non-magnetic x=0, through the regime of spin-state polarons, and into the region where longer-range spin correlations and phase separation develop. We present magnetometry, transport, heat capacity, and small-angle neutron scattering (SANS) on single crystals. Magnetometry indicates a crossover with x from Langevin-like behavior (polaronic) to a state with a freezing temperature and finite coercivity. Fascinating correlations with this behavior are seen in transport measurements, the evolution from polaronic to clustered states being accompanied by a crossover from Mott variable range hopping to intercluster hopping. SANS data shows Lorentzian scattering from short-range ferromagnetic clusters first emerging around x = 0.03 with correlation lengths of order two unit cells. We argue that this system provides a unique opportunity to understand in detail the crossover from polaronic to truly phase-separated states.

  20. Quantification of long-term erosion rates from root exposure/tree age relationships in an alpine meadow catchment

    NASA Astrophysics Data System (ADS)

    Scuderi, Louis A.

    2017-04-01

    Erosion rates derived using dendrogeomorphology have been used to quantify slope degradation in many localities globally. However, with the exception of the western United States, most of these estimates are derived from short-lived trees whose lifetimes may not adequately reflect the complete range of slope processes which can include erosion, deposition, impacts of extreme events and even long-term hiatuses. Erosion rate estimates at a given site using standard techniques therefore reflect censored local point erosion estimates rather than long-term rates. We applied a modified dendrogeomorphic approach to rapidly estimate erosion rates from dbh/age relationships to assess the difference between short and long-term rates and found that the mean short-term rate was 0.13 cm/yr with high variability, while the uncensored long-term rate was 0.06 cm/yr. The results indicate that rates calculated from short-lived trees, while possibly appropriate for local short-term point estimates of erosion, are highly variable and may overestimate regional long-term rates by > 50%. While these findings do not invalidate the use of dendrogeomorphology to estimate erosion rates they do suggest that care must be taken to select older trees that incorporate a range of slope histories in order to best approximate regional long-term rates.

  1. Short range orders of an adsorbed layer: gold on the Si(111)7 × 7 surface

    NASA Astrophysics Data System (ADS)

    Takahashi, S.; Tanishiro, Y.; Takayanagi, K.

    1991-02-01

    Ordered phases of 5 × 2, 3× 3 and 6 × 6 structures formed by gold deposition on a Si(11)7 × 7 surface were observed by transmission electron diffraction (TED). Short-range orders of the 3× 3 phase of low and high coverages are analyzed from diffuse TED intensities. Phasons which displace the adsorption site by a at every translation of 6 a are found to be introduced in the 3× 3 structure of the saturation coverage. The phasons, which create 2 a correlation between gold clusters, prohibit formation of a completely ordered 3× 3 phase.

  2. Internal structure of acceptor-bound excitons in wide-band-gap wurtzite semiconductors

    NASA Astrophysics Data System (ADS)

    Gil, Bernard; Bigenwald, Pierre; Paskov, Plamen P.; Monemar, Bo

    2010-02-01

    We describe the internal structure of acceptor-bound excitons in wurtzite semiconductors. Our approach consists in first constructing, in the context of angular momentum algebra, the wave functions of the two-hole system that fulfill Pauli’s exclusion’s principle. Second, we construct the acceptor-bound exciton states by adding the electron states in a similar manner that two-hole states are constructed. We discuss the optical selection rules for the acceptor-bound exciton recombination. Finally, we compare our theory with experimental data for CdS and GaN. In the specific case of CdS for which much experimental information is available, we demonstrate that, compared with cubic semiconductors, the sign of the short-range hole-exchange interaction is reversed and more than one order of magnitude larger. The whole set of data is interpreted in the context of a large value of the short-range hole-exchange interaction Ξ0=3.4±0.2meV . This value dictates the splitting between the ground-state line I1 and the other transitions. The values we find for the electron-hole spin-exchange interaction and of the crystal-field splitting of the two-hole state are, respectively, -0.4±0.1 and 0.2±0.1meV . In the case of GaN, the experimental data for the acceptor-bound excitons in the case of Mg and Zn acceptors, show more than one bound-exciton line. We discuss a possible assignment of these states.

  3. Copper-tuned magnetic order and excitations in iron-based superconductors Fe1+yTe1-xSex

    NASA Astrophysics Data System (ADS)

    Wen, Jinsheng; Xu, Zhijun; Xu, Guangyong; Lumsden, Mark; Matsuda, Masaaki; Valdivia, Patrick; Bourret, Edith; Lee, Dunghai; Gu, Genda; Tranquada, John; Birgeneau, Robert

    2012-02-01

    We report neutron scattering results on the Cu-substitution effects in the iron-based superconductors, Fe1+yTe1-xSex. In the parent compound, it is found that Cu drives the low-temperature magnetic ground state from long-range commensurate antiferromagnetic order in Fe1.06TeCu0.04 to short-range incommensurate order in FeTeCu0.1. In the former sample, the structural and magnetic ordering temperature is 40 K; in FeTeCu0.1, the structural phase transition is not obvious and a transition to the spin-glass state is found at 22 K. Cu suppresses superconductivity in FeTe0.5Se0.5---Tc is reduced to 7 K with a 2% Cu doping, and no superconductivity is found in the 10% Cu-doped sample. In the meantime, the intensity and energy of the resonance mode are suppressed in the 2% Cu-doped sample, while there is no resonance in the non-superconducting sample. Besides, the low-temperature magnetic excitation spectra are distinct for these two samples, with the superconducting one having an ``hour-glass" shape and the other one having a ``waterfall" shape. Our results provide further insights on the interplay between magnetism and superconductivity in the iron-based superconductors.

  4. Intricate Short-Range Ordering and Strongly Anisotropic Transport Properties of Li 1–x Sn 2+x As 2

    DOE PAGES

    Lee, Kathleen; Kaseman, Derrick; Sen, Sabyasachi; ...

    2015-02-22

    A new ternary compound, Li 1-xSn 2+xAs 2, 0.2 < x < 0.4, was synthesized via solid-state reaction of elements. The compound crystallizes in a layered structure in the Rmore » $$\\overline{3}m$$ space group (No. 166) with Sn-As layers separated by layers of jointly occupied Li/Sn. The Sn-As layers are comprised of Sn 3As 3 puckered hexagons in a chair conformation that share all edges. Li/Sn atoms in the interlayer space are surrounded by a regular As 6 octahedron. Thorough investigations by synchrotron x-ray and neutron powder diffraction indicate no long-range Li/Sn ordering. In contrast, local Sn/Li ordering was revealed by synergistic investigations via solid-state 6,7Li NMR spectroscopy, HR-TEM, and neutron and X-ray pair distribution function analyses. Due to their different chemical natures, Li and Sn atoms tend to segregate into Li-rich and Sn-rich regions creating substantial inhomogeneity on the nanoscale. Inhomogeneous local structure has high impact on the physical properties of the synthesized compounds: local Li/Sn ordering and multiple nanoscale interfaces result in unexpectedly low thermal conductivity and highly anisotropic resistivity in Li 1-xSn 2+xAs 2.« less

  5. Structural-Phase Transformations of CuZn Alloy Under Thermal-Impact Cycling

    NASA Astrophysics Data System (ADS)

    Potekaev, A. I.; Chaplygina, A. A.; Kulagina, V. V.; Chaplygin, P. A.; Starostenkov, M. D.; Grinkevich, L. S.

    2017-02-01

    Using the Monte Carlo method, special features of structural - phase transformations in β-brass are investigated during thermal impact using thermal cycling as an example (a number of successive order - disorder and disorder - order phase transitions in the course of several heating - cooling cycles). It is shown that a unique hysteresis is observed after every heating and cooling cycle, whose presence indicates irreversibility of the processes, which suggests a difference in the structural - phase states both in the heating and cooling stages. A conclusion is drawn that the structural - phase transformations in the heating and cooling stages occur within different temperature intervals, where the thermodynamic stimuli of one or the other structural - phase state are low. This is also demonstrated both in the plots of configurational energy, long- and short-range order parameter, atomic structure variations, and structural - phase state distributions. Simultaneously, there coexist ordered and disordered phases and a certain collection of superstructure domains. This implies the presence of low - stability states in the vicinity of the order - disorder phase transition. The results of investigations demonstrate that the structural - phase transitions within two successive heating and cooling cycles at the same temperature are different in both stages. These changes, though not revolutionary, occur in every cycle and decrease with the increasing cycle number. In fact, the system undergoes training with a tendency towards a certain sequence of structural - phase states.

  6. Effect of film multi-scale structure on the water vapor permeability in hydroxypropyl starch (HPS)/Na-MMT nanocomposites.

    PubMed

    Liu, Siyuan; Cai, Panfu; Li, Xiaoxi; Chen, Ling; Li, Lin; Li, Bing

    2016-12-10

    To improve the water vapor resistance of starch-based films, Na-MMT (Na-montmorillonite) as nanofillers were fabricated into hydroxypropyl starch and the multi-scale structural changes (including intermolecular interaction, short-range conformation, long-range ordered structure and the aggregated structure of the film) were revealed. The elongation of the water vapor molecule pathway by tortuous path is generally recognized as the main reason for the improvement of water resistance. However this study observed the lowest water vapor permeability (WVP) was at the 3% Na-MMT/hydroxypropyl starch (HPS) ratio instead of 5% even nanofillers were partially exfoliated at both ratio. Except for the "tortuous path" caused by nanofillers, this observation proposed that the short-range conformation of HPS chains, long-range ordered structure and the aggregated structure likely influenced the water barrier property. The relationship between WVP and multi-scale structure of the film was investigated. The results suggested that a good balance of short-range conformationin the amorphous region, long-range ordered structure and the aggregated structure of the film was required for the improvement of water vapor barrier property. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Collective Dynamics and Strong Pinning near the Onset of Charge Order in La1.48Nd0.4Sr0.12CuO4

    NASA Astrophysics Data System (ADS)

    Baity, P. G.; Sasagawa, T.; Popović, Dragana

    2018-04-01

    The dynamics of charge-ordered states is one of the key issues in underdoped cuprate high-temperature superconductors, but static short-range charge-order (CO) domains have been detected in almost all cuprates. We probe the dynamics across the CO (and structural) transition in La1.48Nd0.4Sr0.12CuO4 by measuring nonequilibrium charge transport, or resistance R as the system responds to a change in temperature and to an applied magnetic field. We find evidence for metastable states, collective behavior, and criticality. The collective dynamics in the critical regime indicates strong pinning by disorder. Surprisingly, nonequilibrium effects, such as avalanches in R , are revealed only when the critical region is approached from the charge-ordered phase. Our results on La1.48Nd0.4Sr0.12CuO4 provide the long-sought evidence for the fluctuating order across the CO transition, and also set important constraints on theories of dynamic stripes.

  8. Isotopic Randomness and Maxwell's Demon

    NASA Astrophysics Data System (ADS)

    Berezin, Alexander A.

    2005-03-01

    Isotopic disorder in crystals can lead to suppression of thermal conductivity, mobility variations and (weak) Anderson localization on isotopic fluctuations. The latter (AAB, J.ChemPhys.1984) is akin to polaron effect (self-localization due polarization). Possibility of isotopic patterning (IP) increases near melting point (thermally activated isotopic hopping swaps). Crystal near melting threshold become “informationally sensitive” as if its IP is operated by some external Maxwell’s Demon, MD (AAB, URAM J, 2002). At this state short range (e.g. electrostatic inverse square) forces evolve into long-range interactions (due to divergence of order parameter) and information sensitivity can be further amplified by (say) a single fast electron (e.g. beta-particle from decay of 14-C or other radioactive isotope) which may result in cascade of impact ionization events and (short time-scale) enhancement of screening by impact-generated non-equilibrium (non-thermal) electrons. In this state informationally driven (MD-controlled) IP (Eccles effect) can result in decrease of positional entropy signifying emergence of physical complexity out of pure information, similar to peculiar “jinni effect” on closed time loops in relativistic cosmology (R.J.Gott, 2001) or Wheeler’s “it from bit” metaphor. By selecting special IP, MD modifies ergodicity principle in favor of info rich states.

  9. Imaging domain walls between nematic quantum Hall phases on the surface of bismuth

    NASA Astrophysics Data System (ADS)

    Ding, Hao; Randeria, Mallika T.; Feldman, Benjamin E.; Ji, Huiwen; Cava, Robert J.; Yazdani, Ali

    The sensitivity of nematic electronic phases to disorder results in short range ordering and the formation of domains. Local probes are required to investigate the character of these domains and the boundaries between them, which remain hidden in global measurements that average over microscopic configurations. In this talk, I will describe measurements performed with a scanning tunneling microscope to study local nematic order on the surface of bismuth at high magnetic field. By imaging individual anisotropic cyclotron orbit wavefunctions that are pinned to atomic-scale surface defects, we directly resolve local nematic behavior and study the evolution of nematic states across a domain wall. Through spectroscopic mapping, we explore how the broken-symmetry Landau levels disperse across the domain wall, the influence of exchange interactions at such a boundary, and the formation of one-dimensional edge states.

  10. Generation of electron vortex states in ionization by intense and short laser pulses

    NASA Astrophysics Data System (ADS)

    Vélez, F. Cajiao; Krajewska, K.; Kamiński, J. Z.

    2018-04-01

    The generation of electron vortex states in ionization by intense and short laser pulses is analyzed under the scope of the lowest-order Born approximation. For near-infrared laser fields and nonrelativistic intensities of the order of 1016 W /cm2 , we show that one has to modify the nonrelativistic treatment of ionization by accounting for recoil and relativistic mass corrections. By using the corrected quasirelativistic theory, the requirements for the observation of electron vortex states with non-negligible probability and large topological charge are determined.

  11. Cooling rate dependence of structural order in Al90Sm10 metallic glass

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Zhang, Yue; Zhang, Feng; Ye, Zhuo; Ding, Zejun; Wang, Cai-Zhuang; Ho, Kai-Ming

    2016-07-01

    The atomic structure of Al90Sm10 metallic glass is studied using molecular dynamics simulations. By performing a long sub-Tg annealing, we developed a glass model closer to the experiments than the models prepared by continuous cooling. Using the cluster alignment method, we found that "3661" cluster is the dominating short-range order in the glass samples. The connection and arrangement of "3661" clusters, which define the medium-range order in the system, are enhanced significantly in the sub-Tg annealed sample as compared with the fast cooled glass samples. Unlike some strong binary glass formers such as Cu64.5Zr35.5, the clusters representing the short-range order do not form an interconnected interpenetrating network in Al90Sm10, which has only marginal glass formability.

  12. Long-Range Order in Nanocrystal Assemblies Determines Charge Transport of Films

    DOE PAGES

    Sainato, Michela; Shevitski, Brian; Sahu, Ayaskanta; ...

    2017-07-18

    Self-assembly of semiconductor nanocrystals (NCs) into two-dimensional patterns or three-dimensional (2- 3D) superstructures has emerged as a promising low-cost route to generate thin-film transistors and solar cells with superior charge transport because of enhanced electronic coupling between the NCs. Here, we show that lead sulfide (PbS) NCs solids featuring either short-range (disordered glassy solids, GSs) or long-range (superlattices, SLs) packing order are obtained solely by controlling deposition conditions of colloidal solution of NCs. In this study, we demonstrate the use of the evaporation-driven self-assembly method results in PbS NC SL structures that are observed over an area of 1 mmmore » × 100 μm, with long-range translational order of up to 100 nm. A number of ordered domains appear to have nucleated simultaneously and grown together over the whole area, imparting a polycrystalline texture to the 3D SL films. By contrast, a conventional, optimized spin-coating deposition method results in PbS NC glassy films with no translational symmetry and much shorter-range packing order in agreement with state-of-the-art reports. Further, we investigate the electronic properties of both SL and GS films, using a field-effect transistor configuration as a test platform. The long-range ordering of the PbS NCs into SLs leads to semiconducting NC-based solids, the mobility (μ) of which is 3 orders of magnitude higher than that of the disordered GSs. Furthemore, although spin-cast GSs of PbS NCs have weak ambipolar behavior with limited gate tunability, SLs of PbS NCs show a clear p-type behavior with significantly higher conductivities.« less

  13. Short-range correlation in high-momentum antisymmetrized molecular dynamics

    NASA Astrophysics Data System (ADS)

    Myo, Takayuki

    2018-03-01

    We propose a new variational method for treating short-range repulsion of bare nuclear force for nuclei in antisymmetrized molecular dynamics (AMD). In AMD, the short-range correlation is described in terms of large imaginary centroids of Gaussian wave packets of nucleon pairs in opposite signs, causing high-momentum components in the nucleon pairs. We superpose these AMD basis states and call this method "high-momentum AMD" (HM-AMD), which is capable of describing the strong tensor correlation [T. Myo et al., Prog. Theor. Exp. Phys., 2017, 111D01 (2017)]. In this letter, we extend HM-AMD by including up to two kinds of nucleon pairs in each AMD basis state utilizing the cluster expansion, which produces many-body correlations involving high-momentum components. We investigate how well HM-AMD describes the short-range correlation by showing the results for ^3H using the Argonne V4^' central potential. It is found that HM-AMD reproduces the results of few-body calculations and also the tensor-optimized AMD. This means that HM-AMD is a powerful approach to describe the short-range correlation in nuclei. In HM-AMD, the momentum directions of nucleon pairs isotropically contribute to the short-range correlation, which is different from the tensor correlation.

  14. FAST TRACK COMMUNICATION: Reinterpreting the Cu Pd phase diagram based on new ground-state predictions

    NASA Astrophysics Data System (ADS)

    Bärthlein, S.; Hart, G. L. W.; Zunger, A.; Müller, S.

    2007-01-01

    Our notions of the phase stability of compounds rest to a large extent on the experimentally assessed phase diagrams. Long ago, it was assumed that in the Cu-Pd system for xPd<=25% there are at least two phases at high temperature (L12 and a L12-based superstructure), which evolve into a single L12-ordered phase at low temperature. By constructing a first-principles Hamiltonian, we predict a yet undiscovered Cu7Pd ground state at xPd = 12.5% (referred to as S1 below) and an L12-like Cu9Pd3 superstructure at 25% (referred to as S2). We find that in the low-temperature regime, a single L12 phase cannot be stable, even with the addition of anti-sites. Instead we find that an S2-phase with S1-like ordering tendency will form. Previous short-range order diffraction data are quantitatively consistent with these new predictions.

  15. Short range smectic order driving long range nematic order: Example of cuprates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markiewicz, R. S.; Lorenzana, J.; Seibold, G.

    We present a model for describing the combined presence of nematic and ‘smectic’ or stripe-like orders seen in recent scanning tunneling microscopy (STM) experiments on cuprates. The smectic order is treated as an electronic charge density wave with an associated Peierls distortion or a ‘Pomeranchuk wave’. This primary order is restricted to nanoscale domains by disorder effects, while the secondary coupling to strain generates the nematic order with a considerably longer range. Lastly, a variety of experimental results are shown to be consistent with our theoretical predictions.

  16. Short range smectic order driving long range nematic order: Example of cuprates

    DOE PAGES

    Markiewicz, R. S.; Lorenzana, J.; Seibold, G.; ...

    2016-01-27

    We present a model for describing the combined presence of nematic and ‘smectic’ or stripe-like orders seen in recent scanning tunneling microscopy (STM) experiments on cuprates. The smectic order is treated as an electronic charge density wave with an associated Peierls distortion or a ‘Pomeranchuk wave’. This primary order is restricted to nanoscale domains by disorder effects, while the secondary coupling to strain generates the nematic order with a considerably longer range. Lastly, a variety of experimental results are shown to be consistent with our theoretical predictions.

  17. Special quasiordered structures: Role of short-range order in the semiconductor alloy (GaN) 1 -x(ZnO) x

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Fernández-Serra, Maria V.; Allen, Philip B.

    2016-02-01

    This paper studies short-range order (SRO) in the semiconductor alloy (GaN) 1 -x(ZnO) x. Monte Carlo simulations performed on a density functional theory (DFT)-based cluster expansion model show that the heterovalent alloys exhibit strong SRO because of the energetic preference for the valence-matched nearest-neighbor Ga-N and Zn-O pairs. To represent the SRO-related structural correlations, we introduce the concept of special quasiordered structure (SQoS). Subsequent DFT calculations reveal the dramatic influence of SRO on the atomic, electronic, and vibrational properties of the (GaN) 1 -x(ZnO) x alloy. Due to the enhanced statistical presence of the energetically unfavored Zn-N bonds with the strong Zn 3 d -N 2 p repulsion, the disordered alloys exhibit much larger lattice bowing and band-gap reduction than those of the short-range ordered alloys. Lattice vibrational entropy tilts the alloy toward less SRO.

  18. Mutual information identifies spurious Hurst phenomena in resting state EEG and fMRI data

    NASA Astrophysics Data System (ADS)

    von Wegner, Frederic; Laufs, Helmut; Tagliazucchi, Enzo

    2018-02-01

    Long-range memory in time series is often quantified by the Hurst exponent H , a measure of the signal's variance across several time scales. We analyze neurophysiological time series from electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) resting state experiments with two standard Hurst exponent estimators and with the time-lagged mutual information function applied to discretized versions of the signals. A confidence interval for the mutual information function is obtained from surrogate Markov processes with equilibrium distribution and transition matrix identical to the underlying signal. For EEG signals, we construct an additional mutual information confidence interval from a short-range correlated, tenth-order autoregressive model. We reproduce the previously described Hurst phenomenon (H >0.5 ) in the analytical amplitude of alpha frequency band oscillations, in EEG microstate sequences, and in fMRI signals, but we show that the Hurst phenomenon occurs without long-range memory in the information-theoretical sense. We find that the mutual information function of neurophysiological data behaves differently from fractional Gaussian noise (fGn), for which the Hurst phenomenon is a sufficient condition to prove long-range memory. Two other well-characterized, short-range correlated stochastic processes (Ornstein-Uhlenbeck, Cox-Ingersoll-Ross) also yield H >0.5 , whereas their mutual information functions lie within the Markovian confidence intervals, similar to neural signals. In these processes, which do not have long-range memory by construction, a spurious Hurst phenomenon occurs due to slow relaxation times and heteroscedasticity (time-varying conditional variance). In summary, we find that mutual information correctly distinguishes long-range from short-range dependence in the theoretical and experimental cases discussed. Our results also suggest that the stationary fGn process is not sufficient to describe neural data, which seem to belong to a more general class of stochastic processes, in which multiscale variance effects produce Hurst phenomena without long-range dependence. In our experimental data, the Hurst phenomenon and long-range memory appear as different system properties that should be estimated and interpreted independently.

  19. Thermodynamic Identities and Symmetry Breaking in Short-Range Spin Glasses

    NASA Astrophysics Data System (ADS)

    Arguin, L.-P.; Newman, C. M.; Stein, D. L.

    2015-10-01

    We present a technique to generate relations connecting pure state weights, overlaps, and correlation functions in short-range spin glasses. These are obtained directly from the unperturbed Hamiltonian and hold for general coupling distributions. All are satisfied in phases with simple thermodynamic structure, such as the droplet-scaling and chaotic pairs pictures. If instead nontrivial mixed-state pictures hold, the relations suggest that replica symmetry is broken as described by a Derrida-Ruelle cascade, with pure state weights distributed as a Poisson-Dirichlet process.

  20. Recent Advances in the Theory and Simulation of Model Colloidal Microphase Formers.

    PubMed

    Zhuang, Yuan; Charbonneau, Patrick

    2016-08-18

    This mini-review synthesizes our understanding of the equilibrium behavior of particle-based models with short-range attractive and long-range repulsive (SALR) interactions. These models, which can form stable periodic microphases, aim to reproduce the essence of colloidal suspensions with competing interparticle interactions. Ordered structures, however, have yet to be obtained in experiments. In order to better understand the hurdles to periodic microphase assembly, marked theoretical and simulation advances have been made over the past few years. Here, we present recent progress in the study of microphases in models with SALR interactions using liquid-state theory and density-functional theory as well as numerical simulations. Combining these various approaches provides a description of periodic microphases, and gives insights into the rich phenomenology of the surrounding disordered regime. Ongoing research directions in the thermodynamics of models with SALR interactions are also presented.

  1. Structural changes during a liquid-liquid transition in the deeply undercooled Z r58.5C u15.6N i12.8A l10.3N b2.8 bulk metallic glass forming melt

    NASA Astrophysics Data System (ADS)

    Stolpe, Moritz; Jonas, Isabell; Wei, Shuai; Evenson, Zach; Hembree, William; Yang, Fan; Meyer, Andreas; Busch, Ralf

    2016-01-01

    Using high energy synchrotron x-ray radiation combined with electrostatic levitation, in situ structural analysis of a bulk metallic glass forming liquid is performed from above the liquidus temperature down to the glass transition. The data indicate a liquid-liquid transition (LLT) in the deeply undercooled state at T /Tg˜1.2 which manifests as a maximum in the heat capacity and an abrupt shift in the first peak position of the total structure factor in the absence of a pronounced density change. Analysis of the corresponding real-space data shows that the LLT involves changes in short- and medium-range order. The structural changes on the length scale of medium-range order imply a fragile-strong transition in agreement with experimental viscosity data.

  2. A Wide Dynamic Range Tapped Linear Array Image Sensor

    NASA Astrophysics Data System (ADS)

    Washkurak, William D.; Chamberlain, Savvas G.; Prince, N. Daryl

    1988-08-01

    Detectors for acousto-optic signal processing applications require fast transient response as well as wide dynamic range. There are two major choices of detectors: conductive or integration mode. Conductive mode detectors have an initial transient period before they reach then' i equilibrium state. The duration of 1 his period is dependent on light level as well as detector capacitance. At low light levels a conductive mode detector is very slow; response time is typically on the order of milliseconds. Generally. to obtain fast transient response an integrating mode detector is preferred. With integrating mode detectors. the dynamic range is determined by the charge storage capability of the tran-sport shift registers and the noise level of the image sensor. The conventional net hod used to improve dynamic range is to increase the shift register charge storage capability. To achieve a dynamic range of fifty thousand assuming two hundred noise equivalent electrons, a charge storage capability of ten million electrons would be required. In order to accommodate this amount of charge. unrealistic shift registers widths would be required. Therefore, with an integrating mode detector it is difficult to achieve a dynamic range of over four orders of magnitude of input light intensity. Another alternative is to solve the problem at the photodetector aml not the shift, register. DALSA's wide dynamic range detector utilizes an optimized, ion implant doped, profiled MOSFET photodetector specifically designed for wide dynamic range. When this new detector operates at high speed and at low light levels the photons are collected and stored in an integrating fashion. However. at bright light levels where transient periods are short, the detector switches into a conductive mode. The light intensity is logarithmically compressed into small charge packets, easily carried by the CCD shift register. As a result of the logarithmic conversion, dynamic ranges of over six orders of magnitide are obtained. To achieve the short integration times necessary in acousto-optic applications. t he wide dynamic range detector has been implemented into a tapped array architecture with eight outputs and 256 photoelements. Operation of each 01)1,1)111 at 16 MHz yields detector integration times of 2 micro-seconds. Buried channel two phase CCD shift register technology is utilized to minimize image sensor noise improve video output rates and increase ease of operation.

  3. Cooling rate dependence of structural order in Al 90Sm 10 metallic glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yang; Zhang, Yue; Zhang, Feng

    2016-07-07

    Here, the atomic structure of Al 90Sm 10 metallic glass is studied using molecular dynamics simulations. By performing a long sub-T g annealing, we developed a glass model closer to the experiments than the models prepared by continuous cooling. Using the cluster alignment method, we found that “3661” cluster is the dominating short-range order in the glass samples. The connection and arrangement of “3661” clusters, which define the medium-range order in the system, are enhanced significantly in the sub-T g annealed sample as compared with the fast cooled glass samples. Unlike some strong binary glass formers such as Cu 64.5Zrmore » 35.5, the clusters representing the short-range order do not form an interconnected interpenetrating network in Al 90Sm 10, which has only marginal glass formability.« less

  4. Cooling rate dependence of structural order in Al{sub 90}Sm{sub 10} metallic glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yang; Ames Laboratory, US Department of Energy, Ames, Iowa 50011; Zhang, Yue

    2016-07-07

    The atomic structure of Al{sub 90}Sm{sub 10} metallic glass is studied using molecular dynamics simulations. By performing a long sub-T{sub g} annealing, we developed a glass model closer to the experiments than the models prepared by continuous cooling. Using the cluster alignment method, we found that “3661” cluster is the dominating short-range order in the glass samples. The connection and arrangement of “3661” clusters, which define the medium-range order in the system, are enhanced significantly in the sub-T{sub g} annealed sample as compared with the fast cooled glass samples. Unlike some strong binary glass formers such as Cu{sub 64.5}Zr{sub 35.5},more » the clusters representing the short-range order do not form an interconnected interpenetrating network in Al{sub 90}Sm{sub 10,} which has only marginal glass formability.« less

  5. Static Holes in Geometrically Frustrated Bow Tie Ladder

    NASA Astrophysics Data System (ADS)

    Martins, George; Brenig, Wolfram

    2007-03-01

    Doping of the geometrically frustrated bow-tie spin ladder with static holes is investigated by a complementary approach using exact diagonalization and hard-core quantum dimers. Results for the thermodynamics in the undoped case, the singlet density of states, the hole-binding energy, and the spin correlations will be presented. We find that the static holes polarize their vicinity by a localization of singlets in order to reduce the frustration. As a consequence the singlet polarization cloud induces short range repulsive forces between the holes with oscillatory longer range behavior. For those systems we have studied, most results for the quantum dimer approach are found to be qualitatively if not quantitatively in agreement with exact diagonalization. The ground state of the undoped system is non-degenerate with translationally invariant nearest-neighbor spin correlations up to a few unit cells, which is consistent with a spin liquid state or a valence bond crystal with very large unit cell. C. Waldtmann, A. Kreutzmann, U. Schollwock, K. Maisinger, and H.-U. Everts, Phys. Rev. B 62, 9472 (2000).

  6. Ramsey's method of separated oscillating fields and its application to gravitationally induced quantum phase shifts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abele, H.; Jenke, T.; Leeb, H.

    2010-03-15

    We propose to apply Ramsey's method of separated oscillating fields to the spectroscopy of the quantum states in the gravity potential above a horizontal mirror. This method allows a precise measurement of quantum mechanical phaseshifts of a Schroedinger wave packet bouncing off a hard surface in the gravitational field of the Earth. Measurements with ultracold neutrons will offer a sensitivity to Newton's law or hypothetical short-ranged interactions, which is about 21 orders of magnitude below the energy scale of electromagnetism.

  7. Nuclear-spin-independent short-range three-body physics in ultracold atoms.

    PubMed

    Gross, Noam; Shotan, Zav; Kokkelmans, Servaas; Khaykovich, Lev

    2010-09-03

    We investigate three-body recombination loss across a Feshbach resonance in a gas of ultracold 7Li atoms prepared in the absolute ground state and perform a comparison with previously reported results of a different nuclear-spin state [N. Gross, Phys. Rev. Lett. 103, 163202 (2009)]. We extend the previously reported universality in three-body recombination loss across a Feshbach resonance to the absolute ground state. We show that the positions and widths of recombination minima and Efimov resonances are identical for both states which indicates that the short-range physics is nuclear-spin independent.

  8. Search for exotic short-range interactions using paramagnetic insulators

    DOE PAGES

    Chu, Pinghan; Weisman, E.; Liu, C. -Y.; ...

    2015-05-26

    We describe a proposed experimental search for exotic spin-coupled interactions using a solid-state paramagnetic insulator. The experiment is sensitive to the net magnetization induced by the exotic interaction between the unpaired insulator electrons with a dense, nonmagnetic mass in close proximity. An existing experiment has been used to set limits on the electric dipole moment of the electron by probing the magnetization induced in a cryogenic gadolinium gallium garnet sample on application of a strong electric field. With suitable additions, including a movable source mass, this experiment can be used to explore “monopole-dipole” forces on polarized electrons with unique ormore » unprecedented sensitivity. As a result, the solid-state, nonmagnetic construction, combined with the low-noise conditions and extremely sensitive magnetometry available at cryogenic temperatures could lead to a sensitivity over 10 orders of magnitude greater than exiting limits in the range below 1 mm.« less

  9. Distribution and abundance of nesting ospreys in the United States

    USGS Publications Warehouse

    Henny, C.J.

    1983-01-01

    Nesting Ospreys (Pandion haliaetus) in the contiguous United States now number about 8,000 pairs. Five regional populations exist (in order of abundance): Atlantic Coast, Florida and Gulf Coast, Pacific Northwest, Western Interior, and Great Lakes. Pesticides severely impacted the populations in the northern portion of the Atlantic Coast (Boston to Cape May) and the Great Lakes, but both are now recovering. During recent years in the west, especially in the Western Interior, reservoirs have been responsible for a range expansion and, perhaps, a population increase. However, a strong fidelity to ancestral breeding areas (short dispersal distance) has slowed the range expansion. Unique introductions to distant reservoirs (from breeding populations) are now being made and followed with intense interest. Ospreys adapted to man, his structures, and many of his habitat changes, but proved sensitive to his chemical pollutants. These characteristics make the Osprey an excellent environmental indicator species.

  10. Dual origin of pairing in nuclei

    NASA Astrophysics Data System (ADS)

    Idini, A.; Potel, G.; Barranco, F.; Vigezzi, E.; Broglia, R. A.

    2016-11-01

    The pairing correlations of the nucleus 120Sn are calculated by solving the Nambu-Gor'kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairing interaction. The first is the strong 1 S 0 short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- ( v p bare) and long-range ( v p ind) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.

  11. Liquid phase blending of metal-organic frameworks.

    PubMed

    Longley, Louis; Collins, Sean M; Zhou, Chao; Smales, Glen J; Norman, Sarah E; Brownbill, Nick J; Ashling, Christopher W; Chater, Philip A; Tovey, Robert; Schönlieb, Carola-Bibiane; Headen, Thomas F; Terrill, Nicholas J; Yue, Yuanzheng; Smith, Andrew J; Blanc, Frédéric; Keen, David A; Midgley, Paul A; Bennett, Thomas D

    2018-06-15

    The liquid and glass states of metal-organic frameworks (MOFs) have recently become of interest due to the potential for liquid-phase separations and ion transport, alongside the fundamental nature of the latter as a new, fourth category of melt-quenched glass. Here we show that the MOF liquid state can be blended with another MOF component, resulting in a domain structured MOF glass with a single, tailorable glass transition. Intra-domain connectivity and short range order is confirmed by nuclear magnetic resonance spectroscopy and pair distribution function measurements. The interfacial binding between MOF domains in the glass state is evidenced by electron tomography, and the relationship between domain size and T g investigated. Nanoindentation experiments are also performed to place this new class of MOF materials into context with organic blends and inorganic alloys.

  12. Hysteresis, reentrance, and glassy dynamics in systems of self-propelled rods

    NASA Astrophysics Data System (ADS)

    Kuan, Hui-Shun; Blackwell, Robert; Hough, Loren E.; Glaser, Matthew A.; Betterton, M. D.

    2015-12-01

    Nonequilibrium active matter made up of self-driven particles with short-range repulsive interactions is a useful minimal system to study active matter as the system exhibits collective motion and nonequilibrium order-disorder transitions. We studied high-aspect-ratio self-propelled rods over a wide range of packing fractions and driving to determine the nonequilibrium state diagram and dynamic properties. Flocking and nematic-laning states occupy much of the parameter space. In the flocking state, the average internal pressure is high and structural and mechanical relaxation times are long, suggesting that rods in flocks are in a translating glassy state despite overall flock motion. In contrast, the nematic-laning state shows fluidlike behavior. The flocking state occupies regions of the state diagram at both low and high packing fraction separated by nematic-laning at low driving and a history-dependent region at higher driving; the nematic-laning state transitions to the flocking state for both compression and expansion. We propose that the laning-flocking transitions are a type of glass transition that, in contrast to other glass-forming systems, can show fluidization as density increases. The fluid internal dynamics and ballistic transport of the nematic-laning state may promote collective dynamics of rod-shaped micro-organisms.

  13. Hysteresis, reentrance, and glassy dynamics in systems of self-propelled rods.

    PubMed

    Kuan, Hui-Shun; Blackwell, Robert; Hough, Loren E; Glaser, Matthew A; Betterton, M D

    2015-01-01

    Nonequilibrium active matter made up of self-driven particles with short-range repulsive interactions is a useful minimal system to study active matter as the system exhibits collective motion and nonequilibrium order-disorder transitions. We studied high-aspect-ratio self-propelled rods over a wide range of packing fractions and driving to determine the nonequilibrium state diagram and dynamic properties. Flocking and nematic-laning states occupy much of the parameter space. In the flocking state, the average internal pressure is high and structural and mechanical relaxation times are long, suggesting that rods in flocks are in a translating glassy state despite overall flock motion. In contrast, the nematic-laning state shows fluidlike behavior. The flocking state occupies regions of the state diagram at both low and high packing fraction separated by nematic-laning at low driving and a history-dependent region at higher driving; the nematic-laning state transitions to the flocking state for both compression and expansion. We propose that the laning-flocking transitions are a type of glass transition that, in contrast to other glass-forming systems, can show fluidization as density increases. The fluid internal dynamics and ballistic transport of the nematic-laning state may promote collective dynamics of rod-shaped micro-organisms.

  14. Precipitation of coherent Ni{sub 2}(Cr, W) superlattice in an Ni–Cr–W superalloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Xiangyu; Hu, Rui, E-mail: rhu@nwpu.edu.cn; Zhang, Tiebang

    2016-01-15

    It is demonstrated that a nanometer-sized Ni{sub 2}(Cr, W) superlattice with a Pt{sub 2}Mo-type structure can precipitate in an Ni–Cr–W alloy by means of a simple aging treatment at 550 °C. The dark-field image of short-range order domains has been found for the first time experimentally. The mechanism of short-range order to long-range order transformation has been revealed based on transmission electron microscopy result and static concentration waves theory and found to be continuous ordering. The randomness of the transformation of static concentration waves leads to equiprobable occurrence of the different variants. The transformation of short-range order to long-range ordermore » gives rise to the Pt{sub 2}Mo-type Ni{sub 2}(Cr, W) superlattice. The interfaces between Ni{sub 2}(Cr, W) and Ni-based matrix and the different variants of Ni{sub 2}(Cr, W) have been investigated by high resolution transmission electron microscopy. The results reveal that the interfaces between Ni{sub 2}(Cr, W) and surrounding matrix are coherent at the atomic scale. - Highlights: • The DF image of SRO cluster has been found for the first time experimentally. • The transformation of SRO to LRO gives rise to the Pt{sub 2}Mo-type Ni{sub 2}(Cr, W). • Variants of Ni{sub 2}(Cr, W) occur equiprobably. • The interfaces between Ni{sub 2}(Cr, W) and matrix are coherent at the atomic scale.« less

  15. Amylose Phase Composition As Analyzed By FTIR In A Temperature Ramp: Influence Of Short Range Order On The Thermodynamic Properties

    NASA Astrophysics Data System (ADS)

    Bernazzani, Paul; Delmas, Genevieve

    1998-03-01

    Amylose, a major component of starch, is one of the most important biopolymers, being mainly associated with the pharmacological and food industries. Although widely studied, a complete control and understanding of the physical properties of amylose is still lacking. It is well known that structure and phase transition are important aspects of the functionality of biopolymers since they influence physical attributes such as appearance, digestibility, water holding capacity, etc. In the past, we have studied polyethylene phase composition by DSC in a very slow temperature (T) ramp (1K/h) and have demonstrated the presence and importance of short-range order on the polymer and its characteristics. In this study, we evaluated the phase composition of potato amylose and associated the thermodynamic properties with the presence of short-range order. Two methods were correlated, DSC (in a 1K/h T-ramp) and FTIR as a function of temperature, also in a 1K/h T-ramp. The effects of the various phases on thermodynamic properties such as gelation and enzyme or chemical resistance are discussed.

  16. Revisiting the ground state of CoAl 2 O 4 : Comparison to the conventional antiferromagnet MnAl 2 O 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDougall, Gregory J.; Aczel, Adam A.; Su, Yixi

    The A-site spinel material CoAl 2O 4 is a physical realization of the frustrated diamond-lattice antiferromagnet, a model in which unique incommensurate or “spin-spiral-liquid” ground states are predicted. Our previous single-crystal neutron scattering study instead classified it as a “kinetically inhibited” antiferromagnet, where the long-ranged correlations of a collinear Néel ground state are blocked by the freezing of domain-wall motion below a first-order phase transition at T*=6.5 K. This study provides new data sets from a number of experiments, which support and expand this work in several important ways. We show that the phenomenology leading to the kinetically inhibited ordermore » is unaffected by sample measured and instrument resolution, while new low-temperature measurements reveal spin correlations are unchanging between T=2 K and 250 mK, consistent with a frozen state. Polarized diffuse neutron measurements show several interesting magnetic features, which can be entirely explained by the existence of short-ranged Néel order. Finally, and crucially, this paper presents some neutron scattering studies of single crystalline MnAl 2O 4, which acts as an unfrustrated analog to CoAl 2O 4 and shows all the hallmarks of a classical antiferromagnet with a continuous phase transition to Néel order at T N=39 K. Direct comparison between the two compounds indicates that CoAl 2O 4 is unique, not in the nature of high-temperature diffuse correlations, but rather in the nature of the frozen state below T*. Finally, the higher level of cation inversion in the MnAl 2O 4 sample indicates that this behavior is primarily an effect of greater next-nearest-neighbor exchange.« less

  17. Revisiting the ground state of CoAl 2 O 4 : Comparison to the conventional antiferromagnet MnAl 2 O 4

    DOE PAGES

    MacDougall, Gregory J.; Aczel, Adam A.; Su, Yixi; ...

    2016-11-17

    The A-site spinel material CoAl 2O 4 is a physical realization of the frustrated diamond-lattice antiferromagnet, a model in which unique incommensurate or “spin-spiral-liquid” ground states are predicted. Our previous single-crystal neutron scattering study instead classified it as a “kinetically inhibited” antiferromagnet, where the long-ranged correlations of a collinear Néel ground state are blocked by the freezing of domain-wall motion below a first-order phase transition at T*=6.5 K. This study provides new data sets from a number of experiments, which support and expand this work in several important ways. We show that the phenomenology leading to the kinetically inhibited ordermore » is unaffected by sample measured and instrument resolution, while new low-temperature measurements reveal spin correlations are unchanging between T=2 K and 250 mK, consistent with a frozen state. Polarized diffuse neutron measurements show several interesting magnetic features, which can be entirely explained by the existence of short-ranged Néel order. Finally, and crucially, this paper presents some neutron scattering studies of single crystalline MnAl 2O 4, which acts as an unfrustrated analog to CoAl 2O 4 and shows all the hallmarks of a classical antiferromagnet with a continuous phase transition to Néel order at T N=39 K. Direct comparison between the two compounds indicates that CoAl 2O 4 is unique, not in the nature of high-temperature diffuse correlations, but rather in the nature of the frozen state below T*. Finally, the higher level of cation inversion in the MnAl 2O 4 sample indicates that this behavior is primarily an effect of greater next-nearest-neighbor exchange.« less

  18. 2D fluorescence spectra measurement of six kinds of bioagents simulants by short range Lidar

    NASA Astrophysics Data System (ADS)

    Sanpedro, Man

    2018-02-01

    Pantoea agglomerans (Pan), Staphylococcus aureus (Sta), Bacillus globigii (BG) and Escherichia coli (EH), these four kinds of bioagents simulants of were cultured and then their growth curves were measured, the generation time was 0.99h, 0.835h, 1.07h and 1.909h, respectively. A small short range fluorescence lidar working at wavelengths of 266nm and 355nm was designed and used to measure the two-dimensional fluorescence spectra of bioagents simulants in the amino acid segment and NADH segment, respectively. In a controllable fluorescence measurement chamber, the two-dimensional fluorescence spectra of vegetative liquid bacterial aerosols as well as BSA and OVA, two protein toxinic simulants were measured with a resolution of 4nm. The two-dimensional fluorescence spectral shape of Pan, Sta, EH and BG, BSA and OVA were consistent with the standard fluorescent component tryptophan in the amino acid band with FWHM of 60nm, but the central wavelength of the fluorescence spectra of these simulants blue/purple shifted obviously as affected by the external biochemical environment, concentration and ratio of different bacterial internal fluorophores, so the energy level between the excited state and the ground state of the fluorescence molecule increased. Differently, weak NADH fluorescence spectra with 100nm FWHM inside the four vegetative bacteria aerosols were detected, but Rayleigh scattering, Raman scattering contribution of water, nitrogen in the fluorescence spectra could not be effectively extracted. The second - order derivative fluorescence spectra of four simulants showed that the high - order processing and recognition of the fluorescence spectra was feasible.

  19. A modulation wave approach to the order hidden in disorder

    PubMed Central

    Withers, Ray

    2015-01-01

    The usefulness of a modulation wave approach to understanding and interpreting the highly structured continuous diffuse intensity distributions characteristic of the reciprocal spaces of the very large family of inherently flexible materials which exhibit ordered ‘disorder’ is pointed out. It is shown that both longer range order and truly short-range order are simultaneously encoded in highly structured diffuse intensity distributions. The long-range ordered crystal chemical rules giving rise to such diffuse distributions are highlighted, along with the existence and usefulness of systematic extinction conditions in these types of structured diffuse distributions. PMID:25610629

  20. Compressed glassy carbon: An ultrastrong and elastic interpenetrating graphene network

    PubMed Central

    Hu, Meng; He, Julong; Zhao, Zhisheng; Strobel, Timothy A.; Hu, Wentao; Yu, Dongli; Sun, Hao; Liu, Lingyu; Li, Zihe; Ma, Mengdong; Kono, Yoshio; Shu, Jinfu; Mao, Ho-kwang; Fei, Yingwei; Shen, Guoyin; Wang, Yanbin; Juhl, Stephen J.; Huang, Jian Yu; Liu, Zhongyuan; Xu, Bo; Tian, Yongjun

    2017-01-01

    Carbon’s unique ability to have both sp2 and sp3 bonding states gives rise to a range of physical attributes, including excellent mechanical and electrical properties. We show that a series of lightweight, ultrastrong, hard, elastic, and conductive carbons are recovered after compressing sp2-hybridized glassy carbon at various temperatures. Compression induces the local buckling of graphene sheets through sp3 nodes to form interpenetrating graphene networks with long-range disorder and short-range order on the nanometer scale. The compressed glassy carbons have extraordinary specific compressive strengths—more than two times that of commonly used ceramics—and simultaneously exhibit robust elastic recovery in response to local deformations. This type of carbon is an optimal ultralight, ultrastrong material for a wide range of multifunctional applications, and the synthesis methodology demonstrates potential to access entirely new metastable materials with exceptional properties. PMID:28630918

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sainato, Michela; Shevitski, Brian; Sahu, Ayaskanta

    Self-assembly of semiconductor nanocrystals (NCs) into two-dimensional patterns or three-dimensional (2- 3D) superstructures has emerged as a promising low-cost route to generate thin-film transistors and solar cells with superior charge transport because of enhanced electronic coupling between the NCs. Here, we show that lead sulfide (PbS) NCs solids featuring either short-range (disordered glassy solids, GSs) or long-range (superlattices, SLs) packing order are obtained solely by controlling deposition conditions of colloidal solution of NCs. In this study, we demonstrate the use of the evaporation-driven self-assembly method results in PbS NC SL structures that are observed over an area of 1 mmmore » × 100 μm, with long-range translational order of up to 100 nm. A number of ordered domains appear to have nucleated simultaneously and grown together over the whole area, imparting a polycrystalline texture to the 3D SL films. By contrast, a conventional, optimized spin-coating deposition method results in PbS NC glassy films with no translational symmetry and much shorter-range packing order in agreement with state-of-the-art reports. Further, we investigate the electronic properties of both SL and GS films, using a field-effect transistor configuration as a test platform. The long-range ordering of the PbS NCs into SLs leads to semiconducting NC-based solids, the mobility (μ) of which is 3 orders of magnitude higher than that of the disordered GSs. Furthemore, although spin-cast GSs of PbS NCs have weak ambipolar behavior with limited gate tunability, SLs of PbS NCs show a clear p-type behavior with significantly higher conductivities.« less

  2. Highly excited bound-state resonances of short-range inverse power-law potentials

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2017-11-01

    We study analytically the radial Schrödinger equation with long-range attractive potentials whose asymptotic behaviors are dominated by inverse power-law tails of the form V(r)=-β _n r^{-n} with n>2. In particular, assuming that the effective radial potential is characterized by a short-range infinitely repulsive core of radius R, we derive a compact analytical formula for the threshold energy E^{ {max}}_l=E^{ {max}}_l(n,β _n,R), which characterizes the most weakly bound-state resonance (the most excited energy level) of the quantum system.

  3. Hydrodynamic effects on phase transition in active matter

    NASA Astrophysics Data System (ADS)

    Gidituri, Harinadha; Akella, V. S.; Panchagnula, Mahesh; Vedantam, Srikanth; Multiphase flow physics lab Team

    2017-11-01

    Organized motion of active (self-propelled) objects are ubiquitous in nature. The objective of this study to investigate the effect of hydrodynamics on the coherent structures in active and passive particle mixtures. We use a mesoscopic method Dissipative Particle Dynamics (DPD). The system shows three different states viz. meso-turbulent (disordered state), polar flock and vortical (ordered state) for different values of activity and volume fraction of active particles. From our numerical simulations we construct a phase diagram between activity co-efficient, volume fraction and viscosity of the passive fluid. Transition from vortical to polar is triggered by increasing the viscosity of passive fluid which causes strong short-range hydrodynamic interactions. However, as the viscosity of the fluid decreases, both vortical and meso-turbulent states transition to polar flock phase. We also calculated the diffusion co-efficients via mean square displacement (MSD) for passive and active particles. We observe ballistic and diffusive regimes in the present system.

  4. Ordering Transformations in High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Singh, Prashant; Johnson, Duane D.

    The high-temperature disordered phase of multi-component alloys, including high-entropy alloys (HEA), generally must experience segregation or else passes through partially-ordered phases to reach the low-temperature, fully-ordered phase. Our first-principles KKR-CPA-based atomic short-range ordering (SRO) calculations (analyzed as concentration-waves) reveal the competing partially and fully ordered phases in HEA, and these phases can be then directly assessed from KKR-CPA results in larger unit cells [Phys. Rev. B 91, 224204 (2015)]. For AlxCrFeNiTi0.25, Liu et al. [J Alloys Compd 619, 610 (2015)] experimentally find FCC+BCC coexistence that changes to BCC with increasing Al (x from 0-to-1), which then exhibits a partially-ordered B2 at low temperatures. CALPHAD (Calculation of Phase Diagrams) predicts a region with L21+B2 coexistence. From KKR-CPA calculations, we find crossover versus Al from FCC+BCC coexistence to BCC, as observed, and regions for partially-order B2+L21 coexistence, as suggest by CALPHAD. Our combined first-principles KKR-CPA method provides a powerful approach in predicting SRO and completing long-range order in HEA and other complex alloys. Supported by the U.S. DOE, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. Work was performed at Ames Laboratory, which is operated by Iowa State University for the U.S. DOE under Contract #DE-AC02-07CH11358.

  5. Topological order and thermal equilibrium in polariton condensates

    NASA Astrophysics Data System (ADS)

    Caputo, Davide; Ballarini, Dario; Dagvadorj, Galbadrakh; Sánchez Muñoz, Carlos; de Giorgi, Milena; Dominici, Lorenzo; West, Kenneth; Pfeiffer, Loren N.; Gigli, Giuseppe; Laussy, Fabrice P.; Szymańska, Marzena H.; Sanvitto, Daniele

    2018-02-01

    The Berezinskii-Kosterlitz-Thouless phase transition from a disordered to a quasi-ordered state, mediated by the proliferation of topological defects in two dimensions, governs seemingly remote physical systems ranging from liquid helium, ultracold atoms and superconducting thin films to ensembles of spins. Here we observe such a transition in a short-lived gas of exciton-polaritons, bosonic light-matter particles in semiconductor microcavities. The observed quasi-ordered phase, characteristic for an equilibrium two-dimensional bosonic gas, with a decay of coherence in both spatial and temporal domains with the same algebraic exponent, is reproduced with numerical solutions of stochastic dynamics, proving that the mechanism of pairing of the topological defects (vortices) is responsible for the transition to the algebraic order. This is made possible thanks to long polariton lifetimes in high-quality samples and in a reservoir-free region. Our results show that the joint measurement of coherence both in space and time is required to characterize driven-dissipative phase transitions and enable the investigation of topological ordering in open systems.

  6. Fabrication and surface enhanced Raman scattering effect of centimeter level AgCuAu composite nanowires

    NASA Astrophysics Data System (ADS)

    Xu, Dapeng; Zhang, Song; Yang, Wei; Chen, Jian

    2017-10-01

    Centimeter level AgCuAu composite nanowires were prepared by a solid-state ionics method under a direct current electric field (DCEF) using fast ionic conductor RbAg4I5 films and vacuum thermal evaporation method. The surface morphology and chemical composition of the AuAgCu composite nanowires were characterized by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), respectively. Raman enhancement performance of the AgCuAu composite nanowires substrates was detected by Rhodamine 6G (R6G) aqueous solutions as probe molecules. Long-range order and short-range order AgCuAu composite nanowires with the length of 1 cm were prepared. The nanowires were bamboo-shaped with high surface roughness and the diameters of nanowires ranged from 60 to 100 nm. The molar ratio of Ag:Cu:Au in composite nanowires is 15:2:1. The intrinsic Raman peaks of 10-16 mol/L R6G at 612, 773, 1125, 1182, 1307, 1361, 1418, 1506, 1545, 1575, 1597, 1650 cm-1 are all present when AgCuAu composite nanowires were used as the SERS substrates.

  7. Quench field sensitivity of two-particle correlation in a Hubbard model

    PubMed Central

    Zhang, X. Z.; Lin, S.; Song, Z.

    2016-01-01

    Short-range interaction can give rise to particle pairing with a short-range correlation, which may be destroyed in the presence of an external field. We study the transition between correlated and uncorrelated particle states in the framework of one- dimensional Hubbard model driven by a field. We show that the long time-scale transfer rate from an initial correlated state to final uncorrelated particle states is sensitive to the quench field strength and exhibits a periodic behavior. This process involves an irreversible energy transfer from the field to particles, leading to a quantum electrothermal effect. PMID:27250080

  8. Theory of polyelectrolytes in solvents.

    PubMed

    Chitanvis, Shirish M

    2003-12-01

    Using a continuum description, we account for fluctuations in the ionic solvent surrounding a Gaussian, charged chain and derive an effective short-ranged potential between the charges on the chain. This potential is repulsive at short separations and attractive at longer distances. The chemical potential can be derived from this potential. When the chemical potential is positive, it leads to a meltlike state. For a vanishingly low concentration of segments, this state exhibits scaling behavior for long chains. The Flory exponent characterizing the radius of gyration for long chains is calculated to be approximately 0.63, close to the classical value obtained for second order phase transitions. For short chains, the radius of gyration varies linearly with N, the chain length, and is sensitive to the parameters in the interaction potential. The linear dependence on the chain length N indicates a stiff behavior. The chemical potential associated with this interaction changes sign, when the screening length in the ionic solvent exceeds a critical value. This leads to condensation when the chemical potential is negative. In this state, it is shown using the mean-field approximation that spherical and toroidal condensed shapes can be obtained. The thickness of the toroidal polyelectrolyte is studied as a function of the parameters of the model, such as the ionic screening length. The predictions of this theory should be amenable to experimental verification.

  9. Sensitivity of solar-cell performance to atmospheric variables. 2: Dissimilar cells at several locations

    NASA Technical Reports Server (NTRS)

    Klucher, T. M.; Hart, R. E.

    1976-01-01

    Several solar cells having dissimilar spectral response curves and cell construction were measured at various locations in the United States to determine sensitivity of cell performance to atmospheric water vapor and turbidity. The locations selected represent a broad range of summer atmospheric conditions, from clear and dry to turbid and humid. Cell short circuit current under direct normal incidence sunlight, the intensity, water vapor and turbidity were measured. Regression equations were developed from the limited data base in order to provide a single method of prediction of cell current sensitivity to the atmospheric variables.

  10. Using Fiction to Assess Mental State Understanding: A New Task for Assessing Theory of Mind in Adults

    PubMed Central

    Dodell-Feder, David; Lincoln, Sarah Hope; Coulson, Joseph P.; Hooker, Christine I.

    2013-01-01

    Social functioning depends on the ability to attribute and reason about the mental states of others – an ability known as theory of mind (ToM). Research in this field is limited by the use of tasks in which ceiling effects are ubiquitous, rendering them insensitive to individual differences in ToM ability and instances of subtle ToM impairment. Here, we present data from a new ToM task – the Short Story Task (SST) - intended to improve upon many aspects of existing ToM measures. More specifically, the SST was designed to: (a) assess the full range of individual differences in ToM ability without suffering from ceiling effects; (b) incorporate a range of mental states of differing complexity, including epistemic states, affective states, and intentions to be inferred from a first- and second-order level; (c) use ToM stimuli representative of real-world social interactions; (d) require participants to utilize social context when making mental state inferences; (e) exhibit adequate psychometric properties; and (f) be quick and easy to administer and score. In the task, participants read a short story and were asked questions that assessed explicit mental state reasoning, spontaneous mental state inference, and comprehension of the non-mental aspects of the story. Responses were scored according to a rubric that assigned greater points for accurate mental state attributions that included multiple characters’ mental states. Results demonstrate that the SST is sensitive to variation in ToM ability, can be accurately scored by multiple raters, and exhibits concurrent validity with other social cognitive tasks. The results support the effectiveness of this new measure of ToM in the study of social cognition. The findings are also consistent with studies demonstrating significant relationships among narrative transportation, ToM, and the reading of fiction. Together, the data indicate that reading fiction may be an avenue for improving ToM ability. PMID:24244736

  11. Fidelity study of the superconducting phase diagram in the two-dimensional single-band Hubbard model

    NASA Astrophysics Data System (ADS)

    Jia, C. J.; Moritz, B.; Chen, C.-C.; Shastry, B. Sriram; Devereaux, T. P.

    2011-09-01

    Extensive numerical studies have demonstrated that the two-dimensional single-band Hubbard model contains much of the key physics in cuprate high-temperature superconductors. However, there is no definitive proof that the Hubbard model truly possesses a superconducting ground state or, if it does, of how it depends on model parameters. To answer these longstanding questions, we study an extension of the Hubbard model including an infinite-range d-wave pair field term, which precipitates a superconducting state in the d-wave channel. Using exact diagonalization on 16-site square clusters, we study the evolution of the ground state as a function of the strength of the pairing term. This is achieved by monitoring the fidelity metric of the ground state, as well as determining the ratio between the two largest eigenvalues of the d-wave pair/spin/charge-density matrices. The calculations show a d-wave superconducting ground state in doped clusters bracketed by a strong antiferromagnetic state at half filling controlled by the Coulomb repulsion U and a weak short-range checkerboard charge ordered state at larger hole doping controlled by the next-nearest-neighbor hopping t'. We also demonstrate that negative t' plays an important role in facilitating d-wave superconductivity.

  12. Generation Dependent Ultrafast Charge Separation and Recombination in a Pyrene-Viologen Family of Dendrons.

    PubMed

    Gong, Zheng; Bao, Jianhua; Nagai, Keiji; Iyoda, Tomokazu; Kawauchi, Takehiro; Piotrowiak, Piotr

    2016-05-12

    The ability of a dendritic network to intercept electrons and extend the lifetime of a short-lived photoinduced charge separated (CS) state was investigated in a homologous family of methyl viologen (MV(2+)) dendrons spanning four generations, G0 through G3. The CS state in the parent pyrene-methylene-viologen G0 system with a single acceptor exhibits an extremely short lifetime of τ = 0.72 ps. The expansion of the viologen network introduces slower components to the recombination kinetics by allowing the injected electron to migrate further away from the donor. The long-lived fraction of the population increases monotonically in the order G3 > G2 > G1 > G0, while the respective recombination rates decrease. In the highest generation of the dendron ∼14% of the CS state population experiences a 10-fold or greater lifetime extension. Long range tunneling across multiple viologen units and sequential site-to-site hopping both contribute to the overall effect. The large excess energy deposited in the apical viologen upon charge separation and the presence of an extended network of low lying π-orbitals likely facilitate shuttling the electron further down the dendron.

  13. Dual origin of pairing in nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idini, A.; Potel, G.; Barranco, F.

    The pairing correlations of the nucleus {sup 120}Sn are calculated by solving the Nambu–Gor’kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairingmore » interaction. The first is the strong {sup 1}S{sub 0} short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- (v{sub p}{sup bare}) and long-range (v{sub p}{sup ind}) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.« less

  14. A robust nanofluidic membrane with tunable zero-order release for implantable dose specific drug delivery.

    PubMed

    Fine, Daniel; Grattoni, Alessandro; Hosali, Sharath; Ziemys, Arturas; De Rosa, Enrica; Gill, Jaskaran; Medema, Ryan; Hudson, Lee; Kojic, Milos; Milosevic, Miljan; Brousseau Iii, Louis; Goodall, Randy; Ferrari, Mauro; Liu, Xuewu

    2010-11-21

    This manuscript demonstrates a mechanically robust implantable nanofluidic membrane capable of tunable long-term zero-order release of therapeutic agents in ranges relevant for clinical applications. The membrane, with nanochannels as small as 5 nm, allows for the independent control of both dosage and mechanical strength through the integration of high-density short nanochannels parallel to the membrane surface with perpendicular micro- and macrochannels for interfacing with the ambient solutions. These nanofluidic membranes are created using precision silicon fabrication techniques on silicon-on-insulator substrates enabling exquisite control over the monodispersed nanochannel dimensions and surface roughness. Zero-order release of analytes is achieved by exploiting molecule to surface interactions which dominate diffusive transport when fluids are confined to the nanoscale. In this study we investigate the nanofluidic membrane performance using custom diffusion and gas testing apparatuses to quantify molecular release rate and process uniformity as well as mechanical strength using a gas based burst test. The kinetics of the constrained zero-order release is probed with molecules presenting a range of sizes, charge states, and structural conformations. Finally, an optimal ratio of the molecular hydrodynamic diameter to the nanochannel dimension is determined to assure zero-order release for each tested molecule.

  15. 78 FR 75395 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Order Granting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-11

    ... series expire (``Short Term Option Expiration Dates'') at one time; and (ii) state that additional series... Rule Change, as Modified by Amendment No. 1, Relating to the Short Term Option Series Program December... Exchange's Short Term Option Series Program (``Weeklys Program''). The proposed rule change was published...

  16. Structural short-range order of the β-Ti phase in bulk Ti-Fe-(Sn) nanoeutectic composites

    NASA Astrophysics Data System (ADS)

    Das, J.; Eckert, J.; Theissmann, R.

    2006-12-01

    The authors report lattice distortion and "ω-like" structural short-range order (SRO) of the β-Ti phase in a Ti-Fe-(Sn) bulk nanoeutectic composite prepared by slow cooling from the melt. The nanoeuetctic phases are chemically homogeneous, but the addition of Sn releases the local lattice strain, modifies the structural SRO, and prevents the formation of stacking faults in the body centered cubic (bcc) β-Ti phase resulting in improved plastic deformability. The elastic properties and the structural SRO of the β-Ti phase are proposed to be important parameters for developing advanced high strength, ductile Ti-base nanocomposite alloys.

  17. A brief note on the magnecule order parameter upgrade hypothesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Nathan O.

    2015-03-10

    In this short remark, we report on recent hypothetical work that aims to equip Santilli’s magnecule model with topological deformation order parameters (OP) of fractional statistics to define a preliminary set of wavepacket wavefunctions for the electron toroidal polarizations. The primary objective is to increase the representational precision and predictive accuracy of the magnecule model by exemplifying the fluidic characteristics for direct industrial application. In particular, the OPs are deployed to encode the spontaneous superfluidic gauge symmetry breaking (which may be restored at the iso-topic level) and correlated with Leggett’s superfluid B phases to establish a long range constraint formore » the wavefunctions. These new, developing, theoretical results may be significant because the OP configuration arms us with an extra degree of freedom for encoding a magnecule’s states and transitions, which may reveal further insight into the underlying physical mechanisms and features associated with these state-of-the-art magnecular bonds.« less

  18. Short-range order in the quantum XXZ honeycomb lattice material BaCo2(PO4)2

    NASA Astrophysics Data System (ADS)

    Nair, Harikrishnan S.; Brown, J. M.; Coldren, E.; Hester, G.; Gelfand, M. P.; Podlesnyak, A.; Huang, Q.; Ross, K. A.

    2018-04-01

    We present observations of highly frustrated quasi-two-dimensional (2D) magnetic correlations in the honeycomb lattice layers of the Seff =1 /2 compound γ -BaCo2(PO4)2 (γ -BCPO). Specific heat shows a broad peak comprised of two weak kink features at TN 1˜6 K and TN 2˜3.5 K, the relative weights of which can be modified by sample annealing. Neutron powder diffraction measurements reveal short range quasi-2D order that is established below TN 1 and TN 2, at which two separate, incompatible, short range magnetic orders onset: commensurate antiferromagnetic correlations with correlation length ξc=60 ±2 Å (TN 1) and in quasi-2D helical domains with ξh=350 ±11 Å (TN 2). The ac magnetic susceptibility response lacks frequency dependence, ruling out spin freezing. Inelastic neutron scattering data on γ -BCPO is compared with linear spin wave theory, and two separate parameter regions of the XXZ J1-J2-J3 model with ferromagnetic nearest-neighbor exchange J1 are favored, both near regions of high classical degeneracy. High energy coherent excitations (˜10 meV) persist up to at least 40 K, suggesting strong in-plane correlations persist above TN. These data show that γ -BCPO is a rare highly frustrated, quasi-2D Seff =1 /2 honeycomb lattice material which resists long range magnetic order and spin freezing.

  19. All Male State-Funded Military Academies: Anachronism or Necessary Anomaly?

    ERIC Educational Resources Information Center

    Russo, Charles J.; Scollay, Susan J.

    1993-01-01

    The United States Court of Appeals for the Fourth District, although stopping short of ordering the Virginia Military Institute (VMI) to admit women, ordered VMI to implement a program which comports with the requirements of equal protection. Offers an analysis of the Fourth Circuit's ruling, a discussion of important educational questions, and a…

  20. Short range structure of 0.35Sb2O3-0.65(Li2O-P2O5) glass: A neutron diffraction study

    NASA Astrophysics Data System (ADS)

    Shinde, A. B.; Krishna, P. S. R.

    2018-04-01

    Neutron diffraction studies on Li2O-P2O5 and 0.35Sb2O3-0.65(Li2O-P2O5) glass are performed up to a Qmax of 15 Å-1 on the High-Q diffractometer, Dhruva. MCGR method is used to find pair correlation functions (g(r)) functions from experimentally obtained S(Q). We found that the Li-O and first Sb-O correlations to be around 2.04 Å & 2.15 Å. The O-O correlation from Phosphate & Antimony networks are found to be around 2.7 Å. The short range order of Sb is similar to its crystalline polymorph of valentinite instead of senarmonite. The short range order and network connectivity in this glass implies a structure composed of chains of corner sharing SbO3 pyramidal units connected to PO4 tetrahedra while Li acts as a modifier.

  1. Search for Lorentz Violation in a Short-Range Gravity Experiment

    NASA Astrophysics Data System (ADS)

    Bennett, D.; Skavysh, V.; Long, J.

    2011-12-01

    An experimental test of the Newtonian inverse square law at short range has been used to set limits on Lorentz violation in the pure gravity sector of the Standard-Model Extension. On account of the planar test mass geometry, nominally null with respect to 1/r2 forces, the limits derived for the SME coefficients of Lorentz violation are on the order bar sJK ˜ 104 .

  2. Charge-patterning phase transition on a surface lattice of titratable sites adjacent to an electrolyte solution

    NASA Astrophysics Data System (ADS)

    Shore, Joel; Thurston, George

    We discuss a model for a charge-patterning phase transition on a two-dimensional square lattice of titratable sites, here regarded as protonation sites, placed on a square lattice in a dielectric medium just below the planar interface between this medium and an aqueous salt solution. Within Debye-Huckel theory, the analytical form of the electrostatic repulsion between protonated sites exhibits an approximate inverse cubic power-law decrease beyond short distances. The problem can thus be mapped onto the two-dimensional antiferromagnetic Ising model with this longer-range interaction, which we study with Monte Carlo simulations. As we increase pH, the occupation probability of a site decreases from 1 at low pH to 0 at high pH. For sufficiently-strong interaction strengths, a phase transition occurs as the occupation probability of 1/2 is approached: the charges arrange themselves into a checkerboard pattern. This ordered phase persists over a range of pH until a transition occurs back to a disordered state. This state is the analogue of the Neel state in the antiferromagnetic Ising spin model. More complicated ordered phases are expected for sufficiently strong interactions (with occupation probabilities of 1/4 and 3/4) and if the lattice is triangular rather than square. This work was supported by NIH EY018249 (GMT).

  3. Effect of magnetism and atomic order on static atomic displacements in the Invar alloy Fe-27 at.% Pt

    NASA Astrophysics Data System (ADS)

    Sax, C. R.; Schönfeld, B.; Ruban, A. V.

    2015-08-01

    Fe-27 at.% Pt was aged at 1123 K and quenched to room temperature (RT) to set up a state of thermal equilibrium. The local atomic arrangement was studied by diffuse x-ray scattering above (at 427 K) and below (at RT) the Curie temperature as well as at RT under a saturating magnetic field. The separated short-range order scattering remained unchanged for all three states, with maxima at 100 positions. Effective pair interaction parameters determined by the inverse Monte Carlo method gave an order-disorder transition temperature of about 1088 K, close to direct experimental findings. The species-dependent static atomic displacements for the first two shells show large differences, with a strong increase in magnitude from the state at 427 K over RT to the state under saturating magnetic field. This outcome is in agreement with an increase in atomic volume of Fe with increasing local magnetic moment. Electronic-structure calculations closely reproduce the values for the static atomic displacements in the ferromagnetic state, and predict their dependence on the atomic configuration. They also reveal a strong dependence of the magnetic exchange interactions in Fe-Pt on the atomic configuration state and lattice parameter. In particular, the increase of the Curie temperature in a random state relative to that in the ordered one is demonstrated to be related to the corresponding change of the magnetic exchange interactions due to the different local atomic chemical environment. There exists a similar strong concentration dependence of the chemical interactions as in the case of magnetic exchange interactions. Theoretical effective interactions for Fe-27 at.% Pt alloy are in good agreement with experimental results, and they also reproduce well the L1 2-A1 transition temperature.

  4. Motion of packings of frictional grains.

    PubMed

    Halsey, Thomas C

    2009-07-01

    Friction plays a key role in controlling the rheology of dense granular flows. Counting the number of constraints vs the number of variables indicates that critical coordination numbers Zc=3 (in D=2) and Zc=4 (in D=3) are special, in that states in which all contacts roll without frictional sliding are naively possible at and below these average coordination numbers. We construct an explicit example of such a state in D=2 based on a honeycomb lattice. This state has surprisingly large values for the typical angular velocities of the particles. Solving for the forces in such a state, we conclude that organized shear can exist in this state only on scales l

  5. Local Hamiltonians for maximally multipartite-entangled states

    NASA Astrophysics Data System (ADS)

    Facchi, P.; Florio, G.; Pascazio, S.; Pepe, F.

    2010-10-01

    We study the conditions for obtaining maximally multipartite-entangled states (MMESs) as nondegenerate eigenstates of Hamiltonians that involve only short-range interactions. We investigate small-size systems (with a number of qubits ranging from 3 to 5) and show some example Hamiltonians with MMESs as eigenstates.

  6. Order of wetting transitions in electrolyte solutions.

    PubMed

    Ibagon, Ingrid; Bier, Markus; Dietrich, S

    2014-05-07

    For wetting films in dilute electrolyte solutions close to charged walls we present analytic expressions for their effective interface potentials. The analysis of these expressions renders the conditions under which corresponding wetting transitions can be first- or second-order. Within mean field theory we consider two models, one with short- and one with long-ranged solvent-solvent and solvent-wall interactions. The analytic results reveal in a transparent way that wetting transitions in electrolyte solutions, which occur far away from their critical point (i.e., the bulk correlation length is less than half of the Debye length) are always first-order if the solvent-solvent and solvent-wall interactions are short-ranged. In contrast, wetting transitions close to the bulk critical point of the solvent (i.e., the bulk correlation length is larger than the Debye length) exhibit the same wetting behavior as the pure, i.e., salt-free, solvent. If the salt-free solvent is governed by long-ranged solvent-solvent as well as long-ranged solvent-wall interactions and exhibits critical wetting, adding salt can cause the occurrence of an ion-induced first-order thin-thick transition which precedes the subsequent continuous wetting as for the salt-free solvent.

  7. First-order metal-insulator transitions in the extended Hubbard model due to self-consistent screening of the effective interaction

    NASA Astrophysics Data System (ADS)

    Schüler, M.; van Loon, E. G. C. P.; Katsnelson, M. I.; Wehling, T. O.

    2018-04-01

    While the Hubbard model is the standard model to study Mott metal-insulator transitions, it is still unclear to what extent it can describe metal-insulator transitions in real solids, where nonlocal Coulomb interactions are always present. By using a variational principle, we clarify this issue for short- and long-range nonlocal Coulomb interactions for half-filled systems on bipartite lattices. We find that repulsive nonlocal interactions generally stabilize the Fermi-liquid regime. The metal-insulator phase boundary is shifted to larger interaction strengths to leading order linearly with nonlocal interactions. Importantly, nonlocal interactions can raise the order of the metal-insulator transition. We present a detailed analysis of how the dimension and geometry of the lattice as well as the temperature determine the critical nonlocal interaction leading to a first-order transition: for systems in more than two dimensions with nonzero density of states at the Fermi energy the critical nonlocal interaction is arbitrarily small; otherwise, it is finite.

  8. The 4th order GISS model of the global atmosphere

    NASA Technical Reports Server (NTRS)

    Kalnay-Rivas, E.; Bayliss, A.; Storch, J.

    1977-01-01

    The new GISS 4th order model of the global atmosphere is described. It is based on 4th order quadratically conservative differences with the periodic application of a 16th order filter on the sea level pressure and potential temperature equations, a combination which is approximately enstrophy conserving. Several short range forecasts indicate a significant improvement over 2nd order forecasts with the same resolution (approximately 400 km). However the 4th order forecasts are somewhat inferior to 2nd order forecasts with double resolution. This is probably due to the presence of short waves in the range between 1000 km and 2000 km, which are computed more accurately by the 2nd order high resolution model. An operation count of the schemes indicates that with similar code optimization, the 4th order model will require approximately the same amount of computer time as the 2nd order model with the same resolution. It is estimated that the 4th order model with a grid size of 200 km provides enough accuracy to make horizontal truncation errors negligible over a period of a week for all synoptic scales (waves longer than 1000 km).

  9. Universal quantum computing using (Zd) 3 symmetry-protected topologically ordered states

    NASA Astrophysics Data System (ADS)

    Chen, Yanzhu; Prakash, Abhishodh; Wei, Tzu-Chieh

    2018-02-01

    Measurement-based quantum computation describes a scheme where entanglement of resource states is utilized to simulate arbitrary quantum gates via local measurements. Recent works suggest that symmetry-protected topologically nontrivial, short-ranged entangled states are promising candidates for such a resource. Miller and Miyake [npj Quantum Inf. 2, 16036 (2016), 10.1038/npjqi.2016.36] recently constructed a particular Z2×Z2×Z2 symmetry-protected topological state on the Union Jack lattice and established its quantum-computational universality. However, they suggested that the same construction on the triangular lattice might not lead to a universal resource. Instead of qubits, we generalize the construction to qudits and show that the resulting (d -1 ) qudit nontrivial Zd×Zd×Zd symmetry-protected topological states are universal on the triangular lattice, for d being a prime number greater than 2. The same construction also holds for other 3-colorable lattices, including the Union Jack lattice.

  10. Charge and spin correlations in the monopole liquid

    NASA Astrophysics Data System (ADS)

    Slobinsky, D.; Baglietto, G.; Borzi, R. A.

    2018-05-01

    A monopole liquid is a spin system with a high density of magnetic charges but no magnetic-charge order. We study such a liquid over an Ising pyrochlore lattice, where a single topological charge or monopole sits in each tetrahedron. Restricting the study to the case with no magnetic field applied we show that, in spite of the liquidlike correlations between charges imposed by construction constraints, the spins are uncorrelated like in a perfect paramagnet. We calculate a massive residual entropy for this phase (ln(2 )/2 , a result which is exact in the thermodynamic limit), implying a free Ising-like variable per tetrahedron. After defining a simple model Hamiltonian for this system (the balanced monopole liquid) we study its thermodynamics. Surprisingly, this monopole liquid remains a perfect paramagnet at all temperatures. Thermal disorder can then be simply and quantitatively interpreted as single charge dilution, by the excitation of neutral sites and double monopoles. The addition of the usual nearest neighbors interactions favoring neutral `2in-2out' excitations as a perturbation maintains the same ground state but induces short-range (topological) order by thermal disorder. While it decreases charge-charge correlations, pair spin correlations—resembling those in spin ice—appear on increasing temperature. This helps us to see in another light the dipolarlike correlations present in spin ices at unexpectedly high temperatures. On the other side, favoring double excitations strengthens the charges short range order and its associated spin correlations. Finally, we discuss how the monopole liquid can be related to other systems and materials where different phases of monopole matter have been observed.

  11. Low-field induced large magnetocaloric effect in Tm2Ni0.93Si2.93: influence of short-range magnetic correlation

    NASA Astrophysics Data System (ADS)

    Pakhira, Santanu; Mazumdar, Chandan; Ranganathan, R.

    2017-12-01

    In this work, we report the successful synthesis of a new intermetallic compound Tm2 Ni0.93 Si2.93 that forms in single phase only in defect crystal structure. The compound does not show any long range magnetic ordering down to 2 K. The material exhibits a large magnetic entropy change (-Δ S_M˜13.7 J kg-1 K-1) and adiabatic temperature change (Δ T_ad˜4.4 K) at 2.2 K for a field change of 20 kOe which can be realized by permanent magnets, thus being very beneficial for application purpose. In the absence of long-range magnetic ordering down to 2 K, the metastable nature of low-temperature spin dynamics and short-range magnetic correlations are considered to be responsible for such a large magnetocaloric effect over a wide temperature region.

  12. Understanding physicochemical properties changes from multi-scale structures of starch/CNT nanocomposite films.

    PubMed

    Liu, Siyuan; Li, Xiaoxi; Chen, Ling; Li, Lin; Li, Bing; Zhu, Jie

    2017-11-01

    From the view of multi-scale structures of hydroxypropyl starch (HPS)/carbon nanotube (CNT) nanocomposite films, the film physicochemical properties were affected by comprehensive factors including molecular interaction, short range molecular conformation, crystalline structure and aggregated structure. The less original HPS hydrogen bonding that was broken, less decreased order of HPS short range molecular conformation, lower film crystallinity and larger size of micro-ordered regions contributed to higher tensile strength and Young's modulus of the film with CNT content of 0.5% (g/g, CNT in HPS). The higher film overall crystallinity and larger size of micro-ordered regions of the film with CNT content of 0.05%-0.3% compared with those of control contributed to better film barrier property. The addition of CNT with the content of 0.05%-0.5% broke the original HPS hydrogen bonding and decreased the order of starch short range molecular conformation, which counteracted the positive effect of CNT on the thermal stability of the material, thus thermal degradation temperature of these nanocomposite films did not increase. But the sharp increase of film crystallinity increased film thermal degradation temperature. This study provided a better understanding of film physicochemical properties changes which guides to rational design of starch-based nanocomposite films for packaging and coating application. Copyright © 2017. Published by Elsevier B.V.

  13. Space Technology Demonstrations Using Low Cost, Short-Schedule Airborne and Range Facilities at the Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Carter, John; Kelly, John; Jones, Dan; Lee, James

    2013-01-01

    There is a national effort to expedite advanced space technologies on new space systems for both government and commercial applications. In order to lower risk, these technologies should be demonstrated in a relevant environment before being installed in new space systems. This presentation introduces several low cost, short schedule space technology demonstrations using airborne and range facilities available at the Dryden Flight Research Center.

  14. Pressure-induced structural modifications of rare-earth hafnate pyrochlore

    NASA Astrophysics Data System (ADS)

    Turner, Katlyn M.; Rittman, Dylan R.; Heymach, Rachel A.; Tracy, Cameron L.; Turner, Madison L.; Fuentes, Antonio F.; Mao, Wendy L.; Ewing, Rodney C.

    2017-06-01

    Complex oxides with the pyrochlore (A2B2O7) and defect-fluorite ((A,B)4O7) structure-types undergo structural transformations under high-pressure. Rare-earth hafnates (A2Hf2O7) form the pyrochlore structure for A  =  La-Tb and the defect-fluorite structure for A  =  Dy-Lu. High-pressure transformations in A2Hf2O7 pyrochlore (A  =  Sm, Eu, Gd) and defect-fluorite (A  =  Dy, Y, Yb) were investigated up to ~50 GPa and characterized by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Raman spectra at ambient pressure revealed that all compositions, including the defect-fluorites, have some pyrochlore-type short-range order. In situ high-pressure synchrotron XRD showed that all of the rare earth hafnates investigated undergo a pressure-induced phase transition to a cotunnite-like (orthorhombic) structure that begins between 18 and 25 GPa. The phase transition to the cotunnite-like structure is not complete at 50 GPa, and upon release of pressure, the hafnates transform to defect-fluorite with an amorphous component. For all compositions, in situ Raman spectroscopy showed that disordering occurs gradually with increasing pressure. Pyrochlore-structured hafnates retain their short-range order to a higher pressure (30 GPa vs.  <10 GPa) than defect-fluorite-structured hafnates. Rare earth hafnates quenched from 50 GPa show Raman spectra consistent with weberite-type structures, as also reported for irradiated rare-earth stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of ~250 GPa for hafnates with the pyrochlore structure, and ~400 GPa for hafnates with the defect-fluorite structure. Dy2Hf2O7 is intermediate in its response, with some pyrochlore-type ordering, based on Raman spectroscopy and the equation of state, with a bulk modulus of ~300 GPa. As predicted based on the similar ionic radius of Zr4+ and Hf4+, rare-earth hafnates show similar behavior to that reported for rare earth zirconates at high pressure.

  15. Quantum Multicriticality near the Dirac-Semimetal to Band-Insulator Critical Point in Two Dimensions: A Controlled Ascent from One Dimension

    NASA Astrophysics Data System (ADS)

    Roy, Bitan; Foster, Matthew S.

    2018-01-01

    We compute the effects of generic short-range interactions on gapless electrons residing at the quantum critical point separating a two-dimensional Dirac semimetal and a symmetry-preserving band insulator. The electronic dispersion at this critical point is anisotropic (Ek=±√{v2kx2+b2ky2 n } with n =2 ), which results in unconventional scaling of thermodynamic and transport quantities. Because of the vanishing density of states [ϱ (E )˜|E |1 /n ], this anisotropic semimetal (ASM) is stable against weak short-range interactions. However, for stronger interactions, the direct Dirac-semimetal to band-insulator transition can either (i) become a fluctuation-driven first-order transition (although unlikely in a particular microscopic model considered here, the anisotropic honeycomb lattice extended Hubbard model) or (ii) get avoided by an intervening broken-symmetry phase. We perform a controlled renormalization group analysis with the small parameter ɛ =1 /n , augmented with a 1 /n expansion (parametrically suppressing quantum fluctuations in the higher dimension) by perturbing away from the one-dimensional limit, realized by setting ɛ =0 and n →∞ . We identify charge density wave (CDW), antiferromagnet (AFM), and singlet s -wave superconductivity as the three dominant candidates for broken symmetry. The onset of any such order at strong coupling (˜ɛ ) takes place through a continuous quantum phase transition across an interacting multicritical point, where the ordered phase, band insulator, Dirac, and anisotropic semimetals meet. We also present the phase diagram of an extended Hubbard model for the ASM, obtained via the controlled deformation of its counterpart in one dimension. The latter displays spin-charge separation and instabilities to CDW, spin density wave, and Luther-Emery liquid phases at arbitrarily weak coupling. The spin density wave and Luther-Emery liquid phases deform into pseudospin SU(2)-symmetric quantum critical points separating the ASM from the AFM and superconducting orders, respectively. Our phase diagram shows an intriguing interplay among CDW, AFM, and s -wave paired states that can be germane for a uniaxially strained optical honeycomb lattice for ultracold fermion atoms, or the organic compound α -(BEDT -TTF )2I3 .

  16. Pressure-induced structural modifications of rare-earth hafnate pyrochlore.

    PubMed

    Turner, Katlyn M; Rittman, Dylan R; Heymach, Rachel A; Tracy, Cameron L; Turner, Madison L; Fuentes, Antonio F; Mao, Wendy L; Ewing, Rodney C

    2017-06-28

    Complex oxides with the pyrochlore (A 2 B 2 O 7 ) and defect-fluorite ((A,B) 4 O 7 ) structure-types undergo structural transformations under high-pressure. Rare-earth hafnates (A 2 Hf 2 O 7 ) form the pyrochlore structure for A  =  La-Tb and the defect-fluorite structure for A  =  Dy-Lu. High-pressure transformations in A 2 Hf 2 O 7 pyrochlore (A  =  Sm, Eu, Gd) and defect-fluorite (A  =  Dy, Y, Yb) were investigated up to ~50 GPa and characterized by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Raman spectra at ambient pressure revealed that all compositions, including the defect-fluorites, have some pyrochlore-type short-range order. In situ high-pressure synchrotron XRD showed that all of the rare earth hafnates investigated undergo a pressure-induced phase transition to a cotunnite-like (orthorhombic) structure that begins between 18 and 25 GPa. The phase transition to the cotunnite-like structure is not complete at 50 GPa, and upon release of pressure, the hafnates transform to defect-fluorite with an amorphous component. For all compositions, in situ Raman spectroscopy showed that disordering occurs gradually with increasing pressure. Pyrochlore-structured hafnates retain their short-range order to a higher pressure (30 GPa vs.  <10 GPa) than defect-fluorite-structured hafnates. Rare earth hafnates quenched from 50 GPa show Raman spectra consistent with weberite-type structures, as also reported for irradiated rare-earth stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of ~250 GPa for hafnates with the pyrochlore structure, and ~400 GPa for hafnates with the defect-fluorite structure. Dy 2 Hf 2 O 7 is intermediate in its response, with some pyrochlore-type ordering, based on Raman spectroscopy and the equation of state, with a bulk modulus of ~300 GPa. As predicted based on the similar ionic radius of Zr 4+ and Hf 4+ , rare-earth hafnates show similar behavior to that reported for rare earth zirconates at high pressure.

  17. Emergence of nontrivial magnetic excitations in a spin-liquid state of kagomé volborthite

    PubMed Central

    Watanabe, Daiki; Sugii, Kaori; Shimozawa, Masaaki; Suzuki, Yoshitaka; Yajima, Takeshi; Ishikawa, Hajime; Hiroi, Zenji; Shibauchi, Takasada; Matsuda, Yuji; Yamashita, Minoru

    2016-01-01

    When quantum fluctuations destroy underlying long-range ordered states, novel quantum states emerge. Spin-liquid (SL) states of frustrated quantum antiferromagnets, in which highly correlated spins fluctuate down to very low temperatures, are prominent examples of such quantum states. SL states often exhibit exotic physical properties, but the precise nature of the elementary excitations behind such phenomena remains entirely elusive. Here, we use thermal Hall measurements that can capture the unexplored property of the elementary excitations in SL states, and report the observation of anomalous excitations that may unveil the unique features of the SL state. Our principal finding is a negative thermal Hall conductivity κxy which the charge-neutral spin excitations in a gapless SL state of the 2D kagomé insulator volborthite Cu3V2O7(OH)2⋅2H2O exhibit, in much the same way in which charged electrons show the conventional electric Hall effect. We find that κxy is absent in the high-temperature paramagnetic state and develops upon entering the SL state in accordance with the growth of the short-range spin correlations, demonstrating that κxy is a key signature of the elementary excitation formed in the SL state. These results suggest the emergence of nontrivial elementary excitations in the gapless SL state which feel the presence of fictitious magnetic flux, whose effective Lorentz force is found to be less than 1/100 of the force experienced by free electrons. PMID:27439874

  18. Short-range photoassociation of LiRb

    NASA Astrophysics Data System (ADS)

    Blasing, David; Stevenson, Ian; Pérez-Ríos, Jesús; Elliott, Daniel; Chen, Yong

    2017-04-01

    We have observed short-range photoassociation of 7Li85Rb to the two lowest vibrational states of the d3 Π potential. We have also observed several a3Σ+ vibrational levels with generation rates between 102 and 103 molecules per second, resulting from the spontaneous decay of these d3 Π molecules. This is the first observation of many of these a3Σ+ levels. We observe an alternation of the peak heights in the rotational photoassociation spectrum that depends on the parity of the excited molecular state. Franck-Condon overlap calculations predict that photoassociation to higher vibrational levels of the d3 Π , in particular the sixth vibrational level, should populate the lowest vibrational level of the a3Σ+ state with a rate as high as 104 molecules per second. This work also motivates an experimental search for short-range photoassociation to other bound molecules, such as the c3Σ+ or b3 Π , as prospects for preparing ground-state molecules. The experimental work was funded by the Purdue Office of the Vice President for Research AMO Incentive Grant 206732 and J.P.-R. acknowledges support from NSF Grant No. PHY-130690.

  19. Effect of sub-Tg annealing on CuZr and AlSm glasses: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Zhang, Feng; Zhang, Yue; Ye, Zhuo; Mendelev, Mikhail; Wang, Cai-Zhuang; Ho, Kai-Ming

    Cu65Zr35 and Al90Sm10 glasses, which represent strong and marginal binary metallic glass formers, respectively, were developed with a sub-Tg annealing method using Molecular Dynamics simulations. The short-range order (SRO) in both systems was characterized based on the concept of ``crystal gene'' that we established recently. Furthermore, we found that while the local clusters representing the dominant short-range order form an ever-more pronounced interpenetrating network with slower cooling rates in Cu65Zr35 glasses, the interpenetration of SRO in Al90Sm10 glasses only shows a weak dependence on the cooling rate. This clear difference in the connectivity of the SRO, which can characterize the medium-range order (MRO), could contribute to the different glass forming abilities of both systems. Work at Ames Laboratory was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Science and Engineering Division, under Contract No. DE-AC02-07CH11358.

  20. Modeling of UV laser-induced patterning of ultrathin Co films on bulk SiO2: verification of short- and long-range ordering mechanisms

    NASA Astrophysics Data System (ADS)

    Trice, Justin; Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, R.

    2006-03-01

    Irradiating ultrathin Co films (1 to 10 nm) by a short-pulsed UV laser leads to pattern formation with both short- and long-range order (SRO, LRO). Single beam irradiation produces SRO, while two-beam interference irradiation produces a quasi-2D arrangement of nanoparticles with LRO and SRO. The pattern formation primarily occurs in the molten phase. An estimate of the thermal behavior of the film/substrate composite following a laser pulse is presented. The thermal behavior includes the lifetime of the liquid phase and the thermal gradient during interference heating. Based on this evidence, the SRO is attributed to spinodal dewetting of the film while surface tension gradients induced by the laser interference pattern appear to influence LRO [1]. [1] C.Favazza, J.Trice, H.Krishna, R.Sureshkumar, and R.Kalyanaraman, unpublished.

  1. Bond-orientational order in liquid Si

    NASA Technical Reports Server (NTRS)

    Wang, Z. Q.; Stroud, D.

    1991-01-01

    Bond-orientational order in liquid Si via Monte Carlo simulation in conjuncation with empirical two- and three-body potentials of the form proposed by Stillinger and Weber are studied. Bond-orientational order (BOO) is described in terms of combinations of spherical harmonic functions. Liquid Si is found to have pronounced short-range BOO corresponding to l = 3, as expected for a structure with local tetrahedral order. No long-range BOO is found either in the equilibrium or the supercooled liquid. When the three-body potential is artificially removed, the tetrahedral bond-orientation order disappears and the liquid assumes a close-packed structure.

  2. Ferroelectrics under the Synchrotron Light: A Review.

    PubMed

    Fuentes-Cobas, Luis E; Montero-Cabrera, María E; Pardo, Lorena; Fuentes-Montero, Luis

    2015-12-30

    Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO₃ perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr) appear as promising candidates. Understanding the structure-function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS) and X-ray absorption fine structure (XAFS) experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described.

  3. The structure of liquid metals probed by XAS

    NASA Astrophysics Data System (ADS)

    Filipponi, Adriano; Di Cicco, Andrea; Iesari, Fabio; Trapananti, Angela

    2017-08-01

    X-ray absorption spectroscopy (XAS) is a powerful technique to investigate the short-range order around selected atomic species in condensed matter. The theoretical framework and previous applications to undercooled elemental liquid metals are briefly reviewed. Specific results on undercooled liquid Ni obtained using a peak fitting approach validated on the spectra of solid Ni are presented. This method provides a clear evidence that a signature from close packed triangular configurations of nearest neighbors survives in the liquid state and is clearly detectable below k ≈ 5 Å-1, stimulating the improvement of data-analysis methods that account properly for the ensemble average, such as Reverse Monte Carlo.

  4. Wuestite (Fe/1-x/O) - A review of its defect structure and physical properties

    NASA Technical Reports Server (NTRS)

    Hazen, R. M.; Jeanloz, R.

    1984-01-01

    Such complexities of the Wustite structure as nonstoichiometry, ferric iron variable site distribution, long and short range ordering, and exsolution, yield complex physical properties. Magnesiowustite, a phase which has been suggested to occur in the earth's lower mantle, is also expected to exhibit many of these complexities. Geophysical models including the properties of (Mg, Fe)O should accordingly take into account the uncertainties associated with the synthesis and measurement of iron-rich oxides. Given the variability of the Fe(1-x)O structure, it is important that future researchers define the structural state and extent of exsolution of their samples.

  5. Systematic approaches to layered materials with strong electron correlations

    NASA Astrophysics Data System (ADS)

    Chung, Chung-Hou

    I present systematic large-N approaches to study the ground state magnetic orderings and charge transport of layered materials with strong electron correlations, including the organic material kappa-(BEDT-TTF)2X, and the antiferromagnetic insulators Cs2CuCl4 and SrCu2(BO3) 2. I model the electronic properties of the organic materials kappa-(BEDT-TTF) 2X with a fermionic SU(N) Hubbard-Heisenberg model on an anisotropic triangular lattice. The ground state phase diagram shows a metal-insulator transition and a depression of the density of states in the metallic phase which are consistent with the experiments. The magnetic properties of kappa-(BEDT-TTF) 2X are modeled by a bosonic Sp(N) quantum Heisenberg antiferromagnet on the same lattice. The phase diagram consists of five different phases as a function of the size of the spin and the degree of frustration: the Neel ordered phase, a (pi, pi) short-range-order (SRO) phase, an incommensurate (q, q) long-range-order (LRO) phase, a (q, q) SRO phase, and a decoupled chain phase. I apply the same Sp(N) approach on the same triangular lattice to model the magnetic properties of Cs2CuCl 4 both with and without a magnetic field. At zero field, I find the ground state either exhibits incommensurate spin order, or is in a quantum disordered phase with deconfined spin-1/2 excitations and topological order. The Sp(N) calculation of spin excitation spectrum shows a large upward quantum renormalization consistent with that seen in experiments. For fields perpendicular to the plane of spin rotation, I find that the spins form an incommensurate "cone" of polarization up to a saturation field where all spins are fully polarized. There is a large quantum renormalization of the zero-field incommensuration. The results are in apparent agreement with neutron scattering experiments. Finally, the magnetic properties of the insulator SrCu2(BO 3)2 is modeled by the Sp(N) quantum antiferromagnet on the Shastry-Sutherland lattice. In addition to the familiar Neel and dimer phases, I find a confining phase with plaquette order, and a topologically ordered phase with deconfined S = 1/2 spinons and helical spin correlations. The deconfined phase is contiguous to the dimer phase, and in a regime of couplings close to those appropriate for the material.

  6. Quantum criticality among entangled spin chains

    DOE PAGES

    Blanc, N.; Trinh, J.; Dong, L.; ...

    2017-12-11

    Here, an important challenge in magnetism is the unambiguous identification of a quantum spin liquid, of potential importance for quantum computing. In such a material, the magnetic spins should be fluctuating in the quantum regime, instead of frozen in a classical long-range-ordered state. While this requirement dictates systems wherein classical order is suppressed by a frustrating lattice, an ideal system would allow tuning of quantum fluctuations by an external parameter. Conventional three-dimensional antiferromagnets can be tuned through a quantum critical point—a region of highly fluctuating spins—by an applied magnetic field. Such systems suffer from a weak specific-heat peak at themore » quantum critical point, with little entropy available for quantum fluctuations. Here we study a different type of antiferromagnet, comprised of weakly coupled antiferromagnetic spin-1/2 chains as realized in the molecular salt K 2PbCu(NO 2) 6. Across the temperature–magnetic field boundary between three-dimensional order and the paramagnetic phase, the specific heat exhibits a large peak whose magnitude approaches a value suggestive of the spinon Sommerfeld coefficient of isolated quantum spin chains. These results demonstrate an alternative approach for producing quantum matter via a magnetic-field-induced shift of entropy from one-dimensional short-range order to a three-dimensional quantum critical point.« less

  7. Quantum criticality among entangled spin chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanc, N.; Trinh, J.; Dong, L.

    Here, an important challenge in magnetism is the unambiguous identification of a quantum spin liquid, of potential importance for quantum computing. In such a material, the magnetic spins should be fluctuating in the quantum regime, instead of frozen in a classical long-range-ordered state. While this requirement dictates systems wherein classical order is suppressed by a frustrating lattice, an ideal system would allow tuning of quantum fluctuations by an external parameter. Conventional three-dimensional antiferromagnets can be tuned through a quantum critical point—a region of highly fluctuating spins—by an applied magnetic field. Such systems suffer from a weak specific-heat peak at themore » quantum critical point, with little entropy available for quantum fluctuations. Here we study a different type of antiferromagnet, comprised of weakly coupled antiferromagnetic spin-1/2 chains as realized in the molecular salt K 2PbCu(NO 2) 6. Across the temperature–magnetic field boundary between three-dimensional order and the paramagnetic phase, the specific heat exhibits a large peak whose magnitude approaches a value suggestive of the spinon Sommerfeld coefficient of isolated quantum spin chains. These results demonstrate an alternative approach for producing quantum matter via a magnetic-field-induced shift of entropy from one-dimensional short-range order to a three-dimensional quantum critical point.« less

  8. Quantum criticality among entangled spin chains

    NASA Astrophysics Data System (ADS)

    Blanc, N.; Trinh, J.; Dong, L.; Bai, X.; Aczel, A. A.; Mourigal, M.; Balents, L.; Siegrist, T.; Ramirez, A. P.

    2018-03-01

    An important challenge in magnetism is the unambiguous identification of a quantum spin liquid1,2, of potential importance for quantum computing. In such a material, the magnetic spins should be fluctuating in the quantum regime, instead of frozen in a classical long-range-ordered state. While this requirement dictates systems3,4 wherein classical order is suppressed by a frustrating lattice5, an ideal system would allow tuning of quantum fluctuations by an external parameter. Conventional three-dimensional antiferromagnets can be tuned through a quantum critical point—a region of highly fluctuating spins—by an applied magnetic field. Such systems suffer from a weak specific-heat peak at the quantum critical point, with little entropy available for quantum fluctuations6. Here we study a different type of antiferromagnet, comprised of weakly coupled antiferromagnetic spin-1/2 chains as realized in the molecular salt K2PbCu(NO2)6. Across the temperature-magnetic field boundary between three-dimensional order and the paramagnetic phase, the specific heat exhibits a large peak whose magnitude approaches a value suggestive of the spinon Sommerfeld coefficient of isolated quantum spin chains. These results demonstrate an alternative approach for producing quantum matter via a magnetic-field-induced shift of entropy from one-dimensional short-range order to a three-dimensional quantum critical point.

  9. Short-range order in the quantum XXZ honeycomb lattice material BaCo 2 ( PO 4 ) 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nair, Harikrishnan S.; Brown, J; Coldren, E.

    In this paper, we present observations of highly frustrated quasi-two-dimensional (2D) magnetic correlations in the honeycomb lattice layers of the S eff =1/2 compound γ-BaCo 2(PO 4) 2 (γ-BCPO). Specific heat shows a broad peak comprised of two weak kink features at T N1~6 K and T N2~3.5 K, the relative weights of which can be modified by sample annealing. Neutron powder diffraction measurements reveal short range quasi-2D order that is established below T N1 and T N2, at which two separate, incompatible, short range magnetic orders onset: commensurate antiferromagnetic correlations with correlation length ξ c=60±2 Å (T N1) andmore » in quasi-2D helical domains with ξ h=350±11 Å (T N2). The ac magnetic susceptibility response lacks frequency dependence, ruling out spin freezing. Inelastic neutron scattering data on γ-BCPO is compared with linear spin wave theory, and two separate parameter regions of the XXZ J 1-J 2-J 3 model with ferromagnetic nearest-neighbor exchange J 1 are favored, both near regions of high classical degeneracy. High energy coherent excitations (~10 meV) persist up to at least 40 K, suggesting strong in-plane correlations persist above TN. Finally, these data show that γ-BCPO is a rare highly frustrated, quasi-2D S eff =1/2 honeycomb lattice material which resists long range magnetic order and spin freezing.« less

  10. Short-range order in the quantum XXZ honeycomb lattice material BaCo 2 ( PO 4 ) 2

    DOE PAGES

    Nair, Harikrishnan S.; Brown, J; Coldren, E.; ...

    2018-04-12

    In this paper, we present observations of highly frustrated quasi-two-dimensional (2D) magnetic correlations in the honeycomb lattice layers of the S eff =1/2 compound γ-BaCo 2(PO 4) 2 (γ-BCPO). Specific heat shows a broad peak comprised of two weak kink features at T N1~6 K and T N2~3.5 K, the relative weights of which can be modified by sample annealing. Neutron powder diffraction measurements reveal short range quasi-2D order that is established below T N1 and T N2, at which two separate, incompatible, short range magnetic orders onset: commensurate antiferromagnetic correlations with correlation length ξ c=60±2 Å (T N1) andmore » in quasi-2D helical domains with ξ h=350±11 Å (T N2). The ac magnetic susceptibility response lacks frequency dependence, ruling out spin freezing. Inelastic neutron scattering data on γ-BCPO is compared with linear spin wave theory, and two separate parameter regions of the XXZ J 1-J 2-J 3 model with ferromagnetic nearest-neighbor exchange J 1 are favored, both near regions of high classical degeneracy. High energy coherent excitations (~10 meV) persist up to at least 40 K, suggesting strong in-plane correlations persist above TN. Finally, these data show that γ-BCPO is a rare highly frustrated, quasi-2D S eff =1/2 honeycomb lattice material which resists long range magnetic order and spin freezing.« less

  11. Analytic Empirical Potentials for all Stable Isotopologues of the Ground X(^1Σ^+) State of ZnO from Purely Rotational Measurements

    NASA Astrophysics Data System (ADS)

    Dattani, Nikesh S.; Zack, Lindsay; Sun, Ming; Johnson, Erin R.; Le Roy, Robert; Ziurys, Lucy

    2014-06-01

    We report eight new ultra-high precision (±5 kHz) measurements of purely rotational N(1←0) transitions in several vibrational states of all stable isotopologues of the ground X(11Σ+) -state of ZnO. Combined with previous high-resolution (±50 kHz) measurements of purely rotational transitions between higher rotational states for the same system, we are able to build analytic potentials for 64Zn16O, 66Zn16O, 67Zn16O, 68Zn16O, and 70Zn16O, that are in full agreement with all known spectroscopic measurements of the system. Despite there being absolutely no vibrational information, our empirical potentials are able to determine the size of the vibrational spacings and the bond lengths, each with a precision of more than two orders of magnitude greater than the most precise empirical values previously known. We then use the XDM method to calculate values for the C6, C8, and C10 long-range constants for this molecule, and use these to accurately anchor the long-range regions of the potentials, where no measurements have yet been performed. In the region lying between the short-range measurements and the long-range theory on which our potentials are based, our final analytic global potentials are in very good agreement with state of the art ab initio potentials. L. N. Zack, R. L. Pulliam, L. M. Ziurys, J. Mol. Spec., 256, 186-191 (2009).

  12. Ab-initio molecular dynamics simulations of liquid Hg-Pb alloys

    NASA Astrophysics Data System (ADS)

    Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.

    2014-04-01

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-Pb alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-Pb mixtures (Hg30Pb70, Hg50Pb50 and Hg90Pb10) at 600K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and lead (l-Pb). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered three alloys. Among the all considered alloys, Hg50Pb50 alloy shows presence of more chemical ordering and presence of hetero-coordination.

  13. Short-Time Glassy Dynamics in Viscous Protein Solutions with Competing Interactions

    DOE PAGES

    Godfrin, P. Douglas; Hudson, Steven; Hong, Kunlun; ...

    2015-11-24

    Although there have been numerous investigations of the glass transition for colloidal dispersions with only a short-ranged attraction, less is understood for systems interacting with a long-ranged repulsion in addition to this attraction, which is ubiquitous in aqueous protein solutions at low ionic strength. Highly puri ed concentrated lysozyme solutions are used as a model system and investigated over a large range of protein concentrations at very low ionic strength. Newtonian liquid behavior is observed at all concentrations, even up to 480 mg/mL, where the zero shear viscosity increases by more than three orders of magnitude with increasing concentration. Remarkably,more » despite this macroscopic liquid-like behavior, the measurements of the dynamics in the short-time limit shows features typical of glassy colloidal systems. Investigation of the inter-protein structure indicates that the reduced short-time mobility of the protein is caused by localized regions of high density within a heterogeneous density distribution. This structural heterogeneity occurs on intermediate range length scale, driven by the competing potential features, and is distinct from commonly studied colloidal gel systems in which a heterogeneous density distribution tends to extend to the whole system. The presence of long-ranged repulsion also allows for more mobility over large length and long time scales resulting in the macroscopic relaxation of the structure. The experimental results provide evidence for the need to explicitly include intermediate range order in theories for the macroscopic properties of protein solutions interacting via competing potential features.« less

  14. JPL self pulsed laser surface measurement system development. [large space deployed antenna structures

    NASA Technical Reports Server (NTRS)

    Berdahl, M.

    1980-01-01

    The use of a self pulsed laser system for accurately describing the surface shape of large space deployed antenna structures was evaluated. Tests with a breadboard system verified functional operation with short time resolution on the order of .2 mm, nonambiguous ranging, and a maximum range capability on the order of 150 m. The projected capability of the system is resolution of less than .1 mm over a reasonable time period and a range extension to over 300 m.

  15. Tetramers of Two Heavy and Two Light Bosons

    NASA Astrophysics Data System (ADS)

    Naidon, Pascal

    2018-07-01

    This article considers the bound states of two heavy and two light bosons, when a short-range force attracts the bosons of different mass, and a short-range force repels the light bosons. The existence of such four-body bound states results from the competition between these two forces. For a given strength of the attraction, the critical strength of the repulsion necessary to unbind the four particles is calculated. This study is motivated by the experimental realisation of impurity atoms immersed in an atomic Bose-Einstein condensate, and aims at determining in which regime only one boson contributes to binding two impurities.

  16. Coexistence of long-range cycloidal order and spin-cluster glass state in the multiferroic BaYFeO4.

    PubMed

    Ghara, Somnath; Sundaresan, A

    2018-06-20

    We report the presence of spin glass state below the cycloidal spin ordering in the multiferroic BaYFeO 4 . This compound is known to crystallize in an orthorhombic structure with a centrosymmetric space group Pnma and exhibits two successive antiferromagnetic phase transitions. Upon cooling, it undergoes a spin density wave (SDW)-like antiferromagnetic ordering at T N1 ~ 48 K and a cycloidal ordering at T N2 ~ 35 K. Using dc magnetic memory effect and magnetization relaxation studies, we have shown that this oxide undergoes a reentrant spin glass transition below T * ~ 17 K. Our analysis suggests the presence of spin clusters in the glassy state. The coexistence of spin-cluster glass and long-range cycloidal ordered states results in an exchange bias effect at 2 K. The origin of the glassy state has been attributed to freezing of some Fe 3+ moments, which do not participate in the long-range ordering.

  17. Coexistence of long-range cycloidal order and spin-cluster glass state in the multiferroic BaYFeO4

    NASA Astrophysics Data System (ADS)

    Ghara, Somnath; Sundaresan, A.

    2018-06-01

    We report the presence of spin glass state below the cycloidal spin ordering in the multiferroic BaYFeO4. This compound is known to crystallize in an orthorhombic structure with a centrosymmetric space group Pnma and exhibits two successive antiferromagnetic phase transitions. Upon cooling, it undergoes a spin density wave (SDW)-like antiferromagnetic ordering at T N1 ~ 48 K and a cycloidal ordering at T N2 ~ 35 K. Using dc magnetic memory effect and magnetization relaxation studies, we have shown that this oxide undergoes a reentrant spin glass transition below T * ~ 17 K. Our analysis suggests the presence of spin clusters in the glassy state. The coexistence of spin-cluster glass and long-range cycloidal ordered states results in an exchange bias effect at 2 K. The origin of the glassy state has been attributed to freezing of some Fe3+ moments, which do not participate in the long-range ordering.

  18. Short-Range Order and Collective Dynamics of DMPC Bilayers: A Comparison between Molecular Dynamics Simulations, X-Ray, and Neutron Scattering Experiments

    PubMed Central

    Hub, Jochen S.; Salditt, Tim; Rheinstädter, Maikel C.; de Groot, Bert L.

    2007-01-01

    We present an extensive comparison of short-range order and short wavelength dynamics of a hydrated phospholipid bilayer derived by molecular dynamics simulations, elastic x-ray, and inelastic neutron scattering experiments. The quantities that are compared between simulation and experiment include static and dynamic structure factors, reciprocal space mappings, and electron density profiles. We show that the simultaneous use of molecular dynamics and diffraction data can help to extract real space properties like the area per lipid and the lipid chain ordering from experimental data. In addition, we assert that the interchain distance can be computed to high accuracy from the interchain correlation peak of the structure factor. Moreover, it is found that the position of the interchain correlation peak is not affected by the area per lipid, while its correlation length decreases linearly with the area per lipid. This finding allows us to relate a property of the structure factor quantitatively to the area per lipid. Finally, the short wavelength dynamics obtained from the simulations and from inelastic neutron scattering are analyzed and compared. The conventional interpretation in terms of the three-effective-eigenmode model is found to be only partly suitable to describe the complex fluid dynamics of lipid chains. PMID:17631531

  19. Entanglement Generation and Area Law with Long-Range Interactions

    NASA Astrophysics Data System (ADS)

    Gorshkov, Alexey

    In short-range interacting systems, the speed at which entanglement can be established between two separated points is limited by a constant Lieb-Robinson velocity. This same limit also leads to the so-called area-law bound on entanglement in one-dimensional gapped short-range interacting systems. In this talk, we will show that long-range interactions that decay with distance as a power law allow for faster entanglement generation and state transfer. We will also present sufficient conditions for the area law in gapped systems to hold even in the presence of long-range interactions.

  20. Theoretical study of actinide monocarbides (ThC, UC, PuC, and AmC)

    NASA Astrophysics Data System (ADS)

    Pogány, Peter; Kovács, Attila; Visscher, Lucas; Konings, Rudy J. M.

    2016-12-01

    A study of four representative actinide monocarbides, ThC, UC, PuC, and AmC, has been performed with relativistic quantum chemical calculations. The two applied methods were multireference complete active space second-order perturbation theory (CASPT2) including the Douglas-Kroll-Hess Hamiltonian with all-electron basis sets and density functional theory with the B3LYP exchange-correlation functional in conjunction with relativistic pseudopotentials. Beside the ground electronic states, the excited states up to 17 000 cm-1 have been determined. The molecular properties explored included the ground-state geometries, bonding properties, and the electronic absorption spectra. According to the occupation of the bonding orbitals, the calculated electronic states were classified into three groups, each leading to a characteristic bond distance range for the equilibrium geometry. The ground states of ThC, UC, and PuC have two doubly occupied π orbitals resulting in short bond distances between 1.8 and 2.0 Å, whereas the ground state of AmC has significant occupation of the antibonding orbitals, causing a bond distance of 2.15 Å.

  1. Short-time dynamics of lysozyme solutions with competing short-range attraction and long-range repulsion: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Riest, Jonas; Nägele, Gerhard; Liu, Yun; Wagner, Norman J.; Godfrin, P. Douglas

    2018-02-01

    Recently, atypical static features of microstructural ordering in low-salinity lysozyme protein solutions have been extensively explored experimentally and explained theoretically based on a short-range attractive plus long-range repulsive (SALR) interaction potential. However, the protein dynamics and the relationship to the atypical SALR structure remain to be demonstrated. Here, the applicability of semi-analytic theoretical methods predicting diffusion properties and viscosity in isotropic particle suspensions to low-salinity lysozyme protein solutions is tested. Using the interaction potential parameters previously obtained from static structure factor measurements, our results of Monte Carlo simulations representing seven experimental lysoyzme samples indicate that they exist either in dispersed fluid or random percolated states. The self-consistent Zerah-Hansen scheme is used to describe the static structure factor, S(q), which is the input to our calculation schemes for the short-time hydrodynamic function, H(q), and the zero-frequency viscosity η. The schemes account for hydrodynamic interactions included on an approximate level. Theoretical predictions for H(q) as a function of the wavenumber q quantitatively agree with experimental results at small protein concentrations obtained using neutron spin echo measurements. At higher concentrations, qualitative agreement is preserved although the calculated hydrodynamic functions are overestimated. We attribute the differences for higher concentrations and lower temperatures to translational-rotational diffusion coupling induced by the shape and interaction anisotropy of particles and clusters, patchiness of the lysozyme particle surfaces, and the intra-cluster dynamics, features not included in our simple globular particle model. The theoretical results for the solution viscosity, η, are in qualitative agreement with our experimental data even at higher concentrations. We demonstrate that semi-quantitative predictions of diffusion properties and viscosity of solutions of globular proteins are possible given only the equilibrium structure factor of proteins. Furthermore, we explore the effects of changing the attraction strength on H(q) and η.

  2. Short-pulse laser interactions with disordered materials and liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regimemore » in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.« less

  3. Implementation agreement between the Washington State Department of Ecology and the Washington State Department of Transportation regarding the use of water quality modification general order

    DOT National Transportation Integrated Search

    1997-04-01

    This implementation agreement was adopted by the Washington State Department of Ecology and the Washington State Department of Transportation. It requires that the agencies work together in dealing with short term modifications of water quality requi...

  4. Hydrologic Modeling at the National Water Center: Operational Implementation of the WRF-Hydro Model to support National Weather Service Hydrology

    NASA Astrophysics Data System (ADS)

    Cosgrove, B.; Gochis, D.; Clark, E. P.; Cui, Z.; Dugger, A. L.; Fall, G. M.; Feng, X.; Fresch, M. A.; Gourley, J. J.; Khan, S.; Kitzmiller, D.; Lee, H. S.; Liu, Y.; McCreight, J. L.; Newman, A. J.; Oubeidillah, A.; Pan, L.; Pham, C.; Salas, F.; Sampson, K. M.; Smith, M.; Sood, G.; Wood, A.; Yates, D. N.; Yu, W.; Zhang, Y.

    2015-12-01

    The National Weather Service (NWS) National Water Center(NWC) is collaborating with the NWS National Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) to implement a first-of-its-kind operational instance of the Weather Research and Forecasting (WRF)-Hydro model over the Continental United States (CONUS) and contributing drainage areas on the NWS Weather and Climate Operational Supercomputing System (WCOSS) supercomputer. The system will provide seamless, high-resolution, continuously cycling forecasts of streamflow and other hydrologic outputs of value from both deterministic- and ensemble-type runs. WRF-Hydro will form the core of the NWC national water modeling strategy, supporting NWS hydrologic forecast operations along with emergency response and water management efforts of partner agencies. Input and output from the system will be comprehensively verified via the NWC Water Resource Evaluation Service. Hydrologic events occur on a wide range of temporal scales, from fast acting flash floods, to long-term flow events impacting water supply. In order to capture this range of events, the initial operational WRF-Hydro configuration will feature 1) hourly analysis runs, 2) short-and medium-range deterministic forecasts out to two day and ten day horizons and 3) long-range ensemble forecasts out to 30 days. All three of these configurations are underpinned by a 1km execution of the NoahMP land surface model, with channel routing taking place on 2.67 million NHDPlusV2 catchments covering the CONUS and contributing areas. Additionally, the short- and medium-range forecasts runs will feature surface and sub-surface routing on a 250m grid, while the hourly analyses will feature this same 250m routing in addition to nudging-based assimilation of US Geological Survey (USGS) streamflow observations. A limited number of major reservoirs will be configured within the model to begin to represent the first-order impacts of streamflow regulation.

  5. Chemical short-range order and lattice deformations in MgyTi1-yHx thin films probed by hydrogenography

    NASA Astrophysics Data System (ADS)

    Gremaud, R.; Baldi, A.; Gonzalez-Silveira, M.; Dam, B.; Griessen, R.

    2008-04-01

    A multisite lattice gas approach is used to model pressure-optical-transmission isotherms (PTIs) recorded by hydrogenography on MgyTi1-yHx sputtered thin films. The model reproduces the measured PTIs well and allows us to determine the chemical short-range order parameter s . The s values are in good agreement with those determined from extended x-ray absorption fine structure measurements. Additionally, the PTI multisite modeling yields a parameter L that accounts for the local lattice deformations with respect to the average MgyTi1-y lattice given by Vegard’s law. It is thus possible to extract two essential characteristics of a metastable alloy from hydrogenographic data.

  6. Short-range components of nuclear forces: Experiment versus mythology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kukulin, V. I.; Platonova, M. N., E-mail: platonova@nucl-th.sinp.msu.ru

    2013-12-15

    The present-day situation around the description of various (central, spin-orbit, and tensor) components of short-range nuclear forces is discussed. A traditional picture of these interactions based on the idea of one-meson exchange is contrasted against numerous results of recent experiments. As is shown in the present study, these results often deviate strongly from the predictions of traditional models. One can therefore state that such models are inapplicable to describing short-range nuclear forces and that it is necessary to go over from a traditional description to some alternative QCD-based (or QCD-motivated) picture. This means that, despite the widespread popularity of traditionalmore » concepts of short-range nuclear forces and their applicability in many particular cases, these concepts are not more than scientific myths that show their inconsistency when analyzed from the viewpoint of the modern experiment.« less

  7. Pretransitional phenomena and pinning in liquid-crystalline blue phases

    NASA Astrophysics Data System (ADS)

    Demikhov, E.; Stegemeyer, H.; Tsukruk, V.

    1992-10-01

    Blue phases (BP's) in liquid-crystalline systems of high chirality exhibiting a short cholesteric temperature interval are investigated. In a BP I supercooled with respect to the cholesteric phase, the orientation of the cubic lattice with the (1,1,0) wave vector perpendicular to the substrate is spontaneously turned to a [200] orientation within small areas of several tenths of micrometers in diameter. A pinning of BP I lattice temperature waves is observed on the [200] orientational inhomogeneities. The pinning effect explains the observed saturation of the BP I lattice constant on decreasing temperature and its dependence on the cooling rate observed in supercooled region. A different type of cubic blue phase, BP S (``S'' represents supercooled), is observed transforming reversibly from the supercooled BP I but metastable with respect to the cholesteric phase. The BP S has two scales of order: a long-range orientational blue-phase-like order and a short-range positional smecticlike order.

  8. Pairing in half-filled Landau level

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Mandal, Ipsita; Chung, Suk Bum; Chakravarty, Sudip

    2015-03-01

    Pairing of composite fermions in half-filled Landau level state is reexamined by solving the BCS gap equation with full frequency dependent current-current interactions. Our results show that there can be a continuous transition from the Halperin-Lee-Read state to a chiral odd angular momentum Cooper pair state for short-range contact interaction. This is at odds with the previously established conclusion of first order pairing transition, in which the low frequency effective interaction was assumed for the entire frequency range. We find that even if the low frequency effective interaction is repulsive, it is compensated by the high frequency regime, which is attractive. We construct the phase diagrams and show that l = 1 angular momentum channel is quite different from higher angular momentum channel l >= 3 . Remarkably, the full frequency dependent analysis applied to the bilayer Hall system with a total filling fraction ν =1/2 +1/2 is quantitatively changed from the previously established results but not qualitatively. This work was supported by US NSF under the Grant DMR-1004520, the funds from the David S. Saxon Presidential Chair at UCLA(37952), and by the Institute for Basic Science in Korea through the Young Scientist grant (5199-2014003).

  9. Short Sleep Duration Among Middle School and High School Students - United States, 2015.

    PubMed

    Wheaton, Anne G; Jones, Sherry Everett; Cooper, Adina C; Croft, Janet B

    2018-01-26

    Insufficient sleep among children and adolescents is associated with increased risk for obesity, diabetes, injuries, poor mental health, attention and behavior problems, and poor academic performance (1-4). The American Academy of Sleep Medicine has recommended that, for optimal health, children aged 6-12 years should regularly sleep 9-12 hours per 24 hours and teens aged 13-18 years should sleep 8-10 hours per 24 hours (1). CDC analyzed data from the 2015 national, state, and large urban school district Youth Risk Behavior Surveys (YRBSs) to determine the prevalence of short sleep duration (<9 hours for children aged 6-12 years and <8 hours for teens aged 13-18 years) on school nights among middle school and high school students in the United States. In nine states that conducted the middle school YRBS and included a question about sleep duration in their questionnaire, the prevalence of short sleep duration among middle school students was 57.8%, with state-level estimates ranging from 50.2% (New Mexico) to 64.7% (Kentucky). The prevalence of short sleep duration among high school students in the national YRBS was 72.7%. State-level estimates of short sleep duration for the 30 states that conducted the high school YRBS and included a question about sleep duration in their questionnaire ranged from 61.8% (South Dakota) to 82.5% (West Virginia). The large percentage of middle school and high school students who do not get enough sleep on school nights suggests a need for promoting sleep health in schools and at home and delaying school start times to permit students adequate time for sleep.

  10. Detecting Intramolecular Conformational Dynamics of Single Molecules in Short Distance Range with Sub-Nanometer Sensitivity

    PubMed Central

    Zhou, Ruobo; Kunzelmann, Simone; Webb, Martin R.; Ha, Taekjip

    2011-01-01

    Single molecule detection is useful for characterizing nanoscale objects such as biological macromolecules, nano-particles and nano-devices with nano-meter spatial resolution. Fluorescence resonance energy transfer (FRET) is widely used as a single-molecule assay to monitor intramolecular dynamics in the distance range of 3–8 nm. Here we demonstrate that self-quenching of two rhodamine derivatives can be used to detect small conformational dynamics corresponding to sub-nanometer distance changes in a FRET-insensitive short range at the single molecule level. A ParM protein mutant labeled with two rhodamines works as a single molecule ADP sensor which has 20 times brighter fluorescence signal in the ADP bound state than the unbound state. Single molecule time trajectories show discrete transitions between fluorescence on and off states that can be directly ascribed to ADP binding and dissociation events. The conformational changes observed with 20:1 contrast are only 0.5 nm in magnitude and are between crystallographic distances of 1.6 nm and 2.1 nm, demonstrating exquisite sensitivity to short distance scale changes. The systems also allowed us to gain information on the photophysics of self-quenching induced by rhodamine stacking: (1) photobleaching of either of the two rhodamines eliminates quenching of the other rhodamine fluorophore and (2) photobleaching from the highly quenched, stacked state is only two-fold slower than from the unstacked state. PMID:22023515

  11. Commercial mode-locked vertical external cavity surface emitting lasers

    NASA Astrophysics Data System (ADS)

    Lubeigt, Walter; Bialkowski, Bartlomiej; Lin, Jipeng; Head, C. Robin; Hempler, Nils; Maker, Gareth T.; Malcolm, Graeme P. A.

    2017-02-01

    In recent years, M Squared Lasers have successfully commercialized a range of mode-locked vertical external cavity surface emitting lasers (VECSELs) operating between 920-1050nm and producing picosecond-range pulses with average powers above 1W at pulse repetition frequencies (PRF) of 200MHz. These laser products offer a low-cost, easy-to-use and maintenance-free tool for the growing market of nonlinear microscopy. However, in order to present a credible alternative to ultrafast Ti-sapphire lasers, pulse durations below 200fs are required. In the last year, efforts have been directed to reduce the pulse duration of the Dragonfly laser system to below 200fs with a target average power above 1W at a PRF of 200MHz. This paper will describe and discuss the latest efforts undertaken to approach these targets in a laser system operating at 990nm. The relatively low PRF operation of Dragonfly lasers represents a challenging requirement for mode-locked VECSELs due to the very short upper state carrier lifetime, on the order of a few nanoseconds, which can lead to double pulsing behavior in longer cavities as the time between consecutive pulses is increased. Most notably, the design of the Dragonfly VECSEL cavity was considerably modified and the laser system extended with a nonlinear pulse stretcher and an additional compression stage. The improved Dragonfly laser system achieved pulse duration as short as 130fs with an average power of 0.85W.

  12. Orbital surveys and state resource management

    NASA Technical Reports Server (NTRS)

    Wukelic, G. E.; Wells, T. L.; Brace, B. R.

    1972-01-01

    The resource management implications of satellite earth resource surveys for the state of Ohio are discussed. Discussions cover environmental problems, planning future developments, and short- and long-range benefits of such resource management.

  13. Long-range versus short-range correlations in the two-neutron transfer reaction 64Ni(18O,16O)66Ni

    NASA Astrophysics Data System (ADS)

    Paes, B.; Santagati, G.; Vsevolodovna, R. Magana; Cappuzzello, F.; Carbone, D.; Cardozo, E. N.; Cavallaro, M.; García-Tecocoatzi, H.; Gargano, A.; Ferreira, J. L.; Lenzi, S. M.; Linares, R.; Santopinto, E.; Vitturi, A.; Lubian, J.

    2017-10-01

    Recently, various two-neutron transfer studies using the (18O,16O) reaction were performed with a large success. This was achieved because of a combined use of the microscopic quantum description of the reaction mechanism and of the nuclear structure. In the present work we use this methodology to study the two-neutron transfer reaction of the 18O+64Ni system at 84 MeV incident energy, to the ground and first 2+ excited state of the residual 66Ni nucleus. All the experimental data were measured by the large acceptance MAGNEX spectrometer at the Instituto Nazionale di Fisica Nucleare -Laboratori Nazionali del Sud (Italy). We have performed exact finite range cross section calculations using the coupled channel Born approximation (CCBA) and coupled reaction channel (CRC) method for the sequential and direct two-neutron transfers, respectively. Moreover, this is the first time that the formalism of the microscopic interaction boson model (IBM-2) was applied to a two-neutron transfer reaction. From our results we conclude that for two-neutron transfer to the ground state of 66Ni, the direct transfer is the dominant reaction mechanism, whereas for the transfer to the first excited state of 66Ni, the sequential process dominates. A competition between long-range and short-range correlations is discussed, in particular, how the use of two different models (Shell model and IBM's) help to disentangle long- and short-range correlations.

  14. Density of states and magnetotransport in Weyl semimetals with long-range disorder

    NASA Astrophysics Data System (ADS)

    Pesin, D. A.; Mishchenko, E. G.; Levchenko, A.

    2015-11-01

    We study the density of states and magnetotransport properties of disordered Weyl semimetals, focusing on the case of a strong long-range disorder. To calculate the disorder-averaged density of states close to nodal points, we treat exactly the long-range random potential fluctuations produced by charged impurities, while the short-range component of disorder potential is included systematically and controllably with the help of a diagram technique. We find that, for energies close to the degeneracy point, long-range potential fluctuations lead to a finite density of states. In the context of transport, we discuss that a self-consistent theory of screening in magnetic field may conceivably lead to nonmonotonic low-field magnetoresistance.

  15. Local Structure and Short-Range Order in a NiCoCr Solid Solution Alloy

    DOE PAGES

    Zhang, F. X.; Zhao, Shijun; Jin, Ke; ...

    2017-05-19

    Multi-element solid solution alloys are intrinsically disordered on the atomic scale, and many of their advanced properties originate from the unique local structural characteristics. We measured the local structure of a NiCoCr solid solution alloy with X-ray/neutron total scattering and extended X-ray absorption fine structure (EXAFS) techniques. The atomic pair distribution function analysis (PDF) did not exhibit distinct structural distortion. But, EXAFS analysis suggested that the Cr atoms are favorably bonded with Ni and Co in the solid solution alloys. This short-range order (SRO) plays a role in the distinct low values of electrical and thermal conductivities in Ni-based solidmore » solution alloys when Cr is incorporated. Both the long-range and local structures of the NiCoCr alloy upon Ni ion irradiation were studied and an irradiation-induced enhancement of SRO was found.« less

  16. Annealing characteristics of amorphous silicon alloy solar cells irradiated with 1.00 MeV protons

    NASA Technical Reports Server (NTRS)

    Abdulaziz, Salman S.; Woodyard, James R.

    1991-01-01

    Amorphous Si:H and amorphous Si sub x, Ge sub (1-x):H solar cells were irradiated with 1.00 MeV proton fluences in the range of 1.00E14 to 1.25E15 cm (exp -2). Annealing of the short circuit current density was studied at 0, 22, 50, 100, and 150 C. Annealing times ranged from an hour to several days. The measurements confirmed that annealing occurs at 0 C and the initial characteristics of the cells are restored by annealing at 200 C. The rate of annealing does not appear to follow a simple nth order reaction rate model. Calculations of the short-circuit current density using quantum efficiency measurements and the standard AM1.5 global spectrum compare favorably with measured values. It is proposed that the degradation in J sub sc with irradiation is due to carrier recombination through the fraction of D (o) states bounded by the quasi-Fermi energies. The time dependence of the rate of annealing of J sub sc does appear to be consistent with the interpretation that there is a thermally activated dispersive transport mechanism which leads to the passivation of the irradiation induced defects.

  17. Thermal ageing and short-range ordering of Alloy 690 between 350 and 550 °C

    NASA Astrophysics Data System (ADS)

    Mouginot, Roman; Sarikka, Teemu; Heikkilä, Mikko; Ivanchenko, Mykola; Ehrnstén, Ulla; Kim, Young Suk; Kim, Sung Soo; Hänninen, Hannu

    2017-03-01

    Thermal ageing of Alloy 690 triggers an intergranular (IG) carbide precipitation and is known to promote an ordering reaction causing lattice contraction. It may affect the long-term primary water stress corrosion cracking (PWSCC) resistance of pressurized water reactor (PWR) components. Four conditions of Alloy 690 (solution annealed, cold-rolled and/or heat-treated) were aged between 350 and 550 °C for 10 000 h and characterized. Although no direct observation of ordering was made, variations in hardness and lattice parameter were attributed to the formation of short-range ordering (SRO) in all conditions with a peak level at 420 °C, consistent with the literature. Prior heat treatment induced ordering before thermal ageing. At higher temperatures, stress relaxation, recrystallization and α-Cr precipitation were observed in the cold-worked samples, while a disordering reaction was inferred in all samples based on a decrease in hardness. IG precipitation of M23C6 carbides increased with increasing ageing temperature in all conditions, as well as diffusion-induced grain boundary migration (DIGM).

  18. Examining the short-run price elasticity of gasoline demand in the United States

    NASA Astrophysics Data System (ADS)

    Brannan, Michael James

    Estimating the consumer demand response to changes in the price of gasoline has important implications regarding fuel tax policies and environmental concerns. There are reasons to believe that the short-run price elasticity of gasoline demand fluctuates due to changing structural and behavioral factors. In this paper I estimate the short-run price elasticity of gasoline demand in two time periods, from 2001 to 2006 and from 2007 to 2010. This study utilizes data at both the national and state levels to produce estimates. The short-run price elasticities range from -0.034 to -0.047 during 2001 to 2006, compared to -0.058 to -0.077 in the 2007 to 2010 period. This paper also examines whether there are regional differences in the short-run price elasticity of gasoline demand in the United States. However, there appears to only be modest variation in price elasticity values across regions.

  19. Comparing Soil Carbon of Short Rotation Poplar Plantations with Agricultural Crops and Woodlots in North Central United States

    Treesearch

    Mark D. Coleman; J.G. Isebrands; David N. Tolsted; Virginia R. Tolbert

    2004-01-01

    We collected soil samples from 27 study sites across North Central United States to compare the soil carbon of short rotation poplar plantations to adjacent agricultural crops and woodlots. Soil organic carbon (SOC) ranged from 20 to more than 160 Mg/ha across the sampled sites. Lowest SOC levels were found in uplands and highest levels in riparian soils. We attributed...

  20. Argentina: Its Physical-Cultural Backgrounds and Implications for United States Foreign Policy

    ERIC Educational Resources Information Center

    Vent, Herbert J.

    1974-01-01

    This article provides a short history of political events in Argentina and a look at the people, geography, and economy of the country in order to consider current relations between Argentina and the United States. (JH)

  1. The Gravitational Origin of the Higgs Boson Mass

    NASA Astrophysics Data System (ADS)

    Winterberg, Friedwardt

    2014-06-01

    The Lorentzian interpretation of the special theory of relativity explains all the relativistic effects by true deformations of rods and clocks in absolute motion against a preferred reference system, and where Lorentz invariance is a dynamic symmetry with the Galilei group the more fundamental kinematic symmetry of nature. In an exactly nonrelativistic quantum field theory the particle number operator commutes with the Hamilton operator which permits to introduce negative besides positive masses as the fundamental constituents of matter. Assuming that space is densely filled with an equal number of positive and negative locally interacting Planck mass particles, with those of equal sign repelling and those of opposite sign attracting each other, all the particles except the Planck mass particles are quasiparticles of this positive-negative-mass Planck mass plasma. Very much as the Van der Waals forces is the residual short-range electromagnetic force holding condensed matter together, and the strong nuclear force the residual short range gluon force holding together nuclear matter, it is conjectured that the Higgs field is the residual short range gravitational force holding together pre-quark matter made up from large positive and negative masses of the order ±1013 GeV. This hypothesis supports a theory by Dehnen and Frommert who have shown that the Higgs field acts like a short range gravitational field, with a strength about 32 orders of magnitude larger than one would expect in the absence of the positive-negative pre-quark mass hypothesis.

  2. Short-range second order screened exchange correction to RPA correlation energies

    NASA Astrophysics Data System (ADS)

    Beuerle, Matthias; Ochsenfeld, Christian

    2017-11-01

    Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.

  3. Short-range second order screened exchange correction to RPA correlation energies.

    PubMed

    Beuerle, Matthias; Ochsenfeld, Christian

    2017-11-28

    Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.

  4. Refusing to Twist: Demonstration of a Line Hexatic Phase in DNA Liquid Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strey, H. H.; NICHD/LPSB, National Institutes of Health, Building 12A/2041, Bethesda, Maryland 20892-5626; Wang, J.

    2000-04-03

    We report conclusive high resolution small angle x-ray scattering evidence that long DNA fragments form an untwisted line hexatic phase between the cholesteric and the crystalline phases. The line hexatic phase is a liquid-crystalline phase with long-range hexagonal bond-orientational order, long-range nematic order, but liquidlike, i.e., short-range, positional order. So far, it has not been seen in any other three dimensional system. By line-shape analysis of x-ray scattering data we found that positional order decreases when the line hexatic phase is compressed. We suggest that such anomalous behavior is a result of the chiral nature of DNA molecules. (c) 2000more » The American Physical Society.« less

  5. Search for sterile neutrinos in muon neutrino disappearance mode at FNAL

    NASA Astrophysics Data System (ADS)

    Anokhina, A.; Bagulya, A.; Benettoni, M.; Bernardini, P.; Brugnera, R.; Calabrese, M.; Cecchetti, A.; Cecchini, S.; Chernyavskiy, M.; Dal Corso, F.; Dalkarov, O.; Del Prete, A.; De Robertis, G.; De Serio, M.; Di Ferdinando, D.; Dusini, S.; Dzhatdoev, T.; Fini, R. A.; Fiore, G.; Garfagnini, A.; Guerzoni, M.; Klicek, B.; Kose, U.; Jakovcic, K.; Laurenti, G.; Lippi, I.; Loddo, F.; Longhin, A.; Malenica, M.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marsella, G.; Mauri, N.; Medinaceli, E.; Mingazheva, R.; Morgunova, O.; Muciaccia, M. T.; Nessi, M.; Orecchini, D.; Paoloni, A.; Papadia, G.; Paparella, L.; Pasqualini, L.; Pastore, A.; Patrizii, L.; Polukhina, N.; Pozzato, M.; Roda, M.; Roganova, T.; Rosa, G.; Sahnoun, Z.; Shchedrina, T.; Simone, S.; Sirignano, C.; Sirri, G.; Spurio, M.; Stanco, L.; Starkov, N.; Stipcevic, M.; Surdo, A.; Tenti, M.; Togo, V.; Vladymyrov, M.

    2017-01-01

    The NESSiE Collaboration has been setup to undertake a conclusive experiment to clarify the muon-neutrino disappearance measurements at short baselines in order to put severe constraints to models with more than the three-standard neutrinos. To this aim the current FNAL-Booster neutrino beam for a Short-Baseline experiment was carefully evaluated by considering the use of magnetic spectrometers at two sites, near and far ones. The detector locations were studied, together with the achievable performances of two OPERA-like spectrometers. The study was constrained by the availability of existing hardware and a time-schedule compatible with the undergoing project of multi-site Liquid-Argon detectors at FNAL. The settled physics case and the kind of proposed experiment on the Booster neutrino beam would definitively clarify the existing tension between the ν _{μ } disappearance and the ν e appearance/disappearance at the eV mass scale. In the context of neutrino oscillations the measurement of ν _{μ } disappearance is a robust and fast approach to either reject or discover new neutrino states at the eV mass scale. We discuss an experimental program able to extend by more than one order of magnitude (for neutrino disappearance) and by almost one order of magnitude (for antineutrino disappearance) the present range of sensitivity for the mixing angle between standard and sterile neutrinos. These extensions are larger than those achieved in any other proposal presented so far.

  6. Long-lived 1H singlet spin states originating from para-hydrogen in Cs-symmetric molecules stored for minutes in high magnetic fields.

    PubMed

    Franzoni, María Belén; Buljubasich, Lisandro; Spiess, Hans W; Münnemann, Kerstin

    2012-06-27

    Nuclear magnetic resonance (NMR) is a very powerful tool in physics, chemistry, and life sciences, although limited by low sensitivity. This problem can be overcome by hyperpolarization techniques dramatically enhancing the NMR signal. However, this approach is restricted to relatively short time scales depending on the nuclear spin-lattice relaxation time T(1) in the range of seconds. This makes long-lived singlet states very useful as a way to extend the hyperpolarization lifetimes. Para-hydrogen induced polarization (PHIP) is particularly suitable, because para-H(2) possesses singlet symmetry. Most PHIP experiments, however, are performed on asymmetric molecules, and the initial singlet state is directly converted to a NMR observable triplet state decaying with T(1), in the order of seconds. We demonstrate that in symmetric molecules, a long-lived singlet state created by PHIP can be stored for several minutes on protons in high magnetic fields. Subsequently, it is converted into observable high nonthermal magnetization by controlled singlet-triplet conversion via level anticrossing.

  7. Phase diagrams and free-energy landscapes for model spin-crossover materials with antiferromagnetic-like nearest-neighbor and ferromagnetic-like long-range interactions

    NASA Astrophysics Data System (ADS)

    Chan, C. H.; Brown, G.; Rikvold, P. A.

    2017-11-01

    We present phase diagrams, free-energy landscapes, and order-parameter distributions for a model spin-crossover material with a two-step transition between the high-spin and low-spin states (a square-lattice Ising model with antiferromagnetic-like nearest-neighbor and ferromagnetic-like long-range interactions) [P. A. Rikvold et al., Phys. Rev. B 93, 064109 (2016), 10.1103/PhysRevB.93.064109]. The results are obtained by a recently introduced, macroscopically constrained Wang-Landau Monte Carlo simulation method [Phys. Rev. E 95, 053302 (2017), 10.1103/PhysRevE.95.053302]. The method's computational efficiency enables calculation of thermodynamic quantities for a wide range of temperatures, applied fields, and long-range interaction strengths. For long-range interactions of intermediate strength, tricritical points in the phase diagrams are replaced by pairs of critical end points and mean-field critical points that give rise to horn-shaped regions of metastability. The corresponding free-energy landscapes offer insights into the nature of asymmetric, multiple hysteresis loops that have been experimentally observed in spin-crossover materials characterized by competing short-range interactions and long-range elastic interactions.

  8. Non-universal bound states of two identical heavy fermions and one light particle

    NASA Astrophysics Data System (ADS)

    Safavi, Arghavan; Rittenhouse, Seth; Blume, Dorte; Sadeghpour, Hossein

    2013-05-01

    We study a system of two identical heavy fermions of mass M and light particle of mass m. The interspecies interaction is modeled using a short-range two-body potential with positive s-wave scattering length. We impose a short-range boundary condition on the logarithmic derivative of the hyperradial wavefunction and show that, in the regime where Efimov states are absent, a non-universal three-body state ``cuts through'' the universal three-body states previously described by Kartavtsev and Malykh [O. I. Kartavtsev and A. V. Malykh, J. Phys. B 40, 1429 (2007)]. We study the effect of the non-universal state on the behavior of the universal states and use a simple quantum defect theory, utilizing hyperspherical coordinates, to explain the existence of the non-universal state. An empirical two-state model is employed to quantify the coupling of the non-universal state to the universal states. This work was supported by NSF through a grant for the Institute for Theoretical Atomic, Molecular and Optical Physics at Harvard University and Smithsonian Astrophysical Observatory and through grant PHY-1205443.

  9. Basic coaxial mass driver reference design. [electromagnetic lunar launch

    NASA Technical Reports Server (NTRS)

    Kolm, H. H.

    1977-01-01

    The reference design for a basic coaxial mass driver is developed to illustrate the principles and optimization procedures on the basis of numerical integration by programmable pocket calculators. The four inch caliber system uses a single-coil bucket and a single-phase propulsion track with discrete coils, separately energized by capacitors. An actual driver would use multiple-coil buckets and an oscillatory multi-phase drive system. Even the basic, table-top demonstration system should in principle be able to achieve accelerations in the 1,000 m/sq sec range. Current densities of the order of 25 ka/sq cm, continuously achievable only in superconductors, are carried by an ordinary aluminum bucket coil for a short period in order to demonstrate the calculated acceleration. Ultimately the system can be lengthened and provided with a magnetically levitated, superconducting bucket to study levitation dynamics under quasi-steady-state conditions, and to approach lunar escape velocity in an evacuated tube.

  10. Effect of Pendant Side-Chain Sterics and Dipole Forces on Short Range Ordering in Random Polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Nwosu, Chinomso; Pandey, Tara; Herring, Andrew; Coughlin, Edward; University of Massachusetts, Amherst Collaboration; Colorado School of Mines Collaboration

    Backbone-to-backbone spacing in polymers is known to be dictated by the length of the pendant side-chains. Dipole forces in random polyelectrolytes lead to ionic clusters with a characteristic spacing that can be observed by SAXS. Repulsion due to side-chain sterics will compete with dipole forces driving cluster formation in random polyelectrolytes. A model study on short range order in anion exchange membranes (AEMs) of quaternized P4VP-ran-PI is presented. Quaternization of P4VP with alkyl bromides having different numbers of carbons, CnBr, introduces pendant side-chains as well as charges. X-ray scattering performed on PQ4VP-ran-PI(CnBr) show that when n <5 the dipole forces dominate leading to the formation of ionic clusters. However, when n >4, the chains remain separated due to sterics, forming a distinct backbone-to-backbone spacing morphology. For n=3, both dipole clustering and backbone spacing can coexist. Crosslinking of the isoprene units increased the coexistence window from n=3 to n=6. Impedance measurements show that a maximum conductivity of 110mS/cm was obtained for PQ4VP-ran-PI(C3Br). A discussion on short range order due to competition, or counter balancing, of steric repulsion and dipole forces will be presented. US Army MURI project (W911NF1010520).

  11. Real-time observation of fluctuations in a driven-dissipative quantum many-body system undergoing a phase transition

    NASA Astrophysics Data System (ADS)

    Donner, Tobias

    2015-03-01

    A Bose-Einstein condensate whose motional degrees of freedom are coupled to a high-finesse optical cavity via a transverse pump beam constitutes a dissipative quantum many-body system with long range interactions. These interactions can induce a structural phase transition from a flat to a density-modulated state. The transverse pump field simultaneously represents a probe of the atomic density via cavity- enhanced Bragg scattering. By spectrally analyzing the light field leaking out of the cavity, we measure non-destructively the dynamic structure factor of the fluctuating atomic density while the system undergoes the phase transition. An observed asymmetry in the dynamic structure factor is attributed to the coupling to dissipative baths. Critical exponents for both sides of the phase transition can be extracted from the data. We further discuss our progress in adding strong short-range interactions to this system, in order to explore Bose-Hubbard physics with cavity-mediated long-range interactions and self-organization in lower dimensions.

  12. [Passive ranging of infrared target using oxygen A-band and Elsasser model].

    PubMed

    Li, Jin-Hua; Wang, Zhao-Ba; Wang Zhi

    2014-09-01

    Passive ranging method of short range and single band was developed based on target radiation and attenuation characteristic of oxygen spectrum absorption. The relation between transmittance of oxygen A band and range of measured target was analyzed. Radiation strength distribution of measured target can be obtained according to the distribution law of absorption coefficient with environmental parameters. Passive ranging mathematical model of short ranges was established using Elsasser model with Lorentz line shape based on the computational methods of band average transmittance and high-temperature gas radiation narrowband model. The range of measured object was obtained using transmittance fitting with test data calculation and theoretical model. Besides, ranging precision was corrected considering the influence of oxygen absorption with enviromental parameter. The ranging experiment platform was established. The source was a 10 watt black body, and a grating spectrometer with 17 cm(-1) resolution was used. In order to improve the light receiving efficiency, light input was collected with 23 mm calibre telescope. The test data was processed for different range in 200 m. The results show that the transmittance accuracy was better than 2.18% in short range compared to the test data with predicted value in the same conditions.

  13. Probing the antiferromagnetic long-range order with Glauber spin states

    NASA Technical Reports Server (NTRS)

    Cabrera, Guillermo G.

    1994-01-01

    It is well known that the ground state of low-dimensional antiferromagnets deviates from Neel states due to strong quantum fluctuations. Even in the presence of long-range order, those fluctuations produce a substantial reduction of the magnetic moment from its saturation value. Numerical simulations in anisotropic antiferromagnetic chains suggest that quantum fluctuations over Neel order appear in the form of localized reversal of pairs of neighboring spins. In this paper, we propose a coherent state representation for the ground state to describe the above situation. In the one-dimensional case, our wave function corresponds to a two-mode Glauber state, when the Neel state is used as a reference, while the boson fields are associated to coherent flip of spin pairs. The coherence manifests itself through the antiferromagnetic long-range order that survives the action of quantum fluctuations. The present representation is different from the standard zero-point spin wave state, and is asymptotically exact in the limit of strong anisotropy. The fermionic version of the theory, obtained through the Jordan-Wigner transformation, is also investigated.

  14. Short Range Photoassociation of Rb2 by a high power fiber laser

    NASA Astrophysics Data System (ADS)

    Passagem, Henry; Rodriguez, Ricardo; Ventura, Paulo; Bouloufa, Nadia; Dulieu, Olivier; Marcassa, Luis

    2016-05-01

    Photoassociation has been studied using cold trapped atomic samples for the last 20 years. Due to poor Franck-Condon overlap, a free-to-bound transition followed by spontaneous decay results in a small production of electronic ground state molecules. If the photoassociation is done at short range, deeply bound ground state molecules can be formed. Optical pumping schemes can be used to populate a single state. In our experiment, we have performed trap loss spectroscopy on trapped 85 Rb atoms in a MOT using a high power fiber laser. Our single mode fiber laser (linewidth < 1 MHz) produces about 50 W, which can be tuned in the 1060-1070 nm range. Two vibrational bound states of the 0u+ potential were observed (ν = 137 and 138). The frequency positions as well as the rotational constants of these states are in good agreement with theoretical predictions. We have also measured the lifetime of a crossed optical dipole trap using such fiber laser. The lifetime on resonance is shorter than off resonance as expected. A simple theoretical model indicates that the molecules decay to deeply bound vibrational levels in the ground state. This work was supported by Fapesp and INCT-IQ.

  15. Normal modes of weak colloidal gels

    NASA Astrophysics Data System (ADS)

    Varga, Zsigmond; Swan, James W.

    2018-01-01

    The normal modes and relaxation rates of weak colloidal gels are investigated in calculations using different models of the hydrodynamic interactions between suspended particles. The relaxation spectrum is computed for freely draining, Rotne-Prager-Yamakawa, and accelerated Stokesian dynamics approximations of the hydrodynamic mobility in a normal mode analysis of a harmonic network representing several colloidal gels. We find that the density of states and spatial structure of the normal modes are fundamentally altered by long-ranged hydrodynamic coupling among the particles. Short-ranged coupling due to hydrodynamic lubrication affects only the relaxation rates of short-wavelength modes. Hydrodynamic models accounting for long-ranged coupling exhibit a microscopic relaxation rate for each normal mode, λ that scales as l-2, where l is the spatial correlation length of the normal mode. For the freely draining approximation, which neglects long-ranged coupling, the microscopic relaxation rate scales as l-γ, where γ varies between three and two with increasing particle volume fraction. A simple phenomenological model of the internal elastic response to normal mode fluctuations is developed, which shows that long-ranged hydrodynamic interactions play a central role in the viscoelasticity of the gel network. Dynamic simulations of hard spheres that gel in response to short-ranged depletion attractions are used to test the applicability of the density of states predictions. For particle concentrations up to 30% by volume, the power law decay of the relaxation modulus in simulations accounting for long-ranged hydrodynamic interactions agrees with predictions generated by the density of states of the corresponding harmonic networks as well as experimental measurements. For higher volume fractions, excluded volume interactions dominate the stress response, and the prediction from the harmonic network density of states fails. Analogous to the Zimm model in polymer physics, our results indicate that long-ranged hydrodynamic interactions play a crucial role in determining the microscopic dynamics and macroscopic properties of weak colloidal gels.

  16. Coulombic charge ice

    NASA Astrophysics Data System (ADS)

    McClarty, P. A.; O'Brien, A.; Pollmann, F.

    2014-05-01

    We consider a classical model of charges ±q on a pyrochlore lattice in the presence of long-range Coulomb interactions. This model first appeared in the early literature on charge order in magnetite [P. W. Anderson, Phys. Rev. 102, 1008 (1956), 10.1103/PhysRev.102.1008]. In the limit where the interactions become short ranged, the model has a ground state with an extensive entropy and dipolar charge-charge correlations. When long-range interactions are introduced, the exact degeneracy is broken. We study the thermodynamics of the model and show the presence of a correlated charge liquid within a temperature window in which the physics is well described as a liquid of screened charged defects. The structure factor in this phase, which has smeared pinch points at the reciprocal lattice points, may be used to detect charge ice experimentally. In addition, the model exhibits fractionally charged excitations ±q/2 which are shown to interact via a 1/r potential. At lower temperatures, the model exhibits a transition to a long-range ordered phase. We are able to treat the Coulombic charge ice model and the dipolar spin ice model on an equal footing by mapping both to a constrained charge model on the diamond lattice. We find that states of the two ice models are related by a staggering field which is reflected in the energetics of these two models. From this perspective, we can understand the origin of the spin ice and charge ice ground states as coming from a dipolar model on a diamond lattice. We study the properties of charge ice in an external electric field, finding that the correlated liquid is robust to the presence of a field in contrast to the case of spin ice in a magnetic field. Finally, we comment on the transport properties of Coulombic charge ice in the correlated liquid phase.

  17. Analyses of kinetic glass transition in short-range attractive colloids based on time-convolutionless mode-coupling theory.

    PubMed

    Narumi, Takayuki; Tokuyama, Michio

    2017-03-01

    For short-range attractive colloids, the phase diagram of the kinetic glass transition is studied by time-convolutionless mode-coupling theory (TMCT). Using numerical calculations, TMCT is shown to recover all the remarkable features predicted by the mode-coupling theory for attractive colloids: the glass-liquid-glass reentrant, the glass-glass transition, and the higher-order singularities. It is also demonstrated through the comparisons with the results of molecular dynamics for the binary attractive colloids that TMCT improves the critical values of the volume fraction. In addition, a schematic model of three control parameters is investigated analytically. It is thus confirmed that TMCT can describe the glass-glass transition and higher-order singularities even in such a schematic model.

  18. Bulk and surface properties of liquid Al-Cr and Cr-Ni alloys.

    PubMed

    Novakovic, R

    2011-06-15

    The energetics of mixing and structural arrangement in liquid Al-Cr and Cr-Ni alloys has been analysed through the study of surface properties (surface tension and surface segregation), dynamic properties (chemical diffusion) and microscopic functions (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) in the framework of statistical mechanical theory in conjunction with quasi-lattice theory. The Al-Cr phase diagram exhibits the existence of different intermetallic compounds in the solid state, while that of Cr-Ni is a simple eutectic-type phase diagram at high temperatures and includes the low-temperature peritectoid reaction in the range near a CrNi(2) composition. Accordingly, the mixing behaviour in Al-Cr and Cr-Ni alloy melts was studied using the complex formation model in the weak interaction approximation and by postulating Al(8)Cr(5) and CrNi(2) chemical complexes, respectively, as energetically favoured.

  19. Ab initio simulations of molten Ni alloys

    NASA Astrophysics Data System (ADS)

    Woodward, Christopher; Asta, Mark; Trinkle, Dallas R.; Lill, James; Angioletti-Uberti, Stefano

    2010-06-01

    Convective instabilities responsible for misoriented grains in directionally solidified turbine airfoils are produced by variations in liquid-metal density with composition and temperature across the solidification zone. Here, fundamental properties of molten Ni-based alloys, required for modeling these instabilities, are calculated using ab initio molecular dynamics simulations. Equations of state are derived from constant number-volume-temperature ensembles at 1830 and 1750 K for elemental, binary (Ni-X, X=Al, W, Re, and Ta) and ternary (Ni-Al-X, X=W, Re, and Ta) Ni alloys. Calculated molar volumes agree to within 0.6%-1.8% of available measurements. Predictions are used to investigate the range of accuracy of a parameterization of molar volumes with composition and temperature based on measurements of binary alloys. Structural analysis reveals a pronounced tendency for icosahedral short-range order for Ni-W and Ni-Re alloys and the calculations provide estimates of diffusion rates and their dependence on compositions and temperature.

  20. Using the Ab Initio Molecular Dynamics Method for Simulating the Peculiarities in the Temperature Dependence of Liquid Bismuth Properties

    NASA Astrophysics Data System (ADS)

    Yuryev, A. A.; Gelchinski, B. R.; Vatolin, N. A.

    2018-03-01

    The specific features pertinent to the temperature dependence of the electronic and atomic properties of liquid bismuth that have been observed in experiments are investigated according to the ab initio molecular dynamics method using the SIESTA open software package. The density of electronic states, the radial distribution function of atoms, and the self-diffusion coefficient are calculated for the temperature range from the melting point equal to 545 K to 1500 K. The calculated data are in good agreement with the experimental data. It is found that the position of the first peak in the radial distribution function of atoms and the self-diffusion coefficient are characterized by a nonmonotonic dependence under the conditions of superheating by approximately 150 K above the melting temperature. In the authors' opinion, this dependence feature is attributed to a change in the liquid short-range order structure.

  1. Ferroelectrics under the Synchrotron Light: A Review

    PubMed Central

    Fuentes-Cobas, Luis E.; Montero-Cabrera, María E.; Pardo, Lorena; Fuentes-Montero, Luis

    2015-01-01

    Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO3 perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr) appear as promising candidates. Understanding the structure–function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS) and X-ray absorption fine structure (XAFS) experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described. PMID:28787814

  2. Experimental investigation of the ordering pathway in a Ni-33 at.%Cr alloy

    DOE PAGES

    Gwalani, B.; Alam, T.; Miller, C.; ...

    2016-06-17

    The present study involves a detailed experimental investigation of the concurrent compositional clustering and long-range ordering tendencies in a Ni-33 at.%Cr alloy, carried out by coupling synchrotron-based X-ray diffraction (XRD), transmission electron microscopy (TEM), and atom probe tomography (APT). Synchrotron-based XRD results clearly exhibited progressively increasing lattice contraction in the matrix with increasing isothermal aging time, at 475 degrees C, eventually leading to the development of long-range ordering (LRO) of the Pt2Mo-type. Detailed TEM and APT investigations revealed that this LRO in the matrix is manifested in the form of nanometer-scale ordered domains, and the spatial distribution, size, morphology andmore » compositional evolution of these domains have been carefully investigated. Here, the APT results also revealed the early stages of compositional clustering prior to the onset of long-range ordering in this alloy and such compositional clustering can potentially be correlated to the lattice contraction and previously proposed short-range ordering tendencies.« less

  3. Forward-backward multiplicity fluctuation and longitudinal harmonics in high-energy nuclear collisions

    DOE PAGES

    Jia, Jiangyong; Radhakrishnan, Sooraj; Zhou, Mingliang

    2016-04-18

    In this paper, an analysis method is proposed to study the forward-backward (FB) multiplicity fluctuation in high-energy nuclear collisions, built on the earlier work of Bzdak and Teaney [Phys. Rev. C 87, 024906 (2013)]. The method allows the decomposition of the centrality dependence of average multiplicity from the dynamical event-by-event (EbyE) fluctuation of multiplicity in pseudorapidity. Application of the method to AMPT (A Multi-Phase Transport model) and HIJING (Heavy Ion Jet INteraction Generator) models shows that the long-range component of the FB correlation is captured by a few longitudinal harmonics, with the first component driven by the asymmetry in themore » number of participating nucleons in the two colliding nuclei. The higher-order longitudinal harmonics are found to be strongly damped in AMPT compared to HIJING, due to weaker short-range correlations as well as the final-state effects present in the AMPT model. Two-particle pseudorapidity correlation reveals interesting charge-dependent short-range structures that are absent in HIJING model. Lastly, the proposed method opens an avenue to elucidate the particle production mechanism and early time dynamics in heavy-ion collisions. Future analysis directions and prospects of using the pseudorapidity correlation function to understand the centrality bias in p + p, p + A, and A + A collisions are discussed.« less

  4. A relativistic coupled-cluster interaction potential and rovibrational constants for the xenon dimer

    NASA Astrophysics Data System (ADS)

    Jerabek, Paul; Smits, Odile; Pahl, Elke; Schwerdtfeger, Peter

    2018-01-01

    An accurate potential energy curve has been derived for the xenon dimer using state-of-the-art relativistic coupled-cluster theory up to quadruple excitations accounting for both basis set superposition and incompleteness errors. The data obtained is fitted to a computationally efficient extended Lennard-Jones potential form and to a modified Tang-Toennies potential function treating the short- and long-range part separately. The vibrational spectrum of Xe2 obtained from a numerical solution of the rovibrational Schrödinger equation and subsequently derived spectroscopic constants are in excellent agreement with experimental values. We further present solid-state calculations for xenon using a static many-body expansion up to fourth-order in the xenon interaction potential including dynamic effects within the Einstein approximation. Again we find very good agreement with the experimental (face-centred cubic) lattice constant and cohesive energy.

  5. Selective Activation of Resting-State Networks following Focal Stimulation in a Connectome-Based Network Model of the Human Brain

    PubMed Central

    2016-01-01

    Abstract When the brain is stimulated, for example, by sensory inputs or goal-oriented tasks, the brain initially responds with activities in specific areas. The subsequent pattern formation of functional networks is constrained by the structural connectivity (SC) of the brain. The extent to which information is processed over short- or long-range SC is unclear. Whole-brain models based on long-range axonal connections, for example, can partly describe measured functional connectivity dynamics at rest. Here, we study the effect of SC on the network response to stimulation. We use a human whole-brain network model comprising long- and short-range connections. We systematically activate each cortical or thalamic area, and investigate the network response as a function of its short- and long-range SC. We show that when the brain is operating at the edge of criticality, stimulation causes a cascade of network recruitments, collapsing onto a smaller space that is partly constrained by SC. We found both short- and long-range SC essential to reproduce experimental results. In particular, the stimulation of specific areas results in the activation of one or more resting-state networks. We suggest that the stimulus-induced brain activity, which may indicate information and cognitive processing, follows specific routes imposed by structural networks explaining the emergence of functional networks. We provide a lookup table linking stimulation targets and functional network activations, which potentially can be useful in diagnostics and treatments with brain stimulation. PMID:27752540

  6. Investigation of ASE and SRS effects on 1018nm short-wavelength Yb3+-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Xie, Zhaoxin; Shi, Wei; Sheng, Quan; Fu, Shijie; Fang, Qiang; Zhang, Haiwei; Bai, Xiaolei; Shi, Guannan; Yao, Jianquan

    2017-03-01

    1018nm short wavelength Yb3+-doped fiber laser can be widely used for tandem-pumped fiber laser system in 1 μm regime because of its high brightness and low quantum defect (QD). In order to achieve 1018nm short wavelength Yb3+-doped fiber laser with high output power, a steady-state rate equations considering the amplified spontaneous emission (ASE) and Stimulated Raman Scattering (SRS) has been established. We theoretically analyzed the ASE and SRS effects in 1018nm short wavelength Yb3+-doped fiber laser and the simulation results show that the ASE is the main restriction rather than SRS for high power 1018nm short wavelength Yb3+-doped fiber laser, besides the high temperature of fiber is also the restriction for high output power. We use numerical solution of steady-state rate equations to discuss how to suppress ASE in 1018nm short wavelength fiber laser and how to achieve high power 1018nm short-wavelength fiber laser.

  7. Frequency-specific insight into short-term memory capacity.

    PubMed

    Feurra, Matteo; Galli, Giulia; Pavone, Enea Francesco; Rossi, Alessandro; Rossi, Simone

    2016-07-01

    The digit span is one of the most widely used memory tests in clinical and experimental neuropsychology for reliably measuring short-term memory capacity. In the forward version, sequences of digits of increasing length have to be reproduced in the order in which they are presented, whereas in the backward version items must be reproduced in the reversed order. Here, we assessed whether transcranial alternating current stimulation (tACS) increases the memory span for digits of young and midlife adults. Imperceptibly weak electrical currents in the alpha (10 Hz), beta (20 Hz), theta (5 Hz), and gamma (40 Hz) range, as well as a sham stimulation, were delivered over the left posterior parietal cortex, a cortical region thought to sustain maintenance processes in short-term memory through oscillatory brain activity in the beta range. We showed a frequency-specific effect of beta-tACS that robustly increased the forward memory span of young, but not middle-aged, healthy individuals. The effect correlated with age: the younger the subjects, the greater the benefit arising from parietal beta stimulation. Our results provide evidence of a short-term memory capacity improvement in young adults by online frequency-specific tACS application. Copyright © 2016 the American Physiological Society.

  8. Using short-range and long-range functional connectivity to identify schizophrenia with a family-based case-control design.

    PubMed

    Guo, Wenbin; Liu, Feng; Chen, Jindong; Wu, Renrong; Li, Lehua; Zhang, Zhikun; Chen, Huafu; Zhao, Jingping

    2017-06-30

    Abnormal short-range and long-range functional connectivities (FCs) have been implicated in the neurophysiology of schizophrenia. This study was conducted to examine the potential of short-range and long-range FCs for differentiating the patients from the controls with a family-based case-control design. Twenty-eight first-episode, drug-naive patients with schizophrenia, 28 unaffected siblings of the patients (family-based controls, FBCs), and 40 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging (fMRI) scans. The data were analyzed by short-range and long-range FC analyses, receiver operating characteristic curve (ROC) and support vector machine (SVM). Compared with the FBCs/HCs, the patients exhibit increased short-range positive FC strength (spFCS) and/or long-range positive FC strength (lpFCS) in the default-mode network (DMN) and decreased spFCS and lpFCS in the sensorimotor circuits. Furthermore, a combination of the spFCS values in the right superior parietal lobule and the lpFCS values in the left fusiform gyrus/cerebellum VI can differentiate the patients from the FBCs with high sensitivity and specificity. The findings highlight the importance of the DMN and sensorimotor circuits in the pathogenesis of schizophrenia. Combining with family-based case-control design may be a viable option to limit the confounding effects of environmental risk factors in neuroimaging studies of schizophrenia. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  9. Reliable prediction of three-body intermolecular interactions using dispersion-corrected second-order Møller-Plesset perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yuanhang; Beran, Gregory J. O., E-mail: gregory.beran@ucr.edu

    2015-07-28

    Three-body and higher intermolecular interactions can play an important role in molecular condensed phases. Recent benchmark calculations found problematic behavior for many widely used density functional approximations in treating 3-body intermolecular interactions. Here, we demonstrate that the combination of second-order Møller-Plesset (MP2) perturbation theory plus short-range damped Axilrod-Teller-Muto (ATM) dispersion accurately describes 3-body interactions with reasonable computational cost. The empirical damping function used in the ATM dispersion term compensates both for the absence of higher-order dispersion contributions beyond the triple-dipole ATM term and non-additive short-range exchange terms which arise in third-order perturbation theory and beyond. Empirical damping enables this simplemore » model to out-perform a non-expanded coupled Kohn-Sham dispersion correction for 3-body intermolecular dispersion. The MP2 plus ATM dispersion model approaches the accuracy of O(N{sup 6}) methods like MP2.5 or even spin-component-scaled coupled cluster models for 3-body intermolecular interactions with only O(N{sup 5}) computational cost.« less

  10. Thin Films and Interfaces of AN Organic Semiconductor: Perylenetetracarboxylic Dianhydride

    NASA Astrophysics Data System (ADS)

    Hirose, Yutaka

    Structural and electronic properties of thin films of an archetype organic molecular semiconductor, 3,4,9,10 -perylenetetracarboxylic dianhydride, (PTCDA) and of their interfaces are investigated. The first part of the thesis focuses on the growth of PTCDA thin films on graphite and GaAs. Molecular order in the direction parallel to the substrate is found to depend critically on the substrate surface properties, as revealed by marked differences in the crystallinity of films grown on graphite and Se-passivated GaAs surfaces (long range order), on the c(4 x 4) GaAs surface (medium range order), and on the (2 x 4)-c(2 x 8) GaAs surface (short range order). These results are discussed in terms of interface bonding between molecules and the substrate. The second part deals with the electronic and chemical structure of PTCDA thin films and the band lineup of the PTCDA/GaAs heterojunction investigated by Ultraviolet - and X-ray Photoemission Spectroscopies. A basic understanding of the valence band structure and chemical states is obtained with the help of a semi-empirical molecular orbital calculation. At the PTCDA/GaAs interface, the PTCDA highest occupied molecular orbital is found to be ~0.7 eV below the GaAs valence band maximum. This result is discussed in light of previous electrical measurements. Third, chemistry of metal deposition on PTCDA is investigated by synchrotron radiation photoemission spectroscopy. Al, Ti, In, and Sn are found to be highly reactive against PTCDA, yielding a considerable interfacial layer with a large density of states in the PTCDA gap. Ag and Au are found to be inert against PTCDA, producing abrupt interfaces. These results are found to be directly correlated with the electrical properties. Finally, chemistry of contacts formed by reversing the sequence of deposition, i.e. PTCDA on reactive metals (In, Sn, and Ti) is explored. The interfacial layers are found to be considerably smaller than for metals on PTCDA, in accordance with the reverse order of heats of adsorption of the two materials. The resulting interfaces are more abrupt presumably leading to more rectifying character of the electrical contacts.

  11. Short rendezvous missions for advanced Russian human spacecraft

    NASA Astrophysics Data System (ADS)

    Murtazin, Rafail F.; Budylov, Sergey G.

    2010-10-01

    The two-day stay of crew in a limited inhabited volume of the Soyuz-TMA spacecraft till docking to ISS is one of the most stressful parts of space flight. In this paper a number of possible ways to reduce the duration of the free flight phase are considered. The duration is defined by phasing strategy that is necessary for reduction of the phase angle between the chaser and target spacecraft. Some short phasing strategies could be developed. The use of such strategies creates more comfortable flight conditions for crew thanks to short duration and additionally it allows saving spacecraft's life support resources. The transition from the methods of direct spacecraft rendezvous using one orbit phasing (first flights of " Vostok" and " Soyuz" vehicles) to the currently used methods of two-day rendezvous mission can be observed in the history of Soviet manned space program. For an advanced Russian human rated spacecraft the short phasing strategy is recommended, which can be considered as a combination between the direct and two-day rendezvous missions. The following state of the art technologies are assumed available: onboard accurate navigation; onboard computations of phasing maneuvers; launch vehicle with high accuracy injection orbit, etc. Some operational requirements and constraints for the strategies are briefly discussed. In order to provide acceptable phase angles for possible launch dates the experience of the ISS altitude profile control can be used. As examples of the short phasing strategies, the following rendezvous missions are considered: direct ascent, short mission with the phasing during 3-7 orbits depending on the launch date (nominal or backup). For each option statistical modeling of the rendezvous mission is fulfilled, as well as an admissible phase angle range, accuracy of target state vector and addition fuel consumption coming out of emergency is defined. In this paper an estimation of pros and cons of all options is conducted.

  12. Specialized Study Options U.S.A., 1986-1988. A Guide to Short-Term Educational Programs in the United States for Foreign Nationals. Volume 1: Technical Education. Second Edition.

    ERIC Educational Resources Information Center

    Howard, Edrice, Ed.

    Information is provided on over 1,000 short-term programs offered by United States universities, trade and technical schools, and other organizations that are open to or designed for non-U.S. students. The programs, which range from 2 weeks to 1 year in length, require only a high school diploma as a prerequisite for enrollment. The programs are…

  13. Specialized Study Options U.S.A., 1986-1988. A Guide to Short-Term Educational Programs in the United States for Foreign Nationals. Volume 2: Professional Development. Second Edition.

    ERIC Educational Resources Information Center

    Howard, Edrice, Ed.

    Information is provided on nearly 500 short-term professional development programs offered in the United States that are open to or intended for non-U.S. students. The programs, which range from 2 weeks to 1 year in length, require at least an associate's degree or a corresponding level of academic or nonacademic study for admission. The programs…

  14. Trends in currency’s return

    NASA Astrophysics Data System (ADS)

    Tan, A.; Shahrill, M.; Daud, S.; Leung, E.

    2018-03-01

    The purpose of this paper is to show that short-ranged dependence prevailed for Singapore-Malaysia exchange. Although, it is perceived that there is some evidence of long-ranged dependence [1,2], it is still unclear whether Singapore-Malaysia exchange indeed exhibits long-ranged dependence. For this paper, we focus on the currency rate for a sixteen-year period ranging from September 2002 to September 2017. We estimate the Hurst parameter using the famous rescaled R/S statistics technique. From our analysis, we showed that the Hurst parameter is approximately 0.5 which indicates short-ranged dependence. This short memory property is further validated by performing a one-tailed z-test whose alternative hypothesis is that the Hurst parameter is not 0.5 at 1% significance level. We conclude that the alternative hypothesis is rejected. The existence of short memory proves that the behaviour of the exchange rate is unpredictable, supporting the efficient market hypothesis, which states that not only is price movement completely random but also tomorrow’s prices are predicted by all the information in today’s prices.

  15. Unconventional quantum antiferromagnetism with a fourfold symmetry breaking in a spin-1/2 Ising-Heisenberg pentagonal chain

    NASA Astrophysics Data System (ADS)

    Karľová, Katarína; Strečka, Jozef; Lyra, Marcelo L.

    2018-03-01

    The spin-1/2 Ising-Heisenberg pentagonal chain is investigated with use of the star-triangle transformation, which establishes a rigorous mapping equivalence with the effective spin-1/2 Ising zigzag ladder. The investigated model has a rich ground-state phase diagram including two spectacular quantum antiferromagnetic ground states with a fourfold broken symmetry. It is demonstrated that these long-period quantum ground states arise due to a competition between the effective next-nearest-neighbor and nearest-neighbor interactions of the corresponding spin-1/2 Ising zigzag ladder. The concurrence is used to quantify the bipartite entanglement between the nearest-neighbor Heisenberg spin pairs, which are quantum-mechanically entangled in two quantum ground states with or without spontaneously broken symmetry. The pair correlation functions between the nearest-neighbor Heisenberg spins as well as the next-nearest-neighbor and nearest-neighbor Ising spins were investigated with the aim to bring insight into how a relevant short-range order manifests itself at low enough temperatures. It is shown that the specific heat displays temperature dependencies with either one or two separate round maxima.

  16. Controlling Short-Range Interactions by Tuning Surface Chemistry in HDPE/Graphene Nanoribbon Nanocomposites.

    PubMed

    Sadeghi, Soheil; Zehtab Yazdi, Alireza; Sundararaj, Uttandaraman

    2015-09-03

    Unique dispersion states of nanoparticles in polymeric matrices have the potential to create composites with enhanced mechanical, thermal, and electrical properties. The present work aims to determine the state of dispersion from the melt-state rheological behavior of nanocomposites based on carbon nanotube and graphene nanoribbon (GNR) nanomaterials. GNRs were synthesized from nitrogen-doped carbon nanotubes via a chemical route using potassium permanganate and some second acids. High-density polyethylene (HDPE)/GNR nanocomposite samples were then prepared through a solution mixing procedure. Different nanocomposite dispersion states were achieved using different GNR synthesis methods providing different surface chemistry, interparticle interactions, and internal compartments. Prolonged relaxation of flow induced molecular orientation was observed due to the presence of both carbon nanotubes and GNRs. Based on the results of this work, due to relatively weak interactions between the polymer and the nanofillers, it is expected that short-range interactions between nanofillers play the key role in the final dispersion state.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Shengtong; Chevrier, Daniel M.; Zhang, Peng

    Amorphous intermediate phases are vital precursors in the crystallization of many biogenic minerals. While inherent short-range orders have been found in amorphous calcium carbonates (ACCs) relating to different crystalline forms, it has never been clarified experimentally whether such orders already exist in very small clusters less than 2 nm in size. Here, we studied the stability and structure of 10,12-pentacosadiynoic acid (PCDA) protected ACC clusters with a core size of ca. 1.4 nm consisting of only seven CaCO 3 units. Ligand concentration and structure are shown to be key factors in stabilizing the ACC clusters. More importantly, even in suchmore » small CaCO 3 entities, a proto-calcite short-range order can be identified but with a relatively high degree of disorder that arises from the very small size of the CaCO 3 core. Our findings support the notion of a structural link between prenucleation clusters, amorphous intermediates, and final crystalline polymorphs, which appears central to the understanding of polymorph selection.« less

  18. Short-range structure and cation bonding in calcium-aluminum metaphosphate glasses.

    PubMed

    Schneider, J; Oliveira, S L; Nunes, L A O; Bonk, F; Panepucci, H

    2005-01-24

    Comprehension of short- and medium-range order of phosphate glasses is a topic of interest, due to the close relation between network structure and mechanical, thermal, and optical properties. In this work, the short-range structure of glasses (1 - x)Ca(PO(3))(2).xAl(PO(3))(3) with 0 < or = x < or = 0.47 was studied using solid-state nuclear magnetic resonance spectroscopy, Raman spectroscopy, density measurements, and differential scanning calorimetry. The bonding between a network modifier species, Al, and the network forming phosphate groups was probed using high-resolution nuclear magnetic resonance spectroscopy of (27)Al and (31)P. Changes in the compositional behavior of the density, glass transition temperature, PO(2) symmetric vibrations, and Al coordination number were verified at around x = 0.30. (31)P NMR spectra show the presence of phosphorus in Q(2) sites with nonbridging oxygens (NBOs) coordinated by Ca ions and also Q(2) sites with one NBO coordinated by Al (namely, Q(2)(1Al)). The changes in the properties as a function of x can be understood by considering the mean coordination number measured for Al and the formation of only Q(2) and Q(2)(1Al) species. It is possible to calculate that a network formed only by Q(2)(1Al) phosphates can just exist up to the upper limit of x = 0.48. Above this value, Q(2)(2Al) species should appear, imposing a major reorganization of the network. Above x = 0.30 the network undergoes a progressive reorganization to incorporate Al ions, maintaining the condition that only Q(2)(1Al) species are formed. These observations support the idea that bonding principles for cationic species inferred originally in binary phosphate glasses can also be extended to ternary systems.

  19. A High-Power Broadband Terahertz Source Enabled by Three-Dimensional Light Confinement in a Plasmonic Nanocavity.

    PubMed

    Yardimci, Nezih Tolga; Cakmakyapan, Semih; Hemmati, Soroosh; Jarrahi, Mona

    2017-06-23

    The scope and potential uses of time-domain terahertz imaging and spectroscopy are mainly limited by the low optical-to-terahertz conversion efficiency of photoconductive terahertz sources. State-of-the-art photoconductive sources utilize short-carrier-lifetime semiconductors to recombine carriers that cannot contribute to efficient terahertz generation and cause additional thermal dissipation. Here, we present a novel photoconductive terahertz source that offers a significantly higher efficiency compared with terahertz sources fabricated on short-carrier-lifetime substrates. The key innovative feature of this source is the tight three-dimensional confinement of the optical pump beam around the terahertz nanoantennas that are used as radiating elements. This is achieved by means of a nanocavity formed by plasmonic structures and a distributed Bragg reflector. Consequently, almost all of the photo-generated carriers can be routed to the terahertz nanoantennas within a sub-picosecond time-scale. This results in a very strong, ultrafast current that drives the nanoantennas to produce broadband terahertz radiation. We experimentally demonstrate that this terahertz source can generate 4 mW pulsed terahertz radiation under an optical pump power of 720 mW over the 0.1-4 THz frequency range. This is the highest reported power level for terahertz radiation from a photoconductive terahertz source, representing more than an order of magnitude of enhancement in the optical-to-terahertz conversion efficiency compared with state-of-the-art photoconductive terahertz sources fabricated on short-carrier-lifetime substrates.

  20. Cooling rate effects in sodium silicate glasses: Bridging the gap between molecular dynamics simulations and experiments

    NASA Astrophysics Data System (ADS)

    Li, Xin; Song, Weiying; Yang, Kai; Krishnan, N. M. Anoop; Wang, Bu; Smedskjaer, Morten M.; Mauro, John C.; Sant, Gaurav; Balonis, Magdalena; Bauchy, Mathieu

    2017-08-01

    Although molecular dynamics (MD) simulations are commonly used to predict the structure and properties of glasses, they are intrinsically limited to short time scales, necessitating the use of fast cooling rates. It is therefore challenging to compare results from MD simulations to experimental results for glasses cooled on typical laboratory time scales. Based on MD simulations of a sodium silicate glass with varying cooling rate (from 0.01 to 100 K/ps), here we show that thermal history primarily affects the medium-range order structure, while the short-range order is largely unaffected over the range of cooling rates simulated. This results in a decoupling between the enthalpy and volume relaxation functions, where the enthalpy quickly plateaus as the cooling rate decreases, whereas density exhibits a slower relaxation. Finally, we show that, using the proper extrapolation method, the outcomes of MD simulations can be meaningfully compared to experimental values when extrapolated to slower cooling rates.

  1. Understanding the Cu-Zn brass alloys using a short-range-order cluster model: significance of specific compositions of industrial alloys

    PubMed Central

    Hong, H. L.; Wang, Q.; Dong, C.; Liaw, Peter K.

    2014-01-01

    Metallic alloys show complex chemistries that are not yet understood so far. It has been widely accepted that behind the composition selection lies a short-range-order mechanism for solid solutions. The present paper addresses this fundamental question by examining the face-centered-cubic Cu-Zn α-brasses. A new structural approach, the cluster-plus-glue-atom model, is introduced, which suits specifically for the description of short-range-order structures in disordered systems. Two types of formulas are pointed out, [Zn-Cu12]Zn1~6 and [Zn-Cu12](Zn,Cu)6, which explain the α-brasses listed in the American Society for Testing and Materials (ASTM) specifications. In these formulas, the bracketed parts represent the 1st-neighbor cluster, and each cluster is matched with one to six 2nd-neighbor Zn atoms or with six mixed (Zn,Cu) atoms. Such a cluster-based formulism describes the 1st- and 2nd-neighbor local atomic units where the solute and solvent interactions are ideally satisfied. The Cu-Ni industrial alloys are also explained, thus proving the universality of the cluster-formula approach in understanding the alloy selections. The revelation of the composition formulas for the Cu-(Zn,Ni) industrial alloys points to the common existence of simple composition rules behind seemingly complex chemistries of industrial alloys, thus offering a fundamental and practical method towards composition interpretations of all kinds of alloys. PMID:25399835

  2. Understanding the Cu-Zn brass alloys using a short-range-order cluster model: Significance of specific compositions of industrial alloys

    DOE PAGES

    Hong, H. L.; Wang, Q.; Dong, C.; ...

    2014-11-17

    Metallic alloys show complex chemistries that are not yet understood so far. It has been widely accepted that behind the composition selection lies a short-range-order mechanism for solid solutions. The present paper addresses this fundamental question by examining the face-centered-cubic Cu-Zn α-brasses. A new structural approach, the cluster-plus-glue-atom model, is introduced, which suits specifically for the description of short-range-order structures in disordered systems. Two types of formulas are pointed out, [Zn-Cu 12]Zn 1~6 and [Zn-Cu 12](Zn,Cu) 6, which explain the α-brasses listed in the American Society for Testing and Materials (ASTM) specifications. In these formulas, the bracketed parts represent themore » 1 st-neighbor cluster, and each cluster is matched with one to six 2 nd-neighbor Zn atoms or with six mixed (Zn,Cu) atoms. Such a cluster-based formulism describes the 1 st- and 2 nd-neighbor local atomic units where the solute and solvent interactions are ideally satisfied. The Cu-Ni industrial alloys are also explained, thus proving the universality of the cluster-formula approach in understanding the alloy selections. As a result, the revelation of the composition formulas for the Cu-(Zn,Ni) industrial alloys points to the common existence of simple composition rules behind seemingly complex chemistries of industrial alloys, thus offering a fundamental and practical method towards composition interpretations of all kinds of alloys.« less

  3. Spectroscopic fingerprints for charge localization in the organic semiconductor (DOEO)4[HgBr4]·TCE

    NASA Astrophysics Data System (ADS)

    Koplak, Oksana V.; Chernenkaya, Alisa; Medjanik, Katerina; Brambilla, Alberto; Gloskovskii, Andrei; Calloni, Alberto; Elmers, Hans-Joachim; Schönhense, Gerd; Ciccacci, Franco; Morgunov, Roman B.

    2015-05-01

    Changes of the electronic structure accompanied by charge localization and a transition to an antiferromagnetic ground state were observed in the organic semiconductor (DOEO)4[HgBr4]·TCE. Localization starts in the temperature region of about 150 K and the antiferromagnetic state occurs below 60 K. The magnetic moment of the crystal contains contributions of inclusions (droplets), and individual paramagnetic centers formed by localized holes and free charge carriers at 2 K. Two types of inclusions of 100-400 nm and 2-5 nm sizes were revealed by transmission electron microscopy. Studying the temperature- and angular dependence of electron spin resonance (ESR) spectra revealed fingerprints of antiferromagnetic contributions as well as paramagnetic resonance spectra of individual localized charge carriers. The results point on coexistence of antiferromagnetic long and short range order as evident from a second ESR line. Photoelectron spectroscopy in the VUV, soft and hard X-ray range shows temperature-dependent effects upon crossing the critical temperatures around 60 K and 150 K. The substantially different probing depths of soft and hard X-ray photoelectron spectroscopy yield information on the surface termination. The combined investigation using complementary methods at the same sample reveals the close relation of changes in the transport properties and in the energy distribution of electronic states.

  4. Room temperature ordering of dipalmitoyl phosphatidylserine bilayers induced by short chain alcohols.

    PubMed

    Wachtel, E; Bach, D; Miller, I R

    2013-01-01

    Using differential scanning calorimetry and small and wide angle X-ray diffraction, we show that, following extended incubation at room temperature, methanol, propanol, and three of the isomers of butanol can induce ordering in dipalmitoyl phosphatidylserine (DPPS) gel phase bilayers. The organization of the bilayers in the presence of ethanol, described previously, is now observed to be a general effect of short chain alcohols. Evidence is presented for tilting of the acyl chains with respect to the bilayer normal in the presence of ethanol or propanol. However, the different chain lengths of the alcohols, and isomeric form, influence the thermal stability of the ordered gel to different extents. This behavior is unlike that of the gel state phosphatidylcholine analog which, in the presence of short chain alcohols, undergoes hydrocarbon chain interdigitation. Dipalmitoyl phosphatidylcholine added to DPPS in the presence of 20 vol% ethanol, acts to suppress the ordered gel phase. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. The Importance of Short- and Long-Range Exchange on Various Excited State Properties of DNA Monomers, Stacked Complexes, and Watson-Crick Pairs.

    PubMed

    Raeber, Alexandra E; Wong, Bryan M

    2015-05-12

    We present a detailed analysis of several time-dependent DFT (TD-DFT) methods, including conventional hybrid functionals and two types of nonempirically tuned range-separated functionals, for predicting a diverse set of electronic excitations in DNA nucleobase monomers and dimers. This large and extensive set of excitations comprises a total of 50 different transitions (for each tested DFT functional) that includes several n → π and π → π* valence excitations, long-range charge-transfer excitations, and extended Rydberg transitions (complete with benchmark calculations from high-level EOM-CCSD(T) methods). The presence of localized valence excitations as well as extreme long-range charge-transfer excitations in these systems poses a serious challenge for TD-DFT methods that allows us to assess the importance of both short- and long-range exchange contributions for simultaneously predicting all of these various transitions. In particular, we find that functionals that do not have both short- and full long-range exchange components are unable to predict the different types of nucleobase excitations with the same accuracy. Most importantly, the current study highlights the importance of both short-range exchange and a nonempirically tuned contribution of long-range exchange for accurately predicting the diverse excitations in these challenging nucleobase systems.

  6. Local suppression of the superfluid density of PuCoGa5 by strong onsite disorder

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Zhu, Jian-Xin; Graf, Matthias J.

    2011-10-01

    We present superfluid density calculations for the unconventional superconductor PuCoGa5 by solving the real-space Bogoliubov-de Gennes equations on a square lattice within the Swiss-cheese model in the presence of strong onsite disorder. We find that, despite strong electronic inhomogeneity, one can establish a one-to-one correspondence between the local maps of the density of states, superconducting order parameter, and superfluid density. In this model, strong onsite impurity scattering punches localized holes into the fabric of d-wave superconductivity similar to a Swiss cheese. Already, a two-dimensional impurity concentration of nimp=4% gives rise to a pronounced short-range suppression of the order parameter and a suppression of the superconducting transition temperature Tc by roughly 20% compared to its pure limit value Tc0, whereas the superfluid density ρs is reduced drastically by about 70%. This result is consistent with available experimental data for aged (400-day-old) and fresh (25-day-old) PuCoGa5 superconducting samples. In addition, we show that the T2 dependence of the low-T superfluid density, a signature of dirty d-wave superconductivity, originates from a combined effect in the density of states of “gap filling” and “gap closing.” Finally, we demonstrate that the Uemuera plot of Tc versus ρs deviates sharply from the conventional Abrikosov-Gor’kov theory for radiation-induced defects in PuCoGa5, but follows the same trend of short-coherence-length high-Tc cuprate superconductors.

  7. On the representation of many-body interactions in water

    DOE PAGES

    Medders, Gregory R.; Gotz, Andreas W.; Morales, Miguel A.; ...

    2015-09-09

    Our recent work has shown that the many-body expansion of the interactionenergy can be used to develop analytical representations of global potential energy surfaces (PESs) for water. In this study, the role of short- and long-range interactions at different orders is investigated by analyzing water potentials that treat the leading terms of the many-body expansion through implicit (i.e., TTM3-F and TTM4-F PESs) and explicit (i.e., WHBB and MB-pol PESs) representations. Moreover, it is found that explicit short-range representations of 2-body and 3-body interactions along with a physically correct incorporation of short- and long-range contributions are necessary for an accurate representationmore » of the waterinteractions from the gas to the condensed phase. Likewise, a complete many-body representation of the dipole moment surface is found to be crucial to reproducing the correct intensities of the infrared spectrum of liquid water.« less

  8. Interplay between Long-Range Crystal Order and Short-Range Molecular Interactions Tunes Carrier Mobility in Liquid Crystal Dyes

    PubMed Central

    2017-01-01

    We investigated the influence of molecular packing on the optical and electrical properties of the liquid crystalline dye 4,7-bis[5-(2-fluoro-4-pentyl-phenyl)-2-thienyl]-2,1,3-benzothiadiazole (FPPTB). FPPTB is crystalline at room temperature, exhibits a nematic phase at temperatures above 149 °C and is in an isotropic melt at temperatures above 230 °C. Solution processed FPPTB films were subject to thermal annealing through these phase transition temperatures and characterized with X-ray diffraction and polarized optical microscopy. Cooling FPPTB films from the nematic and isotropic phases increased crystal domain size, but also induced local structural variations in the molecular packing of crystalline FPPTB. The decrease in long-range order was correlated with an increase in short-range π–π interactions, leading to changes in molecular aggregation which persisted even when the FPPTB films were cooled to room temperature. Annealing-induced changes in molecular aggregation were confirmed with optical spectroscopy. The carrier mobility in FPPTB films increased over 2 orders of magnitude from (2.2 ± 0.4) × 10–5 cm2 V–1 s–1 in as-spun films to μ = (5.0 ± 0.8) × 10–3 cm2 V–1 s–1 in films cooled from the isotropic melt. We discuss the relationship between thermal stability and high carrier mobility values in terms of the interplay between long-range molecular order and increased π–π interactions between molecular pairs in the FPPTB film. PMID:28139915

  9. Collective dynamics of soft active particles

    NASA Astrophysics Data System (ADS)

    van Drongelen, Ruben; Pal, Anshuman; Goodrich, Carl P.; Idema, Timon

    2015-03-01

    We present a model of soft active particles that leads to a rich array of collective behavior found also in dense biological swarms of bacteria and other unicellular organisms. Our model uses only local interactions, such as Vicsek-type nearest-neighbor alignment, short-range repulsion, and a local boundary term. Changing the relative strength of these interactions leads to migrating swarms, rotating swarms, and jammed swarms, as well as swarms that exhibit run-and-tumble motion, alternating between migration and either rotating or jammed states. Interestingly, although a migrating swarm moves slower than an individual particle, the diffusion constant can be up to three orders of magnitude larger, suggesting that collective motion can be highly advantageous, for example, when searching for food.

  10. Direct Immersion Annealing of Thin Block Copolymer Films.

    PubMed

    Modi, Arvind; Bhaway, Sarang M; Vogt, Bryan D; Douglas, Jack F; Al-Enizi, Abdullah; Elzatahry, Ahmed; Sharma, Ashutosh; Karim, Alamgir

    2015-10-07

    We demonstrate ordering of thin block copolymer (BCP) films via direct immersion annealing (DIA) at enhanced rate leading to stable morphologies. The BCP films are immersed in carefully selected mixtures of good and marginal solvents that can impart enhanced polymer mobility, while inhibiting film dissolution. DIA is compatible with roll-to-roll assembly manufacturing and has distinct advantages over conventional thermal annealing and batch processing solvent-vapor annealing methods. We identify three solvent composition-dependent BCP film ordering regimes in DIA for the weakly interacting polystyrene-poly(methyl methacrylate) (PS-PMMA) system: rapid short-range order, optimal long-range order, and a film instability regime. Kinetic studies in the "optimal long-range order" processing regime as a function of temperature indicate a significant reduction of activation energy for BCP grain growth compared to oven annealing at conventional temperatures. An attractive feature of DIA is its robustness to ordering other BCP (e.g. PS-P2VP) and PS-PMMA systems exhibiting spherical, lamellar and cylindrical ordering.

  11. Raman spectroscopy of femtosecond multipulse irradiation of vitreous silica: Experiment and simulation

    NASA Astrophysics Data System (ADS)

    Shcheblanov, N. S.; Povarnitsyn, M. E.; Mishchik, K. N.; Tanguy, A.

    2018-02-01

    We report an experimental and numerical study of femtosecond multipulse laser-induced densification in vitreous silica (v -SiO2 ) and its signature in Raman spectra. We compare the experimental findings to the recently developed molecular dynamics (MD) approach accounting for bond breaking due to laser irradiation, together with a dynamical matrix approach and bond polarizability model based on first-principles calculations for the estimation of Raman spectra. We observe two stages of the laser-induced densification and Raman spectrum evolution: growth during several hundreds of pulses followed by further saturation. At the medium range, the network connectivity change in v -SiO2 is expressed in reduction of the major ring fractions leading to more compacted structure. With the help of the Sen and Thorpe model, we also study the short-range order transformation and derive the interbonding Si-O-Si angle change from the Raman measurements. Experimental findings are in excellent agreement with our MD simulations and hence support a bond-breaking mechanism of laser-induced densification. Thus, our modeling explains well the laser-induced changes both in the short-range order caused by the appearance of Si coordination defects and medium-range order connected to evolution of the ring distribution. Finally, our findings disclose similarities between sheared, permanently densified, and laser-induced glass and suggest interesting future experiments in order to clarify the impact of the thermomechanical history on glasses under shear, cold and hot compression, and laser-induced densification.

  12. A low-order model of the equatorial ocean-atmosphere system

    NASA Astrophysics Data System (ADS)

    Legnani, Roberto

    A low order model of the equatorial ocean-atmosphere coupled system is presented. The model atmosphere includes a hydrological cycle with cloud-radiation interaction. The model ocean is based on mixed layer dynamics with a parameterization of entrainment processes. The coupling takes place via transfer to momentum, sensible heat, latent heat and short wave and long wave radiation through the ocean surface. The dynamical formulation is that of the primitive equations of an equatorial beta-plane, with zonally periodic and meridionally infinite geometry. The system is expanded into the set of normal modes pertinent to the linear problem and severly truncated to a few modes; 54 degrees of freedom are retained. Some nonlinear terms of the equations are evaluated in physical space and then projected onto the functional space; other terms are evaluated directly in the functional space. Sensitivity tests to variations of the parameters are performed, and some results from 10-year initial value simulations are presented. The model is capable of supporting oscillations of different time scales, ranging from a few days to a few years; it prefers a particular zonally asymmetric state, but temporarily switches to a different (opposite) zonally asymmetric state in an event-like fashion.

  13. a Low-Order Model of the Equatorial Ocean-Atmosphere System.

    NASA Astrophysics Data System (ADS)

    Legnani, Roberto

    A low order model of the equatorial ocean-atmosphere coupled system is presented. The model atmosphere includes a hydrological cycle with cloud-radiation interaction. The model ocean is based on mixed layer dynamics with a parameterization of entrainment processes. The coupling takes place via transfer to momentum, sensible heat, latent heat and short -wave and long-wave radiation through the ocean surface. The dynamical formulation is that of the primitive equations of an equatorial beta-plane, with zonally periodic and meridionally infinite geometry. The system is expanded into the set of normal modes pertinent to the linear problem and severely truncated to a few modes; 54 degrees of freedom are retained. Some nonlinear terms of the equations are evaluated in physical space and then projected onto the functional space; other terms are evaluated directly in the functional space. Sensitivity tests to variations of the parameters are performed, and some results from 10-year initial value simulations are presented. The model is capable of supporting oscillations of different time scales, ranging from a few days to a few years; it prefers a particular zonally asymmetric state, but temporarily switches to a different (opposite) zonally asymmetric state in an event-like fashion.

  14. Monolithically integrated quantum dot optical gain modulator with semiconductor optical amplifier for 10-Gb/s photonic transmission

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya

    2015-03-01

    Short-range interconnection and/or data center networks require high capacity and a large number of channels in order to support numerous connections. Solutions employed to meet these requirements involve the use of alternative wavebands to increase the usable optical frequency range. We recently proposed the use of the T- and O-bands (Thousand band: 1000-1260 nm, Original band: 1260-1360 nm) as alternative wavebands because large optical frequency resources (>60 THz) can be easily employed. In addition, a simple and compact Gb/s-order high-speed optical modulator is a critical photonic device for short-range communications. Therefore, to develop an optical modulator that acts as a highfunctional photonic device, we focused on the use of self-assembled quantum dots (QDs) as a three-dimensional (3D) confined structure because QD structures are highly suitable for realizing broadband optical gain media in the T+O bands. In this study, we use the high-quality broadband QD optical gain to develop a monolithically integrated QD optical gain modulator (QD-OGM) device that has a semiconductor optical amplifier (QD-SOA) for Gb/s-order highspeed optical data generation in the 1.3-μm waveband. The insertion loss of the device can be compensated through the SOA, and we obtained an optical gain change of up to ~7 dB in the OGM section. Further, we successfully demonstrate a 10-Gb/s clear eye opening using the QD-OGM/SOA device with a clock-data recovery sequence at the receiver end. These results suggest that the monolithic QD-EOM/SOA is suitable for increasing the number of wavelength channels for smart short-range communications.

  15. Assessing the Nature of the Distribution of Localised States in Bulk GaAsBi.

    PubMed

    Wilson, Tom; Hylton, Nicholas P; Harada, Yukihiro; Pearce, Phoebe; Alonso-Álvarez, Diego; Mellor, Alex; Richards, Robert D; David, John P R; Ekins-Daukes, Nicholas J

    2018-04-24

    A comprehensive assessment of the nature of the distribution of sub band-gap energy states in bulk GaAsBi is presented using power and temperature dependent photoluminescence spectroscopy. The observation of a characteristic red-blue-red shift in the peak luminescence energy indicates the presence of short-range alloy disorder in the material. A decrease in the carrier localisation energy demonstrates the strong excitation power dependence of localised state behaviour and is attributed to the filling of energy states furthest from the valence band edge. Analysis of the photoluminescence lineshape at low temperature presents strong evidence for a Gaussian distribution of localised states that extends from the valence band edge. Furthermore, a rate model is employed to understand the non-uniform thermal quenching of the photoluminescence and indicates the presence of two Gaussian-like distributions making up the density of localised states. These components are attributed to the presence of microscopic fluctuations in Bi content, due to short-range alloy disorder across the GaAsBi layer, and the formation of Bi related point defects, resulting from low temperature growth.

  16. Exploring the free-energy landscape of a short peptide using an average force

    NASA Astrophysics Data System (ADS)

    Chipot, Christophe; Hénin, Jérôme

    2005-12-01

    The reversible folding of deca-alanine is chosen as a test case for characterizing a method that uses an adaptive biasing force (ABF) to escape from the minima and overcome the barriers of the free-energy landscape. This approach relies on the continuous estimation of a biasing force that yields a Hamiltonian in which no average force is exerted along the ordering parameter ξ. Optimizing the parameters that control how the ABF is applied, the method is shown to be extremely effective when a nonequivocal ordering parameter can be defined to explore the folding pathway of the peptide. Starting from a β-turn motif and restraining ξ to a region of the conformational space that extends from the α-helical state to an ensemble of extended structures, the ABF scheme is successful in folding the peptide chain into a compact α helix. Sampling of this conformation is, however, marginal when the range of ξ values embraces arrangements of greater compactness, hence demonstrating the inherent limitations of free-energy methods when ambiguous ordering parameters are utilized.

  17. Studies of Nucleation and Growth, Specific Heat and Viscosity of Undercooled Melts of Quasicrystals and Polytetrehedral-Phase-Forming Alloys

    NASA Technical Reports Server (NTRS)

    2003-01-01

    By investigating the properties of quasicrystals and quasicrystal-forming liquid alloys, we may determine the role of ordering of the liquid phase in the formation of quasicrystals, leading to a better fundamental understanding of both the quasicrystal and the liquid. A quasicrystal is solid characterized by a symmetric but non-periodic arrangement of atoms, usually in the form of an icosahedron (12 atoms, 20 triangular faces). It is theorized that the short-range order in liquids takes this same form. The degree of ordering depends on the temperature of the liquid, and affects many of the liquid s properties, including specific heat, viscosity, and electrical resistivity. The MSFC role in this project includes solidification studies, phase diagram determination, and thermophysical property measurements on the liquid quasicrystal-forming alloys, all by electrostatic levitation (ESL). The viscosity of liquid quasicrystal-forming alloys is measured by the oscillating drop method, both in the stable and undercooled liquid state. The specific heat of solid, undercooled liquid, and stable liquid are measured by the radiative cooling rate of the droplets.

  18. Short and medium range structures of 80GeSe2–20Ga2Se3 chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Petracovschi, Elena; Calvez, Laurent; Cormier, Laurent; Le Coq, David; Du, Jincheng

    2018-05-01

    The short and medium range structures of 80GeSe2–20Ga2Se3 (or Ge23.5Ga11.8Se64.7) chalcogenide glasses have been studied by combining ab initio molecular dynamics (AIMD) simulations and experimental neutron diffraction studies. The structure factor and total correlation function were calculated from glass structures generated from AIMD simulations and compared with neutron diffraction experiments showing reasonable agreement. The atomic structures of ternary chalcogenide glasses were analyzed in detail, and it was found that gallium atoms are four-fold coordinated by selenium (Se) and form [GaSe4] tetrahedra. Germanium atoms on average also have four-fold coordination, among which Se is 3.5 with the remaining being Ge–Ge homo-nuclear bonds. Ga and Ge tetrahedra link together mainly through corner-sharing and some edge-sharing of Se. No homo-nuclear bonds were observed among Ga atoms or between Ge and Ga. In addition, Se–Se homo-nuclear bonds and Se chains with various lengths were observed. A small fraction of Se atom triclusters that bond to three cations of Ge and Ga were also observed, confirming earlier proposals from 77Se solid state nuclear magnetic resonance studies. Furthermore, the electronic structures of ternary chalcogenide glasses were studied in terms of atomic charge and electronic density of states in order to gain insights into the chemical bonding and electronic properties, as well as to provide an explanation of the observed atomic structures in these ternary chalcogenide glasses.

  19. Ultrafast Self-Assembly of Sub-10 nm Block Copolymer Nanostructures by Solvent-Free High-Temperature Laser Annealing.

    PubMed

    Jiang, Jing; Jacobs, Alan G; Wenning, Brandon; Liedel, Clemens; Thompson, Michael O; Ober, Christopher K

    2017-09-20

    Laser spike annealing was applied to PS-b-PDMS diblock copolymers to induce short-time (millisecond time scale), high-temperature (300 to 700 °C) microphase segregation and directed self-assembly of sub-10 nm features. Conditions were identified that enabled uniform microphase separation in the time frame of tens of milliseconds. Microphase ordering improved with increased temperature and annealing time, whereas phase separation contrast was lost for very short annealing times at high temperature. PMMA brush underlayers aided ordering under otherwise identical laser annealing conditions. Good long-range order for sub-10 nm cylinder morphology was achieved using graphoepitaxy coupled with a 20 ms dwell laser spike anneal above 440 °C.

  20. Short- and long-term effects of unemployment on fertility

    PubMed Central

    Currie, Janet; Schwandt, Hannes

    2014-01-01

    Scholars have been examining the relationship between fertility and unemployment for more than a century. Most studies find that fertility falls with unemployment in the short run, but it is not known whether these negative effects persist, because women simply may postpone childbearing to better economic times. Using more than 140 million US birth records for the period 1975–2010, we analyze both the short- and long-run effects of unemployment on fertility. We follow fixed cohorts of US-born women defined by their own state and year of birth, and relate their fertility to the unemployment rate experienced by each cohort at different ages. We focus on conceptions that result in a live birth. We find that women in their early 20s are most affected by high unemployment rates in the short run and that the negative effects on fertility grow over time. A one percentage point increase in the average unemployment rate experienced between the ages of 20 and 24 reduces the short-run fertility of women in this age range by six conceptions per 1,000 women. When we follow these women to age 40, we find that a one percentage point increase in the unemployment rate experienced at ages 20–24 leads to an overall loss of 14.2 conceptions. This long-run effect is driven largely by women who remain childless and thus do not have either first births or higher-order births. PMID:25267622

  1. Spin liquid state in the disordered triangular lattice Sc 2Ga 2CuO 7 revealed by NMR

    DOE PAGES

    Khuntia, P.; Kumar, R.; Mahajan, A. V.; ...

    2016-04-18

    We present microscopic magnetic properties of a two-dimensional triangular lattice Sc 2Ga 2CuO 7, consisting of single and double triangular Cu planes. An antiferromagnetic (AFM) exchange interaction J/k B ≈ 35 K between Cu 2+ (S = 1/2) spins in the triangular biplane is obtained from the analysis of intrinsic magnetic susceptibility data. The intrinsic magnetic susceptibility, extracted from 71Ga NMR shift data, displays the presence of AFM short range spin correlations and remains finite down to 50 mK, suggesting a nonsinglet ground state. The nuclear spin-lattice relaxation rate (1/T 1) reveals a slowing down of Cu 2+ spin fluctuationsmore » with decreasing T down to 100 mK. Magnetic specific heat (C m) and 1/T 1 exhibit power law behavior at low temperatures, implying the gapless nature of the spin excitation spectrum. The absence of long range magnetic ordering down to ~J/700, nonzero spin susceptibility at low T, and the power law behavior of C m and 1/T 1 suggest a gapless quantum spin liquid (QSL) state. Our results demonstrate that persistent spin dynamics induced by frustration maintain a quantum-disordered state at T → 0 in this triangular lattice antiferromagnet. Furthermore, this suggests that the low energy modes are dominated by spinon excitations in the QSL state due to randomness engendered by disorder and frustration.« less

  2. State-to-state reaction dynamics of 18O+32O2 studied by a time-dependent quantum wavepacket method

    NASA Astrophysics Data System (ADS)

    Xie, Wenbo; Liu, Lan; Sun, Zhigang; Guo, Hua; Dawes, Richard

    2015-02-01

    The title isotope exchange reaction was studied by converged time-dependent wave packet calculations, where an efficient 4th order split operator was applied to propagate the initial wave packet. State-to-state differential and integral cross sections up to the collision energy of 0.35 eV were obtained with 32O2 in the hypothetical j0 = 0 state. It is discovered that the differential cross sections are largely forward biased in the studied collision energy range, due to the fact that there is a considerable part of the reaction occurring with large impact parameter and short lifetime relative to the rotational period of the intermediate complex. The oscillations of the forward scattering amplitude as a function of collision energy, which result from coherent contribution of adjacent resonances, may be a sensitive probe for examining the quality of the underlying potential energy surface. A good agreement between the theoretical and recent experimental integral and differential cross sections at collision energy of 7.3 kcal/mol is obtained. However, the theoretical results predict slightly too much forward scattering and colder rotational distributions than the experimental observations at collision energy of 5.7 kcal/mol.

  3. Concentration Waves in High-Entropy Alloys - a new alloy design approach

    NASA Astrophysics Data System (ADS)

    Singh, Prashant; Johnson, Duane D.

    2015-03-01

    Chemical short-range order (SRO) in solid solutions can be interpreted as a ``concentration wave'' - a Fourier decomposition of nascent order - identified experimentally via Warren-Cowley SRO parameters. We present a rigorous thermodynamic theory to predict and uniquely interpret the SRO in N -component alloys. Based on KKR-CPA electronic structure, we implemented this method using thermodynamic linear-response to include all alloying effects, e.g., band-filling, hybridization, Fermi -surface nesting and van Hove instabilities. We apply this first-principles method to high-entropy alloys (HEAs), i.e., solid solutions with N >4 that inhibit small-cell order due to large entropy competing against ordering enthalpy, as their properties are sensitive to SRO. We validated theory with comparison to experiments in A2 Nb-Al-Ti and A1 Cu-Ni-Zn . We then predict and analyze SRO and mechanical trends in Ni-Ti-Zr-Cu-Al and Co-Cr-Fe-Mn-Ni systems - showcasing this new first-principles-based alloy design method. Work was supported by the USDoE, Office of Sci., Basic Energy Sci., Materials Sci. and Eng. Division for `Materials Discovery.' Research was performed at Ames Lab, operated by Iowa State University under Contract #DE-AC02-07CH11358.

  4. Dynamical cluster approximation plus semiclassical approximation study for a Mott insulator and d-wave pairing

    NASA Astrophysics Data System (ADS)

    Kim, SungKun; Lee, Hunpyo

    2017-06-01

    Via a dynamical cluster approximation with N c = 4 in combination with a semiclassical approximation (DCA+SCA), we study the doped two-dimensional Hubbard model. We obtain a plaquette antiferromagnetic (AF) Mott insulator, a plaquette AF ordered metal, a pseudogap (or d-wave superconductor) and a paramagnetic metal by tuning the doping concentration. These features are similar to the behaviors observed in copper-oxide superconductors and are in qualitative agreement with the results calculated by the cluster dynamical mean field theory with the continuous-time quantum Monte Carlo (CDMFT+CTQMC) approach. The results of our DCA+SCA differ from those of the CDMFT+CTQMC approach in that the d-wave superconducting order parameters are shown even in the high doped region, unlike the results of the CDMFT+CTQMC approach. We think that the strong plaquette AF orderings in the dynamical cluster approximation (DCA) with N c = 4 suppress superconducting states with increasing doping up to strongly doped region, because frozen dynamical fluctuations in a semiclassical approximation (SCA) approach are unable to destroy those orderings. Our calculation with short-range spatial fluctuations is initial research, because the SCA can manage long-range spatial fluctuations in feasible computational times beyond the CDMFT+CTQMC tool. We believe that our future DCA+SCA calculations should supply information on the fully momentum-resolved physical properties, which could be compared with the results measured by angle-resolved photoemission spectroscopy experiments.

  5. The parity-violating asymmetry in the 3He(n,p)3H reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Viviani, R. Schiavilla, L. Girlanda, A. Kievsky, L.E. Marcucci

    2010-10-01

    The longitudinal asymmetry induced by parity-violating (PV) components in the nucleon-nucleon potential is studied in the charge-exchange reaction 3He(n,p)3H at vanishing incident neutron energies. An expression for the PV observable is derived in terms of T-matrix elements for transitions from the {2S+1}L_J=1S_0 and 3S_1 states in the incoming n-3He channel to states with J=0 and 1 in the outgoing p-3H channel. The T-matrix elements involving PV transitions are obtained in first-order perturbation theory in the hadronic weak-interaction potential, while those connecting states of the same parity are derived from solutions of the strong-interaction Hamiltonian with the hyperspherical-harmonics method. The coupled-channelmore » nature of the scattering problem is fully accounted for. Results are obtained corresponding to realistic or chiral two- and three-nucleon strong-interaction potentials in combination with either the DDH or pionless EFT model for the weak-interaction potential. The asymmetries, predicted with PV pion and vector-meson coupling constants corresponding (essentially) to the DDH "best values" set, range from -9.44 to -2.48 in units of 10^{-8}, depending on the input strong-interaction Hamiltonian. This large model dependence is a consequence of cancellations between long-range (pion) and short-range (vector-meson) contributions, and is of course sensitive to the assumed values for the PV coupling constants.« less

  6. Order-disorder effects in structure and color relation of photonic-crystal-type nanostructures in butterfly wing scales.

    PubMed

    Márk, Géza I; Vértesy, Zofia; Kertész, Krisztián; Bálint, Zsolt; Biró, László P

    2009-11-01

    In order to study local and global order in butterfly wing scales possessing structural colors, we have developed a direct space algorithm, based on averaging the local environment of the repetitive units building up the structure. The method provides the statistical distribution of the local environments, including the histogram of the nearest-neighbor distance and the number of nearest neighbors. We have analyzed how the different kinds of randomness present in the direct space structure influence the reciprocal space structure. It was found that the Fourier method is useful in the case of a structure randomly deviating from an ordered lattice. The direct space averaging method remains applicable even for structures lacking long-range order. Based on the first Born approximation, a link is established between the reciprocal space image and the optical reflectance spectrum. Results calculated within this framework agree well with measured reflectance spectra because of the small width and moderate refractive index contrast of butterfly scales. By the analysis of the wing scales of Cyanophrys remus and Albulina metallica butterflies, we tested the methods for structures having long-range order, medium-range order, and short-range order.

  7. Order-disorder effects in structure and color relation of photonic-crystal-type nanostructures in butterfly wing scales

    NASA Astrophysics Data System (ADS)

    Márk, Géza I.; Vértesy, Zofia; Kertész, Krisztián; Bálint, Zsolt; Biró, László P.

    2009-11-01

    In order to study local and global order in butterfly wing scales possessing structural colors, we have developed a direct space algorithm, based on averaging the local environment of the repetitive units building up the structure. The method provides the statistical distribution of the local environments, including the histogram of the nearest-neighbor distance and the number of nearest neighbors. We have analyzed how the different kinds of randomness present in the direct space structure influence the reciprocal space structure. It was found that the Fourier method is useful in the case of a structure randomly deviating from an ordered lattice. The direct space averaging method remains applicable even for structures lacking long-range order. Based on the first Born approximation, a link is established between the reciprocal space image and the optical reflectance spectrum. Results calculated within this framework agree well with measured reflectance spectra because of the small width and moderate refractive index contrast of butterfly scales. By the analysis of the wing scales of Cyanophrys remus and Albulina metallica butterflies, we tested the methods for structures having long-range order, medium-range order, and short-range order.

  8. One-dimensional long-range percolation: A numerical study

    NASA Astrophysics Data System (ADS)

    Gori, G.; Michelangeli, M.; Defenu, N.; Trombettoni, A.

    2017-07-01

    In this paper we study bond percolation on a one-dimensional chain with power-law bond probability C /rd +σ , where r is the distance length between distinct sites and d =1 . We introduce and test an order-N Monte Carlo algorithm and we determine as a function of σ the critical value Cc at which percolation occurs. The critical exponents in the range 0 <σ <1 are reported. Our analysis is in agreement, up to a numerical precision ≈10-3 , with the mean-field result for the anomalous dimension η =2 -σ , showing that there is no correction to η due to correlation effects. The obtained values for Cc are compared with a known exact bound, while the critical exponent ν is compared with results from mean-field theory, from an expansion around the point σ =1 and from the ɛ -expansion used with the introduction of a suitably defined effective dimension deff relating the long-range model with a short-range one in dimension deff. We finally present a formulation of our algorithm for bond percolation on general graphs, with order N efficiency on a large class of graphs including short-range percolation and translationally invariant long-range models in any spatial dimension d with σ >0 .

  9. Carrier-induced ferromagnetism in half-metallic Co-doped ZnS-diluted magnetic semiconductor: a DFT study

    NASA Astrophysics Data System (ADS)

    Saikia, D.; Borah, J. P.

    2018-03-01

    Systematic experimental and theoretical calculations have been performed to investigate the origin of the carrier-induced ferromagnetism in the Co-doped ZnS-diluted magnetic semiconductors. The crystalline structure, morphology of the chemically synthesized Co-doped ZnS nanoparticles are evaluated using X-ray diffraction (XRD) and transmission electron microscopy (TEM) and obtained the average crystallite size in the range 5-8 nm. Fourier transform-infrared spectra reveal the characteristic Zn-S vibrations of cubic ZnS and also show the splitting of peaks with increasing Co concentration which indicates that the Co-doping level beyond 3% affects the structure of ZnS. The room temperature ferromagnetic behavior analyzed by M- H curve exhibited up to the doping level 5%, achieving due to the indirect ` p- d' exchange interactions between the localized ` d' spins of Co2+ ion and the free-delocalized carriers in the host lattice. The existence of the antiferromagnetic coupling is discernable beyond the 5% doping level, owing to the short-range super-exchange interactions between the characteristic ` d' spins of the Co2+ ions which minimize the ferromagnetic ordering. Band structure and density of states (DOS) calculations demonstrate the p- d hybridization mechanism in Co-doped ZnS system which is the main cause of realizing ferromagnetic ordering in the system and also shows the half-metallic characteristics with the combination of semiconducting and metallic nature in the spin-up and spin-down states, respectively.

  10. Active hydrodynamics of synchronization and ordering in moving oscillators

    NASA Astrophysics Data System (ADS)

    Banerjee, Tirthankar; Basu, Abhik

    2017-08-01

    The nature of emergent collective behaviors of moving interacting physical agents is a long-standing open issue in physical and biological systems alike. This calls for studies on the control of synchronization and the degree of order in a collection of diffusively moving noisy oscillators. We address this by constructing a generic hydrodynamic theory for active phase fluctuations in a collection of a large number of nearly-phase-coherent moving oscillators in two dimensions. Our theory describes the general situation where phase fluctuations and oscillator mobility mutually affect each other. We show that the interplay between the active effects and the mobility of the oscillators leads to a variety of phenomena, ranging from synchronization with long-range, nearly-long-range, and quasi-long-range orders to instabilities and desynchronization with short-range order of the oscillator phases. We highlight the complex dependences of synchronization on the active effects. These should be testable in wide-ranging systems, e.g., oscillating chemical reactions in the presence of different reaction inhibitors and facilitators, live oriented cytoskeletal extracts, and vertebrate segmentation clocks.

  11. Short-range magnetic order, irreversibility and giant magnetoresistance near the triple points in the (x, T) magnetic phase diagram of ZrMn6Sn6-xGax

    NASA Astrophysics Data System (ADS)

    Mazet, T.; Ihou-Mouko, H.; Marêché, J.-F.; Malaman, B.

    2010-04-01

    We have studied pseudo-layered ZrMn6Sn6-xGax intermetallics (0.55 ≤ x ≤ 0.81) using magnetic, magnetoresistivity and powder neutron diffraction measurements. All the alloys studied have magnetic ordering temperatures in the 450-490 K temperature range. They present complex temperature-dependent partially disordered magnetic structures whose ferromagnetic component develops upon increasing the Ga content. ZrMn6Sn6-xGax alloys with x ≤ 0.69 are essentially collinear antiferromagnets at high-temperature and adopt antifan-like arrangements at low temperature. For x ≥ 0.75, the alloys order ferromagnetically and evolve to a fan-like structure upon cooling. The intermediate compositions (x = 0.71 and 0.73) present a canted fan-like order at high temperature and another kind of antifan-like arrangement at low temperature. The degree of short-range order tends to increase upon approaching the intermediate compositions. The (x, T) phase diagram contains two triple points (x ~ 0.70; T ~ 460 K and x ~ 0.74; T ~ 455 K), where the paramagnetic, an incommensurate and a commensurate phases meet, which possess some of the features of Lifshitz point. Irreversibilities manifest in the low-temperature magnetization curves at the antifan-fan or fan-ferromagnetic boundaries as well as inside the fan region. Giant magnetoresistance is observed, even above room temperature.

  12. Effect of nuclear motion on molecular high order harmonic pump probe spectroscopy.

    PubMed

    Bredtmann, Timm; Chelkowski, Szczepan; Bandrauk, André D

    2012-11-26

    We study pump-probe schemes for the real time observation of electronic motion on attosecond time scale in the molecular ion H(2)(+) and its heavier isotope T(2)(+) while these molecules dissociate on femtosecond time scale by solving numerically the non-Born-Oppenheimer time-dependent Schrödinger equation. The UV pump laser pulse prepares a coherent superposition of the three lowest lying quantum states and the time-delayed mid-infrared, intense few-femtosecond probe pulse subsequently generates molecular high-order harmonics (MHOHG) from this coherent electron-nuclear wavepacket (CENWP). Varying the pump-probe time delay by a few hundreds of attoseconds, the MHOHG signal intensity is shown to vary by orders of magnitude. Due to nuclear movement, the coherence of these two upper states and the ground state is lost after a few femtoseconds and the MHOHG intensity variations as function of pump-probe delay time are shown to be equal to the period of electron oscillation in the coherent superposition of the two upper dissociative quantum states. Although this electron oscillation period and hence the periodicity of the harmonic spectra are quite constant over a wide range of internuclear distances, a strong signature of nuclear motion is seen in the actual shapes and ways in which these spectra change as a function of pump-probe delay time, which is illustrated by comparison of the MHOHG spectra generated by the two isotopes H(2)(+) and T(2)(+). Two different regimes corresponding roughly to internuclear distances R < 4a(0) and R > 4a(0) are identified: For R < 4a(0), the intensity of a whole range of frequencies in the plateau region is decreased by orders of magnitude when the delay time is changed by a few hundred attoseconds whereas in the cutoff region the peaks in the MHOHG spectra are red-shifted with increasing pump-probe time delay. For R > 4a(0), on the other hand, the peaks both in the cutoff and plateau region are red-shifted with increasing delay times with only slight variations in the peak intensities. A time-frequency analysis shows that in the case of a two-cycle probe pulse the sole contribution of one long and associated short trajectory correlates with the attenuation of a whole range of frequencies in the plateau region for R < 4a(0) whereas the observed red shift for R > 4a(0), even in the plateau region, correlates with a single electron return within one-half laser cycle.

  13. Probing short-range nucleon-nucleon interactions with an electron-ion collider

    DOE PAGES

    Miller, Gerald A.; Sievert, Matthew D.; Venugopalan, Raju

    2016-04-07

    For this research, we derive the cross section for exclusive vector meson production in high-energy deeply inelastic scattering off a deuteron target that disintegrates into a proton and a neutron carrying large relative momentum in the final state. This cross section can be expressed in terms of a novel gluon transition generalized parton distribution (T-GPD); the hard scale in the final state makes the T-GPD sensitive to the short-distance nucleon-nucleon interaction. We perform a toy model computation of this process in a perturbative framework and discuss the time scales that allow the separation of initial- and final-state dynamics in themore » T-GPD. We outline the more general computation based on the factorization suggested by the toy computation: In particular, we discuss the relative role of “pointlike” and “geometric” Fock configurations that control the parton dynamics of short-range nucleon-nucleon scattering. With the aid of exclusive J/ψ production data at the Hadron-Electron Ring Accelerator at DESY, as well as elastic nucleon-nucleon cross sections, we estimate rates for exclusive deuteron photodisintegration at a future Electron-Ion Collider (EIC). Our results, obtained using conservative estimates of EIC integrated luminosities, suggest that center-of-mass energies sNN ~12GeV 2 of the neutron-proton subsystem can be accessed. We argue that the high energies of the EIC can address outstanding dynamical questions regarding the short-range quark-gluon structure of nuclear forces by providing clean gluon probes of such “knockout” exclusive reactions in light and heavy nuclei.« less

  14. Pressure-Induced Phase Transitions in the Cd-Yb Periodic Approximant to a Quasicrystal

    NASA Astrophysics Data System (ADS)

    Watanuki, Tetsu; Machida, Akihiko; Ikeda, Tomohiro; Aoki, Katsutoshi; Kaneko, Hiroshi; Shobu, Takahisa; Sato, Taku J.; Tsai, An Pang

    2006-03-01

    The phase study of a Cd-Yb 1/1 approximant crystal over a wide pressure and temperature range is crucial for the comparison study between periodic and quasiperiodic crystals. The Cd4 tetrahedra, the most inner part of the atomic clusters, exhibited various structural ordering in the orientation sensitive to pressure and temperature. Five ordered phases appeared in a P-T span up to 5.2 GPa and down to 10 K. The propagation direction of ordering alternated from [110] to ⟨111⟩ at about 1.0 GPa and again to [110] at 3.5 4.3 GPa. The primarily ordered phases that appeared by cooling to 210 250 K between 1.0 5.2 GPa further transformed to finely ordered ones at 120 155 K. Besides the original short-range type interaction, a long-range type interaction was likely developed under pressure to lead to the primary ordering of Cd4 tetrahedra. Coexistence of these interactions is responsible for the complicated phase behavior.

  15. Direct Immersion Annealing of Thin Block Copolymer Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modi, Arvind; Bhaway, Sarang M.; Vogt, Bryan D.

    2015-09-09

    We demonstrate ordering of thin block copolymer (BCP) films via direct immersion annealing (DIA) at enhanced rate leading to stable morphologies. The BCP films are immersed in carefully selected mixtures of good and marginal solvents that can impart enhanced polymer mobility, while inhibiting film dissolution. DIA is compatible with roll-to-roll assembly manufacturing and has distinct advantages over conventional thermal annealing and batch processing solvent-vapor annealing methods. We identify three solvent composition-dependent BCP film ordering regimes in DIA for the weakly interacting polystyrene–poly(methyl methacrylate) (PS–PMMA) system: rapid short-range order, optimal long-range order, and a film instability regime. Kinetic studies in themore » “optimal long-range order” processing regime as a function of temperature indicate a significant reduction of activation energy for BCP grain growth compared to oven annealing at conventional temperatures. An attractive feature of DIA is its robustness to ordering other BCP (e.g. PS-P2VP) and PS-PMMA systems exhibiting spherical, lamellar and cylindrical ordering.« less

  16. Temperature and composition dependence of short-range order and entropy, and statistics of bond length: the semiconductor alloy (GaN)(1-x)(ZnO)(x).

    PubMed

    Liu, Jian; Pedroza, Luana S; Misch, Carissa; Fernández-Serra, Maria V; Allen, Philip B

    2014-07-09

    We present total energy and force calculations for the (GaN)1-x(ZnO)x alloy. Site-occupancy configurations are generated from Monte Carlo (MC) simulations, on the basis of a cluster expansion model proposed in a previous study. Local atomic coordinate relaxations of surprisingly large magnitude are found via density-functional calculations using a 432-atom periodic supercell, for three representative configurations at x = 0.5. These are used to generate bond-length distributions. The configurationally averaged composition- and temperature-dependent short-range order (SRO) parameters of the alloys are discussed. The entropy is approximated in terms of pair distribution statistics and thus related to SRO parameters. This approximate entropy is compared with accurate numerical values from MC simulations. An empirical model for the dependence of the bond length on the local chemical environments is proposed.

  17. Magnetic properties of four Cu(ii)-amino acid salts

    NASA Astrophysics Data System (ADS)

    Calvo, Rafael

    1984-03-01

    We report a comparative study of magnetic properties of the Cu(II) salts of the amino acids l-alanine, dl-α-amino-n-butyric acid, α-amino isobutyric acid, and l-isoleucine. The position of the EPR lines of these quasi-two-dimensional magnetic systems was measured as a function of temperature T between 293 and 1.5 K, at 9.3 GHz and for magnetic fields applied along three axes of single crystal samples. Large changes of the gyromagnetic factor with T have been observed. They are attributed to an internal mean field, proportional to the applied field, which appears when the temperature is lowered due to short range magnetic order in the paramagnetic phase of the salts. The problem of short range magnetic order and g shifts in Cu-amino acid salts is discussed and compared with previous observations in Mn one-dimensional systems.

  18. Incipient crystallization of transition-metal tungstates under microwaves probed by Raman scattering and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Siqueira, Kisla P. F.; Dias, Anderson

    2011-11-01

    Microwave synthesis was used to produce nanosized transition-metal tungstates in environmentally friendly conditions not yet reported by the literature: 110 and 150 °C, for times of 10 and 20 min. X-ray diffraction evidenced incipient crystallized materials, while transmission electron microscopy indicates nanostructured regions of about 2-5 nm inside an amorphous matrix. Raman spectroscopy was used to probe short-range ordering in the achieved samples and also to obtain a reliable set of spectra containing all the Raman-active bands predicted by group-theory calculations. The vibrational spectra showed no extra feature, indicating that the microwave processing was able to produce short-range ordered materials without tetrahedral distortions. These distortions are frequently reported when commercially modified kitchen microwave units are employed. In this work, the syntheses were conducted in a commercial apparatus especially designed for fully controlled temperature-time-pressure conditions.

  19. Coexistence of short- and long-range ferromagnetic order in nanocrystalline Fe2Mn1-xCuxAl (x=0.0, 0.1 and 0.3) synthesized by high-energy ball milling

    NASA Astrophysics Data System (ADS)

    Thanh, Tran Dang; Nanto, Dwi; Tuyen, Ngo Thi Uyen; Nan, Wen-Zhe; Yu, YiKyung; Tartakovsky, Daniel M.; Yu, S. C.

    2015-11-01

    In this work, we prepared nanocrystalline Fe2Mn1-xCuxAl (x=0.0, 0.1 and 0.3) powders by the high energy ball milling technique, and then studied their critical properties. Our analysis reveals that the increase of Cu-doping concentration (up to x=0.3) in these powders leads to a gradual increase of the ferromagnetic-paramagnetic transition temperature from 406 to 452 K. The Banerjee criterion suggests that all the samples considered undergo a second-order phase transition. A modified Arrott plot and scaling analysis indicate that the critical exponents (β=0.419 and 0.442, γ=1.082 and 1.116 for x=0.0 and 0.1, respectively) are located in between those expected for the 3D-Heisenberg and the mean-field models; the values of β=0.495 and γ=1.046 for x=0.3 sample are very close to those of the mean-field model. These features reveal the coexistence of the short- and long-range ferromagnetic order in the nanocrystalline Fe2Mn1-xCuxAl powders. Particularly, as the concentration of Cu increases, values of the critical exponent shift towards those of the mean-field model. Such results prove the Cu doping favors establishing a long-range ferromagnetic order.

  20. Similar local order in disordered fluorite and aperiodic pyrochlore structures

    DOE PAGES

    Shamblin, Jacob; Tracy, Cameron; Palomares, Raul; ...

    2017-10-01

    A major challenge to understanding the response of materials to extreme environments (e.g., nuclear fuels/waste forms and fusion materials) is to unravel the processes by which a material can incorporate atomic-scale disorder, and at the same time, remain crystalline. While it has long been known that all condensed matter, even liquids and glasses, possess short-range order, the relation between fully-ordered, disordered, and aperiodic structures over multiple length scales is not well understood. For example, when defects are introduced (via pressure or irradiation) into materials adopting the pyrochlore structure, these complex oxides either disorder over specific crystallographic sites, remaining crystalline, ormore » become aperiodic. Here we present neutron total scattering results characterizing the irradiation response of two pyrochlores, one that is known to disorder (Er2Sn2O7) and the other to amorphize (Dy2Sn2O7) under ion irradiation. The results demonstrate that in both cases, the local pyrochlore structure is transformed into similar short range configurations that are best fit by the orthorhombic weberite structure, even though the two compositions have distinctly different structures, aperiodic vs. disordered-crystalline, at longer length scales. Thus, a material's resistance to amorphization may not depend primarily on local defect formation energies, but rather on the structure's compatibility with meso-scale modulations of the local order in a way that maintains long-range periodicity.« less

  1. Influence of spin and charge fluctuations on spectra of the two-dimensional Hubbard model

    NASA Astrophysics Data System (ADS)

    Sherman, A.

    2018-05-01

    The influence of spin and charge fluctuations on spectra of the two-dimensional fermionic Hubbard model is considered using the strong coupling diagram technique. Infinite sequences of diagrams containing ladder inserts, which describe the interaction of electrons with these fluctuations, are summed, and obtained equations are self-consistently solved for the ranges of Hubbard repulsions , temperatures and electron concentrations with t the intersite hopping constant. For all considered U the system exhibits a transition to the long-range antiferromagnetic order at . At the same time no indication of charge ordering is observed. Obtained solutions agree satisfactorily with results of other approaches and obey moments sum rules. In the considered region of the U-T plane, the curve separating metallic solutions passes from at the highest temperatures to U  =  2t at for half-filling. If only short-range fluctuations are allowed for the remaining part of this region is occupied by insulating solutions. Taking into account long-range fluctuations leads to strengthening of maxima tails, which transform a part of insulating solutions into bad-metal states. For low T, obtained results allow us to trace the gradual transition from the regime of strong correlations with the pronounced four-band structure and well-defined Mott gap for to the Slater regime of weak correlations with the spectral intensity having a dip along the boundary of the magnetic Brillouin zone due to an antiferromagnetic ordering for . For and doping leads to the occurrence of a pseudogap near the Fermi level, which is a consequence of the splitting out of a narrow band from a Hubbard subband. Obtained spectra feature waterfalls and Fermi arcs, which are similar to those observed in hole-doped cuprates.

  2. Test of Newtonian gravity at short range using pico-precision displacement sensor

    NASA Astrophysics Data System (ADS)

    Akiyama, Takashi; Hata, Maki; Ninomiya, Kazufumi; Nishio, Hironori; Ogawa, Naruya; Sekiguchi, Yuta; Watanabe, Kentaro; Murata, Jiro

    2009-10-01

    Recent theoretical models of physics beyond the standard model, including attempts to resolve the hierarchy problem, predict deviations from the Newtonian gravity at short distances below millimeters. Present NEWTON project aims an experimental test of the inverse-square law at the millimeter scale, using a torsion pendulum with a pico-precision displacement sensor, which was originally developed for the micron precision optical alignment system (OASys) for the PHENIX muon tracking chambers at RHIC, using digital image analysis technique. In order to examine the gravitational force at short range scale around micrometers, we have developed a new apparatus NEWTON-III, which can determine the local gravitational acceleration by measuring the motion of the torsion pendulum. In this presentation, the development status and the results of the NEWTON-experiment will be reported.

  3. Manganese-induced magnetic symmetry breaking and its correlation with the metal-insulator transition in bilayered S r3(Ru1-xM nx) 2O7

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Ye, Feng; Tian, Wei; Cao, Huibo; Chi, Songxue; Hu, Biao; Diao, Zhenyu; Tennant, David A.; Jin, Rongying; Zhang, Jiandi; Plummer, Ward

    2017-06-01

    Bilayered S r3R u2O7 is an unusual metamagnetic metal with inherently antiferromagnetic (AFM) and ferromagnetic (FM) fluctuations. Partial substitution of Ru by Mn results in the establishment of a metal-insulator transition (MIT) at TMIT and AFM ordering at TM in S r3(Ru1-xM nx) 2O7 . Using elastic neutron scattering, we investigated the effect of Mn doping on the magnetic structure, in-plane magnetic correlation lengths and their correlation to the MIT in S r3(Ru1-xM nx) 2O7 (x =0.06 and 0.12). With the increase of Mn doping (x ) from 0.06 to 0.12 or the decrease of temperatures for x =0.12 , an evolution from an in-plane short-range to long-range antiferromagnetic (AFM) ground state occurs. For both compounds, the magnetic ordering has a double-stripe configuration, and the onset of magnetic correlation with an anisotropic behavior coincides with the sharp rise in electrical resistivity and specific heat. Since it does not induce a measurable lattice distortion, the double-stripe antiferromagnetic order with anisotropic spin texture breaks symmetry from a C4 v crystal lattice to a C2 v magnetic sublattice. These observations shed light on an age-old question regarding the Slater versus Mott-type MIT.

  4. Decreased long- and short-range functional connectivity at rest in drug-naive major depressive disorder.

    PubMed

    Guo, Wenbin; Liu, Feng; Chen, Jindong; Wu, Renrong; Zhang, Zhikun; Yu, Miaoyu; Xue, Zhimin; Zhao, Jingping

    2016-08-01

    Abnormal functional connectivity has been observed in major depressive disorder. Anatomical distance may affect functional connectivity in patients with major depressive disorder. However, whether and how anatomical distance affects functional connectivity at rest remains unclear in drug-naive patients with major depressive disorder. Forty-four patients with major depressive disorder, as well as 44 age-, sex- and education-matched healthy controls, underwent resting-state functional magnetic resonance imaging scanning. Regional functional connectivity strength was calculated for each voxel in the whole brain, which was further divided into short- and long-range functional connectivity strength. The patients showed decreased long-range positive functional connectivity strength in the right inferior parietal lobule, as well as decreased short-range positive functional connectivity strength in the right insula and right superior temporal gyrus relative to those of the controls. No significant correlations existed between abnormal functional connectivity strength and the clinical variables of the patients. The findings revealed that anatomical distance decreases long- and short-range functional connectivity strength in patients with major depressive disorder, which may underlie the neurobiology of major depressive disorder. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  5. Molecular Dynamics Simulation of the Cage Effect in a Wide Packing Fraction Range

    NASA Astrophysics Data System (ADS)

    Pestryaev, E. M.

    2018-07-01

    The self-diffusion coefficient and particle residence time in the first coordination shell of its neighbours were investigated by molecular dynamics simulation with the packing fraction of the model system ranging from 0.1 to 0.8. The residence time distribution spans several orders of magnitude and broadens with the system packing fraction. The distribution exhibits a maximum localized in the short residence time region. The average residence time correlates with the conventionally-used intermolecular correlation time governed by the mutual particle translational diffusion. It was shown that the use of the coordination number as an argument for all searched parameters is the obvious representation of the cage effect onset. The agreement of the self-diffusion coefficient with one of the recent theories is excellent in most of the density range, including the start of the glass transition, with the largest divergence only observed for the rare gas state. The same conclusion is true for the simulated and theoretical values of the caging number, which is nearly five, defining the start of the system liquefaction.

  6. Electrical resistivity of V-Cr-Ti alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinkle, S.J.; Gubbi, A.N.; Eatherly, W.S.

    1997-04-01

    Room temperature electrical resistivity measurements have been performed on vanadium alloys containing 3-6%Cr and 3-6%Ti in order to evaluate the microstructural stability of these alloys. A nonlinear dependence on Cr and Ti concentration was observed, which suggests that either short range ordering or solute precipitation (perhaps in concert with interstitial solute clustering) has occurred in V-6Cr-6Ti.

  7. Relaxor-like ferroelectric behaviour favoured by short-range B-site ordering in 10% Ba{sup 2+} substituted MgFe{sub 2}O{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chithra Lekha, P.; Ramesh, G.; Revathi, V.

    2014-05-01

    Graphical abstract: - Highlights: • Mechanism driving polarization in MgFe{sub 2}O{sub 4} is the Maxwell–Wagner polarization. • But Raman studies confirm the existence of local P4{sub 1}22/P4{sub 3}22 symmetry in MgFe{sub 2}O{sub 4}. • Ba{sup 2+} substitution increases ferroelectric ordering, ΔT{sub m} span, and masks electronic contribution. - Abstract: Using the molten salt method, pristine and Ba{sup 2+} substituted MgFe{sub 2}O{sub 4} are prepared. The relaxor-like behaviour observed in the dielectric dispersion indicates the existence of B-site short-range ordering with the local P4{sub 1}22/P4{sub 3}22 symmetry which is confirmed by the Raman spectroscopy. The paper further analyses the origin ofmore » polarization using Maxwell–Wagner fit and Nyquist plot. This work suggests a possible way to increase the relaxor-like ferroelectric ordering, larger span of relaxation temperature (ΔT{sub m}) and the effective masking of electronic contribution by the substitution of Ba{sup 2+} ion.« less

  8. Short-lived brain state after cued motor imagery in naive subjects.

    PubMed

    Pfurtscheller, G; Scherer, R; Müller-Putz, G R; Lopes da Silva, F H

    2008-10-01

    Multi-channel electroencephalography recordings have shown that a visual cue, indicating right hand, left hand or foot motor imagery, can induce a short-lived brain state in the order of about 500 ms. In the present study, 10 able-bodied subjects without any motor imagery experience (naive subjects) were asked to imagine the indicated limb movement for some seconds. Common spatial filtering and linear single-trial classification was applied to discriminate between two conditions (two brain states: right hand vs. left hand, left hand vs. foot and right hand vs. foot). The corresponding classification accuracies (mean +/- SD) were 80.0 +/- 10.6%, 83.3 +/- 10.2% and 83.6 +/- 8.8%, respectively. Inspection of central mu and beta rhythms revealed a short-lasting somatotopically specific event-related desynchronization (ERD) in the upper mu and/or beta bands starting approximately 300 ms after the cue onset and lasting for less than 1 s.

  9. K-shell Photoabsorption of Oxygen Ions

    NASA Technical Reports Server (NTRS)

    Garcia, J.; Mendoza, C.; Bautista, M. A.; Gorczyca, T. W.; Kallman, T. R.; Palmeri, P.

    2005-01-01

    The high spectral resolutions of the Chandra and XMM-Newton X-ray observatories have unveiled the useful diagnostic possibilities of oxygen K absorption. To mention a few, strong O VII and O VIII edges are almost ubiquitous in the spectra of Seyfert 1 galaxies which have been used by Lee et al. (2001) to predict of a warm dust absorber along the line of sight; although this conclusion has been criticized in the light of a data reanalysis (SA0 et al. 2003), Steenbrugge et al. (2003) have detected inner-shell transitions of O III-O VI in the spectrum of NGC 5548 that point to a warm absorber that spans three orders of magnitude in ionization parameter. Moreover, Behar et al. (2003) have stressed that, in the case of both Seyfert 1 and Seyfert 2 galaxies, a broad range of oxygen charge states are usually observed along the line of sight that must be fitted simultaneously, and may imply strong density gradients of 2-4 orders of magnitude over short distances.

  10. Ferromagnetism in a hexagonal PrRh3 with 4f2 configuration

    NASA Astrophysics Data System (ADS)

    Park, G. B.; Yamane, Y.; Onimaru, T.; Umeo, K.; Takabatake, T.

    2018-05-01

    Electrical resistivity ρ , magnetization M and specific heat C are reported for polycrystalline samples of the hexagonal system PrRh3. The magnetic susceptibility M/B obeys the Curie-Weiss law with the effective magnetic moment μeff = 3.88 μB/Pr and the paramagnetic Curie temperature θp = +2.9 K, which indicates ferro-type magnetic interaction between the trivalent Pr ions. A cusp in C(T) at 3.0 K coincides with a bend in ρ (T). Applying magnetic fields, the peak broadens and shifts to higher temperatures. The field dependence indicates a ferro-type magnetic order. The magnetic entropy Sm is (1/3)Rln2 at TC = 3.0 K, suggesting that part of the Pr ions take part in the magnetic order. A broad tail of the magnetic specific heat Cm observed above TC may result from short-range correlations and/or fluctuations of the active magnetic dipole and quadrupoles in the ground state doublet.

  11. Competing magnetic interactions and low temperature magnetic phase transitions in composite multiferroics

    NASA Astrophysics Data System (ADS)

    Borkar, Hitesh; Choudhary, R. J.; Singh, V. N.; Tomar, M.; Gupta, Vinay; Kumar, Ashok

    2015-08-01

    Novel magnetic properties and magnetic interactions in composite multiferroic oxides Pb[(Zr0.52Ti0.48)0.60(Fe0.67W0.33).40]O3]0.80-[CoFe2O4]0.20 (PZTFW-CFO) have been studied from 50 to 1000 Oe field cooled (FC) and zero field cooled (ZFC) probing conditions, and over a wide range of temperatures (4-350 K). Crystal structure analysis, surface morphology, and high resolution transmission electron microscopy images revealed the presence of two distinct phases, where micro- and nano-size spinel CFO were embedded in tetragonal PZTFW matrix and applied a significant built-in compressive strain (˜0.4-0.8%). Three distinct magnetic phase transitions were observed with the subtle effect of CFO magnetic phase on PZTFW magnetic phase transitions below the blocking temperature (TB). Temperature dependence magnetic property m(T) shows a clear evidence of spin freezing in magnetic order with lowering in thermal vibration. Chemical inhomogeneity and confinement of nanoscale ferrimagnetic phase in paramagnetic/antiferromagnetic matrix restrict the long range interaction of spin which in turn develop a giant spin frustration. A large divergence in the FC and ZFC data and broad hump in ZFC data near 200 (±10) K were observed which suggests that large magnetic anisotropy and short range order magnetic dipoles lead to the development of superparamagnetic states in composite.

  12. Formation of ferric oxides from aqueous solutions: A polyhedral approach by X-ray absorption spectroscopy. I. Hydrolysis and formation of ferric gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Combes, J.M.; Manceau, A.; Calas, G.

    1989-03-01

    X-ray absorption spectroscopy (XAS) was used to follow the evolution of local structural environments around ferric ions during the formation of ferric hydrous oxide gels from 1 M chloride and 0.1 M nitrate solutions. Fe K-XANES and EXAFS confirm that ferric ions remain 6-fold coordinated during this evolution. With increasing OH availability in the solution, Cl{sup {minus}} anions tend gradually to be exchanged for (O, OH, OH{sub 2}) ligands. Below OH/Fe = 1, no structural order is detected beyond the first coordination sphere. Above this ratio, two Fe-Fe distances at 3.05 {angstrom} and 3.44 {angstrom} are observed and correspond tomore » the presence of edge- and vertex-sharing Fe-octahedra. XAS results show that ferric gels and highly polymerized aqueous species are short-range ordered. The main contribution to disorder in the gels arises from the small size of coherently scattering domains also responsible for their X-ray amorphous character. From the initial to the final stage of hydrolysis, particles possess a nearly spherical shape with a minimum average diameter ranging from 10-30 {angstrom} for polymers formed from chloride and nitrate solutions. As polymerization proceeds, the local order extends to several tens of angstroms and the particle structures becomes progressively closer to that of akaganeite ({beta}-FeOOH) or goethite ({alpha}-FeOOH). This local structure is distinct from that of the lepidocrocite ({gamma}-FeOOH)-like structure of ferric gels precipitated after oxidation of divalent Fe solutions. The growth of the crystalline Fe-oxyhydroxides from gels takes place by the progressive long-range ordering in the ferric polymers without modifying the short-range order around Fe.« less

  13. Structural and magnetic properties of RTiNO{sub 2} (R=Ce, Pr, Nd) perovskite nitride oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, Spencer H.; Huang, Zhenguo, E-mail: zhenguo@uow.edu.au; Cheng, Zhenxiang

    2015-03-15

    Neutron powder diffraction indicates that CeTiNO{sub 2} and PrTiNO{sub 2} crystallize with orthorhombic Pnma symmetry (Ce: a=5.5580(5), b=7.8369(7), and c=5.5830(4) Å; Pr: a=5.5468(5), b=7.8142(5), and c=5.5514(5) Å) as a result of a{sup –}b{sup +}a{sup –} tilting of the titanium-centered octahedra. Careful examination of the NPD data, confirms the absence of long range anion order in both compounds, while apparent superstructure reflections seen in electron diffraction patterns provide evidence for short range anion order. Inverse magnetic susceptibility plots reveal that the RTiNO{sub 2} (R=Ce, Pr, Nd) compounds are paramagnetic with Weiss constants that vary from −28 to −42 K. Effective magneticmore » moments for RTiNO{sub 2} (R=Ce, Pr, Nd) are 2.43 μ{sub B}, 3.63 μ{sub B}, and 3.47 μ{sub B}, respectively, in line with values expected for free rare-earth ions. Deviations from Curie–Weiss behavior that occur below 150 K for CeTiNO{sub 2} and below 30 K for NdTiNO{sub 2} are driven by magnetic anisotropy, spin–orbit coupling, and crystal field effects. - Graphical abstract: The structure and magnetism of the oxide nitride perovskites RTiNO{sub 2} (R=Ce, Pr, Nd) have been explored. The average symmetry is shown to be Pnma with a random distribution of oxide and nitride ions and a{sup −}b{sup +}a{sup −} tilting of the titanium-centered octahedra, but electron diffraction shows evidence for short range anion order. All three compounds are paramagnetic but deviations from the Curie Weiss law are seen below 150 K for R=Ce and below 30 K for R=Nd. - Highlights: • The oxide nitride perovskites RTiNO{sub 2} (R=Ce, Pr) have been prepared and their structures determined. • Diffraction measurements indicate short range cis-order of O and N, but no long range order. • Compounds are paramagnetic with Weiss constants that vary from −28 to −42 K. • CeTiO{sub 2}N and NdTiO{sub 2}N deviate from Curie–Weiss behavior below 150 and 30 K, respectively.« less

  14. Entanglement entropy for the long-range Ising chain in a transverse field.

    PubMed

    Koffel, Thomas; Lewenstein, M; Tagliacozzo, Luca

    2012-12-28

    We consider the Ising model in a transverse field with long-range antiferromagnetic interactions that decay as a power law with their distance. We study both the phase diagram and the entanglement properties as a function of the exponent of the interaction. The phase diagram can be used as a guide for future experiments with trapped ions. We find two gapped phases, one dominated by the transverse field, exhibiting quasi-long-range order, and one dominated by the long-range interaction, with long-range Néel ordered ground states. We determine the location of the quantum critical points separating those two phases. We determine their critical exponents and central charges. In the phase with quasi-long-range order the ground states exhibit exotic corrections to the area law for the entanglement entropy coexisting with gapped entanglement spectra.

  15. Unveiling Singlet Fission Mediating States in TIPS-pentacene and its Aza Derivatives.

    PubMed

    Herz, Julia; Buckup, Tiago; Paulus, Fabian; Engelhart, Jens U; Bunz, Uwe H F; Motzkus, Marcus

    2015-06-25

    Femtosecond pump-depletion-probe experiments were carried out in order to shed light on the ultrafast excited-state dynamics of triisopropylsilylethynyl (TIPS)-pentacene and two nitrogen-containing derivatives, namely, diaza-TIPS-pentacene and tetraaza-TIPS-pentacene. Measurements performed in the visible and near-infrared spectral range in combination with rate model simulations reveal that singlet fission proceeds via the extremely short-lived intermediate (1)TT state, which absorbs in the near-infrared spectral region only. The T1 → T3 transition probed in the visible region shows a rise time that comprises two components according to a consecutive reaction (S1 → (1)TT → T1). The incorporation of nitrogen atoms into the acene structure leads to shorter dynamics, but the overall triplet formation follows the same kinetic model. This is of particular importance, since experiments on tetraaza-TIPS-pentacene allow for investigation of the triplet state in the visible range without an overlapping singlet contribution. In addition, the pump-depletion-probe experiments show that the triplet absorption in the visible (T1 → T3) and near-infrared (T1 → T2) regions occurs from the same initial state, which was questioned in previous studies. Furthermore, an additional ultrafast transfer between the excited triplet states (T3 → T2) is identified, which is also in agreement with the rate model simulation. By applying depletion pulses, which are resonant with higher vibrational levels, we gain insight into internal vibrational energy redistribution processes within the triplet manifold. This additional information is of great relevance regarding the study of loss channels within these materials.

  16. Phase diagram of the quantum Ising model with long-range interactions on an infinite-cylinder triangular lattice

    NASA Astrophysics Data System (ADS)

    Saadatmand, S. N.; Bartlett, S. D.; McCulloch, I. P.

    2018-04-01

    Obtaining quantitative ground-state behavior for geometrically-frustrated quantum magnets with long-range interactions is challenging for numerical methods. Here, we demonstrate that the ground states of these systems on two-dimensional lattices can be efficiently obtained using state-of-the-art translation-invariant variants of matrix product states and density-matrix renormalization-group algorithms. We use these methods to calculate the fully-quantitative ground-state phase diagram of the long-range interacting triangular Ising model with a transverse field on six-leg infinite-length cylinders and scrutinize the properties of the detected phases. We compare these results with those of the corresponding nearest neighbor model. Our results suggest that, for such long-range Hamiltonians, the long-range quantum fluctuations always lead to long-range correlations, where correlators exhibit power-law decays instead of the conventional exponential drops observed for short-range correlated gapped phases. Our results are relevant for comparisons with recent ion-trap quantum simulator experiments that demonstrate highly-controllable long-range spin couplings for several hundred ions.

  17. Comparison of various stopping gases for 3He-based position sensitive neutron detectors

    NASA Astrophysics Data System (ADS)

    Doumas, A.; Smith, G. C.

    2012-05-01

    A range of solid state, scintillator and gas based detectors are being developed for use at the next generation of high flux neutron facilities. Since gas detectors are expected to continue to play a key role in future specific thermal neutron experiments, a comparison of the performance characteristics of prospective stopping gases is beneficial. Gas detectors typically utilize the reaction 3He(n,p)t to detect thermal neutrons; the 3He gas is used in a mixture containing a particular stopping gas in order to maintain relatively short ranges for the proton and triton pair emitted from the n-3He reaction. Common stopping gases include hydrocarbons (e.g. propane), carbon tetrafluoride, and noble gases such as argon and xenon. For this study, we utilized the Monte Carlo simulation code "Stopping and Range of Ions in Matter" to analyze the expected behavior of argon, xenon, carbon dioxide, difluoroethane and octafluoropropane as stopping gases for thermal neutron detectors. We also compare these findings to our previously analyzed performance of propane, butane and carbon tetrafluoride. A discussion of these gases includes their behavior in terms of proton and triton range, ionization distribution and straggle.

  18. Roton Excitations and the Fluid-Solid Phase Transition in Superfluid 2D Yukawa Bosons

    NASA Astrophysics Data System (ADS)

    Molinelli, S.; Galli, D. E.; Reatto, L.; Motta, M.

    2016-10-01

    We compute several ground-state properties and the dynamical structure factor of a zero-temperature system of Bosons interacting with the 2D screened Coulomb (2D-SC) potential. We resort to the exact shadow path integral ground state (SPIGS) quantum Monte Carlo method to compute the imaginary-time correlation function of the model, and to the genetic algorithm via falsification of theories (GIFT) to retrieve the dynamical structure factor. We provide a detailed comparison of ground-state properties and collective excitations of 2D-SC and ^4He atoms. The roton energy of the 2D-SC system is an increasing function of density, and not a decreasing one as in ^4He. This result is in contrast with the view that the roton is the soft mode of the fluid-solid transition. We uncover a remarkable quasi-universality of backflow and of other properties when expressed in terms of the amount of short-range order as quantified by the height of the first peak of the static structure factor.

  19. Many-Body Interactions in Ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, C. Huy; Reddy, Sandeep K.; Chen, Karl

    Many-body effects in ice are investigated through a systematic analysis of the lattice energies of several proton ordered and disordered phases, which are calculated with different flexible water models, ranging from pairwise additive (q-TIP4P/F) to polarizable (TTM3-F and AMOE-BA BA) and explicit many-body (MB-pol) potential energy functions. Comparisons with available experimental and diffusion Monte Carlo data emphasize the importance of an accurate description of the individual terms of the many-body expansion of the interaction energy between water molecules for the correct prediction of the energy ordering of the ice phases. Further analysis of the MB-pol results, in terms of fundamentalmore » energy contributions, demonstrates that the differences in lattice energies between different ice phases are sensitively dependent on the subtle balance between short-range two-body and three-body interactions, many-body induction, and dispersion energy. Here, by correctly reproducing many-body effects at both short range and long range, it is found that MB-pol accurately predicts the energetics of different ice phases, which provides further support for the accuracy of MB-pol in representing the properties of water from the gas to the condensed phase.« less

  20. Many-Body Interactions in Ice

    DOE PAGES

    Pham, C. Huy; Reddy, Sandeep K.; Chen, Karl; ...

    2017-02-28

    Many-body effects in ice are investigated through a systematic analysis of the lattice energies of several proton ordered and disordered phases, which are calculated with different flexible water models, ranging from pairwise additive (q-TIP4P/F) to polarizable (TTM3-F and AMOE-BA BA) and explicit many-body (MB-pol) potential energy functions. Comparisons with available experimental and diffusion Monte Carlo data emphasize the importance of an accurate description of the individual terms of the many-body expansion of the interaction energy between water molecules for the correct prediction of the energy ordering of the ice phases. Further analysis of the MB-pol results, in terms of fundamentalmore » energy contributions, demonstrates that the differences in lattice energies between different ice phases are sensitively dependent on the subtle balance between short-range two-body and three-body interactions, many-body induction, and dispersion energy. Here, by correctly reproducing many-body effects at both short range and long range, it is found that MB-pol accurately predicts the energetics of different ice phases, which provides further support for the accuracy of MB-pol in representing the properties of water from the gas to the condensed phase.« less

  1. Stuck in default mode: inefficient cross-frequency synchronization may lead to age-related short-term memory decline.

    PubMed

    Pinal, Diego; Zurrón, Montserrat; Díaz, Fernando; Sauseng, Paul

    2015-04-01

    Aging-related decline in short-term memory capacity seems to be caused by deficient balancing of task-related and resting state brain networks activity; however, the exact neural mechanism underlying this deficit remains elusive. Here, we studied brain oscillatory activity in healthy young and old adults during visual information maintenance in a delayed match-to-sample task. Particular emphasis was on long range phase:amplitude coupling of frontal alpha (8-12 Hz) and posterior fast oscillatory activity (>30 Hz). It is argued that through posterior fast oscillatory activity nesting into the excitatory or the inhibitory phase of frontal alpha wave, long-range networks can be efficiently coupled or decoupled, respectively. On the basis of this mechanism, we show that healthy, elderly participants exhibit a lack of synchronization in task-relevant networks while maintaining synchronized regions of the resting state network. Lacking disconnection of this resting state network is predictive of aging-related short-term memory decline. These results support the idea of inefficient orchestration of competing brain networks in the aging human brain and identify the neural mechanism responsible for this control breakdown. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. How the manner of presentation of data influences older patients in determining their treatment preferences.

    PubMed

    Mazur, D J; Merz, J F

    1993-03-01

    To assess how the manner of presentation of graphic data to older patients influences their treatment preferences. Cross-sectional structured interviews with patients. A university-based Department of Veterans Affairs Medical Center. One hundred sixty-six consecutive patients (mean age = 64.8 years, range of ages 29-82) seen in a Department of Veterans Affairs general medicine clinic. Five pairs of 5-year survival curves were presented to patients. Each pair was composed of two survival curves for alternative unidentified treatments for an unidentified medical condition. Curve A (LT = better long-term, worse short-term survival) was fixed throughout all curve pairs. Curve B (ST = better short-term, worse long-term survival) changed in each curve pair, showing incrementally better chances of short-term survival across the five curve pairs. Patients were randomly assigned to view the curve pairs in forward (increasing short-term survival) or backward (decreasing short-term survival) order. Order is a significant predictor of patients' initial preferences for the short-term survival curve (P = 0.0004) as well as their willingness to shift preferences during presentation of the five curve pairs. Patients > or = 65 were more likely to initially choose the ST curve in forward order presentation than patients < 65. More educated patients generally were less likely to prefer the ST curve under both elicitation orders. The data indicate that the method of eliciting patients' preferences strongly influenced their expressed preferences, and that these preferences may have predictable relationships with demographic characteristics such as age.

  3. Beyond BCS pairing in high-density neutron matter

    NASA Astrophysics Data System (ADS)

    Rios, A.; Ding, D.; Dussan, H.; Dickhoff, W. H.; Witte, S. J.; Polls, A.

    2018-01-01

    Pairing gaps in neutron matter need to be computed in a wide range of densities to address open questions in neutron star phenomenology. Traditionally, the Bardeen-Cooper-Schrieffer approach has been used to compute gaps from bare nucleon-nucleon interactions. Here, we incorporate the influence of short- and long-range correlations into pairing properties. Short-range correlations are treated including the appropriate fragmentation of single-particle states, and they suppress the gaps substantially. Long-range correlations dress the pairing interaction via density and spin modes, and provide a relatively small correction. We use three different interactions as a starting point to control for any systematic effects. Results are relevant for neutron-star cooling scenarios, in particular in view of the recent observational data on Cassiopeia A.

  4. Short-term solar activity forecasting

    NASA Technical Reports Server (NTRS)

    Xie-Zhen, C.; Ai-Di, Z.

    1979-01-01

    A method of forecasting the level of activity of every active region on the surface of the Sun within one to three days is proposed in order to estimate the possibility of the occurrence of ionospheric disturbances and proton events. The forecasting method is a probability process based on statistics. In many of the cases, the accuracy in predicting the short term solar activity was in the range of 70%, although there were many false alarms.

  5. Fungal biomineralization of montmorillonite and goethite to short-range-ordered minerals

    NASA Astrophysics Data System (ADS)

    Li, Huan; Hu, Shuijin; Polizzotto, Matthew L.; Chang, Xiaoli; Shen, Qirong; Ran, Wei; Yu, Guanghui

    2016-10-01

    Highly reactive nano-scale minerals, e.g., short-range-ordered minerals (SROs) and other nanoparticles, play an important role in soil carbon (C) retention. Yet, the mechanisms that govern biomineralization from bulk minerals to highly reactive nano-scale minerals remain largely unexplored, which critically hinders our efforts toward managing nano-scale minerals for soil C retention. Here we report the results from a study that explores structural changes during Aspergillus fumigatus Z5 transformation of montmorillonite and goethite to SROs. We examined the morphology and structure of nano-scale minerals, using high-resolution transmission electron microscopy, time-resolved solid-state 27Al and 29Si NMR, and Fe K-edge X-ray absorption fine structure spectroscopy combined with two dimensional correlation spectroscopy (2D COS) analysis. Our results showed that after a 48-h cultivation of montmorillonite and goethite with Z5, new biogenic intracellular and extracellular reactive nano-scale minerals with a size of 3-5 nm became abundant. Analysis of 2D COS further suggested that montmorillonite and goethite were the precursors of the dominant biogenic nano-scale minerals. Carbon 1s near edge X-ray absorption fine structure (NEXAFS) spectra and their deconvolution results demonstrated that during fungus Z5 growth, carboxylic C (288.4-289.1 eV) was the dominant organic group, accounting for approximately 34% and 59% in the medium and aggregates, respectively. This result suggested that high percentage of the production of organic acids during the growth of Z5 was the driving factor for structural changes during biomineralization. This is, to the best of our knowledge, the first report of the structural characterization of nano-scale minerals by 2D COS, highlighting its potential to elucidate biomineralization pathways and thus identify the precursors of nano-scale minerals.

  6. X-ray-diffraction study of in-plane and interlayer correlations in layered compounds AgxTiS2

    NASA Astrophysics Data System (ADS)

    Kuroiwa, Yoshihiro; Ohshima, Ken-Ichi; Watanabe, Yousuke

    1990-12-01

    X-ray measurements have been performed on the development of in-plane and interplanar correlations of intercalated Ag atoms in stage-2 and -1 AgxTiS2 single crystals. The abrupt change of the c-axis parameter for stage-2 Ag0.15TiS2 at around 250 K, due to the structural transformation of the stacking sequence, was observed, although the a-axis parameter changes continuously. Rodlike diffuse scattering parallel to c* at 1/31/3.0, 2/32/3.0, and their equivalent positions is observed for stage-2 Ag0.15TiS2 above 250 K and shows the two-dimensional (2D) feature of the disordered state. Such a diffuse rod is modulated below 250 K, with maxima appearing at every half-integer. This reveals an enhancement of the three-dimensional nature and a stacking sequence αβαβ... . By analyzing rodlike diffuse scattering at 350, 300, 280, and 250 K for stage-2 Ag0.15TiS2, the 2D short-range-order parameters were determined. By comparing the 2D short-range-order parameters with the 2D Ornstein-Zernike correlation function, it was obtained that the correlation length varies from 4.1+/-0.6 Å at 350 K to 37.1+/-1.6 Å at 250 K. These results can be interpreted with the use of the Daumas-Hérold island model. On the other hand, for stage-1 AgxTiS2, the modulation of the diffuse rod parallel to the c* axis at 1/31/3.0, 2/32/3.0, and their equivalent positions was observed at room temperature, which shows the 3D nature.

  7. Short-range stabilizing potential for computing energies and lifetimes of temporary anions with extrapolation methods.

    PubMed

    Sommerfeld, Thomas; Ehara, Masahiro

    2015-01-21

    The energy of a temporary anion can be computed by adding a stabilizing potential to the molecular Hamiltonian, increasing the stabilization until the temporary state is turned into a bound state, and then further increasing the stabilization until enough bound state energies have been collected so that these can be extrapolated back to vanishing stabilization. The lifetime can be obtained from the same data, but only if the extrapolation is done through analytic continuation of the momentum as a function of the square root of a shifted stabilizing parameter. This method is known as analytic continuation of the coupling constant, and it requires--at least in principle--that the bound-state input data are computed with a short-range stabilizing potential. In the context of molecules and ab initio packages, long-range Coulomb stabilizing potentials are, however, far more convenient and have been used in the past with some success, although the error introduced by the long-rang nature of the stabilizing potential remains unknown. Here, we introduce a soft-Voronoi box potential that can serve as a short-range stabilizing potential. The difference between a Coulomb and the new stabilization is analyzed in detail for a one-dimensional model system as well as for the (2)Πu resonance of CO2(-), and in both cases, the extrapolation results are compared to independently computed resonance parameters, from complex scaling for the model, and from complex absorbing potential calculations for CO2(-). It is important to emphasize that for both the model and for CO2(-), all three sets of results have, respectively, been obtained with the same electronic structure method and basis set so that the theoretical description of the continuum can be directly compared. The new soft-Voronoi-box-based extrapolation is then used to study the influence of the size of diffuse and the valence basis sets on the computed resonance parameters.

  8. Synthesis, crystal structure, and properties of KSbO{sub 3}-type Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Manrong; Retuerto, Maria; Bok Go, Yong

    2013-01-15

    Single crystals of Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} were prepared from NaCl+KCl flux. This compound adopts KSbO{sub 3}-type crystal structure as evidenced by electron and single crystal X-ray diffraction analysis. The three-dimensional channel structure is formed by corner-sharing octahedral (Mn{sub 0.63}Te{sub 0.37}){sub 2}O{sub 10} dimers and two identical (Bi1){sub 4}(Bi2){sub 2} interpenetrating lattices. The intra-dimer Mn/Te-Mn/Te distances in Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} are short and are consistent with weak metal-metal interactions. The mixed oxidation state of manganese and the edge-sharing octahedral features are confirmed by X-ray near edge absorption spectroscopy measurements, which indicate Bi{sub 3}(Mn{sup III}{sub 1.1}Mn{sup IV}{sub 0.8})Te{supmore » VI}{sub 1.1}O{sub 11} with 57.7% Mn{sup 3+} and 42.3% Mn{sup 4+}. The partial substitution of Te for Mn perturbs long-range magnetic interactions, thereby destroying the ferromagnetic ordering found in Bi{sub 3}Mn{sub 3}O{sub 11} (T{sub C}=150 K). - Graphical abstract: Single crystal of Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} was grown from NaCl+KCl binary flux, suggesting that the high pressure Bi{sub 3}Mn{sub 3}O{sub 11} phase can be stabilized by partial substitution of Mn by Te at ambient pressure. Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} adopts a typical three dimensional KSbO{sub 3}-type crystal structure with three interpenetrating lattices and weak intra-dimmer metal-metal interaction caused by the d electrons of Mn. The edge-shared (Mn{sub 0.63}Te{sub 0.37}){sub 2}O{sub 10} octahedral dimer and mixed oxidation state of manganese (Bi{sub 3}(Mn{sup III}{sub 1.1}Mn{sup IV}{sub 0.8})Te{sup VI}{sub 1.1}O{sub 11} with 57.7% Mn{sup 3+} and 42.3% Mn{sup 4+}) features were evidenced by X-ray absorption near edge spectroscopy. Compared with Bi{sub 3}Mn{sub 3}O{sub 11}, the Te substituted Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} relaxes the crystal structure, but destroys the long-range magnetic ordering and gives short-range magnetic ordering below 5 K. Highlights: Black-Right-Pointing-Pointer High pressure Bi{sub 3}Mn{sub 3}O{sub 11} is stabilized by partial Te substitution at ambient pressure. Black-Right-Pointing-Pointer New KSbO{sub 3}-type Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} single crystal was grown from binary flux. Black-Right-Pointing-Pointer The presence of mixed oxidation state of manganese is evidenced by XANES study. Black-Right-Pointing-Pointer The Te-substitution destroys the long-range magnetic ordering and relaxes the structure.« less

  9. Wildland shrubs of the United States and its territories: Thamnic descriptions, Volume 1

    Treesearch

    John K. Francis

    2004-01-01

    A discussion of the general characteristics of shrubs as a life form and their distribution within the United States is followed by 311 short monographs containing general descriptions, ranges, ecology, reproductive habits, growth and management, and benefits to humans, animals, and the environment.

  10. Hydrolysis of short-chain phosphatidylcholines by bee venom phospholipase A2.

    PubMed

    Raykova, D; Blagoev, B

    1986-01-01

    In order to find out the aggregation state of the substrate, preferred by bee venom phospholipase A2 (EC 3.1.1.4), its action on short-chain phosphatidylcholines with two identical (C6-C10) fatty acids has been tested. The rate of hydrolysis as a function of acyl chain length showed a maximum at dioctanoylphosphatidylcholine. The effects of alcohols, NaCl and Triton X-100, which affect the aggregation state of phospholipids in water, were also studied. The addition of n-alcohol led to a significant inhibition of the hydrolysis of the substrates present in micellar form and activated the hydrolysis of substrates which form liposomes. The inhibitory effect increased with increasing length of the aliphatic carbon chain of the alcohol. Triton X-100 at low Triton/phospholipid molar ratios enhanced enzyme activity. These results do not agree with the accepted idea that bee venom phospholipase A2 hydrolyzes short-chain lecithins in their molecularly dispersed form and that micelles cannot act as substrates. The data indicate that short-chain lecithins in the aggregated state are hydrolyzed and that the requirements of bee venom phospholipase A2 for the aggregation state of the substrate are not strict.

  11. Key experimental information on intermediate-range atomic structures in amorphous Ge2Sb2Te5 phase change material

    NASA Astrophysics Data System (ADS)

    Hosokawa, Shinya; Pilgrim, Wolf-Christian; Höhle, Astrid; Szubrin, Daniel; Boudet, Nathalie; Bérar, Jean-François; Maruyama, Kenji

    2012-04-01

    Laser-induced crystalline-amorphous phase change of Ge-Sb-Te alloys is the key mechanism enabling the fast and stable writing/erasing processes in rewritable optical storage devices, such as digital versatile disk (DVD) or blu-ray disk. Although the structural information in the amorphous phase is essential for clarifying this fast process, as well as long lasting stabilities of both the phases, experimental works were mostly limited to the short-range order by x ray absorption fine structure. Here we show both the short and intermediate-range atomic structures of amorphous DVD material, Ge2Sb2Te5 (GST), investigated by a combination of anomalous x ray scattering and reverse Monte Carlo modeling. From the obtained atomic configurations of amorphous GST, we have found that the Sb atoms and half of the Ge atoms play roles in the fast phase change process of order-disorder transition, while the remaining Ge atoms act for the proper activation energy of barriers between the amorphous and crystalline phases.

  12. The National Sports Education Camps Project: Introducing Sports Skills to Students with Visual Impairments through Short-term Specialized Instruction

    ERIC Educational Resources Information Center

    Ponchillia, Paul E.; Armbruster, Jennifer; Wiebold, Jennipher

    2005-01-01

    The National Sports Education Camps Project (NSEC), a joint partnership between Western Michigan University and the United States Association of Blind Athletes, provides short-term interventions to teach sports to children with visual impairments. A study comparing 321 students with visual impairments, ranging in age from 8 to 19 years, before and…

  13. Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.

    2015-05-01

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg10In90, Hg30In70, Hg50In50, Hg70In30 and Hg90In10) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.

  14. Destabilization of Magnetic Order in a Dilute Kitaev Spin Liquid Candidate

    DOE PAGES

    Lampen-Kelley, Paige; Banerjee, Arnab; Aczel, Adam A.; ...

    2017-12-06

    The insulating honeycomb magnet α–RuCl 3 exhibits fractionalized excitations that signal its proximity to a Kitaev quantum spin liquid state; however, at T=0, fragile long-range magnetic order arises from non-Kitaev terms in the Hamiltonian. Spin vacancies in the form of Ir 3+ substituted for Ru are found to destabilize this long-range order. Neutron diffraction and bulk characterization of Ru 1–xIr xCl 3 show that the magnetic ordering temperature is suppressed with increasing x, and evidence of zizag magnetic order is absent for x > 0.3. Inelastic neutron scattering demonstrates that the signature of fractionalized excitations is maintained over the fullmore » range of x investigated. In conclusion, the depleted lattice without magnetic order thus hosts a spin-liquid-like ground state that may indicate the relevance of Kitaev physics in the magnetically dilute limit of RuCl 3.« less

  15. Destabilization of Magnetic Order in a Dilute Kitaev Spin Liquid Candidate

    NASA Astrophysics Data System (ADS)

    Lampen-Kelley, P.; Banerjee, A.; Aczel, A. A.; Cao, H. B.; Stone, M. B.; Bridges, C. A.; Yan, J.-Q.; Nagler, S. E.; Mandrus, D.

    2017-12-01

    The insulating honeycomb magnet α -RuCl3 exhibits fractionalized excitations that signal its proximity to a Kitaev quantum spin liquid state; however, at T =0 , fragile long-range magnetic order arises from non-Kitaev terms in the Hamiltonian. Spin vacancies in the form of Ir3 + substituted for Ru are found to destabilize this long-range order. Neutron diffraction and bulk characterization of Ru1 -xIrxCl3 show that the magnetic ordering temperature is suppressed with increasing x , and evidence of zizag magnetic order is absent for x >0.3 . Inelastic neutron scattering demonstrates that the signature of fractionalized excitations is maintained over the full range of x investigated. The depleted lattice without magnetic order thus hosts a spin-liquid-like ground state that may indicate the relevance of Kitaev physics in the magnetically dilute limit of RuCl3 .

  16. Cu(Ir1 - xCrx)2S4: a model system for studying nanoscale phase coexistence at the metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Božin, E. S.; Knox, K. R.; Juhás, P.; Hor, Y. S.; Mitchell, J. F.; Billinge, S. J. L.

    2014-02-01

    Increasingly, nanoscale phase coexistence and hidden broken symmetry states are being found in the vicinity of metal-insulator transitions (MIT), for example, in high temperature superconductors, heavy fermion and colossal magnetoresistive materials, but their importance and possible role in the MIT and related emergent behaviors is not understood. Despite their ubiquity, they are hard to study because they produce weak diffuse signals in most measurements. Here we propose Cu(Ir1 - xCrx)2S4 as a model system, where robust local structural signals lead to key new insights. We demonstrate a hitherto unobserved coexistence of an Ir4+ charge-localized dimer phase and Cr-ferromagnetism. The resulting phase diagram that takes into account the short range dimer order is highly reminiscent of a generic MIT phase diagram similar to the cuprates. We suggest that the presence of quenched strain from dopant ions acts as an arbiter deciding between the competing ground states.

  17. Propagation of Electrical Excitation in a Ring of Cardiac Cells: A Computer Simulation Study

    NASA Technical Reports Server (NTRS)

    Kogan, B. Y.; Karplus, W. J.; Karpoukhin, M. G.; Roizen, I. M.; Chudin, E.; Qu, Z.

    1996-01-01

    The propagation of electrical excitation in a ring of cells described by the Noble, Beeler-Reuter (BR), Luo-Rudy I (LR I), and third-order simplified (TOS) mathematical models is studied using computer simulation. For each of the models it is shown that after transition from steady-state circulation to quasi-periodicity achieved by shortening the ring length (RL), the action potential duration (APD) restitution curve becomes a double-valued function and is located below the original ( that of an isolated cell) APD restitution curve. The distributions of APD and diastolic interval (DI) along a ring for the entire range of RL corresponding to quasi-periodic oscillations remain periodic with the period slightly different from two RLs. The 'S' shape of the original APD restitution curve determines the appearance of the second steady-state circulation region for short RLs. For all the models and the wide variety of their original APD restitution curves, no transition from quasi-periodicity to chaos was observed.

  18. Anisotropic itinerant magnetism and spin fluctuations in BaFe2As2 : A neutron scattering study

    NASA Astrophysics Data System (ADS)

    Matan, K.; Morinaga, R.; Iida, K.; Sato, T. J.

    2009-02-01

    Neutron scattering measurements were performed to investigate magnetic excitations in a single-crystal sample of the ternary iron arsenide BaFe2As2 , a parent compound of a recently discovered family of Fe-based superconductors. In the ordered state, we observe low energy spin-wave excitations with a gap energy Δ=9.8(4)meV . The in-plane spin-wave velocity vab and out-of-plane spin-wave velocity vc measured at 12 meV are 280(150) and 57(7)meVÅ , respectively. At high energy, we observe anisotropic scattering centered at the antiferromagnetic wave vectors. This scattering indicates two-dimensional spin dynamics, which possibly exist inside the Stoner continuum. At TN=136(1)K , the gap closes and quasielastic scattering is observed above TN , indicative of short-range spin fluctuations. In the paramagnetic state, the scattering intensity along the L direction becomes “rodlike,” characteristic of uncorrelated out-of-plane spins, attesting to the two-dimensionality of the system.

  19. Room temperature optical anisotropy of a LaMnO 3 thin-film induced by ultra-short pulse laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munkhbaatar, Purevdorj; Marton, Zsolt; Tsermaa, Bataarchuluun

    Ultra-short laser pulse induced optical anisotropy of LaMnO 3 thin films grown on SrTiO 3 substrates were observed by irradiation with a femto-second laser pulse with the fluence of less than 0.1 mJ/cm 2 at room temperature. The transmittance and reflectance showed different intensities for different polarization states of the probe pulse after pump pulse irradiation. The theoretical optical transmittance and re ectance that assumed an orbital ordering of the 3d eg electrons in Mn 3+ ions resulted in an anisotropic time dependent changes similar to those obtained from the experimental results, suggesting that the photo-induced optical anisotropy of LaMnOmore » 3 is a result of photo-induced symmetry breaking of the orbital ordering for an optically excited state.« less

  20. Aging and functional brain networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomasi D.; Tomasi, D.; Volkow, N.D.

    2011-07-11

    Aging is associated with changes in human brain anatomy and function and cognitive decline. Recent studies suggest the aging decline of major functional connectivity hubs in the 'default-mode' network (DMN). Aging effects on other networks, however, are largely unknown. We hypothesized that aging would be associated with a decline of short- and long-range functional connectivity density (FCD) hubs in the DMN. To test this hypothesis, we evaluated resting-state data sets corresponding to 913 healthy subjects from a public magnetic resonance imaging database using functional connectivity density mapping (FCDM), a voxelwise and data-driven approach, together with parallel computing. Aging was associatedmore » with pronounced long-range FCD decreases in DMN and dorsal attention network (DAN) and with increases in somatosensory and subcortical networks. Aging effects in these networks were stronger for long-range than for short-range FCD and were also detected at the level of the main functional hubs. Females had higher short- and long-range FCD in DMN and lower FCD in the somatosensory network than males, but the gender by age interaction effects were not significant for any of the networks or hubs. These findings suggest that long-range connections may be more vulnerable to aging effects than short-range connections and that, in addition to the DMN, the DAN is also sensitive to aging effects, which could underlie the deterioration of attention processes that occurs with aging.« less

  1. Noncollinear magnetic ordering in the Shastry-Sutherland Kondo lattice model: Insulating regime and the role of Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Shahzad, Munir; Sengupta, Pinaki

    2017-12-01

    We investigate the necessary conditions for the emergence of complex, noncoplanar magnetic configurations in a Kondo lattice model with classical local moments on the geometrically frustrated Shastry-Sutherland lattice and their evolution in an external magnetic field. We demonstrate that topologically nontrivial spin textures, including a new canted flux state, with nonzero scalar chirality arise dynamically from realistic short-range interactions. Our results establish that a finite Dzyaloshinskii-Moriya (DM) interaction is necessary for the emergence of these novel magnetic states when the system is at half filling, for which the ground state is insulating. We identify the minimal set of DM vectors that are necessary for the stabilization of chiral magnetic phases. The noncoplanarity of such structures can be tuned continually by applying an external magnetic field. This is the first part in a series of two papers; in the following paper the effects of frustration, thermal fluctuations, and magnetic field on the emergence of novel noncollinear states at metallic filling of itinerant electrons are discussed. Our results are crucial in understanding the magnetic and electronic properties of the rare-earth tetraboride family of frustrated magnets with separate spin and charge degrees of freedom.

  2. Effective field theories for van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Brambilla, Nora; Shtabovenko, Vladyslav; Tarrús Castellà, Jaume; Vairo, Antonio

    2017-06-01

    Van der Waals interactions between two neutral but polarizable systems at a separation R much larger than the typical size of the systems are at the core of a broad sweep of contemporary problems in settings ranging from atomic, molecular and condensed matter physics to strong interactions and gravity. In this paper, we reexamine the dispersive van der Waals interactions between two hydrogen atoms. The novelty of the analysis resides in the usage of nonrelativistic effective field theories of quantum electrodynamics. In this framework, the van der Waals potential acquires the meaning of a matching coefficient in an effective field theory, dubbed van der Waals effective field theory, suited to describe the low-energy dynamics of an atom pair. It may be computed systematically as a series in R times some typical atomic scale and in the fine-structure constant α . The van der Waals potential gets short-range contributions and radiative corrections, which we compute in dimensional regularization and renormalize here for the first time. Results are given in d space-time dimensions. One can distinguish among different regimes depending on the relative size between 1 /R and the typical atomic bound-state energy, which is of order m α2. Each regime is characterized by a specific hierarchy of scales and a corresponding tower of effective field theories. The short-distance regime is characterized by 1 /R ≫m α2 and the leading-order van der Waals potential is the London potential. We also compute next-to-next-to-next-to-leading-order corrections. In the long-distance regime we have 1 /R ≪m α2. In this regime, the van der Waals potential contains contact terms, which are parametrically larger than the Casimir-Polder potential that describes the potential at large distances. In the effective field theory, the Casimir-Polder potential counts as a next-to-next-to-next-to-leading-order effect. In the intermediate-distance regime, 1 /R ˜m α2, a significantly more complex potential is obtained. We compare this exact result with the two previous limiting cases. We conclude by commenting on the van der Waals interactions in the hadronic case.

  3. Foaming in chemical surfactant free aqueous dispersions of anatase (titanium dioxide) particles.

    PubMed

    Pugh, R J

    2007-07-17

    Steady-state dynamic aqueous foams were generated from surfactant-free dispersion of aggregated anatase nanoparticles (in the micrometer size range). In order to tune the particle surfaces, to ensure a critical degree of hydrophobicity (so that they disperse in water and generate foam), the particles were subjected to low-temperature plasma treatment in the presence of a vapor-phase silane coupling agents. From ESCA it was shown that hydrophobization only occurred at a small number of surface sites. Foamability (foam generation) experiments were carried out under well-defined conditions at a range of gas flow rates using the Bikermann Foaming Column.1 The volume of the steady-state foams was determined under constant gas flow conditions, but on removing the gas flow, transient foams with short decay times (<5 s) were observed. The foamability of the steady-state foams was found to be dependent on (a) the time of plasma treatment of the particles (surface hydrophobicity), (b) the particle concentration in the suspension, and (c) the state of dispersion of the particles. High foamability was promoted in the neutral pH regions where the charged particles were highly dispersed. In the low and high pH regions where the particles were coagulated, the foamability was considerably reduced. This behavior was explained by the fact that the large coagula were less easily captured by the bubbles and more easily detached from the interface (during the turbulent foaming conditions) than individual dispersed particles.

  4. Discrete filtering techniques applied to sequential GPS range measurements

    NASA Technical Reports Server (NTRS)

    Vangraas, Frank

    1987-01-01

    The basic navigation solution is described for position and velocity based on range and delta range (Doppler) measurements from NAVSTAR Global Positioning System satellites. The application of discrete filtering techniques is examined to reduce the white noise distortions on the sequential range measurements. A second order (position and velocity states) Kalman filter is implemented to obtain smoothed estimates of range by filtering the dynamics of the signal from each satellite separately. Test results using a simulated GPS receiver show a steady-state noise reduction, the input noise variance divided by the output noise variance, of a factor of four. Recommendations for further noise reduction based on higher order Kalman filters or additional delta range measurements are included.

  5. CDCC calculations of fusion of 6Li with targets 144Sm and 154Sm: effect of resonance states

    NASA Astrophysics Data System (ADS)

    Gómez Camacho, A.; Lubian, J.; Zhang, H. Q.; Zhou, Shan-Gui

    2017-12-01

    Continuum Discretized Coupled-Channel (CDCC) model calculations of total, complete and incomplete fusion cross sections for reactions of the weakly bound 6Li with 144,154Sm targets at energies around the Coulomb barrier are presented. In the cluster structure frame of 6Li→α+d, short-range absorption potentials are considered for the interactions between the ground state of the projectile 6Li and α-d fragments with the target. In order to separately calculate complete and incomplete fusion and to reduce double-counting, the corresponding absorption potentials are chosen to be of different range. Couplings to low-lying excited states 2+, 3- of 144Sm and 2+, 4+ of 154Sm are included. So, the effect on total fusion from the excited states of the target is investigated. Similarly, the effect on fusion due to couplings to resonance breakup states of 6Li, namely, l=2, J π =3+,2+,1+ is also calculated. The latter effect is determined by using two approaches, (a) by considering only resonance state couplings and (b) by omitting these states from the full discretized energy space. Among other things, it is found that both resonance and non-resonance continuum breakup couplings produce fusion suppression at all the energies considered. A. Gómez Camacho from CONACYT, México, J. Lubian from CNPq, FAPERJ, Pronex, Brazil. S.G.Z was partly supported by the NSF of China (11120101005, 11275248, 11525524, 11621131001, 11647601, 11711540016), 973 Program of China (2013CB834400) and the Key Research Program of Frontier Sciences of CAS. H.Q.Z. from NSF China (11375266)

  6. Interstellar lines in high resolution IUE spectra. Part 1: Groningen data reduction package and technical results

    NASA Astrophysics Data System (ADS)

    Gilra, D. P.; Pwa, T. H.; Arnal, E. M.; de Vries, J.

    1982-06-01

    In order to process and analyze high resolution IUE data on a large number of interstellar lines in a large number of images for a large number of stars, computer programs were developed for 115 lines in the short wavelength range and 40 in the long wavelength range. Programs include extraction, processing, plotting, averaging, and profile fitting. Wavelength calibration in high resolution spectra, fixed pattern noise, instrument profile and resolution, and the background problem in the region where orders are crowding are discussed. All the expected lines are detected in at least one spectrum.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modic, K. A.; Ramshaw, Brad J.; Betts, J. B.

    Here, the complex antiferromagnetic orders observed in the honeycomb iridates are a double-edged sword in the search for a quantum spin-liquid: both attesting that the magnetic interactions provide many of the necessary ingredients, while simultaneously impeding access. Focus has naturally been drawn to the unusual magnetic orders that hint at the underlying spin correlations. However, the study of any particular broken symmetry state generally provides little clue about the possibility of other nearby ground states. Here we use magnetic fields approaching 100 Tesla to reveal the extent of the spin correlations in γ-lithium iridate. We find that a small componentmore » of field along the magnetic easy-axis melts long-range order, revealing a bistable, strongly correlated spin state. Far from the usual destruction of antiferromagnetism via spin polarization, the high-field state possesses only a small fraction of the total iridium moment, without evidence for long-range order up to the highest attainable magnetic fields.« less

  8. The origin and nature of thermal evolution during Granite emplacement and differentiation and its influence on upper crustal dynamics.

    NASA Astrophysics Data System (ADS)

    Buchwaldt, R.; Toulkeridis, T.; Todt, W.

    2014-12-01

    Structural geological, geochemical and geochronological data were compiled with the purpose to exercise models for the construction of upper crustal batholith. Models for pulsed intrusion of small magma batches over long timescales versus transfer of larger magma bodies on a shorter time scales are able to predict a different thermal, metamorphic, and rheological state of the crust. For this purpose we have applied the chronostratigraphic framework for magma differentiation on three granite complexes namely the St. Francois Mountain granite pluton (Precambrian), the Galway granite (Cambrian), and the Sithonia Plutonic Complex (Eocene). These plutons have similar sizes and range in composition from quartz diorites through granodiorites and granites to alkali granites, indicating multiple intrusive episodes. Thermobarometric calculations imply an upper crustal emplacement. Geochemical, isotopic and petrological data indicate a variety of pulses from each pluton allowing to be related through their liquid line of decent, which is supported by fractional crystallization of predominantly plagioclase, K-feldspar, biotite, hornblende and some minor accessory mineral phases, magma mingling and mixing as well as crustal contamination. To obtain the temporal relationship we carried out high-precision CA-TIMS zircon geochronology on selected samples along the liquid line of decent. The obtained data indicate a wide range of rates: such as different pulses evolved on timescales of about only 10-30ka, although, the construction time of the different complexes ranges from millions of years with prolonged tectonically inactive phases to relatively short lived time ranges of about ~300 ka. For a better understanding how these new data were used and evaluated in order to reconstruct constraints on the dynamics of the magmatic plumbing system, we integrated the short-lived, elevated heat production, due to latent heat of crystallization, into a 2D numerical model of the thermal evolution of segments of continental crust. Our model indicates that during the stage of enhanced fractional crystallization, the crustal viscosity decreases by several orders of magnitude, playing hereby a fundamental role in the thermal, magmatic, and tectonic evolution of the studied areas and most probably in similar regions too.

  9. Abnormal functional connectivity density in children with anisometropic amblyopia at resting-state.

    PubMed

    Wang, Tianyue; Li, Qian; Guo, Mingxia; Peng, Yanmin; Li, Qingji; Qin, Wen; Yu, Chunshui

    2014-05-14

    Amblyopia is a developmental disorder resulting from anomalous binocular visual input in early life. Task-based neuroimaging studies have widely investigated cortical functional impairments in amblyopia, but changes in spontaneous neuronal functional activities in amblyopia remain largely unknown. In the present study, functional connectivity density (FCD) mapping, an ultrafast data-driven method based on fMRI, was applied for the first time to investigate changes in cortical functional connectivities in amblyopia during the resting-state. We quantified and compared both short- and long-range FCD in both the brains of children with anisometropic amblyopia (AAC) and normal sighted children (NSC). In contrast to the NSC, the AAC showed significantly decreased short-range FCD in the inferior temporal/fusiform gyri, parieto-occipital and rostrolateral prefrontal cortices, as well as decreased long-range FCD in the premotor cortex, dorsal inferior parietal lobule, frontal-insular and dorsal prefrontal cortices. Furthermore, most regions with reduced long-range FCD in the AAC showed decreased functional connectivity with occipital and posterior parietal cortices in the AAC. The results suggest that chronically poor visual input in amblyopia not only impairs the brain's short-range functional connections in visual pathways and in the frontal cortex, which is important for cognitive control, but also affects long-range functional connections among the visual areas, posterior parietal and frontal cortices that subserve visuomotor and visual-guided actions, visuospatial attention modulation and the integration of salient information. This study provides evidence for abnormal spontaneous brain activities in amblyopia. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. A comparative study of Sm networks in Al-10 at.%Sm glass and associated crystalline phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Xiaobao; Ye, Zhuo; Sun, Yang

    Here, the Al–Sm system is selected as a model system to study the transition process from liquid and amorphous to crystalline states. In recent work, we have shown that, in addition to long-range translational periodicity, crystal structures display well-defined short-range local atomic packing motifs that transcends liquid, amorphous and crystalline states. In this paper, we investigate the longer range spatial packing of these short-range motifs by studying the interconnections of Sm–Sm networks in different amorphous and crystalline samples obtained from molecular dynamics simulations. In our analysis, we concentrate on Sm–Sm distances in the range ~5.0–7.2 Å, corresponding to Sm atomsmore » in the second and third shells of Sm-centred clusters. We discover a number of empirical rules characterising the evolution of Sm networks from the liquid and amorphous states to associated metastable crystalline phases experimentally observed in the initial stages of devitrification of different amorphous samples. As direct simulation of glass formation is difficult because of the vast difference between experimental quench rates and what is achievable on the computer, we hope these rules will be helpful in building a better picture of structural evolution during glass formation as well as a more detailed description of phase selection and growth during devitrification.« less

  11. A comparative study of Sm networks in Al-10 at.%Sm glass and associated crystalline phases

    DOE PAGES

    Lv, Xiaobao; Ye, Zhuo; Sun, Yang; ...

    2018-04-03

    Here, the Al–Sm system is selected as a model system to study the transition process from liquid and amorphous to crystalline states. In recent work, we have shown that, in addition to long-range translational periodicity, crystal structures display well-defined short-range local atomic packing motifs that transcends liquid, amorphous and crystalline states. In this paper, we investigate the longer range spatial packing of these short-range motifs by studying the interconnections of Sm–Sm networks in different amorphous and crystalline samples obtained from molecular dynamics simulations. In our analysis, we concentrate on Sm–Sm distances in the range ~5.0–7.2 Å, corresponding to Sm atomsmore » in the second and third shells of Sm-centred clusters. We discover a number of empirical rules characterising the evolution of Sm networks from the liquid and amorphous states to associated metastable crystalline phases experimentally observed in the initial stages of devitrification of different amorphous samples. As direct simulation of glass formation is difficult because of the vast difference between experimental quench rates and what is achievable on the computer, we hope these rules will be helpful in building a better picture of structural evolution during glass formation as well as a more detailed description of phase selection and growth during devitrification.« less

  12. Half-magnetization plateau in a Heisenberg antiferromagnet on a triangular lattice

    NASA Astrophysics Data System (ADS)

    Ye, Mengxing; Chubukov, Andrey V.

    2017-10-01

    We present the phase diagram of a 2D isotropic triangular Heisenberg antiferromagnet in a magnetic field. We consider spin-S model with nearest-neighbor (J1) and next-nearest-neighbor (J2) interactions. We focus on the range of 1 /8

  13. Chiral photonic crystal fibers with single mode and single polarization

    NASA Astrophysics Data System (ADS)

    Li, She; Li, Junqing

    2015-12-01

    Chiral photonic crystal fiber (PCF) with a solid core is numerically investigated by a modified chiral plane-wave expansion method. The effects of structural parameters and chirality strength are analyzed on single-polarization single-mode range and polarization states of guided modes. The simulation demonstrates that the chiral photonic crystal fiber compared to its achiral counterpart possesses another single-circular-polarization operation range, which is located in the short-wavelength region. The original single-polarization operation range in the long-wavelength region extends to the short wavelength caused by introducing chirality. Then this range becomes a broadened one with elliptical polarization from linear polarization. With increase of chirality, the two single-polarization single-mode ranges may fuse together. By optimizing the structure, an ultra-wide single-circular-polarization operation range from 0.5 μm to 1.67 μm for chiral PCF can be realized with moderate chirality strength.

  14. Financing the Public Schools in the Great Lake States: Declining Revenues in the 1980s?

    ERIC Educational Resources Information Center

    Geske, Terry G.

    1984-01-01

    Analyzes data on the economic prospects of Illinois, Indiana, Michigan, Ohio, and Wisconsin--including demographic and economic trends, trends in taxation systems, school revenue and expenditure trends, and future revenue prospects--and offers prognoses for individual states. Generally, short-range revenue prospects are bleak, and long-range…

  15. Quantifying short-lived events in multistate ionic current measurements.

    PubMed

    Balijepalli, Arvind; Ettedgui, Jessica; Cornio, Andrew T; Robertson, Joseph W F; Cheung, Kin P; Kasianowicz, John J; Vaz, Canute

    2014-02-25

    We developed a generalized technique to characterize polymer-nanopore interactions via single channel ionic current measurements. Physical interactions between analytes, such as DNA, proteins, or synthetic polymers, and a nanopore cause multiple discrete states in the current. We modeled the transitions of the current to individual states with an equivalent electrical circuit, which allowed us to describe the system response. This enabled the estimation of short-lived states that are presently not characterized by existing analysis techniques. Our approach considerably improves the range and resolution of single-molecule characterization with nanopores. For example, we characterized the residence times of synthetic polymers that are three times shorter than those estimated with existing algorithms. Because the molecule's residence time follows an exponential distribution, we recover nearly 20-fold more events per unit time that can be used for analysis. Furthermore, the measurement range was extended from 11 monomers to as few as 8. Finally, we applied this technique to recover a known sequence of single-stranded DNA from previously published ion channel recordings, identifying discrete current states with subpicoampere resolution.

  16. Magnetic spiral induced by strong correlations in MnAu2

    NASA Astrophysics Data System (ADS)

    Glasbrenner, J. K.; Bussmann, K. M.; Mazin, I. I.

    2014-10-01

    The compound MnAu2 is one of the oldest known spin-spiral materials, yet the nature of the spiral state is still not clear. The spiral cannot be explained via relativistic effects due to the short pitch of the spiral and the weakness of the spin-orbit interaction in Mn, and another common mechanism, nesting, is ruled out as direct calculations show no features at the relevant wave vector. We propose that the spiral state is induced by a competition between the short-range antiferromagnetic exchange and a long-range interaction induced by the polarization of Au bands, similar to double exchange. We find that, contrary to earlier reports, the ground state in standard density functional theory is ferromagnetic, i.e., the latter interaction dominates. However, an accounting for Coulomb correlations via a Hubbard U suppresses the Schrieffer-Wolff-type s-d magnetic interaction between Mn and Au faster than the superexchange interaction, favoring a spin-spiral state. For realistic values of U, the resulting spiral wave vector is in close agreement with experiment.

  17. Combining Density Functional Theory and Green's Function Theory: Range-Separated, Nonlocal, Dynamic, and Orbital-Dependent Hybrid Functional.

    PubMed

    Kananenka, Alexei A; Zgid, Dominika

    2017-11-14

    We present a rigorous framework which combines single-particle Green's function theory with density functional theory based on a separation of electron-electron interactions into short- and long-range components. Short-range contribution to the total energy and exchange-correlation potential is provided by a density functional approximation, while the long-range contribution is calculated using an explicit many-body Green's function method. Such a hybrid results in a nonlocal, dynamic, and orbital-dependent exchange-correlation functional of a single-particle Green's function. In particular, we present a range-separated hybrid functional called srSVWN5-lrGF2 which combines the local-density approximation and the second-order Green's function theory. We illustrate that similarly to density functional approximations, the new functional is weakly basis-set dependent. Furthermore, it offers an improved description of the short-range dynamic correlation. The many-body contribution to the functional mitigates the many-electron self-interaction error present in many density functional approximations and provides a better description of molecular properties. Additionally, we illustrate that the new functional can be used to scale down the self-energy and, therefore, introduce an additional sparsity to the self-energy matrix that in the future can be exploited in calculations for large molecules or periodic systems.

  18. Remote sensing of atmospheric pressure and sea state using laser altimeters

    NASA Technical Reports Server (NTRS)

    Gardner, C. S.

    1985-01-01

    Short-pulse multicolor laser ranging systems are currently being developed for satellite ranging applications. These systems use Q-switched pulsed lasers and streak-tube cameras to provide timing accuracies approaching a few picoseconds. Satellite laser ranging systems have been used to evaluate many important geophysical phenomena such as fault motion, polar motion and solid earth tides, by measuring the orbital perturbations of retroreflector equipped satellites. Some existing operational systems provide range resolution approaching a few millimeters. There is currently considerable interest in adapting these highly accurate systems for use as airborne and satellite based altimeters. Potential applications include the measurement of sea state, ground topography and atmospheric pressure. This paper reviews recent progress in the development of multicolor laser altimeters for use in monitoring sea state and atmospheric pressure.

  19. Carrier trapping and activation at short-period wurtzite/zinc-blende stacking sequences in polytypic InAs nanowires

    NASA Astrophysics Data System (ADS)

    Becker, J.; Morkötter, S.; Treu, J.; Sonner, M.; Speckbacher, M.; Döblinger, M.; Abstreiter, G.; Finley, J. J.; Koblmüller, G.

    2018-03-01

    We explore the effects of random and short-period crystal-phase intermixing in InAs nanowires (NW) on the carrier trapping and thermal activation behavior using correlated optical and electrical transport spectroscopy. The polytypic InAs NWs are grown by catalyst-free molecular beam epitaxy under different temperatures, resulting in different fractions of wurtzite (WZ) and zincblende (ZB) and variable short-period (˜1-4 nm) WZ/ZB stacking sequences. Temperature-dependent microphotoluminescence (μ PL) studies reveal that variations in the WZ/ZB stacking govern the emission energy and carrier confinement properties. The optical transition energies are modeled for a wide range of WZ/ZB stacking sequences using a Kronig-Penney type effective mass approximation, while comparison with experimental results suggests that polarization sheet charges on the order of ˜0.0016-0.08 C/m along the WZ/ZB interfaces need to be considered to best describe the data. The thermal activation characteristics of carriers trapped inside the short-period WZ/ZB structure are directly reproduced in the temperature-dependent carrier density evolution (4-300 K) probed by four-terminal (4T) NW-field effect transistor measurements. In particular, we find that activation of carriers in-between ˜1016-1017c m-3 follows a two-step process, with activation at low temperature attributed to WZ/ZB traps and activation at high temperature being linked to surface states and electron accumulation at the InAs NW surface.

  20. Near UV bands of jet-cooled CaO

    NASA Astrophysics Data System (ADS)

    Stewart, Jacob T.; Sullivan, Michael N.; Heaven, Michael C.

    2016-04-01

    The electronic spectrum of CaO has been recorded for the 29,800-33,150 cm-1 energy range. Jet cooling was used to obtain relatively uncongested spectra. Rotationally resolved bands have been assigned to the C1Σ+-X1Σ+ and F1∏-X transitions. These data extend the range of vibronic levels characterized for the upper states. Three additional vibronic states were observed as a short progression. One of these levels, which are of 0+ symmetry, interacts strongly with the C1Σ+, v‧ = 7 level. Possible assignments for the perturbing state are considered.

  1. Phase Competition in the Palmer-Chalker X Y Pyrochlore Er2Pt2O7

    NASA Astrophysics Data System (ADS)

    Hallas, A. M.; Gaudet, J.; Butch, N. P.; Xu, Guangyong; Tachibana, M.; Wiebe, C. R.; Luke, G. M.; Gaulin, B. D.

    2017-11-01

    We report neutron scattering measurements on Er2Pt2O7 , a new addition to the X Y family of frustrated pyrochlore magnets. Symmetry analysis of our elastic scattering data shows that Er2Pt2O7 orders into the k =0 , Γ7 magnetic structure (the Palmer-Chalker state), at TN=0.38 K . This contrasts with its sister X Y pyrochlore antiferromagnets Er2Ti2O7 and Er2Ge2O7 , both of which order into Γ5 magnetic structures at much higher temperatures, TN=1.2 and 1.4 K, respectively. In this temperature range, the magnetic heat capacity of Er2Pt2O7 contains a broad anomaly centered at T*=1.5 K . Our inelastic neutron scattering measurements reveal that this broad heat capacity anomaly sets the temperature scale for strong short-range spin fluctuations. Below TN=0.38 K , Er2Pt2O7 displays a gapped spin-wave spectrum with an intense, flat band of excitations at lower energy and a weak, diffusive band of excitations at higher energy. The flat band is well described by classical spin-wave calculations, but these calculations also predict sharp dispersive branches at higher energy, a striking discrepancy with the experimental data. This, in concert with the strong suppression of TN, is attributable to enhanced quantum fluctuations due to phase competition between the Γ7 and Γ5 states that border each other within a classically predicted phase diagram.

  2. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamm, Artur; Aabloo, Alvo; Klintenberg, Mattias

    2015-08-26

    The aim of our study is to characterize some atomic-scale properties of Ni-based FCC multicomponent alloys. For this purpose, we use Monte Carlo method combined with density functional theory calculations to study short-range order (SRO), atomic displacements, electronic density of states, and magnetic moments in equimolar ternary NiCrCo, and quaternary NiCrCoFe alloys. The salient features for the ternary alloy are a negative SRO parameter between Ni Cr and a positive between Cr Cr pairs as well as a weakly magnetic state. For the quaternary alloy we predict negative SRO parameter for Ni Cr and Ni Fe pairs and positive formore » Cr Cr and Fe Fe pairs. Atomic displacements for both ternary and quaternary alloys are negligible. In contrast to the ternary, the quaternary alloy shows a complex magnetic structure. The electronic structure of the ternary and quaternary alloys shows differences near the Fermi energy between a random solid solution and the predicted structure with SRO. Despite that, the calculated EXAFS spectra does not show enough contrast to discriminate between random and ordered structures. Finally, the predicted SRO has an impact on point-defect energetics, electron phonon coupling and thermodynamic functions and thus, SRO should not be neglected when studying properties of these two alloys.« less

  3. Direct Immersion Annealing of Block Copolymer Thin Films

    NASA Astrophysics Data System (ADS)

    Karim, Alamgir

    We demonstrate ordering of thin block copolymer (BCP) films via direct immersion annealing (DIA) at enhanced rate leading to stable morphologies. The BCP films are immersed in carefully selected mixtures of good and marginal solvents that can impart enhanced polymer mobility, while inhibiting film dissolution. DIA is compatible with roll-to-roll assembly manufacturing and has distinct advantages over conventional thermal annealing and batch processing solvent-vapor annealing methods. We identify three solvent composition-dependent BCP film ordering regimes in DIA for the weakly interacting polystyrene -poly(methyl methacrylate) (PS -PMMA) system: rapid short range order, optimal long-range order, and a film instability regime. Kinetic studies in the ``optimal long-range order'' processing regime as a function of temperature indicate a significant reduction of activation energy for BCP grain growth compared to oven annealing at conventional temperatures. An attractive feature of DIA is its robustness to ordering other BCP (e.g. PS-P2VP) and PS-PMMA systems exhibiting spherical, lamellar and cylindrical ordering. Inclusion of nanoparticles in these films at high concentrations and fast ordering kinetics study with neutron reflectivity and SANS will be discussed. This is (late) Contributed Talk Abstract for Dillon Medal Symposium at DPOLY - discussed with DPOLY Chair Dvora Perahia.

  4. Dependence of short and intermediate-range order on preparation in experimental and modeled pure a-Si

    DOE PAGES

    Holmstrom, Eero; Haberl, Bianca; Pakarinen, Olli H.; ...

    2016-02-20

    Variability in the short-to-intermediate range order of pure amorphous silicon prepared by different experimental and computational techniques is probed by measuring mass density, atomic coordination, bond-angle deviation, and dihedral angle deviation. It is found that there is significant variability in order parameters at these length scales in this archetypal covalently bonded, monoatomic system. This diversity strongly reflects preparation technique and thermal history in both experimental and simulated systems. Experiment and simulation do not fully quantitatively agree, partly due to differences in the way parameters are accessed. However, qualitative agreement in the trends is identified. Relaxed forms of amorphous silicon closelymore » resemble continuous random networks generated by a hybrid method of bond-switching Monte Carlo and molecular dynamics simulation. As-prepared ion implanted amorphous silicon can be adequately modeled using a structure generated from amorphization via ion bombardement using energetic recoils. Preparation methods which narrowly avoid crystallization such as experimental pressure-induced amorphization or simulated melt-quenching result in inhomogeneous structures that contain regions with significant variations in atomic ordering. Ad hoc simulated structures containing small (1 nm) diamond cubic crystal inclusions were found to possess relatively high bond-angle deviations and low dihedral angle deviations, a trend that could not be reconciled with any experimental material.« less

  5. Prevalence of Obesity, No Leisure-Time Physical Activity, and Short Sleep Duration Among Occupational Groups in 29 States.

    PubMed

    Birdsey, Jan; Sussell, Aaron L

    2017-12-01

    The aim of this study was to examine prevalence of obesity (body mass index of 30 or higher), no leisure-time physical activity in the past 30 days (no LTPA), and short sleep duration (averaging less than 7 hours of sleep per 24-hour period) among 22 occupational groups. We analyzed 2013 and 2014 Behavioral Risk Factor Surveillance System (BRFSS) data from 29 states, controlling for sex, age, race/ethnicity, and education. By occupation, prevalence ranged from 16.1% to 35.8% for obesity, 11.3% to 28.7% for no LTPA, and 31.4% to 42.9% for short sleep. Only Transportation & Material Moving ranked among the top five occupations for all three risk factors. Obesity and no LTPA varied significantly by sex for several occupations. Prevalence of obesity, no LTPA, and short sleep varied by occupation and affected more than one in five U.S. workers.

  6. New Leading Contribution to Neutrinoless Double-β Decay

    NASA Astrophysics Data System (ADS)

    Cirigliano, Vincenzo; Dekens, Wouter; de Vries, Jordy; Graesser, Michael L.; Mereghetti, Emanuele; Pastore, Saori; van Kolck, Ubirajara

    2018-05-01

    Within the framework of chiral effective field theory, we discuss the leading contributions to the neutrinoless double-beta decay transition operator induced by light Majorana neutrinos. Based on renormalization arguments in both dimensional regularization with minimal subtraction and a coordinate-space cutoff scheme, we show the need to introduce a leading-order short-range operator, missing in all current calculations. We discuss strategies to determine the finite part of the short-range coupling by matching to lattice QCD or by relating it via chiral symmetry to isospin-breaking observables in the two-nucleon sector. Finally, we speculate on the impact of this new contribution on nuclear matrix elements of relevance to experiment.

  7. Nonlocality and Short-Range Wetting Phenomena

    NASA Astrophysics Data System (ADS)

    Parry, A. O.; Romero-Enrique, J. M.; Lazarides, A.

    2004-08-01

    We propose a nonlocal interfacial model for 3D short-range wetting at planar and nonplanar walls. The model is characterized by a binding-potential functional depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tubelike fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong nonperturbative influence of nonlocality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.

  8. Nonlocality and short-range wetting phenomena.

    PubMed

    Parry, A O; Romero-Enrique, J M; Lazarides, A

    2004-08-20

    We propose a nonlocal interfacial model for 3D short-range wetting at planar and nonplanar walls. The model is characterized by a binding-potential functional depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tubelike fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong nonperturbative influence of nonlocality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.

  9. State-to-state reaction dynamics of {sup 18}O+{sup 32}O{sub 2} studied by a time-dependent quantum wavepacket method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Wenbo; Liu, Lan; Sun, Zhigang, E-mail: zsun@dicp.ac.cn

    2015-02-14

    The title isotope exchange reaction was studied by converged time-dependent wave packet calculations, where an efficient 4th order split operator was applied to propagate the initial wave packet. State-to-state differential and integral cross sections up to the collision energy of 0.35 eV were obtained with {sup 32}O{sub 2} in the hypothetical j{sub 0} = 0 state. It is discovered that the differential cross sections are largely forward biased in the studied collision energy range, due to the fact that there is a considerable part of the reaction occurring with large impact parameter and short lifetime relative to the rotational periodmore » of the intermediate complex. The oscillations of the forward scattering amplitude as a function of collision energy, which result from coherent contribution of adjacent resonances, may be a sensitive probe for examining the quality of the underlying potential energy surface. A good agreement between the theoretical and recent experimental integral and differential cross sections at collision energy of 7.3 kcal/mol is obtained. However, the theoretical results predict slightly too much forward scattering and colder rotational distributions than the experimental observations at collision energy of 5.7 kcal/mol.« less

  10. Pathways toward unidirectional alignment in block copolymer thin films on faceted surfaces

    NASA Astrophysics Data System (ADS)

    Gunkel, Ilja; Gu, Xiaodan; Sarje, Abhinav; Hexemer, Alexander; Russell, Thomas

    2015-03-01

    Solvent vapor annealing (SVA) has been shown recently to be an effective means to produce long-range lateral order in block copolymer (BCP) thin films in relatively short times. Furthermore, using substrates with faceted surfaces allows for generating unidirectionally aligned BCP microdomains on the size scale of an entire wafer. While in recent years SVA has been largely demystified, the detailed pathways toward obtaining unidirectional alignment still remain unclear. Grazing-incidence X-ray scattering (GISAXS) is a very powerful tool for characterizing the structure and morphology of BCPs in thin films, and is particularly useful for studying structural changes in BCP thin films during SVA. We here present in situ GISAXS experiments on cylinder-forming PS-b-P2VP BCP thin films on faceted Sapphire substrates during annealing in THF. We show that the degree of alignment of cylindrical microdomains is greatly enhanced at solvent concentrations close to the order-disorder transition of the copolymer. Furthermore, we observed that inducing disorder by further increasing the solvent concentration and subsequent quenching to the ordered (not yet glassy) state induced the highest degree of alignment with nearly unidirectional alignment of the microdomains in less than 30 min.

  11. Ground-state phases of the spin-1 J1-J2 Heisenberg antiferromagnet on the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Li, P. H. Y.; Bishop, R. F.

    2016-06-01

    We study the zero-temperature quantum phase diagram of a spin-1 Heisenberg antiferromagnet on the honeycomb lattice with both nearest-neighbor exchange coupling J1>0 and frustrating next-nearest-neighbor coupling J2≡κ J1>0 , using the coupled cluster method implemented to high orders of approximation, and based on model states with different forms of classical magnetic order. For each we calculate directly in the bulk thermodynamic limit both ground-state low-energy parameters (including the energy per spin, magnetic order parameter, spin stiffness coefficient, and zero-field uniform transverse magnetic susceptibility) and their generalized susceptibilities to various forms of valence-bond crystalline (VBC) order, as well as the energy gap to the lowest-lying spin-triplet excitation. In the range 0 <κ <1 we find evidence for four distinct phases. Two of these are quasiclassical phases with antiferromagnetic long-range order, one with two-sublattice Néel order for κ <κc1=0.250(5 ) , and another with four-sublattice Néel-II order for κ >κc 2=0.340 (5 ) . Two different paramagnetic phases are found to exist in the intermediate region. Over the range κc1<κ<κci=0.305 (5 ) we find a gapless phase with no discernible magnetic order, which is a strong candidate for being a quantum spin liquid, while over the range κci<κ <κc 2 we find a gapped phase, which is most likely a lattice nematic with staggered dimer VBC order that breaks the lattice rotational symmetry.

  12. Predicted Sensitivity for Tests of Short-range Gravity with a Novel Parallel-plate Torsion Pendulum

    NASA Astrophysics Data System (ADS)

    Richards, Matthew; Baxley, Brandon; Hoyle, C. D.; Leopardi, Holly; Shook, David

    2011-11-01

    The parallel-plate torsion pendulum apparatus at Humboldt State University is designed to test the Weak Equivalence Principle (WEP) and the gravitational inverse-square law (ISL) of General Relativity at unprecedented levels in the sub-millimeter regime. Some versions of String Theory predict additional dimensions that might affect the gravitational inverse-square law (ISL) at sub-millimeter levels. Some models also predict the existence of unobserved subatomic particles, which if exist, could cause a violation in the WEP at short distances. Short-range tests of gravity and the WEP are also instrumental in investigating possible proposed mechanisms that attempt to explain the accelerated expansion of the universe, generally attributed to Dark Energy. The weakness of the gravitational force makes measurement very difficult at small scales. Testing such a minimal force requires highly isolated experimental systems and precise measurement and control instrumentation. Moreover, a dedicated test of the WEP has not been performed below the millimeter scale. This talk will discuss the improved sensitivity that we expect to achieve in short-range gravity tests with respect to previous efforts that employ different experimental configurations.

  13. Structure and thermodynamics of a mixture of patchy and spherical colloids: A multi-body association theory with complete reference fluid information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, Artee; Asthagiri, D.; Cox, Kenneth R.

    A mixture of solvent particles with short-range, directional interactions and solute particles with short-range, isotropic interactions that can bond multiple times is of fundamental interest in understanding liquids and colloidal mixtures. Because of multi-body correlations, predicting the structure and thermodynamics of such systems remains a challenge. Earlier Marshall and Chapman [J. Chem. Phys. 139, 104904 (2013)] developed a theory wherein association effects due to interactions multiply the partition function for clustering of particles in a reference hard-sphere system. The multi-body effects are incorporated in the clustering process, which in their work was obtained in the absence of the bulk medium.more » The bulk solvent effects were then modeled approximately within a second order perturbation approach. However, their approach is inadequate at high densities and for large association strengths. Based on the idea that the clustering of solvent in a defined coordination volume around the solute is related to occupancy statistics in that defined coordination volume, we develop an approach to incorporate the complete information about hard-sphere clustering in a bulk solvent at the density of interest. The occupancy probabilities are obtained from enhanced sampling simulations but we also develop a concise parametric form to model these probabilities using the quasichemical theory of solutions. We show that incorporating the complete reference information results in an approach that can predict the bonding state and thermodynamics of the colloidal solute for a wide range of system conditions.« less

  14. Local-structure change rendered by electronic localization-delocalization transition in cerium-based metallic glasses

    NASA Astrophysics Data System (ADS)

    Luo, Qiang; Schwarz, Björn; Swarbrick, Janine C.; Bednarčik, Jozef; Zhu, Yingcai; Tang, Meibo; Zheng, Lirong; Li, Ran; Shen, Jun; Eckert, Jürgen

    2018-02-01

    With increasing temperature, metallic glasses (MGs) undergo first glass transition without pronounced structural change and then crystallization with distinct variation in structure and properties. The present study shows a structural change of short-range order induced by an electron-delocalization transition, along with an unusual large-volume shrinkage in Ce-based MGs. An f -electron localization-delocalization transition with thermal hysteresis is observed from the temperature dependence of x-ray absorption spectroscopy and resonant inelastic x-ray scattering spectra, indicating an inheritance of the 4 f configuration of pure Ce. However, the delocalization transition becomes broadened due to the local structural heterogeneity and related fluctuation of 4 f levels in the Ce-based MGs. The amorphous structure regulated 4 f delocalization of Ce leads to bond shortening and abnormal structure change of the topological and chemical short-range orders. Due to the hierarchical bonding nature, the structure should change in a similar manner on different length scales (but not isostructurally like the Ce metal) in Ce-based MGs.

  15. Manganese-induced magnetic symmetry breaking and its correlation with the metal-insulator transition in bilayered S r 3 ( R u 1 - x M n x ) 2 O 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qiang; Ye, Feng; Tian, Wei

    Bilayered Sr 3Ru 2O 7 is an unusual metamagnetic metal with inherently antiferromagnetic (AFM) and ferromagnetic (FM) fluctuations. Partial substitution of Ru by Mn results in the establishment of a metal-insulator transition (MIT) at TMIT and AFM ordering at TM in Sr 3(Ru 1-xMn x) 2O 7. Using elastic neutron scattering, we investigated the effect of Mn doping on the magnetic structure, in-plane magnetic correlation lengths and their correlation to the MIT in Sr 3(Ru 1-xMn x) 2O 7 (x=0.06 and 0.12). With the increase of Mn doping (x) from 0.06 to 0.12 or the decrease of temperatures for x=0.12,more » an evolution from an in-plane short-range to long-range antiferromagnetic (AFM) ground state occurs. For both compounds, the magnetic ordering has a double-stripe configuration, and the onset of magnetic correlation with an anisotropic behavior coincides with the sharp rise in electrical resistivity and specific heat. Since it does not induce a measurable lattice distortion, the double-stripe antiferromagnetic order with anisotropic spin texture breaks symmetry from a C 4v crystal lattice to a C 2v magnetic sublattice. These observations shed light on an age-old question regarding the Slater versus Mott-type MIT.« less

  16. Manganese-induced magnetic symmetry breaking and its correlation with the metal-insulator transition in bilayered S r 3 ( R u 1 - x M n x ) 2 O 7

    DOE PAGES

    Zhang, Qiang; Ye, Feng; Tian, Wei; ...

    2017-06-12

    Bilayered Sr 3Ru 2O 7 is an unusual metamagnetic metal with inherently antiferromagnetic (AFM) and ferromagnetic (FM) fluctuations. Partial substitution of Ru by Mn results in the establishment of a metal-insulator transition (MIT) at TMIT and AFM ordering at TM in Sr 3(Ru 1-xMn x) 2O 7. Using elastic neutron scattering, we investigated the effect of Mn doping on the magnetic structure, in-plane magnetic correlation lengths and their correlation to the MIT in Sr 3(Ru 1-xMn x) 2O 7 (x=0.06 and 0.12). With the increase of Mn doping (x) from 0.06 to 0.12 or the decrease of temperatures for x=0.12,more » an evolution from an in-plane short-range to long-range antiferromagnetic (AFM) ground state occurs. For both compounds, the magnetic ordering has a double-stripe configuration, and the onset of magnetic correlation with an anisotropic behavior coincides with the sharp rise in electrical resistivity and specific heat. Since it does not induce a measurable lattice distortion, the double-stripe antiferromagnetic order with anisotropic spin texture breaks symmetry from a C 4v crystal lattice to a C 2v magnetic sublattice. These observations shed light on an age-old question regarding the Slater versus Mott-type MIT.« less

  17. Evolution of magnetism in LnCuGa3 (Ln = La-Nd, Sm-Gd) studied via μSR and specific heat

    NASA Astrophysics Data System (ADS)

    Graf, M. J.; Hettinger, J. D.; Nemeth, K.; Dally, R.; Baines, C.; Subbarao, U.; Peter, S. C.

    2017-12-01

    Muon spin rotation/relaxation (μSR) and specific heat measurements are presented for polycrystalline LnCuGa3, with Ln = La-Nd, and Sm-Gd. All materials undergo magnetic ordering transitions, apart from non-magnetic LaCuGa3, and PrCuGa3, which shows the onset of short range correlations below 3 K but no long-range magnetic order down to T = 25 mK. While magnetic order in the Ce and Nd compounds is incommensurate with the lattice, the order is commensurate for the Sm and Eu compounds. The strong damping in GdCuGa3 prevents us from determining the nature of magnetism in that system. SmCuGa3 exhibits two precessional frequencies, which appear at different temperatures, suggesting inhomogeneous magnetic ordering or a second magnetic/structural phase transition.

  18. Impurity-generated non-Abelions

    NASA Astrophysics Data System (ADS)

    Simion, G.; Kazakov, A.; Rokhinson, L. P.; Wojtowicz, T.; Lyanda-Geller, Y. B.

    2018-06-01

    Two classes of topological superconductors and Majorana modes in condensed matter systems are known to date: one in which disorder induced by impurities strongly suppresses topological superconducting gap and is detrimental to Majorana modes, and another where Majorana fermions are protected by a disorder-robust topological superconductor gap. Observation and control of Majorana fermions and other non-Abelions often requires a symmetry of an underlying system leading to a gap in the single-particle or quasiparticle spectra. In semiconductor structures, impurities that provide charge carriers introduce states into the gap and enable conductance and proximity-induced superconductivity via the in-gap states. Thus a third class of topological superconductivity and Majorana modes emerges, in which topological superconductivity and Majorana fermions appear exclusively when impurities generate in-gap states. We show that impurity-enabled topological superconductivity is realized in a quantum Hall ferromagnet, when a helical domain wall is coupled to an s -wave superconductor. As an example of emergence of topological superconductivity in quantum Hall ferromagnets, we consider the integer quantum Hall effect in Mn-doped CdTe quantum wells. Recent experiments on transport through the quantum Hall ferromagnet domain wall in this system indicated a vital role of impurities in the conductance, but left unresolved the question whether impurities preclude generation of Majorana fermions and other non-Abelions in such systems in general. Here, solving a general quantum-mechanical problem of impurity bound states in a system of spin-orbit coupled Landau levels, we demonstrate that impurity-induced Majorana modes emerge at boundaries between topological and conventional superconducting states generated in a domain wall due to proximity to an s superconductor. We consider both short-range disorder and a smooth random potential. The phase diagram of the system is defined by characteristic disorder, gate voltage induced angular momentum splitting of impurity levels, and by a proximity superconducting gap. The phase diagram exhibits two ranges of gate voltage with conventional superconducting order separated by a gate voltage range with topological superconductivity. We show that electrostatic control of domain walls in an integer quantum Hall ferromagnet allows manipulation of Majorana fermions. Ferromagnetic transitions in the fractional quantum Hall regime may lead to the formation and electrostatic control of higher order non-Abelian excitations.

  19. Photochemical gas lasers and hybrid (solid/gas) blue-green femtosecond systems

    NASA Astrophysics Data System (ADS)

    Mikheev, L. D.; Tcheremiskine, V. I.; Uteza, O. P.; Sentis, M. L.

    2012-01-01

    The review summarizes milestones and major breakthrough results obtained in the course of the development of a photochemical method applied to optical excitation of gas lasers on electronic molecular transitions by radiation from such unconventional pump sources as high-temperature electrical discharges and strong shock waves in gas. It also describes principles and techniques applied in hybrid (solid/gas) high-intensity laser systems emitting in the blue-green spectral region, and discusses wavelength scaling of laser-matter interaction by the example of laser wake-field acceleration (LWFA), high-order harmonic generation (HHG) and “water window” soft X-ray lasers. One of the most significant results of the photochemical method development consists in emerging broad bandwidth lasers (XeF(C-A), Xe2Cl, and Kr2F) operating in the blue-green spectral range, which have potential for amplification of ultra-short (down to 10 fs) optical pulses towards the Petawatt peak power level. The main goal of this review is to argue that the active media of these lasers may provide a basis for the development of fs systems generating super-intense ultrashort laser pulses in the visible spectral range. Some specific hybrid schemes, comprising solid state front-ends and photodissociation XeF(C-A) power boosting amplifiers, are described. They are now under development at the Lasers Plasmas and Photonic Processes (LP3) Laboratory (Marseille, France), the P.N. Lebedev Physical Institute (Moscow, Russia) and the Institute of High-Current Electronics (Tomsk, Russia) with the aim of conducting proof-of-principle experiments. Some consequences of the visible-wavelength laser field interaction with matter are also surveyed to demonstrate advantages of short driver wavelength in the considered examples. One of the most important consequences is the possibility of coherent soft X-ray generation within the “water window” spectral range with the use of short wavelength driver pulses to pump a recombination laser.

  20. The retention and disruption of color information in human short-term visual memory.

    PubMed

    Nemes, Vanda A; Parry, Neil R A; Whitaker, David; McKeefry, Declan J

    2012-01-27

    Previous studies have demonstrated that the retention of information in short-term visual perceptual memory can be disrupted by the presentation of masking stimuli during interstimulus intervals (ISIs) in delayed discrimination tasks (S. Magnussen & W. W. Greenlee, 1999). We have exploited this effect in order to determine to what extent short-term perceptual memory is selective for stimulus color. We employed a delayed hue discrimination paradigm to measure the fidelity with which color information was retained in short-term memory. The task required 5 color normal observers to discriminate between spatially non-overlapping colored reference and test stimuli that were temporally separated by an ISI of 5 s. The points of subjective equality (PSEs) on the resultant psychometric matching functions provided an index of performance. Measurements were made in the presence and absence of mask stimuli presented during the ISI, which varied in hue around the equiluminant plane in DKL color space. For all reference stimuli, we found a consistent mask-induced, hue-dependent shift in PSE compared to the "no mask" conditions. These shifts were found to be tuned in color space, only occurring for a range of mask hues that fell within bandwidths of 29-37 deg. Outside this range, masking stimuli had little or no effect on measured PSEs. The results demonstrate that memory masking for color exhibits selectivity similar to that which has already been demonstrated for other visual attributes. The relatively narrow tuning of these interference effects suggests that short-term perceptual memory for color is based on higher order, non-linear color coding. © ARVO

  1. Convergent and divergent two-dimensional coordination networks formed through substrate-activated or quenched alkynyl ligation.

    PubMed

    Čechal, Jan; Kley, Christopher S; Kumagai, Takashi; Schramm, Frank; Ruben, Mario; Stepanow, Sebastian; Kern, Klaus

    2014-09-07

    Metal coordination assemblies of the symmetric bi-functional 4,4'-di-(1,4-buta-1,3-diynyl)-benzoic acid are investigated by scanning tunnelling microscopy on metal surfaces. The formation of long-range ordered, short-range disordered and random phases depends on the competition between the convergent and divergent coordination motifs of the individual functional groups and is crucially influenced by the substrate.

  2. Estimating short-run and long-run interaction mechanisms in interictal state.

    PubMed

    Ozkaya, Ata; Korürek, Mehmet

    2010-04-01

    We address the issue of analyzing electroencephalogram (EEG) from seizure patients in order to test, model and determine the statistical properties that distinguish between EEG states (interictal, pre-ictal, ictal) by introducing a new class of time series analysis methods. In the present study: firstly, we employ statistical methods to determine the non-stationary behavior of focal interictal epileptiform series within very short time intervals; secondly, for such intervals that are deemed non-stationary we suggest the concept of Autoregressive Integrated Moving Average (ARIMA) process modelling, well known in time series analysis. We finally address the queries of causal relationships between epileptic states and between brain areas during epileptiform activity. We estimate the interaction between different EEG series (channels) in short time intervals by performing Granger-causality analysis and also estimate such interaction in long time intervals by employing Cointegration analysis, both analysis methods are well-known in econometrics. Here we find: first, that the causal relationship between neuronal assemblies can be identified according to the duration and the direction of their possible mutual influences; second, that although the estimated bidirectional causality in short time intervals yields that the neuronal ensembles positively affect each other, in long time intervals neither of them is affected (increasing amplitudes) from this relationship. Moreover, Cointegration analysis of the EEG series enables us to identify whether there is a causal link from the interictal state to ictal state.

  3. DNA viewed as an out-of-equilibrium structure

    NASA Astrophysics Data System (ADS)

    Provata, A.; Nicolis, C.; Nicolis, G.

    2014-05-01

    The complexity of the primary structure of human DNA is explored using methods from nonequilibrium statistical mechanics, dynamical systems theory, and information theory. A collection of statistical analyses is performed on the DNA data and the results are compared with sequences derived from different stochastic processes. The use of χ2 tests shows that DNA can not be described as a low order Markov chain of order up to r =6. Although detailed balance seems to hold at the level of a binary alphabet, it fails when all four base pairs are considered, suggesting spatial asymmetry and irreversibility. Furthermore, the block entropy does not increase linearly with the block size, reflecting the long-range nature of the correlations in the human genomic sequences. To probe locally the spatial structure of the chain, we study the exit distances from a specific symbol, the distribution of recurrence distances, and the Hurst exponent, all of which show power law tails and long-range characteristics. These results suggest that human DNA can be viewed as a nonequilibrium structure maintained in its state through interactions with a constantly changing environment. Based solely on the exit distance distribution accounting for the nonequilibrium statistics and using the Monte Carlo rejection sampling method, we construct a model DNA sequence. This method allows us to keep both long- and short-range statistical characteristics of the native DNA data. The model sequence presents the same characteristic exponents as the natural DNA but fails to capture spatial correlations and point-to-point details.

  4. DNA viewed as an out-of-equilibrium structure.

    PubMed

    Provata, A; Nicolis, C; Nicolis, G

    2014-05-01

    The complexity of the primary structure of human DNA is explored using methods from nonequilibrium statistical mechanics, dynamical systems theory, and information theory. A collection of statistical analyses is performed on the DNA data and the results are compared with sequences derived from different stochastic processes. The use of χ^{2} tests shows that DNA can not be described as a low order Markov chain of order up to r=6. Although detailed balance seems to hold at the level of a binary alphabet, it fails when all four base pairs are considered, suggesting spatial asymmetry and irreversibility. Furthermore, the block entropy does not increase linearly with the block size, reflecting the long-range nature of the correlations in the human genomic sequences. To probe locally the spatial structure of the chain, we study the exit distances from a specific symbol, the distribution of recurrence distances, and the Hurst exponent, all of which show power law tails and long-range characteristics. These results suggest that human DNA can be viewed as a nonequilibrium structure maintained in its state through interactions with a constantly changing environment. Based solely on the exit distance distribution accounting for the nonequilibrium statistics and using the Monte Carlo rejection sampling method, we construct a model DNA sequence. This method allows us to keep both long- and short-range statistical characteristics of the native DNA data. The model sequence presents the same characteristic exponents as the natural DNA but fails to capture spatial correlations and point-to-point details.

  5. Effect of disorder on the optical properties of short period superlattices

    NASA Technical Reports Server (NTRS)

    Strozier, J. A.; Zhang, Y. A.; Horton, C.; Ignatiev, A.; Shih, H. D.

    1993-01-01

    The optical properties of disordered short period superlattices are studied using a one-dimensional tight-binding model. A difference vector and disorder structure factor are proposed to characterize the disordered superlattice. The density of states, participation number, and optical absorption coefficients for both ordered and disordered superlattices are calculated as a function of energy. The results show that introduction of disorder into an indirect band gap material enhances the optical transition near the indirect band edge.

  6. The characterisation of atomic structure and glass-forming ability of the Zr-Cu-Co metallic glasses studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Celtek, M.; Sengul, S.

    2018-03-01

    In the present work, the glass formation process and structural properties of Zr50Cu50-xCox (0 ≤ x ≤ 50) bulk metallic glasses were investigated by a molecular dynamics simulation with the many body tight-binding potentials. The evolution of structure and glass formation process with temperature were discussed using the coordination number, the radial distribution functions, the volume-temperature curve, icosahedral short-range order, glass transition temperature, Voronoi analysis, Honeycutt-Andersen pair analysis technique and the distribution of bond-angles. Results indicate that adding Co causes similar responses on the nature of the Zr50Cu50-xCox (0 ≤ x ≤ 50) alloys except for higher glass transition temperature and ideal icosahedral type ordered local atomic environment. Also, the differences of the atomic radii play the key role in influencing the atomic structure of these alloys. Both Cu and Co atoms play a significant role in deciding the chemical and topological short-range orders of the Zr50Cu50-xCox ternary liquids and amorphous alloys. The glass-forming ability of these alloys is supported by the experimental observations reported in the literature up to now.

  7. Near-zero temperature coefficient of resistivity associated with magnetic ordering in antiperovskite Mn{sub 3+x}Ni{sub 1−x}N

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Sihao; Sun, Ying; Wang, Lei

    2016-01-25

    The near-zero temperature coefficient of resistivity (NZ-TCR) behavior is reported in the antiperovskite compounds Mn{sub 3+x}Ni{sub 1−x}N (0 ≤ x ≤ 0.333). Our results indicate that the broad temperature range (above 275 K extending to above 220 K) of NZ-TCR is obtained by Mn doping at the Ni site. The short-range magnetic ordering is revealed by both neutron powder diffraction and inverse magnetic susceptibility. Further, we find a strong correlation between the anomalous resistivity change of Mn{sub 3+x}Ni{sub 1−x}N from the metal-like to the NZ-TCR behavior and the lack of the long-range magnetic ordering. The possible mechanism of NZ-TCR behavior is discussed using the spin-disorder scatteringmore » model.« less

  8. Magnetic and thermal property studies of RCrTeO6 (R=trivalent lanthanides) with layered honeycomb sublattices

    NASA Astrophysics Data System (ADS)

    Narsinga Rao, G.; Sankar, R.; Panneer Muthuselvam, I.; Chou, F. C.

    2014-12-01

    We have investigated the magnetic ordering of the RCrTeO6 (R=Y, La, Tb and Er) samples comprising Cr3+ (S=3/2). The X-ray diffraction structure analysis revealed that all samples are a hexagonal structure with the space group P 3bar. The magnetic susceptibility χ(T) and heat capacity CP(T) measurement results reveal that both short range and long range antiferromagnetic (AFM) orderings exist in non-magnetic rare earth R=Y and La compounds. For isostructural compounds of R=Tb and Er, CP(T) curves show long range ordering at the same temperature as non-magnetic R=Y, which indicates that the super-super exchange of Cr spins dominates. For R elements of Tb and Er with large spins sitting between honeycomb sublattices composed of CrO6-TeO6 octahedra, the two sublattices of R and Cr appear to be independently magnetic.

  9. Overview of ToxCast™

    EPA Science Inventory

    In 2007, EPA launched ToxCast™ in order to develop a cost-effective approach for prioritizing the toxicity testing of large numbers of chemicals in a short period of time. Using data from state-of-the-art high throughput screening (HTS) bioassays developed in the pharmaceutical i...

  10. Edge Singularities and Quasilong-Range Order in Nonequilibrium Steady States.

    PubMed

    De Nardis, Jacopo; Panfil, Miłosz

    2018-05-25

    The singularities of the dynamical response function are one of the most remarkable effects in many-body interacting systems. However in one dimension these divergences only exist strictly at zero temperature, making their observation very difficult in most cold atomic experimental settings. Moreover the presence of a finite temperature destroys another feature of one-dimensional quantum liquids: the real space quasilong-range order in which the spatial correlation functions exhibit power-law decay. We consider a nonequilibrium protocol where two interacting Bose gases are prepared either at different temperatures or chemical potentials and then joined. We show that the nonequilibrium steady state emerging at large times around the junction displays edge singularities in the response function and quasilong-range order.

  11. Edge Singularities and Quasilong-Range Order in Nonequilibrium Steady States

    NASA Astrophysics Data System (ADS)

    De Nardis, Jacopo; Panfil, Miłosz

    2018-05-01

    The singularities of the dynamical response function are one of the most remarkable effects in many-body interacting systems. However in one dimension these divergences only exist strictly at zero temperature, making their observation very difficult in most cold atomic experimental settings. Moreover the presence of a finite temperature destroys another feature of one-dimensional quantum liquids: the real space quasilong-range order in which the spatial correlation functions exhibit power-law decay. We consider a nonequilibrium protocol where two interacting Bose gases are prepared either at different temperatures or chemical potentials and then joined. We show that the nonequilibrium steady state emerging at large times around the junction displays edge singularities in the response function and quasilong-range order.

  12. Hybrid Epitaxial Structures for Spintronics

    DTIC Science & Technology

    2002-06-03

    superlat- magnetic resonance (NMR) measurements on the short tice have a perpendicular magnetization, which are range chemical order in combination...Groot, EM. Mueller, PG. van Engen , K.H.J. Buschow, [76] EG. Monzon, M.L. Roukes, J. Magn. Magn. Mater. 198-199 Phys. Rev. Lett. 50 (1983) 2024-2027

  13. Excitation energies from Görling-Levy perturbation theory along the range-separated adiabatic connection

    NASA Astrophysics Data System (ADS)

    Rebolini, Elisa; Teale, Andrew M.; Helgaker, Trygve; Savin, Andreas; Toulouse, Julien

    2018-06-01

    A Görling-Levy (GL)-based perturbation theory along the range-separated adiabatic connection is assessed for the calculation of electronic excitation energies. In comparison with the Rayleigh-Schrödinger (RS)-based perturbation theory this GL-based perturbation theory keeps the ground-state density constant at each order and thus gives the correct ionisation energy at each order. Excitation energies up to first order in the perturbation have been calculated numerically for the helium and beryllium atoms and the hydrogen molecule without introducing any density-functional approximations. In comparison with the RS-based perturbation theory, the present GL-based perturbation theory gives much more accurate excitation energies for Rydberg states but similar excitation energies for valence states.

  14. Dale Sayers Festschrift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, Edward A.

    2007-02-02

    This Festschrift is in honor of Dale Sayers who passed away in November 2004. Dale played a pivotal role in initiating the modern era of X-ray Absorption Fine Structure (XAFS) 35 years ago. The prehistory of XAFS before the modern era consisted of 40 years of confusion caused by Kronig's two different theories of the extended XAFS (EXAFS), the Short-Range Order (SRO) and Long-Range Order (LRO) theories. Dale's PhD thesis on EXAFS led to the idea of a Fourier transform to definitely prove that SRO is the correct theory and then to the development of XAFS as a structure determinationmore » technique.« less

  15. The structure of poly(carbonsuboxide) on the atomic scale: a solid-state NMR study.

    PubMed

    Schmedt auf der Günne, Jörn; Beck, Johannes; Hoffbauer, Wilfried; Krieger-Beck, Petra

    2005-07-18

    In this contribution we present a study of the structure of amorphous poly(carbonsuboxide) (C3O2)x by 13C solid-state NMR spectroscopy supported by infrared spectroscopy and chemical analysis. Poly(carbonsuboxide) was obtained by polymerization of carbonsuboxide C3O2, which in turn was synthesized from malonic acid bis(trimethylsilylester). Two different 13C labeling schemes were applied to probe inter- and intramonomeric bonds in the polymer by dipolar solid-state NMR methods and also to allow quantitative 13C MAS NMR spectra. Four types of carbon environments can be distinguished in the NMR spectra. Double-quantum and triple-quantum 2D correlation experiments were used to assign the observed peaks using the through-space and through-bond dipolar coupling. In order to obtain distance constraints for the intermonomeric bonds, double-quantum constant-time experiments were performed. In these experiments an additional filter step was applied to suppress contributions from not directly bonded 13C,13C spin pairs. The 13C NMR intensities, chemical shifts, connectivities and distances gave constraints for both the polymerization mechanism and the short-range order of the polymer. The experimental results were complemented by bond lengths predicted by density functional theory methods for several previously suggested models. Based on the presented evidence we can unambiguously exclude models based on gamma-pyronic units and support models based on alpha-pyronic units. The possibility of planar ladder- and bracelet-like alpha-pyronic structures is discussed.

  16. Resting State Synchrony in Short-Term versus Long-Term Abstinent Alcoholics

    PubMed Central

    Camchong, Jazmin; Stenger, Victor Andrew; Fein, George

    2012-01-01

    BACKGROUND We previously reported that when compared to controls, long-term abstinent alcoholics (LTAA) have increased resting state synchrony (RSS) of the inhibitory control network and reduced synchrony of the appetitive drive network, and hypothesized that these levels of synchrony are adaptive, and support the behavioral changes required to maintain abstinence. In the current study, we investigate whether these RSS patterns can be identified in short-term abstinent alcoholics. METHODS Resting state functional magnetic resonance imaging data were collected from 27 short-term abstinent alcoholics (STAA), 23 LTAA and 23 non-substance abusing controls (NSAC). We examined baseline RSS using seed-based measures. RESULTS We found ordered RSS effects from NSAC to STAA and then to LTAA within both the appetitive drive and executive control networks: increasing RSS of the executive control network, and decreasing RSS of the reward processing network. Finally, we found significant correlations between strength of RSS in these networks and (a) cognitive flexibility and (b) current antisocial behavior. DISCUSSION Findings are consistent with an adaptive progression of RSS from short- to long-term abstinence so that, compared to normal controls, the synchrony (a) within the reward network progressively decreases and (b) within the executive control network progressively increases. PMID:23421812

  17. Electron correlations in partially filled lowest and excited Landau levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojs, Arkadiusz

    2001-03-15

    The electron correlations near the half-filling of the lowest and excited Landau levels (LL's) are studied using numerical diagonalization. It is shown that in the low-lying states electrons avoid pair states with relative angular momenta R corresponding to positive anharmonicity of the interaction pseudopotential V(R). In the lowest LL, the superharmonic behavior of V(R) causes Laughlin correlations (avoiding pairs with R=1) and the Laughlin-Jain series of incompressible ground states. In the first excited LL, V(R) is harmonic at short range and a different series of incompressible states results. Similar correlations occur in the paired Moore-Read {nu}=5/2 state and in themore » {nu}=7/3 and 8/3 states, all having small total parentage from R=1 and 3 and large parentage from R=5. The {nu}=7/3 and 8/3 states are different from Laughlin {nu}=1/3 and 2/3 states and, in finite systems, occur at a different LL degeneracy (flux). The series of Laughlin-correlated states of electron pairs at {nu}=2+2/(q{sub 2}+2)=8/3, 5/2, 12/5, and 7/3 is proposed, although only in the {nu}=5/2 state pairing has been confirmed numerically. In the second excited LL, V(R) is subharmonic at short range and (near the half-filling) the electrons group into spatially separated larger {nu}=1 droplets to minimize the number of strongly repulsive pair states at R=3 and 5.« less

  18. Time-resolved fluorescence polarization spectroscopy of visible and near infrared dyes in picosecond dynamics

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Alfano, Robert R.

    2015-03-01

    Near-infrared (NIR) dyes absorb and emit light within the range from 700 to 900 nm have several benefits in biological studies for one- and/or two-photon excitation for deeper penetration of tissues. These molecules undergo vibrational and rotational motion in the relaxation of the excited electronic states, Due to the less than ideal anisotropy behavior of NIR dyes stemming from the fluorophores elongated structures and short fluorescence lifetime in picosecond range, no significant efforts have been made to recognize the theory of these dyes in time-resolved polarization dynamics. In this study, the depolarization of the fluorescence due to emission from rotational deactivation in solution will be measured with the excitation of a linearly polarized femtosecond laser pulse and a streak camera. The theory, experiment and application of the ultrafast fluorescence polarization dynamics and anisotropy are illustrated with examples of two of the most important medical based dyes. One is NIR dye, namely Indocyanine Green (ICG) and is compared with Fluorescein which is in visible range with much longer lifetime. A set of first-order linear differential equations was developed to model fluorescence polarization dynamics of NIR dye in picosecond range. Using this model, the important parameters of ultrafast polarization spectroscopy were identified: risetime, initial time, fluorescence lifetime, and rotation times.

  19. Directional spectra of ocean waves from microwave backscatter: A physical optics solution with application to the short-pulse and two-frequency measurement techniques

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.

    1979-01-01

    Two simple microwave radar techniques that are potentially capable of providing routine satellite measurements of the directional spectrum of ocean waves were developed. One technique, the short pulse technique, makes use of very short pulses to resolve ocean surface wave contrast features in the range direction; the other technique, the two frequency correlation technique makes use of coherency in the transmitted waveform to detect the large ocean wave contrast modulation as a beat or mixing frequency in the power backscattered at two closely separated microwave frequencies. A frequency domain analysis of the short pulse and two frequency systems shows that the two measurement systems are essentially duals; they each operate on the generalized (three frequency) fourth-order statistical moment of the surface transfer function in different, but symmetrical ways, and they both measure the same directional contrast modulation spectrum. A three dimensional physical optics solution for the fourth-order moment was obtained for backscatter in the near vertical, specular regime, assuming Gaussian surface statistics.

  20. Donor-σ-Acceptor Motifs: Thermally Activated Delayed Fluorescence Emitters with Dual Upconversion.

    PubMed

    Geng, Yan; D'Aleo, Anthony; Inada, Ko; Cui, Lin-Song; Kim, Jong Uk; Nakanotani, Hajime; Adachi, Chihaya

    2017-12-22

    A family of organic emitters with a donor-σ-acceptor (D-σ-A) motif is presented. Owing to the weakly coupled D-σ-A intramolecular charge-transfer state, a transition from the localized excited triplet state ( 3 LE) and charge-transfer triplet state ( 3 CT) to the charge-transfer singlet state ( 1 CT) occurred with a small activation energy and high photoluminescence quantum efficiency. Two thermally activated delayed fluorescence (TADF) components were identified, one of which has a very short lifetime of 200-400 ns and the other a longer TADF lifetime of the order of microseconds. In particular, the two D-σ-A materials presented strong blue emission with TADF properties in toluene. These results will shed light on the molecular design of new TADF emitters with short delayed lifetimes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Magnetic properties of tapiolite (FeTa2O6); a quasi two-dimensional (2D) antiferromagnet

    NASA Astrophysics Data System (ADS)

    Chung, E. M. L.; Lees, M. R.; McIntyre, G. J.; Wilkinson, C.; Balakrishnan, G.; Hague, J. P.; Visser, D.; McK Paul, D.

    2004-11-01

    The possibilities of two-dimensional (2D) short-range magnetic correlations and frustration effects in the mineral tapiolite are investigated using bulk-property measurements and neutron Laue diffraction. In this study of the magnetic properties of synthetic single-crystals of tapiolite, we find that single crystals of FeTa2O6 order antiferromagnetically at TN = 7.95 ± 0.05 K, with extensive two-dimensional correlations existing up to at least 40 K. Although we find no evidence that FeTa2O6 is magnetically frustrated, hallmarks of two-dimensional magnetism observed in our single-crystal data include: (i) broadening of the susceptibility maximum due to short-range correlations, (ii) a spin-flop transition and (iii) lambda anomalies in the heat capacity and d(χT)/dT. Complementary neutron Laue diffraction measurements reveal 1D magnetic diffuse scattering extending along the c* direction perpendicular to the magnetic planes. This magnetic diffuse scattering, observed for the first time using the neutron Laue technique by VIVALDI, arises directly as a result of 2D short-range spin correlations.

  2. Adapting National Water Model Forecast Data to Local Hyper-Resolution H&H Models During Hurricane Irma

    NASA Astrophysics Data System (ADS)

    Singhofen, P.

    2017-12-01

    The National Water Model (NWM) is a remarkable undertaking. The foundation of the NWM is a 1 square kilometer grid which is used for near real-time modeling and flood forecasting of most rivers and streams in the contiguous United States. However, the NWM falls short in highly urbanized areas with complex drainage infrastructure. To overcome these shortcomings, the presenter proposes to leverage existing local hyper-resolution H&H models and adapt the NWM forcing data to them. Gridded near real-time rainfall, short range forecasts (18-hour) and medium range forecasts (10-day) during Hurricane Irma are applied to numerous detailed H&H models in highly urbanized areas of the State of Florida. Coastal and inland models are evaluated. Comparisons of near real-time rainfall data are made with observed gaged data and the ability to predict flooding in advance based on forecast data is evaluated. Preliminary findings indicate that the near real-time rainfall data is consistently and significantly lower than observed data. The forecast data is more promising. For example, the medium range forecast data provides 2 - 3 days advanced notice of peak flood conditions to a reasonable level of accuracy in most cases relative to both timing and magnitude. Short range forecast data provides about 12 - 14 hours advanced notice. Since these are hyper-resolution models, flood forecasts can be made at the street level, providing emergency response teams with valuable information for coordinating and dispatching limited resources.

  3. Influence of the quantum dot geometry on p -shell transitions in differently charged quantum dots

    NASA Astrophysics Data System (ADS)

    Holtkemper, M.; Reiter, D. E.; Kuhn, T.

    2018-02-01

    Absorption spectra of neutral, negatively, and positively charged semiconductor quantum dots are studied theoretically. We provide an overview of the main energetic structure around the p -shell transitions, including the influence of nearby nominally dark states. Based on the envelope function approximation, we treat the four-band Luttinger theory as well as the direct and short-range exchange Coulomb interactions within a configuration interaction approach. The quantum dot confinement is approximated by an anisotropic harmonic potential. We present a detailed investigation of state mixing and correlations mediated by the individual interactions. Differences and similarities between the differently charged quantum dots are highlighted. Especially large differences between negatively and positively charged quantum dots become evident. We present a visualization of energetic shifts and state mixtures due to changes in size, in-plane asymmetry, and aspect ratio. Thereby we provide a better understanding of the experimentally hard to access question of quantum dot geometry effects. Our findings show a method to determine the in-plane asymmetry from photoluminescence excitation spectra. Furthermore, we supply basic knowledge for tailoring the strength of certain state mixtures or the energetic order of particular excited states via changes of the shape of the quantum dot. Such knowledge builds the basis to find the optimal QD geometry for possible applications and experiments using excited states.

  4. Robust spin correlations at high magnetic fields in the harmonic honeycomb iridates

    DOE PAGES

    Modic, K. A.; Ramshaw, Brad J.; Betts, J. B.; ...

    2017-08-01

    Here, the complex antiferromagnetic orders observed in the honeycomb iridates are a double-edged sword in the search for a quantum spin-liquid: both attesting that the magnetic interactions provide many of the necessary ingredients, while simultaneously impeding access. Focus has naturally been drawn to the unusual magnetic orders that hint at the underlying spin correlations. However, the study of any particular broken symmetry state generally provides little clue about the possibility of other nearby ground states. Here we use magnetic fields approaching 100 Tesla to reveal the extent of the spin correlations in γ-lithium iridate. We find that a small componentmore » of field along the magnetic easy-axis melts long-range order, revealing a bistable, strongly correlated spin state. Far from the usual destruction of antiferromagnetism via spin polarization, the high-field state possesses only a small fraction of the total iridium moment, without evidence for long-range order up to the highest attainable magnetic fields.« less

  5. Universality of the Berezinskii-Kosterlitz-Thouless type of phase transition in the dipolar XY-model

    NASA Astrophysics Data System (ADS)

    Vasiliev, A. Yu; Tarkhov, A. E.; Menshikov, L. I.; Fedichev, P. O.; Fischer, Uwe R.

    2014-05-01

    We investigate the nature of the phase transition occurring in a planar XY-model spin system with dipole-dipole interactions. It is demonstrated that a Berezinskii-Kosterlitz-Thouless (BKT) type of phase transition always takes place at a finite temperature separating the ordered (ferro) and the disordered (para) phases. The low-temperature phase corresponds to an ordered state with thermal fluctuations, composed of a ‘gas’ of bound vortex-antivortex pairs, which would, when considered isolated, be characterized by a constant vortex-antivortex attraction force which is due to the dipolar interaction term in the Hamiltonian. Using a topological charge model, we show that small bound pairs are easily polarized, and screen the vortex-antivortex interaction in sufficiently large pairs. Screening changes the linear attraction potential of vortices to a logarithmic one, and leads to the familiar pair dissociation mechanism of the BKT type phase transition. The topological charge model is confirmed by numerical simulations, in which we demonstrate that the transition temperature slightly increases when compared with the BKT result for short-range interactions.

  6. Thermal and electrical transport in metals and superconductors across antiferromagnetic and topological quantum transitions

    NASA Astrophysics Data System (ADS)

    Chatterjee, Shubhayu; Sachdev, Subir; Eberlein, Andreas

    2017-08-01

    We study thermal and electrical transport in metals and superconductors near a quantum phase transition where antiferromagnetic order disappears. The same theory can also be applied to quantum phase transitions involving the loss of certain classes of intrinsic topological order. For a clean superconductor, we recover and extend well-known universal results. The heat conductivity for commensurate and incommensurate antiferromagnetism coexisting with superconductivity shows a markedly different doping dependence near the quantum critical point, thus allowing us to distinguish between these states. In the dirty limit, the results for the conductivities are qualitatively similar for the metal and the superconductor. In this regime, the geometric properties of the Fermi surface allow for a very good phenomenological understanding of the numerical results on the conductivities. In the simplest model, we find that the conductivities do not track the doping evolution of the Hall coefficient, in contrast to recent experimental findings. We propose a doping dependent scattering rate, possibly due to quenched short-range charge fluctuations below optimal doping, to consistently describe both the Hall data and the longitudinal conductivities.

  7. Along the Rainfall-Runoff Chain: From Scaling of Greatest Point Rainfall to Global Change Attribution

    NASA Astrophysics Data System (ADS)

    Fraedrich, K.

    2014-12-01

    Processes along the continental rainfall-runoff chain cover a wide range of time and space scales which are presented here combining observations (ranging from minutes to decades) and minimalist concepts. (i) Rainfall, which can be simulated by a censored first-order autoregressive process (vertical moisture fluxes), exhibits 1/f-spectra if presented as binary events (tropics), while extrema world wide increase with duration according to Jennings' scaling law. (ii) Runoff volatility (Yangtze) shows data collapse which, linked to an intra-annual 1/f-spectrum, is represented by a single function not unlike physical systems at criticality and the short and long return times of extremes are Weibull-distributed. Atmospheric and soil moisture variabilities are also discussed. (iii) Soil moisture (in a bucket), whose variability is interpreted by a biased coinflip Ansatz for rainfall events, adds an equation of state to energy and water flux balances comprising Budyko's frame work for quasi-stationary watershed analysis. Eco-hydrologic state space presentations in terms of surface flux ratios of energy excess (loss by sensible heat over supply by net radiation) versus water excess (loss by discharge over gain by precipitation) allow attributions of state change to external (or climate) and internal (or anthropogenic) causes. Including the vegetation-greenness index (NDVI) as an active tracer extends the eco-hydrologic state space analysis to supplement the common geographical presentations. Two examples demonstrate the approach combining ERA and MODIS data sets: (a) global geobotanic classification by combining first and second moments of the dryness ratio (net radiation over precipitation) and (b) regional attributions (Tibetan Plateau) of vegetation changes.

  8. An Accounting International Experience Course

    ERIC Educational Resources Information Center

    Johnson, Leigh Redd; Rudolph, Holly R.; Seay, Robert A.

    2010-01-01

    Accounting students need practical opportunities to personally experience other cultures and international business practices if they are to effectively compete in today's global marketplace. In order to address this need, the Department of Accounting at Murray State University offers an international experience course which includes a short-term…

  9. Short-Term Energy Outlook Model Documentation: Electricity Generation and Fuel Consumption Models

    EIA Publications

    2014-01-01

    The electricity generation and fuel consumption models of the Short-Term Energy Outlook (STEO) model provide forecasts of electricity generation from various types of energy sources and forecasts of the quantities of fossil fuels consumed for power generation. The structure of the electricity industry and the behavior of power generators varies between different areas of the United States. In order to capture these differences, the STEO electricity supply and fuel consumption models are designed to provide forecasts for the four primary Census regions.

  10. Thermal algebraic-decay charge liquid driven by competing short-range Coulomb repulsion

    NASA Astrophysics Data System (ADS)

    Kaneko, Ryui; Nonomura, Yoshihiko; Kohno, Masanori

    2018-05-01

    We explore the possibility of a Berezinskii-Kosterlitz-Thouless-like critical phase for the charge degrees of freedom in the intermediate-temperature regime between the charge-ordered and disordered phases in two-dimensional systems with competing short-range Coulomb repulsion. As the simplest example, we investigate the extended Hubbard model with on-site and nearest-neighbor Coulomb interactions on a triangular lattice at half filling in the atomic limit by using a classical Monte Carlo method, and find a critical phase, characterized by algebraic decay of the charge correlation function, belonging to the universality class of the two-dimensional XY model with a Z6 anisotropy. Based on the results, we discuss possible conditions for the critical phase in materials.

  11. Structural evolution in the crystallization of rapid cooling silver melt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Z.A., E-mail: ze.tian@gmail.com; Laboratory for Simulation and Modelling of Particulate Systems School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052; Dong, K.J.

    2015-03-15

    The structural evolution in a rapid cooling process of silver melt has been investigated at different scales by adopting several analysis methods. The results testify Ostwald’s rule of stages and Frank conjecture upon icosahedron with many specific details. In particular, the cluster-scale analysis by a recent developed method called LSCA (the Largest Standard Cluster Analysis) clarified the complex structural evolution occurred in crystallization: different kinds of local clusters (such as ico-like (ico is the abbreviation of icosahedron), ico-bcc like (bcc, body-centred cubic), bcc, bcc-like structures) in turn have their maximal numbers as temperature decreases. And in a rather wide temperaturemore » range the icosahedral short-range order (ISRO) demonstrates a saturated stage (where the amount of ico-like structures keeps stable) that breeds metastable bcc clusters. As the precursor of crystallization, after reaching the maximal number bcc clusters finally decrease, resulting in the final solid being a mixture mainly composed of fcc/hcp (face-centred cubic and hexagonal-closed packed) clusters and to a less degree, bcc clusters. This detailed geometric picture for crystallization of liquid metal is believed to be useful to improve the fundamental understanding of liquid–solid phase transition. - Highlights: • A comprehensive structural analysis is conducted focusing on crystallization. • The involved atoms in our analysis are more than 90% for all samples concerned. • A series of distinct intermediate states are found in crystallization of silver melt. • A novelty icosahedron-saturated state breeds the metastable bcc state.« less

  12. Long-lived trimers in a quasi-two-dimensional Fermi system

    NASA Astrophysics Data System (ADS)

    Laird, Emma K.; Kirk, Thomas; Parish, Meera M.; Levinsen, Jesper

    2018-04-01

    We consider the problem of three distinguishable fermions confined to a quasi-two-dimensional (quasi-2D) geometry, where there is a strong harmonic potential in one direction. We go beyond previous theoretical work and investigate the three-body bound states (trimers) for the case where the two-body short-range interactions between fermions are unequal. Using the scattering parameters from experiments on ultracold 6Li atoms, we calculate the trimer spectrum throughout the crossover from two to three dimensions. We find that the deepest Efimov trimer in the 6Li system is unaffected by realistic quasi-2D confinements, while the first excited trimer smoothly evolves from a three-dimensional-like Efimov trimer to an extended 2D-like trimer as the attractive interactions are decreased. We furthermore compute the excited trimer wave function and quantify the stability of the trimer against decay into a dimer and an atom by determining the probability that three fermions approach each other at short distances. Our results indicate that the lifetime of the trimer can be enhanced by at least an order of magnitude in the quasi-2D geometry, thus opening the door to realizing long-lived trimers in three-component Fermi gases.

  13. Simulation study of short-channel effects of tunnel field-effect transistors

    NASA Astrophysics Data System (ADS)

    Fukuda, Koichi; Asai, Hidehiro; Hattori, Junichi; Mori, Takahiro; Morita, Yukinori; Mizubayashi, Wataru; Masahara, Meishoku; Migita, Shinji; Ota, Hiroyuki; Endo, Kazuhiro; Matsukawa, Takashi

    2018-04-01

    Short-channel effects of tunnel field-effect transistors (FETs) are investigated in detail using simulations of a nonlocal band-to-band tunneling model. Discussion is limited to silicon. Several simulation scenarios were considered to address different effects, such as source overlap and drain offset effects. Adopting the drain offset to suppress the drain leakage current suppressed the short channel effects. The physical mechanism underlying the short-channel behavior of the tunnel FETs (TFETs) was very different from that of metal-oxide-semiconductor FETs (MOSFETs). The minimal gate lengths that do not lose on-state current by one order are shown to be 3 nm for single-gate structures and 2 nm for double gate structures, as determined from the drain offset structure.

  14. Kinematic effects of a short-term fatigue protocol on punt-kicking performance.

    PubMed

    Coventry, Evan; Ball, Kevin; Parrington, Lucy; Aughey, Robert; McKenna, Michael

    2015-01-01

    The punt kick is a fundamental skill used in several team sports; however, there has been a lack of research on how fatigue affects its technique. The purpose of this study was to determine the effects of short-term fatigue on punt-kicking performance. Eight elite and sub-elite Australian Football players performed maximal drop punt kicks on their preferred leg prior to, during and after a match-specific fatigue protocol. Optotrak Certus collected kinematic data from kick foot toe-off until ball contact. Repeated-measures analysis of variance showed a significant increase in 20 m sprint times after each short-term protocol, indicating fatigue. Foot speed did not significantly change with fatigue; however, increases in the range of motion at the pelvis and kicking thigh, along with increases in kicking thigh angular velocity, occurred. For the support leg, maximum knee flexion angular velocity increased while there was greater flexion found at the knee and hip, and greater range of motion at the knee. Players are able to make kinematic adaptations in order to maintain foot speed while punting for maximal distance after short-term efforts.

  15. The United States Geological Survey in Alaska: Accomplishments during 1984

    USGS Publications Warehouse

    Bartsch-Winkler, Susan B.

    1985-01-01

    This circular contains short reports about many of the geologic studies carried out in Alaska by the U.S. Geological Survey and cooperating agencies during 1984. The topics cover a wide range in scientific and economic interest.

  16. Long Range Ferromagnetic Order in LaCoO 3-δ epitaxial films due to the interplay of epitaxial strain and oxygen vacancy ordering

    DOE PAGES

    Mehta, Virat; Biskup, Nevenko; Arenholz, E; ...

    2015-04-23

    We demonstrate that a combination of electronic structure modification and oxygen vacancy ordering can stabilize a long-range ferromagnetic ground state in epitaxial LaCoO 3 thin films. Highest saturation magnetization values are found in the thin films in tension on SrTiO 3 and (La,Sr)(Al,Ta)O 3 substrates and the lowest values are found in thin films in compression on LaAlO 3. Electron microscopy reveals oxygen vacancy ordering to varying degrees in all samples, although samples with the highest magnetization are the most defective. Element-specific x-ray absorption techniques reveal the presence of high spin Co 2+ and Co 3+ as well as lowmore » spin Co 3+ in different proportions depending on the strain state. The interactions among the high spin Co ions and the oxygen vacancy superstructure are correlated with the stabilization of the long-range ferromagnetic order.« less

  17. Long-range ferromagnetic order in LaCoO3 -δ epitaxial films due to the interplay of epitaxial strain and oxygen vacancy ordering

    NASA Astrophysics Data System (ADS)

    Mehta, V. V.; Biskup, N.; Jenkins, C.; Arenholz, E.; Varela, M.; Suzuki, Y.

    2015-04-01

    We demonstrate that a combination of electronic structure modification and oxygen vacancy ordering can stabilize a long-range ferromagnetic ground state in epitaxial LaCoO3 thin films. Highest saturation magnetization values are found in the thin films in tension on SrTiO3 and (La ,Sr )(Al ,Ta )O3 substrates and the lowest values are found in thin films in compression on LaAlO3. Electron microscopy reveals oxygen vacancy ordering to varying degrees in all samples, although samples with the highest magnetization are the most defective. Element-specific x-ray absorption techniques reveal the presence of high spin Co2 + and Co3 + as well as low spin Co3 + in different proportions depending on the strain state. The interactions among the high spin Co ions and the oxygen vacancy superstructure are correlated with the stabilization of the long-range ferromagnetic order.

  18. An investigation of short haul air transportation in the southeastern United States

    NASA Technical Reports Server (NTRS)

    Kanafani, A.; Yuan, H. S.

    1977-01-01

    The specific objectives of this stage of the study are numerous. First, an attempt is made to characterize the travel patterns in the study region, both in terms of origin destination patterns, and connecting and through trip patterns. Second, the structure of the air service in the region is characterized in an attempt to develop an understanding of the evolution of the short haul air transportation network. Finally, a look is taken at the socioeconomic environment of Atlanta and the region in order to seek an explanation for the historic evolution of short haul air travel activities and the rather high growth rates experienced in recent years.

  19. Influence of spin and charge fluctuations on spectra of the two-dimensional Hubbard model.

    PubMed

    Sherman, A

    2018-05-16

    The influence of spin and charge fluctuations on spectra of the two-dimensional fermionic Hubbard model is considered using the strong coupling diagram technique. Infinite sequences of diagrams containing ladder inserts, which describe the interaction of electrons with these fluctuations, are summed, and obtained equations are self-consistently solved for the ranges of Hubbard repulsions [Formula: see text], temperatures [Formula: see text] and electron concentrations [Formula: see text] with t the intersite hopping constant. For all considered U the system exhibits a transition to the long-range antiferromagnetic order at [Formula: see text]. At the same time no indication of charge ordering is observed. Obtained solutions agree satisfactorily with results of other approaches and obey moments sum rules. In the considered region of the U-T plane, the curve separating metallic solutions passes from [Formula: see text] at the highest temperatures to U  =  2t at [Formula: see text] for half-filling. If only short-range fluctuations are allowed for the remaining part of this region is occupied by insulating solutions. Taking into account long-range fluctuations leads to strengthening of maxima tails, which transform a part of insulating solutions into bad-metal states. For low T, obtained results allow us to trace the gradual transition from the regime of strong correlations with the pronounced four-band structure and well-defined Mott gap for [Formula: see text] to the Slater regime of weak correlations with the spectral intensity having a dip along the boundary of the magnetic Brillouin zone due to an antiferromagnetic ordering for [Formula: see text]. For [Formula: see text] and [Formula: see text] doping leads to the occurrence of a pseudogap near the Fermi level, which is a consequence of the splitting out of a narrow band from a Hubbard subband. Obtained spectra feature waterfalls and Fermi arcs, which are similar to those observed in hole-doped cuprates.

  20. Synchrotron x-ray scattering study of charge-density-wave order in HgBa2CuO4 +δ

    NASA Astrophysics Data System (ADS)

    Tabis, W.; Yu, B.; Bialo, I.; Bluschke, M.; Kolodziej, T.; Kozlowski, A.; Blackburn, E.; Sen, K.; Forgan, E. M.; Zimmermann, M. v.; Tang, Y.; Weschke, E.; Vignolle, B.; Hepting, M.; Gretarsson, H.; Sutarto, R.; He, F.; Le Tacon, M.; Barišić, N.; Yu, G.; Greven, M.

    2017-10-01

    We present a detailed synchrotron x-ray scattering study of the charge-density-wave (CDW) order in simple tetragonal HgBa2CuO4 +δ (Hg1201). Resonant soft x-ray scattering measurements reveal that short-range order appears at a temperature that is distinctly lower than the pseudogap temperature and in excellent agreement with a prior transient reflectivity result. Despite considerable structural differences between Hg1201 and YBa2Cu3O6 +δ , the CDW correlations exhibit similar doping dependencies, and we demonstrate a universal relationship between the CDW wave vector and the size of the reconstructed Fermi pocket observed in quantum oscillation experiments. The CDW correlations in Hg1201 vanish already below optimal doping, once the correlation length is comparable to the CDW modulation period, and they appear to be limited by the disorder potential from unit cells hosting two interstitial oxygen atoms. A complementary hard x-ray diffraction measurement, performed on an underdoped Hg1201 sample in magnetic fields along the crystallographic c axis of up to 16 T, provides information on the form factor of the CDW order. As expected from the single-CuO2-layer structure of Hg1201, the CDW correlations vanish at half-integer values of L and appear to be peaked at integer L . We conclude that the atomic displacements associated with the short-range CDW order are mainly planar, within the CuO2 layers.

  1. Computer simulations of disordering kinetics in irradiated intermetallic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spaczer, M.; Caro, A.; Victoria, M.

    1994-11-01

    Molecular-dynamics computer simulations of collision cascades in intermetallic Cu[sub 3]Au, Ni[sub 3]Al, and NiAl have been performed to study the nature of the disordering processes in the collision cascade. The choice of these systems was suggested by the quite accurate description of the thermodynamic properties obtained using embedded-atom-type potentials. Since melting occurs in the core of the cascades, interesting effects appear as a result of the superposition of the loss (and subsequent recovery) of the crystalline order and the evolution of the chemical order, both processes being developed on different time scales. In our previous simulations on Ni[sub 3]Al andmore » Cu[sub 3]Au [T. Diaz de la Rubia, A. Caro, and M. Spaczer, Phys. Rev. B 47, 11 483 (1993)] we found a significant difference between the time evolution of the chemical short-range order (SRO) and the crystalline order in the cascade core for both alloys, namely the complete loss of the crystalline structure but only partial chemical disordering. Recent computer simulations in NiAl show the same phenomena. To understand these features we study the liquid phase of these three alloys and present simulation results concerning the dynamical melting of small samples, examining the atomic mobility, the relaxation time, and the saturation value of the chemical short-range order. An analytic model for the time evolution of the SRO is given.« less

  2. Structure and Symmetry of Ground States of Colloidal Clusters

    NASA Astrophysics Data System (ADS)

    Klein, Ellen D.; Rogers, W. Benjamin; Manoharan, Vinothan N.

    We experimentally study colloidal clusters consisting of 6 to 100 spherical particles bound together with short range, DNA-mediated attractions. These clusters are a model system for understanding colloidal self-assembly and dynamics, since the positions and motion of all particles can be observed in real space. For 10 particles and fewer, the ground states are degenerate, and, as shown in previous work, the probabilities of observing specific clusters depend primarily on their rotational entropy, which is determined by symmetry. Thus less symmetric structures are more frequently observed. However, for larger numbers of particles the ground states appear to be subsets of close-packed lattices, which tend to have higher symmetry. To understand how this transition occurs as a function of the number of particles, we coat colloidal particles with complementary DNA strands that induce a short-range, temperature-dependent interparticle attraction. We then assemble and anneal an ensemble of clusters with 10 or more particles. We characterize the number of apparent ground states, their symmetries, and their probabilities as a function of the size of the cluster using confocal microscopy. This work is supported by NSF DMR-1306410. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program.

  3. Coincident structural and magnetic order in BaFe 2 ( As 1 - x P x ) 2 revealed by high-resolution neutron diffraction

    DOE PAGES

    Allred, J. M.; Taddei, K. M.; Bugaris, D. E.; ...

    2014-09-19

    We present neutron dffraction analysis of BaFe 2(As 1-xP x) 2 over a wide temperature (10 to 300 K) and compositional (0.11 < x < 0.79) range, including the normal state, the magnetically ordered state, and the superconducting state. The paramagnetic to spin-density wave and orthorhombic to tetragonal transitions are first order and coincident within the sensitivity of our measurements (~ 0:5 K). Extrapolation of the orthorhombic order parameter down to zero suggests that structural quantum criticality cannot exist at compositions higher than x = 0.28, which is much lower than values determined using other methods, but in good agreementmore » with our observations of the actual phase stability range. Lastly, the onset of spin-density wave order shows a stronger structural anomaly than the charge-doped system in the form of an enhancement of the c/a ratio below the transition.« less

  4. Research on three-phase traffic flow modeling based on interaction range

    NASA Astrophysics Data System (ADS)

    Zeng, Jun-Wei; Yang, Xu-Gang; Qian, Yong-Sheng; Wei, Xu-Ting

    2017-12-01

    On the basis of the multiple velocity difference effect (MVDE) model and under short-range interaction, a new three-phase traffic flow model (S-MVDE) is proposed through careful consideration of the influence of the relationship between the speeds of the two adjacent cars on the running state of the rear car. The random slowing rule in the MVDE model is modified in order to emphasize the influence of vehicle interaction between two vehicles on the probability of vehicles’ deceleration. A single-lane model which without bottleneck structure under periodic boundary conditions is simulated, and it is proved that the traffic flow simulated by S-MVDE model will generate the synchronous flow of three-phase traffic theory. Under the open boundary, the model is expanded by adding an on-ramp, the congestion pattern caused by the bottleneck is simulated at different main road flow rates and on-ramp flow rates, which is compared with the traffic congestion pattern observed by Kerner et al. and it is found that the results are consistent with the congestion characteristics in the three-phase traffic flow theory.

  5. Reflections on the value of electron microscopy in the study of heterogeneous catalysts

    PubMed Central

    2017-01-01

    Electron microscopy (EM) is arguably the single most powerful method of characterizing heterogeneous catalysts. Irrespective of whether they are bulk and multiphasic, or monophasic and monocrystalline, or nanocluster and even single-atom and on a support, their structures in atomic detail can be visualized in two or three dimensions, thanks to high-resolution instruments, with sub-Ångstrom spatial resolutions. Their topography, tomography, phase-purity, composition, as well as the bonding, and valence-states of their constituent atoms and ions and, in favourable circumstances, the short-range and long-range atomic order and dynamics of the catalytically active sites, can all be retrieved by the panoply of variants of modern EM. The latter embrace electron crystallography, rotation and precession electron diffraction, X-ray emission and high-resolution electron energy-loss spectra (EELS). Aberration-corrected (AC) transmission (TEM) and scanning transmission electron microscopy (STEM) have led to a revolution in structure determination. Environmental EM is already playing an increasing role in catalyst characterization, and new advances, involving special cells for the study of solid catalysts in contact with liquid reactants, have recently been deployed. PMID:28265196

  6. Neutron scattering investigations of frustated magnets

    NASA Astrophysics Data System (ADS)

    Fennell, Tom

    This thesis describes the experimental investigation of frustrated magnetic systems based on the pyrochlore lattice of corner-sharing tetrahedra. Ho2Ti207 and Dy2Ti207 are examples of spin ices, in which the manifold of disordered magnetic groundstates maps onto that of the proton positions in ice. Using single crystal neutron scattering to measure Bragg and diffuse scattering, the effect of applying magnetic fields along different directions in the crystal was investigated. Different schemes of degeneracy removal were observed for different directions. Long and short range order, and the coexistence of both could be observed by this technique.The field and temperature dependence of magnetic ordering was studied in Ho2Ti207 and Dy2Ti207. Ho2Ti2()7 has been more extensively investigated. The field was applied on [00l], [hh0], [hhh] and [hh2h]. Dy2Ti207 was studied with the field applied on [00l] and [hho] but more detailed information about the evolution of the scattering pattern across a large area of reciprocal space was obtained.With the field applied on [00l] both materials showed complete degeneracy removal. A long range ordered structure was formed. Any magnetic diffuse scattering vanished and was entirely replaced by strong magnetic Bragg scattering. At T =0.05 K both materials show unusual magnetization curves, with a prominent step and hysteresis. This was attributed to the extremely slow dynamics of spin ice materials at this temperature.Both materials were studied in greatest detail with the field applied on [hh0]. The coexistence of long and short range order was observed when the field was raised at T = 0.05 K. The application of a field in this direction separated the spin system into two populations. One could be ordered by the field, and one remained disordered. However, via spin-spin interactions, the field restricted the degeneracy of the disordered spin population. The neutron scattering pattern of Dy2Ti207 shows that the spin system was separated into two populations of spin chains, one set ordered and the other only partly so. Cycling the field induced dynamics in these chains, again via spin-spin interactions, as the field acted on the ordered si)in chains. These field regulated dynamics were particularly noted in Ho2Ti207 where a full field cycle was executed. Raising the temperature in an applied field also activated the dynamics of the partially ordered spin chains. The continued evolution of the spin system toward a more ordered state, when dynamics can be induced, suggested that a spin ice does indeed have an energetic groundstate.The remaining two directions probed in Ho2Ti20y both have two populations of spins with different Zeeman energies. The competition of the field and the spin- spin interactions was used to investigate the onset of the ice rules regime (field on [hh2h] and the breaking of the ice rules by a strong field (field on [hhh]). It was shown that the behavior of Ho2Ti207 with field on [hhh] was consistent with the "kagome ice" hypothesis.

  7. Interplay between superconductivity and magnetism in Fe(1-x)Pd(x)Te.

    PubMed

    Karki, Amar B; Garlea, V Ovidiu; Custelcean, Radu; Stadler, Shane; Plummer, E W; Jin, Rongying

    2013-06-04

    The attractive/repulsive relationship between superconductivity and magnetic ordering has fascinated the condensed matter physics community for a century. In the early days, magnetic impurities doped into a superconductor were found to quickly suppress superconductivity. Later, a variety of systems, such as cuprates, heavy fermions, and Fe pnictides, showed superconductivity in a narrow region near the border to antiferromagnetism (AFM) as a function of pressure or doping. However, the coexistence of superconductivity and ferromagnetic (FM) or AFM ordering is found in a few compounds [RRh4B4 (R = Nd, Sm, Tm, Er), R'Mo6X8 (R' = Tb, Dy, Er, Ho, and X = S, Se), UMGe (M = Ge, Rh, Co), CeCoIn5, EuFe2(As(1-x)P(x))2, etc.], providing evidence for their compatibility. Here, we present a third situation, where superconductivity coexists with FM and near the border of AFM in Fe(1-x)Pd(x)Te. The doping of Pd for Fe gradually suppresses the first-order AFM ordering at temperature T(N/S), and turns into short-range AFM correlation with a characteristic peak in magnetic susceptibility at T'(N). Superconductivity sets in when T'(N) reaches zero. However, there is a gigantic ferromagnetic dome imposed in the superconducting-AFM (short-range) cross-over regime. Such a system is ideal for studying the interplay between superconductivity and two types of magnetic (FM and AFM) interactions.

  8. Neural-Network Quantum States, String-Bond States, and Chiral Topological States

    NASA Astrophysics Data System (ADS)

    Glasser, Ivan; Pancotti, Nicola; August, Moritz; Rodriguez, Ivan D.; Cirac, J. Ignacio

    2018-01-01

    Neural-network quantum states have recently been introduced as an Ansatz for describing the wave function of quantum many-body systems. We show that there are strong connections between neural-network quantum states in the form of restricted Boltzmann machines and some classes of tensor-network states in arbitrary dimensions. In particular, we demonstrate that short-range restricted Boltzmann machines are entangled plaquette states, while fully connected restricted Boltzmann machines are string-bond states with a nonlocal geometry and low bond dimension. These results shed light on the underlying architecture of restricted Boltzmann machines and their efficiency at representing many-body quantum states. String-bond states also provide a generic way of enhancing the power of neural-network quantum states and a natural generalization to systems with larger local Hilbert space. We compare the advantages and drawbacks of these different classes of states and present a method to combine them together. This allows us to benefit from both the entanglement structure of tensor networks and the efficiency of neural-network quantum states into a single Ansatz capable of targeting the wave function of strongly correlated systems. While it remains a challenge to describe states with chiral topological order using traditional tensor networks, we show that, because of their nonlocal geometry, neural-network quantum states and their string-bond-state extension can describe a lattice fractional quantum Hall state exactly. In addition, we provide numerical evidence that neural-network quantum states can approximate a chiral spin liquid with better accuracy than entangled plaquette states and local string-bond states. Our results demonstrate the efficiency of neural networks to describe complex quantum wave functions and pave the way towards the use of string-bond states as a tool in more traditional machine-learning applications.

  9. Itinerancy enhanced quantum fluctuation of magnetic moments in iron-based superconductors

    DOE PAGES

    Tam, Yu -T.; Ku, W.; Yao, D. -X.

    2015-09-10

    We investigate the influence of itinerant carriers on dynamics and fluctuation of local moments in Fe-based superconductors, via linear spin-wave analysis of a spin-fermion model containing both itinerant and local degrees of freedom. Surprisingly against the common lore, instead of enhancing the (π,0) order, itinerant carriers with well nested Fermi surfaces is found to induce significant amount of spatial and temporal quantum fluctuation that leads to the observed small ordered moment. Interestingly, the underlying mechanism is shown to be intra-pocket nesting-associated long-range coupling, rather than the previously believed ferromagnetic double-exchange effect. This challenges the validity of ferromagnetically compensated first-neighbor couplingmore » reported from short-range fitting to the experimental dispersion, which turns out to result instead from the ferro-orbital order that is also found instrumental in stabilizing the magnetic order.« less

  10. Cooling rate dependence of structural order in Ni 62 Nb 38 metallic glass

    DOE PAGES

    Wen, Tongqi; Sun, Yang; Ye, Beilin; ...

    2018-01-31

    In this article, molecular dynamics (MD) simulations are performed to study the structure of Ni 62Nb 38 bulk metallic glass at the atomistic level. Structural analysis based on the cluster alignment method is carried out and a new Ni-centered distorted-icosahedra (DISICO) motif is excavated. We show that the short-range order and medium-range order in the glass are enhanced with lower cooling rate. Almost 50% of the clusters around the Ni atoms in the well-annealed Ni 62Nb 38 glass sample from our MD simulations can be classified as DISICO. It is revealed that the structural distortion with respect to the perfectmore » icosahedra is driven by chemical ordering in the distorted region of the DISICO motif. The relationship between the structure, energy, and dynamics in this glass-forming alloy during the cooling and annealing processes is also established.« less

  11. Cooling rate dependence of structural order in Ni 62 Nb 38 metallic glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Tongqi; Sun, Yang; Ye, Beilin

    In this article, molecular dynamics (MD) simulations are performed to study the structure of Ni 62Nb 38 bulk metallic glass at the atomistic level. Structural analysis based on the cluster alignment method is carried out and a new Ni-centered distorted-icosahedra (DISICO) motif is excavated. We show that the short-range order and medium-range order in the glass are enhanced with lower cooling rate. Almost 50% of the clusters around the Ni atoms in the well-annealed Ni 62Nb 38 glass sample from our MD simulations can be classified as DISICO. It is revealed that the structural distortion with respect to the perfectmore » icosahedra is driven by chemical ordering in the distorted region of the DISICO motif. The relationship between the structure, energy, and dynamics in this glass-forming alloy during the cooling and annealing processes is also established.« less

  12. Ferromagnetism and superconductivity in CeFeAs1-xPxO (0⩽x⩽40)

    NASA Astrophysics Data System (ADS)

    Jesche, A.; Förster, T.; Spehling, J.; Nicklas, M.; de Souza, M.; Gumeniuk, R.; Luetkens, H.; Goltz, T.; Krellner, C.; Lang, M.; Sichelschmidt, J.; Klauss, H.-H.; Geibel, C.

    2012-07-01

    We report on superconductivity in CeFeAs1-xPxO and the possible coexistence with Ce ferromagnetism (FM) in a small homogeneity range around x=30% with ordering temperatures of TSC≅TC≅4 K. The antiferromagnetic (AFM) ordering temperature of Fe at this critical concentration is suppressed to TNFe≈40 K and does not shift to lower temperatures with a further increase of the P concentration. Therefore, a quantum-critical-point scenario with TNFe→0 K which is widely discussed for the iron based superconductors can be excluded for this alloy series. Surprisingly, thermal expansion and x-ray powder diffraction indicate the absence of an orthorhombic distortion despite clear evidence for short-range AFM Fe ordering from muon-spin-rotation measurements. Furthermore, we discovered the formation of a sharp electron spin resonance signal unambiguously connected with the emergence of FM ordering.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jesche, A.; Förster, T.; Spehling, J.

    We report on superconductivity in CeFeAs 1-xP xO and the possible coexistence with Ce ferromagnetism (FM) in a small homogeneity range around x=30% with ordering temperatures of T SC≅T C≅4 K. The antiferromagnetic (AFM) ordering temperature of Fe at this critical concentration is suppressed to Tmore » $$Fe\\atop{N}$$≈40 K and does not shift to lower temperatures with a further increase of the P concentration. Therefore, a quantum-critical-point scenario with T$$Fe\\atop{N}$$→0 K which is widely discussed for the iron based superconductors can be excluded for this alloy series. Surprisingly, thermal expansion and x-ray powder diffraction indicate the absence of an orthorhombic distortion despite clear evidence for short-range AFM Fe ordering from muon-spin-rotation measurements. Furthermore, we discovered the formation of a sharp electron spin resonance signal unambiguously connected with the emergence of FM ordering.« less

  14. Cooling rate dependence of structural order in Ni62Nb38 metallic glass

    NASA Astrophysics Data System (ADS)

    Wen, Tongqi; Sun, Yang; Ye, Beilin; Tang, Ling; Yang, Zejin; Ho, Kai-Ming; Wang, Cai-Zhuang; Wang, Nan

    2018-01-01

    Molecular dynamics (MD) simulations are performed to study the structure of Ni62Nb38 bulk metallic glass at the atomistic level. Structural analysis based on the cluster alignment method is carried out and a new Ni-centered distorted-icosahedra (DISICO) motif is excavated. We show that the short-range order and medium-range order in the glass are enhanced with lower cooling rate. Almost 50% of the clusters around the Ni atoms in the well-annealed Ni62Nb38 glass sample from our MD simulations can be classified as DISICO. It is revealed that the structural distortion with respect to the perfect icosahedra is driven by chemical ordering in the distorted region of the DISICO motif. The relationship between the structure, energy, and dynamics in this glass-forming alloy during the cooling and annealing processes is also established.

  15. Universal DC Hall conductivity of Jain's state ν = N/2N +/- 1

    NASA Astrophysics Data System (ADS)

    Nguyen, Dung; Son, Dam

    We present the Fermi-liquid theory of the fractional quantum Hall effect to describe Jain's states with filling fraction ν =N/2 N +/- 1 , that are near half filling. We derive the DC Hall conductivity σH (t) in closed form within the validity of our model. The results show that, without long range interaction, DC Hall conductivity has the universal form which doesn't depend on the detail of short range Landau's parameters Fn. When long range interaction is included, DC Hall conductivity depends on both long range interaction and Landau's parameters. We also analyze the relation between DC Hall conductivity and static structure factor. This work was supported by the Chicago MRSEC, which is funded by NSF through Grant DMR-1420709.

  16. National-level infrastructure and economic effects of switchgrass cofiring with coal in existing power plants for carbon mitigation.

    PubMed

    Morrow, William R; Griffin, W Michael; Matthews, H Scott

    2008-05-15

    We update a previously presented Linear Programming (LP) methodology for estimating state level costs for reducing CO2 emissions from existing coal-fired power plants by cofiring switchgrass, a biomass energy crop, and coal. This paper presents national level results of applying the methodology to the entire portion of the United States in which switchgrass could be grown without irrigation. We present incremental switchgrass and coal cofiring carbon cost of mitigation curves along with a presentation of regionally specific cofiring economics and policy issues. The results show that cofiring 189 million dry short tons of switchgrass with coal in the existing U.S. coal-fired electricity generation fleet can mitigate approximately 256 million short tons of carbon-dioxide (CO2) per year, representing a 9% reduction of 2005 electricity sector CO2 emissions. Total marginal costs, including capital, labor, feedstock, and transportation, range from $20 to $86/ton CO2 mitigated,with average costs ranging from $20 to $45/ton. If some existing power plants upgrade to boilers designed for combusting switchgrass, an additional 54 million tons of switchgrass can be cofired. In this case, total marginal costs range from $26 to $100/ton CO2 mitigated, with average costs ranging from $20 to $60/ton. Costs for states east of the Mississippi River are largely unaffected by boiler replacement; Atlantic seaboard states represent the lowest cofiring cost of carbon mitigation. The central plains states west of the Mississippi River are most affected by the boiler replacement option and, in general, go from one of the lowest cofiring cost of carbon mitigation regions to the highest. We explain the variation in transportation expenses and highlight regional cost of mitigation variations as transportation overwhelms other cofiring costs.

  17. Changes in neural resting state activity in primary and higher-order motor areas induced by a short sensorimotor intervention based on the Feldenkrais method

    PubMed Central

    Verrel, Julius; Almagor, Eilat; Schumann, Frank; Lindenberger, Ulman; Kühn, Simone

    2015-01-01

    We use functional magnetic resonance imaging to investigate short-term neural effects of a brief sensorimotor intervention adapted from the Feldenkrais method, a movement-based learning method. Twenty-one participants (10 men, 19–30 years) took part in the study. Participants were in a supine position in the scanner with extended legs while an experienced Feldenkrais practitioner used a planar board to touch and apply minimal force to different parts of the sole and toes of their left foot under two experimental conditions. In the local condition, the practitioner explored movement within foot and ankle. In the global condition, the practitioner focused on the connection and support from the foot to the rest of the body. Before (baseline) and after each intervention (post-local, post-global), we measured brain activity during intermittent pushing/releasing with the left leg and during resting state. Independent localizer tasks were used to identify regions of interest (ROI). Brain activity during left-foot pushing did not significantly differ between conditions in sensorimotor areas. Resting state activity (regional homogeneity, ReHo) increased from baseline to post-local in medial right motor cortex, and from baseline to post-global in the left supplementary/cingulate motor area. Contrasting post-global to post-local showed higher ReHo in right lateral motor cortex. ROI analyses showed significant increases in ReHo in pushing-related areas from baseline to both post-local and post-global, and this increase tended to be more pronounced post-local. The results of this exploratory study show that a short, non-intrusive sensorimotor intervention can have short-term effects on spontaneous cortical activity in functionally related brain regions. Increased resting state activity in higher-order motor areas supports the hypothesis that the global intervention engages action-related neural processes. PMID:25972804

  18. Properties of quantum systems via diagonalization of transition amplitudes. II. Systematic improvements of short-time propagation

    NASA Astrophysics Data System (ADS)

    Vidanović, Ivana; Bogojević, Aleksandar; Balaž, Antun; Belić, Aleksandar

    2009-12-01

    In this paper, building on a previous analysis [I. Vidanović, A. Bogojević, and A. Belić, preceding paper, Phys. Rev. E 80, 066705 (2009)] of exact diagonalization of the space-discretized evolution operator for the study of properties of nonrelativistic quantum systems, we present a substantial improvement to this method. We apply recently introduced effective action approach for obtaining short-time expansion of the propagator up to very high orders to calculate matrix elements of space-discretized evolution operator. This improves by many orders of magnitude previously used approximations for discretized matrix elements and allows us to numerically obtain large numbers of accurate energy eigenvalues and eigenstates using numerical diagonalization. We illustrate this approach on several one- and two-dimensional models. The quality of numerically calculated higher-order eigenstates is assessed by comparison with semiclassical cumulative density of states.

  19. THE LIGHT CURVE OF HERCULES X-1 AS OBSERVED BY THE ROSSI X-RAY TIMING EXPLORER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leahy, D. A.; Igna, Ciprian, E-mail: leahy@ucalgary.ca

    2011-07-20

    Analysis of the light curve of Hercules X-1 using the full set of archival observations of Hercules X-1 by the Rossi X-Ray Timing Explorer/Proportional Counter Array (RXTE/PCA) is reported. The observations cover time periods that Her X-1 is in main high, short high, and low states, and an anomalous low state (ALS). They include over 1.4 Ms of net exposure time. We present 35 day and orbital phase folded light curves of the count rates and softness ratios, showing the range of behaviors of Her X-1 with the high sensitivity of the RXTE/PCA. New phenomena are uncovered and previous phenomenamore » are seen in greater detail. For both main high and short high states, the fraction of time in dips is found to be a function of orbital phase and of 35 day phase. It increases steadily with orbital phase past orbital phase 0.3 and is higher at the start and end of both main high and short high states. It is higher for short high state (62%) than for main high state (28%). The normal low state data and ALS data are compared: the low state count rate is {approx}twice as high as for ALS data. The 2-4 keV to 9-20 keV softness ratio changes smoothly with orbital phase for low states and ALSs, and is indistinguishable between the two, yet very different than for the high states. This supports models for which the cause of the ALS is changed disk geometry that prevents a direct line of sight from neutron star to observer at all 35 day phases.« less

  20. Enzymatic hydrolysis of short-chain lecithin/long-chain phospholipid unilamellar vesicles: sensitivity of phospholipases to matrix phase state.

    PubMed

    Gabriel, N E; Agman, N V; Roberts, M F

    1987-11-17

    Short-chain lecithin/long-chain phospholipid unilamellar vesicles (SLUVs), unlike pure long-chain lecithin vesicles, are excellent substrates for water-soluble phospholipases. Hemolysis assays show that greater than 99.5% of the short-chain lecithin is partitioned in the bilayer. In these binary component vesicles, the short-chain species is the preferred substrate, while the long-chain phospholipid can be treated as an inhibitor (phospholipase C) or poor substrate (phospholipase A2). For phospholipase C Bacillus cereus, apparent Km and Vmax values show that bilayer-solubilized diheptanoylphosphatidylcholine (diheptanoyl-PC) is nearly as good a substrate as pure micellar diheptanoyl-PC, although the extent of short-chain lecithin hydrolysis depends on the phase state of the long-chain lipid. For phospholipase A2 Naja naja naja, both Km and Vmax values show a greater range: in a gel-state matrix, diheptanoyl-PC is hydrolyzed with micellelike kinetic parameters; in a liquid-crystalline matrix, the short-chain lecithin becomes comparable to the long-chain component. Both enzymes also show an anomalous increase in specific activity toward diheptanoyl-PC around the phase transition temperature of the long-chain phospholipid. Since the short-chain lecithin does not exhibit a phase transition, this must reflect fluctuations in head-group area or vertical motions of the short-chain lecithin caused by surrounding long-chain lecithin molecules. These results are discussed in terms of a specific model for SLUV hydrolysis and a general explanation for the "interfacial activation" observed with water-soluble phospholipases.

  1. Solute–solute correlations responsible for the prepeak in structure factors of undercooled Al-rich liquids: A molecular dynamics study

    DOE PAGES

    Zhang, Feng; Sun, Yang; Ye, Zhuo; ...

    2015-05-06

    In this study, we have performed molecular dynamics simulations on a typical Al-based alloy Al 90Sm 10. The short-range and medium-range correlations of the system are reliably produced by ab initio calculations, whereas the long-range correlations are obtained with the assistance of a semi-empirical potential well-fitted to ab initio data. Our calculations show that a prepeak in the structure factor of this system emerges well above the melting temperature, and the intensity of the prepeak increases with increasing undercooling of the liquid. These results are in agreement with x-ray diffraction experiments. The interplay between the short-range order of the systemmore » originating from the large affinity between Al and Sm atoms, and the intrinsic repulsion between Sm atoms gives rise to a stronger correlation in the second peak than the first peak in the Sm–Sm partial pair correlation function (PPCF), which in turn produces the prepeak in the structure factor.« less

  2. Electronic self-organization in the single-layer manganite $$\\rm Pr_{1-x}Ca_{1+x}MnO4$$

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Feng; Chi, Songxue; Fernandez-Baca, Jaime A

    We use neutron scattering to investigate the doping evolution of the magnetic correlations in the single-layer manganitemore » $$\\rm Pr_{\\it 1-x}Ca_{\\it 1+x}MnO_4$$, away from the $x=0.5$ composition where the CE-type commensurate antiferromagnetic (AF) structure is stable. We find that short-range incommensurate spin correlations develop as the system is electron doped ($x<0.5$), which coexist with the CE-type AF order. This suggests that electron doping in this system induces an inhomogeneous electronic self-organization, where commensurate AF patches with $x=0.5$ are separated by electron-rich domain walls with short range magnetic correlations. This behavior is strikingly different than for the three-dimensional $$\\rm Pr_{\\it 1-x}Ca_{\\it x}MnO_3$$, where the long-range CE-type commensurate AF structure is stable over a wide range of electron or hole doping around $x=0.5$.« less

  3. Long-range magnetic interactions and proximity effects in an amorphous exchange-spring magnet

    DOE PAGES

    Magnus, F.; Brooks-Bartlett, M. E.; Moubah, R.; ...

    2016-06-13

    Low-dimensional magnetic heterostructures are a key element of spintronics, where magnetic interactions between different materials often define the functionality of devices. Although some interlayer exchange coupling mechanisms are by now well established, the possibility of direct exchange coupling via proximity-induced magnetization through non-magnetic layers is typically ignored due to the presumed short range of such proximity effects. Here we show that magnetic order can be induced throughout a 40-nm-thick amorphous paramagnetic layer through proximity to ferromagnets, mediating both exchange-spring magnet behaviour and exchange bias. Furthermore, Monte Carlo simulations show that nearest-neighbour magnetic interactions fall short in describing the observed effectsmore » and long-range magnetic interactions are needed to capture the extent of the induced magnetization. Lastly, the results highlight the importance of considering the range of interactions in low-dimensional heterostructures and how magnetic proximity effects can be used to obtain new functionality.« less

  4. Simple model for molecular scattering

    NASA Astrophysics Data System (ADS)

    Mehta, Nirav; Ticknor, Christopher; Hazzard, Kaden

    2017-04-01

    The collisions of ultracold molecules are qualitatively different from the collisions of ultracold atoms due to the high density of bimolecular resonances near the collision energy. We present results from a simple N-channel scattering model with square-well channel potentials and constant channel couplings (inside the well) designed to reproduce essential features of chaotic molecular scattering. The potential depths and channel splittings are tuned to reproduce the appropriate density of states for the short-range bimolecular collision complex (BCC), which affords a direct comparison of the resulting level-spacing distribution to that expected from random matrix theory (RMT), namely the so-called Wigner surmise. The density of states also sets the scale for the rate of dissociation from the BCC to free molecules, as approximated by transition state theory (TST). Our model affords a semi-analytic solution for the scattering amplitude in the open channel, and a determinantal equation for the eigenenergies of the short-ranged BCC. It is likely the simplest finite-ranged scattering model that can be compared to expectations from the approximations of RMT, and TST. The validity of these approximations has implications for the many-channel Hubbard model recently developed. This research was funded in part by the National Science Foundation under Grant No. NSF PHY-1125915.

  5. Magnetic switching, relaxation, and domain structure of a Co/Si(111) film

    NASA Astrophysics Data System (ADS)

    Baird, M. J.; Bland, J. A. C.; Gu, E.; Ives, A. J. R.; Schumann, F. O.; Hughes, H. P.

    1993-11-01

    We have used scanning magneto-optic Kerr effect (MOKE) microscopy to investigate the magnetic relaxation of a polycrystalline hcp 125 Å Co/Si(111) film with planar uniaxial anisotropy, on time scales between 10 and 2400 s and with a spatial resolution of 15 μm. In a static magnetic field slightly less than the coercive field and applied along the easy axis direction, domains develop and the magnetization reversal proceeds via displacements of 180° domain walls. Microscopic images of this metastable state allow the 180° domains to be identified by calibration of the MOKE signal with respect to that for the saturated magnetization states. The 180° reversed domains are observed to grow in the direction of the field in the form of narrow fingers, extending via short Barkhausen jumps, randomly spaced in time over the entire time-scale range investigated, with typical distances between pinning sites of the order of microns. This reversal behavior is qualitatively similar to that reported for Au/Co perpendicular anisotropy films a few monolayers thick.

  6. Two-dimensional H2 in Si: Raman scattering and modeling study

    NASA Astrophysics Data System (ADS)

    Melnikov, V. V.; Hiller, M.; Lavrov, E. V.

    2018-03-01

    Molecular hydrogen trapped within {111}-oriented platelets in silicon is studied by means of Raman scattering and first principles theory. The rotational transition S0(0 ) (J =0 →J =2 ) of para-H2 (nuclear spin I =0 ) at 353 cm-1 is used as a probe. We find that for temperatures below 100 K the S0(0 ) Raman line starts to broaden asymmetrically, which is interpreted as the onset of a phase transition from a state with a short-range order ("gaseous" or "liquid" phase) to a two-dimensional molecular crystal lying in the {111} plane of silicon. The shape of the S0(0 ) line at helium temperatures strongly depends on the relative content of ortho- (nuclear spin I =1 ) and para-H2 revealing the details of the intermolecular interaction. A comprehensive theoretical analysis based on ab initio calculations, molecular dynamics simulations, and rotational spectra modeling reveals that the phase transition to the crystalline state of the two-dimensional hydrogen does occur at temperatures substantially higher compared to those of bulk H2.

  7. Stability and dynamic of strain mediated adatom superlattices on Cu<111 >

    NASA Astrophysics Data System (ADS)

    Kappus, Wolfgang

    2013-03-01

    Substrate strain mediated adatom equilibrium density distributions have been calculated for Cu<111 > surfaces using two complementing methods. A hexagonal adatom superlattice in a coverage range up to 0.045 ML is derived for repulsive short range interactions. For zero short range interactions a hexagonal superstructure of adatom clusters is derived in a coverage range about 0.08 ML. Conditions for the stability of the superlattice against formation of dimers or clusters and degradation are analyzed using simple neighborhood models. Such models are also used to investigate the dynamic of adatoms within their superlattice neighborhood. Collective modes of adatom diffusion are proposed from the analogy with bulk lattice dynamics and methods for measurement are suggested. The recently put forward explanation of surface state mediated interactions for superstructures found in scanning tunneling microscopy experiments is put in question and strain mediated interactions are proposed as an alternative.

  8. Detection range enhancement using circularly polarized light in scattering environments for infrared wavelengths

    DOE PAGES

    van der Laan, J. D.; Sandia National Lab.; Scrymgeour, D. A.; ...

    2015-03-13

    We find for infrared wavelengths there are broad ranges of particle sizes and refractive indices that represent fog and rain where the use of circular polarization can persist to longer ranges than linear polarization. Using polarization tracking Monte Carlo simulations for varying particle size, wavelength, and refractive index, we show that for specific scene parameters circular polarization outperforms linear polarization in maintaining the intended polarization state for large optical depths. This enhancement with circular polarization can be exploited to improve range and target detection in obscurant environments that are important in many critical sensing applications. Specifically, circular polarization persists bettermore » than linear for radiation fog in the short-wave infrared, for advection fog in the short-wave infrared and the long-wave infrared, and large particle sizes of Sahara dust around the 4 micron wavelength.« less

  9. Magnetic analytic bond-order potential for modeling the different phases of Mn at zero Kelvin

    NASA Astrophysics Data System (ADS)

    Drain, John F.; Drautz, Ralf; Pettifor, D. G.

    2014-04-01

    It is known that while group VII 4d Tc and 5d Re have hexagonally close-packed (hcp) ground states, 3d Mn adopts a complex χ-phase ground state, exhibiting complex noncollinear magnetic ordering. Density functional theory (DFT) calculations have shown that without magnetism, the χ phase is still the ground state of Mn implying that magnetism and the resultant atomic-size difference between large- and small-moment atoms are not the critical factors, as is commonly believed, in driving the anomalous stability of the χ phase over hcp. Using a canonical tight-binding (TB) model, it is found that for a more than half-filled d band, while harder potentials stabilize close-packed hcp, a softer potential stabilizes the more open χ phase. By analogy with the structural trend from open to close-packed phases down the group IV elements, the anomalous stability of the χ phase in Mn is shown to be due to 3d valent Mn lacking d states in the core which leads to an effectively softer atomic repulsion between the atoms than in 4d Tc and 5d Re. Subsequently, an analytic bond-order potential (BOP) is developed to investigate the structural and magnetic properties of elemental Mn at 0 K. It is derived within BOP theory directly from a new short-ranged orthogonal d-valent TB model of Mn, the parameters of which are fitted to reproduce the DFT binding energy curves of the four experimentally observed phases of Mn, namely, α, β, γ, δ, and ɛ-Mn. Not only does the BOP reproduce qualitatively the DFT binding energy curves of the five different structure types, it also predicts the complex collinear antiferromagnetic (AFM) ordering in α-Mn, the ferrimagnetic ordering in β-Mn, and the AFM ordering in γ-, δ-, and ɛ-Mn that are found by DFT. A BOP expansion including 14 moments is sufficiently converged to reproduce most of the properties of the TB model with the exception of the elastic shear constants, which require further moments. The current TB model, however, predicts values of the shear moduli and the vacancy formation energies that are approximately a factor of 2 too small, so that a future more realistic model for MD simulations will require these properties to be included from the outset in the fitting database.

  10. Femtosecond Photon-Counting Receiver

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Rambo, Timothy M.; Yang, Guangning; Lu, Wei; Numata, Kenji

    2016-01-01

    An optical correlation receiver is described that provides ultra-precise distance and/or time/pulse-width measurements even for weak (single photons) and short (femtosecond) optical signals. A new type of optical correlation receiver uses a fourth-order (intensity) interferometer to provide micron distance measurements even for weak (single photons) and short (femtosecond) optical signals. The optical correlator uses a low-noise-integrating detector that can resolve photon number. The correlation (range as a function of path delay) is calculated from the variance of the photon number of the difference of the optical signals on the two detectors. Our preliminary proof-of principle data (using a short-pulse diode laser transmitter) demonstrates tens of microns precision.

  11. Femtosecond Photon-Counting Receiver

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Rambo, Timothy M.; Yang, Guangning; Lu, Wei; Numata, Kenji

    2016-01-01

    An optical correlation receiver is described that provides ultra-precise distance and/or time-pulse-width measurements even for weak (single photons) and short (femtosecond) optical signals. A new type of optical correlation receiver uses a fourth-order (intensity) interferometer to provide micron distance measurements even for weak (single photons) and short (femtosecond) optical signals. The optical correlator uses a low-noise-integrating detector that can resolve photon number. The correlation (range as a function of path delay) is calculated from the variance of the photon number of the difference of the optical signals on the two detectors. Our preliminary proof-of principle data (using a short-pulse diode laser transmitter) demonstrates tens of microns precision.

  12. Field-induced cluster spin glass and inverse symmetry breaking enhanced by frustration

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Zimmer, F. M.; Magalhaes, S. G.

    2018-03-01

    We consider a cluster disordered model to study the interplay between short- and long-range interactions in geometrically frustrated spin systems under an external magnetic field (h). In our approach, the intercluster long-range disorder (J) is analytically treated to get an effective cluster model that is computed exactly. The clusters follow a checkerboard lattice with first-neighbor (J1) and second-neighbor (J2) interactions. We find a reentrant transition from the cluster spin-glass (CSG) state to a paramagnetic (PM) phase as the temperature decreases for a certain range of h. This inverse symmetry breaking (ISB) appears as a consequence of both quenched disorder with frustration and h, that introduce a CSG state with higher entropy than the polarized PM phase. The competitive scenario introduced by antiferromagnetic (AF) short-range interactions increases the CSG state entropy, leading to continuous ISB transitions and enhancing the ISB regions, mainly in the geometrically frustrated case (J1 =J2). Remarkably, when strong AF intracluster couplings are present, field-induced CSG phases can be found. These CSG regions are strongly related to the magnetization plateaus observed in this cluster disordered system. In fact, it is found that each field-induced magnetization jump brings a CSG region. We notice that geometrical frustration, as well as cluster size, play an important role in the magnetization plateaus and, therefore, are also relevant in the field-induced glassy states. Our findings suggest that competing interactions support ISB and field-induced CSG phases in disordered cluster systems under an external magnetic field.

  13. Ground-state ordering of the J1-J2 model on the simple cubic and body-centered cubic lattices

    NASA Astrophysics Data System (ADS)

    Farnell, D. J. J.; Götze, O.; Richter, J.

    2016-06-01

    The J1-J2 Heisenberg model is a "canonical" model in the field of quantum magnetism in order to study the interplay between frustration and quantum fluctuations as well as quantum phase transitions driven by frustration. Here we apply the coupled cluster method (CCM) to study the spin-half J1-J2 model with antiferromagnetic nearest-neighbor bonds J1>0 and next-nearest-neighbor bonds J2>0 for the simple cubic (sc) and body-centered cubic (bcc) lattices. In particular, we wish to study the ground-state ordering of these systems as a function of the frustration parameter p =z2J2/z1J1 , where z1 (z2) is the number of nearest (next-nearest) neighbors. We wish to determine the positions of the phase transitions using the CCM and we aim to resolve the nature of the phase transition points. We consider the ground-state energy, order parameters, spin-spin correlation functions, as well as the spin stiffness in order to determine the ground-state phase diagrams of these models. We find a direct first-order phase transition at a value of p =0.528 from a state of nearest-neighbor Néel order to next-nearest-neighbor Néel order for the bcc lattice. For the sc lattice the situation is more subtle. CCM results for the energy, the order parameter, the spin-spin correlation functions, and the spin stiffness indicate that there is no direct first-order transition between ground-state phases with magnetic long-range order, rather it is more likely that two phases with antiferromagnetic long range are separated by a narrow region of a spin-liquid-like quantum phase around p =0.55 . Thus the strong frustration present in the J1-J2 Heisenberg model on the sc lattice may open a window for an unconventional quantum ground state in this three-dimensional spin model.

  14. Phase separation and second-order phase transition in the phenomenological model for a Coulomb-frustrated two-dimensional system

    NASA Astrophysics Data System (ADS)

    Mamin, R. F.; Shaposhnikova, T. S.; Kabanov, V. V.

    2018-03-01

    We have considered the model of the phase transition of the second order for the Coulomb frustrated 2D charged system. The coupling of the order parameter with the charge was considered as the local temperature. We have found that in such a system, an appearance of the phase-separated state is possible. By numerical simulation, we have obtained different types ("stripes," "rings," "snakes") of phase-separated states and determined the parameter ranges for these states. Thus the system undergoes a series of phase transitions when the temperature decreases. First, the system moves from the homogeneous state with a zero order parameter to the phase-separated state with two phases in one of which the order parameter is zero and, in the other, it is nonzero (τ >0 ). Then a first-order transition occurs to another phase-separated state, in which both phases have different and nonzero values of the order parameter (for τ <0 ). Only a further decrease of temperature leads to a transition to a homogeneous ordered state.

  15. A High-Power Broadband Terahertz Source Enabled by Three-Dimensional Light Confinement in a Plasmonic Nanocavity

    DOE PAGES

    Yardimci, Nezih Tolga; Cakmakyapan, Semih; Hemmati, Soroosh; ...

    2017-06-23

    The scope and potential uses of time-domain terahertz imaging and spectroscopy are mainly limited by the low optical-to-terahertz conversion efficiency of photoconductive terahertz sources. State-of-theart photoconductive sources utilize short-carrier-lifetime semiconductors to recombine carriers that cannot contribute to efficient terahertz generation and cause additional thermal dissipation. Here, we present a novel photoconductive terahertz source that offers a significantly higher efficiency compared with terahertz sources fabricated on short-carrier-lifetime substrates. The key innovative feature of this source is the tight three-dimensional confinement of the optical pump beam around the terahertz nanoantennas that are used as radiating elements. This is achieved by means ofmore » a nanocavity formed by plasmonic structures and a distributed Bragg reflector. Consequently, almost all of the photo-generated carriers can be routed to the terahertz nanoantennas within a sub-picosecond time-scale. This results in a very strong, ultrafast current that drives the nanoantennas to produce broadband terahertz radiation. We experimentally demonstrate that this terahertz source can generate 4 mW pulsed terahertz radiation under an optical pump power of 720 mW over the 0.1–4 THz frequency range. This is the highest reported power level for terahertz radiation from a photoconductive terahertz source, representing more than an order of magnitude of enhancement in the optical-to-terahertz conversion efficiency compared with state-of-the-art photoconductive terahertz sources fabricated on shortcarrier- lifetime substrates.« less

  16. Optimization of a miniature short-wavelength infrared objective optics of a short-wavelength infrared to visible upconversion layer attached to a mobile-devices visible camera

    NASA Astrophysics Data System (ADS)

    Kadosh, Itai; Sarusi, Gabby

    2017-10-01

    The use of dual cameras in parallax in order to detect and create 3-D images in mobile devices has been increasing over the last few years. We propose a concept where the second camera will be operating in the short-wavelength infrared (SWIR-1300 to 1800 nm) and thus have night vision capability while preserving most of the other advantages of dual cameras in terms of depth and 3-D capabilities. In order to maintain commonality of the two cameras, we propose to attach to one of the cameras a SWIR to visible upconversion layer that will convert the SWIR image into a visible image. For this purpose, the fore optics (the objective lenses) should be redesigned for the SWIR spectral range and the additional upconversion layer, whose thickness is <1 μm. Such layer should be attached in close proximity to the mobile device visible range camera sensor (the CMOS sensor). This paper presents such a SWIR objective optical design and optimization that is formed and fit mechanically to the visible objective design but with different lenses in order to maintain the commonality and as a proof-of-concept. Such a SWIR objective design is very challenging since it requires mimicking the original visible mobile camera lenses' sizes and the mechanical housing, so we can adhere to the visible optical and mechanical design. We present in depth a feasibility study and the overall optical system performance of such a SWIR mobile-device camera fore optics design.

  17. Two-dimensional self-assembly of DNA-functionalized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Zhang, Honghu; Hagen, Noah; Kuzmenko, Ivan; Akinc, Mufit; Travesset, Alex; Mallapragada, Surya; Vaknin, David

    2D superlattices of nanoparticles (NPs) are promising candidates for nano-devices. It is still challenging to develop a simple yet efficient protocol to assemble NPs in a controlled manner. Here, we report on formation of 2D Gibbs monolayers of single-stranded DNA-coated gold nanoparticles (ssDNA-AuNPs) at the air-water interface by manipulation of salts contents. MgCl2 and CaCl2 in solutions facilitate the accumulation of the non-complementary ssDNA-AuNPs on aqueous surfaces. Grazing-incidence small-angle X-ray scattering (GISAXS) and X-ray reflectivity show that the surface AuNPs assembly forms a mono-particle layer and undergoes a transformation from short-range to long-range (hexagonal) order above a threshold of [MgCl2] or [CaCl2]. For solutions that include two kinds of ssDNA-AuNPs with complementary base-pairing, the surface AuNPs form a thicker film and only in-plane short-range order is observed. By using other salts (NaCl or LaCl3) at concentrations of similar ionic strength to those of MgCl2 or CaCl2, we find that surface adsorbed NPs lack any orders. X-ray fluorescence measurements provide direct evidence of surface enrichment of AuNPs and divalent ions (Ca2 +) . The work was supported by the Office of Basic Energy Sciences, USDOE under Contract No. DE-AC02-07CH11358 and DE-AC02-06CH11357.

  18. Coexistence of ferromagnetism and unconventional spin-glass freezing in the site-disordered kagome ferrite SrS n2F e4O11

    NASA Astrophysics Data System (ADS)

    Shlyk, L.; Strobel, S.; Farmer, B.; De Long, L. E.; Niewa, R.

    2018-02-01

    Single-crystal x-ray diffraction refinements indicate SrS n2F e4O11 crystallizes in the hexagonal R -type ferrite structure with noncentrosymmetric space group P 63m c and lattice parameters a =5.9541 (2 )Å , c =13.5761 (5 )Å , Z =2 (R (F )=0.034 ). Octahedrally coordinated 2 a [M (1) and M (1a)] and 6 c sites [M (2 )] have random, mixed occupation by Sn and Fe; whereas the tetrahedrally coordinated 2 b sites [Fe(3) and Fe(3a)] are exclusively occupied by Fe, whose displacement from the ideal position with trigonal-bipyramidal coordination causes the loss of inversion symmetry. Our dc and ac magnetization data indicate SrS n2F e4O11 single crystals undergo a ferro- or ferri-magnetic transition below a temperature TC=630 K with very low coercive fields μoHc ⊥=0.27 Oe and μoHc ∥=1.5 Oe at 300 K, for applied field perpendicular and parallel to the c axis, respectively. The value for TC is exceptionally high, and the coercive fields exceptionally low, among the known R-type ferrites. Time-dependent dc magnetization and frequency-dependent ac magnetization data indicate the onset of short-range, spin-glass freezing below Tf=35.8 K , which results from crystallographic disorder of magnetic F e3 + and nonmagnetic S n4 + ions on a frustrated Kagome sublattice. Anomalous ac susceptibility and thermomagnetic relaxation behavior in the short-range-ordered state differs from that of conventional spin glasses. Optical measurements in the ultraviolet to visible frequency range in a diffuse reflectance geometry indicate an overall optical band gap of 0.8 eV, consistent with observed semiconducting properties.

  19. Surface Majorana fermions and bulk collective modes in superfluid 3He-B

    NASA Astrophysics Data System (ADS)

    Park, YeJe; Chung, Suk Bum; Maciejko, Joseph

    2015-02-01

    The theoretical study of topological superfluids and superconductors has so far been carried out largely as a translation of the theory of noninteracting topological insulators into the superfluid language, whereby one replaces electrons by Bogoliubov quasiparticles and single-particle band Hamiltonians by Bogoliubov-de Gennes Hamiltonians. Band insulators and superfluids are, however, fundamentally different: While the former exist in the absence of interparticle interactions, the latter are broken symmetry states that owe their very existence to such interactions. In particular, unlike the static energy gap of a band insulator, the gap in a superfluid is due to a dynamical order parameter that is subject to both thermal and quantum fluctuations. In this work, we explore the consequences of bulk quantum fluctuations of the order parameter in the B phase of superfluid 3He on the topologically protected Majorana surface states. Neglecting the high-energy amplitude modes, we find that one of the three spin-orbit Goldstone modes in 3He-B couples to the surface Majorana fermions. This coupling in turn induces an effective short-range two-body interaction between the Majorana fermions, with coupling constant inversely proportional to the strength of the nuclear dipole-dipole interaction in bulk 3He. A mean-field theory suggests that the surface Majorana fermions in 3He-B may be in the vicinity of a metastable gapped time-reversal-symmetry-breaking phase.

  20. Period and amplitude of non-volcanic tremors and repeaters: a dimensional analysis

    NASA Astrophysics Data System (ADS)

    Nielsen, Stefan

    2017-04-01

    Since its relatively recent discovery, the origin of non-volcanic tremor has been source of great curiosity and debate. Two main interpretations have been proposed, one based on fluid migration, the other relating to slow slip events on a plate boundary (the latter hypothesis has recently gained considerable ground). Here I define the conditions of slip of one or more small asperities embedded within a larger creeping fault patch. The radiation-damping equation coupled with rate-and-state friction evolution equations results in a system of ordinary differential equations. For a finite size asperity, the system equates to a peculiar non-linear damped oscillator, converging to a limit cycle. Dimensional analysis shows that period and amplitude of the oscillations depend on dimensional parameter combinations formed from a limited set of parameters: asperity dimension Γ, rate and state friction parameters (a, b, L), shear stiffness of the medium G, mass density ρ, background creep rate ˙V and normal stress σ. Under realistic parameter ranges, the asperity may show (1) tremor-like short period oscillations, accelerating to radiate sufficient energy to be barely detectable and a periodicity of the order of one to ten Hertz, as observed for non-volcanic tremor activity at the base of large inter-plate faults; (2) isolated stick-slip events with intervals in the order of days to months, as observed in repeater events of modest magnitude within creeping fault sections.

  1. Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Nalini; Ahluwalia, P. K.; Thakur, Anil

    2015-05-15

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70}, Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30} and Hg{sub 90}In{sub 10}) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factormore » shows the presence of liquid state in the considered alloys.« less

  2. Thermodynamic and structural properties of hcp bulk and nano-precipitated Ag-Al.

    NASA Astrophysics Data System (ADS)

    Zarkevich, Nikolai; Johnson, Duane; Smirnov, Andrei

    2002-03-01

    We study the short- and long- range chemical ordering in hcp bulk Ag_2Al using the Monte Carlo method based on a Hamiltonian constructed via structural formation energies from ab initio electronic-structure calculations. We find that the ground-state structure and thermodynamic properties of bulk Ag_2Al is that determined from the X-ray experimental data. We also address the influence of the interface, coherency strain, and off-stoichiometric disorder on the structure of metastable γ' nano-precipitates in fcc Al matrix. We show that γ' precipitates are off-stoichiometric and provide a new Al-rich structure that reproduces the observed TEM image. We acknowledge our support in part by an ALCOA Foundation Grant, the U.S. Department of Energy through the Frederick Seitz Materials Research Laboratory at UIUC under grant DEFG02-91ER45439, and the UIUC Materials Computation Center under National Science Foundation grant DMR-9976550.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xiang; Zhang, Shuai; Jiao, Fang

    Two-step nucleation pathways in which disordered, amorphous, or dense liquid states precede appearance of crystalline phases have been reported for a wide range of materials, but the dynamics of such pathways are poorly understood. Moreover, whether these pathways are general features of crystallizing systems or a consequence of system-specific structural details that select for direct vs two-step processes is unknown. Using atomic force microscopy to directly observe crystallization of sequence-defined polymers, we show that crystallization pathways are indeed sequence dependent. When a short hydrophobic region is added to a sequence that directly forms crystalline particles, crystallization instead follows a two-stepmore » pathway that begins with creation of disordered clusters of 10-20 molecules and is characterized by highly non-linear crystallization kinetics in which clusters transform into ordered structures that then enter the growth phase. The results shed new light on non-classical crystallization mechanisms and have implications for design of self-assembling polymer systems.« less

  4. Evolution of short- and medium-range order in the melt-quenching amorphization of Ge 2 Sb 2 Te 5

    DOE PAGES

    Qiao, Chong; Guo, Y. R.; Dong, F.; ...

    2018-01-01

    Five structures (a tetrahedron and 3-, 4-, 5- and 6-fold octahedrons) are shown in the upper panel of the figure. Figures in the lower panel show the fractions of the five structures in Ge- and Sb-centered clusters with temperature.

  5. Short-Range-Order for fcc-based Binary Alloys Revisited from Microscopic Geometry

    NASA Astrophysics Data System (ADS)

    Yuge, Koretaka

    2018-04-01

    Short-range order (SRO) in disordered alloys is typically interpreted as competition between chemical effect of negative (or positive) energy gain by mixing constituent elements and geometric effects comes from difference in effective atomic radius. Although we have a number of theoretical approaches to quantitatively estimate SRO at given temperatures, it is still unclear to systematically understand trends in SRO for binary alloys in terms of geometric character, e.g., effective atomic radius for constituents. Since chemical effect plays significant role on SRO, it has been believed that purely geometric character cannot capture the SRO trends. Despite these considerations, based on the density functional theory (DFT) calculations on fcc-based 28 equiatomic binary alloys, we find that while conventional Goldschmidt or DFT-based atomic radius for constituents have no significant correlation with SRO, atomic radius for specially selected structure, constructed purely from information about underlying lattice, can successfully capture the magnitude of SRO. These facts strongly indicate that purely geometric information of the system plays central role to determine characteristic disordered structure.

  6. Local structure of NiPd solid solution alloys and its response to ion irradiation

    DOE PAGES

    Zhang, Fuxiang; Ullah, Mohammad Wali; Zhao, Shijun; ...

    2018-04-27

    The local structure of Ni$-$Pd solid solution alloys with compositions of Ni 80Pd 20 and Ni 50Pd 50 was investigated with anomalous X-ray diffraction, X-ray absorption and theoretical calculation/simulation. The fcc lattice is distorted for both alloys, and the Pd$-$Pd atomic pair distance is +4.4% and +1.4% larger than ideal values in Ni 80Pd 20 and Ni 50Pd 50 alloys, respectively. The corresponding atomic pair distance of Ni$-$Ni is -1.8% and -3.0% less than the ideal values. Different short-range orders in the alloys were quantitatively identified at the atomic level. In Ni 80Pd 20, Pd atoms are likely to formmore » Pd$-$Pd pairs, while Pd atoms are connected with Pd atoms in the second shell in the equiatomic solid solution alloy. Upon ion irradiation, little change of interatomic distance, but modification of chemical short-range order was observed. The number of Pd$-$Pd pairs decreases to the lowest value at 0.1 dpa, and further irradiation make it increase.« less

  7. Local structure of NiPd solid solution alloys and its response to ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fuxiang; Ullah, Mohammad Wali; Zhao, Shijun

    The local structure of Ni$-$Pd solid solution alloys with compositions of Ni 80Pd 20 and Ni 50Pd 50 was investigated with anomalous X-ray diffraction, X-ray absorption and theoretical calculation/simulation. The fcc lattice is distorted for both alloys, and the Pd$-$Pd atomic pair distance is +4.4% and +1.4% larger than ideal values in Ni 80Pd 20 and Ni 50Pd 50 alloys, respectively. The corresponding atomic pair distance of Ni$-$Ni is -1.8% and -3.0% less than the ideal values. Different short-range orders in the alloys were quantitatively identified at the atomic level. In Ni 80Pd 20, Pd atoms are likely to formmore » Pd$-$Pd pairs, while Pd atoms are connected with Pd atoms in the second shell in the equiatomic solid solution alloy. Upon ion irradiation, little change of interatomic distance, but modification of chemical short-range order was observed. The number of Pd$-$Pd pairs decreases to the lowest value at 0.1 dpa, and further irradiation make it increase.« less

  8. Comparative study of the magnetic properties of La3Ni2B‧O9 for B‧ = Nb, Taor Sb

    NASA Astrophysics Data System (ADS)

    Chin, Chun-Mann; Battle, Peter D.; Blundell, Stephen J.; Hunter, Emily; Lang, Franz; Hendrickx, Mylène; Paria Sena, Robert; Hadermann, Joke

    2018-02-01

    Polycrystalline samples of La3Ni2NbO9 and La3Ni2TaO9 have been characterised by X-ray and neutron diffraction, electron microscopy, magnetometry and muon spin relaxation (μSR); the latter technique was also applied to La3Ni2SbO9. On the length scale of a neutron diffraction experiment, the six-coordinate sites of the monoclinic perovskite structure are occupied in a 1:1 ordered manner by Ni and a random ⅓Ni/⅔B‧ mixture. Electron microscopy demonstrated that this 1:1 ordering is maintained over microscopic distances, although diffuse scattering indicative of short-range ordering on the mixed site was observed. No magnetic Bragg scattering was observed in neutron diffraction patterns collected from La3Ni2B‧O9 (B‧ = Nb or Ta) at 5 K although in each case μSR identified the presence of static spins below 30 K. Magnetometry showed that La3Ni2NbO9 behaves as a spin glass below 29 K but significant short-range interactions are present in La3Ni2TaO9 below 85 K. The contrasting properties of these compounds are discussed in terms of their microstructure.

  9. Molecular order and functional properties of starches from three waxy wheat varieties grown in China.

    PubMed

    Wang, Shujun; Wang, Jinrong; Zhang, Wei; Li, Caili; Yu, Jinglin; Wang, Shuo

    2015-08-15

    Molecular order and functional properties of starch from three waxy wheat varieties grown in China were investigated by a combination of various technical analyses. The total starch content of the waxy wheat ranged between 54.1% and 55.0%, and the amylose content of the starch was between 0.71% and 1.63%. Average particle diameter of the three starches varied between 16.5 and 17.4 μm. Three waxy wheat starches presented the typical A-type X-ray diffraction pattern, with relative crystallinity between 38.7% and 40.0%. No significant differences were observed in relative crystallinity, IR ratios of 1047/1022 cm(-1) and 1022/995 cm(-1), and FWHH of the band at 480 cm(-1), indicating the similarity in long-range order of crystallites and short-range order of double helices of three starch granules. Small differences were observed in swelling power, gelatinization parameters, pasting viscosities, and in vitro enzymatic digestibility of three waxy wheat starches. Under the stored condition, no retrogradation occurred for three waxy wheat starches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. 5f delocalization-induced suppression of quadrupolar order in U(Pd 1-xPt x)₃

    DOE PAGES

    Walker, H. C.; Le, M. D.; McEwen, K. A.; ...

    2011-12-27

    We present bulk magnetic and transport measurements and x-ray resonant scattering measurements on U(Pd 1-xPt x)₃ for x=0.005 and 0.01, which demonstrate the high sensitivity of the quadrupolar order in the canonical antiferroquadrupolar ordered system UPd₃ to doping with platinum. Bulk measurements for x=0.005 reveal behavior similar to that seen in UPd₃, albeit at a lower temperature, and x-ray resonant scattering provides evidence of quadrupolar order described by the Q xy order parameter. In contrast, bulk measurements reveal only an indistinct transition in x=0.01, consistent with the observation of short-range quadrupolar order in our x-ray resonant scattering results.

  11. Epitaxial Ge2Sb2Te5 probed by single cycle THz pulses of coherent synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Bragaglia, V.; Schnegg, A.; Calarco, R.; Holldack, K.

    2016-10-01

    A THz-probe spectroscopy scheme with laser-induced single cycle pulses of coherent synchrotron radiation is devised and adapted to reveal the dynamic THz transmittance response in epitaxially grown phase change materials upon 800 nm fs-laser excitation. Amorphous (a-) and crystalline (c-) films of the prototypical Ge2Sb2Te5 (GST) alloy are probed with single cycle THz pulses tuned to the spectral range of the highest absorption contrast at 2 THz. After an initial instantaneous sub-picosecond (ps) dynamic THz transmittance drop, the response of a-GST in that range is dominated only by a short recovery time τshort = 2 ps of the excited carriers. On the contrary, the behavior of the c-GST response displays a short decay of 0.85 ps followed by a long one τlong = 90 ps, suggesting that vacancy layers in an ordered c-GST play a role as dissipation channel for photo-induced free carriers.

  12. Impact of Bias-Correction Type and Conditional Training on Bayesian Model Averaging over the Northeast United States

    Treesearch

    Michael J. Erickson; Brian A. Colle; Joseph J. Charney

    2012-01-01

    The performance of a multimodel ensemble over the northeast United States is evaluated before and after applying bias correction and Bayesian model averaging (BMA). The 13-member Stony Brook University (SBU) ensemble at 0000 UTC is combined with the 21-member National Centers for Environmental Prediction (NCEP) Short-Range Ensemble Forecast (SREF) system at 2100 UTC....

  13. Combing bacterial turbulence.

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrey; Nishiguchi, Daiki; Aronson, Igor

    Living systems represented by ensembles of motile organisms demonstrate a transition from a chaotic motion to a highly ordered state. Examples of such living systems include suspensions of bacteria, schools of fish, flocks of birds and even crowds of people. In spite of significant differences in interacting mechanisms and motion scales, ordered living systems have many similarities: short-range alignment of organism, turbulent-like motion, emergence of large-scale flows and dynamic vortices. In this work, we rectify a turbulent dynamics in suspensions of swimming bacteria Bacillus subtilis by imposing periodical constraints on bacterial motion. Bacteria, swimming between periodically placed microscopic vertical pillars, may self-organize in a stable lattice of vortices. We demonstrate the emergence of a strong anti-ferromagnetic order of bacterial vortices in a rectangular lattice of pillars. Hydrodynamic interaction between vortices increases the stability of an emerged pattern. The highest stability of vortices in the anti-ferromagnetic lattice and the fastest vortices speed were observed in structures with the periods comparable with a correlation length of bacterial unconstrained motion. A.S and I.A were supported by the US DOE, Office of Basic Energy Sciences, Division of Materials Science And Engineering, under contract No. DE AC02-06CH11357 and D.N was supported by ALPS and JSPS Grant No. 26-9915.

  14. Dynamic decoupling and local atomic order of a model multicomponent metallic glass-former.

    PubMed

    Kim, Jeongmin; Sung, Bong June

    2015-06-17

    The dynamics of multicomponent metallic alloys is spatially heterogeneous near glass transition. The diffusion coefficient of one component of the metallic alloys may also decouple from those of other components, i.e., the diffusion coefficient of each component depends differently on the viscosity of metallic alloys. In this work we investigate the dynamic heterogeneity and decoupling of a model system for multicomponent Pd43Cu27Ni10P20 melts by using a hard sphere model that considers the size disparity of alloys but does not take chemical effects into account. We also study how such dynamic behaviors would relate to the local atomic structure of metallic alloys. We find, from molecular dynamics simulations, that the smallest component P of multicomponent Pd43Cu27Ni10P20 melts becomes dynamically heterogeneous at a translational relaxation time scale and that the largest major component Pd forms a slow subsystem, which has been considered mainly responsible for the stabilization of amorphous state of alloys. The heterogeneous dynamics of P atoms accounts for the breakdown of Stokes-Einstein relation and also leads to the dynamic decoupling of P and Pd atoms. The dynamically heterogeneous P atoms decrease the lifetime of the local short-range atomic orders of both icosahedral and close-packed structures by orders of magnitude.

  15. Imposing long-range ferromagnetic order in rare-earth-doped magnetic topological-insulator heterostructures

    NASA Astrophysics Data System (ADS)

    Duffy, L. B.; Frisk, A.; Burn, D. M.; Steinke, N.-J.; Herrero-Martin, J.; Ernst, A.; van der Laan, G.; Hesjedal, T.

    2018-05-01

    The combination of topological properties and magnetic order can lead to new quantum states and exotic physical phenomena, such as the quantum anomalous Hall (QAH) effect. The size of the magnetic gap in the topological surface states, key for the robust observation of the QAH state, scales with the magnetic moment of the doped three-dimensional topological insulator (TI). The pioneering transition-metal doped (Sb,Bi ) 2(Se,Te ) 3 thin films only allow for the observation of the QAH effect up to some 100 mK, despite the much higher magnetic ordering temperatures. On the other hand, high magnetic moment materials, such as rare-earth-doped (Sb,Bi ) 2(Se,Te ) 3 thin films, show large moments but no long-range magnetic order. Proximity coupling and interfacial effects, multiplied in artificial heterostructures, allow for the engineering of the electronic and magnetic properties. Here, we show the successful growth of high-quality Dy:Bi2Te3 /Cr:Sb2Te3 thin film heterostructures. Using x-ray magnetic spectroscopy we demonstrate that high transition temperature Cr:Sb2Te3 can introduce long-range magnetic order in high-moment Dy:Bi2Te3 —up to a temperature of 17 K—in excellent agreement with first-principles calculations, which reveal the origin of the long-range magnetic order in a strong antiferromagnetic coupling between Dy and Cr magnetic moments at the interface extending over several layers. Engineered magnetic TI heterostructures may be an ideal materials platform for observing the QAH effect at liquid He temperatures and above.

  16. Safety Eye Protection through Use of Fast Acting Optical Switching.

    DTIC Science & Technology

    1984-01-01

    media in which the inhomegeneity is on the order of the wavelength of visible light . At present there are not obvious ideal solutions based simply upon...transitions due to short range diffusion; and (4) inhomogeneous media in which the Inhomegeneity is on the order of the wavelength of visible light At...gallium arsenide diode (850 to 905nm), pulsed ruby (694.3nm), helium-neon (632.8nm) and doubled Nd:YAG (532nm). In the near future iodine (1315nm

  17. People’s Republic of China Scientific Abstracts, Number 200.

    DTIC Science & Technology

    1978-09-25

    all of whom were suffering from cirrhosis of the liver, portal vein hypertension , 56 [continuation of CHUNG-HUA WAI-K’O TSA-CHIH No 2, 20 Apr 78...temperature is one of the many important phases of the studies concerning earthquake forecasting . In order to be able to catch up with the world’s...HSIAN [EARTHQUAKE FRONT] in Chinese No 3, 6 Jun 78 pp 28-31 ABSTRACT: In order to effectively forecast (especially short range forecast ) an

  18. Disrupted resting-state functional connectivity in minimally treated chronic schizophrenia.

    PubMed

    Wang, Xijin; Xia, Mingrui; Lai, Yunyao; Dai, Zhengjia; Cao, Qingjiu; Cheng, Zhang; Han, Xue; Yang, Lei; Yuan, Yanbo; Zhang, Yong; Li, Keqing; Ma, Hong; Shi, Chuan; Hong, Nan; Szeszko, Philip; Yu, Xin; He, Yong

    2014-07-01

    The pathophysiology of chronic schizophrenia may reflect long term brain changes related to the disorder. The effect of chronicity on intrinsic functional connectivity patterns in schizophrenia without the potentially confounding effect of antipsychotic medications, however, remains largely unknown. We collected resting-state fMRI data in 21 minimally treated chronic schizophrenia patients and 20 healthy controls. We computed regional functional connectivity strength for each voxel in the brain, and further divided regional functional connectivity strength into short-range regional functional connectivity strength and long-range regional functional connectivity strength. General linear models were used to detect between-group differences in these regional functional connectivity strength metrics and to further systematically investigate the relationship between these differences and clinical/behavioral variables in the patients. Compared to healthy controls, the minimally treated chronic schizophrenia patients showed an overall reduced regional functional connectivity strength especially in bilateral sensorimotor cortex, right lateral prefrontal cortex, left insula and right lingual gyrus, and these regional functional connectivity strength decreases mainly resulted from disruption of short-range regional functional connectivity strength. The minimally treated chronic schizophrenia patients also showed reduced long-range regional functional connectivity strength in the bilateral posterior cingulate cortex/precuneus, and increased long-range regional functional connectivity strength in the right lateral prefrontal cortex and lingual gyrus. Notably, disrupted short-range regional functional connectivity strength mainly correlated with duration of illness and negative symptoms, whereas disrupted long-range regional functional connectivity strength correlated with neurocognitive performance. All of the results were corrected using Monte-Carlo simulation. This exploratory study demonstrates a disruption of intrinsic functional connectivity without long-term exposure to antipsychotic medications in chronic schizophrenia. Furthermore, this disruption was connection-distance dependent, thus raising the possibility for differential neural pathways in neurocognitive impairment and psychiatric symptoms in schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Investigation of Local Structures in Cation-ordered Microwave Dielectric A Solid-state NMR and First Principle Calculation Study

    NASA Astrophysics Data System (ADS)

    Kalfarisi, Rony G.

    Solid-state Nuclear Magnetic Resonance (ssNMR) spectroscopy has proven to be a powerful method to probe the local structure and dynamics of a system. In powdered solids, the nuclear spins experience various anisotropic interactions which depend on the molecular orientation. These anisotropic interactions make ssNMR very useful as they give a specific appearance to the resonance lines of the spectra. The position and shape of these resonance lines can be related to local structure and dynamics of the system under study. My research interest has focused around studying local structures and dynamics of quadrupolar nuclei in materials using ssNMR spectroscopy. 7Li and 93Nb ssNMR magic angle spinning (MAS) spectra, acquired at 17.6 and 7.06 T, have been used to evaluate the structural and dynamical properties of cation-ordered microwave dielectric materials. Microwave dielectric materials are essential in the application of wireless telecommunication, biomedical engineering, and other scientific and industrial implementations that use radio and microwave signals. The study of the local environment with respect to average structure, such as X-ray diffraction study, is essential for the better understanding of the correlations between structures and properties of these materials. The investigation for short and medium range can be performed with the use of ssNMR techniques. Even though XRD results show cationic ordering at the B-site (third coordination sphere), NMR spectra show a presence of disorder materials. This was indicated by the observation of a distribution in NMR parameters derived from experimental . {93}Nb NMR spectraand supported by theoretical calculations.

  20. Long range order and two-fluid behavior in heavy electron materials

    DOE PAGES

    Shirer, Kent R.; Shockley, Abigail C.; Dioguardi, Adam P.; ...

    2012-09-24

    The heavy electron Kondo liquid is an emergent state of condensed matter that displays universal behavior independent of material details. Properties of the heavy electron liquid are best probed by NMR Knight shift measurements, which provide a direct measure of the behavior of the heavy electron liquid that emerges below the Kondo lattice coherence temperature as the lattice of local moments hybridizes with the background conduction electrons. Because the transfer of spectral weight between the localized and itinerant electronic degrees of freedom is gradual, the Kondo liquid typically coexists with the local moment component until the material orders at lowmore » temperatures. The two-fluid formula captures this behavior in a broad range of materials in the paramagnetic state. In order to investigate two-fluid behavior and the onset and physical origin of different long range ordered ground states in heavy electron materials, we have extended Knight shift measurements to URu 2Si 2, CeIrIn 5, and CeRhIn 5. In CeRhIn 5 we find that the antiferromagnetic order is preceded by a relocalization of the Kondo liquid, providing independent evidence for a local moment origin of antiferromagnetism. In URu 2Si 2 the hidden order is shown to emerge directly from the Kondo liquid and so is not associated with local moment physics. Lastly, our results imply that the nature of the ground state is strongly coupled with the hybridization in the Kondo lattice in agreement with phase diagram proposed by Yang and Pines.« less

Top