Purser, Harry; Jarrold, Christopher
2010-04-01
A long-standing body of research supports the existence of separable short- and long-term memory systems, relying on phonological and semantic codes, respectively. The aim of the current study was to measure the contribution of long-term knowledge to short-term memory performance by looking for evidence of phonologically and semantically coded storage within a short-term recognition task, among developmental samples. Each experimental trial presented 4-item lists. In Experiment 1 typically developing children aged 5 to 6 years old showed evidence of phonologically coded storage across all 4 serial positions, but evidence of semantically coded storage at Serial Positions 1 and 2. In a further experiment, a group of individuals with Down syndrome was investigated as a test case that might be expected to use semantic coding to support short-term storage, but these participants showed no evidence of semantically coded storage and evidenced phonologically coded storage only at Serial Position 4, suggesting that individuals with Down syndrome have a verbal short-term memory capacity of 1 item. Our results suggest that previous evidence of semantic effects on "short-term memory performance" does not reflect semantic coding in short-term memory itself, and provide an experimental method for researchers wishing to take a relatively pure measure of verbal short-term memory capacity, in cases where rehearsal is unlikely.
Synaptic Scaling Enables Dynamically Distinct Short- and Long-Term Memory Formation
Tetzlaff, Christian; Kolodziejski, Christoph; Timme, Marc; Tsodyks, Misha; Wörgötter, Florentin
2013-01-01
Memory storage in the brain relies on mechanisms acting on time scales from minutes, for long-term synaptic potentiation, to days, for memory consolidation. During such processes, neural circuits distinguish synapses relevant for forming a long-term storage, which are consolidated, from synapses of short-term storage, which fade. How time scale integration and synaptic differentiation is simultaneously achieved remains unclear. Here we show that synaptic scaling – a slow process usually associated with the maintenance of activity homeostasis – combined with synaptic plasticity may simultaneously achieve both, thereby providing a natural separation of short- from long-term storage. The interaction between plasticity and scaling provides also an explanation for an established paradox where memory consolidation critically depends on the exact order of learning and recall. These results indicate that scaling may be fundamental for stabilizing memories, providing a dynamic link between early and late memory formation processes. PMID:24204240
Synaptic scaling enables dynamically distinct short- and long-term memory formation.
Tetzlaff, Christian; Kolodziejski, Christoph; Timme, Marc; Tsodyks, Misha; Wörgötter, Florentin
2013-10-01
Memory storage in the brain relies on mechanisms acting on time scales from minutes, for long-term synaptic potentiation, to days, for memory consolidation. During such processes, neural circuits distinguish synapses relevant for forming a long-term storage, which are consolidated, from synapses of short-term storage, which fade. How time scale integration and synaptic differentiation is simultaneously achieved remains unclear. Here we show that synaptic scaling - a slow process usually associated with the maintenance of activity homeostasis - combined with synaptic plasticity may simultaneously achieve both, thereby providing a natural separation of short- from long-term storage. The interaction between plasticity and scaling provides also an explanation for an established paradox where memory consolidation critically depends on the exact order of learning and recall. These results indicate that scaling may be fundamental for stabilizing memories, providing a dynamic link between early and late memory formation processes.
Short-Term Memory: The "Storage" Component of Human Brain Responses Predicts Recall.
ERIC Educational Resources Information Center
Chapman, Robert M.; And Others
1978-01-01
Presents electrophysiological and behavioral evidence for a neural process related to storage in short-term memory. Predicting recall performance on the basis of the storage component of brain responses is presented. A list of references is also included. (HM)
The storage and recall of auditory memory.
Nebenzahl, I; Albeck, Y
1990-01-01
The architecture of the auditory memory is investigated. The auditory information is assumed to be represented by f-t patterns. With the help of a psycho-physical experiment it is demonstrated that the storage of these patterns is highly folded in the sense that a long signal is broken into many short stretches before being stored in the memory. Recognition takes place by correlating newly heard input in the short term memory to information previously stored in the long term memory. We show that this correlation is performed after the input is accumulated and held statically in the short term memory.
Memory timeline: Brain ERP C250 (not P300) is an early biomarker of short-term storage.
Chapman, Robert M; Gardner, Margaret N; Mapstone, Mark; Dupree, Haley M; Antonsdottir, Inga M
2015-04-16
Brain event-related potentials (ERPs) offer a quantitative link between neurophysiological activity and cognitive performance. ERPs were measured while young adults performed a task that required storing a relevant stimulus in short-term memory. Using principal components analysis, ERP component C250 (maximum at 250 ms post-stimulus) was extracted from a set of ERPs that were separately averaged for various task conditions, including stimulus relevancy and stimulus sequence within a trial. C250 was more positive in response to task-specific stimuli that were successfully stored in short-term memory. This relationship between C250 and short-term memory storage of a stimulus was confirmed by a memory probe recall test where the behavioral recall of a stimulus was highly correlated with its C250 amplitude. ERP component P300 (and its subcomponents of P3a and P3b, which are commonly thought to represent memory operations) did not show a pattern of activation reflective of storing task-relevant stimuli. C250 precedes the P300, indicating that initial short-term memory storage may occur earlier than previously believed. Additionally, because C250 is so strongly predictive of a stimulus being stored in short-term memory, C250 may provide a strong index of early memory operations. Copyright © 2015 Elsevier B.V. All rights reserved.
Memory Is Not Only about Storage.
ERIC Educational Resources Information Center
Huber, Kay L.
1993-01-01
The Atkinson-Shiffrin model of memory has three components: sensory, short term, and long term. Each memory process (such as encoding, storage, and retrieval) can be linked to specific teaching and learning strategies. (SK)
Qualitative similarities in the visual short-term memory of pigeons and people.
Gibson, Brett; Wasserman, Edward; Luck, Steven J
2011-10-01
Visual short-term memory plays a key role in guiding behavior, and individual differences in visual short-term memory capacity are strongly predictive of higher cognitive abilities. To provide a broader evolutionary context for understanding this memory system, we directly compared the behavior of pigeons and humans on a change detection task. Although pigeons had a lower storage capacity and a higher lapse rate than humans, both species stored multiple items in short-term memory and conformed to the same basic performance model. Thus, despite their very different evolutionary histories and neural architectures, pigeons and humans have functionally similar visual short-term memory systems, suggesting that the functional properties of visual short-term memory are subject to similar selective pressures across these distant species.
ERIC Educational Resources Information Center
Herndon, Mary Anne
1978-01-01
In a model of the functioning of short term memory, the encoding of information for subsequent storage in long term memory is simulated. In the encoding process, semantically equivalent paragraphs are detected for recombination into a macro information unit. (HOD)
Fragile visual short-term memory is an object-based and location-specific store.
Pinto, Yaïr; Sligte, Ilja G; Shapiro, Kimron L; Lamme, Victor A F
2013-08-01
Fragile visual short-term memory (FM) is a recently discovered form of visual short-term memory. Evidence suggests that it provides rich and high-capacity storage, like iconic memory, yet it exists, without interference, almost as long as visual working memory. In the present study, we sought to unveil the functional underpinnings of this memory storage. We found that FM is only completely erased when the new visual scene appears at the same location and consists of the same objects as the to-be-recalled information. This result has two important implications: First, it shows that FM is an object- and location-specific store, and second, it suggests that FM might be used in everyday life when the presentation of visual information is appropriately designed.
Bancroft, Tyler D; Hogeveen, Jeremy; Hockley, William E; Servos, Philip
2014-01-01
In a previous study, Harris et al. (2002) found disruption of vibrotactile short-term memory after applying single-pulse transcranial magnetic stimulation (TMS) to primary somatosensory cortex (SI) early in the maintenance period, and suggested that this demonstrated a role for SI in vibrotactile memory storage. While such a role is compatible with recent suggestions that sensory cortex is the storage substrate for working memory, it stands in contrast to a relatively large body of evidence from human EEG and single-cell recording in primates that instead points to prefrontal cortex as the storage substrate for vibrotactile memory. In the present study, we use computational methods to demonstrate how Harris et al.'s results can be reproduced by TMS-induced activity in sensory cortex and subsequent feedforward interference with memory traces stored in prefrontal cortex, thereby reconciling discordant findings in the tactile memory literature.
ERIC Educational Resources Information Center
Engel de Abreu, Pascale Marguerite Josiane; Gathercole, Susan Elizabeth; Martin, Romain
2011-01-01
This study investigates the relationship between working memory and language in young children growing up in a multilingual environment. The aim is to explore whether mechanisms of short-term storage and cognitive control hold similar relations to emerging language skills and to investigate if potential links are mediated by related cognitive…
Maxcey, Ashleigh M.; Fukuda, Keisuke; Song, Won S.; Woodman, Geoffrey F.
2015-01-01
As researchers who study working memory, we often assume that participants keep a representation of an object in working memory when we present a cue that indicates that object will be tested in a couple of seconds. This intuitively accounts for how well people can remember a cued object relative to their memory for that same object presented without a cue. However, it is possible that this superior memory does not purely reflect storage of the cued object in working memory. We tested the hypothesis that cued presented during a stream of objects, followed by a short retention interval and immediate memory test, change how information is handled by long-term memory. We tested this hypothesis using a family of frontal event-related potentials (ERPs) believed to reflect long-term memory storage. We found that these frontal indices of long-term memory were sensitive to the task relevance of objects signaled by auditory cues, even when objects repeat frequently such that proactive interference was high. Our findings indicate the problematic nature of assuming process purity in the study of working memory, and demonstrate how frequent stimulus repetitions fail to isolate the role of working memory mechanisms. PMID:25604772
Maxcey, Ashleigh M; Fukuda, Keisuke; Song, Won S; Woodman, Geoffrey F
2015-10-01
As researchers who study working memory, we often assume that participants keep a representation of an object in working memory when we present a cue that indicates that the object will be tested in a couple of seconds. This intuitively accounts for how well people can remember a cued object, relative to their memory for that same object presented without a cue. However, it is possible that this superior memory does not purely reflect storage of the cued object in working memory. We tested the hypothesis that cues presented during a stream of objects, followed by a short retention interval and immediate memory test, can change how information is handled by long-term memory. We tested this hypothesis by using a family of frontal event-related potentials believed to reflect long-term memory storage. We found that these frontal indices of long-term memory were sensitive to the task relevance of objects signaled by auditory cues, even when the objects repeated frequently, such that proactive interference was high. Our findings indicate the problematic nature of assuming process purity in the study of working memory, and demonstrate that frequent stimulus repetitions fail to isolate the role of working memory mechanisms.
Bolden, Jennifer; Rapport, Mark D; Raiker, Joseph S; Sarver, Dustin E; Kofler, Michael J
2012-08-01
The current study dissociated and examined the two primary components of the phonological working memory subsystem--the short-term store and articulatory rehearsal mechanism--in boys with ADHD (n = 18) relative to typically developing boys (n = 15). Word lists of increasing length (2, 4, and 6 words per trial) were presented to and recalled by children following a brief (3 s) interval to assess their phonological short-term storage capacity. Children's ability to utilize the articulatory rehearsal mechanism to actively maintain information in the phonological short-term store was assessed using word lists at their established memory span but with extended rehearsal times (12 s and 21 s delays). Results indicate that both phonological shortterm storage capacity and articulatory rehearsal are impaired or underdeveloped to a significant extent in boys with ADHD relative to typically developing boys, even after controlling for age, SES, IQ, and reading speed. Larger magnitude deficits, however, were apparent in short-term storage capacity (ES = 1.15 to 1.98) relative to articulatory rehearsal (ES = 0.47 to 1.02). These findings are consistent with previous reports of deficient phonological short-term memory in boys with ADHD, and suggest that future attempts to develop remedial cognitive interventions for children with ADHD will need to include active components that require children to hold increasingly more information over longer time intervals.
Visuospatial Immediate Memory in Specific Language Impairment
ERIC Educational Resources Information Center
Archibald, Lisa M. D.; Gathercole, Susan E.
2006-01-01
Purpose: Investigations of the cognitive processes underlying specific language impairment (SLI) have implicated deficits in verbal short-term and working memory and in particular the storage and processing of phonological information. This study investigated short-term and working memory for visuospatial material for a group of children with SLI,…
Iconic Memory and Reading Performance in Nine-Year-Old Children
ERIC Educational Resources Information Center
Riding, R. J.; Pugh, J. C.
1977-01-01
The reading process incorporates three factors: images registered in visual sensory memory, semantic analysis in short-term memory, and long-term memory storage. The focus here is on the contribution of sensory memory to reading performance. (Author/RK)
Syntax and serial recall: How language supports short-term memory for order.
Perham, Nick; Marsh, John E; Jones, Dylan M
2009-07-01
The extent to which familiar syntax supports short-term serial recall of visually presented six-item sequences was shown by the superior recall of lists in which item pairs appeared in the order of "adjective-noun" (items 1-2, 3-4, 5-6)--congruent with English syntax--compared to when the order of items within pairs was reversed. The findings complement other evidence suggesting that short-term memory is an assemblage of language processing and production processes more than it is a bespoke short-term memory storage system.
The role of inhibition for working memory processes: ERP evidence from a short-term storage task.
Getzmann, Stephan; Wascher, Edmund; Schneider, Daniel
2018-05-01
Human working memory is the central unit for short-term storage of information. In addition to the selection and adequate storage of relevant information, the suppression of irrelevant stimuli from the environment seems to be of importance for working memory processes. To learn more about the interplay of information uptake and inhibition of irrelevant information, the present study used ERP measures and a short-term storage and retrieval task, in which pairs of either numbers or letters had to be compared. Random sequences of four stimuli (two numbers and two letters) were presented, with either the numbers or the letters being relevant for comparison. The analysis of ERPs to each of the four stimuli indicated more pronounced P2 and P3b amplitudes for relevant than irrelevant stimuli. In contrast, the N2 (reflecting inhibitory control) was only elicited by irrelevant stimuli. Moreover, the N2 amplitude of the second irrelevant stimulus was associated with behavioral performance, indicating the importance of inhibition of task-irrelevant stimuli for working memory processes. In sum, the findings demonstrate the role of cognitive control mechanisms for protecting relevant contents in working memory against irrelevant information. © 2017 Society for Psychophysiological Research.
Chapman, Robert M.; Gardner, Margaret N.; Mapstone, Mark; Klorman, Rafael; Porsteinsson, Anton P.; Dupree, Haley M.; Antonsdottir, Inga M.; Kamalyan, Lily
2016-01-01
Objective To determine how aging and dementia affect the brain’s initial storing of task-relevant and irrelevant information in short-term memory. Methods We used brain Event-Related Potentials (ERPs) to measure short-term memory storage (ERP component C250) in 36 Young Adults, 36 Normal Elderly, and 36 early-stage AD subjects. Participants performed the Number-Letter task, a cognitive paradigm requiring memory storage of a first relevant stimulus to compare it with a second stimulus. Results In Young Adults, C250 was more positive for the first task-relevant stimulus compared to all other stimuli. C250 in Normal Elderly and AD subjects was roughly the same to relevant and irrelevant stimuli in intratrial parts 1–3 but not 4. The AD group had lower C250 to relevant stimuli in part 1. Conclusions Both normal aging and dementia cause less differentiation of relevant from irrelevant information in initial storage. There was a large aging effect involving differences in the pattern of C250 responses of the Young Adult versus the Normal Elderly/AD groups. Also, a potential dementia effect was obtained. Significance C250 is a candidate tool for measuring short-term memory performance on a biological level, as well as a potential marker for memory changes due to normal aging and dementia. PMID:27178862
Effects of Anxiety on Memory Storage and Updating in Young Children
ERIC Educational Resources Information Center
Visu-Petra, Laura; Cheie, Lavinia; Benga, Oana; Alloway, Tracy Packiam
2011-01-01
The relationship between trait anxiety and memory functioning in young children was investigated. Two studies were conducted, using tasks tapping verbal and visual-spatial short-term memory (Study 1) and working memory (Study 2) in preschoolers. On the verbal storage tasks, there was a detrimental effect of anxiety on processing efficiency…
Neural Plasticity and Memory: Is Memory Encoded in Hydrogen Bonding Patterns?
Amtul, Zareen; Rahman, Atta-Ur
2016-02-01
Current models of memory storage recognize posttranslational modification vital for short-term and mRNA translation for long-lasting information storage. However, at the molecular level things are quite vague. A comprehensive review of the molecular basis of short and long-lasting synaptic plasticity literature leads us to propose that the hydrogen bonding pattern at the molecular level may be a permissive, vital step of memory storage. Therefore, we propose that the pattern of hydrogen bonding network of biomolecules (glycoproteins and/or DNA template, for instance) at the synapse is the critical edifying mechanism essential for short- and long-term memories. A novel aspect of this model is that nonrandom impulsive (or unplanned) synaptic activity functions as a synchronized positive-feedback rehearsal mechanism by revising the configurations of the hydrogen bonding network by tweaking the earlier tailored hydrogen bonds. This process may also maintain the elasticity of the related synapses involved in memory storage, a characteristic needed for such networks to alter intricacy and revise endlessly. The primary purpose of this review is to stimulate the efforts to elaborate the mechanism of neuronal connectivity both at molecular and chemical levels. © The Author(s) 2014.
Orthographic Structure and Reading Experience Affect the Transfer from Iconic to Short Term Memory
ERIC Educational Resources Information Center
Lefton, Lester A.; Spragins, Anne B.
1974-01-01
The basic hypothesis of these experiments was that the processing strategy for the transfer of alphabetic material from iconic storage to short-term memory involves a sequential left-to-right factor that develops with increases in experience with reading. (Author)
Peter, Beate
2018-01-01
In a companion study, adults with dyslexia and adults with a probable history of childhood apraxia of speech showed evidence of difficulty with processing sequential information during nonword repetition, multisyllabic real word repetition and nonword decoding. Results suggested that some errors arose in visual encoding during nonword reading, all levels of processing but especially short-term memory storage/retrieval during nonword repetition, and motor planning and programming during complex real word repetition. To further investigate the role of short-term memory, a participant with short-term memory impairment (MI) was recruited. MI was confirmed with poor performance during a sentence repetition and three nonword repetition tasks, all of which have a high short-term memory load, whereas typical performance was observed during tests of reading, spelling, and static verbal knowledge, all with low short-term memory loads. Experimental results show error-free performance during multisyllabic real word repetition but high counts of sequence errors, especially migrations and assimilations, during nonword repetition, supporting short-term memory as a locus of sequential processing deficit during nonword repetition. Results are also consistent with the hypothesis that during complex real word repetition, short-term memory is bypassed as the word is recognized and retrieved from long-term memory prior to producing the word.
Ji, Qingchun; Wang, Yingying; Guo, Wei; Zhou, Chenglin
2017-01-01
Working memory is critical for various cognitive processes and can be separated into two stages: short-term memory storage and manipulation processing. Although previous studies have demonstrated that increased physical activity (PA) improves working memory and that males outperform females on visuospatial working memory tasks, few studies have determined the contribution of the two underlying stages to the visuospatial working memory improvement associated with PA. Thus, the aims of the present study were to verify the relationship between physical activity and visuospatial working memory, determine whether one or both stages were affected by PA, and investigate any sex differences. A total of 56 undergraduate students were recruited for this study. Their scores on the International Physical Activity Questionnaire (IPAQ) were used to separate them into either a lower PA ( n = 26; IPAQ score ≤3,000 metabolic equivalent [MET]-min/week) or higher PA ( n = 30; IPAQ score >3,000 MET-min/week) group. Participants were required to complete three tasks: a visuospatial working memory task, a task that examines the short-term memory storage stage, and a mental rotation task that examines the active manipulation stage. Participants in the higher PA group maintained similar accuracy but displayed significantly faster reaction times (RT) than those in the lower PA group on the visuospatial working memory and manipulation tasks. By contrast, no difference was observed between groups on the short-term memory storage task. In addition, no effects of sex were detected. Our results confirm that PA was positively to visuospatial working memory and that this positive relationship was associated with more rapid cognitive processing during the manipulation stage, with little or no relationship between PA and the memory storage stage of visuospatial working memory.
Rethinking the connection between working memory and language impairment.
Archibald, Lisa M D; Harder Griebeling, Katherine
2016-05-01
Working memory deficits have been found for children with specific language impairment (SLI) on tasks imposing increasing short-term memory load with or without additional, consistent (and simple) processing load. To examine the processing function of working memory in children with low language (LL) by employing tasks imposing increasing processing loads with constant storage demands individually adjusted based on each participant's short-term memory capacity. School-age groups with LL (n = 17) and typical language with either average (n = 28) or above-average nonverbal intelligence (n = 15) completed complex working memory-span tasks varying processing load while keeping storage demands constant, varying storage demands while keeping processing load constant, simple storage-span tasks, and measures of language and nonverbal intelligence. Teachers completed questionnaires about cognition and learning. Significantly lower scores were found for the LL than either matched group on storage-based tasks, but no group differences were found on the tasks varying processing load. Teachers' ratings of oral expression and mathematics abilities discriminated those who did or did not complete the most challenging cognitive tasks. The results implicate a deficit in the phonological storage but not in the central executive component of working memory for children with LL. Teacher ratings may reveal personality traits related to perseverance of effort in cognitive research. © 2015 Royal College of Speech and Language Therapists.
Chapman, Robert M; Gardner, Margaret N; Mapstone, Mark; Klorman, Rafael; Porsteinsson, Anton P; Dupree, Haley M; Antonsdottir, Inga M; Kamalyan, Lily
2016-06-01
To determine how aging and dementia affect the brain's initial storing of task-relevant and irrelevant information in short-term memory. We used brain Event-Related Potentials (ERPs) to measure short-term memory storage (ERP component C250) in 36 Young Adults, 36 Normal Elderly, and 36 early-stage AD subjects. Participants performed the Number-Letter task, a cognitive paradigm requiring memory storage of a first relevant stimulus to compare it with a second stimulus. In Young Adults, C250 was more positive for the first task-relevant stimulus compared to all other stimuli. C250 in Normal Elderly and AD subjects was roughly the same to relevant and irrelevant stimuli in Intratrial Parts 1-3 but not 4. The AD group had lower C250 to relevant stimuli in part 1. Both normal aging and dementia cause less differentiation of relevant from irrelevant information in initial storage. There was a large aging effect involving differences in the pattern of C250 responses of the Young Adult versus the Normal Elderly/AD groups. Also, a potential dementia effect was obtained. C250 is a candidate tool for measuring short-term memory performance on a biological level, as well as a potential marker for memory changes due to normal aging and dementia. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Parallel Consolidation of Simple Features into Visual Short-Term Memory
ERIC Educational Resources Information Center
Mance, Irida; Becker, Mark W.; Liu, Taosheng
2012-01-01
Although considerable research has examined the storage limits of visual short-term memory (VSTM), little is known about the initial formation (i.e., the consolidation) of VSTM representations. A few previous studies have estimated the capacity of consolidation to be one item at a time. Here we used a sequential-simultaneous manipulation to…
Lin, Po-Han; Luck, Steven J.
2012-01-01
The change detection task has become a standard method for estimating the storage capacity of visual working memory. Most researchers assume that this task isolates the properties of an active short-term storage system that can be dissociated from long-term memory systems. However, long-term memory storage may influence performance on this task. In particular, memory traces from previous trials may create proactive interference that sometimes leads to errors, thereby reducing estimated capacity. Consequently, the capacity of visual working memory may be higher than is usually thought, and correlations between capacity and other measures of cognition may reflect individual differences in proactive interference rather than individual differences in the capacity of the short-term storage system. Indeed, previous research has shown that change detection performance can be influenced by proactive interference under some conditions. The purpose of the present study was to determine whether the canonical version of the change detection task – in which the to-be-remembered information consists of simple, briefly presented features – is influenced by proactive interference. Two experiments were conducted using methods that ordinarily produce substantial evidence of proactive interference, but no proactive interference was observed. Thus, the canonical version of the change detection task can be used to assess visual working memory capacity with no meaningful influence of proactive interference. PMID:22403556
Lin, Po-Han; Luck, Steven J
2012-01-01
The change detection task has become a standard method for estimating the storage capacity of visual working memory. Most researchers assume that this task isolates the properties of an active short-term storage system that can be dissociated from long-term memory systems. However, long-term memory storage may influence performance on this task. In particular, memory traces from previous trials may create proactive interference that sometimes leads to errors, thereby reducing estimated capacity. Consequently, the capacity of visual working memory may be higher than is usually thought, and correlations between capacity and other measures of cognition may reflect individual differences in proactive interference rather than individual differences in the capacity of the short-term storage system. Indeed, previous research has shown that change detection performance can be influenced by proactive interference under some conditions. The purpose of the present study was to determine whether the canonical version of the change detection task - in which the to-be-remembered information consists of simple, briefly presented features - is influenced by proactive interference. Two experiments were conducted using methods that ordinarily produce substantial evidence of proactive interference, but no proactive interference was observed. Thus, the canonical version of the change detection task can be used to assess visual working memory capacity with no meaningful influence of proactive interference.
ERIC Educational Resources Information Center
Matsumoto, Yukihisa; Sandoz, Jean-Christophe; Devaud, Jean-Marc; Lormant, Flore; Mizunami, Makoto; Giurfa, Martin
2014-01-01
Memory is a dynamic process that allows encoding, storage, and retrieval of information acquired through individual experience. In the honeybee "Apis mellifera," olfactory conditioning of the proboscis extension response (PER) has shown that besides short-term memory (STM) and mid-term memory (MTM), two phases of long-term memory (LTM)…
The many faces of working memory and short-term storage.
Cowan, Nelson
2017-08-01
The topic of working memory (WM) is ubiquitous in research on cognitive psychology and on individual differences. According to one definition, it is a small amount of information kept in a temporary state of heightened accessibility; it is used in most types of communication and problem solving. Short-term storage has been defined as the passive (i.e., non-attention-based, nonstrategic) component of WM or, alternatively, as a passive store separate from an attention-based WM. Here I note that much confusion has been created by the use by various investigators of many, subtly different definitions of WM and short-term storage. The definitions are sometimes made explicit and sometimes implied. As I explain, the different definitions may have stemmed from the use of a wide variety of techniques to explore WM, along with differences in theoretical orientation. By delineating nine previously used definitions of WM and explaining how additional ones may emerge from combinations of these nine, I hope to improve scientific discourse on WM. The potential advantages of clarity about definitions of WM and short-term storage are illustrated with respect to several ongoing research controversies.
Visual working memory buffers information retrieved from visual long-term memory.
Fukuda, Keisuke; Woodman, Geoffrey F
2017-05-16
Human memory is thought to consist of long-term storage and short-term storage mechanisms, the latter known as working memory. Although it has long been assumed that information retrieved from long-term memory is represented in working memory, we lack neural evidence for this and need neural measures that allow us to watch this retrieval into working memory unfold with high temporal resolution. Here, we show that human electrophysiology can be used to track information as it is brought back into working memory during retrieval from long-term memory. Specifically, we found that the retrieval of information from long-term memory was limited to just a few simple objects' worth of information at once, and elicited a pattern of neurophysiological activity similar to that observed when people encode new information into working memory. Our findings suggest that working memory is where information is buffered when being retrieved from long-term memory and reconcile current theories of memory retrieval with classic notions about the memory mechanisms involved.
Visual working memory buffers information retrieved from visual long-term memory
Fukuda, Keisuke; Woodman, Geoffrey F.
2017-01-01
Human memory is thought to consist of long-term storage and short-term storage mechanisms, the latter known as working memory. Although it has long been assumed that information retrieved from long-term memory is represented in working memory, we lack neural evidence for this and need neural measures that allow us to watch this retrieval into working memory unfold with high temporal resolution. Here, we show that human electrophysiology can be used to track information as it is brought back into working memory during retrieval from long-term memory. Specifically, we found that the retrieval of information from long-term memory was limited to just a few simple objects’ worth of information at once, and elicited a pattern of neurophysiological activity similar to that observed when people encode new information into working memory. Our findings suggest that working memory is where information is buffered when being retrieved from long-term memory and reconcile current theories of memory retrieval with classic notions about the memory mechanisms involved. PMID:28461479
Spatiotemporal Proximity Effects in Visual Short-Term Memory Examined by Target-Nontarget Analysis
ERIC Educational Resources Information Center
Sapkota, Raju P.; Pardhan, Shahina; van der Linde, Ian
2016-01-01
Visual short-term memory (VSTM) is a limited-capacity system that holds a small number of objects online simultaneously, implying that competition for limited storage resources occurs (Phillips, 1974). How the spatial and temporal proximity of stimuli affects this competition is unclear. In this 2-experiment study, we examined the effect of the…
Down Syndrome and Short-Term Memory Impairment: A Storage or Retrieval Deficit?
ERIC Educational Resources Information Center
Adler, Sol; McDade, Hiram L.
1980-01-01
Three groups of eight Ss (Down's syndrome, CA control, and MA control) received a battery of tests to assess recall and recognition memory using either auditory or visual input with verbal and nonverbal responses. Results indicated that the Down's syndrome group possessed deficits in both storage and retrieval abilities, with storage of visually…
Auditory short-term memory activation during score reading.
Simoens, Veerle L; Tervaniemi, Mari
2013-01-01
Performing music on the basis of reading a score requires reading ahead of what is being played in order to anticipate the necessary actions to produce the notes. Score reading thus not only involves the decoding of a visual score and the comparison to the auditory feedback, but also short-term storage of the musical information due to the delay of the auditory feedback during reading ahead. This study investigates the mechanisms of encoding of musical information in short-term memory during such a complicated procedure. There were three parts in this study. First, professional musicians participated in an electroencephalographic (EEG) experiment to study the slow wave potentials during a time interval of short-term memory storage in a situation that requires cross-modal translation and short-term storage of visual material to be compared with delayed auditory material, as it is the case in music score reading. This delayed visual-to-auditory matching task was compared with delayed visual-visual and auditory-auditory matching tasks in terms of EEG topography and voltage amplitudes. Second, an additional behavioural experiment was performed to determine which type of distractor would be the most interfering with the score reading-like task. Third, the self-reported strategies of the participants were also analyzed. All three parts of this study point towards the same conclusion according to which during music score reading, the musician most likely first translates the visual score into an auditory cue, probably starting around 700 or 1300 ms, ready for storage and delayed comparison with the auditory feedback.
Auditory Short-Term Memory Activation during Score Reading
Simoens, Veerle L.; Tervaniemi, Mari
2013-01-01
Performing music on the basis of reading a score requires reading ahead of what is being played in order to anticipate the necessary actions to produce the notes. Score reading thus not only involves the decoding of a visual score and the comparison to the auditory feedback, but also short-term storage of the musical information due to the delay of the auditory feedback during reading ahead. This study investigates the mechanisms of encoding of musical information in short-term memory during such a complicated procedure. There were three parts in this study. First, professional musicians participated in an electroencephalographic (EEG) experiment to study the slow wave potentials during a time interval of short-term memory storage in a situation that requires cross-modal translation and short-term storage of visual material to be compared with delayed auditory material, as it is the case in music score reading. This delayed visual-to-auditory matching task was compared with delayed visual-visual and auditory-auditory matching tasks in terms of EEG topography and voltage amplitudes. Second, an additional behavioural experiment was performed to determine which type of distractor would be the most interfering with the score reading-like task. Third, the self-reported strategies of the participants were also analyzed. All three parts of this study point towards the same conclusion according to which during music score reading, the musician most likely first translates the visual score into an auditory cue, probably starting around 700 or 1300 ms, ready for storage and delayed comparison with the auditory feedback. PMID:23326487
Combined Acquisition/Processing For Data Reduction
NASA Astrophysics Data System (ADS)
Kruger, Robert A.
1982-01-01
Digital image processing systems necessarily consist of three components: acquisition, storage/retrieval and processing. The acquisition component requires the greatest data handling rates. By coupling together the acquisition witn some online hardwired processing, data rates and capacities for short term storage can be reduced. Furthermore, long term storage requirements can be reduced further by appropriate processing and editing of image data contained in short term memory. The net result could be reduced performance requirements for mass storage, processing and communication systems. Reduced amounts of data also snouid speed later data analysis and diagnostic decision making.
Wang, Xiaoli; Logie, Robert H; Jarrold, Christopher
2016-08-01
Neuropsychological studies of verbal short-term memory have often focused on two signature effects - phonological similarity and word length - the absence of which has been taken to indicate problems in phonological storage and rehearsal respectively. In the present study we present a possible alternative reading of such data, namely that the absence of these effects can follow as a consequence of an individual's poor level of recall. Data from a large normative sample of 251 adult participants were re-analyzed under the assumption that the size of phonological similarity and word length effects are proportional to an individual's overall level of recall. For both manipulations, when proportionalized effects were plotted against memory span, the same function fit the data in both auditory and visual presentation conditions. Furthermore, two additional sets of single-case data were broadly comparable to those that would be expected for an individual's level of verbal short-term memory performance albeit with some variation across tasks. These findings indicate that the absolute magnitude of phonological similarity and word length effects depends on overall levels of recall, and that these effects are necessarily eliminated at low levels of verbal short-term memory performance. This has implications for how one interprets any variation in the size of these effects, and raises serious questions about the causal direction of any relationship between impaired verbal short-term memory and the absence of phonological similarity or word length effects.
Camina, Eduardo; Güell, Francisco
2017-01-01
This review aims to classify and clarify, from a neuroanatomical, neurophysiological, and psychological perspective, different memory models that are currently widespread in the literature as well as to describe their origins. We believe it is important to consider previous developments without which one cannot adequately understand the kinds of models that are now current in the scientific literature. This article intends to provide a comprehensive and rigorous overview for understanding and ordering the latest scientific advances related to this subject. The main forms of memory presented include sensory memory, short-term memory, and long-term memory. Information from the world around us is first stored by sensory memory, thus enabling the storage and future use of such information. Short-term memory (or memory) refers to information processed in a short period of time. Long-term memory allows us to store information for long periods of time, including information that can be retrieved consciously (explicit memory) or unconsciously (implicit memory). PMID:28713278
Camina, Eduardo; Güell, Francisco
2017-01-01
This review aims to classify and clarify, from a neuroanatomical, neurophysiological, and psychological perspective, different memory models that are currently widespread in the literature as well as to describe their origins. We believe it is important to consider previous developments without which one cannot adequately understand the kinds of models that are now current in the scientific literature. This article intends to provide a comprehensive and rigorous overview for understanding and ordering the latest scientific advances related to this subject. The main forms of memory presented include sensory memory, short-term memory, and long-term memory. Information from the world around us is first stored by sensory memory, thus enabling the storage and future use of such information. Short-term memory (or memory) refers to information processed in a short period of time. Long-term memory allows us to store information for long periods of time, including information that can be retrieved consciously (explicit memory) or unconsciously (implicit memory).
Attentional Demands Predict Short-Term Memory Load Response in Posterior Parietal Cortex
ERIC Educational Resources Information Center
Magen, Hagit; Emmanouil, Tatiana-Aloi; McMains, Stephanie A.; Kastner, Sabine; Treisman, Anne
2009-01-01
Limits to the capacity of visual short-term memory (VSTM) indicate a maximum storage of only 3 or 4 items. Recently, it has been suggested that activity in a specific part of the brain, the posterior parietal cortex (PPC), is correlated with behavioral estimates of VSTM capacity and might reflect a capacity-limited store. In three experiments that…
Short-term memory and long-term memory are still different.
Norris, Dennis
2017-09-01
A commonly expressed view is that short-term memory (STM) is nothing more than activated long-term memory. If true, this would overturn a central tenet of cognitive psychology-the idea that there are functionally and neurobiologically distinct short- and long-term stores. Here I present an updated case for a separation between short- and long-term stores, focusing on the computational demands placed on any STM system. STM must support memory for previously unencountered information, the storage of multiple tokens of the same type, and variable binding. None of these can be achieved simply by activating long-term memory. For example, even a simple sequence of digits such as "1, 3, 1" where there are 2 tokens of the digit "1" cannot be stored in the correct order simply by activating the representations of the digits "1" and "3" in LTM. I also review recent neuroimaging data that has been presented as evidence that STM is activated LTM and show that these data are exactly what one would expect to see based on a conventional 2-store view. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Short-Term Memory and Long-Term Memory are Still Different
2017-01-01
A commonly expressed view is that short-term memory (STM) is nothing more than activated long-term memory. If true, this would overturn a central tenet of cognitive psychology—the idea that there are functionally and neurobiologically distinct short- and long-term stores. Here I present an updated case for a separation between short- and long-term stores, focusing on the computational demands placed on any STM system. STM must support memory for previously unencountered information, the storage of multiple tokens of the same type, and variable binding. None of these can be achieved simply by activating long-term memory. For example, even a simple sequence of digits such as “1, 3, 1” where there are 2 tokens of the digit “1” cannot be stored in the correct order simply by activating the representations of the digits “1” and “3” in LTM. I also review recent neuroimaging data that has been presented as evidence that STM is activated LTM and show that these data are exactly what one would expect to see based on a conventional 2-store view. PMID:28530428
Remembering over the short-term: the case against the standard model.
Nairne, James S
2002-01-01
Psychologists often assume that short-term storage is synonymous with activation, a mnemonic property that keeps information in an immediately accessible form. Permanent knowledge is activated, as a result of on-line cognitive processing, and an activity trace is established "in" short-term (or working) memory. Activation is assumed to decay spontaneously with the passage of time, so a refreshing process-rehearsal-is needed to maintain availability. Most of the phenomena of immediate retention, such as capacity limitations and word length effects, are assumed to arise from trade-offs between rehearsal and decay. This "standard model" of how we remember over the short-term still enjoys considerable popularity, although recent research questions most of its main assumptions. In this chapter I review the recent research and identify the empirical and conceptual problems that plague traditional conceptions of short-term memory. Increasingly, researchers are recognizing that short-term retention is cue driven, much like long-term memory, and that neither rehearsal nor decay is likely to explain the particulars of short-term forgetting.
Short-Term Memory and Its Biophysical Model
NASA Astrophysics Data System (ADS)
Wang, Wei; Zhang, Kai; Tang, Xiao-wei
1996-12-01
The capacity of short-term memory has been studied using an integrate-and-fire neuronal network model. It is found that the storage of events depend on the manner of the correlation between the events, and the capacity is dominated by the value of after-depolarization potential. There is a monotonic increasing relationship between the value of after-depolarization potential and the memory numbers. The biophysics relevance of the network model is discussed and different kinds of the information processes are studied too.
A stroke patient with impairment of auditory sensory (echoic) memory.
Kojima, T; Karino, S; Yumoto, M; Funayama, M
2014-04-01
A 42-year-old man suffered damage to the left supra-sylvian areas due to a stroke and presented with verbal short-term memory (STM) deficits. He occasionally could not recall even a single syllable that he had heard one second before. A study of mismatch negativity using magnetoencephalography suggested that the duration of auditory sensory (echoic) memory traces was reduced on the affected side of the brain. His maximum digit span was four with auditory presentation (equivalent to the 1st percentile for normal subjects), whereas it was up to six with visual presentation (almost within the normal range). He simply showed partial recall in the digit span task, and there was no self correction or incorrect reproduction. From these findings, reduced echoic memory was thought to have affected his verbal short-term retention. Thus, the impairment of verbal short-term memory observed in this patient was "pure auditory" unlike previously reported patients with deficits of the phonological short-term store (STS), which is the next higher-order memory system. We report this case to present physiological and behavioral data suggesting impaired short-term storage of verbal information, and to demonstrate the influence of deterioration of echoic memory on verbal STM.
Influence of Synaptic Depression on Memory Storage Capacity
NASA Astrophysics Data System (ADS)
Otsubo, Yosuke; Nagata, Kenji; Oizumi, Masafumi; Okada, Masato
2011-08-01
Synaptic efficacy between neurons is known to change within a short time scale dynamically. Neurophysiological experiments show that high-frequency presynaptic inputs decrease synaptic efficacy between neurons. This phenomenon is called synaptic depression, a short term synaptic plasticity. Many researchers have investigated how the synaptic depression affects the memory storage capacity. However, the noise has not been taken into consideration in their analysis. By introducing ``temperature'', which controls the level of the noise, into an update rule of neurons, we investigate the effects of synaptic depression on the memory storage capacity in the presence of the noise. We analytically compute the storage capacity by using a statistical mechanics technique called Self Consistent Signal to Noise Analysis (SCSNA). We find that the synaptic depression decreases the storage capacity in the case of finite temperature in contrast to the case of the low temperature limit, where the storage capacity does not change.
Chee, Michael W L; Chuah, Y M Lisa
2007-05-29
Sleep deprivation (SD) impairs short-term memory, but it is unclear whether this is because of reduced storage capacity or processes contributing to appropriate information encoding. We evaluated 30 individuals twice, once after a night of normal sleep and again after 24 h of SD. In each session, we evaluated visual memory capacity by presenting arrays of one to eight colored squares. Additionally, we measured cortical responses to varying visual array sizes without engaging memory. The magnitude of intraparietal sulcus activation and memory capacity after normal sleep were highly correlated. SD elicited a pattern of activation in both tasks, indicating that deficits in visual processing and visual attention accompany and could account for loss of short-term memory capacity. Additionally, a comparison between better and poorer performers showed that preservation of precuneus and temporoparietal junction deactivation with increasing memory load corresponds to less performance decline when one is sleep-deprived.
Risko, Evan F; Dunn, Timothy L
2015-11-01
We often store to-be-remembered information externally (e.g., written down on a piece of paper) rather than internally. In the present investigation, we examine factors that influence the decision to store information in-the-world versus in-the-head using a variant of a traditional short term memory task. In Experiments 1a and 1b participants were presented with to-be-remembered items and either had to rely solely on internal memory or had the option to write down the presented information. In Experiments 2a and 2b participants were presented with the same stimuli but made metacognitive judgments about their predicted performance and effort expenditure. The spontaneous use of external storage was related both to the number of items to be remembered and an individual's actual and perceived short-term-memory capacity. Interestingly, individuals often used external storage despite its use affording no observable benefit. Implications for understanding how individuals integrate external resources in pursuing cognitive goals are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
Koyluoglu, Onur Ozan; Pertzov, Yoni; Manohar, Sanjay; Husain, Masud; Fiete, Ila R
2017-09-07
It is widely believed that persistent neural activity underlies short-term memory. Yet, as we show, the degradation of information stored directly in such networks behaves differently from human short-term memory performance. We build a more general framework where memory is viewed as a problem of passing information through noisy channels whose degradation characteristics resemble those of persistent activity networks. If the brain first encoded the information appropriately before passing the information into such networks, the information can be stored substantially more faithfully. Within this framework, we derive a fundamental lower-bound on recall precision, which declines with storage duration and number of stored items. We show that human performance, though inconsistent with models involving direct (uncoded) storage in persistent activity networks, can be well-fit by the theoretical bound. This finding is consistent with the view that if the brain stores information in patterns of persistent activity, it might use codes that minimize the effects of noise, motivating the search for such codes in the brain.
Pertzov, Yoni; Manohar, Sanjay; Husain, Masud; Fiete, Ila R
2017-01-01
It is widely believed that persistent neural activity underlies short-term memory. Yet, as we show, the degradation of information stored directly in such networks behaves differently from human short-term memory performance. We build a more general framework where memory is viewed as a problem of passing information through noisy channels whose degradation characteristics resemble those of persistent activity networks. If the brain first encoded the information appropriately before passing the information into such networks, the information can be stored substantially more faithfully. Within this framework, we derive a fundamental lower-bound on recall precision, which declines with storage duration and number of stored items. We show that human performance, though inconsistent with models involving direct (uncoded) storage in persistent activity networks, can be well-fit by the theoretical bound. This finding is consistent with the view that if the brain stores information in patterns of persistent activity, it might use codes that minimize the effects of noise, motivating the search for such codes in the brain. PMID:28879851
Memory Span and General Intelligence: A Latent-Variable Approach
ERIC Educational Resources Information Center
Colom, Roberto; Abad, Francisco J.; Rebollo, Irene; Chun Shih, Pei
2005-01-01
There are several studies showing that working memory and intelligence are strongly related. However, working memory tasks require simultaneous processing and storage, so the causes of their relationship with intelligence are currently a matter of discussion. The present study examined the simultaneous relationships among short-term memory (STM),…
ERIC Educational Resources Information Center
Bolden, Jennifer; Rapport, Mark D.; Raiker, Joseph S.; Sarver, Dustin E.; Kofler, Michael J.
2012-01-01
The current study dissociated and examined the two primary components of the phonological working memory subsystem--the short-term store and articulatory rehearsal mechanism--in boys with ADHD (n = 18) relative to typically developing boys (n = 15). Word lists of increasing length (2, 4, and 6 words per trial) were presented to and recalled by…
Basic and Exceptional Calculation Abilities in a Calculating Prodigy: A Case Study.
ERIC Educational Resources Information Center
Pesenti, Mauro; Seron, Xavier; Samson, Dana; Duroux, Bruno
1999-01-01
Describes the basic and exceptional calculation abilities of a calculating prodigy whose performances were investigated in single- and multi-digit number multiplication, numerical comparison, raising of powers, and short-term memory tasks. Shows how his highly efficient long-term memory storage and retrieval processes, knowledge of calculation…
Infants Hierarchically Organize Memory Representations
ERIC Educational Resources Information Center
Rosenberg, Rebecca D.; Feigenson, Lisa
2013-01-01
Throughout development, working memory is subject to capacity limits that severely constrain short-term storage. However, adults can massively expand the total amount of remembered information by grouping items into "chunks". Although infants also have been shown to chunk objects in memory, little is known regarding the limits of this…
Paula, Jonas Jardim de; Miranda, Débora Marques; Nicolato, Rodrigo; Moraes, Edgar Nunes de; Bicalho, Maria Aparecida Camargos; Malloy-Diniz, Leandro Fernandes
2013-09-01
Depressive pseudodementia (DPD) is a clinical condition characterized by depressive symptoms followed by cognitive and functional impairment characteristics of dementia. Memory complaints are one of the most related cognitive symptoms in DPD. The present study aims to assess the verbal learning profile of elderly patients with DPD. Ninety-six older adults (34 DPD and 62 controls) were assessed by neuropsychological tests including the Rey auditory-verbal learning test (RAVLT). A multivariate general linear model was used to assess group differences and controlled for demographic factors. Moderate or large effects were found on all RAVLT components, except for short-term and recognition memory. DPD impairs verbal memory, with large effect size on free recall and moderate effect size on the learning. Short-term storage and recognition memory are useful in clinical contexts when the differential diagnosis is required.
Decoding the content of visual short-term memory under distraction in occipital and parietal areas.
Bettencourt, Katherine C; Xu, Yaoda
2016-01-01
Recent studies have provided conflicting accounts regarding where in the human brain visual short-term memory (VSTM) content is stored, with strong univariate fMRI responses being reported in superior intraparietal sulcus (IPS), but robust multivariate decoding being reported in occipital cortex. Given the continuous influx of information in everyday vision, VSTM storage under distraction is often required. We found that neither distractor presence nor predictability during the memory delay affected behavioral performance. Similarly, superior IPS exhibited consistent decoding of VSTM content across all distractor manipulations and had multivariate responses that closely tracked behavioral VSTM performance. However, occipital decoding of VSTM content was substantially modulated by distractor presence and predictability. Furthermore, we found no effect of target-distractor similarity on VSTM behavioral performance, further challenging the role of sensory regions in VSTM storage. Overall, consistent with previous univariate findings, our results indicate that superior IPS, but not occipital cortex, has a central role in VSTM storage.
Ward, Anthony R; Alarcón, Gabriela; Nigg, Joel T; Musser, Erica D
2015-11-01
Although attention deficit/hyperactivity disorder (ADHD) is associated with impairment in working memory and short-term memory, up to half of individual children with ADHD perform within a normative range. Heterogeneity in other ADHD-related mechanisms, which may compensate for or combine with cognitive weaknesses, is a likely explanation. One candidate is the robustness of parasympathetic regulation (as indexed by respiratory sinus arrhythmia; RSA). Theory and data suggest that a common neural network is likely tied to both heart-rate regulation and certain cognitive functions (including aspects of working and short-term memory). Cardiac-derived indices of parasympathetic reactivity were collected during short-term memory (STM) storage and rehearsal tasks from 243 children (116 ADHD, 127 controls). ADHD was associated with lower STM performance, replicating previous work. In addition, RSA reactivity moderated the association between STM and ADHD - both as a category and a dimension - independent of comorbidity. Specifically, conditional effects revealed that high levels of withdrawal interacted with weakened STM but high levels of augmentation moderated a positive association predicting ADHD. Thus, variations in parasympathetic reactivity may help explain neuropsychological heterogeneity in ADHD.
A bio-inspired memory model for structural health monitoring
NASA Astrophysics Data System (ADS)
Zheng, Wei; Zhu, Yong
2009-04-01
Long-term structural health monitoring (SHM) systems need intelligent management of the monitoring data. By analogy with the way the human brain processes memories, we present a bio-inspired memory model (BIMM) that does not require prior knowledge of the structure parameters. The model contains three time-domain areas: a sensory memory area, a short-term memory area and a long-term memory area. First, the initial parameters of the structural state are specified to establish safety criteria. Then the large amount of monitoring data that falls within the safety limits is filtered while the data outside the safety limits are captured instantly in the sensory memory area. Second, disturbance signals are distinguished from danger signals in the short-term memory area. Finally, the stable data of the structural balance state are preserved in the long-term memory area. A strategy for priority scheduling via fuzzy c-means for the proposed model is then introduced. An experiment on bridge tower deformation demonstrates that the proposed model can be applied for real-time acquisition, limited-space storage and intelligent mining of the monitoring data in a long-term SHM system.
Working Memory and Fluid Intelligence in Young Children
ERIC Educational Resources Information Center
Engel de Abreu, Pascale M. J.; Conway, Andrew R. A.; Gathercole, Susan E.
2010-01-01
The present study investigates how working memory and fluid intelligence are related in young children and how these links develop over time. The major aim is to determine which aspect of the working memory system--short-term storage or cognitive control--drives the relationship with fluid intelligence. A sample of 119 children was followed from…
Ravizza, Susan M; Hazeltine, Eliot; Ruiz, Sandra; Zhu, David C
2011-04-15
Patients with damage to the left temporoparietal junction (TPJ) have a low verbal span without concomitant deficits in speech perception. This pattern of cognitive impairment is taken as evidence for a dedicated phonological buffer that plays little role in perception (storage-specific account). In contrast, other research suggests that items are maintained and perceived in the same regions (sensory-specific account). In an fMRI study, we demonstrate that the left TPJ does not respond in a way predicted of a phonological buffer; that is, activity in this region is not sustained during encoding or maintenance. Instead, a region in the superior temporal gyrus that has been associated with both speech perception and production demonstrated the expected profile of a store: it was more active in the verbal condition than the object condition and was active during both encoding and maintenance. These results support the sensory-specific account of short term memory rather than the storage-specific account. Based on the pattern of activity in the left TPJ, we suggest that the impairment of verbal working memory observed in patients with TPJ damage may be due to diminished attentional processes rather than reduced storage capacity. Copyright © 2010 Elsevier Inc. All rights reserved.
Economic impact of off-line PC viewer for private folder management
NASA Astrophysics Data System (ADS)
Song, Koun-Sik; Shin, Myung J.; Lee, Joo Hee; Auh, Yong H.
1999-07-01
We developed a PC-based clinical workstation and implemented at Asan Medical Center in Seoul, Korea, Hardwares used were Pentium-II, 8M video memory, 64-128 MB RAM, 19 inch color monitor, and 10/100Mbps network adaptor. One of the unique features of this workstation is management tool for folders reside both in PACS short-term storage unit and local hard disk. Users can copy the entire study or part of the study to local hard disk, removable storages, or CD recorder. Even the images in private folders in PACS short-term storage can be copied to local storage devices. All images are saved as DICOM 3.0 file format with 2:1 lossless compression. We compared the prices of copy films and storage medias considering the possible savings of expensive PACS short- term storage and network traffic. Price savings of copy film is most remarkable in MR exam. Price savings arising from minimal use of short-term unit was 50,000 dollars. It as hard to calculate the price savings arising from the network usage. Off-line PC viewer is a cost-effective way of handling private folder management under the PACS environment.
How Quickly They Forget: The Relationship between Forgetting and Working Memory Performance
ERIC Educational Resources Information Center
Bayliss, Donna M.; Jarrold, Christopher
2015-01-01
This study examined the contribution of individual differences in rate of forgetting to variation in working memory performance in children. One hundred and twelve children (mean age 9 years 4 months) completed 2 tasks designed to measure forgetting, as well as measures of working memory, processing efficiency, and short-term storage ability.…
Relation of Three Mechanisms of Working Memory to Children's Complex Span Performance
ERIC Educational Resources Information Center
Magimairaj, Beula; Montgomery, James; Marinellie, Sally; McCarthy, John
2009-01-01
There is a paucity of research examining the relative contribution of the different mechanisms of working memory (short-term storage [STM], processing speed) to children's complex memory span. This study served to replicate and extend the few extant studies that have examined the issue. In this study, the relative contribution of three mechanisms…
ERIC Educational Resources Information Center
Peters, Frederic; Majerus, Steve; De Baerdemaeker, Julie; Salmon, Eric; Collette, Fabienne
2009-01-01
A decrease in verbal short-term memory (STM) capacity is consistently observed in patients with Alzheimer's disease (AD). Although this impairment has been mainly attributed to attentional deficits during encoding and maintenance, the progressive deterioration of semantic knowledge in early stages of AD may also be an important determinant of poor…
Selective deficit of spatial short-term memory: Role of storage and rehearsal mechanisms.
Bonnì, Sonia; Perri, Roberta; Fadda, Lucia; Tomaiuolo, Francesco; Koch, Giacomo; Caltagirone, Carlo; Carlesimo, Giovanni Augusto
2014-10-01
We report the neuropsychological and MRI investigation of a patient (GP) who developed a selective impairment of spatial short-term memory (STM) following damage to the dorso-mesial areas of the right frontal lobe. We assessed in this patient spatial STM with an experimental procedure that evaluated immediate and 5-20 s delayed recall of verbal, visual and spatial stimuli. The patient scored significantly worse than normal controls on tests that required delayed recall of spatial data. This could not be ascribed to a deficit of spatial episodic long-term memory because amnesic patients performed normally on these tests. Conversely, the patient scored in the normal range on tests of immediate recall of verbal, visual and spatial data and tests of delayed recall of verbal and visual data. Comparison with a previously described patient who had a selective deficit in immediate spatial recall and an ischemic lesion that affected frontal and parietal dorso-mesial areas in the right hemisphere (Carlesimo GA, Perri R, Turriziani P, Tomaiuolo F, Caltagirone C. Remembering what but not where: independence of spatial and visual working memory in the human brain. Cortex. 2001 Sep; 37(4):519-34) suggests that the right parietal areas are involved in the short-term storage of spatial information and that the dorso-mesial regions of the right frontal underlie mechanisms for the delayed maintenance of the same data.
Restoring primacy in amnesic free recall: evidence for the recency theory of primacy.
Dewar, Michaela; Brown, Gordon D A; Della Sala, Sergio
2011-09-01
Primacy and recency effects at immediate recall are thought to reflect the independent functioning of a long-term memory store (primacy) and a short-term memory store (recency). Key evidence for this theory comes from amnesic patients who show severe long-term memory storage deficits, coupled with profoundly attenuated primacy. Here we challenge this dominant dual-store theory of immediate recall by demonstrating that attenuated primacy in amnesic patients can reflect abnormal working memory rehearsal processes. D.A., a patient with severe amnesia, presented with profoundly attenuated primacy when using her preferred atypical noncumulative rehearsal strategy. In contrast, despite her severe amnesia, she showed normal primacy when her rehearsal was matched with that of controls via an externalized cumulative rehearsal schedule. Our data are in keeping with the "recency theory of primacy" and suggest that primacy at immediate recall is dependent upon medial temporal lobe involvement in cumulative rehearsal rather than long-term memory storage.
Role of Working Memory in Children's Understanding Spoken Narrative: A Preliminary Investigation
ERIC Educational Resources Information Center
Montgomery, James W.; Polunenko, Anzhela; Marinellie, Sally A.
2009-01-01
The role of phonological short-term memory (PSTM), attentional resource capacity/allocation, and processing speed on children's spoken narrative comprehension was investigated. Sixty-seven children (6-11 years) completed a digit span task (PSTM), concurrent verbal processing and storage (CPS) task (resource capacity/allocation), auditory-visual…
Frontal Neurons Modulate Memory Retrieval across Widely Varying Temporal Scales
ERIC Educational Resources Information Center
Zhang, Wen-Hua; Williams, Ziv M.
2015-01-01
Once a memory has formed, it is thought to undergo a gradual transition within the brain from short- to long-term storage. This putative process, however, also poses a unique problem to the memory system in that the same learned items must also be retrieved across broadly varying time scales. Here, we find that neurons in the ventrolateral…
Storage and Retrieval Changes that Occur in the Development and Release of PI
ERIC Educational Resources Information Center
Chechile, Richard; Butler, Keith
1975-01-01
A Bayesian statistical procedure separating storage from retrieval was used to study development and release of proactive interference in the Brown-Peterson paradigm. A theory of PI is developed stressing response competition at test time and interference in transfer between short- and long-term memory. (CHK)
Morphological processing with deficient phonological short-term memory.
Kavé, Gitit; Ze'ev, Hagit Bar; Lev, Anita
2007-07-01
This paper investigates the processing of Hebrew derivational morphology in an individual (S.E.) with deficient phonological short-term memory. In comparison to 10 age- and education-matched men, S.E. was impaired on digit span tasks and demonstrated no recency effect in word list recall. S.E. had low word retention span, but he exhibited phonological similarity and word length effects. His ability to make lexical decisions was intact. In a paired-associate test S.E. successfully learned semantically and morphologically related pairs but not phonologically related pairs, and his learning of nonwords was facilitated by the presence of Hebrew consonant roots. Semantic and morphological similarity enhanced immediate word recall. Results show that S.E. is capable of conducting morphological decomposition of Hebrew-derived words despite his phonological deficit, suggesting that transient maintenance of morphological constituents is independent of temporary storage and rehearsal of phonological codes, and that each is processed separately within short-term memory.
Working Memory Components and Intelligence in Children
ERIC Educational Resources Information Center
Tillman, Carin M.; Nyberg, Lilianne; Bohlin, Gunilla
2008-01-01
This study investigated, in children aged 6-13 years, how different components of the working memory (WM) system (short-term storage and executive processes), within both verbal and visuospatial domains, relate to fluid intelligence. We also examined the degree of domain-specificity of the WM components as well as the differentiation of storage…
Discontinuity in the Enumeration of Sequentially Presented Auditory and Visual Stimuli
ERIC Educational Resources Information Center
Camos, Valerie; Tillmann, Barbara
2008-01-01
The seeking of discontinuity in enumeration was recently renewed because Cowan [Cowan, N. (2001). "The magical number 4 in short-term memory: A reconsideration of mental storage capacity." "Behavioral and Brain Sciences," 24, 87-185; Cowan, N. (2005). "Working memory capacity." Hove: Psychology Press] suggested that it allows evaluating the limit…
The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB
2012-01-01
The analysis of the contributions to synaptic plasticity and memory of cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB has recruited the efforts of many laboratories all over the world. These are six key steps in the molecular biological delineation of short-term memory and its conversion to long-term memory for both implicit (procedural) and explicit (declarative) memory. I here first trace the background for the clinical and behavioral studies of implicit memory that made a molecular biology of memory storage possible, and then detail the discovery and early history of these six molecular steps and their roles in explicit memory. PMID:22583753
Development of auditory sensory memory from 2 to 6 years: an MMN study.
Glass, Elisabeth; Sachse, Steffi; von Suchodoletz, Waldemar
2008-08-01
Short-term storage of auditory information is thought to be a precondition for cognitive development, and deficits in short-term memory are believed to underlie learning disabilities and specific language disorders. We examined the development of the duration of auditory sensory memory in normally developing children between the ages of 2 and 6 years. To probe the lifetime of auditory sensory memory we elicited the mismatch negativity (MMN), a component of the late auditory evoked potential, with tone stimuli of two different frequencies presented with various interstimulus intervals between 500 and 5,000 ms. Our findings suggest that memory traces for tone characteristics have a duration of 1-2 s in 2- and 3-year-old children, more than 2 s in 4-year-olds and 3-5 s in 6-year-olds. The results provide insights into the maturational processes involved in auditory sensory memory during the sensitive period of cognitive development.
Short-term memory to long-term memory transition in a nanoscale memristor.
Chang, Ting; Jo, Sung-Hyun; Lu, Wei
2011-09-27
"Memory" is an essential building block in learning and decision-making in biological systems. Unlike modern semiconductor memory devices, needless to say, human memory is by no means eternal. Yet, forgetfulness is not always a disadvantage since it releases memory storage for more important or more frequently accessed pieces of information and is thought to be necessary for individuals to adapt to new environments. Eventually, only memories that are of significance are transformed from short-term memory into long-term memory through repeated stimulation. In this study, we show experimentally that the retention loss in a nanoscale memristor device bears striking resemblance to memory loss in biological systems. By stimulating the memristor with repeated voltage pulses, we observe an effect analogous to memory transition in biological systems with much improved retention time accompanied by additional structural changes in the memristor. We verify that not only the shape or the total number of stimuli is influential, but also the time interval between stimulation pulses (i.e., the stimulation rate) plays a crucial role in determining the effectiveness of the transition. The memory enhancement and transition of the memristor device was explained from the microscopic picture of impurity redistribution and can be qualitatively described by the same equations governing biological memories. © 2011 American Chemical Society
Peters, Frédéric; Majerus, Steve; De Baerdemaeker, Julie; Salmon, Eric; Collette, Fabienne
2009-12-01
A decrease in verbal short-term memory (STM) capacity is consistently observed in patients with Alzheimer's disease (AD). Although this impairment has been mainly attributed to attentional deficits during encoding and maintenance, the progressive deterioration of semantic knowledge in early stages of AD may also be an important determinant of poor STM performance. The aim of this study was to examine the influence of semantic knowledge on verbal short-term memory storage capacity in normal aging and in AD by exploring the impact of word imageability on STM performance. Sixteen patients suffering from mild AD, 16 healthy elderly subjects and 16 young subjects performed an immediate serial recall task using word lists containing high or low imageability words. All participant groups recalled more high imageability words than low imageability words, but the effect of word imageability on verbal STM was greater in AD patients than in both the young and the elderly control groups. More precisely, AD patients showed a marked decrease in STM performance when presented with lists of low imageability words, whereas recall of high imageability words was relatively well preserved. Furthermore, AD patients displayed an abnormal proportion of phonological errors in the low imageability condition. Overall, these results indicate that the support of semantic knowledge on STM performance was impaired for lists of low imageability words in AD patients. More generally, these findings suggest that the deterioration of semantic knowledge is partly responsible for the poor verbal short-term storage capacity observed in AD.
Working Memory and Intelligence Are Highly Related Constructs, but Why?
ERIC Educational Resources Information Center
Colom, Roberto; Abad, Francisco J.; Quiroga, M. Angeles; Shih, Pei Chun; Flores-Mendoza, Carmen
2008-01-01
Working memory and the general factor of intelligence (g) are highly related constructs. However, we still don't know why. Some models support the central role of simple short-term storage, whereas others appeal to executive functions like the control of attention. Nevertheless, the available empirical evidence does not suffice to get an answer,…
Storage and executive processes in the frontal lobes.
Smith, E E; Jonides, J
1999-03-12
The human frontal cortex helps mediate working memory, a system that is used for temporary storage and manipulation of information and that is involved in many higher cognitive functions. Working memory includes two components: short-term storage (on the order of seconds) and executive processes that operate on the contents of storage. Recently, these two components have been investigated in functional neuroimaging studies. Studies of storage indicate that different frontal regions are activated for different kinds of information: storage for verbal materials activates Broca's area and left-hemisphere supplementary and premotor areas; storage of spatial information activates the right-hemisphere premotor cortex; and storage of object information activates other areas of the prefrontal cortex. Two of the fundamental executive processes are selective attention and task management. Both processes activate the anterior cingulate and dorsolateral prefrontal cortex.
Visual short-term memory capacity for simple and complex objects.
Luria, Roy; Sessa, Paola; Gotler, Alex; Jolicoeur, Pierre; Dell'Acqua, Roberto
2010-03-01
Does the capacity of visual short-term memory (VSTM) depend on the complexity of the objects represented in memory? Although some previous findings indicated lower capacity for more complex stimuli, other results suggest that complexity effects arise during retrieval (due to errors in the comparison process with what is in memory) that is not related to storage limitations of VSTM, per se. We used ERPs to track neuronal activity specifically related to retention in VSTM by measuring the sustained posterior contralateral negativity during a change detection task (which required detecting if an item was changed between a memory and a test array). The sustained posterior contralateral negativity, during the retention interval, was larger for complex objects than for simple objects, suggesting that neurons mediating VSTM needed to work harder to maintain more complex objects. This, in turn, is consistent with the view that VSTM capacity depends on complexity.
Are multiple visual short-term memory storages necessary to explain the retro-cue effect?
Makovski, Tal
2012-06-01
Recent research has shown that change detection performance is enhanced when, during the retention interval, attention is cued to the location of the upcoming test item. This retro-cue advantage has led some researchers to suggest that visual short-term memory (VSTM) is divided into a durable, limited-capacity storage and a more fragile, high-capacity storage. Consequently, performance is poor on the no-cue trials because fragile VSTM is overwritten by the test display and only durable VSTM is accessible under these conditions. In contrast, performance is improved in the retro-cue condition because attention keeps fragile VSTM accessible. The aim of the present study was to test the assumptions underlying this two-storage account. Participants were asked to encode an array of colors for a change detection task involving no-cue and retro-cue trials. A retro-cue advantage was found even when the cue was presented after a visual (Experiment 1) or a central (Experiment 2) interference. Furthermore, the magnitude of the interference was comparable between the no-cue and retro-cue trials. These data undermine the main empirical support for the two-storage account and suggest that the presence of a retro-cue benefit cannot be used to differentiate between different VSTM storages.
Positive affect improves working memory: implications for controlled cognitive processing.
Yang, Hwajin; Yang, Sujin; Isen, Alice M
2013-01-01
This study examined the effects of positive affect on working memory (WM) and short-term memory (STM). Given that WM involves both storage and controlled processing and that STM primarily involves storage processing, we hypothesised that if positive affect facilitates controlled processing, it should improve WM more than STM. The results demonstrated that positive affect, compared with neutral affect, significantly enhanced WM, as measured by the operation span task. The influence of positive affect on STM, however, was weaker. These results suggest that positive affect enhances WM, a task that involves controlled processing, not just storage processing. Additional analyses of recall and processing times and accuracy further suggest that improved WM under positive affect is not attributable to motivational differences, but results instead from improved controlled cognitive processing.
Motivation and short-term memory in visual search: Attention's accelerator revisited.
Schneider, Daniel; Bonmassar, Claudia; Hickey, Clayton
2018-05-01
A cue indicating the possibility of cash reward will cause participants to perform memory-based visual search more efficiently. A recent study has suggested that this performance benefit might reflect the use of multiple memory systems: when needed, participants may maintain the to-be-remembered object in both long-term and short-term visual memory, with this redundancy benefitting target identification during search (Reinhart, McClenahan & Woodman, 2016). Here we test this compelling hypothesis. We had participants complete a memory-based visual search task involving a reward cue that either preceded presentation of the to-be-remembered target (pre-cue) or followed it (retro-cue). Following earlier work, we tracked memory representation using two components of the event-related potential (ERP): the contralateral delay activity (CDA), reflecting short-term visual memory, and the anterior P170, reflecting long-term storage. We additionally tracked attentional preparation and deployment in the contingent negative variation (CNV) and N2pc, respectively. Results show that only the reward pre-cue impacted our ERP indices of memory. However, both types of cue elicited a robust CNV, reflecting an influence on task preparation, both had equivalent impact on deployment of attention to the target, as indexed in the N2pc, and both had equivalent impact on visual search behavior. Reward prospect thus has an influence on memory-guided visual search, but this does not appear to be necessarily mediated by a change in the visual memory representations indexed by CDA. Our results demonstrate that the impact of motivation on search is not a simple product of improved memory for target templates. Copyright © 2017 Elsevier Ltd. All rights reserved.
Individual Differences in Learning Talker Categories: The Role of Working Memory
Levi, Susannah V.
2016-01-01
The current study explores the question of how an auditory category is learned by having school-age listeners learn to categorize speech not in terms of linguistic categories, but instead in terms of talker categories (i.e., who is talking). Findings from visual-category learning indicate that working memory skills affect learning, but the literature is equivocal: sometimes better working memory is advantageous, and sometimes not. The current study examined the role of different components of working memory to test which component skills benefit, and which hinder, learning talker categories. Results revealed that the short-term storage component positively predicted learning, but that the Central Executive and Episodic Buffer negatively predicted learning. As with visual categories, better working memory is not always an advantage. PMID:25721393
Short-term memory for figure-ground organization in the visual cortex.
O'Herron, Philip; von der Heydt, Rüdiger
2009-03-12
Whether the visual system uses a buffer to store image information and the duration of that storage have been debated intensely in recent psychophysical studies. The long phases of stable perception of reversible figures suggest a memory that persists for seconds. But persistence of similar duration has not been found in signals of the visual cortex. Here, we show that figure-ground signals in the visual cortex can persist for a second or more after the removal of the figure-ground cues. When new figure-ground information is presented, the signals adjust rapidly, but when a figure display is changed to an ambiguous edge display, the signals decay slowly--a behavior that is characteristic of memory devices. Figure-ground signals represent the layout of objects in a scene, and we propose that a short-term memory for object layout is important in providing continuity of perception in the rapid stream of images flooding our eyes.
NASA Astrophysics Data System (ADS)
Several articles addressing topics in speech research are presented. The topics include: exploring the functional significance of physiological tremor: A biospectroscopic approach; differences between experienced and inexperienced listeners to deaf speech; a language-oriented view of reading and its disabilities; Phonetic factors in letter detection; categorical perception; Short-term recall by deaf signers of American sign language; a common basis for auditory sensory storage in perception and immediate memory; phonological awareness and verbal short-term memory; initiation versus execution time during manual and oral counting by stutterers; trading relations in the perception of speech by five-year-old children; the role of the strap muscles in pitch lowering; phonetic validation of distinctive features; consonants and syllable boundaires; and vowel information in postvocalic frictions.
Working memory training improves visual short-term memory capacity.
Schwarb, Hillary; Nail, Jayde; Schumacher, Eric H
2016-01-01
Since antiquity, philosophers, theologians, and scientists have been interested in human memory. However, researchers today are still working to understand the capabilities, boundaries, and architecture. While the storage capabilities of long-term memory are seemingly unlimited (Bahrick, J Exp Psychol 113:1-2, 1984), working memory, or the ability to maintain and manipulate information held in memory, seems to have stringent capacity limits (e.g., Cowan, Behav Brain Sci 24:87-185, 2001). Individual differences, however, do exist and these differences can often predict performance on a wide variety of tasks (cf. Engle What is working-memory capacity? 297-314, 2001). Recently, researchers have promoted the enticing possibility that simple behavioral training can expand the limits of working memory which indeed may also lead to improvements on other cognitive processes as well (cf. Morrison and Chein, Psychol Bull Rev 18:46-60 2011). However, initial investigations across a wide variety of cognitive functions have produced mixed results regarding the transferability of training-related improvements. Across two experiments, the present research focuses on the benefit of working memory training on visual short-term memory capacity-a cognitive process that has received little attention in the training literature. Data reveal training-related improvement of global measures of visual short-term memory as well as of measures of the independent sub-processes that contribute to capacity (Awh et al., Psychol Sci 18(7):622-628, 2007). These results suggest that the ability to inhibit irrelevant information within and between trials is enhanced via n-back training allowing for selective improvement on untrained tasks. Additionally, we highlight a potential limitation of the standard adaptive training procedure and propose a modified design to ensure variability in the training environment.
Cain, Kate
2006-07-01
Three experiments compared the verbal memory skills of children with poor reading comprehension with that of same-age good comprehenders. The aims were to determine if semantic and/or inhibitory deficits explained comprehenders' problems on measures of verbal short-term memory and verbal working memory. In Experiment 1 there were no group differences on word- and number-based measures of short-term storage and no evidence that semantic knowledge mediated word recall. In Experiment 2 poor comprehenders were impaired on word- and number-based assessments of working memory, the greatest deficit found on the word-based task. Error analysis of both word-based tasks revealed that poor comprehenders were more likely to recall items that should have been inhibited than were good comprehenders. Experiment 3 extended this finding: Poor comprehenders were less able to inhibit information that was no longer relevant. Together, these findings suggest that individual differences in inhibitory processing influence the ability to regulate the contents of working memory, which may contribute to the differential memory performance of good and poor comprehenders.
The neurobiology of the human memory.
Fietta, Pierluigi; Fietta, Pieranna
2011-01-01
Memory can be defined as the ability to acquire, process, store, and retrieve information. Memory is indispensable for learning, adaptation, and survival of every living organism. In humans, the remembering process has acquired great flexibility and complexity, reaching close links with other mental functions, such as thinking and emotions. Changes in synaptic connectivity and interactions among multiple neural networks provide the neurobiological substrates for memory encoding, retention, and consolidation. Memory may be categorized as short-term and long-term memory (according to the storage temporal duration), as implicit and explicit memory (with respect to the consciousness of remembering), as declarative (knowing that [fact]) and procedural (knowing how [skill]) memory, or as sensory (echoic, iconic and haptil), semantic, and episodic memory (according to the various remembering domains). Significant advances have been obtained in understanding memory neurobiology, but much remains to be learned in its cognitive, psychological, and phenomenological aspects.
Does reactivation trigger episodic memory change? A meta-analysis.
Scully, Iiona D; Napper, Lucy E; Hupbach, Almut
2017-07-01
According to the reconsolidation hypothesis, long-term memories return to a plastic state upon their reactivation, leaving them vulnerable to interference effects and requiring re-storage processes or else these memories might be permanently lost. The present study used a meta-analytic approach to critically evaluate the evidence for reactivation-induced changes in human episodic memory. Results indicated that reactivation makes episodic memories susceptible to physiological and behavioral interference. When applied shortly after reactivation, interference manipulations altered the amount of information that could be retrieved from the original learning event. This effect was more pronounced for remote memories and memories of narrative structure. Additionally, new learning following reactivation reliably increased the number of intrusions from new information into the original memory. These findings support a dynamic view of long-term memory by showing that memories can be changed long after they were acquired. Copyright © 2016 Elsevier Inc. All rights reserved.
Bozon, Bruno; Davis, Sabrina; Laroche, Serge
2003-11-13
Recent research has revived interest in the possibility that previously consolidated memories need to reconsolidate when recalled to return to accessible long-term memory. Evidence suggests that both consolidation and reconsolidation of certain types of memory require protein synthesis, but whether similar molecular mechanisms are involved remains unclear. Here, we explore whether zif268, an activity-dependent inducible immediate early gene (IEG) required for consolidation of new memories, is also recruited for reconsolidation of recognition memory following reactivation. We show that when a consolidated memory for objects is recalled, zif268 mutant mice are impaired in further long-term but not short-term recognition memory. The impairment is specific to reactivation with the previously memorized objects in the relevant context, occurs in delayed recall, and does not recover over several days. These findings indicate that IEG-mediated transcriptional regulation in neurons is one common molecular mechanism for the storage of newly formed and reactivated recognition memories.
The magical number 4 in short-term memory: a reconsideration of mental storage capacity.
Cowan, N
2001-02-01
Miller (1956) summarized evidence that people can remember about seven chunks in short-term memory (STM) tasks. However, that number was meant more as a rough estimate and a rhetorical device than as a real capacity limit. Others have since suggested that there is a more precise capacity limit, but that it is only three to five chunks. The present target article brings together a wide variety of data on capacity limits suggesting that the smaller capacity limit is real. Capacity limits will be useful in analyses of information processing only if the boundary conditions for observing them can be carefully described. Four basic conditions in which chunks can be identified and capacity limits can accordingly be observed are: (1) when information overload limits chunks to individual stimulus items, (2) when other steps are taken specifically to block the recording of stimulus items into larger chunks, (3) in performance discontinuities caused by the capacity limit, and (4) in various indirect effects of the capacity limit. Under these conditions, rehearsal and long-term memory cannot be used to combine stimulus items into chunks of an unknown size; nor can storage mechanisms that are not capacity-limited, such as sensory memory, allow the capacity-limited storage mechanism to be refilled during recall. A single, central capacity limit averaging about four chunks is implicated along with other, noncapacity-limited sources. The pure STM capacity limit expressed in chunks is distinguished from compound STM limits obtained when the number of separately held chunks is unclear. Reasons why pure capacity estimates fall within a narrow range are discussed and a capacity limit for the focus of attention is proposed.
Electronic Spin Storage in an Electrically Readable Nuclear Spin Memory with a Lifetime >100 Seconds
NASA Astrophysics Data System (ADS)
McCamey, D. R.; Van Tol, J.; Morley, G. W.; Boehme, C.
2010-12-01
Electron spins are strong candidates with which to implement spintronics because they are both mobile and able to be manipulated. The relatively short lifetimes of electron spins, however, present a problem for the long-term storage of spin information. We demonstrated an ensemble nuclear spin memory in phosphorous-doped silicon, which can be read out electrically and has a lifetime exceeding 100 seconds. The electronic spin information can be mapped onto and stored in the nuclear spin of the phosphorus donors, and the nuclear spins can then be repetitively read out electrically for time periods that exceed the electron spin lifetime. We discuss how this memory can be used in conjunction with other silicon spintronic devices.
Neural Mechanisms of Information Storage in Visual Short-Term Memory
Serences, John T.
2016-01-01
The capacity to briefly memorize fleeting sensory information supports visual search and behavioral interactions with relevant stimuli in the environment. Traditionally, studies investigating the neural basis of visual short term memory (STM) have focused on the role of prefrontal cortex (PFC) in exerting executive control over what information is stored and how it is adaptively used to guide behavior. However, the neural substrates that support the actual storage of content-specific information in STM are more controversial, with some attributing this function to PFC and others to the specialized areas of early visual cortex that initially encode incoming sensory stimuli. In contrast to these traditional views, I will review evidence suggesting that content-specific information can be flexibly maintained in areas across the cortical hierarchy ranging from early visual cortex to PFC. While the factors that determine exactly where content-specific information is represented are not yet entirely clear, recognizing the importance of task-demands and better understanding the operation of non-spiking neural codes may help to constrain new theories about how memories are maintained at different resolutions, across different timescales, and in the presence of distracting information. PMID:27668990
Neural mechanisms of information storage in visual short-term memory.
Serences, John T
2016-11-01
The capacity to briefly memorize fleeting sensory information supports visual search and behavioral interactions with relevant stimuli in the environment. Traditionally, studies investigating the neural basis of visual short term memory (STM) have focused on the role of prefrontal cortex (PFC) in exerting executive control over what information is stored and how it is adaptively used to guide behavior. However, the neural substrates that support the actual storage of content-specific information in STM are more controversial, with some attributing this function to PFC and others to the specialized areas of early visual cortex that initially encode incoming sensory stimuli. In contrast to these traditional views, I will review evidence suggesting that content-specific information can be flexibly maintained in areas across the cortical hierarchy ranging from early visual cortex to PFC. While the factors that determine exactly where content-specific information is represented are not yet entirely clear, recognizing the importance of task-demands and better understanding the operation of non-spiking neural codes may help to constrain new theories about how memories are maintained at different resolutions, across different timescales, and in the presence of distracting information. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Cormier, Damien C.; McGrew, Kevin S.; Bulut, Okan; Funamoto, Allyson
2017-01-01
This study examined associations between broad cognitive abilities (Fluid Reasoning [Gf], Short-Term Working Memory [Gwm], Long-Term Storage and Retrieval [Glr], Processing Speed [Gs], Comprehension-Knowledge [Gc], Visual Processing [Gv], and Auditory Processing [Ga]) and reading achievement (Basic Reading Skills, Reading Rate, Reading Fluency,…
Long-term effects of interference on short-term memory performance in the rat.
Missaire, Mégane; Fraize, Nicolas; Joseph, Mickaël Antoine; Hamieh, Al Mahdy; Parmentier, Régis; Marighetto, Aline; Salin, Paul Antoine; Malleret, Gaël
2017-01-01
A distinction has always been made between long-term and short-term memory (also now called working memory, WM). The obvious difference between these two kinds of memory concerns the duration of information storage: information is supposedly transiently stored in WM while it is considered durably consolidated into long-term memory. It is well acknowledged that the content of WM is erased and reset after a short time, to prevent irrelevant information from proactively interfering with newly stored information. In the present study, we used typical WM radial maze tasks to question the brief lifespan of spatial WM content in rodents. Groups of rats were submitted to one of two different WM tasks in a radial maze: a WM task involving the repetitive presentation of a same pair of arms expected to induce a high level of proactive interference (PI) (HIWM task), or a task using a different pair in each trial expected to induce a low level of PI (LIWM task). Performance was effectively lower in the HIWM group than in LIWM in the final trial of each training session, indicative of a "within-session/short-term" PI effect. However, we also observed a different "between-session/long-term" PI effect between the two groups: while performance of LIWM trained rats remained stable over days, the performance of HIWM rats dropped after 10 days of training, and this impairment was visible from the very first trial of the day, hence not attributable to within-session PI. We also showed that a 24 hour-gap across training sessions known to allow consolidation processes to unfold, was a necessary and sufficient condition for the long-term PI effect to occur. These findings suggest that in the HIWM task, WM content was not entirely reset between training sessions and that, in specific conditions, WM content can outlast its purpose by being stored more permanently, generating a long-term deleterious effect of PI. The alternative explanation is that WM content could be transferred and stored more permanently in an intermediary form or memory between WM and long-term memory.
What are the differences between long-term, short-term, and working memory?
Cowan, Nelson
2008-01-01
In the recent literature there has been considerable confusion about the three types of memory: long-term, short-term, and working memory. This chapter strives to reduce that confusion and makes up-to-date assessments of these types of memory. Long- and short-term memory could differ in two fundamental ways, with only short-term memory demonstrating (1) temporal decay and (2) chunk capacity limits. Both properties of short-term memory are still controversial but the current literature is rather encouraging regarding the existence of both decay and capacity limits. Working memory has been conceived and defined in three different, slightly discrepant ways: as short-term memory applied to cognitive tasks, as a multi-component system that holds and manipulates information in short-term memory, and as the use of attention to manage short-term memory. Regardless of the definition, there are some measures of memory in the short term that seem routine and do not correlate well with cognitive aptitudes and other measures (those usually identified with the term "working memory") that seem more attention demanding and do correlate well with these aptitudes. The evidence is evaluated and placed within a theoretical framework depicted in Fig. 1.
The (lack of) effect of dynamic visual noise on the concreteness effect in short-term memory.
Castellà, Judit; Campoy, Guillermo
2018-05-17
It has been suggested that the concreteness effect in short-term memory (STM) is a consequence of concrete words having more distinctive and richer semantic representations. The generation and storage of visual codes in STM could also play a crucial role on the effect because concrete words are more imaginable than abstract words. If this were the case, the introduction of a visual interference task would be expected to disrupt recall of concrete words. A Dynamic Visual Noise (DVN) display, which has been proven to eliminate the concreteness effect on long-term memory (LTM), was presented along encoding of concrete and abstract words in a STM serial recall task. Results showed a main effect of word type, with more item errors in abstract words, a main effect of DVN, which impaired global performance due to more order errors, but no interaction, suggesting that DVN did not have any impact on the concreteness effect. These findings are discussed in terms of LTM participation through redintegration processes and in terms of the language-based models of verbal STM.
Musical and Verbal Memory in Alzheimer's Disease: A Study of Long-Term and Short-Term Memory
ERIC Educational Resources Information Center
Menard, Marie-Claude; Belleville, Sylvie
2009-01-01
Musical memory was tested in Alzheimer patients and in healthy older adults using long-term and short-term memory tasks. Long-term memory (LTM) was tested with a recognition procedure using unfamiliar melodies. Short-term memory (STM) was evaluated with same/different judgment tasks on short series of notes. Musical memory was compared to verbal…
Short-Term Memory for Figure-Ground Organization in the Visual Cortex
O’Herron, Philip; von der Heydt, Rüdiger
2009-01-01
Summary Whether the visual system uses a buffer to store image information and the duration of that storage have been debated intensely in recent psychophysical studies. The long phases of stable perception of reversible figures suggest a memory that persists for seconds. But persistence of similar duration has not been found in signals of the visual cortex. Here we show that figure-ground signals in the visual cortex can persist for a second or more after the removal of the figure-ground cues. When new figure-ground information is presented, the signals adjust rapidly, but when a figure display is changed to an ambiguous edge display, the signals decay slowly – a behavior that is characteristic of memory devices. Figure-ground signals represent the layout of objects in a scene, and we propose that a short-term memory for object layout is important in providing continuity of perception in the rapid stream of images flooding our eyes. PMID:19285475
What are the differences between long-term, short-term, and working memory?
Cowan, Nelson
2008-01-01
In the recent literature there has been considerable confusion about the three types of memory: long-term, short-term, and working memory. This chapter strives to reduce that confusion and makes up-to-date assessments of these types of memory. Long- and short-term memory could differ in two fundamental ways, with only short-term memory demonstrating (1) temporal decay and (2) chunk capacity limits. Both properties of short-term memory are still controversial but the current literature is rather encouraging regarding the existence of both decay and capacity limits. Working memory has been conceived and defined in three different, slightly discrepant ways: as short-term memory applied to cognitive tasks, as a multi-component system that holds and manipulates information in short-term memory, and as the use of attention to manage short-term memory. Regardless of the definition, there are some measures of memory in the short term that seem routine and do not correlate well with cognitive aptitudes and other measures (those usually identified with the term “working memory”) that seem more attention demanding and do correlate well with these aptitudes. The evidence is evaluated and placed within a theoretical framework depicted in Fig. 1. PMID:18394484
A video event trigger for high frame rate, high resolution video technology
NASA Astrophysics Data System (ADS)
Williams, Glenn L.
1991-12-01
When video replaces film the digitized video data accumulates very rapidly, leading to a difficult and costly data storage problem. One solution exists for cases when the video images represent continuously repetitive 'static scenes' containing negligible activity, occasionally interrupted by short events of interest. Minutes or hours of redundant video frames can be ignored, and not stored, until activity begins. A new, highly parallel digital state machine generates a digital trigger signal at the onset of a video event. High capacity random access memory storage coupled with newly available fuzzy logic devices permits the monitoring of a video image stream for long term or short term changes caused by spatial translation, dilation, appearance, disappearance, or color change in a video object. Pretrigger and post-trigger storage techniques are then adaptable for archiving the digital stream from only the significant video images.
A video event trigger for high frame rate, high resolution video technology
NASA Technical Reports Server (NTRS)
Williams, Glenn L.
1991-01-01
When video replaces film the digitized video data accumulates very rapidly, leading to a difficult and costly data storage problem. One solution exists for cases when the video images represent continuously repetitive 'static scenes' containing negligible activity, occasionally interrupted by short events of interest. Minutes or hours of redundant video frames can be ignored, and not stored, until activity begins. A new, highly parallel digital state machine generates a digital trigger signal at the onset of a video event. High capacity random access memory storage coupled with newly available fuzzy logic devices permits the monitoring of a video image stream for long term or short term changes caused by spatial translation, dilation, appearance, disappearance, or color change in a video object. Pretrigger and post-trigger storage techniques are then adaptable for archiving the digital stream from only the significant video images.
Long-term effects of interference on short-term memory performance in the rat
Missaire, Mégane; Fraize, Nicolas; Joseph, Mickaël Antoine; Hamieh, Al Mahdy; Parmentier, Régis; Marighetto, Aline; Salin, Paul Antoine; Malleret, Gaël
2017-01-01
A distinction has always been made between long-term and short-term memory (also now called working memory, WM). The obvious difference between these two kinds of memory concerns the duration of information storage: information is supposedly transiently stored in WM while it is considered durably consolidated into long-term memory. It is well acknowledged that the content of WM is erased and reset after a short time, to prevent irrelevant information from proactively interfering with newly stored information. In the present study, we used typical WM radial maze tasks to question the brief lifespan of spatial WM content in rodents. Groups of rats were submitted to one of two different WM tasks in a radial maze: a WM task involving the repetitive presentation of a same pair of arms expected to induce a high level of proactive interference (PI) (HIWM task), or a task using a different pair in each trial expected to induce a low level of PI (LIWM task). Performance was effectively lower in the HIWM group than in LIWM in the final trial of each training session, indicative of a “within-session/short-term” PI effect. However, we also observed a different “between-session/long-term” PI effect between the two groups: while performance of LIWM trained rats remained stable over days, the performance of HIWM rats dropped after 10 days of training, and this impairment was visible from the very first trial of the day, hence not attributable to within-session PI. We also showed that a 24 hour-gap across training sessions known to allow consolidation processes to unfold, was a necessary and sufficient condition for the long-term PI effect to occur. These findings suggest that in the HIWM task, WM content was not entirely reset between training sessions and that, in specific conditions, WM content can outlast its purpose by being stored more permanently, generating a long-term deleterious effect of PI. The alternative explanation is that WM content could be transferred and stored more permanently in an intermediary form or memory between WM and long-term memory. PMID:28288205
Huang, Ying; Matysiak, Artur; Heil, Peter; König, Reinhard; Brosch, Michael
2016-01-01
Working memory is the cognitive capacity of short-term storage of information for goal-directed behaviors. Where and how this capacity is implemented in the brain are unresolved questions. We show that auditory cortex stores information by persistent changes of neural activity. We separated activity related to working memory from activity related to other mental processes by having humans and monkeys perform different tasks with varying working memory demands on the same sound sequences. Working memory was reflected in the spiking activity of individual neurons in auditory cortex and in the activity of neuronal populations, that is, in local field potentials and magnetic fields. Our results provide direct support for the idea that temporary storage of information recruits the same brain areas that also process the information. Because similar activity was observed in the two species, the cellular bases of some auditory working memory processes in humans can be studied in monkeys. DOI: http://dx.doi.org/10.7554/eLife.15441.001 PMID:27438411
The positional-specificity effect reveals a passive-trace contribution to visual short-term memory.
Postle, Bradley R; Awh, Edward; Serences, John T; Sutterer, David W; D'Esposito, Mark
2013-01-01
The positional-specificity effect refers to enhanced performance in visual short-term memory (VSTM) when the recognition probe is presented at the same location as had been the sample, even though location is irrelevant to the match/nonmatch decision. We investigated the mechanisms underlying this effect with behavioral and fMRI studies of object change-detection performance. To test whether the positional-specificity effect is a direct consequence of active storage in VSTM, we varied memory load, reasoning that it should be observed for all objects presented in a sub-span array of items. The results, however, indicated that although robust with a memory load of 1, the positional-specificity effect was restricted to the second of two sequentially presented sample stimuli in a load-of-2 experiment. An additional behavioral experiment showed that this disruption wasn't due to the increased load per se, because actively processing a second object--in the absence of a storage requirement--also eliminated the effect. These behavioral findings suggest that, during tests of object memory, position-related information is not actively stored in VSTM, but may be retained in a passive tag that marks the most recent site of selection. The fMRI data were consistent with this interpretation, failing to find location-specific bias in sustained delay-period activity, but revealing an enhanced response to recognition probes that matched the location of that trial's sample stimulus.
Levels of Interference in Long and Short-Term Memory Differentially Modulate Non-REM and REM Sleep
Fraize, Nicolas; Carponcy, Julien; Joseph, Mickaël Antoine; Comte, Jean-Christophe; Luppi, Pierre-Hervé; Libourel, Paul-Antoine; Salin, Paul-Antoine; Malleret, Gaël; Parmentier, Régis
2016-01-01
Study Objectives: It is commonly accepted that sleep is beneficial to memory processes, but it is still unclear if this benefit originates from improved memory consolidation or enhanced information processing. It has thus been proposed that sleep may also promote forgetting of undesirable and non-essential memories, a process required for optimization of cognitive resources. We tested the hypothesis that non-rapid eye movement sleep (NREMS) promotes forgetting of irrelevant information, more specifically when processing information in working memory (WM), while REM sleep (REMS) facilitates the consolidation of important information. Methods: We recorded sleep patterns of rats trained in a radial maze in three different tasks engaging either the long-term or short-term storage of information, as well as a gradual level of interference. Results: We observed a transient increase in REMS amount on the day the animal learned the rule of a long-term/reference memory task (RM), and, in contrast, a positive correlation between the performance of rats trained in a WM task involving an important processing of interference and the amount of NREMS or slow wave activity. Various oscillatory events were also differentially modulated by the type of training involved. Notably, NREMS spindles and REMS rapid theta increase with RM training, while sharp-wave ripples increase with all types of training. Conclusions: These results suggest that REMS, but also rapid oscillations occurring during NREMS would be specifically implicated in the long-term memory in RM, whereas NREMS and slow oscillations could be involved in the forgetting of irrelevant information required for WM. Citation: Fraize N, Carponcy J, Joseph MA, Comte JC, Luppi PH, Libourel PA, Salin PA, Malleret G, Parmentier R. Levels of interference in long and short-term memory differentially modulate non-REM and REM sleep. SLEEP 2016;39(12):2173–2188. PMID:27748246
Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns.
Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J
2016-01-01
Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10- and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may strongly depend on individual attention and auditory discrimination abilities.
Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns
Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J.
2016-01-01
Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10− and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may strongly depend on individual attention and auditory discrimination abilities. PMID:27932941
The sensory components of high-capacity iconic memory and visual working memory.
Bradley, Claire; Pearson, Joel
2012-01-01
EARLY VISUAL MEMORY CAN BE SPLIT INTO TWO PRIMARY COMPONENTS: a high-capacity, short-lived iconic memory followed by a limited-capacity visual working memory that can last many seconds. Whereas a large number of studies have investigated visual working memory for low-level sensory features, much research on iconic memory has used more "high-level" alphanumeric stimuli such as letters or numbers. These two forms of memory are typically examined separately, despite an intrinsic overlap in their characteristics. Here, we used a purely sensory paradigm to examine visual short-term memory for 10 homogeneous items of three different visual features (color, orientation and motion) across a range of durations from 0 to 6 s. We found that the amount of information stored in iconic memory is smaller for motion than for color or orientation. Performance declined exponentially with longer storage durations and reached chance levels after ∼2 s. Further experiments showed that performance for the 10 items at 1 s was contingent on unperturbed attentional resources. In addition, for orientation stimuli, performance was contingent on the location of stimuli in the visual field, especially for short cue delays. Overall, our results suggest a smooth transition between an automatic, high-capacity, feature-specific sensory-iconic memory, and an effortful "lower-capacity" visual working memory.
Taha, Haitham
2017-06-01
The current research examined how Arabic diglossia affects verbal learning memory. Thirty native Arab college students were tested using auditory verbal memory test that was adapted according to the Rey Auditory Verbal Learning Test and developed in three versions: Pure spoken language version (SL), pure standard language version (SA), and phonologically similar version (PS). The result showed that for immediate free-recall, the performances were better for the SL and the PS conditions compared to the SA one. However, for the parts of delayed recall and recognition, the results did not reveal any significant consistent effect of diglossia. Accordingly, it was suggested that diglossia has a significant effect on the storage and short term memory functions but not on long term memory functions. The results were discussed in light of different approaches in the field of bilingual memory.
Precategorical Acoustic Storage and the Perception of Speech
ERIC Educational Resources Information Center
Frankish, Clive
2008-01-01
Theoretical accounts of both speech perception and of short term memory must consider the extent to which perceptual representations of speech sounds might survive in relatively unprocessed form. This paper describes a novel version of the serial recall task that can be used to explore this area of shared interest. In immediate recall of digit…
Silvanto, Juha; Cattaneo, Zaira
2010-05-01
Cortical areas involved in sensory analysis are also believed to be involved in short-term storage of that sensory information. Here we investigated whether transcranial magnetic stimulation (TMS) can reveal the content of visual short-term memory (VSTM) by bringing this information to visual awareness. Subjects were presented with two random-dot displays (moving either to the left or to the right) and they were required to maintain one of these in VSTM. In Experiment 1, TMS was applied over the motion-selective area V5/MT+ above phosphene threshold during the maintenance phase. The reported phosphene contained motion features of the memory item, when the phosphene spatially overlapped with memory item. Specifically, phosphene motion was enhanced when the memory item moved in the same direction as the subjects' V5/MT+ baseline phosphene, whereas it was reduced when the motion direction of the memory item was incongruent with that of the baseline V5/MT+ phosphene. There was no effect on phosphene reports when there was no spatial overlap between the phosphene and the memory item. In Experiment 2, VSTM maintenance did not influence the appearance of phosphenes induced from the lateral occipital region. These interactions between VSTM maintenance and phosphene appearance demonstrate that activity in V5/MT+ reflects the motion qualities of items maintained in VSTM. Furthermore, these results also demonstrate that information in VSTM can modulate the pattern of visual activation reaching awareness, providing evidence for the view that overlapping neuronal populations are involved in conscious visual perception and VSTM. 2010. Published by Elsevier Inc.
EEG correlates of visual short-term memory as neuro-cognitive endophenotypes of ADHD.
Wiegand, Iris; Hennig-Fast, Kristina; Kilian, Beate; Müller, Hermann J; Töllner, Thomas; Möller, Hans-Jürgen; Engel, Rolf R; Finke, Kathrin
2016-05-01
Attention deficit hyperactivity disorder (ADHD) frequently persists into adulthood. A reduction in visual short-term memory (vSTM) storage capacity was recently suggested as a potential neuro-cognitive endophenotype, i.e., a testable marker of an individual's liability for developing ADHD. This study aimed at identifying markers of the brain abnormalities underlying vSTM reductions in adult ADHD. We combined behavioral parameter-based assessment with electrophysiology in groups of adult ADHD patients and healthy age-matched controls. Amplitudes of ERP markers of vSTM storage capacity, the contralateral delay activity (CDA) and the P3b, were analyzed according to (i) differences between individuals with higher vs. lower storage capacity K and (ii) differences between ADHD patients and control participants. We replicated the finding of reduced storage capacity in adult ADHD. Across groups, individuals with higher relative to lower storage capacity showed a larger CDA and P3b. We further found differences between the patient and control groups in the ERPs: The CDA amplitude was attenuated in an early time window for ADHD patients compared to control participants, and was negatively correlated with ADHD patients' symptom severity ratings. Furthermore, the P3b was larger in ADHD patients relative to control participants. These electrophysiological findings indicate altered brain mechanisms underlying visual storage capacity in ADHD, which are characterized by deficient encoding and maintenance, and increased recruitment of control processes. Accordingly, (quantifiable) ERP markers of vSTM in adult ADHD bear candidacy as neuro-cognitive endophenotypes of the disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Berryhill, Marian E.; Chein, Jason; Olson, Ingrid R.
2011-01-01
Portions of the posterior parietal cortex (PPC) play a role in working memory (WM) yet the precise mechanistic function of this region remains poorly understood. The pure storage hypothesis proposes that this region functions as a short-lived modality-specific memory store. Alternatively, the internal attention hypothesis proposes that the PPC functions as an attention-based storage and refreshing mechanism deployable as an alternative to material-specific rehearsal. These models were tested in patients with bilateral PPC lesions. Our findings discount the pure storage hypothesis because variables indexing storage capacity and longevity were not disproportionately affected by PPC damage. Instead, our data support the internal attention account by showing that (a) normal participants tend to use a rehearsal-based WM maintenance strategy for recall tasks but not for recognition tasks; (b) patients with PPC lesions performed normally on WM tasks that relied on material-specific rehearsal strategies but poorly on WM tasks that relied on attention-based maintenance strategies and patient strategy usage could be shifted by task or instructions; (c) patients’ memory deficits extended into the long-term domain. These findings suggest that the PPC maintains or shifts internal attention among the representations of items in WM. PMID:21345344
Berryhill, Marian E; Chein, Jason; Olson, Ingrid R
2011-04-01
Portions of the posterior parietal cortex (PPC) play a role in working memory (WM) yet the precise mechanistic function of this region remains poorly understood. The pure storage hypothesis proposes that this region functions as a short-lived modality-specific memory store. Alternatively, the internal attention hypothesis proposes that the PPC functions as an attention-based storage and refreshing mechanism deployable as an alternative to material-specific rehearsal. These models were tested in patients with bilateral PPC lesions. Our findings discount the pure storage hypothesis because variables indexing storage capacity and longevity were not disproportionately affected by PPC damage. Instead, our data support the internal attention account by showing that (a) normal participants tend to use a rehearsal-based WM maintenance strategy for recall tasks but not for recognition tasks; (b) patients with PPC lesions performed normally on WM tasks that relied on material-specific rehearsal strategies but poorly on WM tasks that relied on attention-based maintenance strategies and patient strategy usage could be shifted by task or instructions; (c) patients' memory deficits extended into the long-term domain. These findings suggest that the PPC maintains or shifts internal attention among the representations of items in WM. Copyright © 2011 Elsevier Ltd. All rights reserved.
Short-Term Memory and Aphasia: From Theory to Treatment.
Minkina, Irene; Rosenberg, Samantha; Kalinyak-Fliszar, Michelene; Martin, Nadine
2017-02-01
This article reviews existing research on the interactions between verbal short-term memory and language processing impairments in aphasia. Theoretical models of short-term memory are reviewed, starting with a model assuming a separation between short-term memory and language, and progressing to models that view verbal short-term memory as a cognitive requirement of language processing. The review highlights a verbal short-term memory model derived from an interactive activation model of word retrieval. This model holds that verbal short-term memory encompasses the temporary activation of linguistic knowledge (e.g., semantic, lexical, and phonological features) during language production and comprehension tasks. Empirical evidence supporting this model, which views short-term memory in the context of the processes it subserves, is outlined. Studies that use a classic measure of verbal short-term memory (i.e., number of words/digits correctly recalled in immediate serial recall) as well as those that use more intricate measures (e.g., serial position effects in immediate serial recall) are discussed. Treatment research that uses verbal short-term memory tasks in an attempt to improve language processing is then summarized, with a particular focus on word retrieval. A discussion of the limitations of current research and possible future directions concludes the review. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Short-Term Memory and Aphasia: From Theory to Treatment
Minkina, Irene; Rosenberg, Samantha; Kalinyak-Fliszar, Michelene; Martin, Nadine
2018-01-01
This article reviews existing research on the interactions between verbal short-term memory and language processing impairments in aphasia. Theoretical models of short-term memory are reviewed, starting with a model assuming a separation between short-term memory and language, and progressing to models that view verbal short-term memory as a cognitive requirement of language processing. The review highlights a verbal short-term memory model derived from an interactive activation model of word retrieval. This model holds that verbal short-term memory encompasses the temporary activation of linguistic knowledge (e.g., semantic, lexical, and phonological features) during language production and comprehension tasks. Empirical evidence supporting this model, which views short-term memory in the context of the processes it subserves, is outlined. Studies that use a classic measure of verbal short-term memory (i.e., number of words/digits correctly recalled in immediate serial recall) as well as those that use more intricate measures (e.g., serial position effects in immediate serial recall) are discussed. Treatment research that uses verbal short-term memory tasks in an attempt to improve language processing is then summarized, with a particular focus on word retrieval. A discussion of the limitations of current research and possible future directions concludes the review. PMID:28201834
An integrative view of storage of low- and high-level visual dimensions in visual short-term memory.
Magen, Hagit
2017-03-01
Efficient performance in an environment filled with complex objects is often achieved through the temporal maintenance of conjunctions of features from multiple dimensions. The most striking finding in the study of binding in visual short-term memory (VSTM) is equal memory performance for single features and for integrated multi-feature objects, a finding that has been central to several theories of VSTM. Nevertheless, research on binding in VSTM focused almost exclusively on low-level features, and little is known about how items from low- and high-level visual dimensions (e.g., colored manmade objects) are maintained simultaneously in VSTM. The present study tested memory for combinations of low-level features and high-level representations. In agreement with previous findings, Experiments 1 and 2 showed decrements in memory performance when non-integrated low- and high-level stimuli were maintained simultaneously compared to maintaining each dimension in isolation. However, contrary to previous findings the results of Experiments 3 and 4 showed decrements in memory performance even when integrated objects of low- and high-level stimuli were maintained in memory, compared to maintaining single-dimension objects. Overall, the results demonstrate that low- and high-level visual dimensions compete for the same limited memory capacity, and offer a more comprehensive view of VSTM.
Salis, Christos; Kelly, Helen; Code, Chris
2015-01-01
Aphasia following stroke refers to impairments that affect the comprehension and expression of spoken and/or written language, and co-occurring cognitive deficits are common. In this paper we focus on short-term and working memory impairments that impact on the ability to retain and manipulate auditory-verbal information. Evidence from diverse paradigms (large group studies, case studies) report close links between short-term/working memory and language functioning in aphasia. This evidence leads to the hypothesis that treating such memory impairments would improve language functioning. This link has only recently been acknowledged in aphasia treatment but has not been embraced widely by clinicians. To examine the association between language, and short-term and working memory impairments in aphasia. To describe practical ways of assessing short-term and working memory functioning that could be used in clinical practice. To discuss and critically appraise treatments of short-term and working memory reported in the literature. Taking a translational research approach, this paper provides clinicians with current evidence from the literature and practical information on how to assess and treat short-term and working memory impairments in people with aphasia. Published treatments of short-term and/or working memory in post-stroke aphasia are discussed through a narrative review. This paper provides the following. A theoretical rationale for adopting short-term and working memory treatments in aphasia. It highlights issues in differentially diagnosing between short-term, working memory disorders and other concomitant impairments, e.g. apraxia of speech. It describes short-term and working memory assessments with practical considerations for use with people with aphasia. It also offers a description of published treatments in terms of participants, treatments and outcomes. Finally, it critically appraises the current evidence base relating to the treatment of short-term and working memory treatments. The links between short-term/working memory functioning and language in aphasia are generally acknowledged. These strongly indicate the need to incorporate assessment of short-term/working memory functioning for people with aphasia. While the supportive evidence for treatment is growing and appears to highlight the benefits of including short-term/working memory in aphasia treatment, the quality of the evidence in its current state is poor. However, because of the clinical needs of people with aphasia and the prevalence of short-term/working memory impairments, incorporating related treatments through practice-based evidence is advocated. © 2015 Royal College of Speech and Language Therapists.
Dynamical Origin of the Effective Storage Capacity in the Brain's Working Memory
NASA Astrophysics Data System (ADS)
Bick, Christian; Rabinovich, Mikhail I.
2009-11-01
The capacity of working memory (WM), a short-term buffer for information in the brain, is limited. We suggest a model for sequential WM that is based upon winnerless competition amongst representations of available informational items. Analytical results for the underlying mathematical model relate WM capacity and relative lateral inhibition in the corresponding neural network. This implies an upper bound for WM capacity, which is, under reasonable neurobiological assumptions, close to the “magical number seven.”
Random Boolean networks for autoassociative memory: Optimization and sequential learning
NASA Astrophysics Data System (ADS)
Sherrington, D.; Wong, K. Y. M.
Conventional neural networks are based on synaptic storage of information, even when the neural states are discrete and bounded. In general, the set of potential local operations is much greater. Here we discuss some aspects of the properties of networks of binary neurons with more general Boolean functions controlling the local dynamics. Two specific aspects are emphasised; (i) optimization in the presence of noise and (ii) a simple model for short-term memory exhibiting primacy and recency in the recall of sequentially taught patterns.
The Mind and Brain of Short-Term Memory
Jonides, John; Lewis, Richard L.; Nee, Derek Evan; Lustig, Cindy A.; Berman, Marc G.; Moore, Katherine Sledge
2014-01-01
The past 10 years have brought near-revolutionary changes in psychological theories about short-term memory, with similarly great advances in the neurosciences. Here, we critically examine the major psychological theories (the “mind”) of short-term memory and how they relate to evidence about underlying brain mechanisms. We focus on three features that must be addressed by any satisfactory theory of short-term memory. First, we examine the evidence for the architecture of short-term memory, with special attention to questions of capacity and how—or whether—short-term memory can be separated from long-term memory. Second, we ask how the components of that architecture enact processes of encoding, maintenance, and retrieval. Third, we describe the debate over the reason about forgetting from short-term memory, whether interference or decay is the cause. We close with a conceptual model tracing the representation of a single item through a short-term memory task, describing the biological mechanisms that might support psychological processes on a moment-by-moment basis as an item is encoded, maintained over a delay with some forgetting, and ultimately retrieved. PMID:17854286
Familiarity increases the number of remembered Pokémon in visual short-term memory.
Xie, Weizhen; Zhang, Weiwei
2017-05-01
Long-term memory (LTM) can influence many aspects of short-term memory (STM), including increased STM span. However, it is unclear whether LTM enhances the quantitative or qualitative aspect of STM. That is, do we retain a larger number of representations or more precise representations in STM for familiar stimuli than unfamiliar stimuli? This study took advantage of participants' prior rich multimedia experience with Pokémon, without investing on laboratory training to examine how prior LTM influenced visual STM. In a Pokémon visual STM change detection task, participants remembered more first-generation Pokémon characters that they were more familiar with than recent-generation Pokémon characters that they were less familiar with. No significant difference in memory quality was found when quantitative and qualitative effects of LTM were isolated using receiver operating characteristic (ROC) analyses. Critically, these effects were absent in participants who were unfamiliar with first-generation Pokémon. Furthermore, several alternative interpretations were ruled out, including general video-gaming experience, subjective Pokémon preference, and verbal encoding. Together, these results demonstrated a strong link between prior stimulus familiarity in LTM and visual STM storage capacity.
Multiplexed Holographic Data Storage in Bacteriorhodopsin
NASA Technical Reports Server (NTRS)
Mehrl, David J.; Krile, Thomas F.
1999-01-01
Biochrome photosensitive films in particular Bacteriorhodopsin exhibit features which make these materials an attractive recording medium for optical data storage and processing. Bacteriorhodopsin films find numerous applications in a wide range of optical data processing applications; however the short-term memory characteristics of BR limits their applications for holographic data storage. The life-time of the BR can be extended using cryogenic temperatures [1], although this method makes the system overly complicated and unstable. Longer life-times can be provided in one modification of BR - the "blue" membrane BR [2], however currently available films are characterized by both low diffraction efficiency and difficulties in providing photoreversible recording. In addition, as a dynamic recording material, the BR requires different wavelengths for recording and reconstructing of optical data in order to prevent the information erasure during its readout. This fact also put constraints on a BR-based Optical Memory, due to information loss in holographic memory systems employing the two-lambda technique for reading-writing thick multiplexed holograms.
Levels of Interference in Long and Short-Term Memory Differentially Modulate Non-REM and REM Sleep.
Fraize, Nicolas; Carponcy, Julien; Joseph, Mickaël Antoine; Comte, Jean-Christophe; Luppi, Pierre-Hervé; Libourel, Paul-Antoine; Salin, Paul-Antoine; Malleret, Gaël; Parmentier, Régis
2016-12-01
It is commonly accepted that sleep is beneficial to memory processes, but it is still unclear if this benefit originates from improved memory consolidation or enhanced information processing. It has thus been proposed that sleep may also promote forgetting of undesirable and non-essential memories, a process required for optimization of cognitive resources. We tested the hypothesis that non-rapid eye movement sleep (NREMS) promotes forgetting of irrelevant information, more specifically when processing information in working memory (WM), while REM sleep (REMS) facilitates the consolidation of important information. We recorded sleep patterns of rats trained in a radial maze in three different tasks engaging either the long-term or short-term storage of information, as well as a gradual level of interference. We observed a transient increase in REMS amount on the day the animal learned the rule of a long-term/reference memory task (RM), and, in contrast, a positive correlation between the performance of rats trained in a WM task involving an important processing of interference and the amount of NREMS or slow wave activity. Various oscillatory events were also differentially modulated by the type of training involved. Notably, NREMS spindles and REMS rapid theta increase with RM training, while sharp-wave ripples increase with all types of training. These results suggest that REMS, but also rapid oscillations occurring during NREMS would be specifically implicated in the long-term memory in RM, whereas NREMS and slow oscillations could be involved in the forgetting of irrelevant information required for WM. © 2016 Associated Professional Sleep Societies, LLC.
Long-term associative learning predicts verbal short-term memory performance.
Jones, Gary; Macken, Bill
2018-02-01
Studies using tests such as digit span and nonword repetition have implicated short-term memory across a range of developmental domains. Such tests ostensibly assess specialized processes for the short-term manipulation and maintenance of information that are often argued to enable long-term learning. However, there is considerable evidence for an influence of long-term linguistic learning on performance in short-term memory tasks that brings into question the role of a specialized short-term memory system separate from long-term knowledge. Using natural language corpora, we show experimentally and computationally that performance on three widely used measures of short-term memory (digit span, nonword repetition, and sentence recall) can be predicted from simple associative learning operating on the linguistic environment to which a typical child may have been exposed. The findings support the broad view that short-term verbal memory performance reflects the application of long-term language knowledge to the experimental setting.
Majerus, Steve; Van der Linden, Martial; Braissand, Vérane; Eliez, Stephan
2007-03-01
Many researchers have recently explored the cognitive profile of velocardiofacial syndrome (VCFS), a neurodevelopmental disorder linked to a 22q11.2 deletion. However, verbal short-term memory has not yet been systematically investigated. We explored verbal short-term memory abilities in a group of 11 children and adults presenting with VCFS and two control groups, matched on either CA or vocabulary knowledge, by distinguishing short-term memory for serial order and item information. The VCFS group showed impaired performance on the serial order short-term memory tasks compared to both control groups. Relative to the vocabulary-matched control group, item short-term memory was preserved. The implication of serial order short-term memory deficits on other aspects of cognitive development in VCFS (e.g., language development, numerical cognition) is discussed.
Bunting, Michael F; Cowan, Nelson; Colflesh, Greg H
2008-06-01
Memory at times depends on attention, as when attention is used to encode incoming, serial verbal information. When encoding and rehearsal are difficult or when attention is divided during list presentation, more attention is needed in the time following the presentation and just preceding the response. Across 12 experimental conditions observed in several experiments, we demonstrated this by introducing a nonverbal task with three levels of effort (no task, a natural nonverbal task, or an unnatural version of the task) during a brief retention interval in a short-term digit recall task. Interference from the task during the retention interval was greater when resources were drawn away from the encoding of the stimuli by other factors, including unpredictability of the end point of the list, rapid presentation, and a secondary task during list presentation. When those conditions complicate encoding of the list, we argue, attention is needed after the list so that the contents of passive memory (i.e., postcategorical phonological storage and/or precategorical sensory memory) may be retrieved and become the focus of attention for recall.
ERIC Educational Resources Information Center
Santa, Tomofumi; Kirino, Yutaka; Watanabe, Satoshi; Shirahata, Takaaki; Tsunoda, Makoto
2006-01-01
The terrestrial slug "Limax" is able to acquire short-term and long-term memories during aversive odor-taste associative learning. We investigated the effect of the selective serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) on memory. Behavioral studies indicated that 5,7-DHT impaired short-term memory but not long-term memory. HPLC…
Retrieval and sleep both counteract the forgetting of spatial information.
Antony, James W; Paller, Ken A
2018-06-01
Repeatedly studying information is a good way to strengthen memory storage. Nevertheless, testing recall often produces superior long-term retention. Demonstrations of this testing effect, typically with verbal stimuli, have shown that repeated retrieval through testing reduces forgetting. Sleep also benefits memory storage, perhaps through repeated retrieval as well. That is, memories may generally be subject to forgetting that can be counteracted when memories become reactivated, and there are several types of reactivation: (i) via intentional restudying, (ii) via testing, (iii) without provocation during wake, or (iv) during sleep. We thus measured forgetting for spatial material subjected to repeated study or repeated testing followed by retention intervals with sleep versus wake. Four groups of subjects learned a set of visual object-location associations and either restudied the associations or recalled locations given the objects as cues. We found the advantage for restudied over retested information was greater in the PM than AM group. Additional groups tested at 5-min and 1-wk retention intervals confirmed previous findings of greater relative benefits for restudying in the short-term and for retesting in the long-term. Results overall support the conclusion that repeated reactivation through testing or sleeping stabilizes information against forgetting. © 2018 Antony and Paller; Published by Cold Spring Harbor Laboratory Press.
The Sensory Components of High-Capacity Iconic Memory and Visual Working Memory
Bradley, Claire; Pearson, Joel
2012-01-01
Early visual memory can be split into two primary components: a high-capacity, short-lived iconic memory followed by a limited-capacity visual working memory that can last many seconds. Whereas a large number of studies have investigated visual working memory for low-level sensory features, much research on iconic memory has used more “high-level” alphanumeric stimuli such as letters or numbers. These two forms of memory are typically examined separately, despite an intrinsic overlap in their characteristics. Here, we used a purely sensory paradigm to examine visual short-term memory for 10 homogeneous items of three different visual features (color, orientation and motion) across a range of durations from 0 to 6 s. We found that the amount of information stored in iconic memory is smaller for motion than for color or orientation. Performance declined exponentially with longer storage durations and reached chance levels after ∼2 s. Further experiments showed that performance for the 10 items at 1 s was contingent on unperturbed attentional resources. In addition, for orientation stimuli, performance was contingent on the location of stimuli in the visual field, especially for short cue delays. Overall, our results suggest a smooth transition between an automatic, high-capacity, feature-specific sensory-iconic memory, and an effortful “lower-capacity” visual working memory. PMID:23055993
Capacity and precision in an animal model of visual short-term memory.
Lara, Antonio H; Wallis, Jonathan D
2012-03-14
Temporary storage of information in visual short-term memory (VSTM) is a key component of many complex cognitive abilities. However, it is highly limited in capacity. Understanding the neurophysiological nature of this capacity limit will require a valid animal model of VSTM. We used a multiple-item color change detection task to measure macaque monkeys' VSTM capacity. Subjects' performance deteriorated and reaction times increased as a function of the number of items in memory. Additionally, we measured the precision of the memory representations by varying the distance between sample and test colors. In trials with similar sample and test colors, subjects made more errors compared to trials with highly discriminable colors. We modeled the error distribution as a Gaussian function and used this to estimate the precision of VSTM representations. We found that as the number of items in memory increases the precision of the representations decreases dramatically. Additionally, we found that focusing attention on one of the objects increases the precision with which that object is stored and degrades the precision of the remaining. These results are in line with recent findings in human psychophysics and provide a solid foundation for understanding the neurophysiological nature of the capacity limit of VSTM.
Swanson, H Lee; Xinhua Zheng; Jerman, Olga
2009-01-01
The purpose of the present study was to synthesize research that compares children with and without reading disabilities (RD) on measures of short-term memory (STM) and working memory (WM). Across a broad age, reading, and IQ range, 578 effect sizes (ESs) were computed, yielding a mean ES across studies of -.89 (SD = 1.03). A total of 257 ESs were in the moderate range for STM measures (M = -.61, 95% confidence range of -.65 to -.58), and 320 ESs were in the moderate range for WM measures (M = -.67, 95% confidence range of -.68 to -.64). The results indicated that children with RD were distinctively disadvantaged compared with average readers on (a) STM measures requiring the recall of phonemes and digit sequences and (b) WM measures requiring the simultaneous processing and storage of digits within sentence sequences and final words from unrelated sentences. No significant moderating effects emerged for age, IQ, or reading level on memory ESs. The findings indicated that domain-specific STM and WM differences between ability groups persisted across age, suggesting that a verbal deficit model that fails to efficiently draw resources from both a phonological and executive system underlies RD.
Working Memory in the Service of Executive Control Functions.
Mansouri, Farshad A; Rosa, Marcello G P; Atapour, Nafiseh
2015-01-01
Working memory is a type of short-term memory which has a crucial cognitive function that supports ongoing and upcoming behaviors, allowing storage of information across delay periods. The content of this memory may typically include tangible information about features such as the shape, color or texture of an object, and its location and motion relative to the body, as well as phonological information. The neural correlate of working memory has been found in different brain areas that are involved in organizing perceptual or motor functions. In particular, neuronal activity in prefrontal areas encodes task-related information corresponding to working memory across delay periods, and lesions in the prefrontal cortex severely affect the ability to retain this type of memory. Recent studies have further expanded the scope and possible role of working memory by showing that information of a more abstract nature (including a behavior-guiding rule, or the occurrence of a conflict in information processing) can also be maintained in short-term memory, and used for adjusting the allocation of executive control in dynamic environments. It has also been shown that neuronal activity in the prefrontal cortex encodes and maintains information about such abstract entities. These findings suggest that the prefrontal cortex plays crucial roles in the organization of goal-directed behavior by supporting many different mnemonic processes, which maintain a wide range of information required for the executive control of ongoing and upcoming behaviors.
Bharadwaj, Sneha V; Maricle, Denise; Green, Laura; Allman, Tamby
2015-10-01
The objective of the study was to examine short-term memory and working memory through both visual and auditory tasks in school-age children with cochlear implants. The relationship between the performance on these cognitive skills and reading as well as language outcomes were examined in these children. Ten children between the ages of 7 and 11 years with early-onset bilateral severe-profound hearing loss participated in the study. Auditory and visual short-term memory, auditory and visual working memory subtests and verbal knowledge measures were assessed using the Woodcock Johnson III Tests of Cognitive Abilities, the Wechsler Intelligence Scale for Children-IV Integrated and the Kaufman Assessment Battery for Children II. Reading outcomes were assessed using the Woodcock Reading Mastery Test III. Performance on visual short-term memory and visual working memory measures in children with cochlear implants was within the average range when compared to the normative mean. However, auditory short-term memory and auditory working memory measures were below average when compared to the normative mean. Performance was also below average on all verbal knowledge measures. Regarding reading outcomes, children with cochlear implants scored below average for listening and passage comprehension tasks and these measures were positively correlated to visual short-term memory, visual working memory and auditory short-term memory. Performance on auditory working memory subtests was not related to reading or language outcomes. The children with cochlear implants in this study demonstrated better performance in visual (spatial) working memory and short-term memory skills than in auditory working memory and auditory short-term memory skills. Significant positive relationships were found between visual working memory and reading outcomes. The results of the study provide support for the idea that WM capacity is modality specific in children with hearing loss. Based on these findings, reading instruction that capitalizes on the strengths in visual short-term memory and working memory is suggested for young children with early-onset hearing loss. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Majerus, Steve; D'Argembeau, Arnaud
2011-01-01
Many studies suggest that long-term lexical-semantic knowledge is an important determinant of verbal short-term memory (STM) performance. This study explored the impact of emotional valence on word immediate serial recall as a further lexico-semantic long-term memory (LTM) effect on STM. This effect is particularly interesting for the study of…
Physiological, Molecular and Genetic Mechanisms of Long-Term Habituation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calin-Jageman, Robert J
Work funded on this grant has explored the mechanisms of long-term habituation, a ubiquitous form of learning that plays a key role in basic cognitive functioning. Specifically, behavioral, physiological, and molecular mechanisms of habituation have been explored using a simple model system, the tail-elicited siphon-withdrawal reflex (T-SWR) in the marine mollusk Aplysia californica. Substantial progress has been made on the first and third aims, providing some fundamental insights into the mechanisms by which memories are stored. We have characterized the physiological correlates of short- and long-term habituation. We found that short-term habituation is accompanied by a robust sensory adaptation, whereasmore » long-term habituation is accompanied by alterations in sensory and interneuron synaptic efficacy. Thus, our data indicates memories can be shifted between different sites in a neural network as they are consolidated from short to long term. At the molecular level, we have accomplished microarray analysis comparing gene expression in both habituated and control ganglia. We have identified a network of putatively regulated transcripts that seems particularly targeted towards synaptic changes (e.g. SNAP25, calmodulin) . We are now beginning additional work to confirm regulation of these transcripts and build a more detailed understanding of the cascade of molecular events leading to the permanent storage of long-term memories. On the third aim, we have fostered a nascent neuroscience program via a variety of successful initiatives. We have funded over 11 undergraduate neuroscience scholars, several of whom have been recognized at national and regional levels for their research. We have also conducted a pioneering summer research program for community college students which is helping enhance access of underrepresented groups to life science careers. Despite minimal progress on the second aim, this project has provided a) novel insight into the network mechanisms by which short-term memories are permanently stored, and b) a strong foundation for continued growth of an excellent undergraduate neuroscience program.« less
VLSI-based video event triggering for image data compression
NASA Astrophysics Data System (ADS)
Williams, Glenn L.
1994-02-01
Long-duration, on-orbit microgravity experiments require a combination of high resolution and high frame rate video data acquisition. The digitized high-rate video stream presents a difficult data storage problem. Data produced at rates of several hundred million bytes per second may require a total mission video data storage requirement exceeding one terabyte. A NASA-designed, VLSI-based, highly parallel digital state machine generates a digital trigger signal at the onset of a video event. High capacity random access memory storage coupled with newly available fuzzy logic devices permits the monitoring of a video image stream for long term (DC-like) or short term (AC-like) changes caused by spatial translation, dilation, appearance, disappearance, or color change in a video object. Pre-trigger and post-trigger storage techniques are then adaptable to archiving only the significant video images.
VLSI-based Video Event Triggering for Image Data Compression
NASA Technical Reports Server (NTRS)
Williams, Glenn L.
1994-01-01
Long-duration, on-orbit microgravity experiments require a combination of high resolution and high frame rate video data acquisition. The digitized high-rate video stream presents a difficult data storage problem. Data produced at rates of several hundred million bytes per second may require a total mission video data storage requirement exceeding one terabyte. A NASA-designed, VLSI-based, highly parallel digital state machine generates a digital trigger signal at the onset of a video event. High capacity random access memory storage coupled with newly available fuzzy logic devices permits the monitoring of a video image stream for long term (DC-like) or short term (AC-like) changes caused by spatial translation, dilation, appearance, disappearance, or color change in a video object. Pre-trigger and post-trigger storage techniques are then adaptable to archiving only the significant video images.
Schubert, Torsten; Finke, Kathrin; Redel, Petra; Kluckow, Steffen; Müller, Hermann; Strobach, Tilo
2015-05-01
Experts with video game experience, in contrast to non-experienced persons, are superior in multiple domains of visual attention. However, it is an open question which basic aspects of attention underlie this superiority. We approached this question using the framework of Theory of Visual Attention (TVA) with tools that allowed us to assess various parameters that are related to different visual attention aspects (e.g., perception threshold, processing speed, visual short-term memory storage capacity, top-down control, spatial distribution of attention) and that are measurable on the same experimental basis. In Experiment 1, we found advantages of video game experts in perception threshold and visual processing speed; the latter being restricted to the lower positions of the used computer display. The observed advantages were not significantly moderated by general person-related characteristics such as personality traits, sensation seeking, intelligence, social anxiety, or health status. Experiment 2 tested a potential causal link between the expert advantages and video game practice with an intervention protocol. It found no effects of action video gaming on perception threshold, visual short-term memory storage capacity, iconic memory storage, top-down control, and spatial distribution of attention after 15 days of training. However, observations of a selected improvement of processing speed at the lower positions of the computer screen after video game training and of retest effects are suggestive for limited possibilities to improve basic aspects of visual attention (TVA) with practice. Copyright © 2015 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Raine, Adrian; And Others
1991-01-01
Children with speech disorders had lower short-term memory capacity and smaller word length effect than control children. Children with speech disorders also had reduced speech-motor activity during rehearsal. Results suggest that speech rate may be a causal determinant of verbal short-term memory capacity. (BC)
Bavelier, Daphne; Newport, Elissa L.; Hall, Matt; Supalla, Ted; Boutla, Mrim
2008-01-01
Capacity limits in linguistic short-term memory (STM) are typically measured with forward span tasks in which participants are asked to recall lists of words in the order presented. Using such tasks, native signers of American Sign Language (ASL) exhibit smaller spans than native speakers (Boutla, Supalla, Newport, & Bavelier, 2004). Here, we test the hypothesis that this population difference reflects differences in the way speakers and signers maintain temporal order information in short-term memory. We show that native signers differ from speakers on measures of short-term memory that require maintenance of temporal order of the tested materials, but not on those in which temporal order is not required. In addition, we show that, in a recall task with free order, bilingual subjects are more likely to recall in temporal order when using English than ASL. We conclude that speakers and signers do share common short-term memory processes. However, whereas short-term memory for spoken English is predominantly organized in terms of temporal order, we argue that this dimension does not play as great a role in signers’ short-term memory. Other factors that may affect STM processes in signers are discussed. PMID:18083155
Stability of discrete memory states to stochastic fluctuations in neuronal systems
Miller, Paul; Wang, Xiao-Jing
2014-01-01
Noise can degrade memories by causing transitions from one memory state to another. For any biological memory system to be useful, the time scale of such noise-induced transitions must be much longer than the required duration for memory retention. Using biophysically-realistic modeling, we consider two types of memory in the brain: short-term memories maintained by reverberating neuronal activity for a few seconds, and long-term memories maintained by a molecular switch for years. Both systems require persistence of (neuronal or molecular) activity self-sustained by an autocatalytic process and, we argue, that both have limited memory lifetimes because of significant fluctuations. We will first discuss a strongly recurrent cortical network model endowed with feedback loops, for short-term memory. Fluctuations are due to highly irregular spike firing, a salient characteristic of cortical neurons. Then, we will analyze a model for long-term memory, based on an autophosphorylation mechanism of calcium/calmodulin-dependent protein kinase II (CaMKII) molecules. There, fluctuations arise from the fact that there are only a small number of CaMKII molecules at each postsynaptic density (putative synaptic memory unit). Our results are twofold. First, we demonstrate analytically and computationally the exponential dependence of stability on the number of neurons in a self-excitatory network, and on the number of CaMKII proteins in a molecular switch. Second, for each of the two systems, we implement graded memory consisting of a group of bistable switches. For the neuronal network we report interesting ramping temporal dynamics as a result of sequentially switching an increasing number of discrete, bistable, units. The general observation of an exponential increase in memory stability with the system size leads to a trade-off between the robustness of memories (which increases with the size of each bistable unit) and the total amount of information storage (which decreases with increasing unit size), which may be optimized in the brain through biological evolution. PMID:16822041
Neves, Ben-Hur; Menezes, Jefferson; Souza, Mauren Assis; Mello-Carpes, Pâmela B
2015-12-01
It is known from previous research that physical exercise prevents long-term memory deficits induced by maternal deprivation in rats. But we could not assume similar effects of physical exercise on short-term memory, as short- and long-term memories are known to result from some different memory consolidation processes. Here we demonstrated that, in addition to long-term memory deficit, the short-term memory deficit resultant from maternal deprivation in object recognition and aversive memory tasks is also prevented by physical exercise. Additionally, one of the mechanisms by which the physical exercise influences the memory processes involves its effects attenuating the oxidative damage in the maternal deprived rats' hippocampus and prefrontal cortex.
Insensitivity of visual short-term memory to irrelevant visual information.
Andrade, Jackie; Kemps, Eva; Werniers, Yves; May, Jon; Szmalec, Arnaud
2002-07-01
Several authors have hypothesized that visuo-spatial working memory is functionally analogous to verbal working memory. Irrelevant background speech impairs verbal short-term memory. We investigated whether irrelevant visual information has an analogous effect on visual short-term memory, using a dynamic visual noise (DVN) technique known to disrupt visual imagery (Quinn & McConnell, 1996b). Experiment I replicated the effect of DVN on pegword imagery. Experiments 2 and 3 showed no effect of DVN on recall of static matrix patterns, despite a significant effect of a concurrent spatial tapping task. Experiment 4 showed no effect of DVN on encoding or maintenance of arrays of matrix patterns, despite testing memory by a recognition procedure to encourage visual rather than spatial processing. Serial position curves showed a one-item recency effect typical of visual short-term memory. Experiment 5 showed no effect of DVN on short-term recognition of Chinese characters, despite effects of visual similarity and a concurrent colour memory task that confirmed visual processing of the characters. We conclude that irrelevant visual noise does not impair visual short-term memory. Visual working memory may not be functionally analogous to verbal working memory, and different cognitive processes may underlie visual short-term memory and visual imagery.
Sequential dynamics in visual short-term memory.
Kool, Wouter; Conway, Andrew R A; Turk-Browne, Nicholas B
2014-10-01
Visual short-term memory (VSTM) is thought to help bridge across changes in visual input, and yet many studies of VSTM employ static displays. Here we investigate how VSTM copes with sequential input. In particular, we characterize the temporal dynamics of several different components of VSTM performance, including: storage probability, precision, variability in precision, guessing, and swapping. We used a variant of the continuous-report VSTM task developed for static displays, quantifying the contribution of each component with statistical likelihood estimation, as a function of serial position and set size. In Experiments 1 and 2, storage probability did not vary by serial position for small set sizes, but showed a small primacy effect and a robust recency effect for larger set sizes; precision did not vary by serial position or set size. In Experiment 3, the recency effect was shown to reflect an increased likelihood of swapping out items from earlier serial positions and swapping in later items, rather than an increased rate of guessing for earlier items. Indeed, a model that incorporated responding to non-targets provided a better fit to these data than alternative models that did not allow for swapping or that tried to account for variable precision. These findings suggest that VSTM is updated in a first-in-first-out manner, and they bring VSTM research into closer alignment with classical working memory research that focuses on sequential behavior and interference effects.
Sequential dynamics in visual short-term memory
Conway, Andrew R. A.; Turk-Browne, Nicholas B.
2014-01-01
Visual short-term memory (VSTM) is thought to help bridge across changes in visual input, and yet many studies of VSTM employ static displays. Here we investigate how VSTM copes with sequential input. In particular, we characterize the temporal dynamics of several different components of VSTM performance, including: storage probability, precision, variability in precision, guessing, and swapping. We used a variant of the continuous-report VSTM task developed for static displays, quantifying the contribution of each component with statistical likelihood estimation, as a function of serial position and set size. In Experiments 1 and 2, storage probability did not vary by serial position for small set sizes, but showed a small primacy effect and a robust recency effect for larger set sizes; precision did not vary by serial position or set size. In Experiment 3, the recency effect was shown to reflect an increased likelihood of swapping out items from earlier serial positions and swapping in later items, rather than an increased rate of guessing for earlier items. Indeed, a model that incorporated responding to non-targets provided a better fit to these data than alternative models that did not allow for swapping or that tried to account for variable precision. These findings suggest that VSTM is updated in a first-in-first-out manner, and they bring VSTM research into closer alignment with classical working memory research that focuses on sequential behavior and interference effects. PMID:25228092
In Search of Decay in Verbal Short-Term Memory
Berman, Marc G.; Jonides, John; Lewis, Richard L.
2014-01-01
Is forgetting in the short term due to decay with the mere passage of time, interference from other memoranda, or both? Past research on short-term memory has revealed some evidence for decay and a plethora of evidence showing that short-term memory is worsened by interference. However, none of these studies has directly contrasted decay and interference in short-term memory in a task that rules out the use of rehearsal processes. In this article the authors present a series of studies using a novel paradigm to address this problem directly, by interrogating the operation of decay and interference in short-term memory without rehearsal confounds. The results of these studies indicate that short-term memories are subject to very small decay effects with the mere passage of time but that interference plays a much larger role in their degradation. The authors discuss the implications of these results for existing models of memory decay and interference. PMID:19271849
In search of decay in verbal short-term memory.
Berman, Marc G; Jonides, John; Lewis, Richard L
2009-03-01
Is forgetting in the short term due to decay with the mere passage of time, interference from other memoranda, or both? Past research on short-term memory has revealed some evidence for decay and a plethora of evidence showing that short-term memory is worsened by interference. However, none of these studies has directly contrasted decay and interference in short-term memory in a task that rules out the use of rehearsal processes. In this article the authors present a series of studies using a novel paradigm to address this problem directly, by interrogating the operation of decay and interference in short-term memory without rehearsal confounds. The results of these studies indicate that short-term memories are subject to very small decay effects with the mere passage of time but that interference plays a much larger role in their degradation. The authors discuss the implications of these results for existing models of memory decay and interference. (c) 2009 APA, all rights reserved
Attout, Lucie; Noël, Marie-Pascale; Rousselle, Laurence
2018-04-11
Recent models of visuospatial (VSSP) short-term memory postulate the existence of two dissociable mechanisms depending on whether VSSP information is presented simultaneously or sequentially. However, they do not specify to what extent VSSP short-term memory is under the influence of general VSSP processing. This issue was examined in people with 22q11.2 deletion syndrome, a genetic condition involving a VSSP deficit. The configuration of VSSP information was manipulated (structured vs. unstructured) to explore the impact of arrangement on VSSP short-term memory. Two presentation modes were used to see whether the VSSP arrangement has the same impact on simultaneous and sequential short-term memory. Compared to children matched on chronological age, children with 22q11.2 deletion syndrome showed impaired performance only for structured arrangement, regardless of the presentation mode, suggesting an influence of VSSP processing on VSSP short-term memory abilities. A revised cognitive architecture for a model of VSSP short-term memory is proposed.
ERIC Educational Resources Information Center
Conway, Andrew R. A.; Cowan, Nelsin; Bunting, Michael F.; Therriault, David J.; Minkoff, Scott R. B.
2002-01-01
Studied the interrelationships among general fluid intelligence, short-term memory capacity, working memory capacity, and processing speed in 120 young adults and used structural equation modeling to determine the best predictor of general fluid intelligence. Results suggest that working memory capacity, but not short-term memory capacity or…
Bender, Stephan; Behringer, Stephanie; Freitag, Christine M; Resch, Franz; Weisbrod, Matthias
2010-12-01
To elucidate the contributions of modality-dependent post-processing in auditory, motor and visual cortical areas to short-term memory. We compared late negative waves (N700) during the post-processing of single lateralized stimuli which were separated by long intertrial intervals across the auditory, motor and visual modalities. Tasks either required or competed with attention to post-processing of preceding events, i.e. active short-term memory maintenance. N700 indicated that cortical post-processing exceeded short movements as well as short auditory or visual stimuli for over half a second without intentional short-term memory maintenance. Modality-specific topographies pointed towards sensory (respectively motor) generators with comparable time-courses across the different modalities. Lateralization and amplitude of auditory/motor/visual N700 were enhanced by active short-term memory maintenance compared to attention to current perceptions or passive stimulation. The memory-related N700 increase followed the characteristic time-course and modality-specific topography of the N700 without intentional memory-maintenance. Memory-maintenance-related lateralized negative potentials may be related to a less lateralised modality-dependent post-processing N700 component which occurs also without intentional memory maintenance (automatic memory trace or effortless attraction of attention). Encoding to short-term memory may involve controlled attention to modality-dependent post-processing. Similar short-term memory processes may exist in the auditory, motor and visual systems. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
On brain lesions, the milkman and Sigmunda.
Izquierdo, I; Medina, J H
1998-10-01
Lesion studies have been of historical importance in establishing the brain systems involved in memory processes. Many of those studies, however, have been overinterpreted in terms of the actual role of each system and of connections between systems. The more recent molecular pharmacological approach has produced major advances in these two areas. The main biochemical steps of memory formation in the CAI region of the hippocampus have been established by localized microinfusions of drugs acting on specific enzymes of receptors, by subcellular measurements of the activity or function of those enzymes and receptors at definite times, and by transgenic deletions or changes of those proteins. The biochemical steps of long-term memory formation in CAI have been found to be quite similar to those of long-term potentiation in the same region, and of other forms of plasticity. Connections between the hippocampus and the entorhinal and parietal cortices in the formation and modulation of short- and long-term memory have also been elucidated using these techniques. Lesion studies, coupled with imaging studies, still have a role to play; with regard to human memory, this role is in many ways unique. But these methods by themselves are not informative as to the mechanisms of memory processing, storage or modulation.
Jang, Sung Ho; Kim, Seong Ho; Seo, Jeong Pyo
2018-01-01
We reported on a patient with mild traumatic brain injury (TBI) who showed recovery of an injured cingulum concurrent with improvement of short-term memory, which was demonstrated on follow-up diffusion tensor tractography (DTT). A 55-year-old male patient suffered head trauma resulting from falling from approximately 2 m while working at a construction site. The patient showed mild memory impairment (especially short-term memory impairment) at 3 months after onset: Memory Assessment Scale (global memory: 95 (37%ile), short-term memory: 75 (5%ile), verbal memory: 80 (9%ile) and visual memory: 112 (79%ile)). By contrast, at 2 years after onset, his mild memory impairment had improved to a normal state: Memory Assessment Scale (global memory: 104 (61%ile), short-term memory: 95 (37%ile), verbal memory: 101 (53%ile) and visual memory: 106 (66%ile)). On 3-month DTT, discontinuation of the right anterior cingulum was observed over the genu of the corpus callosum, while on 2-year DTT, the discontinued right anterior cingulum was elongated to the right basal forebrain. In conclusion, recovery of an injured cingulum concurrent with improvement of short-term memory was demonstrated in a patient with mild TBI.
Short term memory for single surface features and bindings in ageing: A replication study.
Isella, Valeria; Molteni, Federica; Mapelli, Cristina; Ferrarese, Carlo
2015-06-01
In the present study we replicated a previous experiment investigating visuo-spatial short term memory binding in young and older healthy individuals, in the attempt to verify the pattern of impairment that can be observed in normal elderly for short term memory for single items vs short term memory for bindings. Assessing a larger sample size (25 young and 25 older subjects), using a more appropriate measure of accuracy for a change detection task (A'), and adding the evaluation of speed of performance, we confirmed that old normals show a decline in short term memory for bindings of shape and colour that is of comparable extent, and not major, to the decline in memory for single shapes and single colours. The absence of a specific deficit of short term memory for conjunctions of surface features seems to distinguish cognitive ageing from Alzheimer's Disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Wei, Kun; Zhong, Suchuan
2017-08-01
Phenomenologically inspired by dolphins' unihemispheric sleep, we introduce a minimal model for random walks with physiological memory. The physiological memory consists of long-term memory which includes unconscious implicit memory and conscious explicit memory, and working memory which serves as a multi-component system for integrating, manipulating and managing short-term storage. The model assumes that the sleeping state allows retrievals of episodic objects merely from the episodic buffer where these memory objects are invoked corresponding to the ambient objects and are thus object-oriented, together with intermittent but increasing use of implicit memory in which decisions are unconsciously picked up from historical time series. The process of memory decay and forgetting is constructed in the episodic buffer. The walker's risk attitude, as a product of physiological heuristics according to the performance of objected-oriented decisions, is imposed on implicit memory. The analytical results of unihemispheric random walks with the mixture of object-oriented and time-oriented memory, as well as the long-time behavior which tends to the use of implicit memory, are provided, indicating the common sense that a conservative risk attitude is inclinable to slow movement.
Growth in literacy, cognition, and working memory in English language learners.
Lee Swanson, H; Orosco, Michael J; Lussier, Catherine M
2015-04-01
This cohort sequential study explored the components of working memory that underlie English reading and language acquisition in elementary school children whose first language is Spanish. To this end, children (N=410) in Grades 1, 2, and 3 at Wave 1 were administered a battery of cognitive (short-term memory [STM], working memory [WM], rapid naming, phonological processing, and random letter and number generation), vocabulary, and reading measures in both Spanish and English. These same measures were administered 1 and 2 years later. The results showed that (a) a three-factor structure (phonological STM, visual-spatial WM, and verbal WM) captured the data within both language systems, (b) growth in both the executive and STM storage components was uniquely related to growth in second language (L2) reading and language acquisition, and (c) the contribution of growth in the executive component of WM to growth in L2 processing was independent of growth in storage, phonological knowledge, inhibition, and rapid naming speed. The results suggested that growth in the phonological storage system does not supersede growth of the executive component of WM as a major contributor to growth in children's L2 reading and language. Copyright © 2015 Elsevier Inc. All rights reserved.
Memory and pattern storage in neural networks with activity dependent synapses
NASA Astrophysics Data System (ADS)
Mejias, J. F.; Torres, J. J.
2009-01-01
We present recently obtained results on the influence of the interplay between several activity dependent synaptic mechanisms, such as short-term depression and facilitation, on the maximum memory storage capacity in an attractor neural network [1]. In contrast with the case of synaptic depression, which drastically reduces the capacity of the network to store and retrieve activity patterns [2], synaptic facilitation is able to enhance the memory capacity in different situations. In particular, we find that a convenient balance between depression and facilitation can enhance the memory capacity, reaching maximal values similar to those obtained with static synapses, that is, without activity-dependent processes. We also argue, employing simple arguments, that this level of balance is compatible with experimental data recorded from some cortical areas, where depression and facilitation may play an important role for both memory-oriented tasks and information processing. We conclude that depressing synapses with a certain level of facilitation allow to recover the good retrieval properties of networks with static synapses while maintaining the nonlinear properties of dynamic synapses, convenient for information processing and coding.
Short-term plasticity as a neural mechanism supporting memory and attentional functions.
Jääskeläinen, Iiro P; Ahveninen, Jyrki; Andermann, Mark L; Belliveau, John W; Raij, Tommi; Sams, Mikko
2011-11-08
Based on behavioral studies, several relatively distinct perceptual and cognitive functions have been defined in cognitive psychology such as sensory memory, short-term memory, and selective attention. Here, we review evidence suggesting that some of these functions may be supported by shared underlying neuronal mechanisms. Specifically, we present, based on an integrative review of the literature, a hypothetical model wherein short-term plasticity, in the form of transient center-excitatory and surround-inhibitory modulations, constitutes a generic processing principle that supports sensory memory, short-term memory, involuntary attention, selective attention, and perceptual learning. In our model, the size and complexity of receptive fields/level of abstraction of neural representations, as well as the length of temporal receptive windows, increases as one steps up the cortical hierarchy. Consequently, the type of input (bottom-up vs. top down) and the level of cortical hierarchy that the inputs target, determine whether short-term plasticity supports purely sensory vs. semantic short-term memory or attentional functions. Furthermore, we suggest that rather than discrete memory systems, there are continuums of memory representations from short-lived sensory ones to more abstract longer-duration representations, such as those tapped by behavioral studies of short-term memory. Copyright © 2011 Elsevier B.V. All rights reserved.
Gathercole, Susan E; Briscoe, Josie; Thorn, Annabel; Tiffany, Claire
2008-03-01
Possible links between phonological short-term memory and both longer term memory and learning in 8-year-old children were investigated in this study. Performance on a range of tests of long-term memory and learning was compared for a group of 16 children with poor phonological short-term memory skills and a comparison group of children of the same age with matched nonverbal reasoning abilities but memory scores in the average range. The low-phonological-memory group were impaired on longer term memory and learning tasks that taxed memory for arbitrary verbal material such as names and nonwords. However, the two groups performed at comparable levels on tasks requiring the retention of visuo-spatial information and of meaningful material and at carrying out prospective memory tasks in which the children were asked to carry out actions at a future point in time. The results are consistent with the view that poor short-term memory function impairs the longer-term retention and ease of learning of novel verbal material.
The Unintentional Memory Load in Tests for Young Children.
ERIC Educational Resources Information Center
Jones, Margaret Hubbard
The validity of certain standardized tests may be affected by the short-term memory load therein and its relation to a child's short-term memory capacity. Factors of testing which increase a test's memory load and consequently interfere with comprehension are discussed. It is hypothesized that a test which strains the short-term memory capacity of…
Short-term memory and dual task performance
NASA Technical Reports Server (NTRS)
Regan, J. E.
1982-01-01
Two hypotheses concerning the way in which short-term memory interacts with another task in a dual task situation are considered. It is noted that when two tasks are combined, the activity of controlling and organizing performance on both tasks simultaneously may compete with either task for a resource; this resource may be space in a central mechanism or general processing capacity or it may be some task-specific resource. If a special relationship exists between short-term memory and control, especially if there is an identity relationship between short-term and a central controlling mechanism, then short-term memory performance should show a decrement in a dual task situation. Even if short-term memory does not have any particular identity with a controlling mechanism, but both tasks draw on some common resource or resources, then a tradeoff between the two tasks in allocating resources is possible and could be reflected in performance. The persistent concurrence cost in memory performance in these experiments suggests that short-term memory may have a unique status in the information processing system.
Musicians have better memory than nonmusicians: A meta-analysis.
Talamini, Francesca; Altoè, Gianmarco; Carretti, Barbara; Grassi, Massimo
2017-01-01
Several studies have found that musicians perform better than nonmusicians in memory tasks, but this is not always the case, and the strength of this apparent advantage is unknown. Here, we conducted a meta-analysis with the aim of clarifying whether musicians perform better than nonmusicians in memory tasks. Education Source; PEP (WEB)-Psychoanalytic Electronic Publishing; Psychology and Behavioral Science (EBSCO); PsycINFO (Ovid); PubMed; ScienceDirect-AllBooks Content (Elsevier API); SCOPUS (Elsevier API); SocINDEX with Full Text (EBSCO) and Google Scholar were searched for eligible studies. The selected studies involved two groups of participants: young adult musicians and nonmusicians. All the studies included memory tasks (loading long-term, short-term or working memory) that contained tonal, verbal or visuospatial stimuli. Three meta-analyses were run separately for long-term memory, short-term memory and working memory. We collected 29 studies, including 53 memory tasks. The results showed that musicians performed better than nonmusicians in terms of long-term memory, g = .29, 95% CI (.08-.51), short-term memory, g = .57, 95% CI (.41-.73), and working memory, g = .56, 95% CI (.33-.80). To further explore the data, we included a moderator (the type of stimulus presented, i.e., tonal, verbal or visuospatial), which was found to influence the effect size for short-term and working memory, but not for long-term memory. In terms of short-term and working memory, the musicians' advantage was large with tonal stimuli, moderate with verbal stimuli, and small or null with visuospatial stimuli. The three meta-analyses revealed a small effect size for long-term memory, and a medium effect size for short-term and working memory, suggesting that musicians perform better than nonmusicians in memory tasks. Moreover, the effect of the moderator suggested that, the type of stimuli influences this advantage.
Musicians have better memory than nonmusicians: A meta-analysis
Altoè, Gianmarco; Carretti, Barbara; Grassi, Massimo
2017-01-01
Background Several studies have found that musicians perform better than nonmusicians in memory tasks, but this is not always the case, and the strength of this apparent advantage is unknown. Here, we conducted a meta-analysis with the aim of clarifying whether musicians perform better than nonmusicians in memory tasks. Methods Education Source; PEP (WEB)—Psychoanalytic Electronic Publishing; Psychology and Behavioral Science (EBSCO); PsycINFO (Ovid); PubMed; ScienceDirect—AllBooks Content (Elsevier API); SCOPUS (Elsevier API); SocINDEX with Full Text (EBSCO) and Google Scholar were searched for eligible studies. The selected studies involved two groups of participants: young adult musicians and nonmusicians. All the studies included memory tasks (loading long-term, short-term or working memory) that contained tonal, verbal or visuospatial stimuli. Three meta-analyses were run separately for long-term memory, short-term memory and working memory. Results We collected 29 studies, including 53 memory tasks. The results showed that musicians performed better than nonmusicians in terms of long-term memory, g = .29, 95% CI (.08–.51), short-term memory, g = .57, 95% CI (.41–.73), and working memory, g = .56, 95% CI (.33–.80). To further explore the data, we included a moderator (the type of stimulus presented, i.e., tonal, verbal or visuospatial), which was found to influence the effect size for short-term and working memory, but not for long-term memory. In terms of short-term and working memory, the musicians’ advantage was large with tonal stimuli, moderate with verbal stimuli, and small or null with visuospatial stimuli. Conclusions The three meta-analyses revealed a small effect size for long-term memory, and a medium effect size for short-term and working memory, suggesting that musicians perform better than nonmusicians in memory tasks. Moreover, the effect of the moderator suggested that, the type of stimuli influences this advantage. PMID:29049416
Marin, Bianca M; VanHaerents, Stephen A; Voss, Joel L; Bridge, Donna J
2018-01-01
Dorsolateral prefrontal cortex (DLPFC) is thought to organize items in working memory and this organizational role may also influence long-term memory. To causally test this hypothesized role of DLPFC in long-term memory formation, we used θ-burst noninvasive stimulation (TBS) to modulate DLPFC involvement in a memory task that assessed the influence of active short-term retrieval on later memory. Human subjects viewed three objects on a grid and then either actively retrieved or passively restudied one object's location after a brief delay. Long-term memory for the other objects was assessed after a delay to evaluate the beneficial role of active short-term retrieval on subsequent memory for the entire set of object locations. We found that DLPFC TBS had no significant effects on short-term memory. In contrast, DLPFC TBS impaired long-term memory selectively in the active-retrieval condition but not in the passive-restudy condition. These findings are consistent with the hypothesized contribution of DLPFC to the organizational processes operative during active short-term retrieval that influence long-term memory, although other regions that were not stimulated could provide similar contributions. Notably, active-retrieval and passive-restudy conditions were intermixed, and therefore nonspecific influences of stimulation were well controlled. These results suggest that DLPFC is causally involved in organizing event information during active retrieval to support coherent long-term memory formation.
2018-01-01
Abstract Dorsolateral prefrontal cortex (DLPFC) is thought to organize items in working memory and this organizational role may also influence long-term memory. To causally test this hypothesized role of DLPFC in long-term memory formation, we used θ-burst noninvasive stimulation (TBS) to modulate DLPFC involvement in a memory task that assessed the influence of active short-term retrieval on later memory. Human subjects viewed three objects on a grid and then either actively retrieved or passively restudied one object’s location after a brief delay. Long-term memory for the other objects was assessed after a delay to evaluate the beneficial role of active short-term retrieval on subsequent memory for the entire set of object locations. We found that DLPFC TBS had no significant effects on short-term memory. In contrast, DLPFC TBS impaired long-term memory selectively in the active-retrieval condition but not in the passive-restudy condition. These findings are consistent with the hypothesized contribution of DLPFC to the organizational processes operative during active short-term retrieval that influence long-term memory, although other regions that were not stimulated could provide similar contributions. Notably, active-retrieval and passive-restudy conditions were intermixed, and therefore nonspecific influences of stimulation were well controlled. These results suggest that DLPFC is causally involved in organizing event information during active retrieval to support coherent long-term memory formation. PMID:29445769
ERIC Educational Resources Information Center
Behmke, Derek A.; Atwood, Charles H.
2013-01-01
To a first approximation, human memory is divided into two parts, short-term and long-term. Cognitive Load Theory (CLT) attempts to minimize the short-term memory load while maximizing the memory available for transferring knowledge from short-term to long-term memory. According to CLT there are three types of load, intrinsic, extraneous, and…
ERIC Educational Resources Information Center
Remaud, Jessica; Ceccom, Johnatan; Carponcy, Julien; Dugué, Laura; Menchon, Gregory; Pech, Stéphane; Halley, Helene; Francés, Bernard; Dahan, Lionel
2014-01-01
Protein synthesis is involved in the consolidation of short-term memory into long-term memory. Previous electrophysiological data concerning LTP in CA3 suggest that protein synthesis in that region might also be necessary for short-term memory. We tested this hypothesis by locally injecting the protein synthesis inhibitor anisomycin in hippocampal…
Capacity and precision in an animal model of visual short-term memory
Lara, Antonio H.; Wallis, Jonathan D.
2013-01-01
Temporary storage of information in visual short-term memory (VSTM) is a key component of many complex cognitive abilities. However, it is highly limited in capacity. Understanding the neurophysiological nature of this capacity limit will require a valid animal model of VSTM. We used a multiple-item color change detection task to measure macaque monkeys’ VSTM capacity. Subjects’ performance deteriorated and reaction times increased as a function of the number of items in memory. Additionally, we measured the precision of the memory representations by varying the distance between sample and test colors. In trials with similar sample and test colors, subjects made more errors compared to trials with highly discriminable colors. We modeled the error distribution as a Gaussian function and used this to estimate the precision of VSTM representations. We found that as the number of items in memory increases the precision of the representations decreases dramatically. Additionally, we found that focusing attention on one of the objects increases the precision with which that object is stored and degrading the precision of the remaining. These results are in line with recent findings in human psychophysics and provide a solid foundation for understanding the neurophysiological nature of the capacity limit of VSTM. PMID:22419756
Grimes, Matthew T; Harley, Carolyn W; Darby-King, Andrea; McLean, John H
2012-02-21
Neonatal odor-preference memory in rat pups is a well-defined associative mammalian memory model dependent on cAMP. Previous work from this laboratory demonstrates three phases of neonatal odor-preference memory: short-term (translation-independent), intermediate-term (translation-dependent), and long-term (transcription- and translation-dependent). Here, we use neonatal odor-preference learning to explore the role of olfactory bulb PKA in these three phases of mammalian memory. PKA activity increased normally in learning animals 10 min after a single training trial. Inhibition of PKA by Rp-cAMPs blocked intermediate-term and long-term memory, with no effect on short-term memory. PKA inhibition also prevented learning-associated CREB phosphorylation, a transcription factor implicated in long-term memory. When long-term memory was rescued through increased β-adrenoceptor activation, CREB phosphorylation was restored. Intermediate-term and long-term, but not short-term odor-preference memories were generated by pairing odor with direct PKA activation using intrabulbar Sp-cAMPs, which bypasses β-adrenoceptor activation. Higher levels of Sp-cAMPs enhanced memory by extending normal 24-h retention to 48-72 h. These results suggest that increased bulbar PKA is necessary and sufficient for the induction of intermediate-term and long-term odor-preference memory, and suggest that PKA activation levels also modulate memory duration. However, short-term memory appears to use molecular mechanisms other than the PKA/CREB pathway. These mechanisms, which are also recruited by β-adrenoceptor activation, must operate in parallel with PKA activation.
Schlagbauer, Bernhard; Mink, Maurice; Müller, Hermann J; Geyer, Thomas
2017-02-01
Observers are able to resume an interrupted search trial faster relative to responding to a new, unseen display. This finding of rapid resumption is attributed to short-term perceptual hypotheses generated on the current look and confirmed upon subsequent looks at the same display. It has been suggested that the contents of perceptual hypotheses are similar to those of other forms of memory acquired long-term through repeated exposure to the same search displays over the course of several trials, that is, the memory supporting "contextual cueing." In three experiments, we investigated the relationship between short-term perceptual hypotheses and long-term contextual memory. The results indicated that long-term, contextual memory of repeated displays neither affected the generation nor the confirmation of short-term perceptual hypotheses for these displays. Furthermore, the analysis of eye movements suggests that long-term memory provides an initial benefit in guiding attention to the target, whereas in subsequent looks guidance is entirely based on short-term perceptual hypotheses. Overall, the results reveal a picture of both long- and short-term memory contributing to reliable performance gains in interrupted search, while exerting their effects in an independent manner.
Central executive involvement in children's spatial memory.
Ang, Su Yin; Lee, Kerry
2008-11-01
Previous research with adults found that spatial short-term and working memory tasks impose similar demands on executive resources. We administered spatial short-term and working memory tasks to 8- and 11-year-olds in three separate experiments. In Experiments 1 and 2 an executive suppression task (random number generation) was found to impair performances on a short-term memory task (Corsi blocks), a working memory task (letter rotation), and a spatial visualisation task (paper folding). In Experiment 3 an articulatory suppression task only impaired performance on the working memory task. These results suggest that short-term and working memory performances are dependent on executive resources. The degree to which the short-term memory task was dependent on executive resources was expected to be related to the amount of experience children have had with such tasks. Yet we found no significant age-related suppression effects. This was attributed to differences in employment of cognitive strategies by the older children.
In Search of Decay in Verbal Short-Term Memory
ERIC Educational Resources Information Center
Berman, Marc G.; Jonides, John; Lewis, Richard L.
2009-01-01
Is forgetting in the short term due to decay with the mere passage of time, interference from other memoranda, or both? Past research on short-term memory has revealed some evidence for decay and a plethora of evidence showing that short-term memory is worsened by interference. However, none of these studies has directly contrasted decay and…
ERIC Educational Resources Information Center
Gau, Susan Shur-Fen; Chiang, Huey-Ling
2013-01-01
Deficits in short-term memory are common in adolescents with attention-deficit/hyperactivity disorder (ADHD), but their current ADHD symptoms cannot well predict their short-term performance. Taking a developmental perspective, we wanted to clarify the association between ADHD symptoms at early childhood and short-term memory in late childhood and…
Sanderson, David J; Good, Mark A; Skelton, Kathryn; Sprengel, Rolf; Seeburg, Peter H; Rawlins, J Nicholas P; Bannerman, David M
2009-06-01
The GluA1 AMPA receptor subunit is a key mediator of hippocampal synaptic plasticity and is especially important for a rapidly-induced, short-lasting form of potentiation. GluA1 gene deletion impairs hippocampus-dependent, spatial working memory, but spares hippocampus-dependent spatial reference memory. These findings may reflect the necessity of GluA1-dependent synaptic plasticity for short-term memory of recently visited places, but not for the ability to form long-term associations between a particular spatial location and an outcome. This hypothesis is in concordance with the theory that short-term and long-term memory depend on dissociable psychological processes. In this study we tested GluA1-/- mice on both short-term and long-term spatial memory using a simple novelty preference task. Mice were given a series of repeated exposures to a particular spatial location (the arm of a Y-maze) before their preference for a novel spatial location (the unvisited arm of the maze) over the familiar spatial location was assessed. GluA1-/- mice were impaired if the interval between the trials was short (1 min), but showed enhanced spatial memory if the interval between the trials was long (24 h). This enhancement was caused by the interval between the exposure trials rather than the interval prior to the test, thus demonstrating enhanced learning and not simply enhanced performance or expression of memory. This seemingly paradoxical enhancement of hippocampus-dependent spatial learning may be caused by GluA1 gene deletion reducing the detrimental effects of short-term memory on subsequent long-term learning. Thus, these results support a dual-process model of memory in which short-term and long-term memory are separate and sometimes competitive processes.
Spatiotemporal proximity effects in visual short-term memory examined by target-nontarget analysis.
Sapkota, Raju P; Pardhan, Shahina; van der Linde, Ian
2016-08-01
Visual short-term memory (VSTM) is a limited-capacity system that holds a small number of objects online simultaneously, implying that competition for limited storage resources occurs (Phillips, 1974). How the spatial and temporal proximity of stimuli affects this competition is unclear. In this 2-experiment study, we examined the effect of the spatial and temporal separation of real-world memory targets and erroneously selected nontarget items examined during location-recognition and object-recall tasks. In Experiment 1 (the location-recognition task), our test display comprised either the picture or name of 1 previously examined memory stimulus (rendered above as the stimulus-display area), together with numbered square boxes at each of the memory-stimulus locations used in that trial. Participants were asked to report the number inside the square box corresponding to the location at which the cued object was originally presented. In Experiment 2 (the object-recall task), the test display comprised a single empty square box presented at 1 memory-stimulus location. Participants were asked to report the name of the object presented at that location. In both experiments, nontarget objects that were spatially and temporally proximal to the memory target were confused more often than nontarget objects that were spatially and temporally distant (i.e., a spatiotemporal proximity effect); this effect generalized across memory tasks, and the object feature (picture or name) that cued the test-display memory target. Our findings are discussed in terms of spatial and temporal confusion "fields" in VSTM, wherein objects occupy diffuse loci in a spatiotemporal coordinate system, wherein neighboring locations are more susceptible to confusion. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Chengyang, Li; Daqing, Huang; Jianlin, Qi; Haisheng, Chang; Qingqing, Meng; Jin, Wang; Jiajia, Liu; Enmao, Ye; Yongcong, Shao; Xi, Zhang
2017-08-01
Acute sleep restriction heavily influences cognitive function, affecting executive processes such as attention, response inhibition, and memory. Previous neuroimaging studies have suggested a link between hippocampal activity and short-term memory function. However, the specific contribution of the hippocampus to the decline of short-term memory following sleep restriction has yet to be established. In the current study, we utilized resting-state functional magnetic resonance imaging (fMRI) to examine the association between hippocampal functional connectivity (FC) and the decline of short-term memory following total sleep deprivation (TSD). Twenty healthy adult males aged 20.9 ± 2.3 years (age range, 18-24 years) were enrolled in a within-subject crossover study. Short-term memory and FC were assessed using a Delay-matching short-term memory test and a resting-state fMRI scan before and after TSD. Seed-based correlation analysis was performed using fMRI data for the left and right hippocampus to identify differences in hippocampal FC following TSD. Subjects demonstrated reduced alertness and a decline in short-term memory performance following TSD. Moreover, fMRI analysis identified reduced hippocampal FC with the superior frontal gyrus (SFG), temporal regions, and supplementary motor area. In addition, an increase in FC between the hippocampus and bilateral thalamus was observed, the extent of which correlated with short-term memory performance following TSD. Our findings indicate that the disruption of hippocampal-cortical connectivity is linked to the decline in short-term memory observed after acute sleep restriction. Such results provide further evidence that support the cognitive impairment model of sleep deprivation.
Frith, Emily; Sng, Eveleen; Loprinzi, Paul D
2017-11-01
The broader purpose of this study was to examine the temporal effects of high-intensity exercise on learning, short-term and long-term retrospective memory and prospective memory. Among a sample of 88 young adult participants, 22 were randomized into one of four different groups: exercise before learning, control group, exercise during learning, and exercise after learning. The retrospective assessments (learning, short-term and long-term memory) were assessed using the Rey Auditory Verbal Learning Test. Long-term memory including a 20-min and 24-hr follow-up assessment. Prospective memory was assessed using a time-based procedure by having participants contact (via phone) the researchers at a follow-up time period. The exercise stimulus included a 15-min bout of progressive maximal exertion treadmill exercise. High-intensity exercise prior to memory encoding (vs. exercise during memory encoding or consolidation) was effective in enhancing long-term memory (for both 20-min and 24-h follow-up assessments). We did not observe a differential temporal effect of high-intensity exercise on short-term memory (immediate post-memory encoding), learning or prospective memory. The timing of high-intensity exercise may play an important role in facilitating long-term memory. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Auditory post-processing in a passive listening task is deficient in Alzheimer's disease.
Bender, Stephan; Bluschke, Annet; Dippel, Gabriel; Rupp, André; Weisbrod, Matthias; Thomas, Christine
2014-01-01
To investigate whether automatic auditory post-processing is deficient in patients with Alzheimer's disease and is related to sensory gating. Event-related potentials were recorded during a passive listening task to examine the automatic transient storage of auditory information (short click pairs). Patients with Alzheimer's disease were compared to a healthy age-matched control group. A young healthy control group was included to assess effects of physiological aging. A bilateral frontal negativity in combination with deep temporal positivity occurring 500 ms after stimulus offset was reduced in patients with Alzheimer's disease, but was unaffected by physiological aging. Its amplitude correlated with short-term memory capacity, but was independent of sensory gating in healthy elderly controls. Source analysis revealed a dipole pair in the anterior temporal lobes. Results suggest that auditory post-processing is deficient in Alzheimer's disease, but is not typically related to sensory gating. The deficit could neither be explained by physiological aging nor by problems in earlier stages of auditory perception. Correlations with short-term memory capacity and executive control tasks suggested an association with memory encoding and/or overall cognitive control deficits. An auditory late negative wave could represent a marker of auditory working memory encoding deficits in Alzheimer's disease. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Yoo, Miran; Choi, Kwang-Yeon; Kim, Jieun; Kim, Mujun; Shim, Jaehoon; Choi, Jun-Hyeok; Cho, Hye-Yeon; Oh, Jung-Pyo; Kim, Hyung-Su; Kaang, Bong-Kiun; Han, Jin-Hee
2017-03-29
Although epigenetic mechanisms of gene expression regulation have recently been implicated in memory consolidation and persistence, the role of nucleosome-remodeling is largely unexplored. Recent studies show that the functional loss of BAF53b, a postmitotic neuron-specific subunit of the BAF nucleosome-remodeling complex, results in the deficit of consolidation of hippocampus-dependent memory and cocaine-associated memory in the rodent brain. However, it is unclear whether BAF53b expression is regulated during memory formation and how BAF53b regulates fear memory in the amygdala, a key brain site for fear memory encoding and storage. To address these questions, we used viral vector approaches to either decrease or increase BAF53b function specifically in the lateral amygdala of adult mice in auditory fear conditioning paradigm. Knockdown of Baf53b before training disrupted long-term memory formation with no effect on short-term memory, basal synaptic transmission, and spine structures. We observed in our qPCR analysis that BAF53b was induced in the lateral amygdala neurons at the late consolidation phase after fear conditioning. Moreover, transient BAF53b overexpression led to persistently enhanced memory formation, which was accompanied by increase in thin-type spine density. Together, our results provide the evidence that BAF53b is induced after learning, and show that such increase of BAF53b level facilitates memory consolidation likely by regulating learning-related spine structural plasticity. SIGNIFICANCE STATEMENT Recent works in the rodent brain begin to link nucleosome remodeling-dependent epigenetic mechanism to memory consolidation. Here we show that BAF53b, an epigenetic factor involved in nucleosome remodeling, is induced in the lateral amygdala neurons at the late phase of consolidation after fear conditioning. Using specific gene knockdown or overexpression approaches, we identify the critical role of BAF53b in the lateral amygdala neurons for memory consolidation during long-term memory formation. Our results thus provide an idea about how nucleosome remodeling can be regulated during long-term memory formation and contributes to the permanent storage of associative fear memory in the lateral amygdala, which is relevant to fear and anxiety-related mental disorders. Copyright © 2017 the authors 0270-6474/17/373686-12$15.00/0.
Assessing the associative deficit of older adults in long-term and short-term/working memory.
Chen, Tina; Naveh-Benjamin, Moshe
2012-09-01
Older adults exhibit a deficit in associative long-term memory relative to younger adults. However, the literature is inconclusive regarding whether this deficit is attenuated in short-term/working memory. To elucidate the issue, three experiments assessed younger and older adults' item and interitem associative memory and the effects of several variables that might potentially contribute to the inconsistent pattern of results in previous studies. In Experiment 1, participants were tested on item and associative recognition memory with both long-term and short-term retention intervals in a single, continuous recognition paradigm. There was an associative deficit for older adults in the short-term and long-term intervals. Using only short-term intervals, Experiment 2 utilized mixed and blocked test designs to examine the effect of test event salience. Blocking the test did not attenuate the age-related associative deficit seen in the mixed test blocks. Finally, an age-related associative deficit was found in Experiment 3, under both sequential and simultaneous presentation conditions. Even while accounting for some methodological issues, the associative deficit of older adults is evident in short-term/working memory.
Leong, In-Tyng; Moghadam, Sedigheh; Hashim, Hairul A
2015-02-01
Regular aerobic exercise and milk consumption have been found to have positive effects on certain cognitive functions such as short-term memory and sustained attention. However, aggregated effects of combining these modalities have not been explored. This study examined the combined effects of milk supplementation and aerobic exercise on the short-term memory and sustained attention of female students aged 16 yr. (N = 81). The intervention involved serving of 250 ml of regular milk during school days and/or a 1-hr. aerobic exercise period twice per week for 6 weeks. The Digit Span Test and Digit Vigilance Test were used to measure short-term memory and sustained attention, respectively. The combination group (milk and exercise) and exercise group performed significantly better than did the milk and control groups in terms of short-term memory. No significant interaction or group differences were found for sustained attention. The results suggest benefits of regular exercise for students' short-term memory.
Brain oscillatory substrates of visual short-term memory capacity.
Sauseng, Paul; Klimesch, Wolfgang; Heise, Kirstin F; Gruber, Walter R; Holz, Elisa; Karim, Ahmed A; Glennon, Mark; Gerloff, Christian; Birbaumer, Niels; Hummel, Friedhelm C
2009-11-17
The amount of information that can be stored in visual short-term memory is strictly limited to about four items. Therefore, memory capacity relies not only on the successful retention of relevant information but also on efficient suppression of distracting information, visual attention, and executive functions. However, completely separable neural signatures for these memory capacity-limiting factors remain to be identified. Because of its functional diversity, oscillatory brain activity may offer a utile solution. In the present study, we show that capacity-determining mechanisms, namely retention of relevant information and suppression of distracting information, are based on neural substrates independent of each other: the successful maintenance of relevant material in short-term memory is associated with cross-frequency phase synchronization between theta (rhythmical neural activity around 5 Hz) and gamma (> 50 Hz) oscillations at posterior parietal recording sites. On the other hand, electroencephalographic alpha activity (around 10 Hz) predicts memory capacity based on efficient suppression of irrelevant information in short-term memory. Moreover, repetitive transcranial magnetic stimulation at alpha frequency can modulate short-term memory capacity by influencing the ability to suppress distracting information. Taken together, the current study provides evidence for a double dissociation of brain oscillatory correlates of visual short-term memory capacity.
Caza, Nicole; Belleville, Sylvie
2008-05-01
Individuals with Alzheimer's disease (AD) are often reported to have reduced verbal short-term memory capacity, typically attributed to their attention/executive deficits. However, these individuals also tend to show progressive impairment of semantic, lexical, and phonological processing which may underlie their low short-term memory capacity. The goals of this study were to assess the contribution of each level of representation (phonological, lexical, and semantic) to immediate serial recall performance in 18 individuals with AD, and to examine how these linguistic effects on short-term memory were modulated by their reduced capacity to manipulate information in short-term memory associated with executive dysfunction. Results showed that individuals with AD had difficulty recalling items that relied on phonological representations, which led to increased lexicality effects relative to the control group. This finding suggests that patients have a greater reliance on lexical/semantic information than controls, possibly to make up for deficits in retention and processing of phonological material. This lexical/semantic effect was not found to be significantly correlated with patients' capacity to manipulate verbal material in short-term memory, indicating that language processing and executive deficits may independently contribute to reducing verbal short-term memory capacity in AD.
[Short-term memory characteristics of vibration intensity tactile perception on human wrist].
Hao, Fei; Chen, Li-Juan; Lu, Wei; Song, Ai-Guo
2014-12-25
In this study, a recall experiment and a recognition experiment were designed to assess the human wrist's short-term memory characteristics of tactile perception on vibration intensity, by using a novel homemade vibrotactile display device based on the spatiotemporal combination vibration of multiple micro vibration motors as a test device. Based on the obtained experimental data, the short-term memory span, recognition accuracy and reaction time of vibration intensity were analyzed. From the experimental results, some important conclusions can be made: (1) The average short-term memory span of tactile perception on vibration intensity is 3 ± 1 items; (2) The greater difference between two adjacent discrete intensities of vibrotactile stimulation is defined, the better average short-term memory span human wrist gets; (3) There is an obvious difference of the average short-term memory span on vibration intensity between the male and female; (4) The mechanism of information extraction in short-term memory of vibrotactile display is to traverse the scanning process by comparison; (5) The recognition accuracy and reaction time performance of vibrotactile display compares unfavourably with that of visual and auditory. The results from this study are important for designing vibrotactile display coding scheme.
Short-term and working memory impairments in aphasia.
Potagas, Constantin; Kasselimis, Dimitrios; Evdokimidis, Ioannis
2011-08-01
The aim of the present study is to investigate short-term memory and working memory deficits in aphasics in relation to the severity of their language impairment. Fifty-eight aphasic patients participated in this study. Based on language assessment, an aphasia score was calculated for each patient. Memory was assessed in two modalities, verbal and spatial. Mean scores for all memory tasks were lower than normal. Aphasia score was significantly correlated with performance on all memory tasks. Correlation coefficients for short-term memory and working memory were approximately of the same magnitude. According to our findings, severity of aphasia is related with both verbal and spatial memory deficits. Moreover, while aphasia score correlated with lower scores in both short-term memory and working memory tasks, the lack of substantial difference between corresponding correlation coefficients suggests a possible primary deficit in information retention rather than impairment in working memory. Copyright © 2011 Elsevier Ltd. All rights reserved.
Memory and Self–Neuroscientific Landscapes
Markowitsch, Hans J.
2013-01-01
Relations between memory and the self are framed from a number of perspectives—developmental aspects, forms of memory, interrelations between memory and the brain, and interactions between the environment and memory. The self is seen as dividable into more rudimentary and more advanced aspects. Special emphasis is laid on memory systems and within them on episodic autobiographical memory which is seen as a pure human form of memory that is dependent on a proper ontogenetic development and shaped by the social environment, including culture. Self and episodic autobiographical memory are seen as interlocked in their development and later manifestation. Aside from content-based aspects of memory, time-based aspects are seen along two lines—the division between short-term and long-term memory and anterograde—future-oriented—and retrograde—past-oriented memory. The state dependency of episodic autobiographical is stressed and implications of it—for example, with respect to the occurrence of false memories and forensic aspects—are outlined. For the brain level, structural networks for encoding, consolidation, storage, and retrieval are discussed both by referring to patient data and to data obtained in normal participants with functional brain imaging methods. It is elaborated why descriptions from patients with functional or dissociative amnesia are particularly apt to demonstrate the facets in which memory, self, and personal temporality are interwoven. PMID:24967303
Retrieval-Induced Inhibition in Short-Term Memory.
Kang, Min-Suk; Choi, Joongrul
2015-07-01
We used a visual illusion called motion repulsion as a model system for investigating competition between two mental representations. Subjects were asked to remember two random-dot-motion displays presented in sequence and then to report the motion directions for each. Remembered motion directions were shifted away from the actual motion directions, an effect similar to the motion repulsion observed during perception. More important, the item retrieved second showed greater repulsion than the item retrieved first. This suggests that earlier retrieval exerted greater inhibition on the other item being held in short-term memory. This retrieval-induced motion repulsion could be explained neither by reduced cognitive resources for maintaining short-term memory nor by continued inhibition between short-term memory representations. These results indicate that retrieval of memory representations inhibits other representations in short-term memory. We discuss mechanisms of retrieval-induced inhibition and their implications for the structure of memory. © The Author(s) 2015.
Rapid effects of estrogens on short-term memory: Possible mechanisms.
Paletta, Pietro; Sheppard, Paul A S; Matta, Richard; Ervin, Kelsy S J; Choleris, Elena
2018-06-01
Estrogens affect learning and memory through rapid and delayed mechanisms. Here we review studies on rapid effects on short-term memory. Estradiol rapidly improves social and object recognition memory, spatial memory, and social learning when administered systemically. The dorsal hippocampus mediates estrogen rapid facilitation of object, social and spatial short-term memory. The medial amygdala mediates rapid facilitation of social recognition. The three estrogen receptors, α (ERα), β (ERβ) and the G-protein coupled estrogen receptor (GPER) appear to play different roles depending on the task and brain region. Both ERα and GPER agonists rapidly facilitate short-term social and object recognition and spatial memory when administered systemically or into the dorsal hippocampus and facilitate social recognition in the medial amygdala. Conversely, only GPER can facilitate social learning after systemic treatment and an ERβ agonist only rapidly improved short-term spatial memory when given systemically or into the hippocampus, but also facilitates social recognition in the medial amygdala. Investigations into the mechanisms behind estrogens' rapid effects on short term memory showed an involvement of the extracellular signal-regulated kinase (ERK) and the phosphoinositide 3-kinase (PI3K) kinase pathways. Recent evidence also showed that estrogens interact with the neuropeptide oxytocin in rapidly facilitating social recognition. Estrogens can increase the production and/or release of oxytocin and other neurotransmitters, such as dopamine and acetylcholine. Therefore, it is possible that estrogens' rapid effects on short-term memory may occur through the regulation of various neurotransmitters, although more research is need on these interactions as well as the mechanisms of estrogens' actions on short-term memory. Copyright © 2018 Elsevier Inc. All rights reserved.
The interaction of short-term and long-term memory in phonetic category formation
NASA Astrophysics Data System (ADS)
Harnsberger, James D.
2002-05-01
This study examined the role that short-term memory capacity plays in the relationship between novel stimuli (e.g., non-native speech sounds, native nonsense words) and phonetic categories in long-term memory. Thirty native speakers of American English were administered five tests: categorial AXB discrimination using nasal consonants from Malayalam; categorial identification, also using Malayalam nasals, which measured the influence of phonetic categories in long-term memory; digit span; nonword span, a short-term memory measure mediated by phonetic categories in long-term memory; and paired-associate word learning (word-word and word-nonword pairs). The results showed that almost all measures were significantly correlated with one another. The strongest predictor for the discrimination and word-nonword learning results was nonword (r=+0.62) and digit span (r=+0.51), respectively. When the identification test results were partialed out, only nonword span significantly correlated with discrimination. The results show a strong influence of short-term memory capacity on the encoding of phonetic detail within phonetic categories and suggest that long-term memory representations regulate the capacity of short-term memory to preserve information for subsequent encoding. The results of this study will also be discussed with regards to resolving the tension between episodic and abstract models of phonetic category structure.
ERIC Educational Resources Information Center
Sarver, Dustin E.; Rapport, Mark D.; Kofler, Michael J.; Scanlan, Sean W.; Raiker, Joseph S.; Altro, Thomas A.; Bolden, Jennifer
2012-01-01
The current study examined individual differences in children's phonological and visuospatial short-term memory as potential mediators of the relationship among attention problems and near- and long-term scholastic achievement. Nested structural equation models revealed that teacher-reported attention problems were associated negatively with…
Impaired short-term memory for pitch in congenital amusia.
Tillmann, Barbara; Lévêque, Yohana; Fornoni, Lesly; Albouy, Philippe; Caclin, Anne
2016-06-01
Congenital amusia is a neuro-developmental disorder of music perception and production. The hypothesis is that the musical deficits arise from altered pitch processing, with impairments in pitch discrimination (i.e., pitch change detection, pitch direction discrimination and identification) and short-term memory. The present review article focuses on the deficit of short-term memory for pitch. Overall, the data discussed here suggest impairments at each level of processing in short-term memory tasks; starting with the encoding of the pitch information and the creation of the adequate memory trace, the retention of the pitch traces over time as well as the recollection and comparison of the stored information with newly incoming information. These impairments have been related to altered brain responses in a distributed fronto-temporal network, associated with decreased connectivity between these structures, as well as in abnormalities in the connectivity between the two auditory cortices. In contrast, amusic participants׳ short-term memory abilities for verbal material are preserved. These findings show that short-term memory deficits in congenital amusia are specific to pitch, suggesting a pitch-memory system that is, at least partly, separated from verbal memory. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.
Evaluation of Domain-Specific Collaboration Interfaces for Team Command and Control Tasks
2012-05-01
Technologies 1.1.1. Virtual Whiteboard Cognitive theories relating the utilization, storage, and retrieval of verbal and spatial information, such as...AE Spatial emergent SE Auditory linguistic AL Spatial positional SP Facial figural FF Spatial quantitative SQ Facial motive FM Tactile figural...driven by the auditory linguistic (AL), short-term memory (STM), spatial attentive (SA), visual temporal (VT), and vocal process (V) subscales. 0
Analysis of Neural Systems Involved in Modulation of Memory Storage
1990-01-01
modulating effects of oxotremorine and scopolomine (a cholinergic agonist and antagonist, respec- tively) are blocked by lesions of the ST (Introini-Collison...Introini-Collison, I.B., Arai, Y. and McGaugh, J.L. Stria terminalis lesions attenuate the effects of posttraining oxotremorine and atropine on reten- tion...McGaugh, J.L. and Izquierdo, I. Amnesia induced by short-term treatment with ethanol: Attenuation by pre-test oxotremorine . Pharmacol- ogy
Complex network structure influences processing in long-term and short-term memory.
Vitevitch, Michael S; Chan, Kit Ying; Roodenrys, Steven
2012-07-01
Complex networks describe how entities in systems interact; the structure of such networks is argued to influence processing. One measure of network structure, clustering coefficient, C, measures the extent to which neighbors of a node are also neighbors of each other. Previous psycholinguistic experiments found that the C of phonological word-forms influenced retrieval from the mental lexicon (that portion of long-term memory dedicated to language) during the on-line recognition and production of spoken words. In the present study we examined how network structure influences other retrieval processes in long- and short-term memory. In a false-memory task-examining long-term memory-participants falsely recognized more words with low- than high-C. In a recognition memory task-examining veridical memories in long-term memory-participants correctly recognized more words with low- than high-C. However, participants in a serial recall task-examining redintegration in short-term memory-recalled lists comprised of high-C words more accurately than lists comprised of low-C words. These results demonstrate that network structure influences cognitive processes associated with several forms of memory including lexical, long-term, and short-term.
Neural Evidence for a Distinction Between Short-Term Memory and the Focus of Attention
Lewis-Peacock, Jarrod A.; Drysdale, Andrew T.; Oberauer, Klaus; Postle, Bradley R.
2011-01-01
It is widely assumed that the short-term retention of information is accomplished via maintenance of an active neural trace. However, we demonstrate that memory can be preserved across a brief delay despite the apparent loss of sustained representations. Delay-period activity may in fact reflect the focus of attention, rather than short-term memory. We unconfounded attention and memory by causing external and internal shifts of attention away from items that were being actively retained. Multivariate pattern analysis of fMRI indicated that only items within the focus of attention elicited an active neural trace. Activity corresponding to representations of items outside the focus quickly dropped to baseline. Nevertheless, this information was remembered after a brief delay. Our data also show that refocusing attention towards a previously unattended memory item can reactivate its neural signature. The loss of sustained activity has long been thought to indicate a disruption of short-term memory, but our results suggest that, even for small memory loads not exceeding the capacity limits of short-term memory, the active maintenance of a stimulus representation may not be necessary for its short-term retention. PMID:21955164
Circadian modulation of short-term memory in Drosophila.
Lyons, Lisa C; Roman, Gregg
2009-01-01
Endogenous biological clocks are widespread regulators of behavior and physiology, allowing for a more efficient allocation of efforts and resources over the course of a day. The extent that different processes are regulated by circadian oscillators, however, is not fully understood. We investigated the role of the circadian clock on short-term associative memory formation using a negatively reinforced olfactory-learning paradigm in Drosophila melanogaster. We found that memory formation was regulated in a circadian manner. The peak performance in short-term memory (STM) occurred during the early subjective night with a twofold performance amplitude after a single pairing of conditioned and unconditioned stimuli. This rhythm in memory is eliminated in both timeless and period mutants and is absent during constant light conditions. Circadian gating of sensory perception does not appear to underlie the rhythm in short-term memory as evidenced by the nonrhythmic shock avoidance and olfactory avoidance behaviors. Moreover, central brain oscillators appear to be responsible for the modulation as cryptochrome mutants, in which the antennal circadian oscillators are nonfunctional, demonstrate robust circadian rhythms in short-term memory. Together these data suggest that central, rather than peripheral, circadian oscillators modulate the formation of short-term associative memory and not the perception of the stimuli.
Short-Term Memory; An Annotated Bibliography. Supplement 1.
ERIC Educational Resources Information Center
Fisher, Dennis F.
A compilation of 165 references dealing with short term memory, this bibliography supplements "Short-Term Memory: An Annotated Bibliography" (August 1968). The time period covered is predominantly June 1968 to June 1969. Such aspects and topics as psychometrics, motivation, human engineering, vision, auditory perception, verbal and nonverbal…
Short-term Memory as a Processing Shift
ERIC Educational Resources Information Center
Lewis-Smith, Marion Quinn
1975-01-01
The series of experiments described here examined the predictions for free recall from sequential models and the shift formulation, focusing on the roles of short- and long-term memory in the primacy/recency shift and on the effects of expectancies on short- and long-term memory. (Author/RK)
Wang, Jing; Wen, Jian-Bing; Li, Xiao-Li
2018-01-01
Short-term memory refers to the capacity for holding information in mind for a short period of time with conscious memorization. It is an important ability for daily life and is impaired in several neurological and psychiatric disorders. Anodal transcranial direct current stimulation (tDCS) applied to the dorsolateral prefrontal cortex (DLPFC) was reported to enhance the capability of short-term memory in healthy subjects. However, results were not consistent and what is the possible impact factor is not known. One important factor that may significantly influence the effect of tDCS is the timing of tDCS administration. In order to explore whether tDCS impact short-term memory and the optimal timing of tDCS administration, we applied anodal tDCS to the left DLPFC to explore the modulatory effect of online and off-line tDCS on digit span as well as visual short-term memory performance in healthy subjects. Results showed tDCS of the left DLPFC did not influence intentional digit span memory performance, whether before the task or during the task. In addition, tDCS of the DLPFC administered before the task showed no effect on visual short-term memory, while there was a trend of increase in false alarm when tDCS of the DLPFC administered during the task. These results did not provide evidence for the enhancement of short-term memory by tDCS of the left DLPFC in healthy subjects, but it suggested an importance of administration time for visual short-term memory. Further studies are required to taking into account the baseline performance of subjects and time-dependence feature of tDCS. © 2017 John Wiley & Sons Ltd.
Epilepsy increases vulnerability of long-term face recognition to proactive interference.
Bengner, T; Malina, T; Lindenau, M; Voges, B; Goebell, E; Stodieck, S
2006-02-01
Proactive interference (PI) decreases short- and long-term memory in healthy subjects. Neurological patients exhibit a heightened PI effect on short-term memory. It is, however, not known if PI affects long-term memory in neurological patients. We analyzed whether epilepsy heightens the negative effect of PI on long-term face memory. PI was induced by a list of 20 faces learned 24 hours prior to a target list of 20 faces. We tested immediate and 24-hour recognition for both lists. Twelve healthy controls and 42 patients with generalized epilepsy or temporal lobe epilepsy (TLE) were studied. PI led to a decrease in 24-hour recognition in patients with generalized epilepsy and TLE but not in controls. Thus, PI may cause long-term memory disturbances in epilepsy patients. PI was also associated with decreased short-term memory, but only in right TLE. This confirms the dominant role of the right temporal lobe in short-term face memory.
A Revised Model of Short-Term Memory and Long-Term Learning of Verbal Sequences
ERIC Educational Resources Information Center
Burgess, Neil; Hitch, Graham J.
2006-01-01
The interaction between short- and long-term memory is studied within a model in which phonemic and (temporal) contextual information have separate influences on immediate verbal serial recall via connections with short- and long-term plasticity [Burgess, N., & Hitch, G.J. (1999). Memory for serial order: a network model of the phonological loop…
False memory for face in short-term memory and neural activity in human amygdala.
Iidaka, Tetsuya; Harada, Tokiko; Sadato, Norihiro
2014-12-03
Human memory is often inaccurate. Similar to words and figures, new faces are often recognized as seen or studied items in long- and short-term memory tests; however, the neural mechanisms underlying this false memory remain elusive. In a previous fMRI study using morphed faces and a standard false memory paradigm, we found that there was a U-shaped response curve of the amygdala to old, new, and lure items. This indicates that the amygdala is more active in response to items that are salient (hit and correct rejection) compared to items that are less salient (false alarm), in terms of memory retrieval. In the present fMRI study, we determined whether the false memory for faces occurs within the short-term memory range (a few seconds), and assessed which neural correlates are involved in veridical and illusory memories. Nineteen healthy participants were scanned by 3T MRI during a short-term memory task using morphed faces. The behavioral results indicated that the occurrence of false memories was within the short-term range. We found that the amygdala displayed a U-shaped response curve to memory items, similar to those observed in our previous study. These results suggest that the amygdala plays a common role in both long- and short-term false memory for faces. We made the following conclusions: First, the amygdala is involved in detecting the saliency of items, in addition to fear, and supports goal-oriented behavior by modulating memory. Second, amygdala activity and response time might be related with a subject's response criterion for similar faces. Copyright © 2014 Elsevier B.V. All rights reserved.
Assessment of short-term memory in Arabic speaking children with specific language impairment.
Kaddah, F A; Shoeib, R M; Mahmoud, H E
2010-12-15
Children with Specific Language Impairment (SLI) may have some kind of memory disorder that could increase their linguistic impairment. This study assessed the short-term memory skills in Arabic speaking children with either Expressive Language Impairment (ELI) or Receptive/Expressive Language Impairment (R/ELI) in comparison to controls in order to estimate the nature and extent of any specific deficits in these children that could explain the different prognostic results of language intervention. Eighteen children were included in each group. Receptive, expressive and total language quotients were calculated using the Arabic language test. Assessment of auditory and visual short-term memory was done using the Arabic version of the Illinois Test of Psycholinguistic Abilities. Both groups of SLI performed significantly lower linguistic abilities and poorer auditory and visual short-term memory in comparison to normal children. The R/ELI group presented an inferior performance than the ELI group in all measured parameters. Strong association was found between most tasks of auditory and visual short-term memory and linguistic abilities. The results of this study highlighted a specific degree of deficit of auditory and visual short-term memories in both groups of SLI. These deficits were more prominent in R/ELI group. Moreover, the strong association between the different auditory and visual short-term memories and language abilities in children with SLI must be taken into account when planning an intervention program for these children.
Gummed-up memory: chewing gum impairs short-term recall.
Kozlov, Michail D; Hughes, Robert W; Jones, Dylan M
2012-01-01
Several studies have suggested that short-term memory is generally improved by chewing gum. However, we report the first studies to show that chewing gum impairs short-term memory for both item order and item identity. Experiment 1 showed that chewing gum reduces serial recall of letter lists. Experiment 2 indicated that chewing does not simply disrupt vocal-articulatory planning required for order retention: Chewing equally impairs a matched task that required retention of list item identity. Experiment 3 demonstrated that manual tapping produces a similar pattern of impairment to that of chewing gum. These results clearly qualify the assertion that chewing gum improves short-term memory. They also pose a problem for short-term memory theories asserting that forgetting is based on domain-specific interference given that chewing does not interfere with verbal memory any more than tapping. It is suggested that tapping and chewing reduce the general capacity to process sequences.
Michalak, Agnieszka; Biala, Grazyna
2017-01-15
Long-term potentiation (LTP) and long-term depression (LTD) depend on specific postsynaptic Ca 2+ /calmodulin concentration. LTP results from Ca 2+ influx through the activated NMDA receptors or voltage-gated calcium channels (VGCCs) and is linked with activation of protein kinases including mitogen-activated protein kinase (MAPK). Weaker synaptic stimulation, as a result of low Ca 2+ influx, leads to activation of Ca 2+ /calmodulin-dependent phosphatase (calcineurin - CaN) and triggers LTD. Interestingly, both memory formation and drug addiction share similar neuroplastic changes. Nicotine, which is one of the most common addictive drugs, manifests its memory effects through nicotinic acetylcholine receptors (nAChRs). Because nAChRs may also gate Ca 2+ , it is suggested that calcium signaling pathways are involved in nicotine-induced memory effects. Within the scope of the study was to evaluate the importance of calcium homeostasis and protein kinase/phosphatase balance in nicotine-induced short- and long-term memory effects. To assess memory function in mice passive avoidance test was used. The presented results confirm that acute nicotine (0.1mg/kg) improves short- and long-term memory. Pretreatment with L-type VGCC blockers (amlodipine, nicardipine verapamil) increased nicotine-induced memory improvement in the context of short- and long-term memory. Pretreatment with FK-506 (a potent CaN inhibitor) enhanced short- but not long-term memory effects of nicotine, while SL-327 (a selective MAPK/ERK kinase inhibitor) attenuated both nicotine-induced short- and long-term memory improvement. Acute nicotine enhances both types of memory via L-type VGCC blockade and via ERK1/2 activation. Only short- but not long-term memory enhancement induced by nicotine is dependent on CaN inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.
Karami, Mohammad; Ehsanivostacolaee, Simin; Moazedi, Ali Ahmad; Nosrati, Anahita
2013-01-01
In this study the effect of zinc chloride (ZnCl2) administration on the short-term and long-term memory of rats were assessed. We enrolled six groups of adult female and control group of eight Wistar rats in each group. One group was control group with free access to food and water, and five groups drunk zinc chloride in different doses (20, 30, 50, 70 and 100 mg/kg/day) in drinking water for two weeks during lactation .One month after birth, a shuttle box used to short- term and long-term memory and the latency in entering the dark chamber as well. This experiment showed that maternal 70 mg/kg dietary zinc during lactation influenced the working memory of rats' offspring in all groups. Rats received 100 mg/kg/day zinc during lactation so they had significant impairment in working memory (short-term) of their offspring (P<0.05). There was no significant difference in reference (long-term) memory of all groups. Drug consumption below70 mg/kg/day zinc chloride during lactation had no effect. While enhanced 100 mg/ kg/ day zinc in lactating rats could cause short-term memory impairment.
The roles of long-term phonotactic and lexical prosodic knowledge in phonological short-term memory.
Tanida, Yuki; Ueno, Taiji; Lambon Ralph, Matthew A; Saito, Satoru
2015-04-01
Many previous studies have explored and confirmed the influence of long-term phonological representations on phonological short-term memory. In most investigations, phonological effects have been explored with respect to phonotactic constraints or frequency. If interaction between long-term memory and phonological short-term memory is a generalized principle, then other phonological characteristics-that is, suprasegmental aspects of phonology-should also exert similar effects on phonological short-term memory. We explored this hypothesis through three immediate serial-recall experiments that manipulated Japanese nonwords with respect to lexical prosody (pitch-accent type, reflecting suprasegmental characteristics) as well as phonotactic frequency (reflecting segmental characteristics). The results showed that phonotactic frequency affected the retention not only of the phonemic sequences, but also of pitch-accent patterns, when participants were instructed to recall both the phoneme sequence and accent pattern of nonwords. In addition, accent pattern typicality influenced the retention of the accent pattern: Typical accent patterns were recalled more accurately than atypical ones. These results indicate that both long-term phonotactic and lexical prosodic knowledge contribute to phonological short-term memory performance.
ERIC Educational Resources Information Center
Buchsbaum, Bradley R.; Padmanabhan, Aarthi; Berman, Karen Faith
2011-01-01
One of the classic categorical divisions in the history of memory research is that between short-term and long-term memory. Indeed, because memory for the immediate past (a few seconds) and memory for the relatively more remote past (several seconds and beyond) are assumed to rely on distinct neural systems, more often than not, memory research…
Mette, Christian; Grabemann, Marco; Zimmermann, Marco; Strunz, Laura; Scherbaum, Norbert; Wiltfang, Jens; Kis, Bernhard
2015-01-01
Altered time reproduction is exhibited by patients with adult attention deficit hyperactivity disorder (ADHD). It remains unclear whether memory capacity influences the ability of adults with ADHD to reproduce time intervals. We conducted a behavioral study on 30 ADHD patients who were medicated with methylphenidate, 29 unmedicated adult ADHD patients and 32 healthy controls (HCs). We assessed time reproduction using six time intervals (1 s, 4 s, 6 s, 10 s, 24 s and 60 s) and assessed memory performance using the Wechsler memory scale. The patients with ADHD exhibited lower memory performance scores than the HCs. No significant differences in the raw scores for any of the time intervals (p > .05), with the exception of the variability at the short time intervals (1 s, 4 s and 6 s) (p < .01), were found between the groups. The overall analyses failed to reveal any significant correlations between time reproduction at any of the time intervals examined in the time reproduction task and working memory performance (p > .05). We detected no findings indicating that working memory might influence time reproduction in adult patients with ADHD. Therefore, further studies concerning time reproduction and memory capacity among adult patients with ADHD must be performed to verify and replicate the present findings.
ERIC Educational Resources Information Center
Grimes, Matthew T.; Harley, Carolyn W.; Darby-King, Andrea; McLean, John H.
2012-01-01
Neonatal odor-preference memory in rat pups is a well-defined associative mammalian memory model dependent on cAMP. Previous work from this laboratory demonstrates three phases of neonatal odor-preference memory: short-term (translation-independent), intermediate-term (translation-dependent), and long-term (transcription- and…
Gulick, Danielle; Gould, Thomas J.
2009-01-01
Background Ethanol is a frequently abused, addictive drug that impairs cognitive function. Ethanol may disrupt cognitive processes by altering attention, short-term memory, and/ or long-term memory. Interestingly, some research suggests that ethanol may enhance cognitive processes at lower doses. The current research examined the dose-dependent effects of ethanol on contextual and cued fear conditioning. In addition, the present studies assessed the importance of stimulus salience in the effects of ethanol and directly compared the effects of ethanol on short-term and long-term memory. Methods This study employed both foreground and background fear conditioning, which differ in the salience of contextual stimuli, and tested conditioning at 4 hours, 24 hours, and 1 week in order to assess the effects of ethanol on short-term and long-term memory. Foreground conditioning consisted of 2 presentations of a foot shock unconditioned stimulus (US) (2 seconds, 0.57 mA). Background conditioning consisted of 2 auditory conditioned stimulus (30 seconds, 85 dB white noise)–foot shock (US; 2 seconds, 0.57 mA) pairings. Results For both foreground and background conditioning, ethanol enhanced short-term and long-term memory for contextual and cued conditioning at a low dose (0.25 g/kg) and impaired short-term and long-term memory for contextual and cued conditioning at a high dose (1.0 g/kg). Conclusions These results suggest that ethanol has long-lasting, biphasic effects on short-term and long-term memory for contextual and cued conditioning. Furthermore, the effects of ethanol on contextual fear conditioning are independent of the salience of the context. PMID:17760787
Hausrat, Torben J.; Muhia, Mary; Gerrow, Kimberly; Thomas, Philip; Hirdes, Wiebke; Tsukita, Sachiko; Heisler, Frank F.; Herich, Lena; Dubroqua, Sylvain; Breiden, Petra; Feldon, Joram; Schwarz, Jürgen R; Yee, Benjamin K.; Smart, Trevor G.; Triller, Antoine; Kneussel, Matthias
2015-01-01
Neurotransmitter receptor density is a major variable in regulating synaptic strength. Receptors rapidly exchange between synapses and intracellular storage pools through endocytic recycling. In addition, lateral diffusion and confinement exchanges surface membrane receptors between synaptic and extrasynaptic sites. However, the signals that regulate this transition are currently unknown. GABAA receptors containing α5-subunits (GABAAR-α5) concentrate extrasynaptically through radixin (Rdx)-mediated anchorage at the actin cytoskeleton. Here we report a novel mechanism that regulates adjustable plasma membrane receptor pools in the control of synaptic receptor density. RhoA/ROCK signalling regulates an activity-dependent Rdx phosphorylation switch that uncouples GABAAR-α5 from its extrasynaptic anchor, thereby enriching synaptic receptor numbers. Thus, the unphosphorylated form of Rdx alters mIPSCs. Rdx gene knockout impairs reversal learning and short-term memory, and Rdx phosphorylation in wild-type mice exhibits experience-dependent changes when exposed to novel environments. Our data suggest an additional mode of synaptic plasticity, in which extrasynaptic receptor reservoirs supply synaptic GABAARs. PMID:25891999
Emotion based attentional priority for storage in visual short-term memory.
Simione, Luca; Calabrese, Lucia; Marucci, Francesco S; Belardinelli, Marta Olivetti; Raffone, Antonino; Maratos, Frances A
2014-01-01
A plethora of research demonstrates that the processing of emotional faces is prioritised over non-emotive stimuli when cognitive resources are limited (this is known as 'emotional superiority'). However, there is debate as to whether competition for processing resources results in emotional superiority per se, or more specifically, threat superiority. Therefore, to investigate prioritisation of emotional stimuli for storage in visual short-term memory (VSTM), we devised an original VSTM report procedure using schematic (angry, happy, neutral) faces in which processing competition was manipulated. In Experiment 1, display exposure time was manipulated to create competition between stimuli. Participants (n = 20) had to recall a probed stimulus from a set size of four under high (150 ms array exposure duration) and low (400 ms array exposure duration) perceptual processing competition. For the high competition condition (i.e. 150 ms exposure), results revealed an emotional superiority effect per se. In Experiment 2 (n = 20), we increased competition by manipulating set size (three versus five stimuli), whilst maintaining a constrained array exposure duration of 150 ms. Here, for the five-stimulus set size (i.e. maximal competition) only threat superiority emerged. These findings demonstrate attentional prioritisation for storage in VSTM for emotional faces. We argue that task demands modulated the availability of processing resources and consequently the relative magnitude of the emotional/threat superiority effect, with only threatening stimuli prioritised for storage in VSTM under more demanding processing conditions. Our results are discussed in light of models and theories of visual selection, and not only combine the two strands of research (i.e. visual selection and emotion), but highlight a critical factor in the processing of emotional stimuli is availability of processing resources, which is further constrained by task demands.
Fraello, David; Maller-Kesselman, Jill; Vohr, Betty; Katz, Karol H; Kesler, Shelli; Schneider, Karen; Reiss, Allan; Ment, Laura; Spann, Marisa N
2011-06-01
This study tested the hypothesis that preterm early adolescents' short-term memory is compromised when presented with increasingly complex verbal information and that associated neuroanatomical volumes would differ between preterm and term groups. Forty-nine preterm and 20 term subjects were evaluated at age 12 years with neuropsychological measures and magnetic resonance imaging (MRI). There were no differences between groups in simple short-term and working memory. Preterm subjects performed lower on learning and short-term memory tests that included increased verbal complexity. They had reduced right parietal, left temporal, and right temporal white matter volumes and greater bilateral frontal gray and right frontal white matter volumes. There was a positive association between complex working memory and the left hippocampus and frontal white matter in term subjects. While not correlated, memory scores and volumes of cortical regions known to subserve language and memory were reduced in preterm subjects. This study provides evidence of possible mechanisms for learning problems in former preterm infants.
Nava-Mesa, Mauricio O; Lamprea, Marisol R; Múnera, Alejandro
2013-11-01
Acute stress induces short-term object recognition memory impairment and elicits endogenous opioid system activation. The aim of this study was thus to evaluate whether opiate system activation mediates the acute stress-induced object recognition memory changes. Adult male Wistar rats were trained in an object recognition task designed to test both short- and long-term memory. Subjects were randomly assigned to receive an intraperitoneal injection of saline, 1 mg/kg naltrexone or 3 mg/kg naltrexone, four and a half hours before the sample trial. Five minutes after the injection, half the subjects were submitted to movement restraint during four hours while the other half remained in their home cages. Non-stressed subjects receiving saline (control) performed adequately during the short-term memory test, while stressed subjects receiving saline displayed impaired performance. Naltrexone prevented such deleterious effect, in spite of the fact that it had no intrinsic effect on short-term object recognition memory. Stressed subjects receiving saline and non-stressed subjects receiving naltrexone performed adequately during the long-term memory test; however, control subjects as well as stressed subjects receiving a high dose of naltrexone performed poorly. Control subjects' dissociated performance during both memory tests suggests that the short-term memory test induced a retroactive interference effect mediated through light opioid system activation; such effect was prevented either by low dose naltrexone administration or by strongly activating the opioid system through acute stress. Both short-term memory retrieval impairment and long-term memory improvement observed in stressed subjects may have been mediated through strong opioid system activation, since they were prevented by high dose naltrexone administration. Therefore, the activation of the opioid system plays a dual modulating role in object recognition memory. Copyright © 2013 Elsevier Inc. All rights reserved.
Holographic implementation of a binary associative memory for improved recognition
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Somnath; Ghosh, Ajay; Datta, Asit K.
1998-03-01
Neural network associate memory has found wide application sin pattern recognition techniques. We propose an associative memory model for binary character recognition. The interconnection strengths of the memory are binary valued. The concept of sparse coding is sued to enhance the storage efficiency of the model. The question of imposed preconditioning of pattern vectors, which is inherent in a sparsely coded conventional memory, is eliminated by using a multistep correlation technique an the ability of correct association is enhanced in a real-time application. A potential optoelectronic implementation of the proposed associative memory is also described. The learning and recall is possible by using digital optical matrix-vector multiplication, where full use of parallelism and connectivity of optics is made. A hologram is used in the experiment as a longer memory (LTM) for storing all input information. The short-term memory or the interconnection weight matrix required during the recall process is configured by retrieving the necessary information from the holographic LTM.
The lasting memory enhancements of retrospective attention
Reaves, Sarah; Strunk, Jonathan; Phillips, Shekinah; Verhaeghen, Paul; Duarte, Audrey
2016-01-01
Behavioral research has shown that spatial cues that orient attention toward task relevant items being maintained in visual short-term memory (VSTM) enhance item memory accuracy. However, it is unknown if these retrospective attentional cues (“retro-cues”) enhance memory beyond typical short-term memory delays. It is also unknown whether retro-cues affect the spatial information associated with VSTM representations. Emerging evidence suggests that processes that affect short-term memory maintenance may also affect long-term memory (LTM) but little work has investigated the role of attention in LTM. In the current event-related potential (ERP) study, we investigated the duration of retrospective attention effects and the impact of retrospective attention manipulations on VSTM representations. Results revealed that retro-cueing improved both VSTM and LTM memory accuracy and that posterior maximal ERPs observed during VSTM maintenance predicted subsequent LTM performance. N2pc ERPs associated with attentional selection were attenuated by retro-cueing suggesting that retrospective attention may disrupt maintenance of spatial configural information in VSTM. Collectively, these findings suggest that retrospective attention can alter the structure of memory representations, which impacts memory performance beyond short-term memory delays. PMID:27038756
Short-term memory across eye blinks.
Irwin, David E
2014-01-01
The effect of eye blinks on short-term memory was examined in two experiments. On each trial, participants viewed an initial display of coloured, oriented lines, then after a retention interval they viewed a test display that was either identical or different by one feature. Participants kept their eyes open throughout the retention interval on some blocks of trials, whereas on others they made a single eye blink. Accuracy was measured as a function of the number of items in the display to determine the capacity of short-term memory on blink and no-blink trials. In separate blocks of trials participants were instructed to remember colour only, orientation only, or both colour and orientation. Eye blinks reduced short-term memory capacity by approximately 0.6-0.8 items for both feature and conjunction stimuli. A third, control, experiment showed that a button press during the retention interval had no effect on short-term memory capacity, indicating that the effect of an eye blink was not due to general motoric dual-task interference. Eye blinks might instead reduce short-term memory capacity by interfering with attention-based rehearsal processes.
Vera, Javier
2018-01-01
What is the influence of short-term memory enhancement on the emergence of grammatical agreement systems in multi-agent language games? Agreement systems suppose that at least two words share some features with each other, such as gender, number, or case. Previous work, within the multi-agent language-game framework, has recently proposed models stressing the hypothesis that the emergence of a grammatical agreement system arises from the minimization of semantic ambiguity. On the other hand, neurobiological evidence argues for the hypothesis that language evolution has mainly related to an increasing of short-term memory capacity, which has allowed the online manipulation of words and meanings participating particularly in grammatical agreement systems. Here, the main aim is to propose a multi-agent language game for the emergence of a grammatical agreement system, under measurable long-range relations depending on the short-term memory capacity. Computer simulations, based on a parameter that measures the amount of short-term memory capacity, suggest that agreement marker systems arise in a population of agents equipped at least with a critical short-term memory capacity.
Bertrand, Julie Marilyne; Moulin, Chris John Anthony; Souchay, Céline
2017-05-01
Our objective was to explore metamemory in short-term memory across the lifespan. Five age groups participated in this study: 3 groups of children (4-13 years old), and younger and older adults. We used a three-phase task: prediction-span-postdiction. For prediction and postdiction phases, participants reported with a Yes/No response if they could recall in order a series of images. For the span task, they had to actually recall such series. From 4 years old, children have some ability to monitor their short-term memory and are able to adjust their prediction after experiencing the task. However, accuracy still improves significantly until adolescence. Although the older adults had a lower span, they were as accurate as young adults in their evaluation, suggesting that metamemory is unimpaired for short-term memory tasks in older adults. •We investigate metamemory for short-term memory tasks across the lifespan. •We find younger children cannot accurately predict their span length. •Older adults are accurate in predicting their span length. •People's metamemory accuracy was related to their short-term memory span.
Yin, J; Wang, S-L; Liu, X-B
2014-02-01
We studied the effects of general anaesthesia on memory 7 days and 3 months following elective hernia surgery. Sixty children aged between 7 and 13 years were randomly allocated to receive either propofol or sevoflurane. Memory was classified into immediate, short-term and long-term memory and assessed using the Wechsler Memory Scale-Propofol impaired short-term memory 7 days postoperatively compared with pre-operative values (image recalling: p = 0.02, figure recognition: p = 0.01, visual reproduction: p = 0.03) but recovered to baseline levels 3 months following surgery. Neither general anaesthetic affected immediate or long-term memory. We conclude that propofol impairs short-term memory postoperatively in children. © 2013 The Association of Anaesthetists of Great Britain and Ireland.
Zhu, Bi; Chen, Chuansheng; Loftus, Elizabeth F; He, Qinghua; Lei, Xuemei; Dong, Qi; Lin, Chongde
2016-11-01
There is a keen interest in identifying specific brain regions that are related to individual differences in true and false memories. Previous functional neuroimaging studies showed that activities in the hippocampus, right fusiform gyrus, and parahippocampal gyrus were associated with true and false memories, but no study thus far has examined whether the structures of these brain regions are associated with short-term and long-term true and false memories. To address that question, the current study analyzed data from 205 healthy young adults, who had valid data from both structural brain imaging and a misinformation task. In the misinformation task, subjects saw the crime scenarios, received misinformation, and took memory tests about the crimes an hour later and again after 1.5 years. Results showed that bilateral hippocampal volume was associated with short-term true and false memories, whereas right fusiform gyrus volume and surface area were associated with long-term true and false memories. This study provides the first evidence for the structural neural bases of individual differences in short-term and long-term true and false memories.
2017-01-01
The locus coeruleus is connected to the dorsal hippocampus via strong fiber projections. It becomes activated after arousal and novelty, whereupon noradrenaline is released in the hippocampus. Noradrenaline from the locus coeruleus is involved in modulating the encoding, consolidation, retrieval, and reversal of hippocampus-based memory. Memory storage can be modified by the activation of the locus coeruleus and subsequent facilitation of hippocampal long-term plasticity in the forms of long-term depression and long-term potentiation. Recent evidence indicates that noradrenaline and dopamine are coreleased in the hippocampus from locus coeruleus terminals, thus fostering neuromodulation of long-term synaptic plasticity and memory. Noradrenaline is an inductor of epigenetic modifications regulating transcriptional control of synaptic long-term plasticity to gate the endurance of memory storage. In conclusion, locus coeruleus activation primes the persistence of hippocampus-based long-term memory. PMID:28695015
Takahashi, Eiki; Niimi, Kimie; Itakura, Chitoshi
2010-10-25
Ca(V)2.1 is highly expressed in the nervous system and plays an essential role in the presynaptic modulation of neurotransmitter release machinery. Recently, the antiepileptic drug levetiracetam was reported to inhibit presynaptic Ca(V)2.1 functions, reducing glutamate release in the hippocampus, although the precise physiological role of Ca(V)2.1-regulated synaptic functions in cognitive performance at the system level remains unknown. This study examined whether Ca(V)2.1 mediates hippocampus-dependent spatial short-term memory using the object location and Y-maze tests, and perirhinal cortex-dependent nonspatial short-term memory using the object recognition test, via a combined pharmacological and genetic approach. Heterozygous rolling Nagoya (rol/+) mice carrying the Ca(V)2.1alpha(1) mutation had normal spatial and nonspatial short-term memory. A 100mg/kg dose of levetiracetam, which is ineffective in wild-type controls, blocked spatial short-term memory in rol/+ mice. At 5mg/kg, the N-methyl-D-aspartate (NMDA) receptor blocker (+/-)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), which is ineffective in wild-type controls, also blocked the spatial short-term memory in rol/+ mice. Furthermore, a combination of subthreshold doses of levetiracetam (25 mg/kg) and CPP (2.5mg/kg) triggered a spatial short-term memory deficit in rol/+ mice, but not in wild-type controls. Similar patterns of nonspatial short-term memory were observed in wild-type and rol/+ mice when injected with levetiracetam (0-300 mg/kg). These results indicate that Ca(V)2.1-mediated NMDA receptor signaling is critical in hippocampus-dependent spatial short-term memory and differs in various regions. The combination subthreshold pharmacological and genetic approach presented here is easily performed and can be used to study functional signaling pathways in neuronal circuits. Copyright © 2010 Elsevier B.V. All rights reserved.
Piérard, Christophe; Béracochéa, Daniel; Pérès, Michel; Jouanin, Jean-Claude; Liscia, Pierrette; Satabin, Pascale; Martin, Serge; Testylier, Guy; Guézennec, Charles Yannick; Beaumont, Maurice
2004-01-01
The aim of this study was to investigate the impact on several forms of memory and metabolism of a 5-day combat course including heavy and continuous physical activities and sleep deprivation. Mnemonic performance and biochemical parameters of 21 male soldiers were examined before and at the end of the course. Our results showed that short-term memory (memory span, visual memory, audiovisual association) and long-term memory were significantly impaired, whereas short-term spatial memory and planning tasks were spared. Parallel biochemical analysis showed an adaptation of energy metabolism. The observed decrease in glycaemia may be partly responsible for the long-term memory impairment, whereas the decreases in plasma cholinesterases and choline may be involved in the short-term memory deterioration. However, there are also many other reasons for the observed memory changes, one of them being chronic sleep deprivation. Copyright 2004 S. Karger AG, Basel
Augmented Reality for the Assessment of Children's Spatial Memory in Real Settings
Juan, M.-Carmen; Mendez-Lopez, Magdalena; Perez-Hernandez, Elena; Albiol-Perez, Sergio
2014-01-01
Short-term memory can be defined as the capacity for holding a small amount of information in mind in an active state for a short period of time. Although some instruments have been developed to study spatial short-term memory in real environments, there are no instruments that are specifically designed to assess visuospatial short-term memory in an attractive way to children. In this paper, we present the ARSM (Augmented Reality Spatial Memory) task, the first Augmented Reality task that involves a user's movement to assess spatial short-term memory in healthy children. The experimental procedure of the ARSM task was designed to assess the children's skill to retain visuospatial information. They were individually asked to remember the real place where augmented reality objects were located. The children (N = 76) were divided into two groups: preschool (5–6 year olds) and primary school (7–8 year olds). We found a significant improvement in ARSM task performance in the older group. The correlations between scores for the ARSM task and traditional procedures were significant. These traditional procedures were the Dot Matrix subtest for the assessment of visuospatial short-term memory of the computerized AWMA-2 battery and a parent's questionnaire about a child's everyday spatial memory. Hence, we suggest that the ARSM task has high verisimilitude with spatial short-term memory skills in real life. In addition, we evaluated the ARSM task's usability and perceived satisfaction. The study revealed that the younger children were more satisfied with the ARSM task. This novel instrument could be useful in detecting visuospatial short-term difficulties that affect specific developmental navigational disorders and/or school academic achievement. PMID:25438146
Augmented reality for the assessment of children's spatial memory in real settings.
Juan, M-Carmen; Mendez-Lopez, Magdalena; Perez-Hernandez, Elena; Albiol-Perez, Sergio
2014-01-01
Short-term memory can be defined as the capacity for holding a small amount of information in mind in an active state for a short period of time. Although some instruments have been developed to study spatial short-term memory in real environments, there are no instruments that are specifically designed to assess visuospatial short-term memory in an attractive way to children. In this paper, we present the ARSM (Augmented Reality Spatial Memory) task, the first Augmented Reality task that involves a user's movement to assess spatial short-term memory in healthy children. The experimental procedure of the ARSM task was designed to assess the children's skill to retain visuospatial information. They were individually asked to remember the real place where augmented reality objects were located. The children (N = 76) were divided into two groups: preschool (5-6 year olds) and primary school (7-8 year olds). We found a significant improvement in ARSM task performance in the older group. The correlations between scores for the ARSM task and traditional procedures were significant. These traditional procedures were the Dot Matrix subtest for the assessment of visuospatial short-term memory of the computerized AWMA-2 battery and a parent's questionnaire about a child's everyday spatial memory. Hence, we suggest that the ARSM task has high verisimilitude with spatial short-term memory skills in real life. In addition, we evaluated the ARSM task's usability and perceived satisfaction. The study revealed that the younger children were more satisfied with the ARSM task. This novel instrument could be useful in detecting visuospatial short-term difficulties that affect specific developmental navigational disorders and/or school academic achievement.
Sebastian, Veronica; Diallo, Aissatou; Ling, Douglas S. F.; Serrano, Peter A.
2013-01-01
Globally, it is estimated that nearly 10 million people sustain severe brain injuries leading to hospitalization and/or death every year. Amongst survivors, traumatic brain injury (TBI) results in a wide variety of physical, emotional and cognitive deficits. The most common cognitive deficit associated with TBI is memory loss, involving impairments in spatial reference and working memory. However, the majority of research thus far has characterized the deficits associated with TBI on either reference or working memory systems separately, without investigating how they interact within a single task. Thus, we examined the effects of TBI on short-term working and long-term reference memory using the radial 8-arm maze (RAM) with a sequence of four baited and four unbaited arms. Subjects were given 10 daily trials for 6 days followed by a memory retrieval test 2 weeks after training. Multiple training trials not only provide robust training, but also test the subjects' ability to frequently update short-term memory while learning the reference rules of the task. Our results show that TBI significantly impaired short-term working memory function on previously acquired spatial information but has little effect on long-term reference memory. Additionally, TBI significantly increased working memory errors during acquisition and reference memory errors during retention testing 2 weeks later. With a longer recovery period after TBI, the robust RAM training mitigated the reference memory deficit in retention but not the short-term working memory deficit during acquisition. These results identify the resiliency and vulnerabilities of short-term working and long-term reference memory to TBI in the context of robust training. The data highlight the role of cognitive training and other behavioral remediation strategies implicated in attenuating deficits associated with TBI. PMID:23653600
ERIC Educational Resources Information Center
Borg, Celine; Leroy, Nicolas; Favre, Emilie; Laurent, Bernard; Thomas-Anterion, Catherine
2011-01-01
The present study examines the prediction that emotion can facilitate short-term memory. Nevertheless, emotion also recruits attention to process information, thereby disrupting short-term memory when tasks involve high attentional resources. In this way, we aimed to determine whether there is a differential influence of emotional information on…
Short-Term Memory of Children with Mental Retardation: Structural Defects or Control Deficits.
ERIC Educational Resources Information Center
Katims, David S.
The short-term memory of 24 retarded and 24 nonretarded individuals, aged 10 to 14, under conditions of restricted cognitive strategy use was investigated. An attempt was made to determine whether short-term memory difficulties of persons with mental retardation are caused by deficits in voluntary cognitive strategies, such as the organization and…
A Short-Term Longitudinal Study of Memorial Development during Early Grade School.
ERIC Educational Resources Information Center
Kunzinger, Edward L., III
1985-01-01
Overt rehearsal and free recall performance was analyzed longitudinally in two experimental testing sessions at 7 and later at 9 years of age. Measures of short- and long-term memory recall, and two measures of input processing were obtained. Significant increases between age levels were exhibited by all variables except short-term memory.…
The Genetic Components of Verbal Divergent Thinking and Short Term Memory.
ERIC Educational Resources Information Center
Pezzullo, Thomas R.; Madaus, George F.
A study of twins was conducted to determine the presence of an hereditary component in short term memory and in three aspects of verbal divergent thinking--flexibility, fluency, and originality. Results showed the existence of a significant genetic component in the trait of short term memory, while none was found in verbal divergent thinking. (AG)
ERIC Educational Resources Information Center
Bartek, Brian D.
2011-01-01
Understanding how short-term memory shapes sentence comprehension processes is a long-standing topic in psycholinguistics. This thesis pursues new insights on two facets of short-term memory's role in sentence comprehension: (a) The first four experiments search for, and obtain, concrete evidence that locality effects, or increased integration…
Poor Phonemic Discrimination Does Not Underlie Poor Verbal Short-Term Memory in Down Syndrome
ERIC Educational Resources Information Center
Purser, Harry R. M.; Jarrold, Christopher
2013-01-01
Individuals with Down syndrome tend to have a marked impairment of verbal short-term memory. The chief aim of this study was to investigate whether phonemic discrimination contributes to this deficit. The secondary aim was to investigate whether phonological representations are degraded in verbal short-term memory in people with Down syndrome…
Short-Term Memory for Order but Not for Item Information Is Impaired in Developmental Dyslexia
ERIC Educational Resources Information Center
Hachmann, Wibke M.; Bogaerts, Louisa; Szmalec, Arnaud; Woumans, Evy; Duyck, Wouter; Job, Remo
2014-01-01
Recent findings suggest that people with dyslexia experience difficulties with the learning of serial order information during the transition from short-to long-term memory (Szmalec et al. "Journal of Experimental Psychology: Learning, Memory, & Cognition" 37(5): 1270-1279, 2011). At the same time, models of short-term memory…
Mosse, E K; Jarrold, C
2010-04-01
The Hebb effect is a form of repetition-driven long-term learning that is thought to provide an analogue for the processes involved in new word learning. Other evidence suggests that verbal short-term memory also constrains now vocabulary acquisition, but if the Hebb effect is independent of short-term memory, then it may be possible to demonstrate its preservation in a sample of individuals with Down syndrome, who typically show a verbal short-term memory deficit alongside surprising relative strengths in vocabulary. In two experiments, individuals both with and without Down syndrome (matched for receptive vocabulary) completed immediate serial recall tasks incorporating a Hebb repetition paradigm in either verbal or visuospatial conditions. Both groups demonstrated equivalent benefit from Hebb repetition, despite individuals with Down syndrome showing significantly lower verbal short-term memory spans. The resultant Hebb effect was equivalent across verbal and visuospatial domains. These studies suggest that the Hebb effect is essentially preserved within Down syndrome, implying that explicit verbal short-term memory is dissociable from potentially more implicit Hebb learning. The relative strength in receptive vocabulary observed in Down syndrome may therefore be supported by largely intact long-term as opposed to short-term serial order learning. This in turn may have implications for teaching methods and interventions that present new phonological material to individuals with Down syndrome.
North by Northwestern: initial experience with PACS at Northwestern Memorial Hospital
NASA Astrophysics Data System (ADS)
Channin, David S.; Hawkins, Rodney C.; Enzmann, Dieter R.
2000-05-01
This paper describes the initial phases and configuration of the Picture Archive and Communication System (PACS) deployed at Northwestern Memorial Hospital. The primary goals of the project were to improve service to patients, improve service to referring physicians, and improve the process of radiology. Secondary goals were to enhance the academic mission, and modernize institutional information systems. The system consists of a large number of heterogeneous imaging modalities sending imaging studies via DICOM to a GE medical Systems PathSpeed PACS. The radiology department workflow is briefly described. The system is currently storing approximately 140,000 studies and over 5 million images, growing by approximately 600 studies and 25,000 images per day. Data reflecting use of the short term and long term storage is provided.
Gau, Susan Shur-Fen; Chiang, Huey-Ling
2013-01-01
Deficits in short-term memory are common in adolescents with attention-deficit/hyperactivity disorder (ADHD), but their current ADHD symptoms cannot well predict their short-term performance. Taking a developmental perspective, we wanted to clarify the association between ADHD symptoms at early childhood and short-term memory in late childhood and adolescence. The participants included 401 patients with a clinical diagnosis of DSM-IV ADHD, 213 siblings, and 176 unaffected controls aged 8-17 years (mean age, 12.02 ± 2.24). All participants and their mothers were interviewed using the Chinese Kiddie Epidemiologic version of the Schedule for Affective Disorders and Schizophrenia to obtain information about ADHD symptoms and other psychiatric disorders retrospectively, at an earlier age first, then currently. The participants were assessed with the Wechsler Intelligence Scale for Children--3rd edition, including Digit Span, and the Spatial working memory task of the Cambridge Neuropsychological Test Automated Battery. Multi-level regression models were used for data analysis. Although crude analyses revealed that inattention, hyperactivity, and impulsivity symptoms significantly predicted deficits in short-term memory, only inattention symptoms had significant effects (all p<0.001) in a model that included all three ADHD symptoms. After further controlling for comorbidity, age of assessment, treatment with methylphenidate, and Full-scale IQ, the severity of childhood inattention symptoms was still significantly associated with worse verbal (p = 0.008) and spatial (p ranging from 0.017 to 0.002) short-term memory at the current assessment. Therefore, our findings suggest that earlier inattention symptoms are associated with impaired verbal and visuo-spatial short-term memory at a later development stage. Impaired short-term memory in adolescence can be detected earlier by screening for the severity of inattention in childhood. Copyright © 2012 Elsevier Ltd. All rights reserved.
Memory for relations in the short term and the long term after medial temporal lobe damage.
Squire, Larry R
2017-05-01
A central idea about the organization of declarative memory and the function of the hippocampus is that the hippocampus provides for the coding of relationships between items. A question arises whether this idea refers to the process of forming long-term memory or whether, as some studies have suggested, memory for relations might depend on the hippocampus even at short retention intervals and even when the task falls within the province of short-term (working) memory. The latter formulation appears to place the operation of relational memory into conflict with the idea that working memory is independent of medial temporal lobe (MTL) structures. In this report, the concepts of relational memory and working memory are discussed in the light of a simple demonstration experiment. Patients with MTL lesions successfully learned and recalled two word pairs when tested directly after learning but failed altogether when tested after a delay. The results do not contradict the idea that the hippocampus has a fundamental role in relational memory. However, there is a need for further elaboration and specification of the idea in order to explain why patients with MTL lesions can establish relational memory in the short term but not in long-term memory. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Zainol, Nurul Ain; Hashim, Hairul Anuar
2015-01-01
We examined the moderating effects of exercise habit strength on the relationship between emotional distress and short-term memory in primary school children. The sample consisted of 165 primary school students (10-12 years old). Participants completed measures of emotional distress, exercise habit strength, and the Digit Span Test. Mid-year exam results were used as an indicator of academic performance. Structural equation modelling (SEM) was used to analyse the data. The results of SEM revealed an acceptable fit for the hypothesised model. Exercise habit was positively associated with short-term memory, and better short-term memory was associated with better academic performance. However, although an inverse relationship was found between emotional distress and short-term memory, a positive association was found between exercise habit strength and emotional distress. The findings indicate that exercise habit is positively associated with cognitive ability and mediates the negative effect of distress.
Transfer of Information from Short- to Long-Term Memory
ERIC Educational Resources Information Center
Modigliani, Vito; Seamon, John G.
1974-01-01
The present study examined current hypotheses concerning information transfer from short-term memory (STM) to long-term memory (LTM) using a Peterson STM task with word triplets presented over retention intervals of 0, 3, 6, 9, and 18 sec. (Editor)
Verbal short-term memory and vocabulary learning in polyglots.
Papagno, C; Vallar, G
1995-02-01
Polyglot and non-polyglot Italian subjects were given tests assessing verbal (phonological) and visuo-spatial short-term and long-term memory, general intelligence, and vocabulary knowledge in their native language. Polyglots had a superior level of performance in verbal short-term memory tasks (auditory digit span and nonword repetition) and in a paired-associate learning test, which assessed the subjects' ability to acquire new (Russian) words. By contrast, the two groups had comparable performance levels in tasks assessing general intelligence, visuo-spatial short-term memory and learning, and paired-associate learning of Italian words. These findings, which are in line with neuropsychological and developmental evidence, as well as with data from normal subjects, suggest a close relationship between the capacity of phonological memory and the acquisition of foreign languages.
Jarrold, Christopher; Baddeley, Alan D; Phillips, Caroline
2007-02-01
Previous studies have suggested that Williams syndrome and Down syndrome may be associated with specific short-term memory deficits. Individuals with Williams syndrome perform relatively poorly on tests of visuo-spatial short-term memory and individuals with Down syndrome show a relative deficit on verbal short-term memory tasks. However, these patterns of impairments may reflect the impact of generally impaired visuo-spatial processing skills in Williams syndrome, and verbal abilities in Down syndrome. The current study explored this possibility by assessing long-term memory among 15 individuals with Williams syndrome and 20 individuals with Down syndrome using the Doors and People test, a battery which assesses recall and recognition of verbal and visual information. Individuals' performance was standardised for age and level of intellectual ability with reference to that shown by a sample of 110 typically developing children. The results showed that individuals with Down syndrome have no differential deficits in long-term memory for verbal information, implying that verbal short-term memory deficits in this population are relatively selective. Instead both individuals with Down syndrome and with Williams syndrome showed some evidence of relatively poor performance on tests of long-term memory for visual information. It is therefore possible that visuo-spatial short-term memory deficits that have previously been demonstrated in Williams syndrome may be secondary to more general problems in visuo-spatial processing in this population.
Pigeon visual short-term memory directly compared to primates.
Wright, Anthony A; Elmore, L Caitlin
2016-02-01
Three pigeons were trained to remember arrays of 2-6 colored squares and detect which of two squares had changed color to test their visual short-term memory. Procedures (e.g., stimuli, displays, viewing times, delays) were similar to those used to test monkeys and humans. Following extensive training, pigeons performed slightly better than similarly trained monkeys, but both animal species were considerably less accurate than humans with the same array sizes (2, 4 and 6 items). Pigeons and monkeys showed calculated memory capacities of one item or less, whereas humans showed a memory capacity of 2.5 items. Despite the differences in calculated memory capacities, the pigeons' memory results, like those from monkeys and humans, were all well characterized by an inverse power-law function fit to d' values for the five display sizes. This characterization provides a simple, straightforward summary of the fundamental processing of visual short-term memory (how visual short-term memory declines with memory load) that emphasizes species similarities based upon similar functional relationships. By closely matching pigeon testing parameters to those of monkeys and humans, these similar functional relationships suggest similar underlying processes of visual short-term memory in pigeons, monkeys and humans. Copyright © 2015 Elsevier B.V. All rights reserved.
Conversion of short-term to long-term memory in the novel object recognition paradigm
Moore, Shannon J.; Deshpande, Kaivalya; Stinnett, Gwen S.; Seasholtz, Audrey F.; Murphy, Geoffrey G.
2013-01-01
It is well-known that stress can significantly impact learning; however, whether this effect facilitates or impairs the resultant memory depends on the characteristics of the stressor. Investigation of these dynamics can be confounded by the role of the stressor in motivating performance in a task. Positing a cohesive model of the effect of stress on learning and memory necessitates elucidating the consequences of stressful stimuli independently from task-specific functions. Therefore, the goal of this study was to examine the effect of manipulating a task-independent stressor (elevated light level) on short-term and long-term memory in the novel object recognition paradigm. Short-term memory was elicited in both low light and high light conditions, but long-term memory specifically required high light conditions during the acquisition phase (familiarization trial) and was independent of the light level during retrieval (test trial). Additionally, long-term memory appeared to be independent of stress-mediated glucocorticoid release, as both low and high light produced similar levels of plasma corticosterone, which further did not correlate with subsequent memory performance. Finally, both short-term and long-term memory showed no savings between repeated experiments suggesting that this novel object recognition paradigm may be useful for longitudinal studies, particularly when investigating treatments to stabilize or enhance weak memories in neurodegenerative diseases or during age-related cognitive decline. PMID:23835143
Conversion of short-term to long-term memory in the novel object recognition paradigm.
Moore, Shannon J; Deshpande, Kaivalya; Stinnett, Gwen S; Seasholtz, Audrey F; Murphy, Geoffrey G
2013-10-01
It is well-known that stress can significantly impact learning; however, whether this effect facilitates or impairs the resultant memory depends on the characteristics of the stressor. Investigation of these dynamics can be confounded by the role of the stressor in motivating performance in a task. Positing a cohesive model of the effect of stress on learning and memory necessitates elucidating the consequences of stressful stimuli independently from task-specific functions. Therefore, the goal of this study was to examine the effect of manipulating a task-independent stressor (elevated light level) on short-term and long-term memory in the novel object recognition paradigm. Short-term memory was elicited in both low light and high light conditions, but long-term memory specifically required high light conditions during the acquisition phase (familiarization trial) and was independent of the light level during retrieval (test trial). Additionally, long-term memory appeared to be independent of stress-mediated glucocorticoid release, as both low and high light produced similar levels of plasma corticosterone, which further did not correlate with subsequent memory performance. Finally, both short-term and long-term memory showed no savings between repeated experiments suggesting that this novel object recognition paradigm may be useful for longitudinal studies, particularly when investigating treatments to stabilize or enhance weak memories in neurodegenerative diseases or during age-related cognitive decline. Copyright © 2013 Elsevier Inc. All rights reserved.
Working Memory and Short-Term Memory Abilities in Accomplished Multilinguals
ERIC Educational Resources Information Center
Biedron, Adriana; Szczepaniak, Anna
2012-01-01
The role of short-term memory and working memory in accomplished multilinguals was investigated. Twenty-eight accomplished multilinguals were compared to 36 mainstream philology students. The following instruments were used in the study: three memory subtests of the Wechsler Intelligence Scale (Digit Span, Digit-Symbol Coding, and Arithmetic,…
The chronic effects of cannabis on memory in humans: a review.
Solowij, Nadia; Battisti, Robert
2008-01-01
Memory problems are frequently associated with cannabis use, in both the short- and long-term. To date, reviews on the long-term cognitive sequelae of cannabis use have examined a broad range of cognitive functions, with none specifically focused on memory. Consequently, this review sought to examine the literature specific to memory function in cannabis users in the nontoxicated state with the aim of identifying the existence and nature of memory impairment in cannabis users and appraising potentially related mediators or moderators. Literature searches were conducted to extract well-controlled studies that investigated memory function in cannabis users outside of the acute intoxication period, with a focus on reviewing studies published within the past 10 years. Most recent studies have examined working memory and verbal episodic memory and cumulatively, the evidence suggests impaired encoding, storage, manipulation and retrieval mechanisms in long-term or heavy cannabis users. These impairments are not dissimilar to those associated with acute intoxication and have been related to the duration, frequency, dose and age of onset of cannabis use. We consider the impact of not only specific parameters of cannabis use in the manifestation of memory dysfunction, but also such factors as age, neurodevelopmental stage, IQ, gender, various vulnerabilities and other substance-use interactions, in the context of neural efficiency and compensatory mechanisms. The precise nature of memory deficits in cannabis users, their neural substrates and manifestation requires much further exploration through a variety of behavioural, functional brain imaging, prospective and genetic studies.
Temporal Prediction Errors Affect Short-Term Memory Scanning Response Time.
Limongi, Roberto; Silva, Angélica M
2016-11-01
The Sternberg short-term memory scanning task has been used to unveil cognitive operations involved in time perception. Participants produce time intervals during the task, and the researcher explores how task performance affects interval production - where time estimation error is the dependent variable of interest. The perspective of predictive behavior regards time estimation error as a temporal prediction error (PE), an independent variable that controls cognition, behavior, and learning. Based on this perspective, we investigated whether temporal PEs affect short-term memory scanning. Participants performed temporal predictions while they maintained information in memory. Model inference revealed that PEs affected memory scanning response time independently of the memory-set size effect. We discuss the results within the context of formal and mechanistic models of short-term memory scanning and predictive coding, a Bayes-based theory of brain function. We state the hypothesis that our finding could be associated with weak frontostriatal connections and weak striatal activity.
The lasting memory enhancements of retrospective attention.
Reaves, Sarah; Strunk, Jonathan; Phillips, Shekinah; Verhaeghen, Paul; Duarte, Audrey
2016-07-01
Behavioral research has shown that spatial cues that orient attention toward task relevant items being maintained in visual short-term memory (VSTM) enhance item memory accuracy. However, it is unknown if these retrospective attentional cues ("retro-cues") enhance memory beyond typical short-term memory delays. It is also unknown whether retro-cues affect the spatial information associated with VSTM representations. Emerging evidence suggests that processes that affect short-term memory maintenance may also affect long-term memory (LTM) but little work has investigated the role of attention in LTM. In the current event-related potential (ERP) study, we investigated the duration of retrospective attention effects and the impact of retrospective attention manipulations on VSTM representations. Results revealed that retro-cueing improved both VSTM and LTM memory accuracy and that posterior maximal ERPs observed during VSTM maintenance predicted subsequent LTM performance. N2pc ERPs associated with attentional selection were attenuated by retro-cueing suggesting that retrospective attention may disrupt maintenance of spatial configural information in VSTM. Collectively, these findings suggest that retrospective attention can alter the structure of memory representations, which impacts memory performance beyond short-term memory delays. Copyright © 2016 Elsevier B.V. All rights reserved.
Speech Perception and Short Term Memory Deficits in Persistent Developmental Speech Disorder
Kenney, Mary Kay; Barac-Cikoja, Dragana; Finnegan, Kimberly; Jeffries, Neal; Ludlow, Christy L.
2008-01-01
Children with developmental speech disorders may have additional deficits in speech perception and/or short-term memory. To determine whether these are only transient developmental delays that can accompany the disorder in childhood or persist as part of the speech disorder, adults with a persistent familial speech disorder were tested on speech perception and short-term memory. Nine adults with a persistent familial developmental speech disorder without language impairment were compared with 20 controls on tasks requiring the discrimination of fine acoustic cues for word identification and on measures of verbal and nonverbal short-term memory. Significant group differences were found in the slopes of the discrimination curves for first formant transitions for word identification with stop gaps of 40 and 20 ms with effect sizes of 1.60 and 1.56. Significant group differences also occurred on tests of nonverbal rhythm and tonal memory, and verbal short-term memory with effect sizes of 2.38, 1.56 and 1.73. No group differences occurred in the use of stop gap durations for word identification. Because frequency-based speech perception and short-term verbal and nonverbal memory deficits both persisted into adulthood in the speech-impaired adults, these deficits may be involved in the persistence of speech disorders without language impairment. PMID:15896836
Holding multiple items in short term memory: a neural mechanism.
Rolls, Edmund T; Dempere-Marco, Laura; Deco, Gustavo
2013-01-01
Human short term memory has a capacity of several items maintained simultaneously. We show how the number of short term memory representations that an attractor network modeling a cortical local network can simultaneously maintain active is increased by using synaptic facilitation of the type found in the prefrontal cortex. We have been able to maintain 9 short term memories active simultaneously in integrate-and-fire simulations where the proportion of neurons in each population, the sparseness, is 0.1, and have confirmed the stability of such a system with mean field analyses. Without synaptic facilitation the system can maintain many fewer memories active in the same network. The system operates because of the effectively increased synaptic strengths formed by the synaptic facilitation just for those pools to which the cue is applied, and then maintenance of this synaptic facilitation in just those pools when the cue is removed by the continuing neuronal firing in those pools. The findings have implications for understanding how several items can be maintained simultaneously in short term memory, how this may be relevant to the implementation of language in the brain, and suggest new approaches to understanding and treating the decline in short term memory that can occur with normal aging.
Holding Multiple Items in Short Term Memory: A Neural Mechanism
Rolls, Edmund T.; Dempere-Marco, Laura; Deco, Gustavo
2013-01-01
Human short term memory has a capacity of several items maintained simultaneously. We show how the number of short term memory representations that an attractor network modeling a cortical local network can simultaneously maintain active is increased by using synaptic facilitation of the type found in the prefrontal cortex. We have been able to maintain 9 short term memories active simultaneously in integrate-and-fire simulations where the proportion of neurons in each population, the sparseness, is 0.1, and have confirmed the stability of such a system with mean field analyses. Without synaptic facilitation the system can maintain many fewer memories active in the same network. The system operates because of the effectively increased synaptic strengths formed by the synaptic facilitation just for those pools to which the cue is applied, and then maintenance of this synaptic facilitation in just those pools when the cue is removed by the continuing neuronal firing in those pools. The findings have implications for understanding how several items can be maintained simultaneously in short term memory, how this may be relevant to the implementation of language in the brain, and suggest new approaches to understanding and treating the decline in short term memory that can occur with normal aging. PMID:23613789
ERIC Educational Resources Information Center
Bavelier, Daphne; Newport, Elissa L.; Hall, Matt; Supalla, Ted; Boutla, Mrim
2008-01-01
Capacity limits in linguistic short-term memory (STM) are typically measured with forward span tasks in which participants are asked to recall lists of words in the order presented. Using such tasks, native signers of American Sign Language (ASL) exhibit smaller spans than native speakers ([Boutla, M., Supalla, T., Newport, E. L., & Bavelier, D.…
Phonological Short-Term and Working Memory in Bilinguals' Native and Second Language
ERIC Educational Resources Information Center
Kaushanskaya, Margarita; Yoo, Jeewon
2013-01-01
The goal of the current study was to examine bilinguals' phonological short-term and working memory performance in their native/first (L1) and second (L2) languages. Korean-English bilinguals were tested in both Korean (L1) and English (L2). Short-term memory (STM) was measured via a nonword repetition task, where participants repeated…
Impact of Spatial and Verbal Short-Term Memory Load on Auditory Spatial Attention Gradients.
Golob, Edward J; Winston, Jenna; Mock, Jeffrey R
2017-01-01
Short-term memory load can impair attentional control, but prior work shows that the extent of the effect ranges from being very general to very specific. One factor for the mixed results may be reliance on point estimates of memory load effects on attention. Here we used auditory attention gradients as an analog measure to map-out the impact of short-term memory load over space. Verbal or spatial information was maintained during an auditory spatial attention task and compared to no-load. Stimuli were presented from five virtual locations in the frontal azimuth plane, and subjects focused on the midline. Reaction times progressively increased for lateral stimuli, indicating an attention gradient. Spatial load further slowed responses at lateral locations, particularly in the left hemispace, but had little effect at midline. Verbal memory load had no (Experiment 1), or a minimal (Experiment 2) influence on reaction times. Spatial and verbal load increased switch costs between memory encoding and attention tasks relative to the no load condition. The findings show that short-term memory influences the distribution of auditory attention over space; and that the specific pattern depends on the type of information in short-term memory.
Impact of Spatial and Verbal Short-Term Memory Load on Auditory Spatial Attention Gradients
Golob, Edward J.; Winston, Jenna; Mock, Jeffrey R.
2017-01-01
Short-term memory load can impair attentional control, but prior work shows that the extent of the effect ranges from being very general to very specific. One factor for the mixed results may be reliance on point estimates of memory load effects on attention. Here we used auditory attention gradients as an analog measure to map-out the impact of short-term memory load over space. Verbal or spatial information was maintained during an auditory spatial attention task and compared to no-load. Stimuli were presented from five virtual locations in the frontal azimuth plane, and subjects focused on the midline. Reaction times progressively increased for lateral stimuli, indicating an attention gradient. Spatial load further slowed responses at lateral locations, particularly in the left hemispace, but had little effect at midline. Verbal memory load had no (Experiment 1), or a minimal (Experiment 2) influence on reaction times. Spatial and verbal load increased switch costs between memory encoding and attention tasks relative to the no load condition. The findings show that short-term memory influences the distribution of auditory attention over space; and that the specific pattern depends on the type of information in short-term memory. PMID:29218024
Sanefuji, Masafumi; Yamashita, Hiroshi; Torisu, Hiroyuki; Takada, Yui; Imanaga, Hisako; Matsunaga, Mayumi; Ishizaki, Yoshito; Sakai, Yasunari; Yoshida, Keiko; Hara, Toshiro
2014-07-30
Strategy in short-term memory for serially presented pictures shifts gradually from a non-phonological to a phonological method as memory ability increases during typical childhood development. However, little is known about the development of this strategic change in children with attention-deficit/hyperactivity disorder (ADHD). To understand the neural basis of ADHD, we investigated short-term memory strategies using near-infrared spectroscopy. ADHD children aged from 6 to 12 years and age- and sex-matched control children were assessed in this study. Regional activity was monitored in the left ventrolateral prefrontal cortex to assess strategies used during short-term memory for visual or phonological objects. We examined the hypothesis that the strategic methods used would be correlated with memory ability. Higher memory ability and the phonological strategy were significantly correlated in the control group but not in the ADHD group. Intriguingly, ADHD children receiving methylphenidate treatment exhibited increased use of phonological strategy compared with those without. In conclusion, we found evidence of an altered strategy in short-term memory in ADHD children. The modulatory effect of methylphenidate indicates its therapeutic efficacy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Future Development of Dense Ferroelectric Memories for Space Applications
NASA Technical Reports Server (NTRS)
Philpy, Stephen C.; Derbenwick, Gary F.
2001-01-01
The availability of high density, radiation tolerant, nonvolatile memories is critical for space applications. Ferroelectric memories, when fabricated with radiation hardened complementary metal oxide semiconductors (CMOS), can be manufactured and packaged to provide high density replacements for Flash memory, which is not radiation tolerant. Previous work showed ferroelectric memory cells to be resistant to single event upsets and proton irradiation, and ferroelectric storage capacitors to be resistant to neutron exposure. In addition to radiation hardness, the fast programming times, virtually unlimited endurance, and low voltage, low power operation make ferroelectric memories ideal for space missions. Previously, a commercial double level metal 64-kilobit ferroelectric memory was presented. Although the capabilities of radiation hardened wafer fabrication facilities lag behind those of the most modern commercial wafer fabrication facilities, several paths to achieving radiation tolerant, dense ferroelectric memories are emerging. Both short and long term solutions are presented in this paper. Although worldwide major semiconductor companies are introducing commercial ferroelectric memories, funding limitations must be overcome to proceed with the development of high density, radiation tolerant ferroelectric memories.
Tc1 mouse model of trisomy-21 dissociates properties of short- and long-term recognition memory.
Hall, Jessica H; Wiseman, Frances K; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Harwood, John L; Good, Mark A
2016-04-01
The present study examined memory function in Tc1 mice, a transchromosomic model of Down syndrome (DS). Tc1 mice demonstrated an unusual delay-dependent deficit in recognition memory. More specifically, Tc1 mice showed intact immediate (30sec), impaired short-term (10-min) and intact long-term (24-h) memory for objects. A similar pattern was observed for olfactory stimuli, confirming the generality of the pattern across sensory modalities. The specificity of the behavioural deficits in Tc1 mice was confirmed using APP overexpressing mice that showed the opposite pattern of object memory deficits. In contrast to object memory, Tc1 mice showed no deficit in either immediate or long-term memory for object-in-place information. Similarly, Tc1 mice showed no deficit in short-term memory for object-location information. The latter result indicates that Tc1 mice were able to detect and react to spatial novelty at the same delay interval that was sensitive to an object novelty recognition impairment. These results demonstrate (1) that novelty detection per se and (2) the encoding of visuo-spatial information was not disrupted in adult Tc1 mice. The authors conclude that the task specific nature of the short-term recognition memory deficit suggests that the trisomy of genes on human chromosome 21 in Tc1 mice impacts on (perirhinal) cortical systems supporting short-term object and olfactory recognition memory. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
2012-01-01
We propose a tripartite biochemical mechanism for memory. Three physiologic components are involved, namely, the neuron (individual and circuit), the surrounding neural extracellular matrix, and the various trace metals distributed within the matrix. The binding of a metal cation affects a corresponding nanostructure (shrinking, twisting, expansion) and dielectric sensibility of the chelating node (address) within the matrix lattice, sensed by the neuron. The neural extracellular matrix serves as an electro-elastic lattice, wherein neurons manipulate multiple trace metals (n > 10) to encode, store, and decode coginive information. The proposed mechanism explains brains low energy requirements and high rates of storage capacity described in multiples of Avogadro number (NA = 6 × 1023). Supportive evidence correlates memory loss to trace metal toxicity or deficiency, or breakdown in the delivery/transport of metals to the matrix, or its degradation. Inherited diseases revolving around dysfunctional trace metal metabolism and memory dysfunction, include Alzheimer's disease (Al, Zn, Fe), Wilson’s disease (Cu), thalassemia (Fe), and autism (metallothionein). The tripartite mechanism points to the electro-elastic interactions of neurons with trace metals distributed within the neural extracellular matrix, as the molecular underpinning of “synaptic plasticity” affecting short-term memory, long-term memory, and forgetting. PMID:23050060
Borg, Céline; Leroy, Nicolas; Favre, Emilie; Laurent, Bernard; Thomas-Antérion, Catherine
2011-06-01
The present study examines the prediction that emotion can facilitate short-term memory. Nevertheless, emotion also recruits attention to process information, thereby disrupting short-term memory when tasks involve high attentional resources. In this way, we aimed to determine whether there is a differential influence of emotional information on short-term memory in ageing and Alzheimer's disease (AD). Fourteen patients with mild AD, 14 healthy older participants (NC), and 14 younger adults (YA) performed two tasks. In the first task, involving visual short-term memory, participants were asked to remember a picture among four different pictures (negative or neutral) following a brief delay. The second task, a binding memory task, required the recognition by participants of a picture according to its spatial location. The attentional cost involved was higher than for the first task. The pattern of results showed that visual memory performance was better for negative stimuli than for neutral ones, irrespective of the group. In contrast, binding memory performance was essentially poorer for the location of negative pictures in the NC group, and for the location of both negative and neutral stimuli in the AD group, in comparison to the YA group. Taken together, these results show that emotion has beneficial effects on visual short-term memory in ageing and AD. In contrast, emotion does not improve their performances in the binding condition. Copyright © 2011 Elsevier Inc. All rights reserved.
Short-term memory, executive control, and children's route learning.
Purser, Harry R M; Farran, Emily K; Courbois, Yannick; Lemahieu, Axelle; Mellier, Daniel; Sockeel, Pascal; Blades, Mark
2012-10-01
The aim of this study was to investigate route-learning ability in 67 children aged 5 to 11years and to relate route-learning performance to the components of Baddeley's model of working memory. Children carried out tasks that included measures of verbal and visuospatial short-term memory and executive control and also measures of verbal and visuospatial long-term memory; the route-learning task was conducted using a maze in a virtual environment. In contrast to previous research, correlations were found between both visuospatial and verbal memory tasks-the Corsi task, short-term pattern span, digit span, and visuospatial long-term memory-and route-learning performance. However, further analyses indicated that these relationships were mediated by executive control demands that were common to the tasks, with long-term memory explaining additional unique variance in route learning. Copyright © 2012 Elsevier Inc. All rights reserved.
The human hippocampal formation mediates short-term memory of colour-location associations.
Finke, Carsten; Braun, Mischa; Ostendorf, Florian; Lehmann, Thomas-Nicolas; Hoffmann, Karl-Titus; Kopp, Ute; Ploner, Christoph J
2008-01-31
The medial temporal lobe (MTL) has long been considered essential for declarative long-term memory, whereas the fronto-parietal cortex is generally seen as the anatomical substrate of short-term memory. This traditional dichotomy is questioned by recent studies suggesting a possible role of the MTL for short-term memory. In addition, there is no consensus on a possible specialization of MTL sub-regions for memory of associative information. Here, we investigated short-term memory for single features and feature associations in three humans with post-surgical lesions affecting the right hippocampal formation and in 10 healthy controls. We used three delayed-match-to-sample tasks with two delays (900/5000 ms) and three set sizes (2/4/6 items). Subjects were instructed to remember either colours, locations or colour-location associations. In colour-only and location-only conditions, performance of patients did not differ from controls. By contrast, a significant group difference was found in the association condition at 5000 ms delay. This difference was largely independent of set size, thus suggesting that it cannot be explained by the increased complexity of the association condition. These findings show that the hippocampal formation plays a significant role for short-term memory of simple visuo-spatial associations, and suggest a specialization of MTL sub-regions for associative memory.
Moreno-Granados, Josefa María; Ferrín, Maite; Salcedo-Marín, Dolores M; Ruiz-Veguilla, Miguel
2014-01-01
The importance of neuropsychological functioning in First-Episode Psychosis (FEP) has led to the publication of a growing number of studies in this area of research. The present study pursued three goals: First, to examine verbal and visual memory in a sample of Child and Adolescent FEP, second, to evaluate the effect of other cognitive domains on verbal and visual memory, and finally, to examine the relationship between performance in this cognitive dimension and the use of cannabis at this age. A sample of 41 FEPs and 39 healthy subjects were evaluated. The variables assessed were verbal and visual memory, attention, working memory, processing speed, mental flexibility, verbal fluency, motor coordination, planning ability and intelligence. Our results found impairment of short and long-term recall of verbal memory, and short-term visual memory in early psychosis. They also found relationships between cognitive dimensions, such as visual memory and intelligence and motor coordination. Finally, a «paradoxical» effect was found in patients who used cannabis, as the FEP consumers performed the visual memory test better than those who had not used it. Patients showed impairment of short and long-term recall of verbal information and short-term visual reproduction. In the second place, motor coordination and intelligence influenced short-term visual memory in patients in the early stages of the illness. Third, use of cannabis in patients with FEP was associated with better performance in the test that evaluated the short-term visual memory, as measured by task completion time, that is, efficiency in performing the test. However, when measured by task execution accuracy, their visual memory was no better than the controls. Copyright © 2012 SEP y SEPB. Published by Elsevier España. All rights reserved.
Temporal Dynamics of Recovery from Extinction Shortly after Extinction Acquisition
ERIC Educational Resources Information Center
Archbold, Georgina E.; Dobbek, Nick; Nader, Karim
2013-01-01
Evidence suggests that extinction is new learning. Memory acquisition involves both short-term memory (STM) and long-term memory (LTM) components; however, few studies have examined early phases of extinction retention. Retention of auditory fear extinction was examined at various time points. Shortly (1-4 h) after extinction acquisition…
ERIC Educational Resources Information Center
Mosse, E. K.; Jarrold, C.
2010-01-01
Background: The Hebb effect is a form of repetition-driven long-term learning that is thought to provide an analogue for the processes involved in new word learning. Other evidence suggests that verbal short-term memory also constrains now vocabulary acquisition, but if the Hebb effect is independent of short-term memory, then it may be possible…
Hara, Yoko; Naveh-Benjamin, Moshe
2015-01-01
Previous research indicates that relative to younger adults, older adults show a larger decline in long-term memory (LTM) for associations than for the components that make up these associations. The purpose of the present study was to investigate whether we can impair associative memory performance in young adults by reducing their working memory (WM) resources, hence providing potential clues regarding the underlying causes of the associative memory deficit in older adults. With two experiments, we investigated whether we can reduce younger adults' long-term associative memory using secondary tasks in which either storage or processing WM loads were manipulated, while participants learned name-face pairs and then remembered the names, the faces, and the name-face associations. Results show that reducing either the storage or the processing resources of WM produced performance patterns of an associative long-term memory deficit in young adults. Furthermore, younger adults' associative memory deficit was a function of their performance on a working memory span task. These results indicate that one potential reason older adults have an associative deficit is a reduction in their WM resources but further research is needed to assess the mechanisms involved in age-related associative memory deficits.
Flegal, Kristin E; Reuter-Lorenz, Patricia A
2014-07-01
Gist-based processing has been proposed to account for robust false memories in the converging-associates task. The deep-encoding processes known to enhance verbatim memory also strengthen gist memory and increase distortions of long-term memory (LTM). Recent research has demonstrated that compelling false memory illusions are relatively delay-invariant, also occurring under canonical short-term memory (STM) conditions. To investigate the contributions of gist to false memory at short and long delays, processing depth was manipulated as participants encoded lists of four semantically related words and were probed immediately, following a filled 3- to 4-s retention interval, or approximately 20 min later, in a surprise recognition test. In two experiments, the encoding manipulation dissociated STM and LTM on the frequency, but not the phenomenology, of false memory. Deep encoding at STM increases false recognition rates at LTM, but confidence ratings and remember/know judgments are similar across delays and do not differ as a function of processing depth. These results suggest that some shared and some unique processes underlie false memory illusions at short and long delays.
ERIC Educational Resources Information Center
Miolo, Giuliana; Chapman, Robins S.; Sindberg, Heidi A.
2005-01-01
The authors evaluated the roles of auditory-verbal short-term memory, visual short-term memory, and group membership in predicting language comprehension, as measured by an experimental sentence comprehension task (SCT) and the Test for Auditory Comprehension of Language--Third Edition (TACL-3; E. Carrow-Woolfolk, 1999) in 38 participants: 19 with…
Moazedi, A A; Ghotbeddin, Z; Parham, G H
2007-08-15
The aim of the present study was to evaluate the effects of dose-dependent of zinc chloride on short-term and long-term memory in a shuttle box. Young Wistar rats (94+/-10 g) (age 27-30 days) consumed zinc chloride drinking water in five different doses (20, 30, 50, 70 and 100 mg kg(-1) day(-1)) for two weeks by gavage. After 14 days on experimental diets, a shuttle box used to test short- and long-term memory. Two criteria considering for behavioral test, including latency in entering dark chamber and time spent in the dark chamber. This experiment shows that after 2 weeks oral administration of ZnCl2 with (20, 30 and 50 mg kg(-1) day(-1)) doses, the rat's working (short-term) has been improved (p<0.05). Whereas ZnCl2 with 30 mg kg(-1) day(-1) dose has been more effected than other doses (p<0.001). But rat which received ZnCl2 with 100 mg kg(-1) day(-1), has been shown significant impairment in working memory (p<0.05) and there was no significant difference in reference (long-term) memory for any of groups. In general, this study has demonstrated that zinc chloride consumption with 30 mg kg(-1) day(-1) dose for two weeks was more effective than other doses on short-term memory. But consumption of ZnCl2 with 100 mg kg(-1) day(-1) dose for two week had the negative effect on short-term memory. On the other hand, zinc supplementation did not have an effect on long-term memory.
Olszewska, Justyna M; Reuter-Lorenz, Patricia A; Munier, Emily; Bendler, Sara A
2015-09-01
False working memories readily emerge using a visual item-recognition variant of the converging associates task. Two experiments, manipulating study and test modality, extended prior working memory results by demonstrating a reliable false recognition effect (more false alarms to associatively related lures than to unrelated lures) within seconds of encoding in either the visual or auditory modality. However, false memories were nearly twice as frequent when study lists were seen than when they were heard, regardless of test modality, although study-test modality mismatch was generally disadvantageous (consistent with encoding specificity). A final experiment that varied study-test modality using a hybrid short- and long-term memory test (Flegal, Atkins & Reuter-Lorenz, 2010) replicated the auditory advantage in the short term but revealed a reversal in the long term: The false memory effect was greater in the auditory study-test condition than in the visual study-test condition. Thus, the same encoding conditions gave rise to an opposite modality advantage depending on whether recognition was tested under short-term or long-term memory conditions. Although demonstrating continuity in associative processing across delay, the results indicate that delay condition affects the availability of modality-dependent features of the memory trace and, thus, distinctiveness, leading to dissociable patterns of short- and long-term memory performance. (c) 2015 APA, all rights reserved).
Mette, Christian; Grabemann, Marco; Zimmermann, Marco; Strunz, Laura; Scherbaum, Norbert; Wiltfang, Jens; Kis, Bernhard
2015-01-01
Objective Altered time reproduction is exhibited by patients with adult attention deficit hyperactivity disorder (ADHD). It remains unclear whether memory capacity influences the ability of adults with ADHD to reproduce time intervals. Method We conducted a behavioral study on 30 ADHD patients who were medicated with methylphenidate, 29 unmedicated adult ADHD patients and 32 healthy controls (HCs). We assessed time reproduction using six time intervals (1 s, 4 s, 6 s, 10 s, 24 s and 60 s) and assessed memory performance using the Wechsler memory scale. Results The patients with ADHD exhibited lower memory performance scores than the HCs. No significant differences in the raw scores for any of the time intervals (p > .05), with the exception of the variability at the short time intervals (1 s, 4 s and 6 s) (p < .01), were found between the groups. The overall analyses failed to reveal any significant correlations between time reproduction at any of the time intervals examined in the time reproduction task and working memory performance (p > .05). Conclusion We detected no findings indicating that working memory might influence time reproduction in adult patients with ADHD. Therefore, further studies concerning time reproduction and memory capacity among adult patients with ADHD must be performed to verify and replicate the present findings. PMID:26221955
Effects of emotional content on working memory capacity.
Garrison, Katie E; Schmeichel, Brandon J
2018-02-13
Emotional events tend to be remembered better than neutral events, but emotional states and stimuli may also interfere with cognitive processes that underlie memory performance. The current study investigated the effects of emotional content on working memory capacity (WMC), which involves both short term storage and executive attention control. We tested competing hypotheses in a preregistered experiment (N = 297). The emotional enhancement hypothesis predicts that emotional stimuli attract attention and additional processing resources relative to neutral stimuli, thereby making it easier to encode and store emotional information in WMC. The emotional impairment hypothesis, by contrast, predicts that emotional stimuli interfere with attention control and the active maintenance of information in working memory. Participants completed a common measure of WMC (the operation span task; Turner, M. L., & Engle, R. W. [1989]. Is working memory capacity task dependent? Journal of Memory and Language, 28, 127-154) that included either emotional or neutral words. Results revealed that WMC was reduced for emotional words relative to neutral words, consistent with the emotional impairment hypothesis.
Semantic and phonological contributions to short-term repetition and long-term cued sentence recall.
Meltzer, Jed A; Rose, Nathan S; Deschamps, Tiffany; Leigh, Rosie C; Panamsky, Lilia; Silberberg, Alexandra; Madani, Noushin; Links, Kira A
2016-02-01
The function of verbal short-term memory is supported not only by the phonological loop, but also by semantic resources that may operate on both short and long time scales. Elucidation of the neural underpinnings of these mechanisms requires effective behavioral manipulations that can selectively engage them. We developed a novel cued sentence recall paradigm to assess the effects of two factors on sentence recall accuracy at short-term and long-term stages. Participants initially repeated auditory sentences immediately following a 14-s retention period. After this task was complete, long-term memory for each sentence was probed by a two-word recall cue. The sentences were either concrete (high imageability) or abstract (low imageability), and the initial 14-s retention period was filled with either an undemanding finger-tapping task or a more engaging articulatory suppression task (Exp. 1, counting backward by threes; Exp. 2, repeating a four-syllable nonword). Recall was always better for the concrete sentences. Articulatory suppression reduced accuracy in short-term recall, especially for abstract sentences, but the sentences initially recalled following articulatory suppression were retained better at the subsequent cued-recall test, suggesting that the engagement of semantic mechanisms for short-term retention promoted encoding of the sentence meaning into long-term memory. These results provide a basis for using sentence imageability and subsequent memory performance as probes of semantic engagement in short-term memory for sentences.
Neural circuit mechanisms of short-term memory
NASA Astrophysics Data System (ADS)
Goldman, Mark
Memory over time scales of seconds to tens of seconds is thought to be maintained by neural activity that is triggered by a memorized stimulus and persists long after the stimulus is turned off. This presents a challenge to current models of memory-storing mechanisms, because the typical time scales associated with cellular and synaptic dynamics are two orders of magnitude smaller than this. While such long time scales can easily be achieved by bistable processes that toggle like a flip-flop between a baseline and elevated-activity state, many neuronal systems have been observed experimentally to be capable of maintaining a continuum of stable states. For example, in neural integrator networks involved in the accumulation of evidence for decision making and in motor control, individual neurons have been recorded whose activity reflects the mathematical integral of their inputs; in the absence of input, these neurons sustain activity at a level proportional to the running total of their inputs. This represents an analog form of memory whose dynamics can be conceptualized through an energy landscape with a continuum of lowest-energy states. Such continuous attractor landscapes are structurally non-robust, in seeming violation of the relative robustness of biological memory systems. In this talk, I will present and compare different biologically motivated circuit motifs for the accumulation and storage of signals in short-term memory. Challenges to generating robust memory maintenance will be highlighted and potential mechanisms for ameliorating the sensitivity of memory networks to perturbations will be discussed. Funding for this work was provided by NIH R01 MH065034, NSF IIS-1208218, Simons Foundation 324260, and a UC Davis Ophthalmology Research to Prevent Blindness Grant.
The role of early visual cortex in visual short-term memory and visual attention.
Offen, Shani; Schluppeck, Denis; Heeger, David J
2009-06-01
We measured cortical activity with functional magnetic resonance imaging to probe the involvement of early visual cortex in visual short-term memory and visual attention. In four experimental tasks, human subjects viewed two visual stimuli separated by a variable delay period. The tasks placed differential demands on short-term memory and attention, but the stimuli were visually identical until after the delay period. Early visual cortex exhibited sustained responses throughout the delay when subjects performed attention-demanding tasks, but delay-period activity was not distinguishable from zero when subjects performed a task that required short-term memory. This dissociation reveals different computational mechanisms underlying the two processes.
Effects of age, gender, and stimulus presentation period on visual short-term memory.
Kunimi, Mitsunobu
2016-01-01
This study focused on age-related changes in visual short-term memory using visual stimuli that did not allow verbal encoding. Experiment 1 examined the effects of age and the length of the stimulus presentation period on visual short-term memory function. Experiment 2 examined the effects of age, gender, and the length of the stimulus presentation period on visual short-term memory function. The worst memory performance and the largest performance difference between the age groups were observed in the shortest stimulus presentation period conditions. The performance difference between the age groups became smaller as the stimulus presentation period became longer; however, it did not completely disappear. Although gender did not have a significant effect on d' regardless of the presentation period in the young group, a significant gender-based difference was observed for stimulus presentation periods of 500 ms and 1,000 ms in the older group. This study indicates that the decline in visual short-term memory observed in the older group is due to the interaction of several factors.
Decay uncovered in nonverbal short-term memory.
Mercer, Tom; McKeown, Denis
2014-02-01
Decay theory posits that memory traces gradually fade away over the passage of time unless they are actively rehearsed. Much recent work exploring verbal short-term memory has challenged this theory, but there does appear to be evidence for trace decay in nonverbal auditory short-term memory. Numerous discrimination studies have reported a performance decline as the interval separating two tones is increased, consistent with a decay process. However, most of this tone comparison research can be explained in other ways, without reference to decay, and these alternative accounts were tested in the present study. In Experiment 1, signals were employed toward the end of extended retention intervals to ensure that listeners were alert to the presence and frequency content of the memoranda. In Experiment 2, a mask stimulus was employed in an attempt to distinguish between a highly detailed sensory trace and a longer-lasting short-term memory, and the distinctiveness of the stimuli was varied. Despite these precautions, slow-acting trace decay was observed. It therefore appears that the mere passage of time can lead to forgetting in some forms of short-term memory.
Criteria for identifying the molecular basis of the engram (CaMKII, PKMzeta).
Lisman, John
2017-11-29
The engram refers to the molecular changes by which a memory is stored in the brain. Substantial evidence suggests that memory involves learning-dependent changes at synapses, a process termed long-term potentiation (LTP). Thus, understanding the storages process that underlies LTP may provide insight into how the engram is stored. LTP involves induction, maintenance (storage), and expression sub-processes; special tests are required to specifically reveal properties of the storage process. The strongest of these is the Erasure test in which a transiently applied agent that attacks a putative storage molecule may lead to persistent erasure of previously induced LTP/memory. Two major hypotheses have been proposed for LTP/memory storage: the CaMKII and PKM-zeta hypotheses. After discussing the tests that can be used to identify the engram (Necessity test, Saturation/Occlusion test, Erasure test), the status of these hypotheses is evaluated, based on the literature on LTP and memory-guided behavior. Review of the literature indicates that all three tests noted above support the CaMKII hypothesis when done at both the LTP level and at the behavioral level. Taken together, the results strongly suggest that the engram is stored by an LTP process in which CaMKII is a critical memory storage molecule.
Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance.
Liebe, Stefanie; Hoerzer, Gregor M; Logothetis, Nikos K; Rainer, Gregor
2012-01-29
Short-term memory requires communication between multiple brain regions that collectively mediate the encoding and maintenance of sensory information. It has been suggested that oscillatory synchronization underlies intercortical communication. Yet, whether and how distant cortical areas cooperate during visual memory remains elusive. We examined neural interactions between visual area V4 and the lateral prefrontal cortex using simultaneous local field potential (LFP) recordings and single-unit activity (SUA) in monkeys performing a visual short-term memory task. During the memory period, we observed enhanced between-area phase synchronization in theta frequencies (3-9 Hz) of LFPs together with elevated phase locking of SUA to theta oscillations across regions. In addition, we found that the strength of intercortical locking was predictive of the animals' behavioral performance. This suggests that theta-band synchronization coordinates action potential communication between V4 and prefrontal cortex that may contribute to the maintenance of visual short-term memories.
Memory and Neuropsychology in Down Syndrome
ERIC Educational Resources Information Center
Jarrold, Christopher; Nadel, Lynn; Vicari, Stefano
2009-01-01
This paper outlines the strengths and weaknesses in both short-term and long-term memory in Down syndrome, and the implications of these patterns for both other aspects of cognitive development and underlying neural pathology. There is clear evidence that Down syndrome is associated with particularly poor verbal short-term memory performance, and…
Le Barillier, Léa; Léger, Lucienne; Luppi, Pierre-Hervé; Fort, Patrice; Malleret, Gaël; Salin, Paul-Antoine
2015-11-01
The cognitive role of melanin-concentrating hormone (MCH) neurons, a neuronal population located in the mammalian postero-lateral hypothalamus sending projections to all cortical areas, remains poorly understood. Mainly activated during paradoxical sleep (PS), MCH neurons have been implicated in sleep regulation. The genetic deletion of the only known MCH receptor in rodent leads to an impairment of hippocampal dependent forms of memory and to an alteration of hippocampal long-term synaptic plasticity. By using MCH/ataxin3 mice, a genetic model characterized by a selective deletion of MCH neurons in the adult, we investigated the role of MCH neurons in hippocampal synaptic plasticity and hippocampal-dependent forms of memory. MCH/ataxin3 mice exhibited a deficit in the early part of both long-term potentiation and depression in the CA1 area of the hippocampus. Post-tetanic potentiation (PTP) was diminished while synaptic depression induced by repetitive stimulation was enhanced suggesting an alteration of pre-synaptic forms of short-term plasticity in these mice. Behaviorally, MCH/ataxin3 mice spent more time and showed a higher level of hesitation as compared to their controls in performing a short-term memory T-maze task, displayed retardation in acquiring a reference memory task in a Morris water maze, and showed a habituation deficit in an open field task. Deletion of MCH neurons could thus alter spatial short-term memory by impairing short-term plasticity in the hippocampus. Altogether, these findings could provide a cellular mechanism by which PS may facilitate memory encoding. Via MCH neuron activation, PS could prepare the day's learning by increasing and modulating short-term synaptic plasticity in the hippocampus. © 2015 Wiley Periodicals, Inc.
On short-term memory of prefrontal cortex using near-infrared spectroscopy
NASA Astrophysics Data System (ADS)
Li, Chengjun; Gan, Zhuo; Gong, Hui; Luo, Qingming; Zeng, Shaoqun
2003-12-01
For studying prefrontal cortical function in short-term memory two tasks were designed. In task one, a plus expression appears on screen for 300 milliseconds every other 2 seconds and the subject is required to give it"s answer but not to remember it. In task two, an Arabic numeral presents on screen as the same frequency as in task one. While a number is present, the subject need adding it to the sum he got last time. As subjects, 26 children participated in the work. Blood volume changes(BVCs) of right prefrontal cortex(PC) under two cognitive tasks were examined using functional near infrared imaging(fNIRI), a noninvasive technique for localizing regional BVCs which correlate with neural activities. The BVCs caused by short-term memory for numbers were retrieved from BVCs by task one and task two. Results revealed that short-term memory is related to PC and the near-infrared spectroscopy(NIRS) can be used to study prefrontal cortical function in short-term memory.
Access to long-term optical memories using photon echoes retrieved from semiconductor spins
NASA Astrophysics Data System (ADS)
Langer, L.; Poltavtsev, S. V.; Yugova, I. A.; Salewski, M.; Yakovlev, D. R.; Karczewski, G.; Wojtowicz, T.; Akimov, I. A.; Bayer, M.
2014-11-01
The ability to store optical information is important for both classical and quantum communication. Achieving this in a comprehensive manner (converting the optical field into material excitation, storing this excitation, and releasing it after a controllable time delay) is greatly complicated by the many, often conflicting, properties of the material. More specifically, optical resonances in semiconductor quantum structures with high oscillator strength are inevitably characterized by short excitation lifetimes (and, therefore, short optical memory). Here, we present a new experimental approach to stimulated photon echoes by transferring the information contained in the optical field into a spin system, where it is decoupled from the optical vacuum field and may persist much longer. We demonstrate this for an n-doped CdTe/(Cd,Mg)Te quantum well, the storage time of which could be increased by more than three orders of magnitude, from the picosecond range up to tens of nanoseconds.
ERIC Educational Resources Information Center
Erickson, Martha A.; Maramara, Lauren A.; Lisman, John
2010-01-01
Recent work showed that short-term memory (STM) is selectively reduced in GluR1 knockout mice. This raises the possibility that a form of synaptic modification dependent on GluR1 might underlie STM. Studies of synaptic plasticity have shown that stimuli too weak to induce long-term potentiation induce short-term potentiation (STP), a phenomenon…
ERIC Educational Resources Information Center
Messer, Marielle H.; Leseman, Paul P. M.; Boom, Jan; Mayo, Aziza Y.
2010-01-01
The current study examined to what extent information in long-term memory concerning the distribution of phoneme clusters in a language, so-called long-term phonotactic knowledge, increased the capacity of verbal short-term memory in young language learners and, through increased verbal short-term memory capacity, supported these children's first…
The Roles of Phonological Short-Term Memory and Working Memory in L2 Grammar and Vocabulary Learning
ERIC Educational Resources Information Center
Martin, Katherine I.; Ellis, Nick C.
2012-01-01
This study analyzed phonological short-term memory (PSTM) and working memory (WM) and their relationship with vocabulary and grammar learning in an artificial foreign language. Nonword repetition, nonword recognition, and listening span were used as memory measures. Participants learned the singular forms of vocabulary for an artificial foreign…
Temporal Clustering and Sequencing in Short-Term Memory and Episodic Memory
ERIC Educational Resources Information Center
Farrell, Simon
2012-01-01
A model of short-term memory and episodic memory is presented, with the core assumptions that (a) people parse their continuous experience into episodic clusters and (b) items are clustered together in memory as episodes by binding information within an episode to a common temporal context. Along with the additional assumption that information…
AuBuchon, Angela M.; Pisoni, David B.; Kronenberger, William G.
2015-01-01
OBJECTIVES Determine if early-implanted, long-term cochlear implant (CI) users display delays in verbal short-term and working memory capacity when processes related to audibility and speech production are eliminated. DESIGN Twenty-three long-term CI users and 23 normal-hearing controls each completed forward and backward digit span tasks under testing conditions which differed in presentation modality (auditory or visual) and response output (spoken recall or manual pointing). RESULTS Normal-hearing controls reproduced more lists of digits than the CI users, even when the test items were presented visually and the responses were made manually via touchscreen response. CONCLUSIONS Short-term and working memory delays observed in CI users are not due to greater demands from peripheral sensory processes such as audibility or from overt speech-motor planning and response output organization. Instead, CI users are less efficient at encoding and maintaining phonological representations in verbal short-term memory utilizing phonological and linguistic strategies during memory tasks. PMID:26496666
AuBuchon, Angela M; Pisoni, David B; Kronenberger, William G
2015-01-01
To determine whether early-implanted, long-term cochlear implant (CI) users display delays in verbal short-term and working memory capacity when processes related to audibility and speech production are eliminated. Twenty-three long-term CI users and 23 normal-hearing controls each completed forward and backward digit span tasks under testing conditions that differed in presentation modality (auditory or visual) and response output (spoken recall or manual pointing). Normal-hearing controls reproduced more lists of digits than the CI users, even when the test items were presented visually and the responses were made manually via touchscreen response. Short-term and working memory delays observed in CI users are not due to greater demands from peripheral sensory processes such as audibility or from overt speech-motor planning and response output organization. Instead, CI users are less efficient at encoding and maintaining phonological representations in verbal short-term memory using phonological and linguistic strategies during memory tasks.
A Preliminary Empirical Evaluation of Virtual Reality as a Training Tool for Visual-Spatial Tasks
1993-05-01
Hillsdale, NJ: Lawrence Erlbaum Associates. Craik , F.I.M., & Lockhart , R.S. (1972). Levels of processing ; A framework for memory research. Journal of...short-term memory (Bower, 1972; Kanigel, 1981), elaborative rehearsai in short-term memory, and subsequent retrieval from long-term memory ( Craik ... Lockhart , 1972; Chase & Ericsson, 1981), ?nd the superiority of gist over verbatim recall of sentences (Bransford & Franks, 1971). Even memory for simple
Exploring Expressive Vocabulary Variability in Two-Year-Olds: The Role of Working Memory.
Newbury, Jayne; Klee, Thomas; Stokes, Stephanie F; Moran, Catherine
2015-12-01
This study explored whether measures of working memory ability contribute to the wide variation in 2-year-olds' expressive vocabulary skills. Seventy-nine children (aged 24-30 months) were assessed by using standardized tests of vocabulary and visual cognition, a processing speed measure, and behavioral measures of verbal working memory and phonological short-term memory. Strong correlations were observed between phonological short-term memory, verbal working memory, and expressive vocabulary. Speed of spoken word recognition showed a moderate significant correlation with expressive vocabulary. In a multivariate regression model for expressive vocabulary, the most powerful predictor was a measure of phonological short-term memory (accounting for 66% unique variance), followed by verbal working memory (6%), sex (2%), and age (1%). Processing speed did not add significant unique variance. These findings confirm previous research positing a strong role for phonological short-term memory in early expressive vocabulary acquisition. They also extend previous research in two ways. First, a unique association between verbal working memory and expressive vocabulary in 2-year-olds was observed. Second, processing speed was not a unique predictor of variance in expressive vocabulary when included alongside measures of working memory.
Word-length effect in verbal short-term memory in individuals with Down's syndrome.
Kanno, K; Ikeda, Y
2002-11-01
Many studies have indicated that individuals with Down's syndrome (DS) show a specific deficit in short-term memory for verbal information. The aim of the present study was to investigate the influence of the length of words on verbal short-term memory in individuals with DS. Twenty-eight children with DS and 10 control participants matched for memory span were tested on verbal serial recall and speech rate, which are thought to involve rehearsal and output speed. Although a significant word-length effect was observed in both groups for the recall of a larger number of items with a shorter spoken duration than for those with a longer spoken duration, the number of correct recalls in the group with DS was reduced compared to the control subjects. The results demonstrating poor short-term memory in children with DS were irrelevant to speech rate. In addition, the proportion of repetition-gained errors in serial recall was higher in children with DS than in control subjects. The present findings suggest that poor access to long-term lexical knowledge, rather than overt articulation speed, constrains verbal short-term memory functions in individuals with DS.
Buchsbaum, Bradley R; Padmanabhan, Aarthi; Berman, Karen Faith
2011-04-01
One of the classic categorical divisions in the history of memory research is that between short-term and long-term memory. Indeed, because memory for the immediate past (a few seconds) and memory for the relatively more remote past (several seconds and beyond) are assumed to rely on distinct neural systems, more often than not, memory research has focused either on short- (or "working memory") or on long-term memory. Using an auditory-verbal continuous recognition paradigm designed for fMRI, we examined how the neural signatures of recognition memory change across an interval of time (from 2.5 to 30 sec) that spans this hypothetical division between short- and long-term memory. The results revealed that activity during successful auditory-verbal item recognition in inferior parietal cortex and the posterior superior temporal lobe was maximal for early lags, whereas, conversely, activity in the left inferior frontal gyrus increased as a function of lag. Taken together, the results reveal that as the interval between item repetitions increases, there is a shift in the distribution of memory-related activity that moves from posterior temporo-parietal cortex (lags 1-4) to inferior frontal regions (lags 5-10), indicating that as time advances, the burden of recognition memory is increasingly placed on top-down retrieval mechanisms that are mediated by structures in inferior frontal cortex.
Working memory, long-term memory, and medial temporal lobe function
Jeneson, Annette; Squire, Larry R.
2012-01-01
Early studies of memory-impaired patients with medial temporal lobe (MTL) damage led to the view that the hippocampus and related MTL structures are involved in the formation of long-term memory and that immediate memory and working memory are independent of these structures. This traditional idea has recently been revisited. Impaired performance in patients with MTL lesions on tasks with short retention intervals, or no retention interval, and neuroimaging findings with similar tasks have been interpreted to mean that the MTL is sometimes needed for working memory and possibly even for visual perception itself. We present a reappraisal of this interpretation. Our main conclusion is that, if the material to be learned exceeds working memory capacity, if the material is difficult to rehearse, or if attention is diverted, performance depends on long-term memory even when the retention interval is brief. This fundamental notion is better captured by the terms subspan memory and supraspan memory than by the terms short-term memory and long-term memory. We propose methods for determining when performance on short-delay tasks must depend on long-term (supraspan) memory and suggest that MTL lesions impair performance only when immediate memory and working memory are insufficient to support performance. In neuroimaging studies, MTL activity during encoding is influenced by the memory load and correlates positively with long-term retention of the material that was presented. The most parsimonious and consistent interpretation of all the data is that subspan memoranda are supported by immediate memory and working memory and are independent of the MTL. PMID:22180053
Huynh, Duong L; Tripathy, Srimant P; Bedell, Harold E; Ögmen, Haluk
2015-01-01
Human memory is content addressable-i.e., contents of the memory can be accessed using partial information about the bound features of a stored item. In this study, we used a cross-feature cuing technique to examine how the human visual system encodes, binds, and retains information about multiple stimulus features within a set of moving objects. We sought to characterize the roles of three different features (position, color, and direction of motion, the latter two of which are processed preferentially within the ventral and dorsal visual streams, respectively) in the construction and maintenance of object representations. We investigated the extent to which these features are bound together across the following processing stages: during stimulus encoding, sensory (iconic) memory, and visual short-term memory. Whereas all features examined here can serve as cues for addressing content, their effectiveness shows asymmetries and varies according to cue-report pairings and the stage of information processing and storage. Position-based indexing theories predict that position should be more effective as a cue compared to other features. While we found a privileged role for position as a cue at the stimulus-encoding stage, position was not the privileged cue at the sensory and visual short-term memory stages. Instead, the pattern that emerged from our findings is one that mirrors the parallel processing streams in the visual system. This stream-specific binding and cuing effectiveness manifests itself in all three stages of information processing examined here. Finally, we find that the Leaky Flask model proposed in our previous study is applicable to all three features.
Feature-Based Visual Short-Term Memory Is Widely Distributed and Hierarchically Organized.
Dotson, Nicholas M; Hoffman, Steven J; Goodell, Baldwin; Gray, Charles M
2018-06-15
Feature-based visual short-term memory is known to engage both sensory and association cortices. However, the extent of the participating circuit and the neural mechanisms underlying memory maintenance is still a matter of vigorous debate. To address these questions, we recorded neuronal activity from 42 cortical areas in monkeys performing a feature-based visual short-term memory task and an interleaved fixation task. We find that task-dependent differences in firing rates are widely distributed throughout the cortex, while stimulus-specific changes in firing rates are more restricted and hierarchically organized. We also show that microsaccades during the memory delay encode the stimuli held in memory and that units modulated by microsaccades are more likely to exhibit stimulus specificity, suggesting that eye movements contribute to visual short-term memory processes. These results support a framework in which most cortical areas, within a modality, contribute to mnemonic representations at timescales that increase along the cortical hierarchy. Copyright © 2018 Elsevier Inc. All rights reserved.
Cognitive correlates of long-term cannabis use in Costa Rican men.
Fletcher, J M; Page, J B; Francis, D J; Copeland, K; Naus, M J; Davis, C M; Morris, R; Krauskopf, D; Satz, P
1996-11-01
Cognitive correlates of long-term cannabis use have been elusive. We tested the hypothesis that long-term cannabis use is associated with deficits in short term memory, working memory, and attention in a literate, westernized culture (Costa Rica) in which the effects of cannabis use can be isolated. Two cohorts of long-term cannabis users and nonusers were studied. Within each cohort, users and nonusers were comparable in age and socioeconomic status. Polydrug users and users who tested positive for the use of cannabis at the time of cognitive assessment after a 72-hour abstention period were excluded. The older cohort (whose age was approximately 45 years) had consumed cannabis for an average of 34 years, and comprised 17 users and 30 nonusers, who had been recruited in San José, Costa Rica, and had been observed since 1973. The younger cohort (whose age was approximately 28 years) had consumed cannabis for an average of 8 years, and comprised 37 users and 49 nonusers. Short-term memory, working memory, and attentional skills were measured in each subject. Older long-term users performed worse than older nonusers on 2 short-term memory tests involving learning lists of words. In addition, older long-term users performed worse than older nonusers on selective and divided attention tasks associated with working memory. No notable differences were apparent between younger users and nonusers. Long-term cannabis use was associated with disruption of short-term memory, working memory, and attentional skills in older long-term cannabis users.
Conceptual short-term memory (CSTM) supports core claims of Christiansen and Chater.
Potter, Mary C
2016-01-01
Rapid serial visual presentation (RSVP) of words or pictured scenes provides evidence for a large-capacity conceptual short-term memory (CSTM) that momentarily provides rich associated material from long-term memory, permitting rapid chunking (Potter 1993; 2009; 2012). In perception of scenes as well as language comprehension, we make use of knowledge that briefly exceeds the supposed limits of working memory.
Memory binding and white matter integrity in familial Alzheimer’s disease
Saarimäki, Heini; Bastin, Mark E.; Londoño, Ana C.; Pettit, Lewis; Lopera, Francisco; Della Sala, Sergio; Abrahams, Sharon
2015-01-01
Binding information in short-term and long-term memory are functions sensitive to Alzheimer’s disease. They have been found to be affected in patients who meet criteria for familial Alzheimer’s disease due to the mutation E280A of the PSEN1 gene. However, only short-term memory binding has been found to be affected in asymptomatic carriers of this mutation. The neural correlates of this dissociation are poorly understood. The present study used diffusion tensor magnetic resonance imaging to investigate whether the integrity of white matter structures could offer an account. A sample of 19 patients with familial Alzheimer’s disease, 18 asymptomatic carriers and 21 non-carrier controls underwent diffusion tensor magnetic resonance imaging, neuropsychological and memory binding assessment. The short-term memory binding task required participants to detect changes across two consecutive screens displaying arrays of shapes, colours, or shape-colour bindings. The long-term memory binding task was a Paired Associates Learning Test. Performance on these tasks were entered into regression models. Relative to controls, patients with familial Alzheimer’s disease performed poorly on both memory binding tasks. Asymptomatic carriers differed from controls only in the short-term memory binding task. White matter integrity explained poor memory binding performance only in patients with familial Alzheimer’s disease. White matter water diffusion metrics from the frontal lobe accounted for poor performance on both memory binding tasks. Dissociations were found in the genu of corpus callosum which accounted for short-term memory binding impairments and in the hippocampal part of cingulum bundle which accounted for long-term memory binding deficits. The results indicate that white matter structures in the frontal and temporal lobes are vulnerable to the early stages of familial Alzheimer’s disease and their damage is associated with impairments in two memory binding functions known to be markers for Alzheimer’s disease. PMID:25762465
Memory binding and white matter integrity in familial Alzheimer's disease.
Parra, Mario A; Saarimäki, Heini; Bastin, Mark E; Londoño, Ana C; Pettit, Lewis; Lopera, Francisco; Della Sala, Sergio; Abrahams, Sharon
2015-05-01
Binding information in short-term and long-term memory are functions sensitive to Alzheimer's disease. They have been found to be affected in patients who meet criteria for familial Alzheimer's disease due to the mutation E280A of the PSEN1 gene. However, only short-term memory binding has been found to be affected in asymptomatic carriers of this mutation. The neural correlates of this dissociation are poorly understood. The present study used diffusion tensor magnetic resonance imaging to investigate whether the integrity of white matter structures could offer an account. A sample of 19 patients with familial Alzheimer's disease, 18 asymptomatic carriers and 21 non-carrier controls underwent diffusion tensor magnetic resonance imaging, neuropsychological and memory binding assessment. The short-term memory binding task required participants to detect changes across two consecutive screens displaying arrays of shapes, colours, or shape-colour bindings. The long-term memory binding task was a Paired Associates Learning Test. Performance on these tasks were entered into regression models. Relative to controls, patients with familial Alzheimer's disease performed poorly on both memory binding tasks. Asymptomatic carriers differed from controls only in the short-term memory binding task. White matter integrity explained poor memory binding performance only in patients with familial Alzheimer's disease. White matter water diffusion metrics from the frontal lobe accounted for poor performance on both memory binding tasks. Dissociations were found in the genu of corpus callosum which accounted for short-term memory binding impairments and in the hippocampal part of cingulum bundle which accounted for long-term memory binding deficits. The results indicate that white matter structures in the frontal and temporal lobes are vulnerable to the early stages of familial Alzheimer's disease and their damage is associated with impairments in two memory binding functions known to be markers for Alzheimer's disease. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The short- and long-term consequences of directed forgetting in a working memory task.
Festini, Sara B; Reuter-Lorenz, Patricia A
2013-01-01
Directed forgetting requires the voluntary control of memory. Whereas many studies have examined directed forgetting in long-term memory (LTM), the mechanisms and effects of directed forgetting within working memory (WM) are less well understood. The current study tests how directed forgetting instructions delivered in a WM task influence veridical memory, as well as false memory, over the short and long term. In a modified item recognition task Experiment 1 tested WM only and demonstrated that directed forgetting reduces false recognition errors and semantic interference. Experiment 2 replicated these WM effects and used a surprise LTM recognition test to assess the long-term effects of directed forgetting in WM. Long-term veridical memory for to-be-remembered lists was better than memory for to-be-forgotten lists-the directed forgetting effect. Moreover, fewer false memories emerged for to-be-forgotten information than for to-be-remembered information in LTM as well. These results indicate that directed forgetting during WM reduces semantic processing of to-be-forgotten lists over the short and long term. Implications for theories of false memory and the mechanisms of directed forgetting within working memory are discussed.
Rideaux, Reuben; Apthorp, Deborah; Edwards, Mark
2015-02-12
Recent findings have indicated the capacity to consolidate multiple items into visual short-term memory in parallel varies as a function of the type of information. That is, while color can be consolidated in parallel, evidence suggests that orientation cannot. Here we investigated the capacity to consolidate multiple motion directions in parallel and reexamined this capacity using orientation. This was achieved by determining the shortest exposure duration necessary to consolidate a single item, then examining whether two items, presented simultaneously, could be consolidated in that time. The results show that parallel consolidation of direction and orientation information is possible, and that parallel consolidation of direction appears to be limited to two. Additionally, we demonstrate the importance of adequate separation between feature intervals used to define items when attempting to consolidate in parallel, suggesting that when multiple items are consolidated in parallel, as opposed to serially, the resolution of representations suffer. Finally, we used facilitation of spatial attention to show that the deterioration of item resolution occurs during parallel consolidation, as opposed to storage. © 2015 ARVO.
Importance of stimulation paradigm in determining facilitation and effects of neuromodulation.
Crider, M E; Cooper, R L
1999-09-25
Evoked synaptic activity within the CNS and at the neuromuscular junction in most in vivo preparations studied occurs not with single isolated stimuli, but with trains, or bursts, of stimuli. Although for ease in studying the mechanisms of vesicular synaptic transmission one often uses single discrete stimuli, the true mechanisms in the animal may be far more complex. When repetitive stimuli are present at a nerve terminal, often a heightened (i.e., facilitated) postsynaptic potential can be as a result. Facilitation is commonly used as an index of synaptic function and plasticity induced by chronic stimulation or by neuromodulation. The mechanisms that give rise to facilitation are thought to be the same that may underlie short-term learning and memory [C.H. Bailey, E.R. Kandel, Structural changes accompanying memory storage. Annu. Rev. Physiol. 55 (1993) 397-426.]. Differences in short term facilitation (STF) are seen depending on the conventional stimulation paradigm (twin pulse, train, or continuous) used to induce facilitation. Thus, a battery of paradigms should be used to characterize synaptic function to obtain a closer understanding of the possible in vivo conditions.
A unified theory for systems and cellular memory consolidation.
Dash, Pramod K; Hebert, April E; Runyan, Jason D
2004-04-01
The time-limited role of the hippocampus for explicit memory storage has been referred to as systems consolidation where learning-related changes occur first in the hippocampus followed by the gradual development of a more distributed memory trace in the neocortex. Recent experiments are beginning to show that learning induces plasticity-related molecular changes in the neocortex as well as in the hippocampus and with a similar time course. Present memory consolidation theories do not account for these findings. In this report, we present a theory (the C theory) that incorporates these new findings, provides an explanation for the length of time for hippocampal dependency, and that can account for the apparent longer consolidation periods in species with larger brains. This theory proposes that a process of cellular consolidation occurs in the hippocampus and in areas of the neocortex during and shortly after learning resulting in long-term memory storage in both areas. For a limited time, the hippocampus is necessary for memory retrieval, a process involving the coordinated reactivation of these areas. This reactivation is later mediated by longer extrahippocampal connectivity between areas. The delay in hippocampal-independent memory retrieval is the time it takes for gene products in these longer extrahippocampal projections to be transported from the soma to tagged synapses by slow axonal transport. This cellular transport event defines the period of hippocampal dependency and, thus, the duration of memory consolidation. The theoretical description for memory consolidation presented in this review provides alternative explanations for several experimental observations and presents a unification of the concepts of systems and cellular memory consolidation.
Bottlenecks of Motion Processing during a Visual Glance: The Leaky Flask Model
Öğmen, Haluk; Ekiz, Onur; Huynh, Duong; Bedell, Harold E.; Tripathy, Srimant P.
2013-01-01
Where do the bottlenecks for information and attention lie when our visual system processes incoming stimuli? The human visual system encodes the incoming stimulus and transfers its contents into three major memory systems with increasing time scales, viz., sensory (or iconic) memory, visual short-term memory (VSTM), and long-term memory (LTM). It is commonly believed that the major bottleneck of information processing resides in VSTM. In contrast to this view, we show major bottlenecks for motion processing prior to VSTM. In the first experiment, we examined bottlenecks at the stimulus encoding stage through a partial-report technique by delivering the cue immediately at the end of the stimulus presentation. In the second experiment, we varied the cue delay to investigate sensory memory and VSTM. Performance decayed exponentially as a function of cue delay and we used the time-constant of the exponential-decay to demarcate sensory memory from VSTM. We then decomposed performance in terms of quality and quantity measures to analyze bottlenecks along these dimensions. In terms of the quality of information, two thirds to three quarters of the motion-processing bottleneck occurs in stimulus encoding rather than memory stages. In terms of the quantity of information, the motion-processing bottleneck is distributed, with the stimulus-encoding stage accounting for one third of the bottleneck. The bottleneck for the stimulus-encoding stage is dominated by the selection compared to the filtering function of attention. We also found that the filtering function of attention is operating mainly at the sensory memory stage in a specific manner, i.e., influencing only quantity and sparing quality. These results provide a novel and more complete understanding of information processing and storage bottlenecks for motion processing. PMID:24391806
Bottlenecks of motion processing during a visual glance: the leaky flask model.
Öğmen, Haluk; Ekiz, Onur; Huynh, Duong; Bedell, Harold E; Tripathy, Srimant P
2013-01-01
Where do the bottlenecks for information and attention lie when our visual system processes incoming stimuli? The human visual system encodes the incoming stimulus and transfers its contents into three major memory systems with increasing time scales, viz., sensory (or iconic) memory, visual short-term memory (VSTM), and long-term memory (LTM). It is commonly believed that the major bottleneck of information processing resides in VSTM. In contrast to this view, we show major bottlenecks for motion processing prior to VSTM. In the first experiment, we examined bottlenecks at the stimulus encoding stage through a partial-report technique by delivering the cue immediately at the end of the stimulus presentation. In the second experiment, we varied the cue delay to investigate sensory memory and VSTM. Performance decayed exponentially as a function of cue delay and we used the time-constant of the exponential-decay to demarcate sensory memory from VSTM. We then decomposed performance in terms of quality and quantity measures to analyze bottlenecks along these dimensions. In terms of the quality of information, two thirds to three quarters of the motion-processing bottleneck occurs in stimulus encoding rather than memory stages. In terms of the quantity of information, the motion-processing bottleneck is distributed, with the stimulus-encoding stage accounting for one third of the bottleneck. The bottleneck for the stimulus-encoding stage is dominated by the selection compared to the filtering function of attention. We also found that the filtering function of attention is operating mainly at the sensory memory stage in a specific manner, i.e., influencing only quantity and sparing quality. These results provide a novel and more complete understanding of information processing and storage bottlenecks for motion processing.
ERIC Educational Resources Information Center
Cunningham, Corbin A.; Yassa, Michael A.; Egeth, Howard E.
2015-01-01
Previous work suggests that visual long-term memory (VLTM) is highly detailed and has a massive capacity. However, memory performance is subject to the effects of the type of testing procedure used. The current study examines detail memory performance by probing the same memories within the same subjects, but using divergent probing methods. The…
ERIC Educational Resources Information Center
Sperber, Richard D.
1976-01-01
Competing explanations of the beneficial effect of spacing in retardate discrimination learning were tested. Results are inconsistent with consolidation and rehearsal theories but support the prediction of the Geber, Greenfield, and House spacing model that forgetting from short-term memory facilities retardate learning. (Author/SB)
Jones, Gary; Macken, Bill
2015-11-01
Traditional accounts of verbal short-term memory explain differences in performance for different types of verbal material by reference to inherent characteristics of the verbal items making up memory sequences. The role of previous experience with sequences of different types is ostensibly controlled for either by deliberate exclusion or by presenting multiple trials constructed from different random permutations. We cast doubt on this general approach in a detailed analysis of the basis for the robust finding that short-term memory for digit sequences is superior to that for other sequences of verbal material. Specifically, we show across four experiments that this advantage is not due to inherent characteristics of digits as verbal items, nor are individual digits within sequences better remembered than other types of individual verbal items. Rather, the advantage for digit sequences stems from the increased frequency, compared to other verbal material, with which digits appear in random sequences in natural language, and furthermore, relatively frequent digit sequences support better short-term serial recall than less frequent ones. We also provide corpus-based computational support for the argument that performance in a short-term memory setting is a function of basic associative learning processes operating on the linguistic experience of the rememberer. The experimental and computational results raise questions not only about the role played by measurement of digit span in cognition generally, but also about the way in which long-term memory processes impact on short-term memory functioning. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Study of short term memory status in adult bipolar disorder patients in south Indian population.
Aslam, Mohammed; Siddiq, Mohamed; Dhundasi, Salim A; Das, Kusal K; Kulkarni, B R
2011-01-01
The present study was undertaken to establish short term memory status in bipolar disorder cases as compared with normal age and sex matched control group in Bijapur (Karnataka). Results showed that a significant decrease in short term memory status in bipolar disorder cases as compared to their control group .Loss of attention, decreased processing speed and executive function patterns may be the probable causes of such observations.
ERIC Educational Resources Information Center
Isaki, Emi; Spaulding, Tammie J.; Plante, Elena
2008-01-01
The purpose of this study is to investigate the performance of adults with language-based learning disorders (L/LD) and normal language controls on verbal short-term and verbal working memory tasks. Eighteen adults with L/LD and 18 normal language controls were compared on verbal short-term memory and verbal working memory tasks under low,…
Musicians' Memory for Verbal and Tonal Materials under Conditions of Irrelevant Sound
ERIC Educational Resources Information Center
Williamson, Victoria J.; Mitchell, Tom; Hitch, Graham J.; Baddeley, Alan D.
2010-01-01
Studying short-term memory within the framework of the working memory model and its associated paradigms (Baddeley, 2000; Baddeley & Hitch, 1974) offers the chance to compare similarities and differences between the way that verbal and tonal materials are processed. This study examined amateur musicians' short-term memory using a newly adapted…
Autobiographical Memory Deficits in Alcohol-Dependent Patients with Short- and Long-Term Abstinence.
Nandrino, Jean-Louis; El Haj, Mohamad; Torre, Julie; Naye, Delphine; Douchet, Helyette; Danel, Thierry; Cottençin, Oliver
2016-04-01
Autobiographical memory (AM) enables the storage and retrieval of life experiences that allow individuals to build their sense of identity. Several AM impairments have been described in patients with alcohol abuse disorders without assessing whether such deficits can be recovered. This cross-sectional study aimed to identify whether the semantic (SAM) and episodic (EAM) dimensions of AM are affected in individuals with alcohol dependence after short-term abstinence (STA) or long-term abstinence (LTA). A second aim of this study was to examine the factors that could disrupt the efficiency of semantic and episodic AM (the impact of depression severity, cognitive functions, recent or early traumatic events, and drinking history variables). After clinical and cognitive evaluations (alcohol consumption, depression, anxiety, IQ, memory performance), AM was assessed with the Autobiographical Memory Interview in patients with recent (between 4 and 6 weeks) and longer (at least 6 months) abstinence. Participants were asked to retrieve the number and nature of traumatic or painful life experiences in recent or early life periods (using the Childhood Traumatic Events Scale). The 2 abstinent groups had lower global EAM and SAM scores than the control group. These scores were comparable for both abstinent groups. For childhood events, no significant differences were observed in SAM for both groups compared with control participants. For early adulthood and recent events, both STA and LTA groups had lower scores on both SAM and EAM. Moreover, there was a negative correlation between the length of substance consumption and SAM scores. This study highlighted a specific AM disorder in both episodic and semantic dimensions. These deficits remained after 6 months of abstinence. This AM impairment may be explained by compromised encoding and consolidation of memories during bouts of drinking. Copyright © 2016 by the Research Society on Alcoholism.
Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall.
Hampson, Robert E; Song, Dong; Robinson, Brian S; Fetterhoff, Dustin; Dakos, Alexander S; Roeder, Brent M; She, Xiwei; Wicks, Robert T; Witcher, Mark R; Couture, Daniel E; Laxton, Adrian W; Munger-Clary, Heidi; Popli, Gautam; Sollman, Myriam J; Whitlow, Christopher T; Marmarelis, Vasilis Z; Berger, Theodore W; Deadwyler, Sam A
2018-06-01
We demonstrate here the first successful implementation in humans of a proof-of-concept system for restoring and improving memory function via facilitation of memory encoding using the patient's own hippocampal spatiotemporal neural codes for memory. Memory in humans is subject to disruption by drugs, disease and brain injury, yet previous attempts to restore or rescue memory function in humans typically involved only nonspecific, modulation of brain areas and neural systems related to memory retrieval. We have constructed a model of processes by which the hippocampus encodes memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of short-term memory. A nonlinear multi-input, multi-output (MIMO) model of hippocampal CA3 and CA1 neural firing is computed that predicts activation patterns of CA1 neurons during the encoding (sample) phase of a delayed match-to-sample (DMS) human short-term memory task. MIMO model-derived electrical stimulation delivered to the same CA1 locations during the sample phase of DMS trials facilitated short-term/working memory by 37% during the task. Longer term memory retention was also tested in the same human subjects with a delayed recognition (DR) task that utilized images from the DMS task, along with images that were not from the task. Across the subjects, the stimulated trials exhibited significant improvement (35%) in both short-term and long-term retention of visual information. These results demonstrate the facilitation of memory encoding which is an important feature for the construction of an implantable neural prosthetic to improve human memory.
Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall
NASA Astrophysics Data System (ADS)
Hampson, Robert E.; Song, Dong; Robinson, Brian S.; Fetterhoff, Dustin; Dakos, Alexander S.; Roeder, Brent M.; She, Xiwei; Wicks, Robert T.; Witcher, Mark R.; Couture, Daniel E.; Laxton, Adrian W.; Munger-Clary, Heidi; Popli, Gautam; Sollman, Myriam J.; Whitlow, Christopher T.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Sam A.
2018-06-01
Objective. We demonstrate here the first successful implementation in humans of a proof-of-concept system for restoring and improving memory function via facilitation of memory encoding using the patient’s own hippocampal spatiotemporal neural codes for memory. Memory in humans is subject to disruption by drugs, disease and brain injury, yet previous attempts to restore or rescue memory function in humans typically involved only nonspecific, modulation of brain areas and neural systems related to memory retrieval. Approach. We have constructed a model of processes by which the hippocampus encodes memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of short-term memory. A nonlinear multi-input, multi-output (MIMO) model of hippocampal CA3 and CA1 neural firing is computed that predicts activation patterns of CA1 neurons during the encoding (sample) phase of a delayed match-to-sample (DMS) human short-term memory task. Main results. MIMO model-derived electrical stimulation delivered to the same CA1 locations during the sample phase of DMS trials facilitated short-term/working memory by 37% during the task. Longer term memory retention was also tested in the same human subjects with a delayed recognition (DR) task that utilized images from the DMS task, along with images that were not from the task. Across the subjects, the stimulated trials exhibited significant improvement (35%) in both short-term and long-term retention of visual information. Significance. These results demonstrate the facilitation of memory encoding which is an important feature for the construction of an implantable neural prosthetic to improve human memory.
Differential functions of NR2A and NR2B in short-term and long-term memory in rats.
Jung, Ye-Ha; Suh, Yoo-Hun
2010-08-23
N-methyl-D-aspartate receptors (NMDARs) are glutamate receptors implicated in synaptic plasticity and memory function. The specific functions of NMDA receptor subunits NR2A and NR2B have not yet been fully determined in the different types of memory. Nine Wistar rats (8-weeks-old) were subjected to the Morris water maze task to evaluate the memory behaviorally. Quantitative analysis of NR1, NR2A, and NR2B levels in the right and left forebrain of rats was performed and subunit associations with different types of memory were investigated using the Morris water maze task. Right forebrain NR2A expression was significantly increased and correlated with faster escape time onto a hidden platform, indicating involvement of short-term memory, because of the training time interval. Right forebrain NR2B expression was positively associated with long-term memory lasting 24-h (h). In the left forebrain, NR2B expression was positively related to 72-h long-term memory. In conclusion, the functions of NR2A and NR2B receptors were differentially specialized in short-term and long-term memory, depending on the right or left forebrain.
van de Ven, Vincent; Jacobs, Christianne; Sack, Alexander T
2012-01-04
The neural correlates for retention of visual information in visual short-term memory are considered separate from those of sensory encoding. However, recent findings suggest that sensory areas may play a role also in short-term memory. We investigated the functional relevance, spatial specificity, and temporal characteristics of human early visual cortex in the consolidation of capacity-limited topographic visual memory using transcranial magnetic stimulation (TMS). Topographically specific TMS pulses were delivered over lateralized occipital cortex at 100, 200, or 400 ms into the retention phase of a modified change detection task with low or high memory loads. For the high but not the low memory load, we found decreased memory performance for memory trials in the visual field contralateral, but not ipsilateral to the side of TMS, when pulses were delivered at 200 ms into the retention interval. A behavioral version of the TMS experiment, in which a distractor stimulus (memory mask) replaced the TMS pulses, further corroborated these findings. Our findings suggest that retinotopic visual cortex contributes to the short-term consolidation of topographic visual memory during early stages of the retention of visual information. Further, TMS-induced interference decreased the strength (amplitude) of the memory representation, which most strongly affected the high memory load trials.
The functional neuroanatomy of multitasking: combining dual tasking with a short term memory task.
Deprez, Sabine; Vandenbulcke, Mathieu; Peeters, Ron; Emsell, Louise; Amant, Frederic; Sunaert, Stefan
2013-09-01
Insight into the neural architecture of multitasking is crucial when investigating the pathophysiology of multitasking deficits in clinical populations. Presently, little is known about how the brain combines dual-tasking with a concurrent short-term memory task, despite the relevance of this mental operation in daily life and the frequency of complaints related to this process, in disease. In this study we aimed to examine how the brain responds when a memory task is added to dual-tasking. Thirty-three right-handed healthy volunteers (20 females, mean age 39.9 ± 5.8) were examined with functional brain imaging (fMRI). The paradigm consisted of two cross-modal single tasks (a visual and auditory temporal same-different task with short delay), a dual-task combining both single tasks simultaneously and a multi-task condition, combining the dual-task with an additional short-term memory task (temporal same-different visual task with long delay). Dual-tasking compared to both individual visual and auditory single tasks activated a predominantly right-sided fronto-parietal network and the cerebellum. When adding the additional short-term memory task, a larger and more bilateral frontoparietal network was recruited. We found enhanced activity during multitasking in components of the network that were already involved in dual-tasking, suggesting increased working memory demands, as well as recruitment of multitask-specific components including areas that are likely to be involved in online holding of visual stimuli in short-term memory such as occipito-temporal cortex. These results confirm concurrent neural processing of a visual short-term memory task during dual-tasking and provide evidence for an effective fMRI multitasking paradigm. © 2013 Elsevier Ltd. All rights reserved.
Vernalizing cold is registered digitally at FLC.
Angel, Andrew; Song, Jie; Yang, Hongchun; Questa, Julia I; Dean, Caroline; Howard, Martin
2015-03-31
A fundamental property of many organisms is an ability to sense, evaluate, and respond to environmental signals. In some situations, generation of an appropriate response requires long-term information storage. A classic example is vernalization, where plants quantitatively sense long-term cold and epigenetically store this cold-exposure information to regulate flowering time. In Arabidopsis thaliana, stable epigenetic memory of cold is digital: following long-term cold exposure, cells respond autonomously in an all-or-nothing fashion, with the fraction of cells that stably silence the floral repressor flowering locus C (FLC) increasing with the cold exposure duration. However, during cold exposure itself it is unknown whether vernalizing cold is registered at FLC in individual cells in an all-or-nothing (digital) manner or is continuously varying (analog). Using mathematical modeling, we found that analog registration of cold temperature is problematic due to impaired analog-to-digital conversion into stable memory. This disadvantage is particularly acute when responding to short cold periods, but is absent when cold temperatures are registered digitally at FLC. We tested this prediction experimentally, exposing plants to short periods of cold interrupted with even shorter warm breaks. For FLC expression, we found that the system responds similarly to both interrupted and uninterrupted cold, arguing for a digital mechanism integrating long-term temperature exposure.
Vernalizing cold is registered digitally at FLC
Angel, Andrew; Song, Jie; Yang, Hongchun; Questa, Julia I.; Dean, Caroline; Howard, Martin
2015-01-01
A fundamental property of many organisms is an ability to sense, evaluate, and respond to environmental signals. In some situations, generation of an appropriate response requires long-term information storage. A classic example is vernalization, where plants quantitatively sense long-term cold and epigenetically store this cold-exposure information to regulate flowering time. In Arabidopsis thaliana, stable epigenetic memory of cold is digital: following long-term cold exposure, cells respond autonomously in an all-or-nothing fashion, with the fraction of cells that stably silence the floral repressor FLOWERING LOCUS C (FLC) increasing with the cold exposure duration. However, during cold exposure itself it is unknown whether vernalizing cold is registered at FLC in individual cells in an all-or-nothing (digital) manner or is continuously varying (analog). Using mathematical modeling, we found that analog registration of cold temperature is problematic due to impaired analog-to-digital conversion into stable memory. This disadvantage is particularly acute when responding to short cold periods, but is absent when cold temperatures are registered digitally at FLC. We tested this prediction experimentally, exposing plants to short periods of cold interrupted with even shorter warm breaks. For FLC expression, we found that the system responds similarly to both interrupted and uninterrupted cold, arguing for a digital mechanism integrating long-term temperature exposure. PMID:25775579
ERIC Educational Resources Information Center
Berryhill, Marian E.; Chein, Jason; Olson, Ingrid R.
2011-01-01
Portions of the posterior parietal cortex (PPC) play a role in working memory (WM) yet the precise mechanistic function of this region remains poorly understood. The "pure storage" hypothesis proposes that this region functions as a short-lived modality-specific memory store. Alternatively, the "internal attention" hypothesis proposes that the PPC…
Berg, Derek H
2008-04-01
The cognitive underpinnings of arithmetic calculation in children are noted to involve working memory; however, cognitive processes related to arithmetic calculation and working memory suggest that this relationship is more complex than stated previously. The purpose of this investigation was to examine the relative contributions of processing speed, short-term memory, working memory, and reading to arithmetic calculation in children. Results suggested four important findings. First, processing speed emerged as a significant contributor of arithmetic calculation only in relation to age-related differences in the general sample. Second, processing speed and short-term memory did not eliminate the contribution of working memory to arithmetic calculation. Third, individual working memory components--verbal working memory and visual-spatial working memory--each contributed unique variance to arithmetic calculation in the presence of all other variables. Fourth, a full model indicated that chronological age remained a significant contributor to arithmetic calculation in the presence of significant contributions from all other variables. Results are discussed in terms of directions for future research on working memory in arithmetic calculation.
Wang, Xiaoli; Xuan, Yifu; Jarrold, Christopher
2016-01-01
Previous studies have examined whether difficulties in short-term memory for verbal information, that might be associated with dyslexia, are driven by problems in retaining either information about to-be-remembered items or the order in which these items were presented. However, such studies have not used process-pure measures of short-term memory for item or order information. In this work we adapt a process dissociation procedure to properly distinguish the contributions of item and order processes to verbal short-term memory in a group of 28 adults with a self-reported diagnosis of dyslexia and a comparison sample of 29 adults without a dyslexia diagnosis. In contrast to previous work that has suggested that individuals with dyslexia experience item deficits resulting from inefficient phonological representation and language-independent order memory deficits, the results showed no evidence of specific problems in short-term retention of either item or order information among the individuals with a self-reported diagnosis of dyslexia, despite this group showing expected difficulties on separate measures of word and non-word reading. However, there was some suggestive evidence of a link between order memory for verbal material and individual differences in non-word reading, consistent with other claims for a role of order memory in phonologically mediated reading. The data from the current study therefore provide empirical evidence to question the extent to which item and order short-term memory are necessarily impaired in dyslexia. PMID:26941679
Wang, Xiaoli; Xuan, Yifu; Jarrold, Christopher
2016-01-01
Previous studies have examined whether difficulties in short-term memory for verbal information, that might be associated with dyslexia, are driven by problems in retaining either information about to-be-remembered items or the order in which these items were presented. However, such studies have not used process-pure measures of short-term memory for item or order information. In this work we adapt a process dissociation procedure to properly distinguish the contributions of item and order processes to verbal short-term memory in a group of 28 adults with a self-reported diagnosis of dyslexia and a comparison sample of 29 adults without a dyslexia diagnosis. In contrast to previous work that has suggested that individuals with dyslexia experience item deficits resulting from inefficient phonological representation and language-independent order memory deficits, the results showed no evidence of specific problems in short-term retention of either item or order information among the individuals with a self-reported diagnosis of dyslexia, despite this group showing expected difficulties on separate measures of word and non-word reading. However, there was some suggestive evidence of a link between order memory for verbal material and individual differences in non-word reading, consistent with other claims for a role of order memory in phonologically mediated reading. The data from the current study therefore provide empirical evidence to question the extent to which item and order short-term memory are necessarily impaired in dyslexia.
ERIC Educational Resources Information Center
Takeuchi, Hikaru; Taki, Yasuyuki; Sassa, Yuko; Hashizume, Hiroshi; Sekiguchi, Atsushi; Fukushima, Ai; Kawashima, Ryuta
2011-01-01
Working memory is the limited capacity storage system involved in the maintenance and manipulation of information over short periods of time. Previous imaging studies have suggested that the frontoparietal regions are activated during working memory tasks; a putative association between the structure of the frontoparietal regions and working…
Retention interval affects visual short-term memory encoding.
Bankó, Eva M; Vidnyánszky, Zoltán
2010-03-01
Humans can efficiently store fine-detailed facial emotional information in visual short-term memory for several seconds. However, an unresolved question is whether the same neural mechanisms underlie high-fidelity short-term memory for emotional expressions at different retention intervals. Here we show that retention interval affects the neural processes of short-term memory encoding using a delayed facial emotion discrimination task. The early sensory P100 component of the event-related potentials (ERP) was larger in the 1-s interstimulus interval (ISI) condition than in the 6-s ISI condition, whereas the face-specific N170 component was larger in the longer ISI condition. Furthermore, the memory-related late P3b component of the ERP responses was also modulated by retention interval: it was reduced in the 1-s ISI as compared with the 6-s condition. The present findings cannot be explained based on differences in sensory processing demands or overall task difficulty because there was no difference in the stimulus information and subjects' performance between the two different ISI conditions. These results reveal that encoding processes underlying high-precision short-term memory for facial emotional expressions are modulated depending on whether information has to be stored for one or for several seconds.
Attention, Imagery and Memory: A Neuromagnetic Investigation
1991-10-14
The full complexity of memory processes suggested by the distinctions between short-term and long-term memory , episodic , semantic and declarative...the ;canning of short-term memory . This fol- lows from the fact that bilateral damage to medial temporal cortex results in anterograde amnesia , which...Neural Science AD-A243 859 r FINAL TECHNICAL REPORTC Attention, Imagery and Memory 1 March 1988 -30 September 1991 , Q6’i iQ’ UA Dr.~~~~C A..Fel
Short-term memory in networks of dissociated cortical neurons.
Dranias, Mark R; Ju, Han; Rajaram, Ezhilarasan; VanDongen, Antonius M J
2013-01-30
Short-term memory refers to the ability to store small amounts of stimulus-specific information for a short period of time. It is supported by both fading and hidden memory processes. Fading memory relies on recurrent activity patterns in a neuronal network, whereas hidden memory is encoded using synaptic mechanisms, such as facilitation, which persist even when neurons fall silent. We have used a novel computational and optogenetic approach to investigate whether these same memory processes hypothesized to support pattern recognition and short-term memory in vivo, exist in vitro. Electrophysiological activity was recorded from primary cultures of dissociated rat cortical neurons plated on multielectrode arrays. Cultures were transfected with ChannelRhodopsin-2 and optically stimulated using random dot stimuli. The pattern of neuronal activity resulting from this stimulation was analyzed using classification algorithms that enabled the identification of stimulus-specific memories. Fading memories for different stimuli, encoded in ongoing neural activity, persisted and could be distinguished from each other for as long as 1 s after stimulation was terminated. Hidden memories were detected by altered responses of neurons to additional stimulation, and this effect persisted longer than 1 s. Interestingly, network bursts seem to eliminate hidden memories. These results are similar to those that have been reported from similar experiments in vivo and demonstrate that mechanisms of information processing and short-term memory can be studied using cultured neuronal networks, thereby setting the stage for therapeutic applications using this platform.
Interference Effects on the Recall of Pictures, Printed Words, and Spoken Words.
ERIC Educational Resources Information Center
Burton, John K.; Bruning, Roger H.
1982-01-01
Nouns were presented in triads as pictures, printed words, or spoken words and followed by various types of interference. Measures of short- and long-term memory were obtained. In short-term memory, pictorial superiority occurred with acoustic, and visual and acoustic, but not visual interference. Long-term memory showed superior recall for…
Fandakova, Yana; Sander, Myriam C; Werkle-Bergner, Markus; Shing, Yee Lee
2014-03-01
Memory performance increases during childhood and adolescence, and decreases in old age. Among younger adults, better ability to bind items to the context in which they were experienced is associated with higher working memory performance (Oberauer, 2005). Here, we examined the extent to which age differences in binding contribute to life span age differences in short-term memory (STM). Younger children (N = 85; 10 to 12 years), teenagers (N = 41; 13 to 15 years), younger adults (N = 84; 20 to 25 years), and older adults (N = 86; 70 to 75 years) worked on global and local short-term recognition tasks that are assumed to measure item and item-context memory, respectively. Structural equation models showed that item-context bindings are functioning less well in children and older adults compared with younger adults and teenagers. This result suggests protracted development of the ability to form and recollect detailed short-term memories, and decline of this ability in aging. Across all age groups, better item-context binding was associated with higher working memory performance, indicating that developmental differences in binding mechanisms are closely related to working memory development in childhood and old age. (c) 2014 APA, all rights reserved.
Retrospective attention in short-term memory has a lasting effect on long-term memory across age.
Strunk, Jonathan; Morgan, Lauren; Reaves, Sarah; Verhaeghen, Paul; Duarte, Audrey
2018-04-13
Declines in both short- and long-term memory are typical of healthy aging. Recent findings suggest that retrodictive attentional cues ("retro-cues") that indicate the location of to-be-probed items in short-term memory (STM) have a lasting impact on long-term memory (LTM) performance in young adults. Whether older adults can also use retro-cues to facilitate both STM and LTM is unknown. Young and older adults performed a visual STM task in which spatially informative retro-cues or non-informative neutral-cues were presented during STM maintenance of real-world objects. We tested participants' memory at both STM and LTM delays for objects that were previously cued with retrodictive or neutral cues during STM order to measure the lasting impact of retrospective attention on LTM. Older adults showed reduced STM and LTM capacity compared to young adults. However, they showed similar magnitude retro-cue memory benefits as young adults at both STM and LTM delays. To the best of our knowledge, this is the first study to investigate whether retro-cues in STM facilitate the encoding of objects into LTM such that they are more likely to be subsequently retrieved by older adults. Our results support the idea that retrospective attention can be an effective means by which older adults can improve their short and long-term memory performance, even in the context of reduced memory capacity.
Thomassin, Noémylle; Gonthier, Corentin; Guerraz, Michel; Roulin, Jean-Luc
2015-01-01
Participants with a high working memory span tend to perform better than low spans in a variety of tasks. However, their performance is paradoxically more impaired when they have to perform two tasks at once, a phenomenon that could be labeled the "hard fall effect." The present study tested whether this effect exists in a short-term memory task, and investigated the proposal that the effect is due to high spans using efficient facilitative strategies under simple task conditions. Ninety-eight participants performed a spatial short-term memory task under simple and dual task conditions; stimuli presentation times either allowed for the use of complex facilitative strategies or not. High spans outperformed low spans only under simple task conditions when presentation times allowed for the use of facilitative strategies. These results indicate that the hard fall effect exists on a short-term memory task and may be caused by individual differences in strategy use.
Short-term memory for spatial configurations in the tactile modality: a comparison with vision.
Picard, Delphine; Monnier, Catherine
2009-11-01
This study investigates the role of acquisition constraints on the short-term retention of spatial configurations in the tactile modality in comparison with vision. It tests whether the sequential processing of information inherent to the tactile modality could account for limitation in short-term memory span for tactual-spatial information. In addition, this study investigates developmental aspects of short-term memory for tactual- and visual-spatial configurations. A total of 144 child and adult participants were assessed for their memory span in three different conditions: tactual, visual, and visual with a limited field of view. The results showed lower tactual-spatial memory span than visual-spatial, regardless of age. However, differences in memory span observed between the tactile and visual modalities vanished when the visual processing of information occurred within a limited field. These results provide evidence for an impact of acquisition constraints on the retention of spatial information in the tactile modality in both childhood and adulthood.
The nature of short-term consolidation in visual working memory.
Ricker, Timothy J; Hardman, Kyle O
2017-11-01
Short-term consolidation is the process by which stable working memory representations are created. This process is fundamental to cognition yet poorly understood. The present work examines short-term consolidation using a Bayesian hierarchical model of visual working memory recall to determine the underlying processes at work. Our results show that consolidation functions largely through changing the proportion of memory items successfully maintained until test. Although there was some evidence that consolidation affects representational precision, this change was modest and could not account for the bulk of the consolidation effect on memory performance. The time course of the consolidation function and selective influence of consolidation on specific serial positions strongly indicates that short-term consolidation induces an attentional blink. The blink leads to deficits in memory for the immediately following item when time pressure is introduced. Temporal distinctiveness accounts of the consolidation process are tested and ruled out. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Poor phonemic discrimination does not underlie poor verbal short-term memory in Down syndrome.
Purser, Harry R M; Jarrold, Christopher
2013-05-01
Individuals with Down syndrome tend to have a marked impairment of verbal short-term memory. The chief aim of this study was to investigate whether phonemic discrimination contributes to this deficit. The secondary aim was to investigate whether phonological representations are degraded in verbal short-term memory in people with Down syndrome relative to control participants. To answer these questions, two tasks were used: a discrimination task, in which memory load was as low as possible, and a short-term recognition task that used the same stimulus items. Individuals with Down syndrome were found to perform significantly better than a nonverbal-matched typically developing group on the discrimination task, but they performed significantly more poorly than that group on the recognition task. The Down syndrome group was outperformed by an additional vocabulary-matched control group on the discrimination task but was outperformed to a markedly greater extent on the recognition task. Taken together, the results strongly indicate that phonemic discrimination ability is not central to the verbal short-term memory deficit associated with Down syndrome. Copyright © 2013 Elsevier Inc. All rights reserved.
Wiegand, Iris; Töllner, Thomas; Habekost, Thomas; Dyrholm, Mads; Müller, Hermann J; Finke, Kathrin
2014-08-01
An individual's visual attentional capacity is characterized by 2 central processing resources, visual perceptual processing speed and visual short-term memory (vSTM) storage capacity. Based on Bundesen's theory of visual attention (TVA), independent estimates of these parameters can be obtained from mathematical modeling of performance in a whole report task. The framework's neural interpretation (NTVA) further suggests distinct brain mechanisms underlying these 2 functions. Using an interindividual difference approach, the present study was designed to establish the respective ERP correlates of both parameters. Participants with higher compared to participants with lower processing speed were found to show significantly reduced visual N1 responses, indicative of higher efficiency in early visual processing. By contrast, for participants with higher relative to lower vSTM storage capacity, contralateral delay activity over visual areas was enhanced while overall nonlateralized delay activity was reduced, indicating that holding (the maximum number of) items in vSTM relies on topographically specific sustained activation within the visual system. Taken together, our findings show that the 2 main aspects of visual attentional capacity are reflected in separable neurophysiological markers, validating a central assumption of NTVA. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Visual Short-Term Memory Capacity for Simple and Complex Objects
ERIC Educational Resources Information Center
Luria, Roy; Sessa, Paola; Gotler, Alex; Jolicoeur, Pierre; Dell'Acqua, Roberto
2010-01-01
Does the capacity of visual short-term memory (VSTM) depend on the complexity of the objects represented in memory? Although some previous findings indicated lower capacity for more complex stimuli, other results suggest that complexity effects arise during retrieval (due to errors in the comparison process with what is in memory) that is not…
ERIC Educational Resources Information Center
Greneche, Jerome; Krieger, Jean; Bertrand, Frederic; Erhardt, Christine; Maumy, Myriam; Tassi, Patricia
2011-01-01
Both working and immediate memories were assessed every 4 h by specific short-term memory tasks over sustained wakefulness in 12 patients with obstructive sleep apnea and hypopnea syndrome (OSAHS) and 10 healthy controls. Results indicated that OSAHS patients exhibited lower working memory performances than controls on both backward digit span and…
Gusmão, Isabela D; Monteiro, Brisa M M; Cornélio, Guilherme O S; Fonseca, Cristina S; Moraes, Márcio F D; Pereira, Grace S
2012-03-17
Prolonged permanence of animals under social isolation (SI) arouses a variety of psychological symptoms like aggression, stress, anxiety and depression. However, short-term SI is commonly used to evaluate social memory. Interestingly, the social memory cannot be accessed with delays higher than 30min in SI mice. Our hypothesis is that SI with intermediate duration, like one week (1w), impairs the long-term storage of new social information (S-LTM), without affecting anxiety or other types of memories, because the SI compromises the olfactory function of the animal. Our results demonstrated that SI impaired S-LTM, without affecting other kinds of memory or anxiety. In addition, the SI increased the latency in the buried-food finding task, but did not affect the habituation or the discrimination of odors. Next, we postulated that if continuous input to the olfactory system is fundamental for the maintenance of the olfactory function and social memory persistence, isolated mice under odor-enriched environment (OEE) should behave like group-housed (GH) animals. In fact, the OEE prevented the S-LTM deficit imposed by the SI. However, OEE did not restore the SI mice olfaction to the GH mice level. Our results suggest that SI modulates olfaction and social memory persistence, probably, by independent mechanisms. We also showed for the first time that OEE rescued S-LTM in SI mice through a mechanism not necessarily involved with olfaction. Copyright © 2011 Elsevier B.V. All rights reserved.
Evidence for Working Memory Storage Operations in Perceptual Cortex
Sreenivasan, Kartik K.; Gratton, Caterina; Vytlacil, Jason; D’Esposito, Mark
2014-01-01
Isolating the short-term storage component of working memory (WM) from the myriad of associated executive processes has been an enduring challenge. Recent efforts have identified patterns of activity in visual regions that contain information about items being held in WM. However, it remains unclear (i) whether these representations withstand intervening sensory input and (ii) how communication between multimodal association cortex and unimodal perceptual regions supporting WM representations is involved in WM storage. We present evidence that the features of a face held in WM are stored within face processing regions, that these representations persist across subsequent sensory input, and that information about the match between sensory input and memory representation is relayed forward from perceptual to prefrontal regions. Participants were presented with a series of probe faces and indicated whether each probe matched a Target face held in WM. We parametrically varied the feature similarity between probe and Target faces. Activity within face processing regions scaled linearly with the degree of feature similarity between the probe face and the features of the Target face, suggesting that the features of the Target face were stored in these regions. Furthermore, directed connectivity measures revealed that the direction of information flow that was optimal for performance was from sensory regions that stored the features of the Target face to dorsal prefrontal regions, supporting the notion that sensory input is compared to representations stored within perceptual regions and relayed forward. Together, these findings indicate that WM storage operations are carried out within perceptual cortex. PMID:24436009
Role of the lateral habenula in memory through online processing of information.
Mathis, Victor; Lecourtier, Lucas
2017-11-01
Our memory abilities, whether they involve short-term working memory or long-term episodic or procedural memories, are essential for our well-being, our capacity to adapt to constraints of our environment and survival. Therefore, several key brain regions and neurotransmitter systems are engaged in the processing of sensory information to either maintain such information in working memory so that it will quickly be used, and/or participate in the elaboration and storage of enduring traces useful for longer periods of time. Animal research has recently attracted attention on the lateral habenula which, as shown in rodents and non-human primates, seems to process information stemming in the main regions involved in memory processing, e.g., the medial prefrontal cortex, the hippocampus, the amygdala, the septal region, the basal ganglia, and participates in the control of key memory-related neurotransmitters systems, i.e., dopamine, serotonin, acetylcholine. Recently, the lateral habenula has been involved in working and spatial reference memories, in rodents, likely by participating in online processing of contextual information. In addition, several behavioral studies strongly suggest that it is also involved in the processing of the emotional valance of incoming information in order to adapt to particularly stressful situations. Therefore, the lateral habenula appears like a key region at the interface between cognition and emotion to participate in the selection of appropriate behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.
Almaguer-Melian, William; Bergado-Rosado, Jorge; Pavón-Fuentes, Nancy; Alberti-Amador, Esteban; Mercerón-Martínez, Daymara; Frey, Julietta U
2012-01-17
Novelty processing can transform short-term into long-term memory. We propose that this memory-reinforcing effect of novelty could be explained by mechanisms outlined in the "synaptic tagging hypothesis." Initial short-term memory is sustained by a transient plasticity change at activated synapses and sets synaptic tags. These tags are later able to capture and process the plasticity-related proteins (PRPs), which are required to transform a short-term synaptic change into a long-term one. Novelty is involved in inducing the synthesis of PRPs [Moncada D, et al. (2011) Proc Natl Acad Sci USA 108:12937-12936], which are then captured by the tagged synapses, consolidating memory. In contrast to novelty, stress can impair learning, memory, and synaptic plasticity. Here, we address questions as to whether novelty-induced PRPs are able to prevent the loss of memory caused by stress and if the latter would not interact with the tag-setting process. We used water-maze (WM) training as a spatial learning paradigm to test our hypothesis. Stress was induced by a strong foot shock (FS; 5 × 1 mA, 2 s) applied 5 min after WM training. Our data show that FS reduced long-term but not short-term memory in the WM paradigm. This negative effect on memory consolidation was time- and training-dependent. Interestingly, novelty exposure prevented the stress-induced memory loss of the spatial task and increased BDNF and Arc expression. This rescuing effect was blocked by anisomycin, suggesting that WM-tagged synapses were not reset by FS and were thus able to capture the novelty-induced PRPs, re-establishing FS-impaired long-term memory.
Competitive short-term and long-term memory processes in spatial habituation.
Sanderson, David J; Bannerman, David M
2011-04-01
Exposure to a spatial location leads to habituation of exploration such that, in a novelty preference test, rodents subsequently prefer exploring a novel location to the familiar location. According to Wagner's (1981) theory of memory, short-term and long-term habituation are caused by separate and sometimes opponent processes. In the present study, this dual-process account of memory was tested. Mice received a series of exposure training trials to a location before receiving a novelty preference test. The novelty preference was greater when tested after a short, rather than a long, interval. In contrast, the novelty preference was weaker when exposure training trials were separated by a short, rather than a long interval. Furthermore, it was found that long-term habituation was determined by the independent effects of the amount of exposure training and the number of exposure training trials when factors such as the intertrial interval and the cumulative intertrial interval were controlled. A final experiment demonstrated that a long-term reduction of exploration could be caused by a negative priming effect due to associations formed during exploration. These results provide evidence against a single-process account of habituation and suggest that spatial habituation is determined by both short-term, recency-based memory and long-term, incrementally strengthened memory.
The relation between working memory components and ADHD symptoms from a developmental perspective.
Tillman, Carin; Eninger, Lilianne; Forssman, Linda; Bohlin, Gunilla
2011-01-01
The objective was to examine the relations between attention deficit hyperactivity disorder (ADHD) symptoms and four working memory (WM) components (short-term memory and central executive in verbal and visuospatial domains) in 284 6-16-year-old children from the general population. The results showed that verbal and visuospatial short-term memory and verbal central executive uniquely contributed to inattention symptoms. Age interacted with verbal short-term memory in predicting inattention, with the relation being stronger in older children. These findings support the notion of ADHD as a developmental disorder, with changes in associated neuropsychological deficits across time. The results further indicate ADHD-related deficits in several specific WM components.
Busquets-Garcia, Arnau; Gomis-González, Maria; Salgado-Mendialdúa, Victòria; Galera-López, Lorena; Puighermanal, Emma; Martín-García, Elena; Maldonado, Rafael; Ozaita, Andrés
2018-04-01
Cannabis affects cognitive performance through the activation of the endocannabinoid system, and the molecular mechanisms involved in this process are poorly understood. Using the novel object-recognition memory test in mice, we found that the main psychoactive component of cannabis, delta9-tetrahydrocannabinol (THC), alters short-term object-recognition memory specifically involving protein kinase C (PKC)-dependent signaling. Indeed, the systemic or intra-hippocampal pre-treatment with the PKC inhibitors prevented the short-term, but not the long-term, memory impairment induced by THC. In contrast, systemic pre-treatment with mammalian target of rapamycin complex 1 inhibitors, known to block the amnesic-like effects of THC on long-term memory, did not modify such a short-term cognitive deficit. Immunoblot analysis revealed a transient increase in PKC signaling activity in the hippocampus after THC treatment. Thus, THC administration induced the phosphorylation of a specific Ser residue in the hydrophobic-motif at the C-terminal tail of several PKC isoforms. This significant immunoreactive band that paralleled cognitive performance did not match in size with the major PKC isoforms expressed in the hippocampus except for PKCθ. Moreover, THC transiently enhanced the phosphorylation of the postsynaptic calmodulin-binding protein neurogranin in a PKC dependent manner. These data demonstrate that THC alters short-term object-recognition memory through hippocampal PKC/neurogranin signaling.
ERIC Educational Resources Information Center
Hitch, Graham J.; Flude, Brenda; Burgess, Neil
2009-01-01
Three experiments tested predictions of a neural network model of phonological short-term memory that assumes separate representations for order and item information, order being coded via a context-timing signal [Burgess, N., & Hitch, G. J. (1999). Memory for serial order: A network model of the phonological loop and its timing. "Psychological…
ERIC Educational Resources Information Center
Allison, Dennis J.
A theory of memory is introduced, which seeks to respond to the shortcomings of existing theories based on metaphors. Memory is presented as a mechanism, a comparison process in which information held in some form of immediate storage (whether based on perception or previous cognition or both) is compared to previously stored long-term storage.…
Edwards, Lindsey; Aitkenhead, Lynne; Langdon, Dawn
2016-11-01
This study aimed to establish the relationship between short-term memory capacity and reading skills in adolescents with cochlear implants. A between-groups design compared a group of young people with cochlear implants with a group of hearing peers on measures of reading, and auditory and visual short-term memory capacity. The groups were matched for non-verbal IQ and age. The adolescents with cochlear implants were recruited from the Cochlear Implant Programme at a specialist children's hospital. The hearing participants were recruited from the same schools as those attended by the implanted adolescents. Participants were 18 cochlear implant users and 14 hearing controls, aged between 12 and 18 years. All used English as their main language and had no significant learning disability or neuro-developmental disorder. Short-term memory capacity was assessed in the auditory modality using Forward and Reverse Digit Span from the WISC IV UK, and visually using Forward and Reverse Memory from the Leiter-R. Individual word reading, reading comprehension and pseudoword decoding were assessed using the WIAT II UK. A series of ANOVAs revealed that the adolescents with cochlear implants had significantly poorer auditory short-term memory capacity and reading skills (on all measures) compared with their hearing peers. However, when Forward Digit Span was entered into the analyses as a covariate, none of the differences remained statistically significant. Deficits in immediate auditory memory persist into adolescence in deaf children with cochlear implants. Short-term auditory memory capacity is an important neurocognitive process in the development of reading skills after cochlear implantation in childhood that remains evident in later adolescence. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Goonawardena, Anushka V.; Robinson, Lianne; Hampson, Robert E.; Riedel, Gernot
2010-01-01
It is now well established that cannabinoid agonists such as [delta][superscript 9]-tetrahydrocannabinol (THC), anandamide, and WIN 55,212-2 (WIN-2) produce potent and specific deficits in working memory (WM)/short-term memory (STM) tasks in rodents. Although mediated through activation of CB1 receptors located in memory-related brain regions such…
Using visual lateralization to model learning and memory in zebrafish larvae
Andersson, Madelene Åberg; Ek, Fredrik; Olsson, Roger
2015-01-01
Impaired learning and memory are common symptoms of neurodegenerative and neuropsychiatric diseases. Present, there are several behavioural test employed to assess cognitive functions in animal models, including the frequently used novel object recognition (NOR) test. However, although atypical functional brain lateralization has been associated with neuropsychiatric conditions, spanning from schizophrenia to autism, few animal models are available to study this phenomenon in learning and memory deficits. Here we present a visual lateralization NOR model (VLNOR) in zebrafish larvae as an assay that combines brain lateralization and NOR. In zebrafish larvae, learning and memory are generally assessed by habituation, sensitization, or conditioning paradigms, which are all representatives of nondeclarative memory. The VLNOR is the first model for zebrafish larvae that studies a memory similar to the declarative memory described for mammals. We demonstrate that VLNOR can be used to study memory formation, storage, and recall of novel objects, both short and long term, in 10-day-old zebrafish. Furthermore we show that the VLNOR model can be used to study chemical modulation of memory formation and maintenance using dizocilpine (MK-801), a frequently used non-competitive antagonist of the NMDA receptor, used to test putative antipsychotics in animal models. PMID:25727677
ERIC Educational Resources Information Center
Rodriguez-Ortiz, Carlos J.; De la Cruz, Vanesa; Gutierrez, Ranier; Bermudez-Rattoni, Federico
2005-01-01
Consolidation theory proposes that through the synthesis of new proteins recently acquired memories are strengthened over time into a stable long-term memory trace. However, evidence has accumulated suggesting that retrieved memory is susceptible to disruption, seeming to consolidate again (reconsolidate) to be retained in long-term storage. Here…
CREB binding protein is required for both short-term and long-term memory formation.
Chen, Guiquan; Zou, Xiaoyan; Watanabe, Hirotaka; van Deursen, Jan M; Shen, Jie
2010-09-29
CREB binding protein (CBP) is a transcriptional coactivator with histone acetyltransferase activity. Our prior study suggested that CBP might be a key target of presenilins in the regulation of memory formation and neuronal survival. To elucidate the role of CBP in the adult brain, we generated conditional knock-out (cKO) mice in which CBP is completely inactivated in excitatory neurons of the postnatal forebrain. Histological analysis revealed normal neuronal morphology and absence of age-dependent neuronal degeneration in the CBP cKO cerebral cortex. CBP cKO mice exhibited robust impairment in the formation of spatial, associative, and object-recognition memory. In addition to impaired long-term memory, CBP cKO mice also displayed deficits in short-term associative and object-recognition memory. Administration of a histone deacetylase inhibitor, trichostatin A, rescued the reduction of acetylated histones in the CBP cKO cortex but failed to rescue either short- or long-term memory deficits, suggesting that the memory impairment may not be caused by general reduction of histone acetyltransferase activity in CBP cKO mice. Further microarray and Western analysis showed decreased expression of calcium-calmodulin-dependent kinase isoforms and NMDA and AMPA receptor subunits in the cerebral cortex of CBP cKO mice. Collectively, these findings suggest a crucial role for CBP in the formation of both short- and long-term memory.
The epigenetic basis of memory formation and storage.
Jarome, Timothy J; Thomas, Jasmyne S; Lubin, Farah D
2014-01-01
The formation of long-term memory requires a series of cellular and molecular changes that involve transcriptional regulation of gene expression. While these changes in gene transcription were initially thought to be largely regulated by the activation of transcription factors by intracellular signaling molecules, epigenetic mechanisms have emerged as an important regulator of transcriptional processes across multiple brain regions to form a memory circuit for a learned event or experience. Due to their self-perpetuating nature and ability to bidirectionally control gene expression, these epigenetic mechanisms have the potential to not only regulate initial memory formation but also modify and update memory over time. This chapter focuses on the established, but poorly understood, role for epigenetic mechanisms such as posttranslational modifications of histone proteins and DNA methylation at the different stages of memory storage. Additionally, this chapter emphasizes how these mechanisms interact to control the ideal epigenetic environment for memory formation and modification in neurons. The reader will gain insights into the limitations in our current understanding of epigenetic regulation of memory storage, especially in terms of their cell-type specificity and the lack of understanding in the interactions of various epigenetic modifiers to one another to impact gene expression changes during memory formation.
Content-specificity in verbal recall: a randomized controlled study.
Zirk-Sadowski, Jan; Szucs, Denes; Holmes, Joni
2013-01-01
In this controlled experiment we examined whether there are content effects in verbal short-term memory and working memory for verbal stimuli. Thirty-seven participants completed forward and backward digit and letter recall tasks, which were constructed to control for distance effects between stimuli. A maximum-likelihood mixed-effects logistic regression revealed main effects of direction of recall (forward vs backward) and content (digits vs letters). There was an interaction between type of recall and content, in which the recall of digits was superior to the recall of letters in verbal short-term memory but not in verbal working memory. These results demonstrate that the recall of information from verbal short-term memory is content-specific, whilst the recall of information from verbal working memory is content-general.
Lucena, Greice M R S; Matheus, Filipe C; Ferreira, Vania M; Tessele, Priscila B; Azevedo, Mariangela S; Cechinel-Filho, Valdir; Prediger, Rui D
2013-04-01
Previous studies from our group have indicated important biological properties of the ethanolic extract and isolated compounds from the bulbs of Cipura paludosa (Iridaceae), a native plant widely distributed in northern Brazil, including antioxidant, neuroprotective and anti-nociceptive activities. In the present study, the effects of the ethanolic extract and its two naphthoquinones (eleutherine and isoeleutherine) on the short- and long-term memory of adult rodents were assessed in social recognition and inhibitory avoidance tasks. Acute pre-training oral administration of the ethanolic extract improved the short-term social memory in rats as well as facilitated the step-down inhibitory avoidance short- and long-term memory in mice. Moreover, the co-administration of 'non-effective' doses of the extract of Cipura paludosa and the adenosine receptor antagonists caffeine (non-selective), DPCPX (adenosine A1 receptor antagonist) and ZM241385 (adenosine A2A receptor antagonist) improved the social recognition memory of rats. In the inhibitory avoidance task, the co-administration of sub-effective doses of the extract with caffeine or ZM241385, but not with DPCPX, improved the short- and long-term memory of mice. Finally, the acute oral administration of eleutherine and isoeleutherine facilitated the inhibitory avoidance short- and long-term memory in mice. These results demonstrate for the first time the cognitive-enhancing properties of the extract and isolated compounds from the bulbs of Cipura paludosa in rodents and suggest a possible involvement of adenosine A1 and A2A receptors in these effects. © 2012 The Authors Basic & Clinical Pharmacology & Toxicology © 2012 Nordic Pharmacological Society.
Short-term memory for order but not for item information is impaired in developmental dyslexia.
Hachmann, Wibke M; Bogaerts, Louisa; Szmalec, Arnaud; Woumans, Evy; Duyck, Wouter; Job, Remo
2014-07-01
Recent findings suggest that people with dyslexia experience difficulties with the learning of serial order information during the transition from short- to long-term memory (Szmalec et al. Journal of Experimental Psychology: Learning, Memory, & Cognition 37(5): 1270-1279, 2011). At the same time, models of short-term memory increasingly incorporate a distinction of order and item processing (Majerus et al. Cognition 107: 395-419, 2008). The current study is aimed to investigate whether serial order processing deficiencies in dyslexia can be traced back to a selective impairment of short-term memory for serial order and whether this impairment also affects processing beyond the verbal domain. A sample of 26 adults with dyslexia and a group of age and IQ-matched controls participated in a 2 × 2 × 2 experiment in which we assessed short-term recognition performance for order and item information, using both verbal and nonverbal material. Our findings indicate that, irrespective of the type of material, participants with dyslexia recalled the individual items with the same accuracy as the matched control group, whereas the ability to recognize the serial order in which those items were presented appeared to be affected in the dyslexia group. We conclude that dyslexia is characterized by a selective impairment of short-term memory for serial order, but not for item information, and discuss the integration of these findings into current theoretical views on dyslexia and its associated dysfunctions.
The Structure of Working Memory in Young Children and Its Relation to Intelligence
Gray, Shelley; Green, Samuel; Alt, Mary; Hogan, Tiffany P.; Kuo, Trudy; Brinkley, Shara; Cowan, Nelson
2016-01-01
This study investigated the structure of working memory in young school-age children by testing the fit of three competing theoretical models using a wide variety of tasks. The best fitting models were then used to assess the relationship between working memory and nonverbal measures of fluid reasoning (Gf) and visual processing (Gv) intelligence. One hundred sixty-eight English-speaking 7–9 year olds with typical development, from three states, participated. Results showed that Cowan’s three-factor embedded processes model fit the data slightly better than Baddeley and Hitch’s (1974) three-factor model (specified according to Baddeley, 1986) and decisively better than Baddeley’s (2000) four-factor model that included an episodic buffer. The focus of attention factor in Cowan’s model was a significant predictor of Gf and Gv. The results suggest that the focus of attention, rather than storage, drives the relationship between working memory, Gf, and Gv in young school-age children. Our results do not rule out the Baddeley and Hitch model, but they place constraints on both it and Cowan’s model. A common attentional component is needed for feature binding, running digit span, and visual short-term memory tasks; phonological storage is separate, as is a component of central executive processing involved in task manipulation. The results contribute to a zeitgeist in which working memory models are coming together on common ground (cf. Cowan, Saults, & Blume, 2014; Hu, Allen, Baddeley, & Hitch, 2016). PMID:27990060
Noack, Julia; Richter, Karin; Laube, Gregor; Haghgoo, Hojjat Allah; Veh, Rüdiger W; Engelmann, Mario
2010-11-01
When tested in the olfactory cued social recognition/discrimination test, rats and mice differ in their retention of a recognition memory for a previously encountered conspecific juvenile: Rats are able to recognize a given juvenile for approximately 45 min only whereas mice show not only short-term, but also long-term recognition memory (≥ 24 h). Here we modified the social recognition/social discrimination procedure to investigate the neurobiological mechanism(s) underlying the species differences. We presented a conspecific juvenile repeatedly to the experimental subjects and monitored the investigation duration as a measure for recognition. Presentation of only the volatile fraction of the juvenile olfactory signature was sufficient for both short- and long-term recognition in mice but not rats. Applying additional volatile, mono-molecular odours to the "to be recognized" juveniles failed to affect short-term memory in both species, but interfered with long-term recognition in mice. Finally immunocytochemical analysis of c-Fos as a marker for cellular activation, revealed that juvenile exposure stimulated areas involved in the processing of olfactory signals in both the main and the accessory olfactory bulb in mice. In rats, we measured an increased c-Fos synthesis almost exclusively in cells of the accessory olfactory bulb. Our data suggest that the species difference in the retention of social recognition memory is based on differences in the processing of the volatile versus non-volatile fraction of the individuals' olfactory signature. The non-volatile fraction is sufficient for retaining a short-term social memory only. Long-term social memory - as observed in mice - requires a processing of both the volatile and non-volatile fractions of the olfactory signature. Copyright © 2010 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Majerus, Steve; Van der Linden; Martial; Mulder, Ludivine; Meulemans, Thierry; Peters, Frederic
2004-01-01
The nonword phonotactic frequency effect in verbal short-term memory (STM) is characterized by superior recall for nonwords containing familiar as opposed to less familiar phoneme associations. This effect is supposed to reflect the intervention of phonological long-term memory (LTM) in STM. However the lexical or sublexical nature of this LTM…
Retrieval and Sleep Both Counteract the Forgetting of Spatial Information
ERIC Educational Resources Information Center
Antony, James W.; Paller, Ken A.
2018-01-01
Repeatedly studying information is a good way to strengthen memory storage. Nevertheless, testing recall often produces superior long-term retention. Demonstrations of this testing effect, typically with verbal stimuli, have shown that repeated retrieval through testing reduces forgetting. Sleep also benefits memory storage, perhaps through…
Egami, Chiyomi; Yamashita, Yushiro; Tada, Yasuhiro; Anai, Chiduru; Mukasa, Akiko; Yuge, Kotaro; Nagamitsu, Shinichiro; Matsuishi, Toyojiro
2015-10-01
The aim of this study was to investigate the developmental trajectories of attention, short-term memory, and working memory in school-aged children using a 10 min test battery of cognitive function. Participants comprised 144 typically developing children (TDC) aged 7-12 years and 24 healthy adults, divided according to age into seven groups (12 males and 12 females for each age group). Participants were assessed using CogHealth, which is a computer-based measure composed of five tasks. We measured attention, short-term memory, and working memory (WM) with visual stimulation. Each task was analyzed for age-related differences in reaction time and accuracy rate. Attention tasks were faster in stages from the age of 7-10 years. Accuracy rate of short-term memory gradually increased from 12 years of age and suddenly increased and continued to increase at 22 years of age. Accuracy rate of working memory increased until 12 years of age. Correlations were found between the ages and reaction time, and between ages and accuracy rate of the tasks. These results indicate that there were rapid improvements in attention, short-term memory, and WM performance between 7 and 10 years of age followed by gradual improvement until 12 years of age. Increase in short-term memory continued until 22 years of age. In our experience CogHealth was an easy and useful measure for the evaluation of cognitive function in school-age children. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Cao, Rui; Nosofsky, Robert M.; Shiffrin, Richard M.
2017-01-01
In short-term-memory (STM)-search tasks, observers judge whether a test probe was present in a short list of study items. Here we investigated the long-term learning mechanisms that lead to the highly efficient STM-search performance observed under conditions of consistent-mapping (CM) training, in which targets and foils never switch roles across…
ERIC Educational Resources Information Center
Georgiadou, Effrosyni; Roehr-Brackin, Karen
2017-01-01
This paper reports the findings of a study investigating the relationship of executive working memory (WM) and phonological short-term memory (PSTM) to fluency and self-repair behavior during an unrehearsed oral task performed by second language (L2) speakers of English at two levels of proficiency, elementary and lower intermediate. Correlational…
ERIC Educational Resources Information Center
Fortier-Gauthier, Ulysse; Moffat, Nicolas; Dell'Acqua, Robert; McDonald, John J.; Jolicoeur, Pierre
2012-01-01
We studied brain activity during retention and retrieval phases of two visual short-term memory (VSTM) experiments. Experiment 1 used a balanced memory array, with one color stimulus in each hemifield, followed by a retention interval and a central probe, at the fixation point that designated the target stimulus in memory about which to make a…
Kaushanskaya, Margarita; Blumenfeld, Henrike K.; Marian, Viorica
2012-01-01
Previous studies have indicated that bilingualism may influence the efficiency of lexical access in adults. The goals of this research were (1) to compare bilingual and monolingual adults on their native-language vocabulary performance, and (2) to examine the relationship between short-term memory skills and vocabulary performance in monolinguals and bilinguals. In Experiment 1, English-speaking monolingual adults and simultaneous English–Spanish bilingual adults were administered measures of receptive English vocabulary and of phonological short-term memory. In Experiment 2, monolingual adults were compared to sequential English–Spanish bilinguals, and were administered the same measures as in Experiment 1, as well as a measure of expressive English vocabulary. Analyses revealed comparable levels of performance on the vocabulary and the short-term memory measures in the monolingual and the bilingual groups across both experiments. There was a stronger effect of digit-span in the bilingual group than in the monolingual group, with high-span bilinguals outperforming low-span bilinguals on vocabulary measures. Findings indicate that bilingual speakers may rely on short-term memory resources to support word retrieval in their native language more than monolingual speakers. PMID:22518091
Short-Term Memory Limitations in Children: Capacity or Processing Deficits?
ERIC Educational Resources Information Center
Chi, Michelene T. H.
1976-01-01
Evaluates the assertion that short-term memory (STM) capacity increases with age and concludes that the STM capacity limitation in children is due to the deficits in the processing strategies and speeds, which presumably improve with age through cumulative learning. (JM) Available from: Memory and Cognition, Psychonomic Society, 1018 West 34…
Visuospatial and Verbal Short-Term Memory Correlates of Vocabulary Ability in Preschool Children
ERIC Educational Resources Information Center
Stokes, Stephanie F.; Klee, Thomas; Kornisch, Myriam; Furlong, Lisa
2017-01-01
Background: Recent studies indicate that school-age children's patterns of performance on measures of verbal and visuospatial short-term memory (STM) and working memory (WM) differ across types of neurodevelopmental disorders. Because these disorders are often characterized by early language delay, administering STM and WM tests to toddlers could…
ERIC Educational Resources Information Center
Waring, Rebecca; Eadie, Patricia; Liow, Susan Rickard; Dodd, Barbara
2017-01-01
While little is known about why children make speech errors, it has been hypothesized that cognitive-linguistic factors may underlie phonological speech sound disorders. This study compared the phonological short-term and phonological working memory abilities (using immediate memory tasks) and receptive vocabulary size of 14 monolingual preschool…
Kopp, Franziska; Schröger, Erich; Lipka, Sigrid
2004-01-02
Rehearsal mechanisms in human short-term memory are increasingly understood in the light of both behavioural and neuroanatomical findings. However, little is known about the cooperation of participating brain structures and how such cooperations are affected when memory performance is disrupted. In this paper we use EEG coherence as a measure of synchronization to investigate rehearsal processes and their disruption by irrelevant speech in a delayed serial recall paradigm. Fronto-central and fronto-parietal theta (4-7.5 Hz), beta (13-20 Hz), and gamma (35-47 Hz) synchronizations are shown to be involved in our short-term memory task. Moreover, the impairment in serial recall due to irrelevant speech was preceded by a reduction of gamma band coherence. Results suggest that the irrelevant speech effect has its neural basis in the disruption of left-lateralized fronto-central networks. This stresses the importance of gamma band activity for short-term memory operations.
NASA Astrophysics Data System (ADS)
Younis, Adnan; Chu, Dewei; Li, Sean
2015-09-01
Further progress in high-performance microelectronic devices relies on the development of novel materials and device architectures. However, the components and designs that are currently in use have reached their physical limits. Intensive research efforts, ranging from device fabrication to performance evaluation, are required to surmount these limitations. In this paper, we demonstrate that the superior bipolar resistive switching characteristics of a CeO2:Gd-based memory device can be manipulated by means of UV radiation, serving as a new degree of freedom. Furthermore, the metal oxide-based (CeO2:Gd) memory device was found to possess electrical and neuromorphic multifunctionalities. To investigate the underlying switching mechanism of the device, its plasticity behaviour was studied by imposing weak programming conditions. In addition, a short-term to long-term memory transition analogous to the forgetting process in the human brain, which is regarded as a key biological synaptic function for information processing and data storage, was realized. Based on a careful examination of the device’s retention behaviour at elevated temperatures, the filamentary nature of switching in such devices can be understood from a new perspective.
Younis, Adnan; Chu, Dewei; Li, Sean
2015-01-01
Further progress in high-performance microelectronic devices relies on the development of novel materials and device architectures. However, the components and designs that are currently in use have reached their physical limits. Intensive research efforts, ranging from device fabrication to performance evaluation, are required to surmount these limitations. In this paper, we demonstrate that the superior bipolar resistive switching characteristics of a CeO2:Gd-based memory device can be manipulated by means of UV radiation, serving as a new degree of freedom. Furthermore, the metal oxide-based (CeO2:Gd) memory device was found to possess electrical and neuromorphic multifunctionalities. To investigate the underlying switching mechanism of the device, its plasticity behaviour was studied by imposing weak programming conditions. In addition, a short-term to long-term memory transition analogous to the forgetting process in the human brain, which is regarded as a key biological synaptic function for information processing and data storage, was realized. Based on a careful examination of the device’s retention behaviour at elevated temperatures, the filamentary nature of switching in such devices can be understood from a new perspective. PMID:26324073
Attention allocation: Relationships to general working memory or specific language processing.
Archibald, Lisa M D; Levee, Tyler; Olino, Thomas
2015-11-01
Attention allocation, updating working memory, and language processing are interdependent cognitive tasks related to the focused direction of limited resources, refreshing and substituting information in the current focus of attention, and receiving/sending verbal communication, respectively. The current study systematically examined the relationship among executive attention, working memory executive skills, and language abilities while adjusting for individual differences in short-term memory. School-age children completed a selective attention task requiring them to recall whether a presented shape was in the same place as a previous target shape shown in an array imposing a low or high working memory load. Results revealed a selective attention cost when working above but not within memory span capacity. Measures of general working memory were positively related to overall task performance, whereas language abilities were related to response time. In particular, higher language skills were associated with faster responses under low load conditions. These findings suggest that attentional control and storage demands have an additive impact on working memory resources but provide only limited evidence for a domain-general mechanism in language learning. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
Shi, Qing Hai; Ge, Di; Zhao, Wei; Ma, Xue; Hu, Ke Yan; Lu, Yao; Liu, Zheng Xiang; Ran, Ji Hua; Li, Xiao Ling; Zhou, Yu; Fu, Jian Feng
2016-06-01
To evaluate the effect of acute high-altitude exposure on sensory and short-term memory using interactive software, we transported 30 volunteers in a sport utility vehicle to a 4280 m plateau within 3 h. We measured their memory performance on the plain (initial arrival) and 3 h after arrival on the plateau using six measures. Memory performance was significantly poorer on the plateau by four of the six measures. Furthermore, memory performance was significantly poorer in the acute mountain sickness (AMS) group than in the non-AMS group by five of the six measures. These findings indicate that rapid ascent to 4280 m and remaining at this altitude for 3 h resulted in decreased sensory and short-term memory, particularly among participants who developed AMS. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Fraction of the global water cycle observed by SMAP
NASA Astrophysics Data System (ADS)
Mccoll, K. A.; Entekhabi, D.; Alemohammad, S. H.; Akbar, R.; Konings, A. G.; Yueh, S. H.
2016-12-01
Sparse and uneven observations have made it difficult to quantify the global distribution and dynamics of surface soil moisture (SSM). Using a full year of global observations from NASA's Soil Moisture Active Passive (SMAP) mission, we show here that SSM - a storage believed to make up less than 0.001% of the global freshwater budget by volume, and equivalent to an, on average, 8-mm thin layer of water covering all land surfaces - plays a very significant role in the water cycle, retaining a median 16% of precipitation falling on land after 3 days. Furthermore, the retained fraction of the SSM storage after 3 days is highest (lowest) over arid (wet) regions, and in regions where drainage to groundwater storage is lowest (highest). The retained fraction decreases monotonically with increasing mean SSM. Regions of low retained fraction broadly correspond spatially with regions where groundwater recharge and groundwater storage are both largest. These analyses are the first global estimates - derived from measurements rather than models - of both the mean magnitude and memory time scales of the SSM storage. Beyond the fundamental importance of characterizing the magnitude and response time scales of Earth's water storages, a key application of these results is in identifying regions with strong land-atmosphere coupling. Significant soil moisture memory is a necessary condition for land-atmosphere feedbacks. These results may therefore have particularly important implications for short-term weather forecasting of extreme precipitation events and floods.
Improving working memory in children with low language abilities
Holmes, Joni; Butterfield, Sally; Cormack, Francesca; van Loenhoud, Anita; Ruggero, Leanne; Kashikar, Linda; Gathercole, Susan
2015-01-01
This study investigated whether working memory training is effective in enhancing verbal memory in children with low language abilities (LLA). Cogmed Working Memory Training was completed by a community sample of children aged 8–11 years with LLA and a comparison group with matched non-verbal abilities and age-typical language performance. Short-term memory (STM), working memory, language, and IQ were assessed before and after training. Significant and equivalent post-training gains were found in visuo-spatial short-term memory in both groups. Exploratory analyses across the sample established that low verbal IQ scores were strongly and highly specifically associated with greater gains in verbal STM, and that children with higher verbal IQs made greater gains in visuo-spatial short-term memory following training. This provides preliminary evidence that intensive working memory training may be effective for enhancing the weakest aspects of STM in children with low verbal abilities, and may also be of value in developing compensatory strategies. PMID:25983703
The roles of Eph receptors in contextual fear conditioning memory formation.
Dines, Monica; Grinberg, Svetlana; Vassiliev, Maria; Ram, Alon; Tamir, Tal; Lamprecht, Raphael
2015-10-01
Eph receptors regulate glutamate receptors functions, neuronal morphology and synaptic plasticity, cellular events believed to be involved in memory formation. In this study we aim to explore the roles of Eph receptors in learning and memory. Toward that end, we examined the roles of EphB2 and EphA4 receptors, key regulators of synaptic functions, in fear conditioning memory formation. We show that mice lacking EphB2 (EphB2(-/-)) are impaired in short- and long-term contextual fear conditioning memory. Mice that express a carboxy-terminally truncated form of EphB2 that lacks forward signaling, instead of the full EphB2, are impaired in long-term, but not short-term, contextual fear conditioning memory. Long-term contextual fear conditioning memory is attenuated in CaMKII-cre;EphA4(lx/-) mice where EphA4 is removed from all pyramidal neurons of the forebrain. Mutant mice with targeted kinase-dead EphA4 (EphA4(KD)) exhibit intact long-term contextual fear conditioning memory showing that EphA4 kinase-mediated forward signaling is not needed for contextual fear memory formation. The ability to form long-term conditioned taste aversion (CTA) memory is not impaired in the EphB2(-/-) and CaMKII-cre;EphA4(lx/-) mice. We conclude that EphB2 forward signaling is required for long-term contextual fear conditioning memory formation. In contrast, EphB2 mediates short-term contextual fear conditioning memory formation in a forward signaling-independent manner. EphA4 mediates long-term contextual fear conditioning memory formation in a kinase-independent manner. Copyright © 2015 Elsevier Inc. All rights reserved.
Fernandez Espejo, Emilio
2003-03-01
Prefrontal dopamine loss delays extinction of cued fear conditioning responses, but its role in contextual fear conditioning has not been explored. Medial prefrontal lesions also enhance social interaction in rats, but the role of prefrontal dopamine loss on social interaction memory is not known. Besides, a role for subcortical accumbal dopamine on mnesic changes after prefrontal dopamine manipulation has been proposed but not explored. The objective was to study the involvement of dopaminergic neurotransmission in the medial prefrontal cortex (mPFC) and nucleus accumbens in two mnesic tasks: contextual fear conditioning and social interaction memory. For contextual fear conditioning, short- and long-term freezing responses after an electric shock were studied, as well as extinction retention. Regarding social interaction memory, the recognition of a juvenile, a very sensitive short-term memory test, was used. Dopamine loss was carried out by injection of 6-hydroxydopamine, and postmortem catecholamine levels were analyzed by high-performance liquid chromatography. Prefrontocortical dopamine loss (>76%) led to a reactive enhancement of accumbal dopamine content (p<0.01), supporting the hypothesis that a hyperdopaminergic tone emerges in the nucleus accumbens after prefrontocortical dopamine loss. In lesioned rats, long-term extinction of contextual fear conditioning was significantly delayed and extinction retention was impaired without changes in acquisition and short-term contextual fear conditioning and, on the other hand, acquisition and short-term social interaction memory were not affected, although time spent on social interaction was significantly reduced. Added dopamine loss in the nucleus accumbens (>76%) did not alter these behavioral changes. In summary, the results of the present study indicate that the dopaminergic network in the mPFC (but not in the nucleus accumbens) coordinates the normal long-term extinction of contextual fear conditioning responses without affecting their acquisition, and it is involved in time spent on social interaction, but not acquisition and short-term social interaction memory.
Frequency-specific insight into short-term memory capacity.
Feurra, Matteo; Galli, Giulia; Pavone, Enea Francesco; Rossi, Alessandro; Rossi, Simone
2016-07-01
The digit span is one of the most widely used memory tests in clinical and experimental neuropsychology for reliably measuring short-term memory capacity. In the forward version, sequences of digits of increasing length have to be reproduced in the order in which they are presented, whereas in the backward version items must be reproduced in the reversed order. Here, we assessed whether transcranial alternating current stimulation (tACS) increases the memory span for digits of young and midlife adults. Imperceptibly weak electrical currents in the alpha (10 Hz), beta (20 Hz), theta (5 Hz), and gamma (40 Hz) range, as well as a sham stimulation, were delivered over the left posterior parietal cortex, a cortical region thought to sustain maintenance processes in short-term memory through oscillatory brain activity in the beta range. We showed a frequency-specific effect of beta-tACS that robustly increased the forward memory span of young, but not middle-aged, healthy individuals. The effect correlated with age: the younger the subjects, the greater the benefit arising from parietal beta stimulation. Our results provide evidence of a short-term memory capacity improvement in young adults by online frequency-specific tACS application. Copyright © 2016 the American Physiological Society.
Desai, N; Taylor-Davies, A; Barnett, D B
1983-01-01
1 The effect of oral doses of diazepam (5 mg) and oxprenolol (80 mg) on short term memory of normal individuals stratified for 'state' anxiety levels has been investigated. 2 Normal student volunteers were stratified into high and low anxiety groups on the basis of responses to the Spielberger 'A-state' scale. Subjects were then randomly administered active drug or placebo and given a form of running memory test performed under a variety of conditions in which variable rate of item presentation and articulatory suppression were used. 3 Diazepam significantly reduced the errors of recall in the running memory test in the high anxiety group and produced a distinct separation of response from the low anxiety group under the test conditions of slow item presentation with articulatory suppression. Oxprenolol had no effect on the short term memory test in either high or low anxiety groups in any experimental test situation. 4 These results are compared to previous work in which generally a deleterious effect of diazepam on short term memory in normal volunteers has been reported. The implications of these findings are further discussed in relationship to possible models of memory function. PMID:6849754
Hou, Cailan; Liu, Jun; Wang, Kun; Li, Lingjiang; Liang, Meng; He, Zhong; Liu, Yong; Zhang, Yan; Li, Weihui; Jiang, Tianzi
2007-05-04
Functional neuroimaging studies have largely been performed in patients with longstanding chronic posttraumatic stress disorder (PTSD). Additionally, memory function of PTSD patients has been proved to be impaired. We sought to characterize the brain responses of patients with acute PTSD and implemented a trauma-related short-term memory recall paradigm. Individuals with acute severe PTSD (n=10) resulting from a mining accident and 7 men exposed to the mining accident without PTSD underwent functional magnetic resonance imaging (fMRI) while performing the symptom provocation and trauma-related short-term memory recall paradigms. During symptom provocation paradigm, PTSD subjects showed diminished responses in right anterior cingulate gyrus, left inferior frontal gyrus and bilateral middle frontal gyrus and enhanced left parahippocampal gyrus response compared with controls. During the short-term memory recall paradigm, PTSD group showed diminished responses in right inferior frontal gyrus, right middle frontal and left middle occipital gyrus in comparison with controls. PTSD group exhibited diminished right parahippocampal gyrus response during the memory recall task as compared to the symptom provocation task. Our findings suggest that neurophysiological alterations and memory performance deficit have developed in acute severe PTSD.
Finke, Kathrin; Neitzel, Julia; Bäuml, Josef G; Redel, Petra; Müller, Hermann J; Meng, Chun; Jaekel, Julia; Daamen, Marcel; Scheef, Lukas; Busch, Barbara; Baumann, Nicole; Boecker, Henning; Bartmann, Peter; Habekost, Thomas; Wolke, Dieter; Wohlschläger, Afra; Sorg, Christian
2015-02-15
Although pronounced and lasting deficits in selective attention have been observed for preterm born individuals it is unknown which specific attentional sub-mechanisms are affected and how they relate to brain networks. We used the computationally specified 'Theory of Visual Attention' together with whole- and partial-report paradigms to compare attentional sub-mechanisms of pre- (n=33) and full-term (n=32) born adults. Resting-state fMRI was used to evaluate both between-group differences and inter-individual variance in changed functional connectivity of intrinsic brain networks relevant for visual attention. In preterm born adults, we found specific impairments of visual short-term memory (vSTM) storage capacity while other sub-mechanisms such as processing speed or attentional weighting were unchanged. Furthermore, changed functional connectivity was found in unimodal visual and supramodal attention-related intrinsic networks. Among preterm born adults, the individual pattern of changed connectivity in occipital and parietal cortices was systematically associated with vSTM in such a way that the more distinct the connectivity differences, the better the preterm adults' storage capacity. These findings provide first evidence for selectively changed attentional sub-mechanisms in preterm born adults and their relation to altered intrinsic brain networks. In particular, data suggest that cortical changes in intrinsic functional connectivity may compensate adverse developmental consequences of prematurity on visual short-term storage capacity. Copyright © 2014 Elsevier Inc. All rights reserved.
Kane, Michael J; Hambrick, David Z; Tuholski, Stephen W; Wilhelm, Oliver; Payne, Tabitha W; Engle, Randall W
2004-06-01
A latent-variable study examined whether verbal and visuospatial working memory (WM) capacity measures reflect a primarily domain-general construct by testing 236 participants in 3 span tests each of verbal WM. visuospatial WM, verbal short-term memory (STM), and visuospatial STM. as well as in tests of verbal and spatial reasoning and general fluid intelligence (Gf). Confirmatory' factor analyses and structural equation models indicated that the WM tasks largely reflected a domain-general factor, whereas STM tasks, based on the same stimuli as the WM tasks, were much more domain specific. The WM construct was a strong predictor of Gf and a weaker predictor of domain-specific reasoning, and the reverse was true for the STM construct. The findings support a domain-general view of WM capacity, in which executive-attention processes drive the broad predictive utility of WM span measures, and domain-specific storage and rehearsal processes relate more strongly to domain-specific aspects of complex cognition. ((c) 2004 APA, all rights reserved)
Swanson, H Lee; Jerman, Olga
2007-04-01
This 3-year longitudinal study determined whether (a) subgroups of children with reading disabilities (RD) (children with RD only, children with both reading and arithmetic deficits, and low verbal IQ readers) and skilled readers varied in working memory (WM) and short-term memory (STM) growth and (b) whether growth in an executive system and/or a phonological storage system mediated growth in reading performance. A battery of memory and reading measures was administered to 84 children (11-17 years of age) across three testing waves spaced 1 year apart. The results showed that skilled readers yielded higher WM growth estimates than did the RD groups. No significant differentiation among subgroups of children with RD on growth measures emerged. Hierarchical linear modeling showed that WM (controlled attention), rather than STM (phonological loop), was related to growth in reading comprehension and reading fluency. The results support the notion that deficient growth in the executive component of WM underlies RD.
Nicotine Modulates the Long-Lasting Storage of Fear Memory
ERIC Educational Resources Information Center
Lima, Ramon H.; Radiske, Andressa; Kohler, Cristiano A.; Gonzalez, Maria Carolina; Bevilaqua, Lia R.; Rossato, Janine I.; Medina, Jorge H.; Cammarota, Martin
2013-01-01
Late post-training activation of the ventral tegmental area (VTA)-hippocampus dopaminergic loop controls the entry of information into long-term memory (LTM). Nicotinic acetylcholine receptors (nAChR) modulate VTA function, but their involvement in LTM storage is unknown. Using pharmacological and behavioral tools, we found that…
Visual dot interaction with short-term memory.
Etindele Sosso, Faustin Armel
2017-06-01
Many neurodegenerative diseases have a memory component. Brain structures related to memory are affected by environmental stimuli, and it is difficult to dissociate effects of all behavior of neurons. Here, visual cortex of mice was stimulated with gratings and dot, and an observation of neuronal activity before and after was made. Bandwidth, firing rate and orientation selectivity index were evaluated. A primary communication between primary visual cortex and short-term memory appeared to show an interesting path to train cognitive circuitry and investigate the basics mechanisms of the neuronal learning. The findings also suggested the interplay between primary visual cortex and short-term plasticity. The properties inside a visual target shape the perception and affect the basic encoding. Using visual cortex, it may be possible to train the memory and improve the recovery of people with cognitive disabilities or memory deficit.
Investigating Memory Development in Children and Infantile Amnesia in Adults
ERIC Educational Resources Information Center
Kazemi Tari, Somayeh
2008-01-01
Although many researchers have worked on memory development, still little is known about what develops in memory development. When one reviews the literature about memory, she encounters many types of memories such as short term vs. long term memory, working memory, explicit vs. implicit memory, trans-saccadic memory, autobiographical memory,…
Opposing roles for GABAA and GABAC receptors in short-term memory formation in young chicks.
Gibbs, M E; Johnston, G A R
2005-01-01
The inhibitory neurotransmitter GABA has both inhibitory and enhancing effects on short-term memory for a bead discrimination task in the young chick. Low doses of GABA (1-3 pmol/hemisphere) injected into the multimodal association area of the chick forebrain, inhibit strongly reinforced memory, whereas higher doses (30-100 pmol/hemisphere) enhance weakly reinforced memory. The effect of both high and low doses of GABA is clearly on short-term memory in terms of both the time of injection and in the time that the memory loss occurs. We argue on the basis of relative sensitivities to GABA and to selective GABA receptor antagonists that low doses of GABA act at GABAC receptors (EC50 approximately 1 microM) and the higher doses of GABA act via GABAA receptors (EC50 approximately 10 microM). The selective GABAA receptor antagonist bicuculline inhibited strongly reinforced memory in a dose and time dependent manner, whereas the selective GABAC receptor antagonists TPMPA and P4MPA enhanced weakly reinforced in a dose and time dependent manner. Confirmation that different levels of GABA affect different receptor subtypes was demonstrated by the shift in the GABA dose-response curves to the selective antagonists. It is clear that GABA is involved in the control of short-term memory formation and its action, enhancing or inhibiting, depends on the level of GABA released at the time of learning.
Willis, Suzi; Goldbart, Juliet; Stansfield, Jois
2014-07-01
To compare verbal short-term memory and visual working memory abilities of six children with congenital hearing-impairment identified as having significant language learning difficulties with normative data from typically hearing children using standardized memory assessments. Six children with hearing loss aged 8-15 years were assessed on measures of verbal short-term memory (Non-word and word recall) and visual working memory annually over a two year period. All children had cognitive abilities within normal limits and used spoken language as the primary mode of communication. The language assessment scores at the beginning of the study revealed that all six participants exhibited delays of two years or more on standardized assessments of receptive and expressive vocabulary and spoken language. The children with hearing-impairment scores were significantly higher on the non-word recall task than the "real" word recall task. They also exhibited significantly higher scores on visual working memory than those of the age-matched sample from the standardized memory assessment. Each of the six participants in this study displayed the same pattern of strengths and weaknesses in verbal short-term memory and visual working memory despite their very different chronological ages. The children's poor ability to recall single syllable words in relation to non-words is a clinical indicator of their difficulties in verbal short-term memory. However, the children with hearing-impairment do not display generalized processing difficulties and indeed demonstrate strengths in visual working memory. The poor ability to recall words, in combination with difficulties with early word learning may be indicators of children with hearing-impairment who will struggle to develop spoken language equal to that of their normally hearing peers. This early identification has the potential to allow for target specific intervention that may remediate their difficulties. Copyright © 2014. Published by Elsevier Ireland Ltd.
Proactive Interference and Directed Forgetting in Short-Term Motor Memory
ERIC Educational Resources Information Center
Burwitz, Leslie
1974-01-01
The present study was designed to test the effect of instructions to forget prior motor learning and the results were relevant to the understanding of short-term motor memory (STMM) proactive interference (PI). (Author/RK)
BDNF is essential to promote persistence of long-term memory storage
Bekinschtein, Pedro; Cammarota, Martín; Katche, Cynthia; Slipczuk, Leandro; Rossato, Janine I.; Goldin, Andrea; Izquierdo, Ivan; Medina, Jorge H.
2008-01-01
Persistence is a characteristic attribute of long-term memories (LTMs). However, little is known about the molecular mechanisms that mediate this process. We recently showed that persistence of LTM requires a late protein synthesis- and BDNF-dependent phase in the hippocampus. Here, we show that intrahippocampal delivery of BDNF reverses the deficit in memory persistence caused by inhibition of hippocampal protein synthesis. Importantly, we demonstrate that BDNF induces memory persistence by itself, transforming a nonlasting LTM trace into a persistent one in an ERK-dependent manner. Thus, BDNF is not only necessary, but sufficient to induce a late postacquisition phase in the hippocampus essential for persistence of LTM storage. PMID:18263738
Marsh, John E.; Pilgrim, Lea K.; Sörqvist, Patrik
2013-01-01
Serial short-term memory is impaired by irrelevant sound, particularly when the sound changes acoustically. This acoustic effect is larger when the sound is presented to the left compared to the right ear (a left-ear disadvantage). Serial memory appears relatively insensitive to distraction from the semantic properties of a background sound. In contrast, short-term free recall of semantic-category exemplars is impaired by the semantic properties of background speech and is relatively insensitive to the sound's acoustic properties. This semantic effect is larger when the sound is presented to the right compared to the left ear (a right-ear disadvantage). In this paper, we outline a speculative neurocognitive fine-coarse model of these hemispheric differences in relation to short-term memory and selective attention, and explicate empirical directions in which this model can be critically evaluated. PMID:24399988
Arousal Modulates Activity in the Medial Temporal Lobe during a Short-Term Relational Memory Task
Thoresen, Christian; Jensen, Jimmy; Sigvartsen, Niels Petter B.; Bolstad, Ingeborg; Server, Andres; Nakstad, Per H.; Andreassen, Ole A.; Endestad, Tor
2011-01-01
This study investigated the effect of arousal on short-term relational memory and its underlying cortical network. Seventeen healthy participants performed a picture by location, short-term relational memory task using emotional pictures. Functional magnetic resonance imaging was used to measure the blood-oxygenation-level dependent signal relative to task. Subjects’ own ratings of the pictures were used to obtain subjective arousal ratings. Subjective arousal was found to have a dose-dependent effect on activations in the prefrontal cortex, amygdala, hippocampus, and in higher order visual areas. Serial position analyses showed that high arousal trials produced a stronger primacy and recency effect than low arousal trials. The results indicate that short-term relational memory may be facilitated by arousal and that this may be modulated by a dose–response function in arousal-driven neuronal regions. PMID:22291626
Acute Sleep Deprivation Blocks Short- and Long-Term Operant Memory in Aplysia
Krishnan, Harini C.; Gandour, Catherine E.; Ramos, Joshua L.; Wrinkle, Mariah C.; Sanchez-Pacheco, Joseph J.; Lyons, Lisa C.
2016-01-01
Study Objectives: Insufficient sleep in individuals appears increasingly common due to the demands of modern work schedules and technology use. Consequently, there is a growing need to understand the interactions between sleep deprivation and memory. The current study determined the effects of acute sleep deprivation on short and long-term associative memory using the marine mollusk Aplysia californica, a relatively simple model system well known for studies of learning and memory. Methods: Aplysia were sleep deprived for 9 hours using context changes and tactile stimulation either prior to or after training for the operant learning paradigm, learning that food is inedible (LFI). The effects of sleep deprivation on short-term (STM) and long-term memory (LTM) were assessed. Results: Acute sleep deprivation prior to LFI training impaired the induction of STM and LTM with persistent effects lasting at least 24 h. Sleep deprivation immediately after training blocked the consolidation of LTM. However, sleep deprivation following the period of molecular consolidation did not affect memory recall. Memory impairments were independent of handling-induced stress, as daytime handled control animals demonstrated no memory deficits. Additional training immediately after sleep deprivation failed to rescue the induction of memory, but additional training alleviated the persistent impairment in memory induction when training occurred 24 h following sleep deprivation. Conclusions: Acute sleep deprivation inhibited the induction and consolidation, but not the recall of memory. These behavioral studies establish Aplysia as an effective model system for studying the interactions between sleep and memory formation. Citation: Krishnan HC, Gandour CE, Ramos JL, Wrinkle MC, Sanchez-Pacheco JJ, Lyons LC. Acute sleep deprivation blocks short- and long-term operant memory in Aplysia. SLEEP 2016;39(12):2161–2171. PMID:27748243
ERIC Educational Resources Information Center
Swanson, H. Lee; Zheng, Xinhua; Jerman, Olga
2009-01-01
The purpose of the present study was to synthesize research that compares children with and without reading disabilities (RD) on measures of short-term memory (STM) and working memory (WM). Across a broad age, reading, and IQ range, 578 effect sizes (ESs) were computed, yielding a mean ES across studies of -0.89 (SD = 1.03). A total of 257 ESs…
ERIC Educational Resources Information Center
Sanderson, David J.; Good, Mark A.; Skelton, Kathryn; Sprengel, Rolf; Seeburg, Peter H.; Rawlins, J. Nicholas P.; Bannerman, David M.
2009-01-01
The GluA1 AMPA receptor subunit is a key mediator of hippocampal synaptic plasticity and is especially important for a rapidly-induced, short-lasting form of potentiation. GluA1 gene deletion impairs hippocampus-dependent, spatial working memory, but spares hippocampus-dependent spatial reference memory. These findings may reflect the necessity of…
Marini, Francesco; Scott, Jerry; Aron, Adam R; Ester, Edward F
2017-07-01
Visual short-term memory (VSTM) enables the representation of information in a readily accessible state. VSTM is typically conceptualized as a form of "active" storage that is resistant to interference or disruption, yet several recent studies have shown that under some circumstances task-irrelevant distractors may indeed disrupt performance. Here, we investigated how task-irrelevant visual distractors affected VSTM by asking whether distractors induce a general loss of remembered information or selectively interfere with memory representations. In a VSTM task, participants recalled the spatial location of a target visual stimulus after a delay in which distractors were presented on 75% of trials. Notably, the distractor's eccentricity always matched the eccentricity of the target, while in the critical conditions the distractor's angular position was shifted either clockwise or counterclockwise relative to the target. We then computed estimates of recall error for both eccentricity and polar angle. A general interference model would predict an effect of distractors on both polar angle and eccentricity errors, while a selective interference model would predict effects of distractors on angle but not on eccentricity errors. Results showed that for stimulus angle there was an increase in the magnitude and variability of recall errors. However, distractors had no effect on estimates of stimulus eccentricity. Our results suggest that distractors selectively interfere with VSTM for spatial locations.
Emrich, Stephen M; Riggall, Adam C; Larocque, Joshua J; Postle, Bradley R
2013-04-10
Traditionally, load sensitivity of sustained, elevated activity has been taken as an index of storage for a limited number of items in visual short-term memory (VSTM). Recently, studies have demonstrated that the contents of a single item held in VSTM can be decoded from early visual cortex, despite the fact that these areas do not exhibit elevated, sustained activity. It is unknown, however, whether the patterns of neural activity decoded from sensory cortex change as a function of load, as one would expect from a region storing multiple representations. Here, we use multivoxel pattern analysis to examine the neural representations of VSTM in humans across multiple memory loads. In an important extension of previous findings, our results demonstrate that the contents of VSTM can be decoded from areas that exhibit a transient response to visual stimuli, but not from regions that exhibit elevated, sustained load-sensitive delay-period activity. Moreover, the neural information present in these transiently activated areas decreases significantly with increasing load, indicating load sensitivity of the patterns of activity that support VSTM maintenance. Importantly, the decrease in classification performance as a function of load is correlated with within-subject changes in mnemonic resolution. These findings indicate that distributed patterns of neural activity in putatively sensory visual cortex support the representation and precision of information in VSTM.
Heathcock, Jill C; Bhat, Anjana N; Lobo, Michele A; Galloway, James C
2005-01-01
Infants born preterm differ in their spontaneous kicking, as well as their learning and memory abilities in the mobile paradigm, compared with infants born full-term. In the mobile paradigm, a supine infant's ankle is tethered to a mobile so that leg kicks cause a proportional amount of mobile movement. The purpose of this study was to investigate the relative kicking frequency of the tethered (right) and nontethered (left) legs in these 2 groups of infants. Ten infants born full-term and 10 infants born preterm (<33 weeks gestational age, <2,500 g) and 10 comparison infants participated in the study. The relative kicking frequencies of the tethered and nontethered legs were analyzed during learning and short-term and long-term memory periods of the mobile paradigm. Infants born full-term showed an increase in the relative kicking frequency of the tethered leg during the learning period and the short-term memory period but not for the long-term memory period. Infants born preterm did not show a change in kicking pattern for learning or memory periods, and consistently kicked both legs in relatively equal amounts. Infants born full-term adapted their baseline kicking frequencies in a task-specific manner to move the mobile and then retained this adaptation for the short-term memory period. In contrast, infants born preterm showed no adaptation, suggesting a lack of purposeful leg control. This lack of control may reflect a general decrease in the ability of infants born preterm to use their limb movements to interact with their environment. As such, the mobile paradigm may be clinically useful in the early assessment and intervention of infants born preterm and at risk for future impairment.
Ramanathan, Kiruthika; Ning, Ning; Dhanasekar, Dhiviya; Li, Guoqi; Shi, Luping; Vadakkepat, Prahlad
2012-08-01
Our paper explores the interaction of persistent firing axonal and presynaptic processes in the generation of short term memory for habituation. We first propose a model of a sensory neuron whose axon is able to switch between passive conduction and persistent firing states, thereby triggering short term retention to the stimulus. Then we propose a model of a habituating synapse and explore all nine of the behavioral characteristics of short term habituation in a two neuron circuit. We couple the persistent firing neuron to the habituation synapse and investigate the behavior of short term retention of habituating response. Simulations show that, depending on the amount of synaptic resources, persistent firing either results in continued habituation or maintains the response, both leading to longer recovery times. The effectiveness of the model as an element in a bio-inspired memory system is discussed.
Cost-effective data storage/archival subsystem for functional PACS
NASA Astrophysics Data System (ADS)
Chen, Y. P.; Kim, Yongmin
1993-09-01
Not the least of the requirements of a workable PACS is the ability to store and archive vast amounts of information. A medium-size hospital will generate between 1 and 2 TBytes of data annually on a fully functional PACS. A high-speed image transmission network coupled with a comparably high-speed central data storage unit can make local memory and magnetic disks in the PACS workstations less critical and, in an extreme case, unnecessary. Under these circumstances, the capacity and performance of the central data storage subsystem and database is critical in determining the response time at the workstations, thus significantly affecting clinical acceptability. The central data storage subsystem not only needs to provide sufficient capacity to store about ten days worth of images (five days worth of new studies, and on the average, about one comparison study for each new study), but also supplies images to the requesting workstation in a timely fashion. The database must provide fast retrieval responses upon users' requests for images. This paper analyzes both advantages and disadvantages of multiple parallel transfer disks versus RAID disks for short-term central data storage subsystem, as well as optical disk jukebox versus digital recorder tape subsystem for long-term archive. Furthermore, an example high-performance cost-effective storage subsystem which integrates both the RAID disks and high-speed digital tape subsystem as a cost-effective PACS data storage/archival unit are presented.
Memory and linguistic/executive functions of children with borderline intellectual functioning.
Água Dias, Andrea B; Albuquerque, Cristina P; Simões, Mário R
2017-11-08
Children with Borderline Intellectual Functioning (BIF) have received a minimal amount of research attention and have been studied in conjunction with Intellectual and Developmental Disabilities. The present study intends to broaden the knowledge of BIF, by analyzing domains such as verbal memory and visual memory, as well as tasks that rely simultaneously on memory, executive functions, and language. A cross-sectional, comparison study was carried out between a group of 40 children with BIF (mean age = 10.03; 24 male and 16 female), and a control group of 40 normal children of the same age, gender, and socioeconomic level as the BIF group. The WISC-III Full Scale IQs of the BIF group ranged from 71 to 84. The following instruments were used: Word List, Narrative Memory, Rey Complex Figure, Face Memory, Rapid Naming (both RAN and RAS tests), and Verbal Fluency. The results showed deficits in children with BIF in verbal short-term memory, rapid naming, phonemic verbal fluency, and visual short-term memory, specifically in a visual recognition task, when compared with the control group. Long-term verbal memory was impaired only in older children with BIF and long-term visual memory showed no deficit. Verbal short-term memory stands out as a limitation and visual long-term memory as a strength. Correlations between the WISC-III and neuropsychological tests scores were predominantly low. The study expands the neuropsychological characterization of children with BIF and the implications of the deficits and strengths are stressed.
Holographic memory for high-density data storage and high-speed pattern recognition
NASA Astrophysics Data System (ADS)
Gu, Claire
2002-09-01
As computers and the internet become faster and faster, more and more information is transmitted, received, and stored everyday. The demand for high density and fast access time data storage is pushing scientists and engineers to explore all possible approaches including magnetic, mechanical, optical, etc. Optical data storage has already demonstrated its potential in the competition against other storage technologies. CD and DVD are showing their advantages in the computer and entertainment market. What motivated the use of optical waves to store and access information is the same as the motivation for optical communication. Light or an optical wave has an enormous capacity (or bandwidth) to carry information because of its short wavelength and parallel nature. In optical storage, there are two types of mechanism, namely localized and holographic memories. What gives the holographic data storage an advantage over localized bit storage is the natural ability to read the stored information in parallel, therefore, meeting the demand for fast access. Another unique feature that makes the holographic data storage attractive is that it is capable of performing associative recall at an incomparable speed. Therefore, volume holographic memory is particularly suitable for high-density data storage and high-speed pattern recognition. In this paper, we review previous works on volume holographic memories and discuss the challenges for this technology to become a reality.
ERIC Educational Resources Information Center
Altmeyer, Michael; Schweizer, Karl; Reiss, Siegbert; Ren, Xuezhu; Schreiner, Michael
2013-01-01
Performance in working memory and short-term memory tasks was employed for predicting performance in a long-term memory task in order to find out about the underlying processes. The types of memory were represented by versions of the Posner Task, the Backward Counting Task and the Sternberg Task serving as measures of long-term memory, working…
Proactive Interference in Short-Term Recognition and Recall Memory
ERIC Educational Resources Information Center
Dillon, Richard F.; Petrusic, William M.
1972-01-01
Purpose of study was to (a) compare the rate of increase of proactive interference over the first few trials under recall and recognition memory test conditions, (2) determine the effects of two types of distractors on short-term recognition, and (3) test memory after proactive interference had reached a stable level under each of three test…
Presentation Modality and Proactive Interference in Children's Short-Term Memory.
ERIC Educational Resources Information Center
Douglas, Joan Delahanty
This study examined the role of visual and auditory presentation in memory encoding processes of 80 second-grade children, using the release-from-proactive-interference short-term memory (STM) paradigm. Words were presented over three trials within one of the presentation modes and one taxonomic category, followed by a fourth trial in which the…
Identifying Early Links between Temperament, Short-Term and Working Memory in Preschoolers
ERIC Educational Resources Information Center
Visu-Petra, Laura; Cheie, Lavinia; Câmpan, Maria; Scutelnicu, Ioana; Benga, Oana
2018-01-01
The present study aimed to investigate early interrelationships between temperament, short-term memory (STM) and working memory (WM), while also relating them to incipient anxious traits in a sample of 4-7-year-olds. Preschoolers were evaluated using verbal and visuospatial STM and WM tasks, while parental reports were used to assess children's…
Areas of Left Perisylvian Cortex Mediate Auditory-Verbal Short-Term Memory
ERIC Educational Resources Information Center
Koenigs, Michael; Acheson, Daniel J.; Barbey, Aron K.; Solomon, Jeffrey; Postle, Bradley R.; Grafman, Jordan
2011-01-01
A contentious issue in memory research is whether verbal short-term memory (STM) depends on a neural system specifically dedicated to the temporary maintenance of information, or instead relies on the same brain areas subserving the comprehension and production of language. In this study, we examined a large sample of adults with acquired brain…
Verbal Short-term Memory in Down's Syndrome: An Articulatory Loop Deficit?
ERIC Educational Resources Information Center
Vicari, S.; Marotta, L.; Carlesimo, G. A.
2004-01-01
Verbal short-term memory, as measured by digit or word span, is generally impaired in individuals with Down's syndrome (DS) compared to mental age-matched controls. Moving from the working memory model, the present authors investigated the hypothesis that impairment in some of the articulatory loop sub-components is at the base of the deficient…
Word Length Effects in Long-Term Memory
ERIC Educational Resources Information Center
Tehan, Gerald; Tolan, Georgina Anne
2007-01-01
The word length effect has been a central feature of theorising about immediate memory. The notion that short-term memory traces rapidly decay unless refreshed by rehearsal is based primarily upon the finding that serial recall for short words is better than that for long words. The decay account of the word length effect has come under pressure…
Short-Term Memory, Executive Control, and Children's Route Learning
ERIC Educational Resources Information Center
Purser, Harry R. M.; Farran, Emily K.; Courbois, Yannick; Lemahieu, Axelle; Mellier, Daniel; Sockeel, Pascal; Blades, Mark
2012-01-01
The aim of this study was to investigate route-learning ability in 67 children aged 5 to 11 years and to relate route-learning performance to the components of Baddeley's model of working memory. Children carried out tasks that included measures of verbal and visuospatial short-term memory and executive control and also measures of verbal and…
ERIC Educational Resources Information Center
M. Purser, H.R.; Jarrold, C.
2005-01-01
Individuals with Down syndrome suffer from relatively poor verbal short-term memory. Recent work has indicated that this deficit is not caused by problems of audition, speech, or articulatory rehearsal within the phonological loop component of Baddeley and Hitch's working memory model. Given this, two experiments were conducted to investigate…
Rolinski, Michal; Zokaei, Nahid; Baig, Fahd; Giehl, Kathrin; Quinnell, Timothy; Zaiwalla, Zenobia; Mackay, Clare E; Husain, Masud; Hu, Michele T M
2016-01-01
Individuals with REM sleep behaviour disorder are at significantly higher risk of developing Parkinson's disease. Here we examined visual short-term memory deficits--long associated with Parkinson's disease--in patients with REM sleep behaviour disorder without Parkinson's disease using a novel task that measures recall precision. Visual short-term memory for sequentially presented coloured bars of different orientation was assessed in 21 patients with polysomnography-proven idiopathic REM sleep behaviour disorder, 26 cases with early Parkinson's disease and 26 healthy controls. Three tasks using the same stimuli controlled for attentional filtering ability, sensorimotor and temporal decay factors. Both patients with REM sleep behaviour disorder and Parkinson's disease demonstrated a deficit in visual short-term memory, with recall precision significantly worse than in healthy controls with no deficit observed in any of the control tasks. Importantly, the pattern of memory deficit in both patient groups was specifically explained by an increase in random responses. These results demonstrate that it is possible to detect the signature of memory impairment associated with Parkinson's disease in individuals with REM sleep behaviour disorder, a condition associated with a high risk of developing Parkinson's disease. The pattern of visual short-term memory deficit potentially provides a cognitive marker of 'prodromal' Parkinson's disease that might be useful in tracking disease progression and for disease-modifying intervention trials. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.
How visual short-term memory maintenance modulates subsequent visual aftereffects.
Saad, Elyana; Silvanto, Juha
2013-05-01
Prolonged viewing of a visual stimulus can result in sensory adaptation, giving rise to perceptual phenomena such as the tilt aftereffect (TAE). However, it is not known if short-term memory maintenance induces such effects. We examined how visual short-term memory (VSTM) maintenance modulates the strength of the TAE induced by subsequent visual adaptation. We reasoned that if VSTM maintenance induces aftereffects on subsequent encoding of visual information, then it should either enhance or reduce the TAE induced by a subsequent visual adapter, depending on the congruency of the memory cue and the adapter. Our results were consistent with this hypothesis and thus indicate that the effects of VSTM maintenance can outlast the maintenance period.
Chronic methamphetamine exposure produces a delayed, long-lasting memory deficit.
North, Ashley; Swant, Jarod; Salvatore, Michael F; Gamble-George, Joyonna; Prins, Petra; Butler, Brittany; Mittal, Mukul K; Heltsley, Rebecca; Clark, John T; Khoshbouei, Habibeh
2013-05-01
Methamphetamine (METH) is a highly addictive and neurotoxic psychostimulant. Its use in humans is often associated with neurocognitive impairment. Whether this is due to long-term deficits in short-term memory and/or hippocampal plasticity remains unclear. Recently, we reported that METH increases baseline synaptic transmission and reduces LTP in an ex vivo preparation of the hippocampal CA1 region from young mice. In the current study, we tested the hypothesis that a repeated neurotoxic regimen of METH exposure in adolescent mice decreases hippocampal synaptic plasticity and produces a deficit in short-term memory. Contrary to our prediction, there was no change in the hippocampal plasticity or short-term memory when measured after 14 days of METH exposure. However, we found that at 7, 14, and 21 days of drug abstinence, METH-exposed mice exhibited a deficit in spatial memory, which was accompanied by a decrease in hippocampal plasticity. Our results support the interpretation that the deleterious cognitive consequences of neurotoxic levels of METH exposure may manifest and persist after drug abstinence. Therefore, therapeutic strategies should consider short-term as well as long-term consequences of methamphetamine exposure. Copyright © 2012 Wiley Periodicals, Inc.
Tarnow, Eugen
2009-09-01
The Tagging/Retagging model of short term memory was introduced earlier (Tarnow in Cogn Neurodyn 2(4):347-353, 2008) to explain the linear relationship between response time and correct response probability for word recall and recognition: At the initial stimulus presentation the words displayed tag the corresponding long term memory locations. The tagging process is linear in time and takes about one second to reach a tagging level of 100%. After stimulus presentation the tagging level decays logarithmically with time to 50% after 14 s and to 20% after 220 s. If a probe word is reintroduced the tagging level has to return to 100% for the word to be properly identified, which leads to a delay in response time. This delay is proportional to the tagging loss. The tagging level is directly related to the probability of correct word recall and recognition. Evidence presented suggests that the tagging level is the level of depletion of the Readily Releasable Pool (RRP) of neurotransmitter vesicles at presynaptic terminals. The evidence includes the initial linear relationship between tagging level and time as well as the subsequent logarithmic decay of the tagging level. The activation of a short term memory may thus be the depletion of RRP (exocytosis) and short term memory decay may be the ensuing recycling of the neurotransmitter vesicles (endocytosis). The pattern of depleted presynaptic terminals corresponds to the long term memory trace.
From brief gaps to very long pauses: temporal isolation does not benefit serial recall.
Nimmo, Lisa M; Lewandowsky, Stephan
2005-12-01
Theoretical explanations of short-term memory for serial order can be classified on the basis of whether or not they invoke time as a causal variable. According to time-based accounts, such as temporal distinctiveness theories, there is an intimate link between time and memory. Event-based theories, by contrast, postulate processes such as interference or rehearsal to account for seemingly temporal phenomena in short-term memory. We report an experiment that examined whether extended temporal isolation benefits serial recall performance. Regardless of whether the participants were quiet or performed articulatory suppression during list presentation, temporal isolation did not benefit memory even if items were separated from their neighbors by up to 7 sec. These findings challenge time-based theories of short-term memory.
[Short term memory and severe language disorders in the child].
Gras-Vincendon, A; Belion, M; Abecassis, J; Bursztejn, C
1994-10-01
Memory, and particularly short-term memory or "working memory" (Baddeley), is involved in language acquisition in children. We have studied short-term memory, with verbal-and non verbal tests, of 8 children suffering from developmental dysphasia compared with other ones, matched in terms of age and performance I.Q. (W.I.S.C.-R.). The digit span did not significantly differ in the two groups, while the visuo-spatial span was lower in the dysphasic group. The memorization of a list of monosyllabic words by dysphasic children was poor in the absence of visual presentation and improved by it. Differences between dysphasic and control-children are unlikely to be due to speech rate which does not significantly differ from one group to the other one. The results suggest the existence, in language disordered children, of cognitive functions disorders much more important than those directly involved in the speech production.
Prosodic Similarity Effects in Short-Term Memory in Developmental Dyslexia.
Goswami, Usha; Barnes, Lisa; Mead, Natasha; Power, Alan James; Leong, Victoria
2016-11-01
Children with developmental dyslexia are characterized by phonological difficulties across languages. Classically, this 'phonological deficit' in dyslexia has been investigated with tasks using single-syllable words. Recently, however, several studies have demonstrated difficulties in prosodic awareness in dyslexia. Potential prosodic effects in short-term memory have not yet been investigated. Here we create a new instrument based on three-syllable words that vary in stress patterns, to investigate whether prosodic similarity (the same prosodic pattern of stressed and unstressed syllables) exerts systematic effects on short-term memory. We study participants with dyslexia and age-matched and younger reading-level-matched typically developing controls. We find that all participants, including dyslexic participants, show prosodic similarity effects in short-term memory. All participants exhibited better retention of words that differed in prosodic structure, although participants with dyslexia recalled fewer words accurately overall compared to age-matched controls. Individual differences in prosodic memory were predicted by earlier vocabulary abilities, by earlier sensitivity to syllable stress and by earlier phonological awareness. To our knowledge, this is the first demonstration of prosodic similarity effects in short-term memory. The implications of a prosodic similarity effect for theories of lexical representation and of dyslexia are discussed. © 2016 The Authors. Dyslexia published by John Wiley & Sons Ltd. © 2016 The Authors. Dyslexia published by John Wiley & Sons Ltd.
M Purser, Harry R; Jarrold, Christopher
2005-05-01
Individuals with Down syndrome suffer from relatively poor verbal short-term memory. Recent work has indicated that this deficit is not caused by problems of audition, speech, or articulatory rehearsal within the phonological loop component of Baddeley and Hitch's working memory model. Given this, two experiments were conducted to investigate whether abnormally rapid decay underlies the deficit. In a first experiment, we attempted to vary the time available for decay using a modified serial recall procedure that had both verbal and visuospatial conditions. No evidence was found to suggest that forgetting is abnormally rapid in phonological memory in Down syndrome, but a selective phonological memory deficit was indicated. A second experiment further investigated possible problems of decay in phonological memory, restricted to item information. The results indicated that individuals with Down syndrome do not show atypically rapid item forgetting from phonological memory but may have a limited-capacity verbal short-term memory system.
Predictors of Processing-Based Task Performance in Bilingual and Monolingual Children
Buac, Milijana; Gross, Megan; Kaushanskaya, Margarita
2016-01-01
In the present study we examined performance of bilingual Spanish-English-speaking and monolingual English-speaking school-age children on a range of processing-based measures within the framework of Baddeley’s working memory model. The processing-based measures included measures of short-term memory, measures of working memory, and a novel word-learning task. Results revealed that monolinguals outperformed bilinguals on the short-term memory tasks but not the working memory and novel word-learning tasks. Further, children’s vocabulary skills and socioeconomic status (SES) were more predictive of processing-based task performance in the bilingual group than the monolingual group. Together, these findings indicate that processing-based tasks that engage verbal working memory rather than short-term memory may be better-suited for diagnostic purposes with bilingual children. However, even verbal working memory measures are sensitive to bilingual children’s language-specific knowledge and demographic characteristics, and therefore may have limited clinical utility. PMID:27179914
Kagan Structures, Processing, and Excellence in College Teaching
ERIC Educational Resources Information Center
Kagan, Spencer
2014-01-01
Frequent student processing of lecture content (1) clears working memory, (2) increases long-term memory storage, (3) produces retrograde memory enhancement, (4) creates episodic memories, (5) increases alertness, and (6) activates many brain structures. These outcomes increase comprehension of and memory for content. Many professors now…
ERIC Educational Resources Information Center
Geva, R.; Eshel, R.; Leitner, Y.; Fattal-Valevski, A.; Harel, S.
2008-01-01
Background: Recent reports showed that children born with intrauterine growth restriction (IUGR) are at greater risk of experiencing verbal short-term memory span (STM) deficits that may impede their learning capacities at school. It is still unknown whether these deficits are modality dependent. Methods: This long-term, prospective design study…
Meir, Natalia; Armon-Lotem, Sharon
2017-01-01
The current study explores the influence of socioeconomic status (SES) and bilingualism on the linguistic skills and verbal short-term memory of preschool children. In previous studies comparing children of low and mid-high SES, the terms "a child with low-SES" and "a child speaking a minority language" are often interchangeable, not enabling differentiated evaluation of these two variables. The present study controls for this confluence by testing children born and residing in the same country and attending the same kindergartens, with all bilingual children speaking the same heritage language (HL-Russian). A total of 120 children (88 bilingual children: 44 with low SES; and 32 monolingual children: 16 with low SES) with typical language development, aged 5; 7-6; 7, were tested in the societal language (SL-Hebrew) on expressive vocabulary and three repetition tasks [forward digit span (FWD), nonword repetition (NWR), and sentence repetition (SRep)], which tap into verbal short-term memory. The results indicated that SES and bilingualism impact different child abilities. Bilingualism is associated with decreased vocabulary size and lower performance on verbal short-term memory tasks with higher linguistic load in the SL-Hebrew. The negative effect of bilingualism on verbal short-term memory disappears once vocabulary is accounted for. SES influences not only linguistic performance, but also verbal short-term memory with lowest linguistic load. The negative effect of SES cannot be solely attributed to lower vocabulary scores, suggesting that an unprivileged background has a negative impact on children's cognitive development beyond a linguistic disadvantage. The results have important clinical implications and call for more research exploring the varied impact of language and life experience on children's linguistic and cognitive skills.
Kruk-Slomka, Marta; Biala, Grażyna
2016-03-15
The endocannabinoid system, through the cannabinoid type 1 (CB1) and 2 (CB2) receptors modulates many physiological functions, including different aspects of memory-related processes. The aim of the present experiments was to explore the role of the endocannabinoid system, through CB1 receptors in the different stages of short-term (acquisition, retention and retrieval) and long-term (acquisition, consolidation and retrieval) memory-related responses, using the inhibitory avoidance (IA) test in mice. Our results revealed that an acute injection of oleamide (10 and 20mg/kg), a CB1 receptor agonist, impairs the short-term or/and long-term acquisition, retention/consolidation, retrieval memory and learning processes in the IA test in mice. In turn, in this test an acute injection of AM 251 (1 and 3mg/kg), a CB1 receptor antagonist, improves the short-term or/and long-term memory stages, described above. Moreover, this memory impairment induced by effective dose of oleamide (20mg/kg) is reversed by non-effective dose of AM 251 (0.25mg/kg) in the IA task, which proves the selectivity of oleamide to CB1 receptors and confirms that the CB1 receptor-related mechanism is one of the possible mechanisms, responsible for memory and learning responses. Obtained results provide clear evidence that the endocannabinoid system, through CB1 receptors, participates in the different stages of short- and long-term memory-related behavior. This knowledge may open in the future new possibilities for the development of CB-based therapies, especially for memory impairment human disorders. Copyright © 2015 Elsevier B.V. All rights reserved.
Maddox, Stephanie A.; Watts, Casey S.; Schafe, Glenn E.
2014-01-01
We have previously shown that auditory Pavlovian fear conditioning is associated with an increase in DNA methyltransferase (DNMT) expression in the lateral amygdala (LA) and that intra-LA infusion or bath application of an inhibitor of DNMT activity impairs the consolidation of an auditory fear memory and long-term potentiation (LTP) at thalamic and cortical inputs to the LA, in vitro. In the present study, we use awake behaving neurophysiological techniques to examine the role of DNMT activity in memory-related neurophysiological changes accompanying fear memory consolidation and reconsolidation in the LA, in vivo. We show that auditory fear conditioning results in a training-related enhancement in the amplitude of short-latency auditory-evoked field potentials (AEFPs) in the LA. Intra-LA infusion of a DNMT inhibitor impairs both fear memory consolidation and, in parallel, the consolidation of training-related neural plasticity in the LA; that is, short-term memory (STM) and short-term training-related increases in AEFP amplitude in the LA are intact, while long-term memory (LTM) and long-term retention of training-related increases in AEFP amplitudes are impaired. In separate experiments, we show that intra-LA infusion of a DNMT inhibitor following retrieval of an auditory fear memory has no effect on post-retrieval STM or short-term retention of training-related changes in AEFP amplitude in the LA, but significantly impairs both post-retrieval LTM and long-term retention of AEFP amplitude changes in the LA. These findings are the first to demonstrate the necessity of DNMT activity in the consolidation and reconsolidation of memory-associated neural plasticity, in vivo. PMID:24291571
Reducing a cortical network to a Potts model yields storage capacity estimates
NASA Astrophysics Data System (ADS)
Naim, Michelangelo; Boboeva, Vezha; Kang, Chol Jun; Treves, Alessandro
2018-04-01
An autoassociative network of Potts units, coupled via tensor connections, has been proposed and analysed as an effective model of an extensive cortical network with distinct short- and long-range synaptic connections, but it has not been clarified in what sense it can be regarded as an effective model. We draw here the correspondence between the two, which indicates the need to introduce a local feedback term in the reduced model, i.e. in the Potts network. An effective model allows the study of phase transitions. As an example, we study the storage capacity of the Potts network with this additional term, the local feedback w, which contributes to drive the activity of the network towards one of the stored patterns. The storage capacity calculation, performed using replica tools, is limited to fully connected networks, for which a Hamiltonian can be defined. To extend the results to the case of intermediate partial connectivity, we also derive the self-consistent signal-to-noise analysis for the Potts network; and finally we discuss the implications for semantic memory in humans.
Effects of lexical competition on immediate memory span for spoken words.
Goh, Winston D; Pisoni, David B
2003-08-01
Current theories and models of the structural organization of verbal short-term memory are primarily based on evidence obtained from manipulations of features inherent in the short-term traces of the presented stimuli, such as phonological similarity. In the present study, we investigated whether properties of the stimuli that are not inherent in the short-term traces of spoken words would affect performance in an immediate memory span task. We studied the lexical neighbourhood properties of the stimulus items, which are based on the structure and organization of words in the mental lexicon. The experiments manipulated lexical competition by varying the phonological neighbourhood structure (i.e., neighbourhood density and neighbourhood frequency) of the words on a test list while controlling for word frequency and intra-set phonological similarity (family size). Immediate memory span for spoken words was measured under repeated and nonrepeated sampling procedures. The results demonstrated that lexical competition only emerged when a nonrepeated sampling procedure was used and the participants had to access new words from their lexicons. These findings were not dependent on individual differences in short-term memory capacity. Additional results showed that the lexical competition effects did not interact with proactive interference. Analyses of error patterns indicated that item-type errors, but not positional errors, were influenced by the lexical attributes of the stimulus items. These results complement and extend previous findings that have argued for separate contributions of long-term knowledge and short-term memory rehearsal processes in immediate verbal serial recall tasks.
Temporal information processing in short- and long-term memory of patients with schizophrenia.
Landgraf, Steffen; Steingen, Joerg; Eppert, Yvonne; Niedermeyer, Ulrich; van der Meer, Elke; Krueger, Frank
2011-01-01
Cognitive deficits of patients with schizophrenia have been largely recognized as core symptoms of the disorder. One neglected factor that contributes to these deficits is the comprehension of time. In the present study, we assessed temporal information processing and manipulation from short- and long-term memory in 34 patients with chronic schizophrenia and 34 matched healthy controls. On the short-term memory temporal-order reconstruction task, an incidental or intentional learning strategy was deployed. Patients showed worse overall performance than healthy controls. The intentional learning strategy led to dissociable performance improvement in both groups. Whereas healthy controls improved on a performance measure (serial organization), patients improved on an error measure (inappropriate semantic clustering) when using the intentional instead of the incidental learning strategy. On the long-term memory script-generation task, routine and non-routine events of everyday activities (e.g., buying groceries) had to be generated in either chronological or inverted temporal order. Patients were slower than controls at generating events in the chronological routine condition only. They also committed more sequencing and boundary errors in the inverted conditions. The number of irrelevant events was higher in patients in the chronological, non-routine condition. These results suggest that patients with schizophrenia imprecisely access temporal information from short- and long-term memory. In short-term memory, processing of temporal information led to a reduction in errors rather than, as was the case in healthy controls, to an improvement in temporal-order recall. When accessing temporal information from long-term memory, patients were slower and committed more sequencing, boundary, and intrusion errors. Together, these results suggest that time information can be accessed and processed only imprecisely by patients who provide evidence for impaired time comprehension. This could contribute to symptomatic cognitive deficits and strategic inefficiency in schizophrenia.
Implicit short- and long-term memory direct our gaze in visual search.
Kruijne, Wouter; Meeter, Martijn
2016-04-01
Visual attention is strongly affected by the past: both by recent experience and by long-term regularities in the environment that are encoded in and retrieved from memory. In visual search, intertrial repetition of targets causes speeded response times (short-term priming). Similarly, targets that are presented more often than others may facilitate search, even long after it is no longer present (long-term priming). In this study, we investigate whether such short-term priming and long-term priming depend on dissociable mechanisms. By recording eye movements while participants searched for one of two conjunction targets, we explored at what stages of visual search different forms of priming manifest. We found both long- and short- term priming effects. Long-term priming persisted long after the bias was present, and was again found even in participants who were unaware of a color bias. Short- and long-term priming affected the same stage of the task; both biased eye movements towards targets with the primed color, already starting with the first eye movement. Neither form of priming affected the response phase of a trial, but response repetition did. The results strongly suggest that both long- and short-term memory can implicitly modulate feedforward visual processing.
ROLE OF NEUROTRANSMITTERS AND PROTEIN SYNTHESIS IN SHORT- AND LONG-TERM MEMORY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, E.L.; Rosenzweig, M.R.; Flood, J.F.
1978-10-01
Anisomycin is an effective inhibitor of cerebral protein synthesis in mice and is also an effective amnestic agent for both passive and active behavioral tasks. From use of anisomycin in combination with a variety of stimulant and depressant drugs, we conclude that the level of arousal following acquisition plays an important role in determining the duration and the rate of the biosynthetic phase of memory formation. While we have interpreted the experiments with anisomycin as evidence for an essential role of protein in memory storage, others have suggested that side effects of inhibitors of protein synthesis on catecholamine metabolism aremore » the main cause of amnesia. Several experiments were therefore done to compare the effects of anisemycin and catecholamine inhibitors on memory. We conclude that anisomycin's principal amnestic mechanism does not involve inhibition of the catecholamine system. The results strengthen our conclusion that protein synthesis is an essential component for longterm memory trace formation. Also, it is suggested that proteins synthesized in the neuronal cell body are used, in conjunction with other molecules, to produce permanent and semi-permanent anatomical changes.« less
ERIC Educational Resources Information Center
Pinto, Carlos; Machado, Armando
2011-01-01
To better understand short-term memory for temporal intervals, we re-examined the choose-short effect. In Experiment 1, to contrast the predictions of two models of this effect, the subjective shortening and the coding models, pigeons were exposed to a delayed matching-to-sample task with three sample durations (2, 6 and 18 s) and retention…
Place Cells, Grid Cells, and Memory
Moser, May-Britt; Rowland, David C.; Moser, Edvard I.
2015-01-01
The hippocampal system is critical for storage and retrieval of declarative memories, including memories for locations and events that take place at those locations. Spatial memories place high demands on capacity. Memories must be distinct to be recalled without interference and encoding must be fast. Recent studies have indicated that hippocampal networks allow for fast storage of large quantities of uncorrelated spatial information. The aim of the this article is to review and discuss some of this work, taking as a starting point the discovery of multiple functionally specialized cell types of the hippocampal–entorhinal circuit, such as place, grid, and border cells. We will show that grid cells provide the hippocampus with a metric, as well as a putative mechanism for decorrelation of representations, that the formation of environment-specific place maps depends on mechanisms for long-term plasticity in the hippocampus, and that long-term spatiotemporal memory storage may depend on offline consolidation processes related to sharp-wave ripple activity in the hippocampus. The multitude of representations generated through interactions between a variety of functionally specialized cell types in the entorhinal–hippocampal circuit may be at the heart of the mechanism for declarative memory formation. PMID:25646382
Low-Complexity Discriminative Feature Selection From EEG Before and After Short-Term Memory Task.
Behzadfar, Neda; Firoozabadi, S Mohammad P; Badie, Kambiz
2016-10-01
A reliable and unobtrusive quantification of changes in cortical activity during short-term memory task can be used to evaluate the efficacy of interfaces and to provide real-time user-state information. In this article, we investigate changes in electroencephalogram signals in short-term memory with respect to the baseline activity. The electroencephalogram signals have been analyzed using 9 linear and nonlinear/dynamic measures. We applied statistical Wilcoxon examination and Davis-Bouldian criterion to select optimal discriminative features. The results show that among the features, the permutation entropy significantly increased in frontal lobe and the occipital second lower alpha band activity decreased during memory task. These 2 features reflect the same mental task; however, their correlation with memory task varies in different intervals. In conclusion, it is suggested that the combination of the 2 features would improve the performance of memory based neurofeedback systems. © EEG and Clinical Neuroscience Society (ECNS) 2016.
Short-term memory in autism spectrum disorder.
Poirier, Marie; Martin, Jonathan S; Gaigg, Sebastian B; Bowler, Dermot M
2011-02-01
Three experiments examined verbal short-term memory in comparison and autism spectrum disorder (ASD) participants. Experiment 1 involved forward and backward digit recall. Experiment 2 used a standard immediate serial recall task where, contrary to the digit-span task, items (words) were not repeated from list to list. Hence, this task called more heavily on item memory. Experiment 3 tested short-term order memory with an order recognition test: Each word list was repeated with or without the position of 2 adjacent items swapped. The ASD group showed poorer performance in all 3 experiments. Experiments 1 and 2 showed that group differences were due to memory for the order of the items, not to memory for the items themselves. Confirming these findings, the results of Experiment 3 showed that the ASD group had more difficulty detecting a change in the temporal sequence of the items. (c) 2010 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Rui; Terabe, Kazuya; Yao, Yiping; Tsuruoka, Tohru; Hasegawa, Tsuyoshi; Gimzewski, James K.; Aono, Masakazu
2013-09-01
A compact neuromorphic nanodevice with inherent learning and memory properties emulating those of biological synapses is the key to developing artificial neural networks rivaling their biological counterparts. Experimental results showed that memorization with a wide time scale from volatile to permanent can be achieved in a WO3-x-based nanoionics device and can be precisely and cumulatively controlled by adjusting the device’s resistance state and input pulse parameters such as the amplitude, interval, and number. This control is analogous to biological synaptic plasticity including short-term plasticity, long-term potentiation, transition from short-term memory to long-term memory, forgetting processes for short- and long-term memory, learning speed, and learning history. A compact WO3-x-based nanoionics device with a simple stacked layer structure should thus be a promising candidate for use as an inorganic synapse in artificial neural networks due to its striking resemblance to the biological synapse.
Near-infrared spectroscopic study on the effects of chewing on short-term memory.
Wada, Mayumi; Hoshi, Yoko; Iguchi, Yoshinobu; Kida, Ikuhiro
2011-12-01
Using near-infrared spectroscopy, we examined whether chewing gum improves performance in a short-term memory task - immediate recall of random eight-digit numbers - by assessing cerebral hemodynamic response in the prefrontal cortex. We found that the oxyhemoglobin concentration during and after chewing gum was higher than that before chewing; further, the concentration increased during the task, and this increase was reduced with chewing, although non-significantly. Chewing did not improve task performance. Therefore, chewing-induced hemodynamic responses were unrelated to the performance in short-term memory tasks. Copyright © 2011 Elsevier Ltd. All rights reserved.
[Change in short-term memory in pupils of 5-7th classes in the process of class work].
Rybakov, V P; Orlova, N I
2014-01-01
The subject of this study was the investigation of the short-term memory (STM) of visual (SVM) and auditory (SAM) modality in boys and girls of the middle school age, as in the daytime, and during the course of the school week. The obtained data show that in pupils from the 5th to the 7th class SVM and SAM playback volume in children of both genders is significantly increased, while SVM productivity in boys from 6 - 7th classes is higher than in girls of the same age. The amplitude of day changes in SVM and SAM was found to decrease significantly with the age. In all age groups the range of daily fluctuations in short-term memory of both modalities in boys appears to be higher than in girls. In all age groups a significant part of schoolchildren was revealed to possess optimal forms of temporal organization of short-term memory: morning, day and morning-day types, in that while during the school week in pupils of 5th to 7th classes of both genders the number of optimal waveforms of curves of daily dynamics of short-term memory increases, which contributes to the optimization of their mental performance.
Hughes, Robert W; Marsh, John E; Jones, Dylan M
2011-11-01
In two experiments, we examined the impact of the degree of match between sequential auditory perceptual organization processes and the demands of a short-term memory task (memory for order vs. item information). When a spoken sequence of digits was presented so as to promote its perceptual partitioning into two distinct streams by conveying it in alternating female (F) and male (M) voices (FMFMFMFM)--thereby disturbing the perception of true temporal order--recall of item order was greatly impaired (as compared to recall of item identity). Moreover, an order error type consistent with the formation of voice-based streams was committed more quickly in the alternating-voice condition (Exp. 1). In contrast, when the perceptual organization of the sequence mapped well onto an optimal two-group serial rehearsal strategy--by presenting the two voices in discrete clusters (FFFFMMMM)--order, but not item, recall was enhanced (Exp. 2). The results are consistent with the view that the degree of compatibility between perceptual and deliberate sequencing processes is a key determinant of serial short-term memory performance. Alternative accounts of talker variability effects in short-term memory, based on the concept of a dedicated phonological short-term store and a capacity-limited focus of attention, are also reviewed.
Outline of a novel architecture for cortical computation.
Majumdar, Kaushik
2008-03-01
In this paper a novel architecture for cortical computation has been proposed. This architecture is composed of computing paths consisting of neurons and synapses. These paths have been decomposed into lateral, longitudinal and vertical components. Cortical computation has then been decomposed into lateral computation (LaC), longitudinal computation (LoC) and vertical computation (VeC). It has been shown that various loop structures in the cortical circuit play important roles in cortical computation as well as in memory storage and retrieval, keeping in conformity with the molecular basis of short and long term memory. A new learning scheme for the brain has also been proposed and how it is implemented within the proposed architecture has been explained. A few mathematical results about the architecture have been proposed, some of which are without proof.
Li, Ru; Zhu, Yi
2018-05-21
This study aimed to analyze the nutritional quality of radish sprouts (Raphanus sativus L.) upon domestic short-term storage. We stored fresh radish sprouts at 25±1°C and at 4±1°C for 12 h, detected phenolic substances, glucosinolates, isothiocyanates, vitamin C, and various antioxidant and abiotic stress-related factors. We investigated nutrient-related metabolic differences and associated pathways and postharvest treatment effects on nutritional quality via metabolomics analysis. Most active substances and antioxidant properties, not phenolic acids and vitamin C, decreased significantly (p<0.05) upon domestic storage; this reduction was decelerated at low temperatures. Short-term storage disrupted redox balance; low temperature enhanced stress resistance. Differences were observed in amino acid and vitamin derivatives, phospholipid accumulation, and organic acids. Short-term storage at ambient temperature promoted lysine, threonine, cysteine, vitamin H, phospholipid, and lauric (dodecanoic) acid accumulation, inhibiting proline, phosphatidic acid (PA) (14:1(9Z)/12:0), and phosphatidylcholine (PC) (O-18:0/O-18:0) accumulation; low-temperature short-term storage promoted myristic acid and phospholipid accumulation and reduced methionine synthesis and vitamin H and K accumulation. Overall, the nutritional quality of radish sprout decreased upon short-term storage, with differences in certain active substances. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Reading Ability and Memory Span: Long-Term Memory Contributions to Span for Good and Poor Readers.
ERIC Educational Resources Information Center
McDougall, Sine J. P.; Donohoe, Rachael
2002-01-01
Investigates the extent to which differences in memory span for good and poor readers can be explained by differences in a long-term memory component to span as well as by differences in short-term memory processes. Discusses the nature of the interrelationships between memory span, reading and measures of phonological awareness. (SG)
Multiple Roles for Time in Short-Term Memory: Evidence from Serial Recall of Order and Timing
ERIC Educational Resources Information Center
Farrell, Simon
2008-01-01
Three experiments are reported that examine the relationship between short-term memory for time and order information, and the more specific claim that order memory is driven by a timing signal. Participants were presented with digits spaced irregularly in time and postcued (Experiments 1 and 2) or precued (Experiment 3) to recall the order or…
The Role of Attention in the Maintenance of Feature Bindings in Visual Short-term Memory
ERIC Educational Resources Information Center
Johnson, Jeffrey S.; Hollingworth, Andrew; Luck, Steven J.
2008-01-01
This study examined the role of attention in maintaining feature bindings in visual short-term memory. In a change-detection paradigm, participants attempted to detect changes in the colors and orientations of multiple objects; the changes consisted of new feature values in a feature-memory condition and changes in how existing feature values were…
ERIC Educational Resources Information Center
Kormos, Judit; Safar, Anna
2008-01-01
In our research we addressed the question what the relationship is between phonological short-term and working memory capacity and performance in an end-of-year reading, writing, listening, speaking and use of English test. The participants of our study were 121 secondary school students aged 15-16 in the first intensive language training year of…
ERIC Educational Resources Information Center
Hollingworth, Andrew; Richard, Ashleigh M.; Luck, Steven J.
2008-01-01
Visual short-term memory (VSTM) has received intensive study over the past decade, with research focused on VSTM capacity and representational format. Yet, the function of VSTM in human cognition is not well understood. Here, the authors demonstrate that VSTM plays an important role in the control of saccadic eye movements. Intelligent human…
A Probabilistic Clustering Theory of the Organization of Visual Short-Term Memory
ERIC Educational Resources Information Center
Orhan, A. Emin; Jacobs, Robert A.
2013-01-01
Experimental evidence suggests that the content of a memory for even a simple display encoded in visual short-term memory (VSTM) can be very complex. VSTM uses organizational processes that make the representation of an item dependent on the feature values of all displayed items as well as on these items' representations. Here, we develop a…
Deletion of the GluA1 AMPA Receptor Subunit Alters the Expression of Short-Term Memory
ERIC Educational Resources Information Center
Sanderson, David J.; Sprengel, Rolf; Seeburg, Peter H.; Bannerman, David M.
2011-01-01
Deletion of the GluA1 AMPA receptor subunit selectively impairs short-term memory for spatial locations. We further investigated this deficit by examining memory for discrete nonspatial visual stimuli in an operant chamber. Unconditioned suppression of magazine responding to visual stimuli was measured in wild-type and GluA1 knockout mice.…
ERIC Educational Resources Information Center
Oztekin, Ilke; McElree, Brian
2010-01-01
The response-signal speed-accuracy trade-off (SAT) procedure was used to investigate the relationship between measures of working memory capacity and the time course of short-term item recognition. High- and low-span participants studied sequentially presented 6-item lists, immediately followed by a recognition probe. Analyses of composite list…
Monkeys Rely on Recency of Stimulus Repetition When Solving Short-Term Memory Tasks
ERIC Educational Resources Information Center
Wittig, John H., Jr.; Richmond, Barry J.
2014-01-01
Seven monkeys performed variants of two short-term memory tasks that others have used to differentiate between selective and nonselective memory mechanisms. The first task was to view a list of sequentially presented images and identify whether a test matched any image from the list, but not a distractor from a preceding list. Performance was best…
Leising, Kenneth J; Elmore, L Caitlin; Rivera, Jacquelyne J; Magnotti, John F; Katz, Jeffrey S; Wright, Anthony A
2013-09-01
Change detection is commonly used to assess capacity (number of objects) of human visual short-term memory (VSTM). Comparisons with the performance of non-human animals completing similar tasks have shown similarities and differences in object-based VSTM, which is only one aspect ("what") of memory. Another important aspect of memory, which has received less attention, is spatial short-term memory for "where" an object is in space. In this article, we show for the first time that a monkey and pigeons can be accurately trained to identify location changes, much as humans do, in change detection tasks similar to those used to test object capacity of VSTM. The subject's task was to identify (touch/peck) an item that changed location across a brief delay. Both the monkey and pigeons showed transfer to delays longer than the training delay, to greater and smaller distance changes than in training, and to novel colors. These results are the first to demonstrate location-change detection in any non-human species and encourage comparative investigations into the nature of spatial and visual short-term memory.
Kober, Silvia Erika; Reichert, Johanna Louise; Neuper, Christa; Wood, Guilherme
2016-04-01
The effects of age and gender on electroencephalographic (EEG) activity during a short-term memory task were assessed in a group of 40 healthy participants aged 22-63 years. Multi-channel EEG was recorded in 20 younger (mean = 24.65-year-old, 10 male) and 20 middle-aged participants (mean = 46.40-year-old, 10 male) during performance of a Sternberg task. EEG power and coherence measures were analyzed in different frequency bands. Significant interactions emerged between age and gender in memory performance and concomitant EEG parameters, suggesting that the aging process differentially influences men and women. Middle-aged women showed a lower short-term memory performance compared to young women, which was accompanied by decreasing delta and theta power and increasing brain connectivity with age in women. In contrast, men showed no age-related decline in short-term memory performance and no changes in EEG parameters. These results provide first evidence of age-related alterations in EEG activity underlying memory processes, which were already evident in the middle years of life in women but not in men. Copyright © 2016 Elsevier Inc. All rights reserved.
The loss of short-term visual representations over time: decay or temporal distinctiveness?
Mercer, Tom
2014-12-01
There has been much recent interest in the loss of visual short-term memories over the passage of time. According to decay theory, visual representations are gradually forgotten as time passes, reflecting a slow and steady distortion of the memory trace. However, this is controversial and decay effects can be explained in other ways. The present experiment aimed to reexamine the maintenance and loss of visual information over the short term. Decay and temporal distinctiveness models were tested using a delayed discrimination task, in which participants compared complex and novel objects over unfilled retention intervals of variable length. Experiment 1 found no significant change in the accuracy of visual memory from 2 to 6 s, but the gap separating trials reliably influenced task performance. Experiment 2 found evidence for information loss at a 10-s retention interval, but temporally separating trials restored the fidelity of visual memory, possibly because temporally isolated representations are distinct from older memory traces. In conclusion, visual representations lose accuracy at some point after 6 s, but only within temporally crowded contexts. These findings highlight the importance of temporal distinctiveness within visual short-term memory. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Short- and long-term memory in Drosophila require cAMP signaling in distinct neuron types.
Blum, Allison L; Li, Wanhe; Cressy, Mike; Dubnau, Josh
2009-08-25
A common feature of memory and its underlying synaptic plasticity is that each can be dissected into short-lived forms involving modification or trafficking of existing proteins and long-term forms that require new gene expression. An underlying assumption of this cellular view of memory consolidation is that these different mechanisms occur within a single neuron. At the neuroanatomical level, however, different temporal stages of memory can engage distinct neural circuits, a notion that has not been conceptually integrated with the cellular view. Here, we investigated this issue in the context of aversive Pavlovian olfactory memory in Drosophila. Previous studies have demonstrated a central role for cAMP signaling in the mushroom body (MB). The Ca(2+)-responsive adenylyl cyclase RUTABAGA is believed to be a coincidence detector in gamma neurons, one of the three principle classes of MB Kenyon cells. We were able to separately restore short-term or long-term memory to a rutabaga mutant with expression of rutabaga in different subsets of MB neurons. Our findings suggest a model in which the learning experience initiates two parallel associations: a short-lived trace in MB gamma neurons, and a long-lived trace in alpha/beta neurons.
Manipulations of attention dissociate fragile visual short-term memory from visual working memory.
Vandenbroucke, Annelinde R E; Sligte, Ilja G; Lamme, Victor A F
2011-05-01
People often rely on information that is no longer in view, but maintained in visual short-term memory (VSTM). Traditionally, VSTM is thought to operate on either a short time-scale with high capacity - iconic memory - or a long time scale with small capacity - visual working memory. Recent research suggests that in addition, an intermediate stage of memory in between iconic memory and visual working memory exists. This intermediate stage has a large capacity and a lifetime of several seconds, but is easily overwritten by new stimulation. We therefore termed it fragile VSTM. In previous studies, fragile VSTM has been dissociated from iconic memory by the characteristics of the memory trace. In the present study, we dissociated fragile VSTM from visual working memory by showing a differentiation in their dependency on attention. A decrease in attention during presentation of the stimulus array greatly reduced the capacity of visual working memory, while this had only a small effect on the capacity of fragile VSTM. We conclude that fragile VSTM is a separate memory store from visual working memory. Thus, a tripartite division of VSTM appears to be in place, comprising iconic memory, fragile VSTM and visual working memory. Copyright © 2011 Elsevier Ltd. All rights reserved.
Long-term consolidation of declarative memory: insight from temporal lobe epilepsy.
Tramoni, Eve; Felician, Olivier; Barbeau, Emmanuel J; Guedj, Eric; Guye, Maxime; Bartolomei, Fabrice; Ceccaldi, Mathieu
2011-03-01
Several experiments carried out with a subset of patients with temporal lobe epilepsy have demonstrated normal memory performance at standard delays of recall (i.e. minutes to hours) but impaired performance over longer delays (i.e. days or weeks), suggesting altered long-term consolidation mechanisms. These mechanisms were specifically investigated in a group of five adult-onset pharmaco-sensitive patients with temporal lobe epilepsy, exhibiting severe episodic memory complaints despite normal performance at standardized memory assessment. In a first experiment, the magnitude of autobiographical memory loss was evaluated using retrograde personal memory tasks based on verbal and visual cues. In both conditions, results showed an unusual U-shaped pattern of personal memory impairment, encompassing most of the patients' life, sparing however, periods of the childhood, early adulthood and past several weeks. This profile was suggestive of a long-term consolidation impairment of personal episodes, adequately consolidated over 'short-term' delays but gradually forgotten thereafter. Therefore, in a subsequent experiment, patients were submitted to a protocol specifically devised to investigate short and long-term consolidation of contextually-bound experiences (episodic memory) and context-free information (semantic knowledge and single-items). In the short term (1 h), performance at both contextually-free and contextually-bound memory tasks was intact. After a 6-week delay, however, contextually-bound memory performance was impaired while contextually-free memory performance remained preserved. This effect was independent of task difficulty and the modality of retrieval (recall and recognition). Neuroimaging studies revealed the presence of mild metabolic changes within medial temporal lobe structures. Taken together, these results show the existence of different consolidation systems within declarative memory. They suggest that mild medial temporal lobe dysfunction can impede the building and stabilization of episodic memories but leaves long-term semantic and single-items mnemonic traces intact.
Two Waves of Transcription Are Required for Long-Term Memory in the Honeybee
ERIC Educational Resources Information Center
Lefer, Damien; Perisse, Emmanuel; Hourcade, Benoit; Sandoz, JeanChristophe; Devaud, Jean-Marc
2013-01-01
Storage of information into long-term memory (LTM) usually requires at least two waves of transcription in many species. However, there is no clear evidence of this phenomenon in insects, which are influential models for memory studies. We measured retention in honeybees after injecting a transcription inhibitor at different times before and after…
ERIC Educational Resources Information Center
Hosono, Shouhei; Matsumoto, Yukihisa; Mizunami, Makoto
2016-01-01
Animals learn through experience and consolidate the memories into long-time storage. Conditioning parameters to induce protein synthesis-dependent long-term memory (LTM) have been the subject of extensive studies in many animals. Here we found a case in which a conditioning trial inhibits or facilitates LTM formation depending on the intervals…
Endogenous BDNF Is Required for Long-Term Memory Formation in the Rat Parietal Cortex
ERIC Educational Resources Information Center
Alonso, Mariana; Bekinschtein, Pedro, Cammarota, Martin; Vianna, Monica R. M.; Izquierdo, Ivan; Medina, Jorge H.
2005-01-01
Information storage in the brain is a temporally graded process involving different memory phases as well as different structures in the mammalian brain. Cortical plasticity seems to be essential to store stable long-term memories, although little information is available at the moment regarding molecular and cellular events supporting memory…
Neural Processing of Spoken Words in Specific Language Impairment and Dyslexia
ERIC Educational Resources Information Center
Helenius, Paivi; Parviainen, Tiina; Paetau, Ritva; Salmelin, Riitta
2009-01-01
Young adults with a history of specific language impairment (SLI) differ from reading-impaired (dyslexic) individuals in terms of limited vocabulary and poor verbal short-term memory. Phonological short-term memory has been shown to play a significant role in learning new words. We investigated the neural signatures of auditory word recognition…
Order Short-Term Memory Capacity Predicts Nonword Reading and Spelling in First and Second Grade
ERIC Educational Resources Information Center
Binamé, Florence; Poncelet, Martine
2016-01-01
Recent theories of short-term memory (STM) distinguish between item information, which reflects the temporary activation of long-term representations stored in the language system, and serial-order information, which is encoded in a specific representational system that is independent of the language network. Some studies examining the…
FFT transformed quantitative EEG analysis of short term memory load.
Singh, Yogesh; Singh, Jayvardhan; Sharma, Ratna; Talwar, Anjana
2015-07-01
The EEG is considered as building block of functional signaling in the brain. The role of EEG oscillations in human information processing has been intensively investigated. To study the quantitative EEG correlates of short term memory load as assessed through Sternberg memory test. The study was conducted on 34 healthy male student volunteers. The intervention consisted of Sternberg memory test, which runs on a version of the Sternberg memory scanning paradigm software on a computer. Electroencephalography (EEG) was recorded from 19 scalp locations according to 10-20 international system of electrode placement. EEG signals were analyzed offline. To overcome the problems of fixed band system, individual alpha frequency (IAF) based frequency band selection method was adopted. The outcome measures were FFT transformed absolute powers in the six bands at 19 electrode positions. Sternberg memory test served as model of short term memory load. Correlation analysis of EEG during memory task was reflected as decreased absolute power in Upper alpha band in nearly all the electrode positions; increased power in Theta band at Fronto-Temporal region and Lower 1 alpha band at Fronto-Central region. Lower 2 alpha, Beta and Gamma band power remained unchanged. Short term memory load has distinct electroencephalographic correlates resembling the mentally stressed state. This is evident from decreased power in Upper alpha band (corresponding to Alpha band of traditional EEG system) which is representative band of relaxed mental state. Fronto-temporal Theta power changes may reflect the encoding and execution of memory task.
Memory Erasure Experiments Indicate a Critical Role of CaMKII in Memory Storage.
Rossetti, Tom; Banerjee, Somdeb; Kim, Chris; Leubner, Megan; Lamar, Casey; Gupta, Pooja; Lee, Bomsol; Neve, Rachael; Lisman, John
2017-09-27
The abundant synaptic protein CaMKII is necessary for long-term potentiation (LTP) and memory. However, whether CaMKII is required only during initial processes or whether it also mediates memory storage remains unclear. The most direct test of a storage role is the erasure test. In this test, a putative memory molecule is inhibited after learning. The key prediction is that this should produce persistent memory erasure even after the inhibitory agent is removed. We conducted this test using transient viral (HSV) expression of dominant-negative CaMKII-alpha (K42M) in the hippocampus. This produced persistent erasure of conditioned place avoidance. As an additional test, we found that expression of activated CaMKII (T286D/T305A/T306A) impaired place avoidance, a result not expected if a process other than CaMKII stores memory. Our behavioral results, taken together with prior experiments on LTP, strongly support a critical role of CaMKII in LTP maintenance and memory storage. Copyright © 2017 Elsevier Inc. All rights reserved.
Koen, Joshua D; Borders, Alyssa A; Petzold, Michael T; Yonelinas, Andrew P
2017-02-01
The medial temporal lobe (MTL) plays a critical role in episodic long-term memory, but whether the MTL is necessary for visual short-term memory is controversial. Some studies have indicated that MTL damage disrupts visual short-term memory performance whereas other studies have failed to find such evidence. To account for these mixed results, it has been proposed that the hippocampus is critical in supporting short-term memory for high resolution complex bindings, while the cortex is sufficient to support simple, low resolution bindings. This hypothesis was tested in the current study by assessing visual short-term memory in patients with damage to the MTL and controls for high resolution and low resolution object-location and object-color associations. In the location tests, participants encoded sets of two or four objects in different locations on the screen. After each set, participants performed a two-alternative forced-choice task in which they were required to discriminate the object in the target location from the object in a high or low resolution lure location (i.e., the object locations were very close or far away from the target location, respectively). Similarly, in the color tests, participants were presented with sets of two or four objects in a different color and, after each set, were required to discriminate the object in the target color from the object in a high or low resolution lure color (i.e., the lure color was very similar or very different, respectively, to the studied color). The patients were significantly impaired in visual short-term memory, but importantly, they were more impaired for high resolution object-location and object-color bindings. The results are consistent with the proposal that the hippocampus plays a critical role in forming and maintaining complex, high resolution bindings. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Differential age-related effects on conjunctive and relational visual short-term memory binding.
Bastin, Christine
2017-12-28
An age-related associative deficit has been described in visual short-term binding memory tasks. However, separate studies have suggested that ageing disrupts relational binding (to associate distinct items or item and context) more than conjunctive binding (to integrate features within an object). The current study directly compared relational and conjunctive binding with a short-term memory task for object-colour associations in 30 young and 30 older adults. Participants studied a number of object-colour associations corresponding to their individual object span level in a relational task in which objects were associated to colour patches and a conjunctive task where colour was integrated into the object. Memory for individual items and for associations was tested with a recognition memory test. Evidence for an age-related associative deficit was observed in the relational binding task, but not in the conjunctive binding task. This differential impact of ageing on relational and conjunctive short-term binding is discussed by reference to two underlying age-related cognitive difficulties: diminished hippocampally dependent binding and attentional resources.
Al-Kuraishy, Hayder M
2016-01-01
The present study investigates the effect of combined treatment with Ginkgo biloba and/or Rhodiola rosea on psychomotor vigilance task (PVT) and short-term working memory accuracy. A total number of 112 volunteers were enrolled to study the effect of G. biloba and R. rosea on PVT and short-term working memory accuracy as compared to placebo effects, the central cognitive effect was assessed by critical flicker-fusion frequency, PVT, and computerized N-back test. Placebo produced no significant effects on all neurocognitive tests measure P > 0.05 in normal healthy volunteers, G. biloba or R. rosea improve PVT and low to moderate working memory accuracy, The combined effect of R. rosea and G. biloba leading to more significant effect on PVT, all levels of short-term working memory accuracy and critical fusion versus flicker P < 0.01, more than of G. biloba or R. rosea when they used alone. The combined effect of R. rosea and G. biloba leading to a more significant effect on cognitive function than either G. biloba or R. rosea when they used alone.
Memory functions of children born with asymmetric intrauterine growth restriction.
Geva, Ronny; Eshel, Rina; Leitner, Yael; Fattal-Valevski, Aviva; Harel, Shaul
2006-10-30
Learning difficulties are frequently diagnosed in children born with intrauterine growth restriction (IUGR). Models of various animal species with IUGR were studied and demonstrated specific susceptibility and alterations of the hippocampal formation and its related neural structures. The main purpose was to study memory functions of children born with asymmetric IUGR in a large-scale cohort using a long-term prospective paradigm. One hundred and ten infants diagnosed with IUGR were followed-up from birth to 9 years of age. Their performance was compared with a group of 63 children with comparable gestational age and multiple socioeconomic factors. Memory functions (short-term, super- and long-term spans) for different stimuli types (verbal and visual) were evaluated using Visual Auditory Digit Span tasks (VADS), Rey Auditory Verbal Learning Test (Rey-AVLT), and Rey Osterrieth Complex Figure Test (ROCF). Children with IUGR had short-term memory difficulties that hindered both serial verbal processing system and simultaneous processing of high-load visuo-spatial stimuli. The difficulties were not related to prematurity, neonatal complications or growth catch-up, but were augmented by lower maternal education. Recognition skills and benefits from reiteration, typically affected by hippocampal dysfunction, were preserved in both groups. Memory profile of children born with IUGR is characterized primarily by a short-term memory deficit that does not necessarily comply with a typical hippocampal deficit, but rather may reflect an executive short-term memory deficit characteristic of anterior hippocampal-prefrontal network. Implications for cognitive intervention are discussed.
Spatial resolution in visual memory.
Ben-Shalom, Asaf; Ganel, Tzvi
2015-04-01
Representations in visual short-term memory are considered to contain relatively elaborated information on object structure. Conversely, representations in earlier stages of the visual hierarchy are thought to be dominated by a sensory-based, feed-forward buildup of information. In four experiments, we compared the spatial resolution of different object properties between two points in time along the processing hierarchy in visual short-term memory. Subjects were asked either to estimate the distance between objects or to estimate the size of one of the objects' features under two experimental conditions, of either a short or a long delay period between the presentation of the target stimulus and the probe. When different objects were referred to, similar spatial resolution was found for the two delay periods, suggesting that initial processing stages are sensitive to object-based properties. Conversely, superior resolution was found for the short, as compared with the long, delay when features were referred to. These findings suggest that initial representations in visual memory are hybrid in that they allow fine-grained resolution for object features alongside normal visual sensitivity to the segregation between objects. The findings are also discussed in reference to the distinction made in earlier studies between visual short-term memory and iconic memory.
Strategies To Enhance Memory Based on Brain-Research.
ERIC Educational Resources Information Center
Banikowski, Alison K.; Mehring, Teresa A.
1999-01-01
This article reviews the literature on three aspects of memory: (1) an information processing model of memory (including the sensory register, attention, short-term memory, and long-term memory); (2) instructional strategies designed to enhance memory (which stress gaining students' attention and active involvement); and (3) reasons why…
ERIC Educational Resources Information Center
Nosofsky, Robert M.; Cox, Gregory E.; Cao, Rui; Shiffrin, Richard M.
2014-01-01
Experiments were conducted to test a modern exemplar-familiarity model on its ability to account for both short-term and long-term probe recognition within the same memory-search paradigm. Also, making connections to the literature on attention and visual search, the model was used to interpret differences in probe-recognition performance across…
Listening comprehension in preschoolers: the role of memory.
Florit, Elena; Roch, Maja; Altoè, Gianmarco; Levorato, Maria Chiara
2009-11-01
The current study analyzed the relationship between text comprehension and memory skills in preschoolers. We were interested in verifying the hypothesis that memory is a specific contributor to listening comprehension in preschool children after controlling for verbal abilities. We were also interested in analyzing the developmental path of the relationship between memory skills and listening comprehension in the age range considered. Forty-four, 4-year-olds (mean age = 4 years and 6 months, SD = 4 months) and 40, 5-year-olds (mean age = 5 years and 4 months, SD = 5 months) participated in the study. The children were administered measures to evaluate listening comprehension ability (story comprehension), short-term and working memory skills (forward and backward word span), verbal intelligence and receptive vocabulary. Results showed that both short-term and working memory predicted unique and independent variance in listening comprehension after controlling for verbal abilities, with working memory explaining additional variance over and above short-term memory. The predictive power of memory skills was stable in the age range considered. Results also confirm a strong relation between verbal abilities and listening comprehension in 4- and 5-year-old children.
Bazin, Marc-Antoine; El Kihel, Laïla; Boulouard, Michel; Bouët, Valentine; Rault, Sylvain
2009-11-01
Neurosteroids have been reported to modulate memory processes in rodents. Three analogues of dehydroepiandrosterone (DHEA), two of them previously described (7beta-aminoDHEA and 7beta-amino-17-ethylenedioxy-DHEA), and a new one (3beta-hydroxy-5alpha-androstane-6,17-dione) were synthesized, and their effects were evaluated on memory. This study examined their effects on long term and short term memory in male (6 weeks old) NMRI mice in comparison with the reference drug. Long term memory was assessed using the passive avoidance task and short term memory (spatial working memory) using the spontaneous alternation task in a Y maze. Moreover, the effects of DHEA and its analogues on spontaneous locomotion were measured. In all tests, DHEA and analogues were injected at three equimolar doses (0.300-1.350-6.075 microM/kg). DHEA and its three analogues administered immediately post-training at the highest doses (6.075 microM/kg, s.c.) improved retention in passive avoidance test. Without effect per se in the spatial working memory task, the four compounds failed to reverse scopolamine (1mg/kg, i.p.)-induced deficit in spontaneous alternation. These data suggested an action of DHEA and analogues in consolidation of long term memory particularly when emotional components are implied. Moreover, data indicated that pharmacological modulation of DHEA as performed in this study provides derivatives giving the same mnemonic profile than reference molecule.
The ERM protein Moesin is essential for neuronal morphogenesis and long-term memory in Drosophila.
Freymuth, Patrick S; Fitzsimons, Helen L
2017-08-29
Moesin is a cytoskeletal adaptor protein that plays an important role in modification of the actin cytoskeleton. Rearrangement of the actin cytoskeleton drives both neuronal morphogenesis and the structural changes in neurons that are required for long-term memory formation. Moesin has been identified as a candidate memory gene in Drosophila, however, whether it is required for memory formation has not been evaluated. Here, we investigate the role of Moesin in neuronal morphogenesis and in short- and long-term memory formation in the courtship suppression assay, a model of associative memory. We found that both knockdown and overexpression of Moesin led to defects in axon growth and guidance as well as dendritic arborization. Moreover, reduction of Moesin expression or expression of a constitutively active phosphomimetic in the adult Drosophila brain had no effect on short term memory, but prevented long-term memory formation, an effect that was independent of its role in development. These results indicate a critical role for Moesin in both neuronal morphogenesis and long-term memory formation.
Word Associated Arousal as an Encoding Dimension in Short Term Memory.
ERIC Educational Resources Information Center
Hayduk, Allan W.; Osborne, John W.
1981-01-01
The fact that a significant amount of release from proactive interference was obtained with subjects in this study by shifting between differentially arousing categories of words suggested that rated word arousal is an encoding dimension in short-term memory. (CM)
Tree, Jeremy; Kay, Janice
2015-09-01
In the field of dementia research, there are reports of neurodegenerative cases with a focal loss of language, termed primary progressive aphasia (PPA). Currently, this condition has been further sub-classified, with the most recent sub-type dubbed logopenic variant (PPA-LV). As yet, there remains somewhat limited evaluation of the characteristics of this condition, with no studies providing longitudinal assessment accompanied by post-mortem examination. Moreover, a key characteristic of the PPA-LV case is a deterioration of phonological short-term memory, but again little work has scrutinized the nature of this impairment over time. The current study seeks to redress these oversights and presents detailed longitudinal examination of language and memory function in a case of PPA-LV, with special focus on tests linked to components of phonological short-term memory function. Our findings are then considered with reference to a contemporary model of the neuropsychology of phonological short-term memory. Additionally, post-mortem examinations indicated Alzheimer's disease type pathology, providing further evidence that the PPA-LV presentation may reflect an atypical presentation of this condition. © 2014 The British Psychological Society.
Updating and feature overwriting in short-term memory for timbre.
Mercer, Tom; McKeown, Denis
2010-11-01
Previous research has demonstrated a potent, stimulus-specific form of interference in short-term auditory memory. This effect has been interpreted in terms of interitem confusion and grouping, but the present experiments suggested that interference might be a feature-specific phenomenon. Participants compared standard and comparison tones over a 10-sec interval and were required to determine whether they differed in timbre. A single interfering distractor tone was presented either 50 msec or 8 sec after the offset of the standard (Experiment 1) or 2 sec prior to its onset (Experiment 2). The distractor varied in the number of features it shared with the standard and comparison, and this proved critical, since performance on the task was greatly impaired when the distractor either consisted of novel, unshared features (Experiment 1) or contained the distinguishing feature of the comparison tone (Experiments 1 and 2). These findings were incompatible with earlier accounts of forgetting but were fully explicable by the recent timbre memory model, which associates interference in short-term auditory memory with an "updating" process and feature overwriting. These results suggest similarities with the mechanisms that underlie forgetting in verbal short-term memory.
Seugnet, Laurent; Galvin, James E.; Suzuki, Yasuko; Gottschalk, Laura; Shaw, Paul J.
2009-01-01
Study Objectives: Parkinson disease (PD) is the second most common neurodegenerative disorder in the United States. It is associated with motor deficits, sleep disturbances, and cognitive impairment. The pathology associated with PD and the effects of sleep deprivation impinge, in part, upon common molecular pathways suggesting that sleep loss may be particularly deleterious to the degenerating brain. Thus we investigated the long-term consequences of sleep deprivation on short-term memory using a Drosophila model of Parkinson disease. Participants: Transgenic strains of Drosophila melanogaster. Design: Using the GAL4-UAS system, human α-synuclein was expressed throughout the nervous system of adult flies. α-Synuclein expressing flies (αS flies) and the corresponding genetic background controls were sleep deprived for 12 h at age 16 days and allowed to recover undisturbed for at least 3 days. Short-term memory was evaluated using aversive phototaxis suppression. Dopaminergic systems were assessed using mRNA profiling and immunohistochemistry. Measurments and Results: When sleep deprived at an intermediate stage of the pathology, αS flies showed persistent short-term memory deficits that lasted ≥ 3 days. Cognitive deficits were not observed in younger αS flies nor in genetic background controls. Long-term impairments were not associated with accelerated loss of dopaminergic neurons. However mRNA expression of the dopamine receptors dDA1 and DAMB were significantly increased in sleep deprived αS flies. Blocking D1-like receptors during sleep deprivation prevented persistent short-term memory deficits. Importantly, feeding flies the polyphenolic compound curcumin blocked long-term learning deficits. Conclusions: These data emphasize the importance of sleep in a degenerating/reorganizing brain and shows that pathological processes induced by sleep deprivation can be dissected at the molecular and cellular level using Drosophila genetics. Citation: Seugnet L; Galvin JE; Suzuki Y; Gottschalk L; Shaw PJ. Persistent short-term memory defects following sleep deprivation in a drosophila model of parkinson disease. SLEEP 2009;32(8):984-992. PMID:19725249
Della-Maggiore, Valeria; Villalta, Jorge I; Kovacevic, Natasa; McIntosh, Anthony Randal
2017-03-01
Adaptation learning is crucial to maintain precise motor control in face of environmental perturbations. Although much progress has been made in understanding the psychophysics and neurophysiology of sensorimotor adaptation (SA), the time course of memory consolidation remains elusive. The lack of a reproducible gradient of memory resistance using protocols of retrograde interference has even led to the proposal that memories produced through SA do not consolidate. Here, we pursued an alternative approach using resting-state fMRI to track changes in functional connectivity (FC) induced by learning. Given that consolidation leads to long-term memory, we hypothesized that a change in FC that predicted long-term memory but not short-term memory would provide indirect evidence for memory stabilization. Six scans were acquired before, 15 min, 1, 3, 5.5, and 24 h after training on a center-out task under veridical or distorted visual feedback. The experimental group showed an increment in FC of a network including motor, premotor, posterior parietal cortex, cerebellum, and putamen that peaked at 5.5 h. Crucially, the strengthening of this network correlated positively with long-term retention but negatively with short-term retention. Our work provides evidence, suggesting that adaptation memories stabilize within a 6-h window, and points to different mechanisms subserving short- and long-term memory. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Jurado-Berbel, Patricia; Costa-Miserachs, David; Torras-Garcia, Meritxell; Coll-Andreu, Margalida; Portell-Cortés, Isabel
2010-02-11
The present work examined whether post-training systemic epinephrine (EPI) is able to modulate short-term (3h) and long-term (24 h and 48 h) memory of standard object recognition, as well as long-term (24 h) memory of separate "what" (object identity) and "where" (object location) components of object recognition. Although object recognition training is associated to low arousal levels, all the animals received habituation to the training box in order to further reduce emotional arousal. Post-training EPI improved long-term (24 h and 48 h), but not short-term (3 h), memory in the standard object recognition task, as well as 24 h memory for both object identity and object location. These data indicate that post-training epinephrine: (1) facilitates long-term memory for standard object recognition; (2) exerts separate facilitatory effects on "what" (object identity) and "where" (object location) components of object recognition; and (3) is capable of improving memory for a low arousing task even in highly habituated rats.
Attending to unrelated targets boosts short-term memory for color arrays.
Makovski, Tal; Swallow, Khena M; Jiang, Yuhong V
2011-05-01
Detecting a target typically impairs performance in a second, unrelated task. It has been recently reported however, that detecting a target in a stream of distractors can enhance long-term memory of faces and scenes that were presented concurrently with the target (the attentional boost effect). In this study we ask whether target detection also enhances performance in a visual short-term memory task, where capacity limits are severe. Participants performed two tasks at once: a one shot, color change detection task and a letter-detection task. In Experiment 1, a central letter appeared at the same time as 3 or 5 color patches (memory display). Participants encoded the colors and pressed the spacebar if the letter was a T (target). After a short retention interval, a probe display of color patches appeared. Performance on the change detection task was enhanced when a target, rather than a distractor, appeared with the memory display. This effect was not modulated by memory load or the frequency of trials in which a target appeared. However, there was no enhancement when the target appeared at the same time as the probe display (Experiment 2a) or during the memory retention interval (Experiment 2b). Together these results suggest that detecting a target facilitates the encoding of unrelated information into visual short-term memory. Copyright © 2010 Elsevier Ltd. All rights reserved.
As the world turns: short-term human spatial memory in egocentric and allocentric coordinates.
Banta Lavenex, Pamela; Lecci, Sandro; Prêtre, Vincent; Brandner, Catherine; Mazza, Christian; Pasquier, Jérôme; Lavenex, Pierre
2011-05-16
We aimed to determine whether human subjects' reliance on different sources of spatial information encoded in different frames of reference (i.e., egocentric versus allocentric) affects their performance, decision time and memory capacity in a short-term spatial memory task performed in the real world. Subjects were asked to play the Memory game (a.k.a. the Concentration game) without an opponent, in four different conditions that controlled for the subjects' reliance on egocentric and/or allocentric frames of reference for the elaboration of a spatial representation of the image locations enabling maximal efficiency. We report experimental data from young adult men and women, and describe a mathematical model to estimate human short-term spatial memory capacity. We found that short-term spatial memory capacity was greatest when an egocentric spatial frame of reference enabled subjects to encode and remember the image locations. However, when egocentric information was not reliable, short-term spatial memory capacity was greater and decision time shorter when an allocentric representation of the image locations with respect to distant objects in the surrounding environment was available, as compared to when only a spatial representation encoding the relationships between the individual images, independent of the surrounding environment, was available. Our findings thus further demonstrate that changes in viewpoint produced by the movement of images placed in front of a stationary subject is not equivalent to the movement of the subject around stationary images. We discuss possible limitations of classical neuropsychological and virtual reality experiments of spatial memory, which typically restrict the sensory information normally available to human subjects in the real world. Copyright © 2011 Elsevier B.V. All rights reserved.
Xie, Weizhen; Zhang, Weiwei
2018-01-01
To test how preexisting long-term memory influences visual STM, this study takes advantage of individual differences in participants' prior familiarity with Pokémon characters and uses an ERP component, the contralateral delay activity (CDA), to assess whether observers' prior stimulus familiarity affects STM consolidation and storage capacity. In two change detection experiments, consolidation speed, as indexed by CDA fractional area latency and/or early-window (500-800 msec) amplitude, was significantly associated with individual differences in Pokémon familiarity. In contrast, the number of remembered Pokémon stimuli, as indexed by Cowan's K and late-window (1500-2000 msec) CDA amplitude, was significantly associated with individual differences in Pokémon familiarity when STM consolidation was incomplete because of a short presentation of Pokémon stimuli (500 msec, Experiment 2), but not when STM consolidation was allowed to complete given sufficient encoding time (1000 msec, Experiment 1). Similar findings were obtained in between-group analyses when participants were separated into high-familiarity and low-familiarity groups based on their Pokémon familiarity ratings. Together, these results suggest that stimulus familiarity, as a proxy for the strength of preexisting long-term memory, primarily speeds up STM consolidation, which may subsequently lead to an increase in the number of remembered stimuli if consolidation is incomplete. These findings thus highlight the importance of research assessing how effects on representations (e.g., STM capacity) are in general related to (or even caused by) effects on processes (e.g., STM consolidation) in cognition.
Reverberation, Storage, and Postsynaptic Propagation of Memories during Sleep
ERIC Educational Resources Information Center
Ribeiro, Sidarta; Nicolelis, Miguel A. L.
2004-01-01
In mammals and birds, long episodes of nondreaming sleep ("slow-wave" sleep, SW) are followed by short episodes of dreaming sleep ("rapid-eye-movement" sleep, REM). Both SW and REM sleep have been shown to be important for the consolidation of newly acquired memories, but the underlying mechanisms remain elusive. Here we review…
Time Series Model Identification and Prediction Variance Horizon.
1980-06-01
stationary time series Y(t). -6- In terms of p(v), the definition of the three time series memory types is: No Memory Short Memory Long Memory X IP (v)I 0 0...X lp(v)l < - I IP (v) = v=1 v=l v=l Within short memory time series there are three types whose classification in terms of correlation functions is...1974) "Some Recent Advances in Time Series Modeling", TEEE Transactions on Automatic ControZ, VoZ . AC-19, No. 6, December, 723-730. Parzen, E. (1976) "An
Thomasson, Julien; Canini, Frédéric; Poly-Thomasson, Betty; Trousselard, Marion; Granon, Sylvie; Chauveau, Frédéric
2017-12-01
Sleep restriction (SR) impairs short term memory (STM) that might be related to different processes. Neuropeptide S (NPS), an endogenous neuropeptide that improves short term memory, activates arousal and decreases anxiety is likely to counteract the SR-induced impairment of STM. The objective of the present study was to find common cerebral pathways in sleep restriction and NPS action in order to ultimately antagonize SR effect on memory. The STM was assessed using a spontaneous spatial alternation task in a T-maze. C57-Bl/6J male mice were distributed in 4 groups according to treatment (0.1nmol of NPS or vehicle intracerebroventricular injection) and to 20h-SR. Immediately after behavioural testing, regional c-fos immunohistochemistry was performed and used as a neural activation marker for spatial short term memory (prefrontal cortex, dorsal hippocampus) and emotional reactivity (basolateral amygdala and ventral hippocampus). Anxiety-like behaviour was assessed using elevated-plus maze task. Results showed that SR impaired short term memory performance and decreased neuronal activation in cingular cortex.NPS injection overcame SR-induced STM deficits and increased neuronal activation in infralimbic cortex. SR spared anxiety-like behavior in the elevated-plus maze. Neural activation in basolateral nucleus of amygdala and ventral hippocampus were not changed after SR.In conclusion, the present study shows that NPS overcomes SR-induced STM deficits by increasing prefrontal cortex activation independently of anxiety-like behaviour. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Stimulus-specific suppression preserves information in auditory short-term memory.
Linke, Annika C; Vicente-Grabovetsky, Alejandro; Cusack, Rhodri
2011-08-02
Philosophers and scientists have puzzled for millennia over how perceptual information is stored in short-term memory. Some have suggested that early sensory representations are involved, but their precise role has remained unclear. The current study asks whether auditory cortex shows sustained frequency-specific activation while sounds are maintained in short-term memory using high-resolution functional MRI (fMRI). Investigating short-term memory representations within regions of human auditory cortex with fMRI has been difficult because of their small size and high anatomical variability between subjects. However, we overcame these constraints by using multivoxel pattern analysis. It clearly revealed frequency-specific activity during the encoding phase of a change detection task, and the degree of this frequency-specific activation was positively related to performance in the task. Although the sounds had to be maintained in memory, activity in auditory cortex was significantly suppressed. Strikingly, patterns of activity in this maintenance period correlated negatively with the patterns evoked by the same frequencies during encoding. Furthermore, individuals who used a rehearsal strategy to remember the sounds showed reduced frequency-specific suppression during the maintenance period. Although negative activations are often disregarded in fMRI research, our findings imply that decreases in blood oxygenation level-dependent response carry important stimulus-specific information and can be related to cognitive processes. We hypothesize that, during auditory change detection, frequency-specific suppression protects short-term memory representations from being overwritten by inhibiting the encoding of interfering sounds.
Enhanced stability of car-following model upon incorporation of short-term driving memory
NASA Astrophysics Data System (ADS)
Liu, Da-Wei; Shi, Zhong-Ke; Ai, Wen-Huan
2017-06-01
Based on the full velocity difference model, a new car-following model is developed to investigate the effect of short-term driving memory on traffic flow in this paper. Short-term driving memory is introduced as the influence factor of driver's anticipation behavior. The stability condition of the newly developed model is derived and the modified Korteweg-de Vries (mKdV) equation is constructed to describe the traffic behavior near the critical point. Via numerical method, evolution of a small perturbation is investigated firstly. The results show that the improvement of this new car-following model over the previous ones lies in the fact that the new model can improve the traffic stability. Starting and breaking processes of vehicles in the signalized intersection are also investigated. The numerical simulations illustrate that the new model can successfully describe the driver's anticipation behavior, and that the efficiency and safety of the vehicles passing through the signalized intersection are improved by considering short-term driving memory.
Weighted integration of short-term memory and sensory signals in the oculomotor system.
Deravet, Nicolas; Blohm, Gunnar; de Xivry, Jean-Jacques Orban; Lefèvre, Philippe
2018-05-01
Oculomotor behaviors integrate sensory and prior information to overcome sensory-motor delays and noise. After much debate about this process, reliability-based integration has recently been proposed and several models of smooth pursuit now include recurrent Bayesian integration or Kalman filtering. However, there is a lack of behavioral evidence in humans supporting these theoretical predictions. Here, we independently manipulated the reliability of visual and prior information in a smooth pursuit task. Our results show that both smooth pursuit eye velocity and catch-up saccade amplitude were modulated by visual and prior information reliability. We interpret these findings as the continuous reliability-based integration of a short-term memory of target motion with visual information, which support modeling work. Furthermore, we suggest that saccadic and pursuit systems share this short-term memory. We propose that this short-term memory of target motion is quickly built and continuously updated, and constitutes a general building block present in all sensorimotor systems.
Salis, Christos; Hwang, Faustina; Howard, David; Lallini, Nicole
2017-02-01
Although the roles of verbal short-term and working memory on spoken sentence comprehension skills in persons with aphasia have been debated for many years, the development of treatments to mitigate verbal short-term and working memory deficits as a way of improving spoken sentence comprehension is a new avenue in treatment research. In this article, we review and critically appraise this emerging evidence base. We also present new data from five persons with aphasia of a replication of a previously reported treatment that had resulted in some improvement of spoken sentence comprehension in a person with aphasia. The replicated treatment did not result in improvements in sentence comprehension. We forward recommendations for future research in this, admittedly weak at present, but important clinical research avenue that would help improve our understanding of the mechanisms of improvement of short-term and working memory training in relation to sentence comprehension. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Robust short-term memory without synaptic learning.
Johnson, Samuel; Marro, J; Torres, Joaquín J
2013-01-01
Short-term memory in the brain cannot in general be explained the way long-term memory can--as a gradual modification of synaptic weights--since it takes place too quickly. Theories based on some form of cellular bistability, however, do not seem able to account for the fact that noisy neurons can collectively store information in a robust manner. We show how a sufficiently clustered network of simple model neurons can be instantly induced into metastable states capable of retaining information for a short time (a few seconds). The mechanism is robust to different network topologies and kinds of neural model. This could constitute a viable means available to the brain for sensory and/or short-term memory with no need of synaptic learning. Relevant phenomena described by neurobiology and psychology, such as local synchronization of synaptic inputs and power-law statistics of forgetting avalanches, emerge naturally from this mechanism, and we suggest possible experiments to test its viability in more biological settings.
ERIC Educational Resources Information Center
Cellard, Caroline; Tremblay, Sebastien; Lehoux, Catherine; Roy, Marc-Andre
2007-01-01
Memory impairment is a core feature in schizophrenia (SZ). The aim of this study was to investigate short-term memory (STM) and its sensitivity to distraction with visual-spatial material. This study comprised 23 recent-onset SZ patients and 23 healthy controls. The degree of disruption upon recall from interleaving irrelevant items within a…
Evidence for Decay in Verbal Short-Term Memory: A Commentary on Berman, Jonides, and Lewis (2009)
ERIC Educational Resources Information Center
Campoy, Guillermo
2012-01-01
M. G. Berman, J. Jonides, and R. L. Lewis (2009) adapted the recent-probes task to investigate the causes of forgetting in short-term memory. In 7 experiments, they studied the persistence of memory traces by assessing the level of proactive interference generated by previous-trial items over a range of intertrial intervals. None of the…
Overwriting and intrusion in short-term memory.
Bancroft, Tyler D; Jones, Jeffery A; Ensor, Tyler M; Hockley, William E; Servos, Philip
2016-04-01
Studies of interference in working and short-term memory suggest that irrelevant information may overwrite the contents of memory or intrude into memory. While some previous studies have reported greater interference when irrelevant information is similar to the contents of memory than when it is dissimilar, other studies have reported greater interference for dissimilar distractors than for similar distractors. In the present study, we find the latter effect in a paradigm that uses auditory tones as stimuli. We suggest that the effects of distractor similarity to memory contents are mediated by the type of information held in memory, particularly the complexity or simplicity of information.
ERIC Educational Resources Information Center
Jarrold, Christopher; Cowan, Nelson; Hewes, Alexa K.; Riby, Deborah M.
2004-01-01
This study explored the degree of verbal short-term memory deficit among individuals with Down syndrome and Williams syndrome, and the extent to which any such impairment could be accounted for by a relative slowing of rehearsal and output processes. Measures of serial recall and detailed assessments of speeded articulation for short and long…