Science.gov

Sample records for short-term synaptic plasticity

  1. Theoretical models of synaptic short term plasticity

    PubMed Central

    Hennig, Matthias H.

    2013-01-01

    Short term plasticity is a highly abundant form of rapid, activity-dependent modulation of synaptic efficacy. A shared set of mechanisms can cause both depression and enhancement of the postsynaptic response at different synapses, with important consequences for information processing. Mathematical models have been extensively used to study the mechanisms and roles of short term plasticity. This review provides an overview of existing models and their biological basis, and of their main properties. Special attention will be given to slow processes such as calcium channel inactivation and the effect of activation of presynaptic autoreceptors. PMID:23626536

  2. The Role of Short Term Synaptic Plasticity in Temporal Coding of Neuronal Networks

    ERIC Educational Resources Information Center

    Chandrasekaran, Lakshmi

    2008-01-01

    Short term synaptic plasticity is a phenomenon which is commonly found in the central nervous system. It could contribute to functions of signal processing namely, temporal integration and coincidence detection by modulating the input synaptic strength. This dissertation has two parts. First, we study the effects of short term synaptic plasticity…

  3. The Role of Short Term Synaptic Plasticity in Temporal Coding of Neuronal Networks

    ERIC Educational Resources Information Center

    Chandrasekaran, Lakshmi

    2008-01-01

    Short term synaptic plasticity is a phenomenon which is commonly found in the central nervous system. It could contribute to functions of signal processing namely, temporal integration and coincidence detection by modulating the input synaptic strength. This dissertation has two parts. First, we study the effects of short term synaptic plasticity…

  4. Short-Term Synaptic Plasticity at Interneuronal Synapses Could Sculpt Rhythmic Motor Patterns

    PubMed Central

    Jia, Yan; Parker, David

    2016-01-01

    The output of a neuronal network depends on the organization and functional properties of its component cells and synapses. While the characterization of synaptic properties has lagged cellular analyses, a potentially important aspect in rhythmically active networks is how network synapses affect, and are in turn affected by, network activity. This could lead to a potential circular interaction where short-term activity-dependent synaptic plasticity is both influenced by and influences the network output. The analysis of synaptic plasticity in the lamprey locomotor network was extended here to characterize the short-term plasticity of connections between network interneurons and to try and address its potential network role. Paired recordings from identified interneurons in quiescent networks showed synapse-specific synaptic properties and plasticity that supported the presence of two hemisegmental groups that could influence bursting: depression in an excitatory interneuron group, and facilitation in an inhibitory feedback circuit. The influence of activity-dependent synaptic plasticity on network activity was investigated experimentally by changing Ringer Ca2+ levels, and in a simple computer model. A potential caveat of the experimental analyses was that changes in Ringer Ca2+ (and compensatory adjustments in Mg2+ in some cases) could alter several other cellular and synaptic properties. Several of these properties were tested, and while there was some variability, these were not usually significantly affected by the Ringer changes. The experimental analyses suggested that depression of excitatory inputs had the strongest influence on the patterning of network activity. The simulation supported a role for this effect, and also suggested that the inhibitory facilitating group could modulate the influence of the excitatory synaptic depression. Short-term activity-dependent synaptic plasticity has not generally been considered in spinal cord models. These results

  5. Probabilistic inference of short-term synaptic plasticity in neocortical microcircuits

    PubMed Central

    Costa, Rui P.; Sjöström, P. Jesper; van Rossum, Mark C. W.

    2013-01-01

    Short-term synaptic plasticity is highly diverse across brain area, cortical layer, cell type, and developmental stage. Since short-term plasticity (STP) strongly shapes neural dynamics, this diversity suggests a specific and essential role in neural information processing. Therefore, a correct characterization of short-term synaptic plasticity is an important step towards understanding and modeling neural systems. Phenomenological models have been developed, but they are usually fitted to experimental data using least-mean-square methods. We demonstrate that for typical synaptic dynamics such fitting may give unreliable results. As a solution, we introduce a Bayesian formulation, which yields the posterior distribution over the model parameters given the data. First, we show that common STP protocols yield broad distributions over some model parameters. Using our result we propose a experimental protocol to more accurately determine synaptic dynamics parameters. Next, we infer the model parameters using experimental data from three different neocortical excitatory connection types. This reveals connection-specific distributions, which we use to classify synaptic dynamics. Our approach to demarcate connection-specific synaptic dynamics is an important improvement on the state of the art and reveals novel features from existing data. PMID:23761760

  6. Factors Influencing Short-term Synaptic Plasticity in the Avian Cochlear Nucleus Magnocellularis

    PubMed Central

    Sanchez, Jason Tait; Quinones, Karla; Otto-Meyer, Sebastian

    2015-01-01

    Defined as reduced neural responses during high rates of activity, synaptic depression is a form of short-term plasticity important for the temporal filtering of sound. In the avian cochlear nucleus magnocellularis (NM), an auditory brainstem structure, mechanisms regulating short-term synaptic depression include pre-, post-, and extrasynaptic factors. Using varied paired-pulse stimulus intervals, we found that the time course of synaptic depression lasts up to four seconds at late-developing NM synapses. Synaptic depression was largely reliant on exogenous Ca2+-dependent probability of presynaptic neurotransmitter release, and to a lesser extent, on the desensitization of postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor (AMPA-R). Interestingly, although extrasynaptic glutamate clearance did not play a significant role in regulating synaptic depression, blocking glutamate clearance at early-developing synapses altered synaptic dynamics, changing responses from depression to facilitation. These results suggest a developmental shift in the relative reliance on pre-, post-, and extrasynaptic factors in regulating short-term synaptic plasticity in NM. PMID:26527054

  7. Self-tuning of neural circuits through short-term synaptic plasticity.

    PubMed

    Sussillo, David; Toyoizumi, Taro; Maass, Wolfgang

    2007-06-01

    Numerous experimental data show that cortical networks of neurons are not silent in the absence of external inputs, but rather maintain a low spontaneous firing activity. This aspect of cortical networks is likely to be important for their computational function, but is hard to reproduce in models of cortical circuits of neurons because the low-activity regime is inherently unstable. Here we show-through theoretical analysis and extensive computer simulations-that short-term synaptic plasticity endows models of cortical circuits with a remarkable stability in the low-activity regime. This short-term plasticity works as a homeostatic mechanism that stabilizes the overall activity level in spite of drastic changes in external inputs and internal circuit properties, while preserving reliable transient responses to signals. The contribution of synaptic dynamics to this stability can be predicted on the basis of general principles from control theory.

  8. Short-term environmental enrichment enhances synaptic plasticity in hippocampal slices from aged rats.

    PubMed

    Stein, Liana R; O'Dell, Kazuko A; Funatsu, Michiyo; Zorumski, Charles F; Izumi, Yukitoshi

    2016-08-04

    Age-associated changes in cognition are mirrored by impairments in cellular models of memory and learning, such as long-term potentiation (LTP) and long-term depression (LTD). In young rodents, environmental enrichment (EE) can enhance memory, alter LTP and LTD, as well as reverse cognitive deficits induced by aging. Whether short-term EE can benefit cognition and synaptic plasticity in aged rodents is unclear. Here, we tested if short-term EE could overcome age-associated impairments in induction of LTP and LTD. LTP and LTD could not be induced in the CA1 region of hippocampal slices in control, aged rats using standard stimuli that are highly effective in young rats. However, exposure of aged littermates to EE for three weeks enabled successful induction of LTP and LTD. EE-facilitated LTP was dependent upon N-methyl-d-aspartate receptors (NMDARs). These alterations in synaptic plasticity occurred with elevated levels of phosphorylated cAMP response element-binding protein and vascular endothelial growth factor, but in the absence of changes in several other synaptic and cellular markers. Importantly, our study suggests that even a relatively short period of EE is sufficient to alter synaptic plasticity and molecular markers linked to cognitive function in aged animals. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Evolutionarily conserved differences in pallial and thalamic short-term synaptic plasticity in striatum

    PubMed Central

    Ericsson, Jesper; Stephenson-Jones, Marcus; Kardamakis, Andreas; Robertson, Brita; Silberberg, Gilad; Grillner, Sten

    2013-01-01

    The striatum of the basal ganglia is conserved throughout the vertebrate phylum. Tracing studies in lamprey have shown that its afferent inputs are organized in a manner similar to that of mammals. The main inputs arise from the thalamus (Th) and lateral pallium (LPal; the homologue of cortex) that represents the two principal excitatory glutamatergic inputs in mammals. The aim here was to characterize the pharmacology and synaptic dynamics of afferent fibres from the LPal and Th onto identified striatal neurons to understand the processing taking place in the lamprey striatum. We used whole-cell current-clamp recordings in acute slices of striatum with preserved fibres from the Th and LPal, as well as tract tracing and immunohistochemistry. We show that the Th and LPal produce monosynaptic excitatory glutamatergic input through NMDA and AMPA receptors. The synaptic input from the LPal displayed short-term facilitation, unlike the Th input that instead displayed strong short-term synaptic depression. There was also an activity-dependent recruitment of intrastriatal oligosynaptic inhibition from both inputs. These results indicate that the two principal inputs undergo different activity-dependent short-term synaptic plasticity in the lamprey striatum. The difference observed between Th and LPal (cortical) input is also observed in mammals, suggesting a conserved trait throughout vertebrate evolution. PMID:23148315

  10. Estimating short-term synaptic plasticity from pre- and postsynaptic spiking.

    PubMed

    Ghanbari, Abed; Malyshev, Aleksey; Volgushev, Maxim; Stevenson, Ian H

    2017-09-01

    Short-term synaptic plasticity (STP) critically affects the processing of information in neuronal circuits by reversibly changing the effective strength of connections between neurons on time scales from milliseconds to a few seconds. STP is traditionally studied using intracellular recordings of postsynaptic potentials or currents evoked by presynaptic spikes. However, STP also affects the statistics of postsynaptic spikes. Here we present two model-based approaches for estimating synaptic weights and short-term plasticity from pre- and postsynaptic spike observations alone. We extend a generalized linear model (GLM) that predicts postsynaptic spiking as a function of the observed pre- and postsynaptic spikes and allow the connection strength (coupling term in the GLM) to vary as a function of time based on the history of presynaptic spikes. Our first model assumes that STP follows a Tsodyks-Markram description of vesicle depletion and recovery. In a second model, we introduce a functional description of STP where we estimate the coupling term as a biophysically unrestrained function of the presynaptic inter-spike intervals. To validate the models, we test the accuracy of STP estimation using the spiking of pre- and postsynaptic neurons with known synaptic dynamics. We first test our models using the responses of layer 2/3 pyramidal neurons to simulated presynaptic input with different types of STP, and then use simulated spike trains to examine the effects of spike-frequency adaptation, stochastic vesicle release, spike sorting errors, and common input. We find that, using only spike observations, both model-based methods can accurately reconstruct the time-varying synaptic weights of presynaptic inputs for different types of STP. Our models also capture the differences in postsynaptic spike responses to presynaptic spikes following short vs long inter-spike intervals, similar to results reported for thalamocortical connections. These models may thus be useful

  11. Functional roles of short-term synaptic plasticity with an emphasis on inhibition.

    PubMed

    Anwar, Haroon; Li, Xinping; Bucher, Dirk; Nadim, Farzan

    2017-04-01

    Almost all synapses show activity-dependent dynamic changes in efficacy. Numerous studies have explored the mechanisms underlying different forms of short-term synaptic plasticity (STP), but the functional role of STP for circuit output and animal behavior is less understood. This is particularly true for inhibitory synapses that can play widely varied roles in circuit activity. We review recent findings on the role of synaptic STP in sensory, pattern generating, thalamocortical, and hippocampal networks, with a focus on synaptic inhibition. These studies show a variety of functions including sensory adaptation and gating, dynamic gain control and rhythm generation. Because experimental manipulations of STP are difficult and nonspecific, a clear demonstration of STP function often requires a combination of experimental and computational techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Short-Term Synaptic Plasticity Regulation in Solution-Gated Indium-Gallium-Zinc-Oxide Electric-Double-Layer Transistors.

    PubMed

    Wan, Chang Jin; Liu, Yang Hui; Zhu, Li Qiang; Feng, Ping; Shi, Yi; Wan, Qing

    2016-04-20

    In the biological nervous system, synaptic plasticity regulation is based on the modulation of ionic fluxes, and such regulation was regarded as the fundamental mechanism underlying memory and learning. Inspired by such biological strategies, indium-gallium-zinc-oxide (IGZO) electric-double-layer (EDL) transistors gated by aqueous solutions were proposed for synaptic behavior emulations. Short-term synaptic plasticity, such as paired-pulse facilitation, high-pass filtering, and orientation tuning, was experimentally emulated in these EDL transistors. Most importantly, we found that such short-term synaptic plasticity can be effectively regulated by alcohol (ethyl alcohol) and salt (potassium chloride) additives. Our results suggest that solution gated oxide-based EDL transistors could act as the platforms for short-term synaptic plasticity emulation.

  13. Synaptic plasticity, neural circuits, and the emerging role of altered short-term information processing in schizophrenia.

    PubMed

    Crabtree, Gregg W; Gogos, Joseph A

    2014-01-01

    Synaptic plasticity alters the strength of information flow between presynaptic and postsynaptic neurons and thus modifies the likelihood that action potentials in a presynaptic neuron will lead to an action potential in a postsynaptic neuron. As such, synaptic plasticity and pathological changes in synaptic plasticity impact the synaptic computation which controls the information flow through the neural microcircuits responsible for the complex information processing necessary to drive adaptive behaviors. As current theories of neuropsychiatric disease suggest that distinct dysfunctions in neural circuit performance may critically underlie the unique symptoms of these diseases, pathological alterations in synaptic plasticity mechanisms may be fundamental to the disease process. Here we consider mechanisms of both short-term and long-term plasticity of synaptic transmission and their possible roles in information processing by neural microcircuits in both health and disease. As paradigms of neuropsychiatric diseases with strongly implicated risk genes, we discuss the findings in schizophrenia and autism and consider the alterations in synaptic plasticity and network function observed in both human studies and genetic mouse models of these diseases. Together these studies have begun to point toward a likely dominant role of short-term synaptic plasticity alterations in schizophrenia while dysfunction in autism spectrum disorders (ASDs) may be due to a combination of both short-term and long-term synaptic plasticity alterations.

  14. Synaptic plasticity, neural circuits, and the emerging role of altered short-term information processing in schizophrenia

    PubMed Central

    Crabtree, Gregg W.; Gogos, Joseph A.

    2014-01-01

    Synaptic plasticity alters the strength of information flow between presynaptic and postsynaptic neurons and thus modifies the likelihood that action potentials in a presynaptic neuron will lead to an action potential in a postsynaptic neuron. As such, synaptic plasticity and pathological changes in synaptic plasticity impact the synaptic computation which controls the information flow through the neural microcircuits responsible for the complex information processing necessary to drive adaptive behaviors. As current theories of neuropsychiatric disease suggest that distinct dysfunctions in neural circuit performance may critically underlie the unique symptoms of these diseases, pathological alterations in synaptic plasticity mechanisms may be fundamental to the disease process. Here we consider mechanisms of both short-term and long-term plasticity of synaptic transmission and their possible roles in information processing by neural microcircuits in both health and disease. As paradigms of neuropsychiatric diseases with strongly implicated risk genes, we discuss the findings in schizophrenia and autism and consider the alterations in synaptic plasticity and network function observed in both human studies and genetic mouse models of these diseases. Together these studies have begun to point toward a likely dominant role of short-term synaptic plasticity alterations in schizophrenia while dysfunction in autism spectrum disorders (ASDs) may be due to a combination of both short-term and long-term synaptic plasticity alterations. PMID:25505409

  15. Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity

    PubMed Central

    Caillard, Olivier; Moreno, Herman; Schwaller, Beat; Llano, Isabel; Celio, Marco R.; Marty, Alain

    2000-01-01

    GABAergic (GABA = γ-aminobutyric acid) neurons from different brain regions contain high levels of parvalbumin, both in their soma and in their neurites. Parvalbumin is a slow Ca2+ buffer that may affect the amplitude and time course of intracellular Ca2+ transients in terminals after an action potential, and hence may regulate short-term synaptic plasticity. To test this possibility, we have applied paired-pulse stimulations (with 30- to 300-ms intervals) at GABAergic synapses between interneurons and Purkinje cells, both in wild-type (PV+/+) mice and in parvalbumin knockout (PV−/−) mice. We observed paired-pulse depression in PV+/+ mice, but paired-pulse facilitation in PV−/− mice. In paired recordings of connected interneuron-Purkinje cells, dialysis of the presynaptic interneuron with the slow Ca2+ buffer EGTA (1 mM) rescues paired-pulse depression in PV−/− mice. These data show that parvalbumin potently modulates short-term synaptic plasticity. PMID:11069288

  16. Genetic deletion of melanin-concentrating hormone neurons impairs hippocampal short-term synaptic plasticity and hippocampal-dependent forms of short-term memory.

    PubMed

    Le Barillier, Léa; Léger, Lucienne; Luppi, Pierre-Hervé; Fort, Patrice; Malleret, Gaël; Salin, Paul-Antoine

    2015-11-01

    The cognitive role of melanin-concentrating hormone (MCH) neurons, a neuronal population located in the mammalian postero-lateral hypothalamus sending projections to all cortical areas, remains poorly understood. Mainly activated during paradoxical sleep (PS), MCH neurons have been implicated in sleep regulation. The genetic deletion of the only known MCH receptor in rodent leads to an impairment of hippocampal dependent forms of memory and to an alteration of hippocampal long-term synaptic plasticity. By using MCH/ataxin3 mice, a genetic model characterized by a selective deletion of MCH neurons in the adult, we investigated the role of MCH neurons in hippocampal synaptic plasticity and hippocampal-dependent forms of memory. MCH/ataxin3 mice exhibited a deficit in the early part of both long-term potentiation and depression in the CA1 area of the hippocampus. Post-tetanic potentiation (PTP) was diminished while synaptic depression induced by repetitive stimulation was enhanced suggesting an alteration of pre-synaptic forms of short-term plasticity in these mice. Behaviorally, MCH/ataxin3 mice spent more time and showed a higher level of hesitation as compared to their controls in performing a short-term memory T-maze task, displayed retardation in acquiring a reference memory task in a Morris water maze, and showed a habituation deficit in an open field task. Deletion of MCH neurons could thus alter spatial short-term memory by impairing short-term plasticity in the hippocampus. Altogether, these findings could provide a cellular mechanism by which PS may facilitate memory encoding. Via MCH neuron activation, PS could prepare the day's learning by increasing and modulating short-term synaptic plasticity in the hippocampus. © 2015 Wiley Periodicals, Inc.

  17. Dopaminergic modulation of short-term synaptic plasticity at striatal inhibitory synapses

    PubMed Central

    Tecuapetla, Fatuel; Carrillo-Reid, Luis; Bargas, José; Galarraga, Elvira

    2007-01-01

    Circuit properties, such as the selection of motor synergies, have been posited as relevant tasks for the recurrent inhibitory synapses between spiny projection neurons of the neostriatum, a nucleus of the basal ganglia participating in procedural learning and voluntary motor control. Here we show how the dopaminergic system regulates short-term plasticity (STP) in these synapses. STP is thought to endow neuronal circuits with computational powers such as gain control, filtering, and the emergence of transitory net states. But little is known about STP regulation. Employing unitary and population synaptic recordings, we observed that activation of dopamine receptors can modulate STP between spiny neurons. A D1-class agonist enhances, whereas a D2-class agonist decreases, short-term depression most probably by synaptic redistribution. Presynaptic receptors appear to be responsible for this modulation. In contrast, STP between fast-spiking interneurons and spiny projection neurons is largely unregulated despite expressing presynaptic receptors. Thus, the present experiments provide an explanation for dopamine actions at the circuit level: the control of STP between lateral connections of output neurons and the reorganization of the balance between different forms of inhibitory transmission. Theoretically, D1 receptors would promote a sensitive, responsive state for temporal precision (dynamic component), whereas D2 receptors would sense background activity (static component). PMID:17545307

  18. Dopaminergic modulation of short-term synaptic plasticity at striatal inhibitory synapses.

    PubMed

    Tecuapetla, Fatuel; Carrillo-Reid, Luis; Bargas, José; Galarraga, Elvira

    2007-06-12

    Circuit properties, such as the selection of motor synergies, have been posited as relevant tasks for the recurrent inhibitory synapses between spiny projection neurons of the neostriatum, a nucleus of the basal ganglia participating in procedural learning and voluntary motor control. Here we show how the dopaminergic system regulates short-term plasticity (STP) in these synapses. STP is thought to endow neuronal circuits with computational powers such as gain control, filtering, and the emergence of transitory net states. But little is known about STP regulation. Employing unitary and population synaptic recordings, we observed that activation of dopamine receptors can modulate STP between spiny neurons. A D(1)-class agonist enhances, whereas a D(2)-class agonist decreases, short-term depression most probably by synaptic redistribution. Presynaptic receptors appear to be responsible for this modulation. In contrast, STP between fast-spiking interneurons and spiny projection neurons is largely unregulated despite expressing presynaptic receptors. Thus, the present experiments provide an explanation for dopamine actions at the circuit level: the control of STP between lateral connections of output neurons and the reorganization of the balance between different forms of inhibitory transmission. Theoretically, D(1) receptors would promote a sensitive, responsive state for temporal precision (dynamic component), whereas D(2) receptors would sense background activity (static component).

  19. Dynamic modulation of short term synaptic plasticity in the auditory cortex: the role of norepinephrine

    PubMed Central

    Humberto, Salgado; Francisco, García-Oscos; Lu, Dinh

    2010-01-01

    Norepinephrine (NE) is an important modulator of neuronal activity in the auditory cortex. Using patch-clamp recording and a pair pulse protocol on an auditory cortex slice preparation we recently demonstrated that NE affects cortical inhibition in a layer-specific manner, by decreasing apical but increasing basal inhibition onto layer II/III pyramidal cell dendrites. In the present study we used a similar protocol to investigate the dependence of noradrenergic modulation of inhibition on stimulus frequency, using 1s-long train pulses at 5, 10, and 20 Hz. The study was conducted using pharmacologically isolated inhibitory post-synaptic currents (IPSCs) evoked by electrical stimulation of axons either in layer I (LI-eIPSCs) or in layer II/III (LII/III-eIPSCs). We found that: 1) LI-eIPSC display less synaptic depression than LII/III-eIPSCs at all the frequencies tested, 2) in both type of synapses depression had a presynaptic component which could be altered manipulating [Ca2+]o, 3) NE modestly altered short-term synaptic plasticity at low or intermediate (5–10 Hz) frequencies, but selectively enhanced synaptic facilitation in LI-eIPSCs while increasing synaptic depression of LII/III-eIPSCs in the latest (>250 ms) part of the response, at high stimulation frequency (20 Hz). We speculate that these mechanisms may limit the temporal window for top-down synaptic integration as well as the duration and intensity of stimulus-evoked gamma oscillations triggered by complex auditory stimuli during alertness. PMID:20816739

  20. Nonconserved Ca2+/Calmodulin Binding Sites in Munc13s Differentially Control Synaptic Short-Term Plasticity

    PubMed Central

    Lipstein, Noa; Schaks, Sabine; Dimova, Kalina; Kalkhof, Stefan; Ihling, Christian; Kölbel, Knut; Ashery, Uri; Rhee, JeongSeop; Brose, Nils

    2012-01-01

    Munc13s are presynaptic proteins that mediate synaptic vesicle priming and thereby control the size of the readily releasable pool of vesicles. During high synaptic activity, Munc13-1 and its closely related homolog, ubMunc13-2, bind Ca2+/calmodulin, resulting in enhanced priming activity and in changes of short-term synaptic plasticity characteristics. Here, we studied whether bMunc13-2 and Munc13-3, two remote isoforms of Munc13-1 with a neuronal subtype-specific expression pattern, mediate synaptic vesicle priming and regulate short-term synaptic plasticity in a Ca2+/calmodulin-dependent manner. We identified a single functional Ca2+/calmodulin binding site in these isoforms and provide structural evidence that all Munc13s employ a common mode of interaction with calmodulin despite the lack of sequence homology between their Ca2+/calmodulin binding sites. Electrophysiological analysis showed that, during high-frequency activity, Ca2+/calmodulin binding positively regulates the priming activity of bMunc13-2 and Munc13-3, resulting in an increase in the size of the readily releasable pool of vesicles and subsequently in strong short-term synaptic enhancement of neurotransmission. We conclude that Ca2+/calmodulin-dependent regulation of priming activity is structurally and functionally conserved in all Munc13 proteins, and that the composition of Munc13 isoforms in a neuron differentially controls its short-term synaptic plasticity characteristics. PMID:22966208

  1. Short term synaptic plasticity regulates the level of olivocochlear inhibition to auditory hair cells

    PubMed Central

    Ballestero, Jimena; de San Martín, Javier Zorrilla; Goutman, Juan; Elgoyhen, Ana Belén; Fuchs, Paul A.; Katz, Eleonora

    2011-01-01

    In the mammalian inner ear, the gain control of auditory inputs is exerted by medial olivocochlear (MOC) neurons that innervate cochlear outer hair cells (OHCs). OHCs mechanically amplify the incoming sound waves by virtue of their electromotile properties while the MOC system reduces the gain of auditory inputs by inhibiting OHCs function. How this process is orchestrated at the synaptic level remains unknown. In the present study, MOC firing was evoked by electrical stimulation in an isolated mouse cochlear preparation, while OHCs postsynaptic responses were monitored by whole-cell recordings. These recordings confirmed that electrically evoked inhibitory postsynaptic currents (eIPSCs) are mediated solely by α9α10 nicotinic acetylcholine receptors (nAChRs) functionally coupled to calcium-activated SK2 channels. Synaptic release occurred with low probability when MOC-OHC synapses were stimulated at 1Hz. However, as the stimulation frequency was raised, the reliability of release increased due to presynaptic facilitation. In addition, the relatively slow decay of eIPSCs gave rise to temporal summation at stimulation frequencies above 10 Hz. The combined effect of facilitation and summation resulted in a frequency-dependent increase in the average amplitude of inhibitory currents in OHCs. Thus, we have demonstrated that short-term plasticity is responsible for shaping MOC inhibition and, therefore, encodes the transfer function from efferent firing frequency to the gain of the cochlear amplifier. PMID:21994392

  2. Astroglial potassium clearance contributes to short-term plasticity of synaptically evoked currents at the tripartite synapse.

    PubMed

    Sibille, Jérémie; Pannasch, Ulrike; Rouach, Nathalie

    2014-01-01

    Astroglial processes enclose ∼60% of CA1 hippocampal synapses to form the tripartite synapse. Although astrocytes express ionic channels, neurotransmitter receptors and transporters to detect neuronal activity, the nature, plasticity and impact of the currents induced by neuronal activity on short-term synaptic plasticity remain elusive in hippocampal astrocytes. Using simultaneous electrophysiological recordings of astrocytes and neurons, we found that single stimulation of Schaffer collaterals in hippocampal slices evokes in stratum radiatum astrocytes a complex prolonged inward current synchronized to synaptic and spiking activity in CA1 pyramidal cells. The astroglial current is composed of three components sensitive to neuronal activity, i.e. a long-lasting potassium current mediated by Kir4.1 channels, a transient glutamate transporter current and a slow residual current, partially mediated by GABA transporters and Kir4.1-independent potassium channels. We show that all astroglial membrane currents exhibit activity-dependent short-term plasticity. However, only the astroglial glutamate transporter current displays neuronal-like dynamics and plasticity. As Kir4.1 channel-mediated potassium uptake contributes to 80% of the synaptically evoked astroglial current, we investigated in turn its impact on short-term synaptic plasticity. Using glial conditional Kir4.1 knockout mice, we found that astroglial potassium uptake reduces synaptic responses to repetitive stimulation and post-tetanic potentiation. These results show that astrocytes integrate synaptic activity via multiple ionic channels and transporters and contribute to short-term plasticity in part via potassium clearance mediated by Kir4.1 channels.

  3. Astroglial potassium clearance contributes to short-term plasticity of synaptically evoked currents at the tripartite synapse

    PubMed Central

    Sibille, Jérémie; Pannasch, Ulrike; Rouach, Nathalie

    2014-01-01

    Abstract Astroglial processes enclose ∼60% of CA1 hippocampal synapses to form the tripartite synapse. Although astrocytes express ionic channels, neurotransmitter receptors and transporters to detect neuronal activity, the nature, plasticity and impact of the currents induced by neuronal activity on short-term synaptic plasticity remain elusive in hippocampal astrocytes. Using simultaneous electrophysiological recordings of astrocytes and neurons, we found that single stimulation of Schaffer collaterals in hippocampal slices evokes in stratum radiatum astrocytes a complex prolonged inward current synchronized to synaptic and spiking activity in CA1 pyramidal cells. The astroglial current is composed of three components sensitive to neuronal activity, i.e. a long-lasting potassium current mediated by Kir4.1 channels, a transient glutamate transporter current and a slow residual current, partially mediated by GABA transporters and Kir4.1-independent potassium channels. We show that all astroglial membrane currents exhibit activity-dependent short-term plasticity. However, only the astroglial glutamate transporter current displays neuronal-like dynamics and plasticity. As Kir4.1 channel-mediated potassium uptake contributes to 80% of the synaptically evoked astroglial current, we investigated in turn its impact on short-term synaptic plasticity. Using glial conditional Kir4.1 knockout mice, we found that astroglial potassium uptake reduces synaptic responses to repetitive stimulation and post-tetanic potentiation. These results show that astrocytes integrate synaptic activity via multiple ionic channels and transporters and contribute to short-term plasticity in part via potassium clearance mediated by Kir4.1 channels. PMID:24081156

  4. Spatiotemporal discrimination in neural networks with short-term synaptic plasticity

    NASA Astrophysics Data System (ADS)

    Shlaer, Benjamin; Miller, Paul

    2015-03-01

    Cells in recurrently connected neural networks exhibit bistability, which allows for stimulus information to persist in a circuit even after stimulus offset, i.e. short-term memory. However, such a system does not have enough hysteresis to encode temporal information about the stimuli. The biophysically described phenomenon of synaptic depression decreases synaptic transmission strengths due to increased presynaptic activity. This short-term reduction in synaptic strengths can destabilize attractor states in excitatory recurrent neural networks, causing the network to move along stimulus dependent dynamical trajectories. Such a network can successfully separate amplitudes and durations of stimuli from the number of successive stimuli. Stimulus number, duration and intensity encoding in randomly connected attractor networks with synaptic depression. Front. Comput. Neurosci. 7:59., and so provides a strong candidate network for the encoding of spatiotemporal information. Here we explicitly demonstrate the capability of a recurrent neural network with short-term synaptic depression to discriminate between the temporal sequences in which spatial stimuli are presented.

  5. Developmental Shift of Short-term Synaptic Plasticity in Cortical Organotypic Slices

    PubMed Central

    Chen, Weixiang; Buonomano, Dean V.

    2012-01-01

    Although short-term synaptic plasticity (STP) is ubiquitous in neocortical synapses its functional role in neural computations is not well understood. Critical to elucidating the function of STP will be to understand how STP itself changes with development and experience. Previous studies have reported developmental changes in STP using acute slices. It is not clear, however, to what extent the changes in STP are a function of local ontogenetic programs or the result of the many different sensory and experience-dependent changes that accompany development in vivo. To address this question we examined the in vitro development of STP in organotypic slices cultured for up to four weeks. Paired recordings were performed in L5 pyramidal neurons at different stages of in vitro development. We observed a shift in STP in the form of a decrease in the paired-pulse ratio (less depression) from the second to fourth week in vitro. This shift in STP was not accompanied by a change in initial EPSP amplitude. Fitting STP to a quantitative model indicated that the developmental shift is consistent with presynaptic changes. Importantly, despite the change in the paired-pulse ratio we did not observe changes in the time constant governing STP. Since these experiments were conducted in vitro our results indicate that the shift in STP does not depend on in vivo sensory experience. Although sensory experience may shape STP, we suggest that developmental shifts in STP are at least in part ontogenetically determined. PMID:22521823

  6. Short-term plasticity and modulation of synaptic transmission at mammalian inhibitory cholinergic olivocochlear synapses

    PubMed Central

    Katz, Eleonora; Elgoyhen, Ana Belén

    2014-01-01

    The organ of Corti, the mammalian sensory epithelium of the inner ear, has two types of mechanoreceptor cells, inner hair cells (IHCs) and outer hair cells (OHCs). In this sensory epithelium, vibrations produced by sound waves are transformed into electrical signals. When depolarized by incoming sounds, IHCs release glutamate and activate auditory nerve fibers innervating them and OHCs, by virtue of their electromotile property, increase the amplification and fine tuning of sound signals. The medial olivocochlear (MOC) system, an efferent feedback system, inhibits OHC activity and thereby reduces the sensitivity and sharp tuning of cochlear afferent fibers. During neonatal development, IHCs fire Ca2+ action potentials which evoke glutamate release promoting activity in the immature auditory system in the absence of sensory stimuli. During this period, MOC fibers also innervate IHCs and are thought to modulate their firing rate. Both the MOC-OHC and the MOC-IHC synapses are cholinergic, fast and inhibitory and mediated by the α9α10 nicotinic cholinergic receptor (nAChR) coupled to the activation of calcium-activated potassium channels that hyperpolarize the hair cells. In this review we discuss the biophysical, functional and molecular data which demonstrate that at the synapses between MOC efferent fibers and cochlear hair cells, modulation of transmitter release as well as short term synaptic plasticity mechanisms, operating both at the presynaptic terminal and at the postsynaptic hair-cell, determine the efficacy of these synapses and shape the hair cell response pattern. PMID:25520631

  7. Parametric and non-parametric modeling of short-term synaptic plasticity. Part II: Experimental study.

    PubMed

    Song, Dong; Wang, Zhuo; Marmarelis, Vasilis Z; Berger, Theodore W

    2009-02-01

    This paper presents a synergistic parametric and non-parametric modeling study of short-term plasticity (STP) in the Schaffer collateral to hippocampal CA1 pyramidal neuron (SC) synapse. Parametric models in the form of sets of differential and algebraic equations have been proposed on the basis of the current understanding of biological mechanisms active within the system. Non-parametric Poisson-Volterra models are obtained herein from broadband experimental input-output data. The non-parametric model is shown to provide better prediction of the experimental output than a parametric model with a single set of facilitation/depression (FD) process. The parametric model is then validated in terms of its input-output transformational properties using the non-parametric model since the latter constitutes a canonical and more complete representation of the synaptic nonlinear dynamics. Furthermore, discrepancies between the experimentally-derived non-parametric model and the equivalent non-parametric model of the parametric model suggest the presence of multiple FD processes in the SC synapses. Inclusion of an additional set of FD process in the parametric model makes it replicate better the characteristics of the experimentally-derived non-parametric model. This improved parametric model in turn provides the requisite biological interpretability that the non-parametric model lacks.

  8. Short-term synaptic plasticity across topographic maps in the electrosensory system.

    PubMed

    Mileva, G R; Kozak, I J; Lewis, J E

    2016-03-24

    The early pathways underlying the active electric sense of the weakly electric fish Apteronotus leptorhynchus involve three parallel processing streams. An array of tuberous electroreceptors distributed over the skin provides inputs to the electrosensory lateral line lobe (ELL), forming the basis for three topographic maps: LS (lateral segment), CLS (centrolateral segment), and CMS (centromedial segment). In addition, each map receives topographically preserved inputs from a direct feedback pathway. How this feedback contributes to the distinct spatiotemporal filtering properties of ELL pyramidal neurons across maps is not clear. We used an in vitro approach to characterize short-term plasticity (STP) in the direct feedback synapses onto pyramidal neurons in each map. Our findings indicated that the dynamics of STP varied across maps in a manner that was consistent with the temporal filtering properties of pyramidal neurons in vivo. Using a modeling approach, we found that the STP of direct feedback synapses in CMS was best described by a simple facilitation-depression model. On the other hand, STP in LS was best described by synaptic facilitation with a use-dependent recovery rate. These results suggest that differential regulation of overlapping STP processes in feedback pathways can contribute to the functional specialization of topographic sensory maps.

  9. Sapap3 deletion anomalously activates short-term endocannabinoid-mediated synaptic plasticity

    PubMed Central

    Chen, Meng; Wan, Yehong; Ade, Kristen; Ting, Jonathan; Feng, Guoping; Calakos, Nicole

    2011-01-01

    Retrograde synaptic signaling by endocannabinoids is a widespread mechanism for activity-dependent inhibition of synaptic strength in the brain. Although prevalent, the conditions for eliciting endocannabinoid (eCB)-mediated synaptic depression vary among brain circuits. As yet, relatively little is known about the molecular mechanisms underlying this variation, although the initial signaling events are likely dictated by postsynaptic proteins. SAPAPs are a family of postsynaptic proteins unique to excitatory synapses. Using Sapap3 knock-out (KO) mice, we find that, in the absence of SAPAP3, striatal medium spiny neuron (MSN) excitatory synapses exhibit eCB-mediated synaptic depression under conditions that do not normally activate this process. The anomalous synaptic plasticity requires type 5 metabotropic glutamate receptors (mGluR5), which are dysregulated in Sapap3 KO MSNs. Both surface expression and activity of mGluR5 are increased in Sapap3 KO MSNs, suggesting that enhanced mGluR5 activity may drive the anomalous synaptic plasticity. In direct support of this possibility, we find that, in wildtype (WT) MSNs, pharmacological enhancement of mGluR5 by a positive allosteric modulator is sufficient to reproduce the increased synaptic depression seen in Sapap3 KO MSNs. The same pharmacologic treatment, however, fails to elicit further depression in KO MSNs. Under conditions that are sufficient to engage eCB-mediated synaptic depression in WT MSNs, Sapap3 deletion does not alter the magnitude of the response. These results identify a role for SAPAP3 in the regulation of postsynaptic mGluRs and eCB-mediated synaptic plasticity. SAPAPs, through their effect on mGluR activity, may serve as regulatory molecules gating the threshold for inducing eCB-mediated synaptic plasticity. PMID:21715621

  10. Decreased synaptic plasticity in the medial prefrontal cortex underlies short-term memory deficits in 6-OHDA-lesioned rats.

    PubMed

    Matheus, Filipe C; Rial, Daniel; Real, Joana I; Lemos, Cristina; Ben, Juliana; Guaita, Gisele O; Pita, Inês R; Sequeira, Ana C; Pereira, Frederico C; Walz, Roger; Takahashi, Reinaldo N; Bertoglio, Leandro J; Da Cunha, Cláudio; Cunha, Rodrigo A; Prediger, Rui D

    2016-03-15

    Parkinson's disease (PD) is characterized by motor dysfunction associated with dopaminergic degeneration in the dorsolateral striatum (DLS). However, motor symptoms in PD are often preceded by short-term memory deficits, which have been argued to involve deregulation of medial prefrontal cortex (mPFC). We now used a 6-hydroxydopamine (6-OHDA) rat PD model to explore if alterations of synaptic plasticity in DLS and mPFC underlie short-term memory impairments in PD prodrome. The bilateral injection of 6-OHDA (20μg/hemisphere) in the DLS caused a marked loss of dopaminergic neurons in the substantia nigra (>80%) and decreased monoamine levels in the striatum and PFC, accompanied by motor deficits evaluated after 21 days in the open field and accelerated rotarod. A lower dose of 6-OHDA (10μg/hemisphere) only induced a partial degeneration (about 60%) of dopaminergic neurons in the substantia nigra with no gross motor impairments, thus mimicking an early premotor stage of PD. Notably, 6-OHDA (10μg)-lesioned rats displayed decreased monoamine levels in the PFC as well as short-term memory deficits evaluated in the novel object discrimination and in the modified Y-maze tasks; this was accompanied by a selective decrease in the amplitude of long-term potentiation in the mPFC, but not in DLS, without changes of synaptic transmission in either brain regions. These results indicate that the short-term memory dysfunction predating the motor alterations in the 6-OHDA model of PD is associated with selective changes of information processing in PFC circuits, typified by persistent changes of synaptic plasticity. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Parametric and non-parametric modeling of short-term synaptic plasticity. Part I: computational study

    PubMed Central

    Marmarelis, Vasilis Z.; Berger, Theodore W.

    2009-01-01

    Parametric and non-parametric modeling methods are combined to study the short-term plasticity (STP) of synapses in the central nervous system (CNS). The nonlinear dynamics of STP are modeled by means: (1) previously proposed parametric models based on mechanistic hypotheses and/or specific dynamical processes, and (2) non-parametric models (in the form of Volterra kernels) that transforms the presynaptic signals into postsynaptic signals. In order to synergistically use the two approaches, we estimate the Volterra kernels of the parametric models of STP for four types of synapses using synthetic broadband input–output data. Results show that the non-parametric models accurately and efficiently replicate the input–output transformations of the parametric models. Volterra kernels provide a general and quantitative representation of the STP. PMID:18506609

  12. Pentylenetetrazol-Induced Epileptiform Activity Affects Basal Synaptic Transmission and Short-Term Plasticity in Monosynaptic Connections

    PubMed Central

    Giachello, Carlo Natale Giuseppe; Premoselli, Federica; Montarolo, Pier Giorgio; Ghirardi, Mirella

    2013-01-01

    Epileptic activity is generally induced in experimental models by local application of epileptogenic drugs, including pentylenetetrazol (PTZ), widely used on both vertebrate and invertebrate neurons. Despite the high prevalence of this neurological disorder and the extensive research on it, the cellular and molecular mechanisms underlying epileptogenesis still remain unclear. In this work, we examined PTZ-induced neuronal changes in Helix monosynaptic circuits formed in vitro, as a simpler experimental model to investigate the effects of epileptiform activity on both basal release and post-tetanic potentiation (PTP), a form of short-term plasticity. We observed a significant enhancement of basal synaptic strength, with kinetics resembling those of previously described use-dependent forms of plasticity, determined by changes in estimated quantal parameters, such as the readily releasable pool and the release probability. Moreover, these neurons exhibited a strong reduction in PTP expression and in its decay time constant, suggesting an impairment in the dynamic reorganization of synaptic vesicle pools following prolonged stimulation of synaptic transmission. In order to explain this imbalance, we determined whether epileptic activity is related to the phosphorylation level of synapsin, which is known to modulate synaptic plasticity. Using western blot and immunocytochemical staining we found a PTZ-dependent increase in synapsin phosphorylation at both PKA/CaMKI/IV and MAPK/Erk sites, both of which are important for modulating synaptic plasticity. Taken together, our findings suggest that prolonged epileptiform activity leads to an increase in the synapsin phosphorylation status, thereby contributing to an alteration of synaptic strength in both basal condition and tetanus-induced potentiation. PMID:23437283

  13. Compensating Inhomogeneities of Neuromorphic VLSI Devices Via Short-Term Synaptic Plasticity

    PubMed Central

    Bill, Johannes; Schuch, Klaus; Brüderle, Daniel; Schemmel, Johannes; Maass, Wolfgang; Meier, Karlheinz

    2010-01-01

    Recent developments in neuromorphic hardware engineering make mixed-signal VLSI neural network models promising candidates for neuroscientific research tools and massively parallel computing devices, especially for tasks which exhaust the computing power of software simulations. Still, like all analog hardware systems, neuromorphic models suffer from a constricted configurability and production-related fluctuations of device characteristics. Since also future systems, involving ever-smaller structures, will inevitably exhibit such inhomogeneities on the unit level, self-regulation properties become a crucial requirement for their successful operation. By applying a cortically inspired self-adjusting network architecture, we show that the activity of generic spiking neural networks emulated on a neuromorphic hardware system can be kept within a biologically realistic firing regime and gain a remarkable robustness against transistor-level variations. As a first approach of this kind in engineering practice, the short-term synaptic depression and facilitation mechanisms implemented within an analog VLSI model of I&F neurons are functionally utilized for the purpose of network level stabilization. We present experimental data acquired both from the hardware model and from comparative software simulations which prove the applicability of the employed paradigm to neuromorphic VLSI devices. PMID:21031027

  14. The impact of stimulation induced short-term synaptic plasticity on firing patterns in the globus pallidus of the rat.

    PubMed

    Bugaysen, Jenia; Bar-Gad, Izhar; Korngreen, Alon

    2011-01-01

    Electrical stimulation in the globus pallidus (GP) leads to complex modulations of neuronal activity in the stimulated nucleus. Multiple in vivo studies have demonstrated the modulation of both firing rates and patterns during and immediately following the GP stimulation. Previous in vitro studies, together with computational studies, have suggested the involvement of short-term synaptic plasticity (STP) during the stimulation. The aim of the current study was to explore in vitro the effects of STP on neuronal activity of GP neurons during local repetitive stimulation. We recorded synaptic potentials and assessed the modulations of spontaneous firing in a postsynaptic neuron in acute brain slices via a whole-cell pipette. Low-frequency repetitive stimulation locked the firing of the neuron to the stimulus. However, high-frequency repetitive stimulation in the GP generated a biphasic modulation of the firing frequency consisting of inhibitory and excitatory phases. Using blockers of synaptic transmission, we show that GABAergic synapses mediated the inhibitory and glutamatergic synapses the excitatory part of the response. Furthermore, we report that at high stimulation frequencies both types of synapses undergo short-term depression leading to a time dependent modulation of the neuronal firing. These findings indicate that STP modulates the dynamic responses of pallidal activity during electrical stimulation, and may contribute to a better understanding of the mechanism underlying deep brain stimulation like protocols.

  15. Short-term synaptic plasticity in the deterministic Tsodyks–Markram model leads to unpredictable network dynamics

    PubMed Central

    Cortes, Jesus M.; Desroches, Mathieu; Rodrigues, Serafim; Veltz, Romain; Muñoz, Miguel A.; Sejnowski, Terrence J.

    2013-01-01

    Short-term synaptic plasticity strongly affects the neural dynamics of cortical networks. The Tsodyks and Markram (TM) model for short-term synaptic plasticity accurately accounts for a wide range of physiological responses at different types of cortical synapses. Here, we report a route to chaotic behavior via a Shilnikov homoclinic bifurcation that dynamically organizes some of the responses in the TM model. In particular, the presence of such a homoclinic bifurcation strongly affects the shape of the trajectories in the phase space and induces highly irregular transient dynamics; indeed, in the vicinity of the Shilnikov homoclinic bifurcation, the number of population spikes and their precise timing are unpredictable and highly sensitive to the initial conditions. Such an irregular deterministic dynamics has its counterpart in stochastic/network versions of the TM model: The existence of the Shilnikov homoclinic bifurcation generates complex and irregular spiking patterns and—acting as a sort of springboard—facilitates transitions between the down-state and unstable periodic orbits. The interplay between the (deterministic) homoclinic bifurcation and stochastic effects may give rise to some of the complex dynamics observed in neural systems. PMID:24062464

  16. Disruption of Slc4a10 augments neuronal excitability and modulates synaptic short-term plasticity

    PubMed Central

    Sinning, Anne; Liebmann, Lutz; Hübner, Christian A.

    2015-01-01

    Slc4a10 is a Na+-coupled Cl−-HCO3− exchanger, which is expressed in principal and inhibitory neurons as well as in choroid plexus epithelial cells of the brain. Slc4a10 knockout (KO) mice have collapsed brain ventricles and display an increased seizure threshold, while heterozygous deletions in man have been associated with idiopathic epilepsy and other neurological symptoms. To further characterize the role of Slc4a10 for network excitability, we compared input-output relations as well as short and long term changes of evoked field potentials in Slc4a10 KO and wildtype (WT) mice. While responses of CA1 pyramidal neurons to stimulation of Schaffer collaterals were increased in Slc4a10 KO mice, evoked field potentials did not differ between genotypes in the stratum radiatum or the neocortical areas analyzed. Paired pulse facilitation was diminished in the hippocampus upon disruption of Slc4a10. In the neocortex paired pulse depression was increased. Though short term plasticity is modulated via Slc4a10, long term potentiation appears independent of Slc4a10. Our data support that Slc4a10 dampens neuronal excitability and thus sheds light on the pathophysiology of SLC4A10 associated pathologies. PMID:26136660

  17. Inhibitory glycinergic neurotransmission in the mammalian auditory brainstem upon prolonged stimulation: short-term plasticity and synaptic reliability

    PubMed Central

    Kramer, Florian; Griesemer, Désirée; Bakker, Dennis; Brill, Sina; Franke, Jürgen; Frotscher, Erik; Friauf, Eckhard

    2014-01-01

    Short-term plasticity plays a key role in synaptic transmission and has been extensively investigated for excitatory synapses. Much less is known about inhibitory synapses. Here we analyze the performance of glycinergic connections between the medial nucleus of the trapezoid body (MNTB) and the lateral superior olive (LSO) in the auditory brainstem, where high spike rates as well as fast and precise neurotransmission are hallmarks. Analysis was performed in acute mouse slices shortly after hearing onset (postnatal day (P)11) and 8 days later (P19). Stimulation was done at 37°C with 1–400 Hz for 40 s. Moreover, in a novel approach named marathon experiments, a very prolonged stimulation protocol was employed, comprising 10 trials of 1-min challenge and 1-min recovery periods at 50 and 1 Hz, respectively, thus lasting up to 20 min and amounting to >30,000 stimulus pulses. IPSC peak amplitudes displayed short-term depression (STD) and synaptic attenuation in a frequency-dependent manner. No facilitation was observed. STD in the MNTB-LSO connections was less pronounced than reported in the upstream calyx of Held-MNTB connections. At P11, the STD level and the failure rate were slightly lower within the ms-to-s range than at P19. During prolonged stimulation periods lasting 40 s, P19 connections sustained virtually failure-free transmission up to frequencies of 100 Hz, whereas P11 connections did so only up to 50 Hz. In marathon experiments, P11 synapses recuperated reproducibly from synaptic attenuation during all recovery periods, demonstrating a robust synaptic machinery at hearing onset. At 26°C, transmission was severely impaired and comprised abnormally high amplitudes after minutes of silence, indicative of imprecisely regulated vesicle pools. Our study takes a fresh look at synaptic plasticity and stability by extending conventional stimulus periods in the ms-to-s range to minutes. It also provides a framework for future analyses of synaptic plasticity. PMID

  18. Dynamic control of synaptic vesicle replenishment and short-term plasticity by Ca(2+)-calmodulin-Munc13-1 signaling.

    PubMed

    Lipstein, Noa; Sakaba, Takeshi; Cooper, Benjamin H; Lin, Kun-Han; Strenzke, Nicola; Ashery, Uri; Rhee, Jeong-Seop; Taschenberger, Holger; Neher, Erwin; Brose, Nils

    2013-07-10

    Short-term synaptic plasticity, the dynamic alteration of synaptic strength during high-frequency activity, is a fundamental characteristic of all synapses. At the calyx of Held, repetitive activity eventually results in short-term synaptic depression, which is in part due to the gradual exhaustion of releasable synaptic vesicles. This is counterbalanced by Ca(2+)-dependent vesicle replenishment, but the molecular mechanisms of this replenishment are largely unknown. We studied calyces of Held in knockin mice that express a Ca(2+)-Calmodulin insensitive Munc13-1(W464R) variant of the synaptic vesicle priming protein Munc13-1. Calyces of these mice exhibit a slower rate of synaptic vesicle replenishment, aberrant short-term depression and reduced recovery from synaptic depression after high-frequency stimulation. Our data establish Munc13-1 as a major presynaptic target of Ca(2+)-Calmodulin signaling and show that the Ca(2+)-Calmodulin-Munc13-1 complex is a pivotal component of the molecular machinery that determines short-term synaptic plasticity characteristics.

  19. Closed-loop Robots Driven by Short-Term Synaptic Plasticity: Emergent Explorative vs. Limit-Cycle Locomotion

    PubMed Central

    Martin, Laura; Sándor, Bulcsú; Gros, Claudius

    2016-01-01

    We examine the hypothesis, that short-term synaptic plasticity (STSP) may generate self-organized motor patterns. We simulated sphere-shaped autonomous robots, within the LPZRobots simulation package, containing three weights moving along orthogonal internal rods. The position of a weight is controlled by a single neuron receiving excitatory input from the sensor, measuring its actual position, and inhibitory inputs from the other two neurons. The inhibitory connections are transiently plastic, following physiologically inspired STSP-rules. We find that a wide palette of motion patterns are generated through the interaction of STSP, robot, and environment (closed-loop configuration), including various forward meandering and circular motions, together with chaotic trajectories. The observed locomotion is robust with respect to additional interactions with obstacles. In the chaotic phase the robot is seemingly engaged in actively exploring its environment. We believe that our results constitute a concept of proof that transient synaptic plasticity, as described by STSP, may potentially be important for the generation of motor commands and for the emergence of complex locomotion patterns, adapting seamlessly also to unexpected environmental feedback. We observe spontaneous and collision induced mode switchings, finding in addition, that locomotion may follow transiently limit cycles which are otherwise unstable. Regular locomotion corresponds to stable limit cycles in the sensorimotor loop, which may be characterized in turn by arbitrary angles of propagation. This degeneracy is, in our analysis, one of the drivings for the chaotic wandering observed for selected parameter settings, which is induced by the smooth diffusion of the angle of propagation. PMID:27803661

  20. Closed-loop Robots Driven by Short-Term Synaptic Plasticity: Emergent Explorative vs. Limit-Cycle Locomotion.

    PubMed

    Martin, Laura; Sándor, Bulcsú; Gros, Claudius

    2016-01-01

    We examine the hypothesis, that short-term synaptic plasticity (STSP) may generate self-organized motor patterns. We simulated sphere-shaped autonomous robots, within the LPZRobots simulation package, containing three weights moving along orthogonal internal rods. The position of a weight is controlled by a single neuron receiving excitatory input from the sensor, measuring its actual position, and inhibitory inputs from the other two neurons. The inhibitory connections are transiently plastic, following physiologically inspired STSP-rules. We find that a wide palette of motion patterns are generated through the interaction of STSP, robot, and environment (closed-loop configuration), including various forward meandering and circular motions, together with chaotic trajectories. The observed locomotion is robust with respect to additional interactions with obstacles. In the chaotic phase the robot is seemingly engaged in actively exploring its environment. We believe that our results constitute a concept of proof that transient synaptic plasticity, as described by STSP, may potentially be important for the generation of motor commands and for the emergence of complex locomotion patterns, adapting seamlessly also to unexpected environmental feedback. We observe spontaneous and collision induced mode switchings, finding in addition, that locomotion may follow transiently limit cycles which are otherwise unstable. Regular locomotion corresponds to stable limit cycles in the sensorimotor loop, which may be characterized in turn by arbitrary angles of propagation. This degeneracy is, in our analysis, one of the drivings for the chaotic wandering observed for selected parameter settings, which is induced by the smooth diffusion of the angle of propagation.

  1. Repolarization of the presynaptic action potential and short-term synaptic plasticity in the chick ciliary ganglion.

    PubMed

    Poage, Robert E; Zengel, Janet E

    2002-12-01

    Stimulation-induced increases in synaptic efficacy have been described as being composed of multiple independent processes that arise from the activation of distinct mechanisms at the presynaptic terminal. In the chick ciliary ganglion, four components of short-term synaptic plasticity have been described: F1 and F2 components of facilitation, augmentation, and potentiation. In the present study, intracellular recording from the presynaptic calyciform nerve terminal of the chick ciliary ganglion revealed that the late repolarization and afterhypolarization (AHP) phases of the presynaptic action potential are affected by repetitive stimulation and that the time course of these effects parallel that of facilitation. The effects of these changes in the presynaptic action potential time course on calcium influx were tested by using the recorded action potential waveforms as voltage command stimuli during whole-cell patch-clamp recordings from acutely isolated chick ciliary ganglion neurons. The "facilitated" action potential waveform (slowed repolarization, decreased AHP amplitude) evoked calcium current with slightly but significantly greater total calcium influx. Taken together, these results are consistent with the hypothesis that activity-dependent changes in the presynaptic action potential are one of several mechanisms contributing to the facilitation phase of stimulation-induced increases in transmitter release in this preparation. Copyright 2002 Wiley-Liss, Inc.

  2. Taurine regulation of short term synaptic plasticity in fragile X mice.

    PubMed

    El Idrissi, Abdeslem; Neuwirth, Lorenz S; L'Amoreaux, William

    2010-08-24

    Fragile X Syndrome is the most common known genetic cause of autism. The Fmr1-KO mouse, lacks the fragile X mental retardation protein (FMRP), and is used as a model of the syndrome. The core behavioral deficits of autism may be conceptualized either as excessive adherence to patterns as seen in repetitive actions and aberrant language, or as insensitivity to subtle but socially important changes in patterns. The hippocampus receives information from the entorhinal cortex and plays a crucial role in the processing of patterned information. To gain more insight into the physiological function of FMRP and the neuronal mechanisms underlying fragile X syndrome, we examined the electrophysiological response of the hippocampus to pair pulse stimulation as a measure of patterned information processing and how it is affected in the Fmr1-KO mouse. In this study, we used paired-pulse stimulation of the afferent perforant path and recorded from the CA1 region of the hippocampus. Two-month-old FVB/NJ male mice and age-matched Fmr1-KO mice were used in this study. Hippocampal slices were prepared, equilibrated in artificial cerebrospinal fluid (aCSF), and excitatory post synaptic potentials (EPSPs) measured by stimulating the perforant path of the dentate gyrus (DG) while recording from the molecular layer of CA1. Stimulation occurred by setting current and pulse width to evoke a fixed percentage of maximal EPSP amplitude. This stimulation paradigm allowed us to examine the processing capabilities of the hippocampus as a function of increasing interstimulus intervals (ISI) and how taurine, a GABAA receptor agonist, affects such information processing. We found that hippocampal slices from wild type (WT) showed pair-pulse facilitation at ISI of 100-300 ms whereas slices from Fmr1-KO brains showed a consistent pair-pulse depression at a comparable ISI. Addition of 10 muM taurine to WT slices resulted in a drastic decrease of the peak response to the second stimulus, resulting in

  3. Adaptation of short-term plasticity parameters via error-driven learning may explain the correlation between activity-dependent synaptic properties, connectivity motifs and target specificity

    PubMed Central

    Esposito, Umberto; Giugliano, Michele; Vasilaki, Eleni

    2015-01-01

    The anatomical connectivity among neurons has been experimentally found to be largely non-random across brain areas. This means that certain connectivity motifs occur at a higher frequency than would be expected by chance. Of particular interest, short-term synaptic plasticity properties were found to colocalize with specific motifs: an over-expression of bidirectional motifs has been found in neuronal pairs where short-term facilitation dominates synaptic transmission among the neurons, whereas an over-expression of unidirectional motifs has been observed in neuronal pairs where short-term depression dominates. In previous work we found that, given a network with fixed short-term properties, the interaction between short- and long-term plasticity of synaptic transmission is sufficient for the emergence of specific motifs. Here, we introduce an error-driven learning mechanism for short-term plasticity that may explain how such observed correspondences develop from randomly initialized dynamic synapses. By allowing synapses to change their properties, neurons are able to adapt their own activity depending on an error signal. This results in more rich dynamics and also, provided that the learning mechanism is target-specific, leads to specialized groups of synapses projecting onto functionally different targets, qualitatively replicating the experimental results of Wang and collaborators. PMID:25688203

  4. Adaptation of short-term plasticity parameters via error-driven learning may explain the correlation between activity-dependent synaptic properties, connectivity motifs and target specificity.

    PubMed

    Esposito, Umberto; Giugliano, Michele; Vasilaki, Eleni

    2014-01-01

    The anatomical connectivity among neurons has been experimentally found to be largely non-random across brain areas. This means that certain connectivity motifs occur at a higher frequency than would be expected by chance. Of particular interest, short-term synaptic plasticity properties were found to colocalize with specific motifs: an over-expression of bidirectional motifs has been found in neuronal pairs where short-term facilitation dominates synaptic transmission among the neurons, whereas an over-expression of unidirectional motifs has been observed in neuronal pairs where short-term depression dominates. In previous work we found that, given a network with fixed short-term properties, the interaction between short- and long-term plasticity of synaptic transmission is sufficient for the emergence of specific motifs. Here, we introduce an error-driven learning mechanism for short-term plasticity that may explain how such observed correspondences develop from randomly initialized dynamic synapses. By allowing synapses to change their properties, neurons are able to adapt their own activity depending on an error signal. This results in more rich dynamics and also, provided that the learning mechanism is target-specific, leads to specialized groups of synapses projecting onto functionally different targets, qualitatively replicating the experimental results of Wang and collaborators.

  5. A model of order-selectivity based on dynamic changes in the balance of excitation and inhibition produced by short-term synaptic plasticity

    PubMed Central

    Goudar, Vishwa

    2014-01-01

    Determining the order of sensory events separated by a few hundred milliseconds is critical to many forms of sensory processing, including vocalization and speech discrimination. Although many experimental studies have recorded from auditory order-sensitive and order-selective neurons, the underlying mechanisms are poorly understood. Here we demonstrate that universal properties of cortical synapses—short-term synaptic plasticity of excitatory and inhibitory synapses—are well suited for the generation of order-selective neural responses. Using computational models of canonical disynaptic circuits, we show that the dynamic changes in the balance of excitation and inhibition imposed by short-term plasticity lead to the generation of order-selective responses. Parametric analyses predict that among the forms of short-term plasticity expressed at excitatory-to-excitatory, excitatory-to-inhibitory, and inhibitory-to-excitatory synapses, the single most important contributor to order-selectivity is the paired-pulse depression of inhibitory postsynaptic potentials (IPSPs). A topographic model of the auditory cortex that incorporates short-term plasticity accounts for both context-dependent suppression and enhancement in response to paired tones. Together these results provide a framework to account for an important computational problem based on ubiquitous synaptic properties that did not yet have a clearly established computational function. Additionally, these studies suggest that disynaptic circuits represent a fundamental computational unit that is capable of processing both spatial and temporal information. PMID:25339707

  6. Haploinsufficiency of the 22q11.2 microdeletion gene Mrpl40 disrupts short-term synaptic plasticity and working memory through dysregulation of mitochondrial calcium

    PubMed Central

    Devaraju, P; Yu, J; Eddins, D; Mellado-Lagarde, M M; Earls, L R; Westmoreland, J J; Quarato, G; Green, D R; Zakharenko, S S

    2017-01-01

    Hemizygous deletion of a 1.5- to 3-megabase region on chromosome 22 causes 22q11.2 deletion syndrome (22q11DS), which constitutes one of the strongest genetic risks for schizophrenia. Mouse models of 22q11DS have abnormal short-term synaptic plasticity that contributes to working-memory deficiencies similar to those in schizophrenia. We screened mutant mice carrying hemizygous deletions of 22q11DS genes and identified haploinsufficiency of Mrpl40 (mitochondrial large ribosomal subunit protein 40) as a contributor to abnormal short-term potentiation (STP), a major form of short-term synaptic plasticity. Two-photon imaging of the genetically encoded fluorescent calcium indicator GCaMP6, expressed in presynaptic cytosol or mitochondria, showed that Mrpl40 haploinsufficiency deregulates STP via impaired calcium extrusion from the mitochondrial matrix through the mitochondrial permeability transition pore. This led to abnormally high cytosolic calcium transients in presynaptic terminals and deficient working memory but did not affect long-term spatial memory. Thus, we propose that mitochondrial calcium deregulation is a novel pathogenic mechanism of cognitive deficiencies in schizophrenia. PMID:27184122

  7. Simulation of synaptic short-term plasticity using Ba(CF3SO3)2-doped polyethylene oxide electrolyte film

    NASA Astrophysics Data System (ADS)

    Chang, C. T.; Zeng, F.; Li, X. J.; Dong, W. S.; Lu, S. H.; Gao, S.; Pan, F.

    2016-01-01

    The simulation of synaptic plasticity using new materials is critical in the study of brain-inspired computing. Devices composed of Ba(CF3SO3)2-doped polyethylene oxide (PEO) electrolyte film were fabricated and with pulse responses found to resemble the synaptic short-term plasticity (STP) of both short-term depression (STD) and short-term facilitation (STF) synapses. The values of the charge and discharge peaks of the pulse responses did not vary with input number when the pulse frequency was sufficiently low(~1 Hz). However, when the frequency was increased, the charge and discharge peaks decreased and increased, respectively, in gradual trends and approached stable values with respect to the input number. These stable values varied with the input frequency, which resulted in the depressed and potentiated weight modifications of the charge and discharge peaks, respectively. These electrical properties simulated the high and low band-pass filtering effects of STD and STF, respectively. The simulations were consistent with biological results and the corresponding biological parameters were successfully extracted. The study verified the feasibility of using organic electrolytes to mimic STP.

  8. Simulation of synaptic short-term plasticity using Ba(CF3SO3)2-doped polyethylene oxide electrolyte film

    PubMed Central

    Chang, C. T.; Zeng, F.; Li, X. J.; Dong, W. S.; Lu, S. H.; Gao, S.; Pan, F.

    2016-01-01

    The simulation of synaptic plasticity using new materials is critical in the study of brain-inspired computing. Devices composed of Ba(CF3SO3)2-doped polyethylene oxide (PEO) electrolyte film were fabricated and with pulse responses found to resemble the synaptic short-term plasticity (STP) of both short-term depression (STD) and short-term facilitation (STF) synapses. The values of the charge and discharge peaks of the pulse responses did not vary with input number when the pulse frequency was sufficiently low(~1 Hz). However, when the frequency was increased, the charge and discharge peaks decreased and increased, respectively, in gradual trends and approached stable values with respect to the input number. These stable values varied with the input frequency, which resulted in the depressed and potentiated weight modifications of the charge and discharge peaks, respectively. These electrical properties simulated the high and low band-pass filtering effects of STD and STF, respectively. The simulations were consistent with biological results and the corresponding biological parameters were successfully extracted. The study verified the feasibility of using organic electrolytes to mimic STP. PMID:26739613

  9. Dopaminergic modulation of short-term synaptic plasticity in fast-spiking interneurons of primate dorsolateral prefrontal cortex.

    PubMed

    Gonzalez-Burgos, G; Kroener, S; Seamans, J K; Lewis, D A; Barrionuevo, G

    2005-12-01

    Dopaminergic regulation of primate dorsolateral prefrontal cortex (PFC) activity is essential for cognitive functions such as working memory. However, the cellular mechanisms of dopamine neuromodulation in PFC are not well understood. We have studied the effects of dopamine receptor activation during persistent stimulation of excitatory inputs onto fast-spiking GABAergic interneurons in monkey PFC. Stimulation at 20 Hz induced short-term excitatory postsynaptic potential (EPSP) depression. The D1 receptor agonist SKF81297 (5 microM) significantly reduced the amplitude of the first EPSP but not of subsequent responses in EPSP trains, which still displayed significant depression. Dopamine (DA; 10 microM) effects were similar to those of SKF81297 and were abolished by the D1 antagonist SCH23390 (5 microM), indicating a D1 receptor-mediated effect. DA did not alter miniature excitatory postsynaptic currents, suggesting that its effects were activity dependent and presynaptic action potential dependent. In contrast to previous findings in pyramidal neurons, in fast-spiking cells, contribution of N-methyl-D-aspartate receptors to EPSPs at subthreshold potentials was not significant and fast-spiking cell depolarization decreased EPSP duration. In addition, DA had no significant effects on temporal summation. The selective decrease in the amplitude of the first EPSP in trains delivered every 10 s suggests that in fast-spiking neurons, DA reduces the amplitude of EPSPs evoked at low frequency but not of EPSPs evoked by repetitive stimulation. DA may therefore improve detection of EPSP bursts above background synaptic activity. EPSP bursts displaying short-term depression may transmit spike-timing-dependent temporal codes contained in presynaptic spike trains. Thus DA neuromodulation may increase the signal-to-noise ratio at fast-spiking cell inputs.

  10. Alteration of Neuronal Excitability and Short-Term Synaptic Plasticity in the Prefrontal Cortex of a Mouse Model of Mental Illness.

    PubMed

    Crabtree, Gregg W; Sun, Ziyi; Kvajo, Mirna; Broek, Jantine A C; Fénelon, Karine; McKellar, Heather; Xiao, Lan; Xu, Bin; Bahn, Sabine; O'Donnell, James M; Gogos, Joseph A

    2017-04-12

    Using a genetic mouse model that faithfully recapitulates a DISC1 genetic alteration strongly associated with schizophrenia and other psychiatric disorders, we examined the impact of this mutation within the prefrontal cortex. Although cortical layering, cytoarchitecture, and proteome were found to be largely unaffected, electrophysiological examination of the mPFC revealed both neuronal hyperexcitability and alterations in short-term synaptic plasticity consistent with enhanced neurotransmitter release. Increased excitability of layer II/III pyramidal neurons was accompanied by consistent reductions in voltage-activated potassium currents near the action potential threshold as well as by enhanced recruitment of inputs arising from superficial layers to layer V. We further observed reductions in both the paired-pulse ratios and the enhanced short-term depression of layer V synapses arising from superficial layers consistent with enhanced neurotransmitter release at these synapses. Recordings from layer II/III pyramidal neurons revealed action potential widening that could account for enhanced neurotransmitter release. Significantly, we found that reduced functional expression of the voltage-dependent potassium channel subunit Kv1.1 substantially contributes to both the excitability and short-term plasticity alterations that we observed. The underlying dysregulation of Kv1.1 expression was attributable to cAMP elevations in the PFC secondary to reduced phosphodiesterase 4 activity present in Disc1 deficiency and was rescued by pharmacological blockade of adenylate cyclase. Our results demonstrate a potentially devastating impact of Disc1 deficiency on neural circuit function, partly due to Kv1.1 dysregulation that leads to a dual dysfunction consisting of enhanced neuronal excitability and altered short-term synaptic plasticity.SIGNIFICANCE STATEMENT Schizophrenia is a profoundly disabling psychiatric illness with a devastating impact not only upon the afflicted but

  11. Short-term synaptic plasticity, simulation of nerve terminal dynamics, and the effects of protein kinase C activation in rat hippocampus

    PubMed Central

    Brager, Darrin H; Capogna, Marco; Thompson, Scott M

    2002-01-01

    Phorbol esters are hypothesised to produce a protein kinase C (PKC)-dependent increase in the probability of transmitter release via two mechanisms: facilitation of vesicle fusion or increases in synaptic vesicle number and replenishment. We used a combination of electrophysiology and computer simulation to distinguish these possibilities. We constructed a stochastic model of the presynaptic contacts between a pair of hippocampal pyramidal cells that used biologically realistic processes and was constrained by electrophysiological data. The model reproduced faithfully several forms of short-term synaptic plasticity, including short-term synaptic depression (STD), and allowed us to manipulate several experimentally inaccessible processes. Simulation of an increase in the size of the readily releasable vesicle pool and the time of vesicle replenishment decreased STD, whereas simulation of a facilitation of vesicle fusion downstream of Ca2+ influx enhanced STD. Because activation of protein kinase C with phorbol ester enhanced STD of EPSCs in rat hippocampal slice cultures, we conclude that an increase in the sensitivity of the release process for Ca2+ underlies the potentiation of neurotransmitter release by PKC. PMID:12042358

  12. Theta-paced flickering between place-cell maps in the hippocampus: A model based on short-term synaptic plasticity.

    PubMed

    Mark, Shirley; Romani, Sandro; Jezek, Karel; Tsodyks, Misha

    2017-09-01

    Hippocampal place cells represent different environments with distinct neural activity patterns. Following an abrupt switch between two familiar configurations of visual cues defining two environments, the hippocampal neural activity pattern switches almost immediately to the corresponding representation. Surprisingly, during a transient period following the switch to the new environment, occasional fast transitions between the two activity patterns (flickering) were observed (Jezek, Henriksen, Treves, Moser, & Moser, ). Here we show that an attractor neural network model of place cells with connections endowed with short-term synaptic plasticity can account for this phenomenon. A memory trace of the recent history of network activity is maintained in the state of the synapses, allowing the network to temporarily reactivate the representation of the previous environment in the absence of the corresponding sensory cues. The model predicts that the number of flickering events depends on the amplitude of the ongoing theta rhythm and the distance between the current position of the animal and its position at the time of cue switching. We test these predictions with new analysis of experimental data. These results suggest a potential role of short-term synaptic plasticity in recruiting the activity of different cell assemblies and in shaping hippocampal activity of behaving animals. © 2017 The Authors. Hippocampus Published by Wiley Periodicals, Inc.

  13. [EFFECT OF PEPTIDE SEMAX ON SYNAPTIC ACTIVITY AND SHORT-TERM PLASTICITY OF GLUTAMATERGIC SYNAPSES OF CO-CULTURED DORSAL ROOT GANGLION AND DORSAL HORN NEURONS].

    PubMed

    Shypshyna, M S; Veselovsky, N S; Myasoedov, N F; Shram, S I; Fedulova, S A

    2015-01-01

    The influence of long-term culturing (12 days in vitro) of dorsal root ganglion (DRG) and dorsal horn (DH) neurons with peptide Semax on the level of synaptic activity at co-cultures, as well as short-term plasticity in sensory synapses were studied. It has been shown that neuronal culturing with peptide at concentrations of 10 and 100 µM led to increasing the frequency of spontaneous glutamatergic postsynaptic currents in DH neurons to 71.7 ± 1.8% and 93.9 ± 3.1% (n = 6; P < 0.001); Semax has a not significant effect on the amplitude and frequency of miniature glutamatergic currents, but causes an increase of the amplitudes of spontaneous postsynaptic currents, as well as elevates the quantum content. The data show the increase of multivesicular glutamate release efficiency in neural networks of co-cultures following incubation with the peptide. Also Semax (10 and 100 µM) induces changes of the basic parameters of short-term plasticity in sensory synapses: (1) increasing the paired-pulse ratio from 0.53 ± 0.028 (n = 8) to 0.91 ± 0.072 (n = 6, P < 0.01) and 0.95 ± 0.026 (n = 7; P < 0.001); (2) reducing the ratio of the coefficients of variation (CV2/ CV1) from 1.49 ± 0.11 (n = 8) to 1.02 ± 0.09 (n = 6; P < 0.05) and 1.11 ± 0.13 (n = 7; P < 0.0) respectively. The results indicate a stimulating effect of Semax on the activity of glutamatergic synapses in neural networks of co-cultures, as well as the ability of the peptide to effectively modulate the short-term plasticity in sensory synapses.

  14. YAC128 Huntington's disease transgenic mice show enhanced short-term hippocampal synaptic plasticity early in the course of the disease.

    PubMed

    Ghilan, Mohamed; Bostrom, Crystal A; Hryciw, Brett N; Simpson, Jessica M; Christie, Brian R; Gil-Mohapel, Joana

    2014-09-18

    Huntington's disease (HD) is a progressive and fatal neurodegenerative disorder caused by a polyglutamine expansion in the gene encoding the protein huntingtin. The disease progresses over decades, but often patients develop cognitive impairments that precede the onset of the classical motor symptoms. Similar to the disease progression in humans, the yeast artificial chromosome (YAC) 128 HD mouse model also exhibits cognitive dysfunction that precedes the onset of the neuropathological and motor impairments characteristic of HD. Thus, the purpose of this study was to evaluate whether short- and long-term synaptic plasticity in the hippocampus, two related biological models of learning and memory processes, were altered in YAC128 mice in early stages of disease progression. We show that the YAC128 hippocampal dentate gyrus (DG) displays marked reductions in paired-pulse depression both at 3 and 6 months of age. In addition, significantly enhanced post-tetanic and short-term potentiation are apparent in YAC128 mice after high-frequency stimulation at this time. Early and late forms of long-term plasticity were not altered at this stage. Together these findings indicate that there may be elevated neurotransmitter release in response to synaptic stimulation in YAC128 mice during the initial phase of disease progression. These abnormalities in short-term plasticity detected at this stage in YAC128 HD transgenic mice indicate that aberrant information processing at the level of the synapses may contribute, at least in part, to the early onset of cognitive deficits that are characteristic of this devastating neurodegenerative disorder. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Overexpression of synapsin Ia in the rat calyx of Held accelerates short-term plasticity and decreases synaptic vesicle volume and active zone area

    PubMed Central

    Vasileva, Mariya; Renden, Robert; Horstmann, Heinz; Gitler, Daniel; Kuner, Thomas

    2013-01-01

    Synapsins are synaptic vesicle (SV) proteins organizing a component of the reserve pool of vesicles at most central nervous system synapses. Alternative splicing of the three mammalian genes results in multiple isoforms that may differentially contribute to the organization and maintenance of the SV pools. To address this, we first characterized the expression pattern of synapsin isoforms in the rat calyx of Held. At postnatal day 16, synapsins Ia, Ib, IIb and IIIa were present, while IIa—known to sustain repetitive transmission in glutamatergic terminals—was not detectable. To test if the synapsin I isoforms could mediate IIa-like effect, and if this depends on the presence of the E-domain, we overexpressed either synapsin Ia or synapsin Ib in the rat calyx of Held via recombinant adeno-associated virus-mediated gene transfer. Although the size and overall structure of the perturbed calyces remained unchanged, short-term depression and recovery from depression were accelerated upon overexpression of synapsin I isoforms. Using electron microscopic three-dimensional reconstructions we found a redistribution of SV clusters proximal to the active zones (AZ) alongside with a decrease of both AZ area and SV volume. The number of SVs at individual AZs was strongly reduced. Hence, our data indicate that the amount of synapsin Ia expressed in the calyx regulates the rate and extent of short-term synaptic plasticity by affecting vesicle recruitment to the AZ. Finally, our study reveals a novel contribution of synapsin Ia to define the surface area of AZs. PMID:24391547

  16. Effect of short-term exposure to dichlorvos on synaptic plasticity of rat hippocampal slices: Involvement of acylpeptide hydrolase and {alpha}{sub 7} nicotinic receptors

    SciTech Connect

    Olmos, Cristina; Sandoval, Rodrigo; Rozas, Carlos; Navarro, Sebastian; Wyneken, Ursula; Zeise, Marc; Morales, Bernardo; Pancetti, Floria

    2009-07-01

    Dichlorvos is the active molecule of the pro-drug metrifonate used to revert the cognitive deficits associated with Alzheimer's disease. A few years ago it was reported that dichlorvos inhibits the enzyme acylpeptide hydrolase at lower doses than those necessary to inhibit acetylcholinesterase to the same extent. Therefore, the aim of our investigation was to test the hypothesis that dichlorvos can enhance synaptic efficacy through a mechanism that involves acylpeptide hydrolase instead of acetylcholinesterase inhibition. We used long-term potentiation induced in rat hippocampal slices as a model of synaptic plasticity. Our results indicate that short-term exposures (20 min) to 50 {mu}M dichlorvos enhance long-term potentiation in about 200% compared to the control condition. This effect is correlated with approximately 60% inhibition of acylpeptide hydrolase activity, whereas acetylcholinesterase activity remains unaffected. Paired-pulse facilitation and inhibition experiments indicate that dichlorvos does not have any presynaptic effect in the CA3 {yields} CA1 pathway nor affect gabaergic interneurons. Interestingly, the application of 100 nM methyllicaconitine, an {alpha}{sub 7} nicotinic receptor antagonist, blocked the enhancing effect of dichlorvos on long-term potentiation. These results indicate that under the exposure conditions described above, dichlorvos enhances long-term potentiation through a postsynaptic mechanism that involves (a) the inhibition of the enzyme acylpeptide hydrolase and (b) the modulation of {alpha}{sub 7} nicotinic receptors.

  17. Preservation of long-term memory and synaptic plasticity despite short-term impairments in the Tc1 mouse model of Down syndrome.

    PubMed

    Morice, Elise; Andreae, Laura C; Cooke, Sam F; Vanes, Lesley; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Bliss, Timothy V P

    2008-07-01

    Down syndrome (DS) is a genetic disorder arising from the presence of a third copy of the human chromosome 21 (Hsa21). Recently, O'Doherty and colleagues in an earlier study generated a new genetic mouse model of DS (Tc1) that carries an almost complete Hsa21. Since DS is the most common genetic cause of mental retardation, we have undertaken a detailed analysis of cognitive function and synaptic plasticity in Tc1 mice. Here we show that Tc1 mice have impaired spatial working memory (WM) but spared long-term spatial reference memory (RM) in the Morris watermaze. Similarly, Tc1 mice are selectively impaired in short-term memory (STM) but have intact long-term memory (LTM) in the novel object recognition task. The pattern of impaired STM and normal LTM is paralleled by a corresponding phenotype in long-term potentiation (LTP). Freely-moving Tc1 mice exhibit reduced LTP 1 h after induction but normal maintenance over days in the dentate gyrus of the hippocampal formation. Biochemical analysis revealed a reduction in membrane surface expression of the AMPAR (alpha-amino-3-hydroxy-5-methyl-4-propionic acid receptor) subunit GluR1 in the hippocampus of Tc1 mice, suggesting a potential mechanism for the impairment in early LTP. Our observations also provide further evidence that STM and LTM for hippocampus-dependent tasks are subserved by parallel processing streams.

  18. Short term synaptic depression imposes a frequency dependent filter on synaptic information transfer.

    PubMed

    Rosenbaum, Robert; Rubin, Jonathan; Doiron, Brent

    2012-01-01

    Depletion of synaptic neurotransmitter vesicles induces a form of short term depression in synapses throughout the nervous system. This plasticity affects how synapses filter presynaptic spike trains. The filtering properties of short term depression are often studied using a deterministic synapse model that predicts the mean synaptic response to a presynaptic spike train, but ignores variability introduced by the probabilistic nature of vesicle release and stochasticity in synaptic recovery time. We show that this additional variability has important consequences for the synaptic filtering of presynaptic information. In particular, a synapse model with stochastic vesicle dynamics suppresses information encoded at lower frequencies more than information encoded at higher frequencies, while a model that ignores this stochasticity transfers information encoded at any frequency equally well. This distinction between the two models persists even when large numbers of synaptic contacts are considered. Our study provides strong evidence that the stochastic nature neurotransmitter vesicle dynamics must be considered when analyzing the information flow across a synapse.

  19. Emulating short-term synaptic dynamics with memristive devices

    NASA Astrophysics Data System (ADS)

    Berdan, Radu; Vasilaki, Eleni; Khiat, Ali; Indiveri, Giacomo; Serb, Alexandru; Prodromakis, Themistoklis

    2016-01-01

    Neuromorphic architectures offer great promise for achieving computation capacities beyond conventional Von Neumann machines. The essential elements for achieving this vision are highly scalable synaptic mimics that do not undermine biological fidelity. Here we demonstrate that single solid-state TiO2 memristors can exhibit non-associative plasticity phenomena observed in biological synapses, supported by their metastable memory state transition properties. We show that, contrary to conventional uses of solid-state memory, the existence of rate-limiting volatility is a key feature for capturing short-term synaptic dynamics. We also show how the temporal dynamics of our prototypes can be exploited to implement spatio-temporal computation, demonstrating the memristors full potential for building biophysically realistic neural processing systems.

  20. Emulating short-term synaptic dynamics with memristive devices

    PubMed Central

    Berdan, Radu; Vasilaki, Eleni; Khiat, Ali; Indiveri, Giacomo; Serb, Alexandru; Prodromakis, Themistoklis

    2016-01-01

    Neuromorphic architectures offer great promise for achieving computation capacities beyond conventional Von Neumann machines. The essential elements for achieving this vision are highly scalable synaptic mimics that do not undermine biological fidelity. Here we demonstrate that single solid-state TiO2 memristors can exhibit non-associative plasticity phenomena observed in biological synapses, supported by their metastable memory state transition properties. We show that, contrary to conventional uses of solid-state memory, the existence of rate-limiting volatility is a key feature for capturing short-term synaptic dynamics. We also show how the temporal dynamics of our prototypes can be exploited to implement spatio-temporal computation, demonstrating the memristors full potential for building biophysically realistic neural processing systems. PMID:26725838

  1. Low level postnatal methylmercury exposure in vivo alters developmental forms of short-term synaptic plasticity in the visual cortex of rat

    SciTech Connect

    Dasari, Sameera; Yuan, Yukun

    2009-11-01

    Methylmercury (MeHg) has been previously shown to affect neurotransmitter release. Short-term synaptic plasticity (STP) is primarily related to changes in the probability of neurotransmitter release. To determine if MeHg affects STP development, we examined STP forms in the visual cortex of rat following in vivo MeHg exposure. Neonatal rats received 0 (0.9% NaCl), 0.75 or 1.5 mg/kg/day MeHg subcutaneously for 15 or 30 days beginning on postnatal day 5, after which visual cortical slices were prepared for field potential recordings. In slices prepared from rats treated with vehicle, field excitatory postsynaptic potentials (fEPSPs) evoked by paired-pulse stimulation at 20-200 ms inter-stimulus intervals showed a depression (PPD) of the second fEPSP (fEPSP2). PPD was also seen in slices prepared from rats after 15 day treatment with 0.75 or 1.5 mg/kg/day MeHg. However, longer duration treatment (30 days) with either dose of MeHg resulted in paired-pulse facilitation (PPF) of fEPSP2 in the majority of slices examined. PPF remained observable in slices prepared from animals in which MeHg exposure had been terminated for 30 days after completion of the initial 30 day MeHg treatment, whereas slices from control animals still showed PPD. MeHg did not cause any frequency- or region-preferential effect on STP. Manipulations of [Ca{sup 2+}]{sub e} or application of the GABA{sub A} receptor antagonist bicuculline could alter the strength and polarity of MeHg-induced changes in STP. Thus, these data suggest that low level postnatal MeHg exposure interferes with the developmental transformation of STP in the visual cortex, which is a long-lasting effect.

  2. RGS2 determines short-term synaptic plasticity in hippocampal neurons by regulating Gi/o-mediated inhibition of presynaptic Ca2+ channels.

    PubMed

    Han, Jing; Mark, Melanie D; Li, Xiang; Xie, Mian; Waka, Sayumi; Rettig, Jens; Herlitze, Stefan

    2006-09-07

    RGS2, one of the small members of the regulator of G protein signaling (RGS) family, is highly expressed in brain and regulates G(i/o) as well as G(q)-coupled receptor pathways. RGS2 modulates anxiety, aggression, and blood pressure in mice, suggesting that RGS2 regulates synaptic circuits underlying animal physiology and behavior. How RGS2 in brain influences synaptic activity is unknown. We therefore analyzed the synaptic function of RGS2 in hippocampal neurons by comparing electrophysiological recordings from RGS2 knockout and wild-type mice. Our study provides a general mechanism of the action of the RGS family containing RGS2 by demonstrating that RGS2 increases synaptic vesicle release by downregulating the G(i/o)-mediated presynaptic Ca(2+) channel inhibition and therefore provides an explanation of how regulation of RGS2 expression can modulate the function of neuronal circuits underlying behavior.

  3. Robust Short-Term Memory without Synaptic Learning

    PubMed Central

    Johnson, Samuel; Marro, J.; Torres, Joaquín J.

    2013-01-01

    Short-term memory in the brain cannot in general be explained the way long-term memory can – as a gradual modification of synaptic weights – since it takes place too quickly. Theories based on some form of cellular bistability, however, do not seem able to account for the fact that noisy neurons can collectively store information in a robust manner. We show how a sufficiently clustered network of simple model neurons can be instantly induced into metastable states capable of retaining information for a short time (a few seconds). The mechanism is robust to different network topologies and kinds of neural model. This could constitute a viable means available to the brain for sensory and/or short-term memory with no need of synaptic learning. Relevant phenomena described by neurobiology and psychology, such as local synchronization of synaptic inputs and power-law statistics of forgetting avalanches, emerge naturally from this mechanism, and we suggest possible experiments to test its viability in more biological settings. PMID:23349664

  4. The number of components of enhancement contributing to short-term synaptic plasticity at the neuromuscular synapse during patterned nerve Stimulation progressively decreases as basal release probability is increased from low to normal levels by changing extracellular Ca2+.

    PubMed

    Holohean, Alice M; Magleby, Karl L

    2011-05-11

    Presynaptic short-term plasticity (STP) dynamically modulates synaptic strength in a reversible manner on a timescale of milliseconds to minutes. For low basal vesicular release probability (prob0), four components of enhancement, F1 and F2 facilitation, augmentation (A), and potentiation (P), increase synaptic strength during repetitive nerve activity. For release rates that exceed the rate of replenishment of the readily releasable pool (RRP) of synaptic vesicles, depression of synaptic strength, observed as a rundown of postsynaptic potential amplitudes, can also develop. To understand the relationship between enhancement and depression at the frog (Rana pipiens) neuromuscular synapse, data obtained over a wide range of prob0 using patterned stimulation are analyzed with a hybrid model to reveal the components of STP. We find that F1, F2, A, P, and depletion of the RRP all contribute to STP during repetitive nerve activity at low prob0. As prob0 is increased by raising Ca(o)(2+) (extracellular Ca2+), specific components of enhancement no longer contribute, with first P, then A, and then F2 becoming undetectable, even though F1 continues to enhance release. For levels of prob0 that lead to appreciable depression, only F1 and depletion of the RRP contribute to STP during rundown, and for low stimulation rates, F2 can also contribute. These observations place prob0-dependent limitations on which components of enhancement contribute to STP and suggest some fundamental mechanistic differences among the components. The presented model can serve as a tool to readily characterize the components of STP over wide ranges of prob0.

  5. Frequency-selective augmenting responses by short-term synaptic depression in cat neocortex

    PubMed Central

    Houweling, Arthur R; Bazhenov, Maxim; Timofeev, Igor; Grenier, François; Steriade, Mircea; Sejnowski, Terrence J

    2002-01-01

    Thalamic stimulation at frequencies between 5 and 15 Hz elicits incremental or ‘augmenting’ cortical responses. Augmenting responses can also be evoked in cortical slices and isolated cortical slabs in vivo. Here we show that a realistic network model of cortical pyramidal cells and interneurones including short-term plasticity of inhibitory and excitatory synapses replicates the main features of augmenting responses as obtained in isolated slabs in vivo. Repetitive stimulation of synaptic inputs at frequencies around 10 Hz produced postsynaptic potentials that grew in size and carried an increasing number of action potentials resulting from the depression of inhibitory synaptic currents. Frequency selectivity was obtained through the relatively weak depression of inhibitory synapses at low frequencies, and strong depression of excitatory synapses together with activation of a calcium-activated potassium current at high frequencies. This network resonance is a consequence of short-term synaptic plasticity in a network of neurones without intrinsic resonances. These results suggest that short-term plasticity of cortical synapses could shape the dynamics of synchronized oscillations in the brain. PMID:12122156

  6. Ethanol Modulation of Synaptic Plasticity

    PubMed Central

    McCool, Brian A.

    2011-01-01

    Synaptic plasticity in the most general terms represents the flexibility of neurotransmission in response to neuronal activity. Synaptic plasticity is essential both for the moment-by-moment modulation of neural activity in response to dynamic environmental cues and for long-term learning and memory formation. These temporal characteristics are served by an array of pre- and post-synaptic mechanisms that are frequently modulated by ethanol exposure. This modulation likely makes significant contributions to both alcohol abuse and dependence. In this review, I discuss the modulation of both short-term and long-term synaptic plasticity in the context of specific ethanol-sensitive cellular substrates. A general discussion of the available preclinical, animal-model based neurophysiology literature provides a comparison between results from in vitro and in vivo studies. Finally, in the context of alcohol abuse and dependence, the review proposes potential behavioral contributions by ethanol modulation of plasticity. PMID:21195719

  7. Short-term potentiation of GABAergic synaptic inputs to vasopressin and oxytocin neurones.

    PubMed

    Morton, Linda A; Popescu, Ion R; Haam, Juhee; Tasker, Jeffrey G

    2014-10-01

    The magnocellular vasopressin (VP) and oxytocin (OT) neurones undergo long-term synaptic plasticity to accommodate prolonged hormone demand. By contrast, rapidly induced,transient synaptic plasticity in response to brief stimuli could enable the activation of magnocellular neurones in response to acute challenges. Here, we report a robust short-term potentiation of asynchronous GABAergic synaptic inputs (STP(GABA)) to VP and OT neurones of the hypothalamic supraoptic nucleus elicited by repetitive extracellular electrical stimulation.The STP(GABA) required extracellular Ca2+, but did not require activation of glutamate, VP or OT receptors or nitric oxide synthesis. Presynaptic action potential generation was necessary for the induction, but not the maintenance, of STP(GABA). The STP(GABA) led to a minutes-long GABA(A)receptor-dependent increase in spike frequency in VP neurones, but not in OT neurones,consistent with an excitatory function of GABA in only VP neurones and with the generation of prolonged bursts of action potentials in VP neurones. Therefore, this short-term plasticity of GABAergic synaptic inputs is likely to play very different roles in the regulation of OT and VP neurones and their distinct patterns of physiological activation.

  8. Short-term potentiation of GABAergic synaptic inputs to vasopressin and oxytocin neurones

    PubMed Central

    Morton, Linda A; Popescu, Ion R; Haam, Juhee; Tasker, Jeffrey G

    2014-01-01

    The magnocellular vasopressin (VP) and oxytocin (OT) neurones undergo long-term synaptic plasticity to accommodate prolonged hormone demand. By contrast, rapidly induced, transient synaptic plasticity in response to brief stimuli could enable the activation of magnocellular neurones in response to acute challenges. Here, we report a robust short-term potentiation of asynchronous GABAergic synaptic inputs (STPGABA) to VP and OT neurones of the hypothalamic supraoptic nucleus elicited by repetitive extracellular electrical stimulation. The STPGABA required extracellular Ca2+, but did not require activation of glutamate, VP or OT receptors or nitric oxide synthesis. Presynaptic action potential generation was necessary for the induction, but not the maintenance, of STPGABA. The STPGABA led to a minutes-long GABAA receptor-dependent increase in spike frequency in VP neurones, but not in OT neurones, consistent with an excitatory function of GABA in only VP neurones and with the generation of prolonged bursts of action potentials in VP neurones. Therefore, this short-term plasticity of GABAergic synaptic inputs is likely to play very different roles in the regulation of OT and VP neurones and their distinct patterns of physiological activation. PMID:25063825

  9. [Memory and synaptic plasticity].

    PubMed

    Maitre, M

    1996-01-01

    Short term memory traces are probably induced by a sustained and specific functional activation of some sensory and/or motor circuits in brain. These modifications, which could concern a large proportion of the brain but especially the limbic areas, are constituted primarily by ionic mechanisms and second messengers cascades induced by the activation of glutamatergic receptors (namely NMDA). In the invertebrate (Drosophilia melanogaster, aplysia), the role of serotonergic receptors seems to be more important. The activated cAMP-dependent and calcium dependent protein kinases target several proteins which are reversibly phosphorylated modifying the synaptic functions which in turn induce potentiated (PLT) or depressed (DLT) post-synaptic responses. These phenomena are at the basis of specific protein neosynthesis which is initiated by several early genes or trancription factor (cfos, zif 268, jun, CREB). Specific mRNA migrate to the potentiated synapse or dendritic spine where activated polyribosomes synthesize trophic factor, adhesion molecules and synaptic constituents. The building of new synaptic contacts and/or the plastic evolution of existing synapses could explain long-term LTP and long-term memory traces.

  10. Short-Term Synaptic Depression Is Topographically Distributed in the Cochlear Nucleus of the Chicken

    PubMed Central

    Oline, Stefan N.

    2014-01-01

    In the auditory system, sounds are processed in parallel frequency-tuned circuits, beginning in the cochlea. Activity of auditory nerve fibers reflects this frequency-specific topographic pattern, known as tonotopy, and imparts frequency tuning onto their postsynaptic target neurons in the cochlear nucleus. In birds, cochlear nucleus magnocellularis (NM) neurons encode the temporal properties of acoustic stimuli by “locking” discharges to a particular phase of the input signal. Physiological specializations exist in gradients corresponding to the tonotopic axis in NM that reflect the characteristic frequency (CF) of their auditory nerve fiber inputs. One feature of NM neurons that has not been investigated across the tonotopic axis is short-term synaptic plasticity. NM offers a rather homogeneous population of neurons with a distinct topographical distribution of synaptic properties that is ideal for the investigation of specialized synaptic plasticity. Here we demonstrate for the first time that short-term synaptic depression (STD) is expressed topographically, where unitary high CF synapses are more robust with repeated stimulation. Correspondingly, high CF synapses drive spiking more reliably than their low CF counterparts. We show that postsynaptic AMPA receptor desensitization does not contribute to the observed difference in STD. Further, rate of recovery from depression, a presynaptic property, does not differ tonotopically. Rather, we show that another presynaptic feature, readily releasable pool (RRP) size, is tonotopically distributed and inversely correlated with vesicle release probability. Mathematical model results demonstrate that these properties of vesicle dynamics are sufficient to explain the observed tonotopic distribution of STD. PMID:24453322

  11. Short-term synaptic depression is topographically distributed in the cochlear nucleus of the chicken.

    PubMed

    Oline, Stefan N; Burger, R Michael

    2014-01-22

    In the auditory system, sounds are processed in parallel frequency-tuned circuits, beginning in the cochlea. Activity of auditory nerve fibers reflects this frequency-specific topographic pattern, known as tonotopy, and imparts frequency tuning onto their postsynaptic target neurons in the cochlear nucleus. In birds, cochlear nucleus magnocellularis (NM) neurons encode the temporal properties of acoustic stimuli by "locking" discharges to a particular phase of the input signal. Physiological specializations exist in gradients corresponding to the tonotopic axis in NM that reflect the characteristic frequency (CF) of their auditory nerve fiber inputs. One feature of NM neurons that has not been investigated across the tonotopic axis is short-term synaptic plasticity. NM offers a rather homogeneous population of neurons with a distinct topographical distribution of synaptic properties that is ideal for the investigation of specialized synaptic plasticity. Here we demonstrate for the first time that short-term synaptic depression (STD) is expressed topographically, where unitary high CF synapses are more robust with repeated stimulation. Correspondingly, high CF synapses drive spiking more reliably than their low CF counterparts. We show that postsynaptic AMPA receptor desensitization does not contribute to the observed difference in STD. Further, rate of recovery from depression, a presynaptic property, does not differ tonotopically. Rather, we show that another presynaptic feature, readily releasable pool (RRP) size, is tonotopically distributed and inversely correlated with vesicle release probability. Mathematical model results demonstrate that these properties of vesicle dynamics are sufficient to explain the observed tonotopic distribution of STD.

  12. Diverse thalamocortical short-term plasticity elicited by ongoing stimulation.

    PubMed

    Díaz-Quesada, Marta; Martini, Francisco J; Ferrati, Giovanni; Bureau, Ingrid; Maravall, Miguel

    2014-01-08

    To produce sensation, neuronal pathways must transmit and process stimulus patterns that unfold over time. This behavior is determined by short-term synaptic plasticity (STP), which shapes the temporal filtering properties of synapses in a pathway. We explored STP variability across thalamocortical (TC) synapses, measuring whole-cell responses to stimulation of TC fibers in layer 4 neurons of mouse barrel cortex in vitro. As expected, STP during stimulation from rest was dominated by depression. However, STP during ongoing stimulation was strikingly diverse across TC connections. Diversity took the form of variable tuning to the latest interstimulus interval: some connections responded weakly to shorter intervals, while other connections were facilitated. These behaviors did not cluster into categories but formed a continuum. Diverse tuning did not require disynaptic inhibition. Hence, monosynaptic excitatory lemniscal TC connections onto layer 4 do not behave uniformly during ongoing stimulation. Each connection responds differentially to particular stimulation intervals, enriching the ability of the pathway to convey complex, temporally fluctuating information.

  13. Quantifying impacts of short-term plasticity on neuronal information transfer

    NASA Astrophysics Data System (ADS)

    Scott, Pat; Cowan, Anna I.; Stricker, Christian

    2012-04-01

    Short-term changes in efficacy have been postulated to enhance the ability of synapses to transmit information between neurons, and within neuronal networks. Even at the level of connections between single neurons, direct confirmation of this simple conjecture has proven elusive. By combining paired-cell recordings, realistic synaptic modeling, and information theory, we provide evidence that short-term plasticity can not only improve, but also reduce information transfer between neurons. We focus on a concrete example in rat neocortex, but our results may generalize to other systems. When information is contained in the timings of individual spikes, we find that facilitation, depression, and recovery affect information transmission in proportion to their impacts upon the probability of neurotransmitter release. When information is instead conveyed by mean spike rate only, the influences of short-term plasticity critically depend on the range of spike frequencies that the target network can distinguish (its effective dynamic range). Our results suggest that to efficiently transmit information, the brain must match synaptic type, coding strategy, and network connectivity during development and behavior.

  14. Short-Term Plasticity and Long-Term Potentiation in Magnetic Tunnel Junctions: Towards Volatile Synapses

    NASA Astrophysics Data System (ADS)

    Sengupta, Abhronil; Roy, Kaushik

    2016-02-01

    Synaptic memory is considered to be the main element responsible for learning and cognition in humans. Although traditionally nonvolatile long-term plasticity changes are implemented in nanoelectronic synapses for neuromorphic applications, recent studies in neuroscience reveal that biological synapses undergo metastable volatile strengthening followed by a long-term strengthening provided that the frequency of the input stimulus is sufficiently high. Such "memory strengthening" and "memory decay" functionalities can potentially lead to adaptive neuromorphic architectures. In this paper, we demonstrate the close resemblance of the magnetization dynamics of a magnetic tunnel junction (MTJ) to short-term plasticity and long-term potentiation observed in biological synapses. We illustrate that, in addition to the magnitude and duration of the input stimulus, the frequency of the stimulus plays a critical role in determining long-term potentiation of the MTJ. Such MTJ synaptic memory arrays can be utilized to create compact, ultrafast, and low-power intelligent neural systems.

  15. Persistent Long-Term Facilitation at an Identified Synapse Becomes Labile with Activation of Short-Term Heterosynaptic Plasticity

    PubMed Central

    Schacher, Samuel

    2014-01-01

    Short-term and long-term synaptic plasticity are cellular correlates of learning and memory of different durations. Little is known, however, how these two forms of plasticity interact at the same synaptic connection. We examined the reciprocal impact of short-term heterosynaptic or homosynaptic plasticity at sensorimotor synapses of Aplysia in cell culture when expressing persistent long-term facilitation (P-LTF) evoked by serotonin [5-hydroxytryptamine (5-HT)]. Short-term heterosynaptic plasticity induced by 5-HT (facilitation) or the neuropeptide FMRFa (depression) and short-term homosynaptic plasticity induced by tetanus [post-tetanic potentiation (PTP)] or low-frequency stimulation [homosynaptic depression (HSD)] of the sensory neuron were expressed in both control synapses and synapses expressing P-LTF in the absence or presence of protein synthesis inhibitors. All forms of short-term plasticity failed to significantly affect ongoing P-LTF in the absence of protein synthesis inhibitors. However, P-LTF reversed to control levels when either 5-HT or FMRFa was applied in the presence of rapamycin. In contrast, P-LTF was unaffected when either PTP or HSD was evoked in the presence of either rapamycin or anisomycin. These results indicate that synapses expressing persistent plasticity acquire a “new” baseline and functionally express short-term changes as naive synapses, but the new baseline becomes labile following selective activations—heterosynaptic stimuli that evoke opposite forms of plasticity—such that when presented in the presence of protein synthesis inhibitors produce a rapid reversal of the persistent plasticity. Activity-selective induction of a labile state at synapses expressing persistent plasticity may facilitate the development of therapies for reversing inappropriate memories. PMID:24695698

  16. Target-cell-specific short-term plasticity in local circuits.

    PubMed

    Blackman, Arne V; Abrahamsson, Therese; Costa, Rui Ponte; Lalanne, Txomin; Sjöström, P Jesper

    2013-12-06

    Short-term plasticity (STP) denotes changes in synaptic strength that last up to tens of seconds. It is generally thought that STP impacts information transfer across synaptic connections and may thereby provide neurons with, for example, the ability to detect input coherence, to maintain stability and to promote synchronization. STP is due to a combination of mechanisms, including vesicle depletion and calcium accumulation in synaptic terminals. Different forms of STP exist, depending on many factors, including synapse type. Recent evidence shows that synapse dependence holds true even for connections that originate from a single presynaptic cell, which implies that postsynaptic target cell type can determine synaptic short-term dynamics. This arrangement is surprising, since STP itself is chiefly due to presynaptic mechanisms. Target-specific synaptic dynamics in addition imply that STP is not a bug resulting from synapses fatiguing when driven too hard, but rather a feature that is selectively implemented in the brain for specific functional purposes. As an example, target-specific STP results in sequential somatic and dendritic inhibition in neocortical and hippocampal excitatory cells during high-frequency firing. Recent studies also show that the Elfn1 gene specifically controls STP at some synapse types. In addition, presynaptic NMDA receptors have been implicated in synapse-specific control of synaptic dynamics during high-frequency activity. We argue that synapse-specific STP deserves considerable further study, both experimentally and theoretically, since its function is not well known. We propose that synapse-specific STP has to be understood in the context of the local circuit, which requires combining different scientific disciplines ranging from molecular biology through electrophysiology to computer modeling.

  17. Target-cell-specific short-term plasticity in local circuits

    PubMed Central

    Blackman, Arne V.; Abrahamsson, Therese; Costa, Rui Ponte; Lalanne, Txomin; Sjöström, P. Jesper

    2013-01-01

    Short-term plasticity (STP) denotes changes in synaptic strength that last up to tens of seconds. It is generally thought that STP impacts information transfer across synaptic connections and may thereby provide neurons with, for example, the ability to detect input coherence, to maintain stability and to promote synchronization. STP is due to a combination of mechanisms, including vesicle depletion and calcium accumulation in synaptic terminals. Different forms of STP exist, depending on many factors, including synapse type. Recent evidence shows that synapse dependence holds true even for connections that originate from a single presynaptic cell, which implies that postsynaptic target cell type can determine synaptic short-term dynamics. This arrangement is surprising, since STP itself is chiefly due to presynaptic mechanisms. Target-specific synaptic dynamics in addition imply that STP is not a bug resulting from synapses fatiguing when driven too hard, but rather a feature that is selectively implemented in the brain for specific functional purposes. As an example, target-specific STP results in sequential somatic and dendritic inhibition in neocortical and hippocampal excitatory cells during high-frequency firing. Recent studies also show that the Elfn1 gene specifically controls STP at some synapse types. In addition, presynaptic NMDA receptors have been implicated in synapse-specific control of synaptic dynamics during high-frequency activity. We argue that synapse-specific STP deserves considerable further study, both experimentally and theoretically, since its function is not well known. We propose that synapse-specific STP has to be understood in the context of the local circuit, which requires combining different scientific disciplines ranging from molecular biology through electrophysiology to computer modeling. PMID:24367330

  18. The Neurexin/N-Ethylmaleimide-sensitive Factor (NSF) Interaction Regulates Short Term Synaptic Depression*♦

    PubMed Central

    Li, Tao; Tian, Yao; Li, Qian; Chen, Huiying; Lv, Huihui; Xie, Wei; Han, Junhai

    2015-01-01

    Although Neurexins, which are cell adhesion molecules localized predominantly to the presynaptic terminals, are known to regulate synapse formation and synaptic transmission, their roles in the regulation of synaptic vesicle release during repetitive nerve stimulation are unknown. Here, we show that nrx mutant synapses exhibit rapid short term synaptic depression upon tetanic nerve stimulation. Moreover, we demonstrate that the intracellular region of NRX is essential for synaptic vesicle release upon tetanic nerve stimulation. Using a yeast two-hybrid screen, we find that the intracellular region of NRX interacts with N-ethylmaleimide-sensitive factor (NSF), an enzyme that mediates soluble NSF attachment protein receptor (SNARE) complex disassembly and plays an important role in synaptic vesicle release. We further map the binding sites of each molecule and demonstrate that the NRX/NSF interaction is critical for both the distribution of NSF at the presynaptic terminals and SNARE complex disassembly. Our results reveal a previously unknown role of NRX in the regulation of short term synaptic depression upon tetanic nerve stimulation and provide new mechanistic insights into the role of NRX in synaptic vesicle release. PMID:25953899

  19. Behavior control in the sensorimotor loop with short-term synaptic dynamics induced by self-regulating neurons

    PubMed Central

    Toutounji, Hazem; Pasemann, Frank

    2014-01-01

    The behavior and skills of living systems depend on the distributed control provided by specialized and highly recurrent neural networks. Learning and memory in these systems is mediated by a set of adaptation mechanisms, known collectively as neuronal plasticity. Translating principles of recurrent neural control and plasticity to artificial agents has seen major strides, but is usually hampered by the complex interactions between the agent's body and its environment. One of the important standing issues is for the agent to support multiple stable states of behavior, so that its behavioral repertoire matches the requirements imposed by these interactions. The agent also must have the capacity to switch between these states in time scales that are comparable to those by which sensory stimulation varies. Achieving this requires a mechanism of short-term memory that allows the neurocontroller to keep track of the recent history of its input, which finds its biological counterpart in short-term synaptic plasticity. This issue is approached here by deriving synaptic dynamics in recurrent neural networks. Neurons are introduced as self-regulating units with a rich repertoire of dynamics. They exhibit homeostatic properties for certain parameter domains, which result in a set of stable states and the required short-term memory. They can also operate as oscillators, which allow them to surpass the level of activity imposed by their homeostatic operation conditions. Neural systems endowed with the derived synaptic dynamics can be utilized for the neural behavior control of autonomous mobile agents. The resulting behavior depends also on the underlying network structure, which is either engineered or developed by evolutionary techniques. The effectiveness of these self-regulating units is demonstrated by controlling locomotion of a hexapod with 18 degrees of freedom, and obstacle-avoidance of a wheel-driven robot. PMID:24904403

  20. Short-term synaptic depression and stochastic vesicle dynamics reduce and shape neuronal correlations.

    PubMed

    Rosenbaum, Robert; Rubin, Jonathan E; Doiron, Brent

    2013-01-01

    Correlated neuronal activity is an important feature in many neural codes, a neural correlate of a variety of cognitive states, as well as a signature of several disease states in the nervous system. The cellular and circuit mechanics of neural correlations is a vibrant area of research. Synapses throughout the cortex exhibit a form of short-term depression where increased presynaptic firing rates deplete neurotransmitter vesicles, which transiently reduces synaptic efficacy. The release and recovery of these vesicles are inherently stochastic, and this stochasticity introduces variability into the conductance elicited by depressing synapses. The impact of spiking and subthreshold membrane dynamics on the transfer of neuronal correlations has been studied intensively, but an investigation of the impact of short-term synaptic depression and stochastic vesicle dynamics on correlation transfer is lacking. We find that short-term synaptic depression and stochastic vesicle dynamics can substantially reduce correlations, shape the timescale over which these correlations occur, and alter the dependence of spiking correlations on firing rate. Our results show that short-term depression and stochastic vesicle dynamics need to be taken into account when modeling correlations in neuronal populations.

  1. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses.

    PubMed

    Ohno, Takeo; Hasegawa, Tsuyoshi; Tsuruoka, Tohru; Terabe, Kazuya; Gimzewski, James K; Aono, Masakazu

    2011-06-26

    Memory is believed to occur in the human brain as a result of two types of synaptic plasticity: short-term plasticity (STP) and long-term potentiation (LTP; refs 1-4). In neuromorphic engineering, emulation of known neural behaviour has proven to be difficult to implement in software because of the highly complex interconnected nature of thought processes. Here we report the discovery of a Ag(2)S inorganic synapse, which emulates the synaptic functions of both STP and LTP characteristics through the use of input pulse repetition time. The structure known as an atomic switch, operating at critical voltages, stores information as STP with a spontaneous decay of conductance level in response to intermittent input stimuli, whereas frequent stimulation results in a transition to LTP. The Ag(2)S inorganic synapse has interesting characteristics with analogies to an individual biological synapse, and achieves dynamic memorization in a single device without the need of external preprogramming. A psychological model related to the process of memorizing and forgetting is also demonstrated using the inorganic synapses. Our Ag(2)S element indicates a breakthrough in mimicking synaptic behaviour essential for the further creation of artificial neural systems that emulate characteristics of human memory.

  2. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses

    NASA Astrophysics Data System (ADS)

    Ohno, Takeo; Hasegawa, Tsuyoshi; Tsuruoka, Tohru; Terabe, Kazuya; Gimzewski, James K.; Aono, Masakazu

    2011-08-01

    Memory is believed to occur in the human brain as a result of two types of synaptic plasticity: short-term plasticity (STP) and long-term potentiation (LTP; refs , , , ). In neuromorphic engineering, emulation of known neural behaviour has proven to be difficult to implement in software because of the highly complex interconnected nature of thought processes. Here we report the discovery of a Ag2S inorganic synapse, which emulates the synaptic functions of both STP and LTP characteristics through the use of input pulse repetition time. The structure known as an atomic switch, operating at critical voltages, stores information as STP with a spontaneous decay of conductance level in response to intermittent input stimuli, whereas frequent stimulation results in a transition to LTP. The Ag2S inorganic synapse has interesting characteristics with analogies to an individual biological synapse, and achieves dynamic memorization in a single device without the need of external preprogramming. A psychological model related to the process of memorizing and forgetting is also demonstrated using the inorganic synapses. Our Ag2S element indicates a breakthrough in mimicking synaptic behaviour essential for the further creation of artificial neural systems that emulate characteristics of human memory.

  3. Downstream Effect of Ramping Neuronal Activity through Synapses with Short-Term Plasticity.

    PubMed

    Wei, Wei; Wang, Xiao-Jing

    2016-04-01

    Ramping neuronal activity refers to spiking activity with a rate that increases quasi-linearly over time. It has been observed in multiple cortical areas and is correlated with evidence accumulation processes or timing. In this work, we investigated the downstream effect of ramping neuronal activity through synapses that display short-term facilitation (STF) or depression (STD). We obtained an analytical result for a synapse driven by deterministic linear ramping input that exhibits pure STF or STD and numerically investigated the general case when a synapse displays both STF and STD. We show that the analytical deterministic solution gives an accurate description of the averaging synaptic activation of many inputs converging onto a postsynaptic neuron, even when fluctuations in the ramping input are strong. Activation of a synapse with STF shows an initial cubical increase with time, followed by a linear ramping similar to a synapse without STF. Activation of a synapse with STD grows in time to a maximum before falling and reaching a plateau, and this steady state is independent of the slope of the ramping input. For a synapse displaying both STF and STD, an increase in the depression time constant from a value much smaller than the facilitation time constant τ(F) to a value much larger than τ(F) leads to a transition from facilitation dominance to depression dominance. Therefore, our work provides insights into the impact of ramping neuronal activity on downstream neurons through synapses that display short-term plasticity. In a perceptual decision-making process, ramping activity has been observed in the parietal and prefrontal cortices, with a slope that decreases with task difficulty. Our work predicts that neurons downstream from such a decision circuit could instead display a firing plateau independent of the task difficulty, provided that the synaptic connection is endowed with short-term depression.

  4. Sleep, Clocks and Synaptic Plasticity

    PubMed Central

    2014-01-01

    Sleep is widely believed to play an essential role in synaptic plasticity. However, the precise mechanisms governing this presumptive function are largely unknown. There is also evidence for independent circadian oscillations in synaptic strength and morphology. Therefore, synaptic changes observed after sleep reflect interactions between state-dependent (e.g. wake vs. sleep) and state-independent (circadian) processes. In this article we review how sleep and biological clocks influence synaptic plasticity. We discuss these findings in the context of current plasticity-based theories of sleep function and propose a new model that integrates circadian and brain state influences on synaptic plasticity. PMID:25087980

  5. Sleep, clocks, and synaptic plasticity.

    PubMed

    Frank, Marcos G; Cantera, Rafael

    2014-09-01

    Sleep is widely believed to play an essential role in synaptic plasticity. However, the precise mechanisms governing this presumptive function are largely unknown. There is also evidence for independent circadian oscillations in synaptic strength and morphology. Therefore, synaptic changes observed after sleep reflect interactions between state-dependent (e.g., wake versus sleep) and state-independent (circadian) processes. In this review we consider how sleep and biological clocks influence synaptic plasticity. We discuss these findings in the context of current plasticity-based theories of sleep function and propose a new model that integrates circadian and brain-state influences on synaptic plasticity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Optogenetics and synaptic plasticity.

    PubMed

    Xie, Yu-feng; Jackson, Michael F; Macdonald, John F

    2013-11-01

    The intricate and complex interaction between different populations of neurons in the brain has imposed limits on our ability to gain detailed understanding of synaptic transmission and its integration when employing classical electrophysiological approaches. Indeed, electrical field stimulation delivered via traditional microelectrodes does not permit the targeted, precise and selective control of neuronal activity amongst a varied population of neurons and their inputs (eg, cholinergic, dopaminergic or glutamatergic neurons). Recently established optogenetic techniques overcome these limitations allowing precise control of the target neuron populations, which is essential for the elucidation of the neural substrates underlying complex animal behaviors. Indeed, by introducing light-activated channels (ie, microbial opsin genes) into specific neuronal populations, optogenetics enables non-invasive optical control of specific neurons with milliseconds precision. These approaches can readily be applied to freely behaving live animals. Recently there is increased interests in utilizing optogenetics tools to understand synaptic plasticity and learning/memory. Here, we summarize recent progress in applying optogenetics in in the study of synaptic plasticity.

  7. Optogenetics and synaptic plasticity

    PubMed Central

    Xie, Yu-feng; Jackson, Michael F; MacDonald, John F

    2013-01-01

    The intricate and complex interaction between different populations of neurons in the brain has imposed limits on our ability to gain detailed understanding of synaptic transmission and its integration when employing classical electrophysiological approaches. Indeed, electrical field stimulation delivered via traditional microelectrodes does not permit the targeted, precise and selective control of neuronal activity amongst a varied population of neurons and their inputs (eg, cholinergic, dopaminergic or glutamatergic neurons). Recently established optogenetic techniques overcome these limitations allowing precise control of the target neuron populations, which is essential for the elucidation of the neural substrates underlying complex animal behaviors. Indeed, by introducing light-activated channels (ie, microbial opsin genes) into specific neuronal populations, optogenetics enables non-invasive optical control of specific neurons with milliseconds precision. These approaches can readily be applied to freely behaving live animals. Recently there is increased interests in utilizing optogenetics tools to understand synaptic plasticity and learning/memory. Here, we summarize recent progress in applying optogenetics in in the study of synaptic plasticity. PMID:24162508

  8. Differential modulation of short-term synaptic dynamics by long-term potentiation at mouse hippocampal mossy fibre synapses.

    PubMed

    Gundlfinger, Anja; Leibold, Christian; Gebert, Katja; Moisel, Marion; Schmitz, Dietmar; Kempter, Richard

    2007-12-15

    Synapses continuously experience short- and long-lasting activity-dependent changes in synaptic strength. Long-term plasticity refers to persistent alterations in synaptic efficacy, whereas short-term plasticity (STP) reflects the instantaneous and reversible modulation of synaptic strength in response to varying presynaptic stimuli. The hippocampal mossy fibre synapse onto CA3 pyramidal cells is known to exhibit both a presynaptic, NMDA receptor-independent form of long-term potentiation (LTP) and a pronounced form of STP. A detailed description of their exact interdependence is, however, lacking. Here, using electrophysiological and computational techniques, we have developed a descriptive model of transmission dynamics to quantify plasticity at the mossy fibre synapse. STP at this synapse is best described by two facilitatory processes acting on time-scales of a few hundred milliseconds and about 10 s. We find that these distinct types of facilitation are differentially influenced by LTP such that the impact of the fast process is weakened as compared to that of the slow process. This attenuation is reflected by a selective decrease of not only the amplitude but also the time constant of the fast facilitation. We henceforth argue that LTP, involving a modulation of parameters determining both amplitude and time course of STP, serves as a mechanism to adapt the mossy fibre synapse to its temporal input.

  9. Synchronization stability and firing transitions in two types of class I neuronal networks with short-term plasticity.

    PubMed

    Zhang, Honghui; Wang, Qingyun; He, Xiaoyan; Chen, Guanrong

    2014-01-01

    This paper investigates synchronization stability and firing transition in two types of the modified canonical class I neuronal networks, where the short-term plasticity of synapse is introduced. We mainly consider both unidirectional chain and global coupling configurations. Previous studies have shown that the coupled class I neurons can spontaneously de-synchronize. Presently, the short-term plasticity of synapse is considered to check the universality of this phenomenon. Based on the theoretical analysis and numerical simulation, it is shown that unidirectionally chain coupled class I neurons can realize synchronization, whereas bidirectionally coupled chain neurons cannot synchronize, and globally coupled class I neurons de-synchronize. Furthermore, the dynamics of coupled neurons with different firing modes are also studied in numerical simulations, and interesting transitions of different firing modes can be induced by the short-term plasticity. The obtained results can be helpful to further understand important effects of the short-term synaptic plasticity on realistic neuronal systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Properties of short-term synaptic depression at larval neuromuscular synapses in wild-type and temperature-sensitive paralytic mutants of Drosophila.

    PubMed

    Wu, Ying; Kawasaki, Fumiko; Ordway, Richard W

    2005-05-01

    The larval neuromuscular synapse of Drosophila serves as an important model for genetic and molecular analysis of synaptic development and function. Further functional characterization of this synapse, as well as adult neuromuscular synapses, will greatly enhance the impact of this model system on our understanding of synaptic transmission. Here we describe a form of short-term synaptic depression observed at larval, but not adult, neuromuscular synapses and explore the underlying mechanisms. Larval neuromuscular synapses exhibited a form of short-term depression that was strongly dependent on stimulation frequency over a narrow range of low frequencies (0.1-1 Hz). This form of synaptic depression, referred to here as low-frequency short-term depression (LF-STD), results from an activity-dependent reduction in neurotransmitter release. However, in contrast to the predictions of depletion models, the degree of depression was independent of the initial level of neurotransmitter release over a range of extracellular calcium concentrations. This conclusion was confirmed in two temperature-sensitive (TS) paralytic mutants, cacophony and shibire, which exhibit reduced neurotransmitter release resulting from conditional disruption of presynaptic calcium channels and dynamin, respectively. Higher stimulation frequencies (40 or 60 Hz) produced two components of depression that appeared to include LF-STD as well as a more conventional component of short-term depression. These findings reveal novel properties of short-term synaptic depression and suggest that complementary genetic analysis of larval and adult neuromuscular synapses will further define the in vivo mechanisms of neurotransmitter release and short-term synaptic plasticity.

  11. Short-term, moderate exercise is capable of inducing structural, BDNF-independent hippocampal plasticity.

    PubMed

    Ferreira, Ana F B; Real, Caroline C; Rodrigues, Alice C; Alves, Adilson S; Britto, Luiz R G

    2011-11-24

    Exercise is known to improve cognitive functions and to induce neuroprotection. In this study we used a short-term, moderate intensity treadmill exercise protocol to investigate the effects of exercise on usual markers of hippocampal synaptic and structural plasticity, such as synapsin I (SYN), synaptophysin (SYP), neurofilaments (NF), microtubule-associated protein 2 (MAP2), glutamate receptor subunits GluR1 and GluR2/3, brain-derived neurotrophic factor (BDNF) and glial fibrillary acidic protein (GFAP). Immunohistochemistry, Western blotting and real-time PCR were used. We also evaluated the number of cells positive for the proliferation marker 5-bromo-2-deoxyuridine (BrdU), the neurogenesis marker doublecortin (DCX) and the plasma corticosterone levels. Adult male Wistar rats were adapted to a treadmill and divided into 4 groups: sedentary (SED), 3-day exercise (EX3), 7-day exercise (EX7) and 15-day exercise (EX15). The protein changes detected were increased levels of NF68 and MAP2 at EX3, of SYN at EX7 and of GFAP at EX15, accompanied by a decreased level of GluR1 at EX3. Immunohistochemical findings revealed a similar pattern of changes. The real-time PCR analysis disclosed only an increase of MAP2 mRNA at EX7. We also observed an increased number of BrdU-positive cells and DCX-positive cells in the subgranular zone of the dentate gyrus at all time points and increased corticosterone levels at EX3 and EX7. These results reveal a positive effect of short-term, moderate treadmill exercise on hippocampal plasticity. This effect was in general independent of transcriptional processes and of BDNF upregulation, and occurred even in the presence of increased corticosterone levels. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Synaptic plasticity in the auditory system: a review.

    PubMed

    Friauf, Eckhard; Fischer, Alexander U; Fuhr, Martin F

    2015-07-01

    Synaptic transmission via chemical synapses is dynamic, i.e., the strength of postsynaptic responses may change considerably in response to repeated synaptic activation. Synaptic strength is increased during facilitation, augmentation and potentiation, whereas a decrease in synaptic strength is characteristic for depression and attenuation. This review attempts to discuss the literature on short-term and long-term synaptic plasticity in the auditory brainstem of mammals and birds. One hallmark of the auditory system, particularly the inner ear and lower brainstem stations, is information transfer through neurons that fire action potentials at very high frequency, thereby activating synapses >500 times per second. Some auditory synapses display morphological specializations of the presynaptic terminals, e.g., calyceal extensions, whereas other auditory synapses do not. The review focuses on short-term depression and short-term facilitation, i.e., plastic changes with durations in the millisecond range. Other types of short-term synaptic plasticity, e.g., posttetanic potentiation and depolarization-induced suppression of excitation, will be discussed much more briefly. The same holds true for subtypes of long-term plasticity, like prolonged depolarizations and spike-time-dependent plasticity. We also address forms of plasticity in the auditory brainstem that do not comprise synaptic plasticity in a strict sense, namely short-term suppression, paired tone facilitation, short-term adaptation, synaptic adaptation and neural adaptation. Finally, we perform a meta-analysis of 61 studies in which short-term depression (STD) in the auditory system is opposed to short-term depression at non-auditory synapses in order to compare high-frequency neurons with those that fire action potentials at a lower rate. This meta-analysis reveals considerably less STD in most auditory synapses than in non-auditory ones, enabling reliable, failure-free synaptic transmission even at

  13. The endocannabinoid system regulates synaptic transmission in nucleus accumbens by increasing DAGL-α expression following short-term morphine withdrawal.

    PubMed

    Wang, Xing-Qin; Ma, Jie; Cui, Wei; Yuan, Wei-Xin; Zhu, Gang; Yang, Qian; Heng, Li-Jun; Gao, Guo-Dong

    2016-04-01

    The endocannabinoid (eCB) system is involved in pathways that regulate drug addiction and eCB-mediated synaptic plasticity has been linked with addictive behaviours. Here, we investigated the molecular mechanisms underlying the changes in eCB-dependent synaptic plasticity in the nucleus accumbens core (NAcc) following short-term withdrawal from repeated morphine treatment. Conditioned place preference (CPP) was used to evaluate the rewarding effects of morphine in rats. Evoked inhibitory postsynaptic currents of medium spiny neurons in NAcc were measured using whole-cell patch-clamp recordings. Changes in depolarization-induced suppression of inhibition (DSI) in the NAcc were assessed to determine the effect of short-term morphine withdrawal on the eCB system. To identify the potential modulation mechanism of short-term morphine withdrawal on the eCB system, the expression of diacylglycerol lipase α (DGL-α) and monoacylglycerol lipase was detected by Western blot analysis. Repeated morphine administration for 7 days induced stable CPP. Compared with the saline group, the level of DSI in the NAcc was significantly increased in rats after short-term morphine withdrawal. Furthermore, this increase in DSI coincided with a significant increase in the expression of DGL-α. Short-term morphine withdrawal potentiates eCB modulation of inhibitory synaptic transmission in the NAcc. We also found that DGL-α expression was elevated after short-term morphine withdrawal, suggesting that the eCB 2-arachidonyl-glycerol but not anandamide mediates the increase in DSI. These findings provide useful insights into the mechanisms underlying eCB-mediated plasticity in the NAcc during drug addiction. This article is part of a themed section on Endocannabinoids. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.7/issuetoc. © 2014 The British Pharmacological Society.

  14. Mathematical analysis and algorithms for efficiently and accurately implementing stochastic simulations of short-term synaptic depression and facilitation.

    PubMed

    McDonnell, Mark D; Mohan, Ashutosh; Stricker, Christian

    2013-01-01

    The release of neurotransmitter vesicles after arrival of a pre-synaptic action potential (AP) at cortical synapses is known to be a stochastic process, as is the availability of vesicles for release. These processes are known to also depend on the recent history of AP arrivals, and this can be described in terms of time-varying probabilities of vesicle release. Mathematical models of such synaptic dynamics frequently are based only on the mean number of vesicles released by each pre-synaptic AP, since if it is assumed there are sufficiently many vesicle sites, then variance is small. However, it has been shown recently that variance across sites can be significant for neuron and network dynamics, and this suggests the potential importance of studying short-term plasticity using simulations that do generate trial-to-trial variability. Therefore, in this paper we study several well-known conceptual models for stochastic availability and release. We state explicitly the random variables that these models describe and propose efficient algorithms for accurately implementing stochastic simulations of these random variables in software or hardware. Our results are complemented by mathematical analysis and statement of pseudo-code algorithms.

  15. Mathematical analysis and algorithms for efficiently and accurately implementing stochastic simulations of short-term synaptic depression and facilitation

    PubMed Central

    McDonnell, Mark D.; Mohan, Ashutosh; Stricker, Christian

    2013-01-01

    The release of neurotransmitter vesicles after arrival of a pre-synaptic action potential (AP) at cortical synapses is known to be a stochastic process, as is the availability of vesicles for release. These processes are known to also depend on the recent history of AP arrivals, and this can be described in terms of time-varying probabilities of vesicle release. Mathematical models of such synaptic dynamics frequently are based only on the mean number of vesicles released by each pre-synaptic AP, since if it is assumed there are sufficiently many vesicle sites, then variance is small. However, it has been shown recently that variance across sites can be significant for neuron and network dynamics, and this suggests the potential importance of studying short-term plasticity using simulations that do generate trial-to-trial variability. Therefore, in this paper we study several well-known conceptual models for stochastic availability and release. We state explicitly the random variables that these models describe and propose efficient algorithms for accurately implementing stochastic simulations of these random variables in software or hardware. Our results are complemented by mathematical analysis and statement of pseudo-code algorithms. PMID:23675343

  16. Short-term and long-term plasticity interaction in human primary motor cortex.

    PubMed

    Iezzi, Ennio; Suppa, Antonio; Conte, Antonella; Li Voti, Pietro; Bologna, Matteo; Berardelli, Alfredo

    2011-05-01

    Repetitive transcranial magnetic stimulation (rTMS) over primary motor cortex (M1) elicits changes in motor evoked potential (MEP) size thought to reflect short- and long-term forms of synaptic plasticity, resembling short-term potentiation (STP) and long-term potentiation/depression (LTP/LTD) observed in animal experiments. We designed this study in healthy humans to investigate whether STP as elicited by 5-Hz rTMS interferes with LTP/LTD-like plasticity induced by intermittent and continuous theta-burst stimulation (iTBS and cTBS). The effects induced by 5-Hz rTMS and iTBS/cTBS were indexed as changes in MEP size. We separately evaluated changes induced by 5-Hz rTMS, iTBS and cTBS applied alone and those induced by iTBS and cTBS delivered after priming 5-Hz rTMS. Interactions between 5-Hz rTMS and iTBS/cTBS were investigated under several experimental conditions by delivering 5-Hz rTMS at suprathreshold and subthreshold intensity, allowing 1 and 5 min intervals to elapse between 5-Hz rTMS and TBS, and delivering one and ten 5-Hz rTMS trains. We also investigated whether 5-Hz rTMS induces changes in intracortical excitability tested with paired-pulse transcranial magnetic stimulation. When given alone, 5-Hz rTMS induced short-lasting and iTBS/cTBS induced long-lasting changes in MEP amplitudes. When M1 was primed with 10 suprathreshold 5-Hz rTMS trains at 1 min before iTBS or cTBS, the iTBS/cTBS-induced after-effects disappeared. The 5-Hz rTMS left intracortical excitability unchanged. We suggest that STP elicited by suprathreshold 5-Hz rTMS abolishes iTBS/cTBS-induced LTP/LTD-like plasticity through non-homeostatic metaplasticity mechanisms. Our study provides new information on interactions between short-term and long-term rTMS-induced plasticity in human M1.

  17. Circadian Regulation of Synaptic Plasticity

    PubMed Central

    Frank, Marcos G.

    2016-01-01

    Circadian rhythms refer to oscillations in biological processes with a period of approximately 24 h. In addition to the sleep/wake cycle, there are circadian rhythms in metabolism, body temperature, hormone output, organ function and gene expression. There is also evidence of circadian rhythms in synaptic plasticity, in some cases driven by a master central clock and in other cases by peripheral clocks. In this article, I review the evidence for circadian influences on synaptic plasticity. I also discuss ways to disentangle the effects of brain state and rhythms on synaptic plasticity. PMID:27420105

  18. Circadian Regulation of Synaptic Plasticity.

    PubMed

    Frank, Marcos G

    2016-07-13

    Circadian rhythms refer to oscillations in biological processes with a period of approximately 24 h. In addition to the sleep/wake cycle, there are circadian rhythms in metabolism, body temperature, hormone output, organ function and gene expression. There is also evidence of circadian rhythms in synaptic plasticity, in some cases driven by a master central clock and in other cases by peripheral clocks. In this article, I review the evidence for circadian influences on synaptic plasticity. I also discuss ways to disentangle the effects of brain state and rhythms on synaptic plasticity.

  19. Short-term field stimulation mimics synaptic maturation of hippocampal synapses

    PubMed Central

    Bagley, Elena E; Westbrook, Gary L

    2012-01-01

    Many aspects of synaptic transmission are modified during development, reflecting not only the consequence of developmental programmes of gene expression, but also the effects of ongoing neural activity. We investigated the role of synaptic activity in the maturation of Schaffer collateral (SC)–CA1 synapses using sustained low frequency field stimulation of acute brain slices. Between postnatal days 4–6 and 14–16, mouse SC–CA1 synapses in naïve slices showed a developmental decrease in the probability of transmitter release (Pr) and an increase in the contribution of GluN2A (NR2A) subunits to the NMDA receptor-mediated excitatory postsynaptic current (EPSC). Surprisingly, these developmental changes could be mimicked by short term (4 h) in vitro synaptic activity in slices taken from postnatal days (PND) 4–6 mice. However, different activity levels were required to alter release probability compared to the NMDA receptor subunit composition. Spontaneous synaptic activity was sufficient to alter the NMDA receptor subunit composition, but sustained low-frequency field stimulation of the brain slice (0.1 Hz, 4 h) was necessary to reduce release probability, as assessed 1 h following the cessation of stimulation. The protein synthesis inhibitor anisomycin blocked the effect of field stimulation on release probability. These results indicate that features of mature excitatory synapses can be rapidly induced in immature neurons. The activity dependence of the Pr and NMDA receptor subunit composition serves as a sensitive indicator of prior neural activity, and provides dual mechanisms for homeostatic control of excitatory synaptic efficacy. PMID:22351628

  20. Synaptic Plasticity and Translation Initiation

    ERIC Educational Resources Information Center

    Klann, Eric; Antion, Marcia D.; Banko, Jessica L.; Hou, Lingfei

    2004-01-01

    It is widely accepted that protein synthesis, including local protein synthesis at synapses, is required for several forms of synaptic plasticity. Local protein synthesis enables synapses to control synaptic strength independent of the cell body via rapid protein production from pre-existing mRNA. Therefore, regulation of translation initiation is…

  1. Synaptic Plasticity and Translation Initiation

    ERIC Educational Resources Information Center

    Klann, Eric; Antion, Marcia D.; Banko, Jessica L.; Hou, Lingfei

    2004-01-01

    It is widely accepted that protein synthesis, including local protein synthesis at synapses, is required for several forms of synaptic plasticity. Local protein synthesis enables synapses to control synaptic strength independent of the cell body via rapid protein production from pre-existing mRNA. Therefore, regulation of translation initiation is…

  2. Spines slow down dendritic chloride diffusion and affect short-term ionic plasticity of GABAergic inhibition

    NASA Astrophysics Data System (ADS)

    Mohapatra, Namrata; Tønnesen, Jan; Vlachos, Andreas; Kuner, Thomas; Deller, Thomas; Nägerl, U. Valentin; Santamaria, Fidel; Jedlicka, Peter

    2016-03-01

    Cl‑ plays a crucial role in neuronal function and synaptic inhibition. However, the impact of neuronal morphology on the diffusion and redistribution of intracellular Cl‑ is not well understood. The role of spines in Cl‑ diffusion along dendritic trees has not been addressed so far. Because measuring fast and spatially restricted Cl‑ changes within dendrites is not yet technically possible, we used computational approaches to predict the effects of spines on Cl‑ dynamics in morphologically complex dendrites. In all morphologies tested, including dendrites imaged by super-resolution STED microscopy in live brain tissue, spines slowed down longitudinal Cl‑ diffusion along dendrites. This effect was robust and could be observed in both deterministic as well as stochastic simulations. Cl‑ extrusion altered Cl‑ diffusion to a much lesser extent than the presence of spines. The spine-dependent slowing of Cl‑ diffusion affected the amount and spatial spread of changes in the GABA reversal potential thereby altering homosynaptic as well as heterosynaptic short-term ionic plasticity at GABAergic synapses in dendrites. Altogether, our results suggest a fundamental role of dendritic spines in shaping Cl‑ diffusion, which could be of relevance in the context of pathological conditions where spine densities and neural excitability are perturbed.

  3. Spines slow down dendritic chloride diffusion and affect short-term ionic plasticity of GABAergic inhibition

    PubMed Central

    Mohapatra, Namrata; Tønnesen, Jan; Vlachos, Andreas; Kuner, Thomas; Deller, Thomas; Nägerl, U. Valentin; Santamaria, Fidel; Jedlicka, Peter

    2016-01-01

    Cl− plays a crucial role in neuronal function and synaptic inhibition. However, the impact of neuronal morphology on the diffusion and redistribution of intracellular Cl− is not well understood. The role of spines in Cl− diffusion along dendritic trees has not been addressed so far. Because measuring fast and spatially restricted Cl− changes within dendrites is not yet technically possible, we used computational approaches to predict the effects of spines on Cl− dynamics in morphologically complex dendrites. In all morphologies tested, including dendrites imaged by super-resolution STED microscopy in live brain tissue, spines slowed down longitudinal Cl− diffusion along dendrites. This effect was robust and could be observed in both deterministic as well as stochastic simulations. Cl− extrusion altered Cl− diffusion to a much lesser extent than the presence of spines. The spine-dependent slowing of Cl− diffusion affected the amount and spatial spread of changes in the GABA reversal potential thereby altering homosynaptic as well as heterosynaptic short-term ionic plasticity at GABAergic synapses in dendrites. Altogether, our results suggest a fundamental role of dendritic spines in shaping Cl− diffusion, which could be of relevance in the context of pathological conditions where spine densities and neural excitability are perturbed. PMID:26987404

  4. Spines slow down dendritic chloride diffusion and affect short-term ionic plasticity of GABAergic inhibition.

    PubMed

    Mohapatra, Namrata; Tønnesen, Jan; Vlachos, Andreas; Kuner, Thomas; Deller, Thomas; Nägerl, U Valentin; Santamaria, Fidel; Jedlicka, Peter

    2016-03-18

    Cl(-) plays a crucial role in neuronal function and synaptic inhibition. However, the impact of neuronal morphology on the diffusion and redistribution of intracellular Cl(-) is not well understood. The role of spines in Cl(-) diffusion along dendritic trees has not been addressed so far. Because measuring fast and spatially restricted Cl(-) changes within dendrites is not yet technically possible, we used computational approaches to predict the effects of spines on Cl(-) dynamics in morphologically complex dendrites. In all morphologies tested, including dendrites imaged by super-resolution STED microscopy in live brain tissue, spines slowed down longitudinal Cl(-) diffusion along dendrites. This effect was robust and could be observed in both deterministic as well as stochastic simulations. Cl(-) extrusion altered Cl(-) diffusion to a much lesser extent than the presence of spines. The spine-dependent slowing of Cl(-) diffusion affected the amount and spatial spread of changes in the GABA reversal potential thereby altering homosynaptic as well as heterosynaptic short-term ionic plasticity at GABAergic synapses in dendrites. Altogether, our results suggest a fundamental role of dendritic spines in shaping Cl(-) diffusion, which could be of relevance in the context of pathological conditions where spine densities and neural excitability are perturbed.

  5. Translating neuronal activity at the synapse: presynaptic calcium sensors in short-term plasticity

    PubMed Central

    de Jong, Arthur P. H.; Fioravante, Diasynou

    2014-01-01

    The complex manner in which patterns of presynaptic neural activity are translated into short-term plasticity (STP) suggests the existence of multiple presynaptic calcium (Ca2+) sensors, which regulate the amplitude and time-course of STP and are the focus of this review. We describe two canonical Ca2+-binding protein domains (C2 domains and EF-hands) and define criteria that need to be met for a protein to qualify as a Ca2+ sensor mediating STP. With these criteria in mind, we discuss various forms of STP and identify established and putative Ca2+ sensors. We find that despite the multitude of proposed sensors, only three are well established in STP: Munc13, protein kinase C (PKC) and synaptotagmin-7. For putative sensors, we pinpoint open questions and potential pitfalls. Finally, we discuss how the molecular properties and modes of action of Ca2+ sensors can explain their differential involvement in STP and shape net synaptic output. PMID:25400547

  6. Cell type dependence and variability in the short-term plasticity of EPSCs in identified mouse hippocampal interneurones

    PubMed Central

    Losonczy, Attila; Zhang, Limei; Shigemoto, Ryuichi; Somogyi, Peter; Nusser, Zoltan

    2002-01-01

    Synapses exhibit different short-term plasticity patterns and this behaviour influences information processing in neuronal networks. We tested how the short-term plasticity of excitatory postsynaptic currents (EPSCs) depends on the postsynaptic cell type, identified by axonal arborizations and molecular markers in the hippocampal CA1 area. Three distinct types of short-term synaptic behaviour (facilitating, depressing and combined facilitating–depressing) were defined by fitting a dynamic neurotransmission model to the data. Approximately 75 % of the oriens-lacunosum-moleculare (O-LM) interneurones received facilitating EPSCs, but in three of 12 O-LM cells EPSCs also showed significant depression. Over 90 % of the O-LM cells were immunopositive for somatostatin and mGluR1α and all tested cells were decorated by strongly mGluR7a positive axon terminals. Responses in eight of 12 basket cells were described well with a model involving only depression, but the other cells displayed combined facilitating–depressing EPSCs. No apparent difference was found between the plasticity of EPSCs in cholecystokinin- or parvalbumin-containing basket cells. In oriens-bistratified cells (O-Bi), two of nine cells showed facilitating EPSCs, another two depressing, and the remaining five cells combined facilitating–depressing EPSCs. Seven of 10 cells tested for somatostatin were immunopositive, but mGluR1α was detectable only in two of 11 tested cells. Furthermore, most O-Bi cells projected to the CA3 area and the subiculum, as well as outside the hippocampal formation. Postsynaptic responses to action potentials recorded in vivo from a CA1 place cell were modelled, and revealed great differences between and within cell types. Our results demonstrate that the short-term plasticity of EPSCs is cell type dependent, but with significant heterogeneity within all three interneurone populations. PMID:12096061

  7. Cell type dependence and variability in the short-term plasticity of EPSCs in identified mouse hippocampal interneurones.

    PubMed

    Losonczy, Attila; Zhang, Limei; Shigemoto, Ryuichi; Somogyi, Peter; Nusser, Zoltan

    2002-07-01

    Synapses exhibit different short-term plasticity patterns and this behaviour influences information processing in neuronal networks. We tested how the short-term plasticity of excitatory postsynaptic currents (EPSCs) depends on the postsynaptic cell type, identified by axonal arborizations and molecular markers in the hippocampal CA1 area. Three distinct types of short-term synaptic behaviour (facilitating, depressing and combined facilitating-depressing) were defined by fitting a dynamic neurotransmission model to the data. Approximately 75 % of the oriens-lacunosum-moleculare (O-LM) interneurones received facilitating EPSCs, but in three of 12 O-LM cells EPSCs also showed significant depression. Over 90 % of the O-LM cells were immunopositive for somatostatin and mGluR1alpha and all tested cells were decorated by strongly mGluR7a positive axon terminals. Responses in eight of 12 basket cells were described well with a model involving only depression, but the other cells displayed combined facilitating-depressing EPSCs. No apparent difference was found between the plasticity of EPSCs in cholecystokinin- or parvalbumin-containing basket cells. In oriens-bistratified cells (O-Bi), two of nine cells showed facilitating EPSCs, another two depressing, and the remaining five cells combined facilitating-depressing EPSCs. Seven of 10 cells tested for somatostatin were immunopositive, but mGluR1alpha was detectable only in two of 11 tested cells. Furthermore, most O-Bi cells projected to the CA3 area and the subiculum, as well as outside the hippocampal formation. Postsynaptic responses to action potentials recorded in vivo from a CA1 place cell were modelled, and revealed great differences between and within cell types. Our results demonstrate that the short-term plasticity of EPSCs is cell type dependent, but with significant heterogeneity within all three interneurone populations.

  8. Interactions between multiple sources of short-term plasticity during evoked and spontaneous activity at the rat calyx of Held

    PubMed Central

    Hennig, Matthias H; Postlethwaite, Michael; Forsythe, Ian D; Graham, Bruce P

    2008-01-01

    Sustained activity at most central synapses is accompanied by a number of short-term changes in synaptic strength which act over a range of time scales. Here we examine experimental data and develop a model of synaptic depression at the calyx of Held synaptic terminal that combines many of these mechanisms (acting at differing sites and across a range of time scales). This new model incorporates vesicle recycling, facilitation, activity-dependent vesicle retrieval and multiple mechanisms affecting calcium channel activity and release probability. It can accurately reproduce the time course of experimentally measured short-term depression across different stimulus frequencies and exhibits a slow decay in EPSC amplitude during sustained stimulation. We show that the slow decay is a consequence of vesicle release inhibition by multiple mechanisms and is accompanied by a partial recovery of the releasable vesicle pool. This prediction is supported by patch-clamp data, using long duration repetitive EPSC stimulation at up to 400 Hz. The model also explains the recovery from depression in terms of interaction between these multiple processes, which together generate a stimulus-history-dependent recovery after repetitive stimulation. Given the high rates of spontaneous activity in the auditory pathway, the model also demonstrates how these multiple interactions cause chronic synaptic depression under in vivo conditions. While the magnitude of the depression converges to the same steady state for a given frequency, the time courses of onset and recovery are faster in the presence of spontaneous activity. We conclude that interactions between multiple sources of short-term plasticity can account for the complex kinetics during high frequency stimulation and cause stimulus-history-dependent recovery at this relay synapse. PMID:18450780

  9. Switched-capacitor realization of presynaptic short-term-plasticity and stop-learning synapses in 28 nm CMOS

    PubMed Central

    Noack, Marko; Partzsch, Johannes; Mayr, Christian G.; Hänzsche, Stefan; Scholze, Stefan; Höppner, Sebastian; Ellguth, Georg; Schüffny, Rene

    2015-01-01

    Synaptic dynamics, such as long- and short-term plasticity, play an important role in the complexity and biological realism achievable when running neural networks on a neuromorphic IC. For example, they endow the IC with an ability to adapt and learn from its environment. In order to achieve the millisecond to second time constants required for these synaptic dynamics, analog subthreshold circuits are usually employed. However, due to process variation and leakage problems, it is almost impossible to port these types of circuits to modern sub-100nm technologies. In contrast, we present a neuromorphic system in a 28 nm CMOS process that employs switched capacitor (SC) circuits to implement 128 short term plasticity presynapses as well as 8192 stop-learning synapses. The neuromorphic system consumes an area of 0.36 mm2 and runs at a power consumption of 1.9 mW. The circuit makes use of a technique for minimizing leakage effects allowing for real-time operation with time constants up to several seconds. Since we rely on SC techniques for all calculations, the system is composed of only generic mixed-signal building blocks. These generic building blocks make the system easy to port between technologies and the large digital circuit part inherent in an SC system benefits fully from technology scaling. PMID:25698914

  10. Switched-capacitor realization of presynaptic short-term-plasticity and stop-learning synapses in 28 nm CMOS.

    PubMed

    Noack, Marko; Partzsch, Johannes; Mayr, Christian G; Hänzsche, Stefan; Scholze, Stefan; Höppner, Sebastian; Ellguth, Georg; Schüffny, Rene

    2015-01-01

    Synaptic dynamics, such as long- and short-term plasticity, play an important role in the complexity and biological realism achievable when running neural networks on a neuromorphic IC. For example, they endow the IC with an ability to adapt and learn from its environment. In order to achieve the millisecond to second time constants required for these synaptic dynamics, analog subthreshold circuits are usually employed. However, due to process variation and leakage problems, it is almost impossible to port these types of circuits to modern sub-100nm technologies. In contrast, we present a neuromorphic system in a 28 nm CMOS process that employs switched capacitor (SC) circuits to implement 128 short term plasticity presynapses as well as 8192 stop-learning synapses. The neuromorphic system consumes an area of 0.36 mm(2) and runs at a power consumption of 1.9 mW. The circuit makes use of a technique for minimizing leakage effects allowing for real-time operation with time constants up to several seconds. Since we rely on SC techniques for all calculations, the system is composed of only generic mixed-signal building blocks. These generic building blocks make the system easy to port between technologies and the large digital circuit part inherent in an SC system benefits fully from technology scaling.

  11. Cellular and molecular bases of memory: synaptic and neuronal plasticity.

    PubMed

    Wang, J H; Ko, G Y; Kelly, P T

    1997-07-01

    Discoveries made during the past decade have greatly improved our understanding of how the nervous system functions. This review article examines the relation between memory and the cellular mechanisms of neuronal and synaptic plasticity in the central nervous system. Evidence indicating that activity-dependent short- and long-term changes in strength of synaptic transmission are important for memory processes is examined. Focus is placed on one model of synaptic plasticity called long-term potentiation, and its similarities with memory processes are illustrated. Recent studies show that the regulation of synaptic strength is bidirectional (e.g., synaptic potentiation or depression). Mechanisms involving intracellular signaling pathways that regulate synaptic strength are described, and the specific roles of calcium, protein kinases, protein phosphatases, and retrograde messengers are emphasized. Evidence suggests that changes in synaptic ultrastructure, dendritic ultrastructure, and neuronal gene expression may also contribute to mechanisms of synaptic plasticity. Also discussed are recent findings about postsynaptic mechanisms that regulate short-term synaptic facilitation and neuronal burst-pattern activity, as well as evidence about the subcellular location (presynaptic or postsynaptic) of mechanisms involved in long-term synaptic plasticity.

  12. Neural mechanisms of short-term plasticity in the human visual system.

    PubMed

    Parks, Nathan A; Corballis, Paul M

    2012-12-01

    Following circumscribed retinal damage, extensive reorganization of topographically organized visual cortical areas has been demonstrated in several species of mammals (including humans). Although reorganization is often studied over extended time scales, neural response properties change within seconds of retinal deafferentation. Understanding the mechanisms underlying these short-term effects is essential for developing a complete picture of representational plasticity. One approach to the study of short-term plasticity has been to use an artificial scotoma, a stimulus-induced analog of a retinal scotoma, as a model. Here, we use event-related potentials in an artificial scotoma paradigm to examine 2 aspects of short-term plasticity in the human visual system. First, we investigated the changes within visual representations temporarily deprived of patterned visual input by probing the inner boundaries of an artificial scotoma. We found an enhanced early sensory P1, consistent with a reduction in inhibition (disinhibition), a proposed mechanism of short-term visual plasticity. Second, we investigated mechanisms through which representations of surrounding space invade a visually deprived area by probing the outer boundaries of an artificial scotoma. In this case, a later visual component, the N1, was enhanced, suggesting that feedback may provide a source of unmasked, or invading, activity to visually deprived representations.

  13. Short-Term Plasticity of the Visuomotor Map during Grasping Movements in Humans

    ERIC Educational Resources Information Center

    Safstrom, Daniel; Edin, Benoni B.

    2005-01-01

    During visually guided grasping movements, visual information is transformed into motor commands. This transformation is known as the "visuomotor map." To investigate limitations in the short-term plasticity of the visuomotor map in normal humans, we studied the maximum grip aperture (MGA) during the reaching phase while subjects grasped objects…

  14. Mitochondria, synaptic plasticity, and schizophrenia.

    PubMed

    Ben-Shachar, Dorit; Laifenfeld, Daphna

    2004-01-01

    The conceptualization of schizophrenia as a disorder of connectivity, i.e., of neuronal?synaptic plasticity, suggests abnormal synaptic modeling and neuronal signaling, possibly as a consequence of flawed interactions with the environment, as at least a secondary mechanism underlying the pathophysiology of this disorder. Indeed, deficits in episodic memory and malfunction of hippocampal circuitry, as well as anomalies of axonal sprouting and synapse formation, are all suggestive of diminished neuronal plasticity in schizophrenia. Evidence supports a dysfunction of mitochondria in schizophrenia, including mitochondrial hypoplasia, and a dysfunction of the oxidative phosphorylation system, as well as altered mitochondrial-related gene expression. Mitochondrial dysfunction leads to alterations in ATP production and cytoplasmatic calcium concentrations, as well as reactive oxygen species and nitric oxide production. All of the latter processes have been well established as leading to altered synaptic strength or plasticity. Moreover, mitochondria have been shown to play a role in plasticity of neuronal polarity, and studies in the visual cortex show an association between mitochondria and synaptogenesis. Finally, mitochondrial gene upregulation has been observed following synaptic and neuronal activity. This review proposes that mitochondrial dysfunction in schizophrenia could cause, or arise from, anomalies in processes of plasticity in this disorder.

  15. Persistent Associative Plasticity at an Identified Synapse Underlying Classical Conditioning Becomes Labile with Short-Term Homosynaptic Activation.

    PubMed

    Hu, Jiangyuan; Schacher, Samuel

    2015-12-09

    Synapses express different forms of plasticity that contribute to different forms of memory, and both memory and plasticity can become labile after reactivation. We previously reported that a persistent form of nonassociative long-term facilitation (PNA-LTF) of the sensorimotor synapses in Aplysia californica, a cellular analog of long-term sensitization, became labile with short-term heterosynaptic reactivation and reversed when the reactivation was followed by incubation with the protein synthesis inhibitor rapamycin. Here we examined the reciprocal impact of different forms of short-term plasticity (reactivations) on a persistent form of associative long-term facilitation (PA-LTF), a cellular analog of classical conditioning, which was expressed at Aplysia sensorimotor synapses when a tetanic stimulation of the sensory neurons was paired with a brief application of serotonin on 2 consecutive days. The expression of short-term homosynaptic plasticity [post-tetanic potentiation or homosynaptic depression (HSD)], or short-term heterosynaptic plasticity [serotonin-induced facilitation or neuropeptide Phe-Met-Arg-Phe-NH2 (FMRFa)-induced depression], at synapses expressing PA-LTF did not affect the maintenance of PA-LTF. The kinetics of HSD was attenuated at synapses expressing PA-LTF, which required activation of protein kinase C (PKC). Both PA-LTF and the attenuated kinetics of HSD were reversed by either a transient blockade of PKC activity or a homosynaptic, but not heterosynaptic, reactivation when paired with rapamycin. These results indicate that two different forms of persistent synaptic plasticity, PA-LTF and PNA-LTF, expressed at the same synapse become labile when reactivated by different stimuli. Activity-dependent changes in neural circuits mediate long-term memories. Some forms of long-term memories become labile and can be reversed with specific types of reactivations, but the mechanism is complex. At the cellular level, reactivations that induce a

  16. Analysis of 5-HT-induced short-term facilitation at Aplysia sensorimotor synapse during bursts: increased synaptic gain that does not require ERK activation.

    PubMed

    Phares, Gregg A; Byrne, John H

    2005-07-01

    The 5-HT-induced synaptic plasticity of Aplysia sensorimotor synapses has typically been probed by firing a single presynaptic spike. In this study, 5-HT-induced synaptic plasticity was probed with brief bursts of spikes (10 Hz, 1 s), which are more behaviorally relevant stimuli. Because such bursts provide a greater challenge to the release machinery than single spikes, their use may reveal additional aspects of synaptic modulation, and, in particular, the role of extracellular signal-regulated protein kinase (ERK), which has recently been implicated in several examples of short- and long-term synaptic plasticity. Excitatory postsynaptic currents (EPSCs) were characterized by their amplitudes. In addition, two kinetic measurements, time to peak and decay time constant, were determined for the initial and last EPSCs of each burst. Application of 5-HT produced a uniform increase in gain by facilitating each EPSC elicited during a burst of spikes without affecting the kinetics of the initial or last EPSC. These data suggest that short-term facilitation during a burst is mediated largely by processes such as those that affect the size of the releasable pool or rate of vesicle mobilization rather than by an increase in the duration of the presynaptic action potential. An ERK cascade inhibitor (U0126) had no effect on the 5-HT-mediated facilitation of either the initial EPSC or EPSCs elicited late in the burst.

  17. Seasonal variation in basal and plastic cold tolerance: Adaptation is influenced by both long- and short-term phenotypic plasticity.

    PubMed

    Noh, Suegene; Everman, Elizabeth R; Berger, Christopher M; Morgan, Theodore J

    2017-07-01

    Understanding how thermal selection affects phenotypic distributions across different time scales will allow us to predict the effect of climate change on the fitness of ectotherms. We tested how seasonal temperature variation affects basal levels of cold tolerance and two types of phenotypic plasticity in Drosophila melanogaster. Developmental acclimation occurs as developmental stages of an organism are exposed to seasonal changes in temperature and its effect is irreversible, while reversible short-term acclimation occurs daily in response to diurnal changes in temperature. We collected wild flies from a temperate population across seasons and measured two cold tolerance metrics (chill-coma recovery and cold stress survival) and their responses to developmental and short-term acclimation. Chill-coma recovery responded to seasonal shifts in temperature, and phenotypic plasticity following both short-term and developmental acclimation improved cold tolerance. This improvement indicated that both types of plasticity are adaptive, and that plasticity can compensate for genetic variation in basal cold tolerance during warmer parts of the season when flies tend to be less cold tolerant. We also observed a significantly stronger trade-off between basal cold tolerance and short-term acclimation during warmer months. For the longer-term developmental acclimation, a trade-off persisted regardless of season. A relationship between the two types of plasticity may provide additional insight into why some measures of thermal tolerance are more sensitive to seasonal variation than others.

  18. Biophysical properties of presynaptic short-term plasticity in hippocampal neurons: insights from electrophysiology, imaging and mechanistic models

    PubMed Central

    Dutta Roy, Ranjita; Stefan, Melanie I.; Rosenmund, Christian

    2014-01-01

    Hippocampal neurons show different types of short-term plasticity (STP). Some exhibit facilitation of their synaptic responses and others depression. In this review we discuss presynaptic biophysical properties behind heterogeneity in STP in hippocampal neurons such as alterations in vesicle priming and docking, fusion, neurotransmitter filling and vesicle replenishment. We look into what types of information electrophysiology, imaging and mechanistic models have given about the time scales and relative impact of the different properties on STP with an emphasis on the use of mechanistic models as complementary tools to experimental procedures. Taken together this tells us that it is possible for a multitude of different mechanisms to underlie the same STP pattern, even though some are more important in specific cases, and that mechanistic models can be used to integrate the biophysical properties to see which mechanisms are more important in specific cases of STP. PMID:24904286

  19. Presynaptic Adenosine Receptor-Mediated Regulation of Diverse Thalamocortical Short-Term Plasticity in the Mouse Whisker Pathway

    PubMed Central

    Ferrati, Giovanni; Martini, Francisco J.; Maravall, Miguel

    2016-01-01

    Short-term synaptic plasticity (STP) sets the sensitivity of a synapse to incoming activity and determines the temporal patterns that it best transmits. In “driver” thalamocortical (TC) synaptic populations, STP is dominated by depression during stimulation from rest. However, during ongoing stimulation, lemniscal TC connections onto layer 4 neurons in mouse barrel cortex express variable STP. Each synapse responds to input trains with a distinct pattern of depression or facilitation around its mean steady-state response. As a result, in common with other synaptic populations, lemniscal TC synapses express diverse rather than uniform dynamics, allowing for a rich representation of temporally varying stimuli. Here, we show that this STP diversity is regulated presynaptically. Presynaptic adenosine receptors of the A1R type, but not kainate receptors (KARs), modulate STP behavior. Blocking the receptors does not eliminate diversity, indicating that diversity is related to heterogeneous expression of multiple mechanisms in the pathway from presynaptic calcium influx to neurotransmitter release. PMID:26941610

  20. Effects of Neonatal C-Fiber Depletion on Interaction between Neocortical Short-Term and Long-Term Plasticity

    PubMed Central

    Komaki, Alireza; Shahidi, Siamak; Sarihi, Abdolrahman; Hasanein, Parisa; Lashgari, Reza; Haghparast, Abbas; Salehi, Iraj; Arami, Masoomeh Kourosh

    2013-01-01

    Introduction The primary somatosensory cortex has an important role in nociceptive sensory-discriminative processing. Altered peripheral inputs produced by deafferentation or by long-term changes in levels of afferent stimulation can result in plasticity of cortex. Capsaicin-induced depletion of C-fiber afferents results in plasticity of the somatosensory system. Plasticity includes short-term and long-term changes in synaptic strength. We studied the interaction between paired-pulse facilitation, as one form of short-term plasticity, with long-term potentiation (LTP) in the neocortex of normal and C-fiber depleted freely moving rat. Methods Neonatally capsaicin-treated rats and their controls were allowed to mature until they reached a weight between 250 and 300g. Then animals were anesthetized with ketamine and xylazine. For recording and stimulation, twisted teflon-coated stainless steel wires were implanted into somatosensory cortex or corpus callusom. In experiments for LTP induction, after two weeks of recovery period, 30 high frequency pulse trains were delivered once per day for 12 days. Paired-pulse ratio (PPR) was monitored before and after the induction of LTP in capsaicin-treated and control rats. Results Paired-pulse stimulation affected all field potential components at intervals < 200 ms. The largest changes occurred at intervals between 20-30 ms. C-fiber depletion postponed the development of LTP, whereas it had no effect on PPR. Discussion This finding provides further evidence that the expression of this form of LTP is postsynaptic. Furthermore, these results suggest that the effect of C-fiber depletion on cortical LTP is also postsynaptic and, therefore, is not caused by a decrease in neurotransmitter release. PMID:25337340

  1. Synaptic plasticity functions in an organic electrochemical transistor

    NASA Astrophysics Data System (ADS)

    Gkoupidenis, Paschalis; Schaefer, Nathan; Strakosas, Xenofon; Fairfield, Jessamyn A.; Malliaras, George G.

    2015-12-01

    Synaptic plasticity functions play a crucial role in the transmission of neural signals in the brain. Short-term plasticity is required for the transmission, encoding, and filtering of the neural signal, whereas long-term plasticity establishes more permanent changes in neural microcircuitry and thus underlies memory and learning. The realization of bioinspired circuits that can actually mimic signal processing in the brain demands the reproduction of both short- and long-term aspects of synaptic plasticity in a single device. Here, we demonstrate the implementation of neuromorphic functions similar to biological memory, such as short- to long-term memory transition, in non-volatile organic electrochemical transistors (OECTs). Depending on the training of the OECT, the device displays either short- or long-term plasticity, therefore, exhibiting non von Neumann characteristics with merged processing and storing functionalities. These results are a first step towards the implementation of organic-based neuromorphic circuits.

  2. Berberine chloride improved synaptic plasticity in STZ induced diabetic rats.

    PubMed

    Moghaddam, Hamid Kalalian; Baluchnejadmojarad, Tourandokht; Roghani, Mehrdad; Goshadrou, Fatemeh; Ronaghi, Abdolaziz

    2013-09-01

    Previous studies indicated that diabetes affects synaptic transmission in the hippocampus, leading to impairments of synaptic plasticity and defects in learning and memory. Although berberine treatment ameliorates memory impairment and improves synaptic plasticity in streptozotocin (STZ) induced diabetic rats, it is not clear if the effects are pre- or post-synaptic or both. The aim of this study was to evaluate the effects of berberine chloride on short-term plasticity in inhibitory interneurons in the dentate gyrus of STZ-induced diabetic rats. Experimental groups included: The control, control berberine treated (100 mg/kg), diabetic and diabetic berberine treated (50,100 mg/kg/day for 12 weeks) groups. The paired pulse paradigm was used to stimulate the perforant pathway and field excitatory post-synaptic potentials (fEPSP) were recorded in dentate gyrus (DG). In comparison with control, paired pulse facilitation in the diabetic group was significantly increased (P < 0.01) and this effect prevented by chronic berberine treatment (50,100 mg/kg). However, there were no differences between responses of the control berberine 100 mg/kg treated and diabetes berberine treated (50 and 100 mg/kg) groups as compared to the control group. The present results suggest that the pre-synaptic component of synaptic plasticity in the dentate gyrus is affected under diabetic conditions and that berberine prevents this effect.

  3. Short-term learning induces white matter plasticity in the fornix.

    PubMed

    Hofstetter, Shir; Tavor, Ido; Tzur Moryosef, Shimrit; Assaf, Yaniv

    2013-07-31

    Magnetic resonance imaging (MRI) has greatly extended the exploration of neuroplasticity in behaving animals and humans. Imaging studies recently uncovered structural changes that occur in gray and white matter, mainly after long-term training. A recent diffusion tensor imaging (DTI) study showed that training in a car racing game for 2 h induces changes in the hippocampus and parahippocampal gyri. However, the effect of short-term training on the white matter microstructure is unknown. Here we investigated the influence of short learning tasks on structural plasticity in the white matter, and specifically in the fornix, in humans and rats. Human subjects performed a 2 h spatial learning task, and rats underwent training for 1 d in a Morris water maze. Between tasks, subjects were scanned with DTI, a diffusion MRI framework sensitive to tissue microstructure. Using tract-based spatial statistics, we found changes in diffusivity indices in both humans and rats. In both species, changes in diffusion in the fornix were correlated with diffusion changes in the hippocampus, as well as with behavioral measures of improvement in the learning tasks. These results, which provide the first indication of short-term white matter plasticity in the human brain, suggest that the adult brain white matter preserves dynamic characteristics and can be modified by short-term learning experiences. The extent of change in white matter was correlated with their extent in gray matter, suggesting that all components of the neural network are capable of rapid remodeling in response to cognitive experiences.

  4. Short-term plasticity as cause-effect hypothesis testing in distal reward learning.

    PubMed

    Soltoggio, Andrea

    2015-02-01

    Asynchrony, overlaps, and delays in sensory-motor signals introduce ambiguity as to which stimuli, actions, and rewards are causally related. Only the repetition of reward episodes helps distinguish true cause-effect relationships from coincidental occurrences. In the model proposed here, a novel plasticity rule employs short- and long-term changes to evaluate hypotheses on cause-effect relationships. Transient weights represent hypotheses that are consolidated in long-term memory only when they consistently predict or cause future rewards. The main objective of the model is to preserve existing network topologies when learning with ambiguous information flows. Learning is also improved by biasing the exploration of the stimulus-response space toward actions that in the past occurred before rewards. The model indicates under which conditions beliefs can be consolidated in long-term memory, it suggests a solution to the plasticity-stability dilemma, and proposes an interpretation of the role of short-term plasticity.

  5. Short-Term Plasticity of a Thalamocortical Pathway Dynamically Modulated by Behavioral State

    NASA Astrophysics Data System (ADS)

    Castro-Alamancos, Manuel A.; Connors, Barry W.

    1996-04-01

    The neocortex receives information about the environment and the rest of the brain through pathways from the thalamus. These pathways have frequency-dependent properties that can strongly influence their effect on the neocortex. In 1943 Morison and Dempsey described "augmenting responses," a form of short-term plasticity in some thalamocortical pathways that is triggered by 8- to 15-hertz activation. Results from anesthetized rats showed that the augmenting response is initiated by pyramidal cells in layer V. The augmenting response was also observed in awake, unrestrained animals and was found to be dynamically modulated by their behavioral state.

  6. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?

    PubMed

    Steinmetz, Zacharias; Wollmann, Claudia; Schaefer, Miriam; Buchmann, Christian; David, Jan; Tröger, Josephine; Muñoz, Katherine; Frör, Oliver; Schaumann, Gabriele Ellen

    2016-04-15

    Plastic mulching has become a globally applied agricultural practice for its instant economic benefits such as higher yields, earlier harvests, improved fruit quality and increased water-use efficiency. However, knowledge of the sustainability of plastic mulching remains vague in terms of both an environmental and agronomic perspective. This review critically discusses the current understanding of the environmental impact of plastic mulch use by linking knowledge of agricultural benefits and research on the life cycle of plastic mulches with direct and indirect implications for long-term soil quality and ecosystem services. Adverse effects may arise from plastic additives, enhanced pesticide runoff and plastic residues likely to fragment into microplastics but remaining chemically intact and accumulating in soil where they can successively sorb agrochemicals. The quantification of microplastics in soil remains challenging due to the lack of appropriate analytical techniques. The cost and effort of recovering and recycling used mulching films may offset the aforementioned benefits in the long term. However, comparative and long-term agronomic assessments have not yet been conducted. Furthermore, plastic mulches have the potential to alter soil quality by shifting the edaphic biocoenosis (e.g. towards mycotoxigenic fungi), accelerate C/N metabolism eventually depleting soil organic matter stocks, increase soil water repellency and favour the release of greenhouse gases. A substantial process understanding of the interactions between the soil microclimate, water supply and biological activity under plastic mulches is still lacking but required to estimate potential risks for long-term soil quality. Currently, farmers mostly base their decision to apply plastic mulches rather on expected short-term benefits than on the consideration of long-term consequences. Future interdisciplinary research should therefore gain a deeper understanding of the incentives for farmers

  7. Short-term plasticity regulates the E/I ratio and the temporal window for spike integration in CA1 pyramidal cells

    PubMed Central

    Bartley, Aundrea F.; Dobrunz, Lynn E.

    2016-01-01

    Many neurodevelopmental and neuropsychiatric disorders have an imbalance between excitation (E) and inhibition (I) caused by synaptic alterations. The proper E/I balance is especially critical in CA1 pyramidal cells because they control hippocampal output. Activation of Schaffer collateral axons causes direct excitation of CA1 pyramidal cells, quickly followed by disynaptic feed-forward inhibition, stemming from synaptically induced firing of GABAergic interneurons. Both excitatory and inhibitory synapses are modulated by short-term plasticity, potentially causing dynamic tuning of the E/I ratio. However, the effects of short-term plasticity on the E/I ratio in CA1 pyramidal cells are not yet known. To determine this we recorded disynaptic IPSCs and E/I ratio in CA1 pyramidal cells in acute hippocampal slices from juvenile mice. We find that while inhibitory synapses have paired-pulse depression, disynaptic inhibition instead expresses paired-pulse facilitation (≤ 200 ms intervals), caused by increased recruitment of feed-forward interneurons. Although enhanced disynaptic inhibition helps constrain paired-pulse facilitation of excitation, the E/I ratio is still larger on the second pulse, increasing pyramidal cell spiking. Surprisingly, this occurs without compromising the precision of spike timing. The E/I balance regulates the temporal spike integration window from multiple inputs; here we show that paired-pulse stimulation can broaden the spike integration window. Together, we find that the combined effects of short-term plasticity of disynaptic inhibition and monosynaptic excitation alter the E/I balance onto CA1 pyramidal cells, leading to dynamic modulation of spike probability and spike integration window. Short-term plasticity is therefore an important mechanism for modulating signal processing of hippocampal output. PMID:25903384

  8. Intracellular Na+ concentration influences short-term plasticity of glutamate transporter-mediated currents in neocortical astrocytes.

    PubMed

    Unichenko, Petr; Myakhar, Olga; Kirischuk, Sergei

    2012-04-01

    Fast synaptic transmission requires a rapid clearance of the released neurotransmitter from the extracellular space. Glial glutamate transporters (excitatory amino acid transporters, EAATs) strongly contribute to glutamate removal. In this work, we investigated the paired-pulse plasticity of synaptically activated, glutamate transporter-mediated currents (STCs) in cortical layer 2/3 astrocytes. STCs were elicited by local electrical stimulation in layer 4 in the presence of ionotropic glutamate (AMPA and NMDA), GABAA, and GABAB receptor antagonists. In experiments with low [Na(+)]i (5 mM) intrapipette solution, STCs elicited by paired-pulse stimulation demonstrated paired-pulse facilitation (PPF) at short (<250 ms) interstimulus intervals (ISIs) and paired-pulse depression at longer ISIs. In experiments with close to physiological, high [Na(+)]i (20 mM) intrapipette solution, PPF of STCs at short ISIs was significantly reduced. In addition, the STC kinetics was slowed in the presence of high [Na(+)]i. Exogenous GABA increased astrocytic [Na(+)]i, reduced the mean STC amplitude, decreased PPF at short ISIs, and slowed STC kinetics. All GABA-induced changes were blocked by NO-711 and SNAP-5114, GABA transporter (GATs) antagonists. In experiments with the low intrapipette solution, GAT blockade under control conditions decreased PPF at short ISIs both at room and at near physiological temperatures. Dialysis of single astrocyte with low [Na(+)]i solution increased the amplitude and reduced PPR of evoked field potentials recorded in the vicinity of the astrocyte. We conclude that (1) endogenous GABA via GATs may influence EAAT functioning and (2) astrocytic [Na(+)]i modulates the short-term plasticity of STCs and in turn the efficacy of glutamate removal. Copyright © 2012 Wiley Periodicals, Inc.

  9. Sustained Cortical and Subcortical Measures of Auditory and Visual Plasticity following Short-Term Perceptual Learning

    PubMed Central

    Katyal, Sucharit; Engel, Stephen A.; Oxenham, Andrew J.

    2017-01-01

    Short-term training can lead to improvements in behavioral discrimination of auditory and visual stimuli, as well as enhanced EEG responses to those stimuli. In the auditory domain, fluency with tonal languages and musical training has been associated with long-term cortical and subcortical plasticity, but less is known about the effects of shorter-term training. This study combined electroencephalography (EEG) and behavioral measures to investigate short-term learning and neural plasticity in both auditory and visual domains. Forty adult participants were divided into four groups. Three groups trained on one of three tasks, involving discrimination of auditory fundamental frequency (F0), auditory amplitude modulation rate (AM), or visual orientation (VIS). The fourth (control) group received no training. Pre- and post-training tests, as well as retention tests 30 days after training, involved behavioral discrimination thresholds, steady-state visually evoked potentials (SSVEP) to the flicker frequencies of visual stimuli, and auditory envelope-following responses simultaneously evoked and measured in response to rapid stimulus F0 (EFR), thought to reflect subcortical generators, and slow amplitude modulation (ASSR), thought to reflect cortical generators. Enhancement of the ASSR was observed in both auditory-trained groups, not specific to the AM-trained group, whereas enhancement of the SSVEP was found only in the visually-trained group. No evidence was found for changes in the EFR. The results suggest that some aspects of neural plasticity can develop rapidly and may generalize across tasks but not across modalities. Behaviorally, the pattern of learning was complex, with significant cross-task and cross-modal learning effects. PMID:28107359

  10. Sustained Cortical and Subcortical Measures of Auditory and Visual Plasticity following Short-Term Perceptual Learning.

    PubMed

    Lau, Bonnie K; Ruggles, Dorea R; Katyal, Sucharit; Engel, Stephen A; Oxenham, Andrew J

    2017-01-01

    Short-term training can lead to improvements in behavioral discrimination of auditory and visual stimuli, as well as enhanced EEG responses to those stimuli. In the auditory domain, fluency with tonal languages and musical training has been associated with long-term cortical and subcortical plasticity, but less is known about the effects of shorter-term training. This study combined electroencephalography (EEG) and behavioral measures to investigate short-term learning and neural plasticity in both auditory and visual domains. Forty adult participants were divided into four groups. Three groups trained on one of three tasks, involving discrimination of auditory fundamental frequency (F0), auditory amplitude modulation rate (AM), or visual orientation (VIS). The fourth (control) group received no training. Pre- and post-training tests, as well as retention tests 30 days after training, involved behavioral discrimination thresholds, steady-state visually evoked potentials (SSVEP) to the flicker frequencies of visual stimuli, and auditory envelope-following responses simultaneously evoked and measured in response to rapid stimulus F0 (EFR), thought to reflect subcortical generators, and slow amplitude modulation (ASSR), thought to reflect cortical generators. Enhancement of the ASSR was observed in both auditory-trained groups, not specific to the AM-trained group, whereas enhancement of the SSVEP was found only in the visually-trained group. No evidence was found for changes in the EFR. The results suggest that some aspects of neural plasticity can develop rapidly and may generalize across tasks but not across modalities. Behaviorally, the pattern of learning was complex, with significant cross-task and cross-modal learning effects.

  11. Short-term phenotypic plasticity in long-chain cuticular hydrocarbons

    PubMed Central

    Thomas, Melissa L.; Simmons, Leigh W.

    2011-01-01

    Cuticular hydrocarbons provide arthropods with the chemical equivalent of the visually extravagant plumage of birds. Their long chain length, together with the number and variety of positions in which methyl branches and double bonds occur, provide cuticular hydrocarbons with an extraordinary level of information content. Here, we demonstrate phenotypic plasticity in an individual's cuticular hydrocarbon profile. Using solid-phase microextraction, a chemical technique that enables multiple sampling of the same individual, we monitor short-term changes in cuticular hydrocarbon profiles of individual crickets, Teleogryllus oceanicus, in response to a social challenge. We experimentally manipulate the dominance status of males and find that dominant males, on losing fights with other dominant males, change their hydrocarbon profile to more closely resemble that of a subordinate. This result demonstrates that cuticular hydrocarbons can be far more responsive to changes in social dominance than previously realized. PMID:21367785

  12. Modeling Ketamine Effects on Synaptic Plasticity During the Mismatch Negativity

    PubMed Central

    Schmidt, André; Diaconescu, Andreea O.; Kometer, Michael; Friston, Karl J.; Stephan, Klaas E.; Vollenweider, Franz X.

    2013-01-01

    This paper presents a model-based investigation of mechanisms underlying the reduction of mismatch negativity (MMN) amplitudes under the NMDA-receptor antagonist ketamine. We applied dynamic causal modeling and Bayesian model selection to data from a recent ketamine study of the roving MMN paradigm, using a cross-over, double-blind, placebo-controlled design. Our modeling was guided by a predictive coding framework that unifies contemporary “adaptation” and “model adjustment” MMN theories. Comparing a series of dynamic causal models that allowed for different expressions of neuronal adaptation and synaptic plasticity, we obtained 3 major results: 1) We replicated previous results that both adaptation and short-term plasticity are necessary to explain MMN generation per se; 2) we found significant ketamine effects on synaptic plasticity, but not adaptation, and a selective ketamine effect on the forward connection from left primary auditory cortex to superior temporal gyrus; 3) this model-based estimate of ketamine effects on synaptic plasticity correlated significantly with ratings of ketamine-induced impairments in cognition and control. Our modeling approach thus suggests a concrete mechanism for ketamine effects on MMN that correlates with drug-induced psychopathology. More generally, this demonstrates the potential of modeling for inferring on synaptic physiology, and its pharmacological modulation, from electroencephalography data. PMID:22875863

  13. Cell-type specific short-term plasticity at auditory nerve synapses controls feed-forward inhibition in the dorsal cochlear nucleus

    PubMed Central

    Sedlacek, Miloslav; Brenowitz, Stephan D.

    2014-01-01

    Feed-forward inhibition (FFI) represents a powerful mechanism by which control of the timing and fidelity of action potentials in local synaptic circuits of various brain regions is achieved. In the cochlear nucleus, the auditory nerve provides excitation to both principal neurons and inhibitory interneurons. Here, we investigated the synaptic circuit associated with fusiform cells (FCs), principal neurons of the dorsal cochlear nucleus (DCN) that receive excitation from auditory nerve fibers and inhibition from tuberculoventral cells (TVCs) on their basal dendrites in the deep layer of DCN. Despite the importance of these inputs in regulating fusiform cell firing behavior, the mechanisms determining the balance of excitation and FFI in this circuit are not well understood. Therefore, we examined the timing and plasticity of auditory nerve driven FFI onto FCs. We find that in some FCs, excitatory and inhibitory components of FFI had the same stimulation thresholds indicating they could be triggered by activation of the same fibers. In other FCs, excitation and inhibition exhibit different stimulus thresholds, suggesting FCs and TVCs might be activated by different sets of fibers. In addition, we find that during repetitive activation, synapses formed by the auditory nerve onto TVCs and FCs exhibit distinct modes of short-term plasticity. Feed-forward inhibitory post-synaptic currents (IPSCs) in FCs exhibit short-term depression because of prominent synaptic depression at the auditory nerve-TVC synapse. Depression of this feedforward inhibitory input causes a shift in the balance of fusiform cell synaptic input towards greater excitation and suggests that fusiform cell spike output will be enhanced by physiological patterns of auditory nerve activity. PMID:25071459

  14. A novel short-term plasticity of intrinsic excitability in the hippocampal CA1 pyramidal cells

    PubMed Central

    Sánchez-Aguilera, A; Sánchez-Alonso, J L; Vicente-Torres, M A; Colino, A

    2014-01-01

    Changes in neuronal activity often trigger compensatory mechanisms aimed at regulating network activity homeostatically. Here we have identified and characterized a novel form of compensatory short-term plasticity of membrane excitability, which develops early after the eye-opening period in rats (P16–19 days) but not before that developmental stage (P9–12 days old). Holding the membrane potential of CA1 neurons right below the firing threshold from 15 s to several minutes induced a potentiation of the repolarizing phase of the action potentials that contributed to a decrease in the firing rate of CA1 pyramidal neurons in vitro. Furthermore, the mechanism for inducing this plasticity required the action of intracellular Ca2+ entering through T-type Ca2+ channels. This increase in Ca2+ subsequently activated the Ca2+ sensor K+ channel interacting protein 3, which led to the increase of an A-type K+ current. These results suggest that Ca2+ modulation of somatic A-current represents a new form of homeostatic regulation that provides CA1 pyramidal neurons with the ability to preserve their firing abilities in response to membrane potential variations on a scale from tens of seconds to several minutes. PMID:24756640

  15. Motor Recovery and Axonal Plasticity With Short-Term Amphetamine After Stroke

    PubMed Central

    Papadopoulos, Catherine M.; Tsai, Shih-Yen; Guillen, Veronica; Ortega, Juan; Kartje, Gwendolyn L.; Wolf, William A.

    2013-01-01

    suggests that, after stroke, short-term pairing of amphetamine with sufficiently focused activity is an effective means of inducing long-term improvement in forelimb motor function. The anatomic data suggests that corticoefferent plasticity in the form of axonal sprouting contributes to the maintenance of motor recovery. PMID:19038917

  16. Regulation of synaptic vesicles pools within motor nerve terminals during short-term facilitation and neuromodulation.

    PubMed

    Logsdon, S; Johnstone, A F M; Viele, K; Cooper, R L

    2006-02-01

    The reserve pool (RP) and readily releasable pool (RRP) of synaptic vesicles within presynaptic nerve terminals were physiologically differentiated into distinctly separate functional groups. This was accomplished in glutamatergic nerve terminals by blocking the glutamate transporter with dl-threo-beta-benzyloxyaspartate (TBOA; 10 microM) during electrical stimulation with either 40 Hz of 10 pulses within a train or 20- or 50-Hz continuous stimulation. The 50-Hz continuous stimulation decreased the excitatory postsynaptic potential amplitude 60 min faster than for the 20-Hz continuous stimulation in the presence of TBOA (P < 0.05). There was no significant difference between the train stimulation and 20-Hz continuous stimulation in the run-down time in the presence of TBOA. After TBOA-induced synaptic depression, the excitatory postsynaptic potentials were rapidly (<1 min) revitalized by exposure to serotonin (5-HT, 1 microM) in every preparation tested (P < 0.05). At this glutamatergic nerve terminal, 5-HT promotes an increase probability of vesicular docking and fusion. Quantal recordings made directly at nerve terminals revealed smaller quantal sizes with TBOA exposure with a marked increase in quantal size as well as a continual appearance of smaller quanta upon 5-HT treatment after TBOA-induced depression. Thus 5-HT was able to recruit vesicles from the RP that were not rapidly depleted by acute TBOA treatment and electrical stimulation. The results support the notion that the RRP is selectively activated during rapid electrical stimulation sparing the RP; however, the RP can be recruited by the neuromodulator 5-HT. This suggests at least two separate kinetic and distinct regulatory paths for vesicle recycling within the presynaptic nerve terminal.

  17. Cortical Plasticity Induced by Short-Term Multimodal Musical Rhythm Training

    PubMed Central

    Lappe, Claudia; Trainor, Laurel J.; Herholz, Sibylle C.; Pantev, Christo

    2011-01-01

    Performing music is a multimodal experience involving the visual, auditory, and somatosensory modalities as well as the motor system. Therefore, musical training is an excellent model to study multimodal brain plasticity. Indeed, we have previously shown that short-term piano practice increase the magnetoencephalographic (MEG) response to melodic material in novice players. Here we investigate the impact of piano training using a rhythmic-focused exercise on responses to rhythmic musical material. Musical training with non musicians was conducted over a period of two weeks. One group (sensorimotor-auditory, SA) learned to play a piano sequence with a distinct musical rhythm, another group (auditory, A) listened to, and evaluated the rhythmic accuracy of the performances of the SA-group. Training-induced cortical plasticity was evaluated using MEG, comparing the mismatch negativity (MMN) in response to occasional rhythmic deviants in a repeating rhythm pattern before and after training. The SA-group showed a significantly greater enlargement of MMN and P2 to deviants after training compared to the A- group. The training-induced increase of the rhythm MMN was bilaterally expressed in contrast to our previous finding where the MMN for deviants in the pitch domain showed a larger right than left increase. The results indicate that when auditory experience is strictly controlled during training, involvement of the sensorimotor system and perhaps increased attentional recources that are needed in producing rhythms lead to more robust plastic changes in the auditory cortex compared to when rhythms are simply attended to in the auditory domain in the absence of motor production. PMID:21747907

  18. Long-term but not short-term plasticity at mossy fiber synapses is impaired in neural cell adhesion molecule-deficient mice

    PubMed Central

    Cremer, Harold; Chazal, Geneviève; Carleton, Alan; Goridis, Christo; Vincent, Jean-Didier; Lledo, Pierre-Marie

    1998-01-01

    Cell adhesion molecules (CAMs) are known to be involved in a variety of developmental processes that play key roles in the establishment of synaptic connectivity during embryonic development, but recent evidence implicates the same molecules in synaptic plasticity of the adult. In the present study, we have used neural CAM (NCAM)-deficient mice, which have learning and behavioral deficits, to evaluate NCAM function in the hippocampal mossy fiber system. Morphological studies demonstrated that fasciculation and laminar growth of mossy fibers were strongly affected, leading to innervation of CA3 pyramidal cells at ectopic sites, whereas individual mossy fiber boutons appeared normal. Electrophysiological recordings performed in hippocampal slice preparations revealed that both basal synaptic transmission and two forms of short-term plasticity, i.e., paired-pulse facilitation and frequency facilitation, were normal in mice lacking all forms of NCAM. However, long-term potentiation of glutamatergic excitatory synapses after brief trains of repetitive stimulation was abolished. Taken together, these results strongly suggest that in the hippocampal mossy fiber system, NCAM is essential both for correct axonal growth and synaptogenesis and for long-term changes in synaptic strength. PMID:9789073

  19. A novel analytical characterization for short-term plasticity parameters in spiking neural networks

    PubMed Central

    O'Brien, Michael J.; Thibeault, Corey M.; Srinivasa, Narayan

    2014-01-01

    Short-term plasticity (STP) is a phenomenon that widely occurs in the neocortex with implications for learning and memory. Based on a widely used STP model, we develop an analytical characterization of the STP parameter space to determine the nature of each synapse (facilitating, depressing, or both) in a spiking neural network based on presynaptic firing rate and the corresponding STP parameters. We demonstrate consistency with previous work by leveraging the power of our characterization to replicate the functional volumes that are integral for the previous network stabilization results. We then use our characterization to predict the precise transitional point from the facilitating regime to the depressing regime in a simulated synapse, suggesting in vitro experiments to verify the underlying STP model. We conclude the work by integrating our characterization into a framework for finding suitable STP parameters for self-sustaining random, asynchronous activity in a prescribed recurrent spiking neural network. The systematic process resulting from our analytical characterization improves the success rate of finding the requisite parameters for such networks by three orders of magnitude over a random search. PMID:25477812

  20. Parvalbumin tunes spike-timing and efferent short-term plasticity in striatal fast spiking interneurons.

    PubMed

    Orduz, David; Bischop, Don Patrick; Schwaller, Beat; Schiffmann, Serge N; Gall, David

    2013-07-01

      Striatal fast spiking interneurons (FSIs) modulate output of the striatum by synchronizing medium-sized spiny neurons (MSNs). Recent studies have broadened our understanding of FSIs, showing that they are implicated in severe motor disorders such as parkinsonism, dystonia and Tourette syndrome. FSIs are the only striatal neurons to express the calcium-binding protein parvalbumin (PV). This selective expression of PV raises questions about the functional role of this Ca(2+) buffer in controlling FSI Ca(2+) dynamics and, consequently, FSI spiking mode and neurotransmission. To study the functional involvement of FSIs in striatal microcircuit activity and the role of PV in FSI function, we performed perforated patch recordings on enhanced green fluorescent protein-expressing FSIs in brain slices from control and PV-/- mice. Our results revealed that PV-/- FSIs fired more regularly and were more excitable than control FSIs by a mechanism in which Ca(2+) buffering is linked to spiking activity as a result of the activation of small conductance Ca(2+)-dependent K(+) channels. A modelling approach of striatal FSIs supports our experimental results. Furthermore, PV deletion modified frequency-specific short-term plasticity at inhibitory FSI to MSN synapses. Our results therefore reinforce the hypothesis that in FSIs, PV is crucial for fine-tuning of the temporal responses of the FSI network and for the orchestration of MSN populations. This, in turn, may play a direct role in the generation and pathology-related worsening of motor rhythms.

  1. A novel analytical characterization for short-term plasticity parameters in spiking neural networks.

    PubMed

    O'Brien, Michael J; Thibeault, Corey M; Srinivasa, Narayan

    2014-01-01

    Short-term plasticity (STP) is a phenomenon that widely occurs in the neocortex with implications for learning and memory. Based on a widely used STP model, we develop an analytical characterization of the STP parameter space to determine the nature of each synapse (facilitating, depressing, or both) in a spiking neural network based on presynaptic firing rate and the corresponding STP parameters. We demonstrate consistency with previous work by leveraging the power of our characterization to replicate the functional volumes that are integral for the previous network stabilization results. We then use our characterization to predict the precise transitional point from the facilitating regime to the depressing regime in a simulated synapse, suggesting in vitro experiments to verify the underlying STP model. We conclude the work by integrating our characterization into a framework for finding suitable STP parameters for self-sustaining random, asynchronous activity in a prescribed recurrent spiking neural network. The systematic process resulting from our analytical characterization improves the success rate of finding the requisite parameters for such networks by three orders of magnitude over a random search.

  2. Parvalbumin tunes spike-timing and efferent short-term plasticity in striatal fast spiking interneurons

    PubMed Central

    Orduz, David; Bischop, Don Patrick; Schwaller, Beat; Schiffmann, Serge N; Gall, David

    2013-01-01

    Striatal fast spiking interneurons (FSIs) modulate output of the striatum by synchronizing medium-sized spiny neurons (MSNs). Recent studies have broadened our understanding of FSIs, showing that they are implicated in severe motor disorders such as parkinsonism, dystonia and Tourette syndrome. FSIs are the only striatal neurons to express the calcium-binding protein parvalbumin (PV). This selective expression of PV raises questions about the functional role of this Ca2+ buffer in controlling FSI Ca2+ dynamics and, consequently, FSI spiking mode and neurotransmission. To study the functional involvement of FSIs in striatal microcircuit activity and the role of PV in FSI function, we performed perforated patch recordings on enhanced green fluorescent protein-expressing FSIs in brain slices from control and PV−/− mice. Our results revealed that PV−/− FSIs fired more regularly and were more excitable than control FSIs by a mechanism in which Ca2+ buffering is linked to spiking activity as a result of the activation of small conductance Ca2+-dependent K+ channels. A modelling approach of striatal FSIs supports our experimental results. Furthermore, PV deletion modified frequency-specific short-term plasticity at inhibitory FSI to MSN synapses. Our results therefore reinforce the hypothesis that in FSIs, PV is crucial for fine-tuning of the temporal responses of the FSI network and for the orchestration of MSN populations. This, in turn, may play a direct role in the generation and pathology-related worsening of motor rhythms. PMID:23551945

  3. Cooperativity between hippocampal-prefrontal short-term plasticity through associative long-term potentiation.

    PubMed

    Kawashima, Hitoshi; Izaki, Yoshinori; Grace, Anthony A; Takita, Masatoshi

    2006-09-13

    The hippocampal-medial prefrontal cortex (mPFC) pathway provides highly convergent input to the mPFC in rats and shows two types of short-term plasticity in terms of paired-pulse facilitation (PPF) of the field potential under urethane anesthesia. We now report that stimulating either the dorsal or ventral subregions of the posterior hippocampus elicited PPF (by about 335 and 120%, respectively) of field potentials recorded in the mPFC at 100 ms interpulse interval. This PPF-like interaction occurred when projections were stimulated in the ventral-dorsal order (by about 200% of the single-pulsed response), but not vice versa. When weak long-term potentiation (LTP) of the dorsal projection was evoked simultaneously with strong LTP of the ventral projection, an associative effect was revealed (about +55%), although the magnitudes of LTP in each projection were not correlated. Even when the impermutable PPF-like facilitation was further enhanced (by about +120%), the enhancement was not correlated with either form of LTP, but exhibited the interaction of changes in the dorsal PPF, rather than in the heterotopic priming effect through the ventral projection. Moreover, this change was correlated with the associated LTP ratio of dorsal to ventral projection LTP (i.e., LTP associativity). Larger increases in LTP associativity correlated with greater impermutable PPF-like facilitation; in addition, there was hardly attenuation of the response to the dorsal projection by subsequent electrolytic lesions of the ventral subregion. These results indicate that the mPFC functionally integrates discrete sources of hippocampal information via cooperativity between short- and long-term plasticity.

  4. Neuronal cytoskeleton in synaptic plasticity and regeneration.

    PubMed

    Gordon-Weeks, Phillip R; Fournier, Alyson E

    2014-04-01

    During development, dynamic changes in the axonal growth cone and dendrite are necessary for exploratory movements underlying initial axo-dendritic contact and ultimately the formation of a functional synapse. In the adult central nervous system, an impressive degree of plasticity is retained through morphological and molecular rearrangements in the pre- and post-synaptic compartments that underlie the strengthening or weakening of synaptic pathways. Plasticity is regulated by the interplay of permissive and inhibitory extracellular cues, which signal through receptors at the synapse to regulate the closure of critical periods of developmental plasticity as well as by acute changes in plasticity in response to experience and activity in the adult. The molecular underpinnings of synaptic plasticity are actively studied and it is clear that the cytoskeleton is a key substrate for many cues that affect plasticity. Many of the cues that restrict synaptic plasticity exhibit residual activity in the injured adult CNS and restrict regenerative growth by targeting the cytoskeleton. Here, we review some of the latest insights into how cytoskeletal remodeling affects neuronal plasticity and discuss how the cytoskeleton is being targeted in an effort to promote plasticity and repair following traumatic injury in the central nervous system. © 2013 International Society for Neurochemistry.

  5. Glutamatergic synapses are structurally and biochemically complex because of multiple plasticity processes: long-term potentiation, long-term depression, short-term potentiation and scaling.

    PubMed

    Lisman, John

    2017-03-05

    Synapses are complex because they perform multiple functions, including at least six mechanistically different forms of plasticity. Here, I comment on recent developments regarding these processes. (i) Short-term potentiation (STP), a Hebbian process that requires small amounts of synaptic input, appears to make strong contributions to some forms of working memory. (ii) The rules for long-term potentiation (LTP) induction in CA3 have been clarified: induction does not depend obligatorily on backpropagating sodium spikes but, rather, on dendritic branch-specific N-methyl-d-aspartate (NMDA) spikes. (iii) Late LTP, a process that requires a dopamine signal (and is therefore neoHebbian), is mediated by trans-synaptic growth of the synapse, a growth that occurs about an hour after LTP induction. (iv) LTD processes are complex and include both homosynaptic and heterosynaptic forms. (v) Synaptic scaling produced by changes in activity levels are not primarily cell-autonomous, but rather depend on network activity. (vi) The evidence for distance-dependent scaling along the primary dendrite is firm, and a plausible structural-based mechanism is suggested.Ideas about the mechanisms of synaptic function need to take into consideration newly emerging data about synaptic structure. Recent super-resolution studies indicate that glutamatergic synapses are modular (module size 70-80 nm), as predicted by theoretical work. Modules are trans-synaptic structures and have high concentrations of postsynaptic density-95 (PSD-95) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor. These modules function as quasi-independent loci of AMPA-mediated transmission and may be independently modifiable, suggesting a new understanding of quantal transmission.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity.'

  6. Network response synchronization enhanced by synaptic plasticity

    NASA Astrophysics Data System (ADS)

    Lobov, S.; Simonov, A.; Kastalskiy, I.; Kazantsev, V.

    2016-02-01

    Synchronization of neural network response on spatially localized periodic stimulation was studied. The network consisted of synaptically coupled spiking neurons with spike-timing-dependent synaptic plasticity (STDP). Network connectivity was defined by time evolving matrix of synaptic weights. We found that the steady-state spatial pattern of the weights could be rearranged due to locally applied external periodic stimulation. A method for visualization of synaptic weights as vector field was introduced to monitor the evolving connectivity matrix. We demonstrated that changes in the vector field and associated weight rearrangements underlay an enhancement of synchronization range.

  7. Neuroimmune regulation of homeostatic synaptic plasticity.

    PubMed

    Pribiag, Horia; Stellwagen, David

    2014-03-01

    Homeostatic synaptic plasticity refers to a set of negative-feedback mechanisms that are used by neurons to maintain activity within a functional range. While it is becoming increasingly clear that homeostatic regulation of synapse function is a key principle in the nervous system, the molecular details of this regulation are only beginning to be uncovered. Recent evidence implicates molecules classically associated with the peripheral immune system in the modulation of homeostatic synaptic plasticity. In particular, the pro-inflammatory cytokine TNFα, class I major histocompatibility complex, and neuronal pentraxin 2 are essential in the regulation of the compensatory synaptic response that occurs in response to prolonged neuronal inactivity. This review will present and discuss current evidence implicating neuroimmune molecules in the homeostatic regulation of synapse function. This article is part of the Special Issue entitled 'Homeostatic Synaptic Plasticity'.

  8. Attention-driven auditory cortex short-term plasticity helps segregate relevant sounds from noise

    PubMed Central

    Ahveninen, Jyrki; Hämäläinen, Matti; Jääskeläinen, Iiro P.; Ahlfors, Seppo P.; Huang, Samantha; Raij, Tommi; Sams, Mikko; Vasios, Christos E.; Belliveau, John W.

    2011-01-01

    How can we concentrate on relevant sounds in noisy environments? A “gain model” suggests that auditory attention simply amplifies relevant and suppresses irrelevant afferent inputs. However, it is unclear whether this suffices when attended and ignored features overlap to stimulate the same neuronal receptive fields. A “tuning model” suggests that, in addition to gain, attention modulates feature selectivity of auditory neurons. We recorded magnetoencephalography, EEG, and functional MRI (fMRI) while subjects attended to tones delivered to one ear and ignored opposite-ear inputs. The attended ear was switched every 30 s to quantify how quickly the effects evolve. To produce overlapping inputs, the tones were presented alone vs. during white-noise masking notch-filtered ±1/6 octaves around the tone center frequencies. Amplitude modulation (39 vs. 41 Hz in opposite ears) was applied for “frequency tagging” of attention effects on maskers. Noise masking reduced early (50–150 ms; N1) auditory responses to unattended tones. In support of the tuning model, selective attention canceled out this attenuating effect but did not modulate the gain of 50–150 ms activity to nonmasked tones or steady-state responses to the maskers themselves. These tuning effects originated at nonprimary auditory cortices, purportedly occupied by neurons that, without attention, have wider frequency tuning than ±1/6 octaves. The attentional tuning evolved rapidly, during the first few seconds after attention switching, and correlated with behavioral discrimination performance. In conclusion, a simple gain model alone cannot explain auditory selective attention. In nonprimary auditory cortices, attention-driven short-term plasticity retunes neurons to segregate relevant sounds from noise. PMID:21368107

  9. Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long- and short-term thermal acclimation.

    PubMed

    Gerken, Alison R; Eller, Olivia C; Hahn, Daniel A; Morgan, Theodore J

    2015-04-07

    Seasonal and daily thermal variation can limit species distributions because of physiological tolerances. Low temperatures are particularly challenging for ectotherms, which use both basal thermotolerance and acclimation, an adaptive plastic response, to mitigate thermal stress. Both basal thermotolerance and acclimation are thought to be important for local adaptation and persistence in the face of climate change. However, the evolutionary independence of basal and plastic tolerances remains unclear. Acclimation can occur over longer (seasonal) or shorter (hours to days) time scales, and the degree of mechanistic overlap is unresolved. Using a midlatitude population of Drosophila melanogaster, we show substantial heritable variation in both short- and long-term acclimation. Rapid cold hardening (short-term plasticity) and developmental acclimation (long-term plasticity) are positively correlated, suggesting shared mechanisms. However, there are independent components of these traits, because developmentally acclimated flies respond positively to short-term acclimation. A strong negative correlation between basal cold tolerance and developmental acclimation suggests that basal cold tolerance may constrain developmental acclimation, whereas a weaker negative correlation between basal cold tolerance and short-term acclimation suggests less constraint. Using genome-wide association mapping, we show the genetic architecture of rapid cold hardening and developmental acclimation responses are nonoverlapping at the SNP and corresponding gene level. However, genes associated with each trait share functional similarities, including genes involved in apoptosis and autophagy, cytoskeletal and membrane structural components, and ion binding and transport. These results indicate substantial opportunity for short-term and long-term acclimation responses to evolve separately from each other and for short-term acclimation to evolve separately from basal thermotolerance.

  10. A Single Brief Burst Induces GluR1-Dependent Associative Short-Term Potentiation: A Potential Mechanism for Short-Term Memory

    ERIC Educational Resources Information Center

    Erickson, Martha A.; Maramara, Lauren A.; Lisman, John

    2010-01-01

    Recent work showed that short-term memory (STM) is selectively reduced in GluR1 knockout mice. This raises the possibility that a form of synaptic modification dependent on GluR1 might underlie STM. Studies of synaptic plasticity have shown that stimuli too weak to induce long-term potentiation induce short-term potentiation (STP), a phenomenon…

  11. A Single Brief Burst Induces GluR1-Dependent Associative Short-Term Potentiation: A Potential Mechanism for Short-Term Memory

    ERIC Educational Resources Information Center

    Erickson, Martha A.; Maramara, Lauren A.; Lisman, John

    2010-01-01

    Recent work showed that short-term memory (STM) is selectively reduced in GluR1 knockout mice. This raises the possibility that a form of synaptic modification dependent on GluR1 might underlie STM. Studies of synaptic plasticity have shown that stimuli too weak to induce long-term potentiation induce short-term potentiation (STP), a phenomenon…

  12. Model predictions of features in microsaccade-related neural responses in a feedforward network with short-term synaptic depression

    NASA Astrophysics Data System (ADS)

    Zhou, Jian-Fang; Yuan, Wu-Jie; Zhou, Zhao; Zhou, Changsong

    2016-02-01

    Recently, the significant microsaccade-induced neural responses have been extensively observed in experiments. To explore the underlying mechanisms of the observed neural responses, a feedforward network model with short-term synaptic depression has been proposed [Yuan, W.-J., Dimigen, O., Sommer, W. and Zhou, C. Front. Comput. Neurosci. 7, 47 (2013)]. The depression model not only gave an explanation for microsaccades in counteracting visual fading, but also successfully reproduced several microsaccade-related features in experimental findings. These results strongly suggest that, the depression model is very useful to investigate microsaccade-related neural responses. In this paper, by using the model, we extensively study and predict the dependance of microsaccade-related neural responses on several key parameters, which could be tuned in experiments. Particularly, we provide a significant prediction that microsaccade-related neural response also complies with the property “sharper is better” observed in many contexts in neuroscience. Importantly, the property exhibits a power-law relationship between the width of input signal and the responsive effectiveness, which is robust against many parameters in the model. By using mean field theory, we analytically investigate the robust power-law property. Our predictions would give theoretical guidance for further experimental investigations of the functional role of microsaccades in visual information processing.

  13. Membrane-Derived Phospholipids Control Synaptic Neurotransmission and Plasticity

    PubMed Central

    García-Morales, Victoria; Montero, Fernando; González-Forero, David; Rodríguez-Bey, Guillermo; Gómez-Pérez, Laura; Medialdea-Wandossell, María Jesús; Domínguez-Vías, Germán; García-Verdugo, José Manuel; Moreno-López, Bernardo

    2015-01-01

    Synaptic communication is a dynamic process that is key to the regulation of neuronal excitability and information processing in the brain. To date, however, the molecular signals controlling synaptic dynamics have been poorly understood. Membrane-derived bioactive phospholipids are potential candidates to control short-term tuning of synaptic signaling, a plastic event essential for information processing at both the cellular and neuronal network levels in the brain. Here, we showed that phospholipids affect excitatory and inhibitory neurotransmission by different degrees, loci, and mechanisms of action. Signaling triggered by lysophosphatidic acid (LPA) evoked rapid and reversible depression of excitatory and inhibitory postsynaptic currents. At excitatory synapses, LPA-induced depression depended on LPA1/Gαi/o-protein/phospholipase C/myosin light chain kinase cascade at the presynaptic site. LPA increased myosin light chain phosphorylation, which is known to trigger actomyosin contraction, and reduced the number of synaptic vesicles docked to active zones in excitatory boutons. At inhibitory synapses, postsynaptic LPA signaling led to dephosphorylation, and internalization of the GABAAγ2 subunit through the LPA1/Gα12/13-protein/RhoA/Rho kinase/calcineurin pathway. However, LPA-induced depression of GABAergic transmission was correlated with an endocytosis-independent reduction of GABAA receptors, possibly by GABAAγ2 dephosphorylation and subsequent increased lateral diffusion. Furthermore, endogenous LPA signaling, mainly via LPA1, mediated activity-dependent inhibitory depression in a model of experimental synaptic plasticity. Finally, LPA signaling, most likely restraining the excitatory drive incoming to motoneurons, regulated performance of motor output commands, a basic brain processing task. We propose that lysophospholipids serve as potential local messengers that tune synaptic strength to precedent activity of the neuron. PMID:25996636

  14. Priming of Short-Term Potentiation and Synaptic Tagging/Capture Mechanisms by Ryanodine Receptor Activation in Rat Hippocampal CA1

    ERIC Educational Resources Information Center

    Sajikumar, Sreedharan; Li, Qin; Abraham, Wickliffe C.; Xiao, Zhi Cheng

    2009-01-01

    Activity-dependent changes in synaptic strength such as long-term potentiation (LTP) and long-term depression (LTD) are considered to be cellular mechanisms underlying learning and memory. Strengthening of a synapse for a few seconds or minutes is termed short-term potentiation (STP) and is normally unable to take part in the processes of synaptic…

  15. Priming of Short-Term Potentiation and Synaptic Tagging/Capture Mechanisms by Ryanodine Receptor Activation in Rat Hippocampal CA1

    ERIC Educational Resources Information Center

    Sajikumar, Sreedharan; Li, Qin; Abraham, Wickliffe C.; Xiao, Zhi Cheng

    2009-01-01

    Activity-dependent changes in synaptic strength such as long-term potentiation (LTP) and long-term depression (LTD) are considered to be cellular mechanisms underlying learning and memory. Strengthening of a synapse for a few seconds or minutes is termed short-term potentiation (STP) and is normally unable to take part in the processes of synaptic…

  16. Synaptic Vesicle Proteins and Active Zone Plasticity

    PubMed Central

    Kittel, Robert J.; Heckmann, Manfred

    2016-01-01

    Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone (AZ). The complex molecular architecture of AZs mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of AZs vary significantly, even for a given connection. Thus, there appear to be distinct AZ states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the AZ. The protein-rich cytomatrix at the active zone (CAZ) provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1) and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and AZ states, which has heretofore received little attention. PMID:27148040

  17. Altered short-term plasticity within the working memory neural network: Is it neuroticism or is it depression?

    PubMed

    Bianchi, Renzo; Laurent, Eric

    2016-04-01

    In the present article, we discuss (1) the importance of assessing and statistically considering both clinical and subclinical forms of depression when examining the relationship between neuroticism and short-term plasticity within the working memory neural network, and (2) the hypothesis of an antagonism between neuroticism and conscientiousness in personality research. We suggest that (1) neuroticism and depression should be examined in a relational manner, and (2) neuroticism and conscientiousness should not be antagonized.

  18. The role of synaptic ion channels in synaptic plasticity

    PubMed Central

    Voglis, Giannis; Tavernarakis, Nektarios

    2006-01-01

    The nervous system receives a large amount of information about the environment through elaborate sensory routes. Processing and integration of these wide-ranging inputs often results in long-term behavioural alterations as a result of past experiences. These relatively permanent changes in behaviour are manifestations of the capacity of the nervous system for learning and memory. At the cellular level, synaptic plasticity is one of the mechanisms underlying this process. Repeated neural activity generates physiological changes in the nervous system that ultimately modulate neuronal communication through synaptic transmission. Recent studies implicate both presynaptic and postsynaptic ion channels in the process of synapse strength modulation. Here, we review the role of synaptic ion channels in learning and memory, and discuss the implications and significance of these findings towards deciphering the molecular biology of learning and memory. PMID:17077866

  19. Neuroticism and conscientiousness respectively constrain and facilitate short-term plasticity within the working memory neural network.

    PubMed

    Dima, Danai; Friston, Karl J; Stephan, Klaas E; Frangou, Sophia

    2015-10-01

    Individual differences in cognitive efficiency, particularly in relation to working memory (WM), have been associated both with personality dimensions that reflect enduring regularities in brain configuration, and with short-term neural plasticity, that reflects task-related changes in brain connectivity. To elucidate the relationship of these two divergent mechanisms, we tested the hypothesis that personality dimensions, which reflect enduring aspects of brain configuration, inform about the neurobiological framework within which short-term, task-related plasticity, as measured by effective connectivity, can be facilitated or constrained. As WM consistently engages the dorsolateral prefrontal (DLPFC), parietal (PAR), and anterior cingulate cortex (ACC), we specified a WM network model with bidirectional, ipsilateral, and contralateral connections between these regions from a functional magnetic resonance imaging dataset obtained from 40 healthy adults while performing the 3-back WM task. Task-related effective connectivity changes within this network were estimated using Dynamic Causal Modelling. Personality was evaluated along the major dimensions of Neuroticism, Extraversion, Openness to Experience, Agreeableness, and Conscientiousness. Only two dimensions were relevant to task-dependent effective connectivity. Neuroticism and Conscientiousness respectively constrained and facilitated neuroplastic responses within the WM network. These results suggest individual differences in cognitive efficiency arise from the interplay between enduring and short-term plasticity in brain configuration.

  20. Synaptic Plasticity and Memory Formation

    DTIC Science & Technology

    1994-05-31

    The name " Ampakines " has been used to describe this family; when more is known about structure-activity relationships, it should be possible to...regarding the physiological effects of the drugs. Excised patch studies have shown that Ampakines prolong the duration of AMPA receptor-mediated...also revealed that Ampakines produce the expected facilitation and prolongation of synaptic responses in situ; these drugs are thus the first compounds

  1. Interplay of multiple synaptic plasticity features in filamentary memristive devices for neuromorphic computing

    PubMed Central

    La Barbera, Selina; Vincent, Adrien F.; Vuillaume, Dominique; Querlioz, Damien; Alibart, Fabien

    2016-01-01

    Bio-inspired computing represents today a major challenge at different levels ranging from material science for the design of innovative devices and circuits to computer science for the understanding of the key features required for processing of natural data. In this paper, we propose a detail analysis of resistive switching dynamics in electrochemical metallization cells for synaptic plasticity implementation. We show how filament stability associated to joule effect during switching can be used to emulate key synaptic features such as short term to long term plasticity transition and spike timing dependent plasticity. Furthermore, an interplay between these different synaptic features is demonstrated for object motion detection in a spike-based neuromorphic circuit. System level simulation presents robust learning and promising synaptic operation paving the way to complex bio-inspired computing systems composed of innovative memory devices. PMID:27982093

  2. Interplay of multiple synaptic plasticity features in filamentary memristive devices for neuromorphic computing.

    PubMed

    La Barbera, Selina; Vincent, Adrien F; Vuillaume, Dominique; Querlioz, Damien; Alibart, Fabien

    2016-12-16

    Bio-inspired computing represents today a major challenge at different levels ranging from material science for the design of innovative devices and circuits to computer science for the understanding of the key features required for processing of natural data. In this paper, we propose a detail analysis of resistive switching dynamics in electrochemical metallization cells for synaptic plasticity implementation. We show how filament stability associated to joule effect during switching can be used to emulate key synaptic features such as short term to long term plasticity transition and spike timing dependent plasticity. Furthermore, an interplay between these different synaptic features is demonstrated for object motion detection in a spike-based neuromorphic circuit. System level simulation presents robust learning and promising synaptic operation paving the way to complex bio-inspired computing systems composed of innovative memory devices.

  3. Interplay of multiple synaptic plasticity features in filamentary memristive devices for neuromorphic computing

    NASA Astrophysics Data System (ADS)

    La Barbera, Selina; Vincent, Adrien F.; Vuillaume, Dominique; Querlioz, Damien; Alibart, Fabien

    2016-12-01

    Bio-inspired computing represents today a major challenge at different levels ranging from material science for the design of innovative devices and circuits to computer science for the understanding of the key features required for processing of natural data. In this paper, we propose a detail analysis of resistive switching dynamics in electrochemical metallization cells for synaptic plasticity implementation. We show how filament stability associated to joule effect during switching can be used to emulate key synaptic features such as short term to long term plasticity transition and spike timing dependent plasticity. Furthermore, an interplay between these different synaptic features is demonstrated for object motion detection in a spike-based neuromorphic circuit. System level simulation presents robust learning and promising synaptic operation paving the way to complex bio-inspired computing systems composed of innovative memory devices.

  4. Synaptic plasticity with discrete state synapses

    NASA Astrophysics Data System (ADS)

    Abarbanel, Henry D. I.; Talathi, Sachin S.; Gibb, Leif; Rabinovich, M. I.

    2005-09-01

    Experimental observations on synaptic plasticity at individual glutamatergic synapses from the CA3 Shaffer collateral pathway onto CA1 pyramidal cells in the hippocampus suggest that the transitions in synaptic strength occur among discrete levels at individual synapses [C. C. H. Petersen , Proc. Natl. Acad. Sci. USA 85, 4732 (1998); O’Connor, Wittenberg, and Wang, D. H. O’Connor , Proc. Natl. Acad. Sci. USA (to be published); J. M. Montgomery and D. V. Madison, Trends Neurosci. 27, 744 (2004)]. This happens for both long term potentiation (LTP) and long term depression (LTD) induction protocols. O’Connor, Wittenberg, and Wang have argued that three states would account for their observations on individual synapses in the CA3-CA1 pathway. We develop a quantitative model of this three-state system with transitions among the states determined by a competition between kinases and phosphatases shown by D. H. O’Connor , to be determinant of LTP and LTD, respectively. Specific predictions for various plasticity protocols are given by coupling this description of discrete synaptic α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor ligand gated ion channel conductance changes to a model of postsynaptic membrane potential and associated intracellular calcium fluxes to yield the transition rates among the states. We then present various LTP and LTD induction protocols to the model system and report the resulting whole cell changes in AMPA conductance. We also examine the effect of our discrete state synaptic plasticity model on the synchronization of realistic oscillating neurons. We show that one-to-one synchronization is enhanced by the plasticity we discuss here and the presynaptic and postsynaptic oscillations are in phase. Synaptic strength saturates naturally in this model and does not require artificial upper or lower cutoffs, in contrast to earlier models of plasticity.

  5. Diacylglycerol Kinases in the Coordination of Synaptic Plasticity

    PubMed Central

    Lee, Dongwon; Kim, Eunjoon; Tanaka-Yamamoto, Keiko

    2016-01-01

    Synaptic plasticity is activity-dependent modification of the efficacy of synaptic transmission. Although, detailed mechanisms underlying synaptic plasticity are diverse and vary at different types of synapses, diacylglycerol (DAG)-associated signaling has been considered as an important regulator of many forms of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD). Recent evidences indicate that DAG kinases (DGKs), which phosphorylate DAG to phosphatidic acid to terminate DAG signaling, are important regulators of LTP and LTD, as supported by the results from mice lacking specific DGK isoforms. This review will summarize these studies and discuss how specific DGK isoforms distinctly regulate different forms of synaptic plasticity at pre- and postsynaptic sites. In addition, we propose a general role of DGKs as coordinators of synaptic plasticity that make local synaptic environments more permissive for synaptic plasticity by regulating DAG concentration and interacting with other synaptic proteins. PMID:27630986

  6. Nanoscale analysis of structural synaptic plasticity

    PubMed Central

    Bourne, Jennifer N.; Harris, Kristen M.

    2011-01-01

    In the 1950’s, transmission electron microscopy was first used to reveal the diversity in synaptic structure and composition in the central nervous system [1;2]. Since then, visualization and reconstruction of serial thin sections have provided three-dimensional contexts in which to understand how synapses are modified with plasticity, learning, and sensory input [3–17]. Three-dimensional reconstruction from serial section electron microscopy (ssEM) has proven invaluable for the comprehensive analysis of structural synaptic plasticity. It has provided the needed nanometer resolution to localize and measure key subcellular structures, such as the postsynaptic density (PSD) and presynaptic vesicles which define a synapse, polyribosomes as sites of local protein synthesis, smooth endoplasmic reticulum (SER) for local regulation of calcium and trafficking of membrane proteins, endosomes for recycling, and fine astroglial processes at the perimeter of some synapses. Thus, ssEM is an essential tool for nanoscale analysis of the cell biological and anatomical modifications that underlie changes in synaptic strength. Here we discuss several important issues associated with interpreting the functional significance of structural synaptic plasticity, especially during long-term potentiation, a widely studied cellular model of learning and memory. PMID:22088391

  7. MicroRNA-132 regulates recognition memory and synaptic plasticity in the perirhinal cortex

    PubMed Central

    Scott, Helen L; Tamagnini, Francesco; Narduzzo, Katherine E; Howarth, Joanna L; Lee, Youn-Bok; Wong, Liang-Fong; Brown, Malcolm W; Warburton, Elizabeth C; Bashir, Zafar I; Uney, James B

    2012-01-01

    Evidence suggests that the acquisition of recognition memory depends upon CREB-dependent long-lasting changes in synaptic plasticity in the perirhinal cortex. The CREB-responsive microRNA miR-132 has been shown to regulate synaptic transmission and we set out to investigate a role for this microRNA in recognition memory and its underlying plasticity mechanisms. To this end we mediated the specific overexpression of miR-132 selectively in the rat perirhinal cortex and demonstrated impairment in short-term recognition memory. This functional deficit was associated with a reduction in both long-term depression and long-term potentiation. These results confirm that microRNAs are key coordinators of the intracellular pathways that mediate experience-dependent changes in the brain. In addition, these results demonstrate a role for miR-132 in the neuronal mechanisms underlying the formation of short-term recognition memory. PMID:22845676

  8. Synaptic Plasticity as a Cortical Coding Scheme

    PubMed Central

    Froemke, Robert C.; Schreiner, Christoph E.

    2015-01-01

    Processing of auditory information requires constant adjustment due to alterations of the environment and changing conditions in the nervous system with age, health, and experience. Consequently, patterns of activity in cortical networks have complex dynamics over a wide range of timescales, from milliseconds to days and longer. In the primary auditory cortex (AI), multiple forms of adaptation and plasticity shape synaptic input and action potential output. However, the variance of neuronal responses has made it difficult to characterize AI receptive fields and to determine the function of AI in processing auditory information such as vocalizations. Here we describe recent studies on the temporal modulation of cortical responses and consider the relation of synaptic plasticity to neural coding. PMID:26497430

  9. CDK5 downregulation enhances synaptic plasticity.

    PubMed

    Posada-Duque, Rafael Andrés; Ramirez, Omar; Härtel, Steffen; Inestrosa, Nibaldo C; Bodaleo, Felipe; González-Billault, Christian; Kirkwood, Alfredo; Cardona-Gómez, Gloria Patricia

    2017-01-01

    CDK5 is a serine/threonine kinase that is involved in the normal function of the adult brain and plays a role in neurotransmission and synaptic plasticity. However, its over-regulation has been associated with Tau hyperphosphorylation and cognitive deficits. Our previous studies have demonstrated that CDK5 targeting using shRNA-miR provides neuroprotection and prevents cognitive deficits. Dendritic spine morphogenesis and forms of long-term synaptic plasticity-such as long-term potentiation (LTP)-have been proposed as essential processes of neuroplasticity. However, whether CDK5 participates in these processes remains controversial and depends on the experimental model. Using wild-type mice that received injections of CDK5 shRNA-miR in CA1 showed an increased LTP and recovered the PPF in deficient LTP of APPswe/PS1Δ9 transgenic mice. On mature hippocampal neurons CDK5, shRNA-miR for 12 days induced increased dendritic protrusion morphogenesis, which was dependent on Rac activity. In addition, silencing of CDK5 increased BDNF expression, temporarily increased phosphorylation of CaMKII, ERK, and CREB; and facilitated calcium signaling in neurites. Together, our data suggest that CDK5 downregulation induces synaptic plasticity in mature neurons involving Ca(2+) signaling and BDNF/CREB activation.

  10. The developmental stages of synaptic plasticity

    PubMed Central

    Lohmann, Christian; Kessels, Helmut W

    2014-01-01

    Abstract The brain is programmed to drive behaviour by precisely wiring the appropriate neuronal circuits. Wiring and rewiring of neuronal circuits largely depends on the orchestrated changes in the strengths of synaptic contacts. Here, we review how the rules of synaptic plasticity change during development of the brain, from birth to independence. We focus on the changes that occur at the postsynaptic side of excitatory glutamatergic synapses in the rodent hippocampus and neocortex. First we summarize the current data on the structure of synapses and the developmental expression patterns of the key molecular players of synaptic plasticity, N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, as well as pivotal kinases (Ca2+/calmodulin-dependent protein kinase II, protein kinase A, protein kinase C) and phosphatases (PP1, PP2A, PP2B). In the second part we relate these findings to important characteristics of the emerging network. We argue that the concerted and gradual shifts in the usage of plasticity molecules comply with the changing need for (re)wiring neuronal circuits. PMID:24144877

  11. Synaptic Plasticity, Dementia and Alzheimer Disease.

    PubMed

    Skaper, Stephen D; Facci, Laura; Zusso, Morena; Giusti, Pietro

    2017-01-13

    Neuroplasticity is not only shaped by learning and memory but is also a mediator of responses to neuron attrition and injury (compensatory plasticity). As an ongoing process it reacts to neuronal cell activity and injury, death, and genesis, which encompasses the modulation of structural and functional processes of axons, dendrites, and synapses. The range of structural elements that comprise plasticity includes long-term potentiation (a cellular correlate of learning and memory), synaptic efficacy and remodelling, synaptogenesis, axonal sprouting and dendritic remodelling, and neurogenesis and recruitment. Degenerative diseases of the human brain continue to pose one of biomedicine's most intractable problems. Research on human neurodegeneration is now moving from descriptive to mechanistic analyses. At the same time, it is increasing apparent that morphological lesions traditionally used by neuropathologists to confirm post-mortem clinical diagnosis might furnish us with an experimentally tractable handle to understand causative pathways. Consider the aging-dependent neurodegenerative disorder Alzheimer's disease (AD) which is characterised at the neuropathological level by deposits of insoluble amyloid b-peptide (Ab) in extracellular plaques and aggregated tau protein, which is found largely in the intracellular neurofibrillary tangles. We now appreciate that mild cognitive impairment in early AD may be due to synaptic dysfunction caused by accumulation of non-fibrillar, oligomeric Ab, occurring well in advance of evident widespread synaptic loss and neurodegeneration. Soluble Ab oligomers can adversely affect synaptic structure and plasticity at extremely low concentrations, although the molecular substrates by which synaptic memory mechanisms are disrupted remain to be fully elucidated. The dendritic spine constitutes a primary locus of excitatory synaptic transmission in the mammalian central nervous system. These structures protruding from dendritic shafts

  12. Spike timing analysis in neural networks with unsupervised synaptic plasticity

    NASA Astrophysics Data System (ADS)

    Mizusaki, B. E. P.; Agnes, E. J.; Brunnet, L. G.; Erichsen, R., Jr.

    2013-01-01

    The synaptic plasticity rules that sculpt a neural network architecture are key elements to understand cortical processing, as they may explain the emergence of stable, functional activity, while avoiding runaway excitation. For an associative memory framework, they should be built in a way as to enable the network to reproduce a robust spatio-temporal trajectory in response to an external stimulus. Still, how these rules may be implemented in recurrent networks and the way they relate to their capacity of pattern recognition remains unclear. We studied the effects of three phenomenological unsupervised rules in sparsely connected recurrent networks for associative memory: spike-timing-dependent-plasticity, short-term-plasticity and an homeostatic scaling. The system stability is monitored during the learning process of the network, as the mean firing rate converges to a value determined by the homeostatic scaling. Afterwards, it is possible to measure the recovery efficiency of the activity following each initial stimulus. This is evaluated by a measure of the correlation between spike fire timings, and we analysed the full memory separation capacity and limitations of this system.

  13. Modulation of hippocampal plasticity and cognitive behavior by short-term blueberry supplementation in aged rats.

    PubMed

    Casadesus, Gemma; Shukitt-Hale, Barbara; Stellwagen, Heather M; Zhu, Xiongwei; Lee, Hyoung-Gon; Smith, Mark A; Joseph, James A

    2004-01-01

    During aging, reductions in hippocampal neurogenesis are associated with memory decline indicating a causal relationship. Indeed, insulin-like growth factor-1 (IGF-1), a major activator of the extracellular receptor kinase pathway that is central in learning and memory processes, is also a key modulator of hippocampal neurogenesis. Previously, we showed that age-related declines in spatial memory tasks can be improved by antioxidant-rich diets containing blueberries. In this study, to begin to understand the mechanisms responsible for the beneficial effects of blueberries, we assessed changes in hippocampal plasticity parameters such as hippocampal neurogenesis, extracellular receptor kinase activation, and IGF-1 and IGF-1R levels in blueberry-supplemented aged animals. Our results show that all these parameters of hippocampal neuronal plasticity are increased in supplemented animals and aspects such as proliferation, extracellular receptor kinase activation and IGF-1 and IGF-1R levels correlate with improvements in spatial memory. Therefore, cognitive improvements afforded by polyphenolic-rich fruits such as blueberries appear, in part, to be mediated by their effects on hippocampal plasticity.

  14. Short-term and long-term plasticity in the visual-attention system: Evidence from habituation of attentional capture.

    PubMed

    Turatto, Massimo; Pascucci, David

    2016-04-01

    Attention is known to be crucial for learning and to regulate activity-dependent brain plasticity. Here we report the opposite scenario, with plasticity affecting the onset-driven automatic deployment of spatial attention. Specifically, we showed that attentional capture is subject to habituation, a fundamental form of plasticity consisting in a response decrement to repeated stimulations. Participants performed a visual discrimination task with focused attention, while being occasionally exposed to a distractor consisting of a high-luminance peripheral onset. With practice, short-term and long-term habituation of attentional capture emerged, making the visual-attention system fully immune to distraction. Furthermore, spontaneous recovery of attentional capture was found when the distractor was temporarily removed. Capture, however, once habituated was surprisingly resistant to spontaneous recovery, taking from several minutes to days to recover. The results suggest that the mechanisms subserving exogenous attentional orienting are subject to profound and enduring plastic changes based on previous experience, and that habituation can impact high-order cognitive functions.

  15. Interactions between behaviorally relevant rhythms and synaptic plasticity alter coding in the piriform cortex

    PubMed Central

    Urban, Nathaniel N.

    2012-01-01

    Understanding how neural and behavioral timescales interact to influence cortical activity and stimulus coding is an important issue in sensory neuroscience. In air-breathing animals, voluntary changes in respiratory frequency alter the temporal patterning olfactory input. In the olfactory bulb, these behavioral timescales are reflected in the temporal properties of mitral/tufted (M/T) cell spike trains. As the odor information contained in these spike trains is relayed from the bulb to the cortex, interactions between presynaptic spike timing and short-term synaptic plasticity dictate how stimulus features are represented in cortical spike trains. Here we demonstrate how the timescales associated with respiratory frequency, spike timing and short-term synaptic plasticity interact to shape cortical responses. Specifically, we quantified the timescales of short-term synaptic facilitation and depression at excitatory synapses between bulbar M/T cells and cortical neurons in slices of mouse olfactory cortex. We then used these results to generate simulated M/T population synaptic currents that were injected into real cortical neurons. M/T population inputs were modulated at frequencies consistent with passive respiration or active sniffing. We show how the differential recruitment of short-term plasticity at breathing versus sniffing frequencies alters cortical spike responses. For inputs at sniffing frequencies, cortical neurons linearly encoded increases in presynaptic firing rates with increased phase locked, firing rates. In contrast, at passive breathing frequencies, cortical responses saturated with changes in presynaptic rate. Our results suggest that changes in respiratory behavior can gate the transfer of stimulus information between the olfactory bulb and cortex. PMID:22553016

  16. Ubiquitin ligase TRIM3 controls hippocampal plasticity and learning by regulating synaptic γ-actin levels

    PubMed Central

    Schreiber, Joerg; Végh, Marlene J.; Dawitz, Julia; Kroon, Tim; Loos, Maarten; Labonté, Dorthe; Li, Ka Wan; Van Nierop, Pim; Van Diepen, Michiel T.; De Zeeuw, Chris I.; Kneussel, Matthias; Meredith, Rhiannon M.; Smit, August B.

    2015-01-01

    Synaptic plasticity requires remodeling of the actin cytoskeleton. Although two actin isoforms, β- and γ-actin, are expressed in dendritic spines, the specific contribution of γ-actin in the expression of synaptic plasticity is unknown. We show that synaptic γ-actin levels are regulated by the E3 ubiquitin ligase TRIM3. TRIM3 protein and Actg1 transcript are colocalized in messenger ribonucleoprotein granules responsible for the dendritic targeting of messenger RNAs. TRIM3 polyubiquitylates γ-actin, most likely cotranslationally at synaptic sites. Trim3−/− mice consequently have increased levels of γ-actin at hippocampal synapses, resulting in higher spine densities, increased long-term potentiation, and enhanced short-term contextual fear memory consolidation. Interestingly, hippocampal deletion of Actg1 caused an increase in long-term fear memory. Collectively, our findings suggest that temporal control of γ-actin levels by TRIM3 is required to regulate the timing of hippocampal plasticity. We propose a model in which TRIM3 regulates synaptic γ-actin turnover and actin filament stability and thus forms a transient inhibitory constraint on the expression of hippocampal synaptic plasticity. PMID:26527743

  17. Reliable long-lasting depression interacts with variable short-term facilitation to determine corticostriatal paired-pulse plasticity in young rats

    PubMed Central

    Akopian, G; Walsh, J P

    2007-01-01

    Synaptic plasticity at corticostraital synapses is proposed to fine tune movment and improve motor skills. We found paired-pulse plasticity at corticostriatal synapses reflected variably expressed short-term facilitation blended with a consistent background of longer-lasting depression. Presynaptic modulation via neuotransmitter receptor activation was ruled out as a mechanism for long-lasting paired-pulse depression by examining the effect of selective receptor antagonists. EPSC amplitude and paired-pulse plasticity, however, was influenced by block of D2 dopamine receptors. Block of glutamate transport with l-transdicarboxylic acid (PDC) reduced EPSCs, possibly through a mechanism of AMPA receptor desensitization. Removal of AMPA receptor desensitization with cyclothiazide reduced the paired-pulse depression at long-duration interstimulus intervals (ISIs), indicating that AMPA receptor desensitization participates in corticostriatal paired-pulse plasticity. The low-affinity glutamate receptor antagonist cis-2,3-piperidine dicarboxylic acid (PDA) increased paired-pulse depression, suggesting that a presynaptic component also exists for long-lasting paired-pulse depression. Low Ca2+–high Mg2+ or BAPTA-AM dramatically reduced the amplitude of corticostriatal EPSCs and both manipulations increased the expression of facilitation and, to a lesser extent, they reduced long-lasting paired-pulse depression. EGTA-AM produced a smaller reduction in EPSC amplitude and it did not alter paired-pulse facilitation, but in contrast to low Ca2+ and BAPTA-AM, EGTA-AM increased long-lasting paired-pulse depression. These experiments suggest that facilitation and depression are sensitive to vesicle depletion, which is dependent upon changes in peak Ca2+ (i.e. low Ca2+–high Mg2+ or BAPTA-AM). In addition, the action of EGTA-AM suggests that basal Ca2+ regulates the recovery from long-lasting paired-pulse depression, possibly thourgh a Ca2+-sensitive process of vesicle delivery

  18. Fast changes in the functional status of release sites during short-term plasticity: involvement of a frequency-dependent bypass of Rac at Aplysia synapses

    PubMed Central

    Humeau, Yann; Doussau, Frédéric; Popoff, Michel R; Benfenati, Fabio; Poulain, Bernard

    2007-01-01

    Synaptic transmission can be described as a stochastic quantal process defined by three main parameters: N, the number of functional release sites; P, the release probability; and Q, the quantum of response. Many changes in synaptic strength that are observed during expression of short term plasticity rely on modifications in P. Regulation of N has been also suggested. We have investigated at identified cholinergic inhibitory Aplysia synapses the cellular mechanism of post-tetanic potentiation (PTP) expressed under control conditions or after N has been depressed by applying lethal toxin (LT) from Clostridium sordellii or tetanus toxin (TeNT). The analysis of the Ca2+ dependency, paired-pulse ratio and variance to mean amplitude relationship of the postsynaptic responses elicited at distinct extracellular [Ca2+]/[Mg2+] elicited during control post-tetanic potentiation (PTPcont) indicated that PTPcont is mainly driven by an increase in release probability, P. The PTP expressed at TeNT-treated synapses (PTPTeNT) was found to be similar to PTPcont, but scaled to the extent of reduction in N produced by TeNT. Despite LT inducing a decrease in N as TeNT does, the PTP expressed at LT-treated synapses (PTPLT) was characterized by exceptionally large amplitude and bi-exponential time course, as compared to PTPcont or the PTPTeNT. Analysis of the Ca2+ dependency of PTPLT, paired-pulse ratio and fluctuations in amplitude of the postsynaptic responses elicited during PTPLT or the variance to mean amplitude relationship of time-locked postsynaptic responses in a series of subsequent PTPLT indicated that an N-driven change is involved in the early phase (1 s time scale) of PTPLT, while at a later stage PTPLT is composed of both N and P increases. Our results suggest that fast switching on of the functional status of the release sites occurs also during the early events of PTPcont. The early N-driven phase of PTPLT is likely to be a functional recovery of the release sites

  19. Myelination: an overlooked mechanism of synaptic plasticity?

    PubMed

    Fields, R Douglas

    2005-12-01

    Myelination of the brain continues through childhood into adolescence and early adulthood--the question is, Why? Two new articles provide intriguing evidence that myelination may be an underappreciated mechanism of activity-dependent nervous system plasticity: one study reported increased myelination associated with extensive piano playing, another indicated that rats have increased myelination of the corpus callosum when raised in environments providing increased social interaction and cognitive stimulation. These articles make it clear that activity-dependent effects on myelination cannot be considered strictly a developmental event. They raise the question of whether myelination is an overlooked mechanism of activity-dependent plasticity, extending in humans until at least age 30. It has been argued that regulating the speed of conduction across long fiber tracts would have a major influence on synaptic response, by coordinating the timing of afferent input to maximize temporal summation. The increase in synaptic amplitude could be as large as neurotransmitter-based mechanisms of plasticity, such as LTP. These new findings raise a larger question: How did the oligodendrocytes know they were practicing the piano or that their environment was socially complex?

  20. Synaptic and nonsynaptic plasticity approximating probabilistic inference

    PubMed Central

    Tully, Philip J.; Hennig, Matthias H.; Lansner, Anders

    2014-01-01

    Learning and memory operations in neural circuits are believed to involve molecular cascades of synaptic and nonsynaptic changes that lead to a diverse repertoire of dynamical phenomena at higher levels of processing. Hebbian and homeostatic plasticity, neuromodulation, and intrinsic excitability all conspire to form and maintain memories. But it is still unclear how these seemingly redundant mechanisms could jointly orchestrate learning in a more unified system. To this end, a Hebbian learning rule for spiking neurons inspired by Bayesian statistics is proposed. In this model, synaptic weights and intrinsic currents are adapted on-line upon arrival of single spikes, which initiate a cascade of temporally interacting memory traces that locally estimate probabilities associated with relative neuronal activation levels. Trace dynamics enable synaptic learning to readily demonstrate a spike-timing dependence, stably return to a set-point over long time scales, and remain competitive despite this stability. Beyond unsupervised learning, linking the traces with an external plasticity-modulating signal enables spike-based reinforcement learning. At the postsynaptic neuron, the traces are represented by an activity-dependent ion channel that is shown to regulate the input received by a postsynaptic cell and generate intrinsic graded persistent firing levels. We show how spike-based Hebbian-Bayesian learning can be performed in a simulated inference task using integrate-and-fire (IAF) neurons that are Poisson-firing and background-driven, similar to the preferred regime of cortical neurons. Our results support the view that neurons can represent information in the form of probability distributions, and that probabilistic inference could be a functional by-product of coupled synaptic and nonsynaptic mechanisms operating over several timescales. The model provides a biophysical realization of Bayesian computation by reconciling several observed neural phenomena whose

  1. Endocannabinoids in Synaptic Plasticity and Neuroprotection

    PubMed Central

    Xu, Jian-Yi; Chen, Chu

    2014-01-01

    Endocannabinoids (eCBs) are endogenous lipid mediators involved in a variety of physiological, pharmacological, and pathological processes. While activation of the eCB system primarily induces inhibitory effects on both GABAergic and glutamatergic synaptic transmission and plasticity through acting on presynaptically-expressed CB1 receptors in the brain, accumulated information suggests that eCB signaling is also capable of facilitating or potentiating excitatory synaptic transmission in the hippocampus. Recent studies show that a long-lasting potentiation of excitatory synaptic transmission at Schaffer collateral (SC)-CA1 synapses is induced by spatiotemporally primed inputs, accompanying with a long-term depression of inhibitory synaptic transmission (I-LTD) in hippocampal CA1 pyramidal neurons. This input-timing-dependent long-lasting synaptic potentiation at SC-CA1 synapses is mediated by 2-arachidonoylglycerol (2-AG) signaling triggered by activation of postsynaptic NMDA receptors, group I metabotropic glutamate receptors (mGluRs), and a concurrent rise in intracellular Ca2+. Emerging evidence now also indicates that 2-AG is an important signaling mediator keeping brain homeostasis by exerting its anti-inflammatory and neuroprotective effects in response to harmful insults through CB1/2 receptor-dependent and/or independent mechanisms. Activation of the nuclear receptor protein peroxisome proliferator-activated receptor-γ (PPARγ) apparently is one of the important mechanisms in resolving neuroinflammation and protecting neurons produced by 2-AG signaling. Thus, the information summarized in this review suggests that the role of eCB signaling in maintaining integrity of brain function is greater than what we thought previously. PMID:24571856

  2. Active dendrites, potassium channels and synaptic plasticity.

    PubMed Central

    Johnston, Daniel; Christie, Brian R; Frick, Andreas; Gray, Richard; Hoffman, Dax A; Schexnayder, Lalania K; Watanabe, Shigeo; Yuan, Li-Lian

    2003-01-01

    The dendrites of CA1 pyramidal neurons in the hippocampus express numerous types of voltage-gated ion channel, but the distributions or densities of many of these channels are very non-uniform. Sodium channels in the dendrites are responsible for action potential (AP) propagation from the axon into the dendrites (back-propagation); calcium channels are responsible for local changes in dendritic calcium concentrations following back-propagating APs and synaptic potentials; and potassium channels help regulate overall dendritic excitability. Several lines of evidence are presented here to suggest that back-propagating APs, when coincident with excitatory synaptic input, can lead to the induction of either long-term depression (LTD) or long-term potentiation (LTP). The induction of LTD or LTP is correlated with the magnitude of the rise in intracellular calcium. When brief bursts of synaptic potentials are paired with postsynaptic APs in a theta-burst pairing paradigm, the induction of LTP is dependent on the invasion of the AP into the dendritic tree. The amplitude of the AP in the dendrites is dependent, in part, on the activity of a transient, A-type potassium channel that is expressed at high density in the dendrites and correlates with the induction of the LTP. Furthermore, during the expression phase of the LTP, there are local changes in dendritic excitability that may result from modulation of the functioning of this transient potassium channel. The results support the view that the active properties of dendrites play important roles in synaptic integration and synaptic plasticity of these neurons. PMID:12740112

  3. Genetic differences in hippocampal synaptic plasticity.

    PubMed

    Prakash, S; Ambrosio, E; Alguacil, L F; Del Olmo, N

    2009-06-30

    Synaptic plasticity is considered a physiological substrate for learning and memory [Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84:87-136] that contributes to maladaptive learning in drug addiction [Schoenbaum G, Roesch MR, Stalnaker TA (2006) Orbitofrontal cortex, decision-making and drug addiction. Trends Neurosci 29:116-124]. Many studies have revealed that drug addiction has a strong hereditary component [Kosten TA, Ambrosio E (2002) HPA axis function and drug addictive behaviors: insights from studies with Lewis and Fischer 344 inbred rats. Psychoneuroendocrinology 27:35-69; Uhl GR (2004) Molecular genetic underpinnings of human substance abuse vulnerability: likely contributions to understanding addiction as a mnemonic process. Neuropharmacology 47 (Suppl 1):140-147], however the contribution of the genetic background to drug-induced changes in synaptic plasticity has been scarcely studied. The present study reports on an analysis of long-term potentiation (LTP) and depotentiation in Lewis (LEW) and Fischer-344 (F344) rats, two inbred rat strains that show different proneness to drugs of abuse and are considered an experimental model of genetic vulnerability to addiction [Kosten TA, Ambrosio E (2002) HPA axis function and drug addictive behaviors: insights from studies with Lewis and Fischer 344 inbred rats. Psychoneuroendocrinology 27:35-69]. The induction of saturated-LTP was similar in LEW and F344 rats treated with saline or cocaine. However, only slices from LEW saline-treated rats showed the reversal of LTP; thus, the depotentiation of saturated-LTP was not observed in cocaine-injected LEW rats and in F344 animals (treated either with cocaine or saline). These results suggest significant differences in hippocampal synaptic plasticity between Lewis and Fischer 344 rats.

  4. Short-term plasticity of human spinal inhibitory circuits after isometric and isotonic ankle training.

    PubMed

    Jessop, Traci; DePaola, Alyssa; Casaletto, Lauren; Englard, Chaya; Knikou, Maria

    2013-02-01

    The purpose of this study was to determine to what extent one session of isotonic and isometric ankle dorsi and plantar flexion training induces changes in the frequency-dependent depression of the soleus H-reflex. Further, adaptation of reciprocal Ia inhibition exerted from tibialis anterior flexor group I afferents on soleus motoneurons, and presynaptic inhibition of Ia afferent terminals induced by a conditioning afferent volley following stimulation of the antagonist nerve were established with subjects seated before and after training. The soleus H-reflexes evoked at the inter-stimulus intervals of 1, 2, 3, 5, and 8 s were normalized to the mean amplitude of the H-reflex evoked every 10 s. Conditioned H-reflexes were normalized to the associated control H-reflex evoked with subjects seated before and after training. Twenty-six subjects were randomly assigned to one or more of the 4 exercise groups. Isometric ankle dorsi flexion training decreased the reciprocal and presynaptic inhibition, while isotonic ankle dorsi flexion had no significant effects. Isotonic plantar flexion training decreased only the reciprocal inhibition, whilst isometric plantar flexion had no significant effects on the reciprocal or presynaptic inhibition. None of the training exercise protocols affected the amount of homosynaptic depression of the soleus H-reflex. Our findings support the notion that plastic changes of reciprocal and presynaptic inhibition due to exercise are transferrable to a resting state, and that homosynaptic depression remains unaltered after a single session of ankle training. Further research is needed to outline the time-course of plastic changes of spinal inhibitory mechanisms in humans.

  5. Epigenetic Basis of Neuronal and Synaptic Plasticity.

    PubMed

    Karpova, Nina N; Sales, Amanda J; Joca, Samia R

    2017-01-01

    Neuronal network and plasticity change as a function of experience. Altered neural connectivity leads to distinct transcriptional programs of neuronal plasticity-related genes. The environmental challenges throughout life may promote long-lasting reprogramming of gene expression and the development of brain disorders. The modifications in neuronal epigenome mediate gene-environmental interactions and are required for activity-dependent regulation of neuronal differentiation, maturation and plasticity. Here, we highlight the latest advances in understanding the role of the main players of epigenetic machinery (DNA methylation and demethylation, histone modifications, chromatin-remodeling enzymes, transposons, and non-coding RNAs) in activity-dependent and long- term neural and synaptic plasticity. The review focuses on both the transcriptional and post-transcriptional regulation of gene expression levels, including the processes of promoter activation, alternative splicing, regulation of stability of gene transcripts by natural antisense RNAs, and alternative polyadenylation. Further, we discuss the epigenetic aspects of impaired neuronal plasticity and the pathogenesis of neurodevelopmental (Rett syndrome, Fragile X Syndrome, genomic imprinting disorders, schizophrenia, and others), stressrelated (mood disorders) and neurodegenerative Alzheimer's, Parkinson's and Huntington's disorders. The review also highlights the pharmacological compounds that modulate epigenetic programming of gene expression, the potential treatment strategies of discussed brain disorders, and the questions that should be addressed during the development of effective and safe approaches for the treatment of brain disorders.

  6. Computational Neuroscience: Modeling the Systems Biology of Synaptic Plasticity

    PubMed Central

    Kotaleski, Jeanette Hellgren; Blackwell, Kim T.

    2016-01-01

    Preface Synaptic plasticity is a mechanism proposed to underlie learning and memory. The complexity of the interactions between ion channels, enzymes, and genes involved in synaptic plasticity impedes a deep understanding of this phenomenon. Computer modeling is an approach to investigate the information processing that is performed by signaling pathways underlying synaptic plasticity. In the past few years, new software developments that blend computational neuroscience techniques with systems biology techniques have allowed large-scale, quantitative modeling of synaptic plasticity in neurons. We highlight significant advancements produced by these modeling efforts and introduce promising approaches that utilize advancements in live cell imaging. PMID:20300102

  7. Signaling for Vesicle Mobilization and Synaptic Plasticity

    PubMed Central

    Levitan, Edwin S.

    2008-01-01

    The hypothesis that release of classical neurotransmitters and neuropeptides is facilitated by increasing the mobility of small synaptic vesicles (SSVs) and dense core vesicles (DCVs) could not be tested until the advent of methods for visualizing these secretory vesicles in living nerve terminals. In fact, fluorescence imaging studies have only since 2005 established that activity increases secretory vesicle mobility in motoneuron terminals and chromaffin cells. Mobilization of DCVs and SSVs appears to be due to liberation of hindered vesicles to promote quicker diffusion. However, F-actin and synapsin, which have been featured in mobilization models, are not required for activity-dependent increases in the mobility of DCVs or SSVs. Most recently, the signaling required for sustained mobilization has been identified for Drosophila motoneuron DCVs and shown to increase synaptic transmission. Specifically, presynaptic endoplasmic reticulum ryanodine receptor (RyR)-mediated Ca2+ release activates Ca2+/calmodulin-dependent kinase II (CamKII) to mobilize DCVs and induce post-tetanic potentiation (PTP) of neuropeptide release in the Drosophila neuromuscular junction. The shared signaling for increasing vesicle mobility and PTP links vesicle mobilization and synaptic plasticity. PMID:18446451

  8. Caffeine, adenosine receptors, and synaptic plasticity.

    PubMed

    Costenla, Ana Rita; Cunha, Rodrigo A; de Mendonça, Alexandre

    2010-01-01

    Few studies to date have looked at the effects of caffeine on synaptic plasticity, and those that did used very high concentrations of caffeine, whereas the brain concentrations attained by regular coffee consumption in humans should be in the low micromolar range, where caffeine exerts pharmacological actions mainly by antagonizing adenosine receptors. Accordingly, rats drinking caffeine (1 g/L) for 3 weeks, displayed a concentration of caffeine of circa 22 microM in the hippocampus. It is known that selective adenosine A1 receptor antagonists facilitate, whereas selective adenosine A2A receptor antagonists attenuate, long term potentiation (LTP) in the hippocampus. Although caffeine is a non-selective antagonist of adenosine receptors, it attenuates frequency-induced LTP in hippocampal slices in a manner similar to selective adenosine A2A receptor antagonists. These effects of low micromolar concentration of caffeine (30 microM) are maintained in aged animals, which is important when a possible beneficial effect for caffeine in age-related cognitive decline is proposed. Future studies will still be required to confirm and detail the involvement of A1 and A2A receptors in the effects of caffeine on hippocampal synaptic plasticity, using both pharmacological and genetic approaches.

  9. Calcineurin mediates homeostatic synaptic plasticity by regulating retinoic acid synthesis

    PubMed Central

    Arendt, Kristin L.; Zhang, Zhenjie; Ganesan, Subhashree; Hintze, Maik; Shin, Maggie M.; Tang, Yitai; Cho, Ahryon; Graef, Isabella A.; Chen, Lu

    2015-01-01

    Homeostatic synaptic plasticity is a form of non-Hebbian plasticity that maintains stability of the network and fidelity for information processing in response to prolonged perturbation of network and synaptic activity. Prolonged blockade of synaptic activity decreases resting Ca2+ levels in neurons, thereby inducing retinoic acid (RA) synthesis and RA-dependent homeostatic synaptic plasticity; however, the signal transduction pathway that links reduced Ca2+-levels to RA synthesis remains unknown. Here we identify the Ca2+-dependent protein phosphatase calcineurin (CaN) as a key regulator for RA synthesis and homeostatic synaptic plasticity. Prolonged inhibition of CaN activity promotes RA synthesis in neurons, and leads to increased excitatory and decreased inhibitory synaptic transmission. These effects of CaN inhibitors on synaptic transmission are blocked by pharmacological inhibitors of RA synthesis or acute genetic deletion of the RA receptor RARα. Thus, CaN, acting upstream of RA, plays a critical role in gating RA signaling pathway in response to synaptic activity. Moreover, activity blockade-induced homeostatic synaptic plasticity is absent in CaN knockout neurons, demonstrating the essential role of CaN in RA-dependent homeostatic synaptic plasticity. Interestingly, in GluA1 S831A and S845A knockin mice, CaN inhibitor- and RA-induced regulation of synaptic transmission is intact, suggesting that phosphorylation of GluA1 C-terminal serine residues S831 and S845 is not required for CaN inhibitor- or RA-induced homeostatic synaptic plasticity. Thus, our study uncovers an unforeseen role of CaN in postsynaptic signaling, and defines CaN as the Ca2+-sensing signaling molecule that mediates RA-dependent homeostatic synaptic plasticity. PMID:26443861

  10. Fragile X mental retardation protein and synaptic plasticity.

    PubMed

    Sidorov, Michael S; Auerbach, Benjamin D; Bear, Mark F

    2013-04-08

    Loss of the translational repressor FMRP causes Fragile X syndrome. In healthy neurons, FMRP modulates the local translation of numerous synaptic proteins. Synthesis of these proteins is required for the maintenance and regulation of long-lasting changes in synaptic strength. In this role as a translational inhibitor, FMRP exerts profound effects on synaptic plasticity.

  11. Short-term plasticity of unitary inhibitory-to-inhibitory synapses depends on the presynaptic interneuron subtype.

    PubMed

    Ma, Yunyong; Hu, Hang; Agmon, Ariel

    2012-01-18

    Excitatory-to-inhibitory cortical synapses exhibit either short-term facilitation or depression, depending on the subtype identity of the postsynaptic interneuron, while the short-term plasticity (STP) of inhibitory-to-excitatory synapses depends on the presynaptic interneuron. However, the rules governing STP of inhibitory-to-inhibitory synapses have not yet been determined. We recorded 109 unitary connections made by the two major inhibitory interneuron subtypes in layer 4 of mouse somatosensory cortex, fast-spiking (FS) and somatostatin-containing (SOM) interneurons, on each other and on excitatory, regular-spiking (RS) neurons. In all pairs, we measured dynamic changes in the postsynaptic response to a 20 Hz train of presynaptic action potentials. In half of our dataset, we also measured kinetic properties of the unitary IPSC: latency, rise time, and decay time constant. We found a pronounced dependency of STP on the presynaptic, but not the postsynaptic, identity: FS interneurons made strongly depressing connections on FS, SOM, and RS targets, while in synapses made by SOM interneurons on FS and RS targets, weak early depression was followed by weak late facilitation. IPSC latency and rise time were also strongly dependent on the presynaptic interneuron subtype, being 1.5-2× slower in output synapses of SOM compared with FS interneurons. In contrast, the IPSC decay time constant depended only on the postsynaptic class, with 1.5× slower decay on excitatory compared with inhibitory targets. The properties of the inhibitory outputs of FS and SOM interneurons reciprocate the properties of their excitatory inputs and imply a dynamic spatiotemporal division of labor between these two major inhibitory subsystems.

  12. Biochemical mechanisms for translational regulation in synaptic plasticity.

    PubMed

    Klann, Eric; Dever, Thomas E

    2004-12-01

    Changes in gene expression are required for long-lasting synaptic plasticity and long-term memory in both invertebrates and vertebrates. Regulation of local protein synthesis allows synapses to control synaptic strength independently of messenger RNA synthesis in the cell body. Recent reports indicate that several biochemical signalling cascades couple neurotransmitter and neurotrophin receptors to translational regulatory factors in protein synthesis-dependent forms of synaptic plasticity and memory. In this review, we highlight these translational regulatory mechanisms and the signalling pathways that govern the expression of synaptic plasticity in response to specific types of neuronal stimulation.

  13. The transformation of synaptic to system plasticity in motor output from the sacral cord of the adult mouse

    PubMed Central

    Elbasiouny, Sherif M.; Collins, William F.; Heckman, C. J.

    2015-01-01

    Synaptic plasticity is fundamental in shaping the output of neural networks. The transformation of synaptic plasticity at the cellular level into plasticity at the system level involves multiple factors, including behavior of local networks of interneurons. Here we investigate the synaptic to system transformation for plasticity in motor output in an in vitro preparation of the adult mouse spinal cord. System plasticity was assessed from compound action potentials (APs) in spinal ventral roots, which were generated simultaneously by the axons of many motoneurons (MNs). Synaptic plasticity was assessed from intracellular recordings of MNs. A computer model of the MN pool was used to identify the middle steps in the transformation from synaptic to system behavior. Two input systems that converge on the same MN pool were studied: one sensory and one descending. The two synaptic input systems generated very different motor outputs, with sensory stimulation consistently evoking short-term depression (STD) whereas descending stimulation had bimodal plasticity: STD at low frequencies but short-term facilitation (STF) at high frequencies. Intracellular and pharmacological studies revealed contributions from monosynaptic excitation and stimulus time-locked inhibition but also considerable asynchronous excitation sustained from local network activity. The computer simulations showed that STD in the monosynaptic excitatory input was the primary driver of the system STD in the sensory input whereas network excitation underlies the bimodal plasticity in the descending system. These results provide insight on the roles of plasticity in the monosynaptic and polysynaptic inputs converging on the same MN pool to overall motor plasticity. PMID:26203107

  14. Role of MicroRNA in Governing Synaptic Plasticity

    PubMed Central

    2016-01-01

    Although synaptic plasticity in neural circuits is orchestrated by an ocean of genes, molecules, and proteins, the underlying mechanisms remain poorly understood. Recently, it is well acknowledged that miRNA exerts widespread regulation over the translation and degradation of target gene in nervous system. Increasing evidence suggests that quite a few specific miRNAs play important roles in various respects of synaptic plasticity including synaptogenesis, synaptic morphology alteration, and synaptic function modification. More importantly, the miRNA-mediated regulation of synaptic plasticity is not only responsible for synapse development and function but also involved in the pathophysiology of plasticity-related diseases. A review is made here on the function of miRNAs in governing synaptic plasticity, emphasizing the emerging regulatory role of individual miRNAs in synaptic morphological and functional plasticity, as well as their implications in neurological disorders. Understanding of the way in which miRNAs contribute to synaptic plasticity provides rational clues in establishing the novel therapeutic strategy for plasticity-related diseases. PMID:27034846

  15. Synaptic Plasticity onto Dopamine Neurons Shapes Fear Learning.

    PubMed

    Pignatelli, Marco; Umanah, George Kwabena Essien; Ribeiro, Sissi Palma; Chen, Rong; Karuppagounder, Senthilkumar Senthil; Yau, Hau-Jie; Eacker, Stephen; Dawson, Valina Lynn; Dawson, Ted Murray; Bonci, Antonello

    2017-01-18

    Fear learning is a fundamental behavioral process that requires dopamine (DA) release. Experience-dependent synaptic plasticity occurs on DA neurons while an organism is engaged in aversive experiences. However, whether synaptic plasticity onto DA neurons is causally involved in aversion learning is unknown. Here, we show that a stress priming procedure enhances fear learning by engaging VTA synaptic plasticity. Moreover, we took advantage of the ability of the ATPase Thorase to regulate the internalization of AMPA receptors (AMPARs) in order to selectively manipulate glutamatergic synaptic plasticity on DA neurons. Genetic ablation of Thorase in DAT(+) neurons produced increased AMPAR surface expression and function that lead to impaired induction of both long-term depression (LTD) and long-term potentiation (LTP). Strikingly, animals lacking Thorase in DAT(+) neurons expressed greater associative learning in a fear conditioning paradigm. In conclusion, our data provide a novel, causal link between synaptic plasticity onto DA neurons and fear learning.

  16. Transient ECM protease activity promotes synaptic plasticity

    PubMed Central

    Magnowska, Marta; Gorkiewicz, Tomasz; Suska, Anna; Wawrzyniak, Marcin; Rutkowska-Wlodarczyk, Izabela; Kaczmarek, Leszek; Wlodarczyk, Jakub

    2016-01-01

    Activity-dependent proteolysis at a synapse has been recognized as a pivotal factor in controlling dynamic changes in dendritic spine shape and function; however, excessive proteolytic activity is detrimental to the cells. The exact mechanism of control of these seemingly contradictory outcomes of protease activity remains unknown. Here, we reveal that dendritic spine maturation is strictly controlled by the proteolytic activity, and its inhibition by the endogenous inhibitor (Tissue inhibitor of matrix metalloproteinases-1 – TIMP-1). Excessive proteolytic activity impairs long-term potentiation of the synaptic efficacy (LTP), and this impairment could be rescued by inhibition of protease activity. Moreover LTP is altered persistently when the ability of TIMP-1 to inhibit protease activity is abrogated, further demonstrating the role of such inhibition in the promotion of synaptic plasticity under well-defined conditions. We also show that dendritic spine maturation involves an intermediate formation of elongated spines, followed by their conversion into mushroom shape. The formation of mushroom-shaped spines is accompanied by increase in AMPA/NMDA ratio of glutamate receptors. Altogether, our results identify inhibition of protease activity as a critical regulatory mechanism for dendritic spines maturation. PMID:27282248

  17. Fast response and high sensitivity to microsaccades in a cascading-adaptation neural network with short-term synaptic depression.

    PubMed

    Yuan, Wu-Jie; Zhou, Jian-Fang; Zhou, Changsong

    2016-04-01

    Microsaccades are very small eye movements during fixation. Experimentally, they have been found to play an important role in visual information processing. However, neural responses induced by microsaccades are not yet well understood and are rarely studied theoretically. Here we propose a network model with a cascading adaptation including both retinal adaptation and short-term depression (STD) at thalamocortical synapses. In the neural network model, we compare the microsaccade-induced neural responses in the presence of STD and those without STD. It is found that the cascading with STD can give rise to faster and sharper responses to microsaccades. Moreover, STD can enhance response effectiveness and sensitivity to microsaccadic spatiotemporal changes, suggesting improved detection of small eye movements (or moving visual objects). We also explore the mechanism of the response properties in the model. Our studies strongly indicate that STD plays an important role in neural responses to microsaccades. Our model considers simultaneously retinal adaptation and STD at thalamocortical synapses in the study of microsaccade-induced neural activity, and may be useful for further investigation of the functional roles of microsaccades in visual information processing.

  18. Modulation of synaptic plasticity by stress hormone associates with plastic alteration of synaptic NMDA receptor in the adult hippocampus.

    PubMed

    Tse, Yiu Chung; Bagot, Rosemary C; Hutter, Juliana A; Wong, Alice S; Wong, Tak Pan

    2011-01-01

    Stress exerts a profound impact on learning and memory, in part, through the actions of adrenal corticosterone (CORT) on synaptic plasticity, a cellular model of learning and memory. Increasing findings suggest that CORT exerts its impact on synaptic plasticity by altering the functional properties of glutamate receptors, which include changes in the motility and function of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid subtype of glutamate receptor (AMPAR) that are responsible for the expression of synaptic plasticity. Here we provide evidence that CORT could also regulate synaptic plasticity by modulating the function of synaptic N-methyl-D-aspartate receptors (NMDARs), which mediate the induction of synaptic plasticity. We found that stress level CORT applied to adult rat hippocampal slices potentiated evoked NMDAR-mediated synaptic responses within 30 min. Surprisingly, following this fast-onset change, we observed a slow-onset (>1 hour after termination of CORT exposure) increase in synaptic expression of GluN2A-containing NMDARs. To investigate the consequences of the distinct fast- and slow-onset modulation of NMDARs for synaptic plasticity, we examined the formation of long-term potentiation (LTP) and long-term depression (LTD) within relevant time windows. Paralleling the increased NMDAR function, both LTP and LTD were facilitated during CORT treatment. However, 1-2 hours after CORT treatment when synaptic expression of GluN2A-containing NMDARs is increased, bidirectional plasticity was no longer facilitated. Our findings reveal the remarkable plasticity of NMDARs in the adult hippocampus in response to CORT. CORT-mediated slow-onset increase in GluN2A in hippocampal synapses could be a homeostatic mechanism to normalize synaptic plasticity following fast-onset stress-induced facilitation.

  19. Short-Term Plasticity in a Monosynaptic Reflex Pathway to Forearm Muscles after Continuous Robot-Assisted Passive Stepping

    PubMed Central

    Nakajima, Tsuyoshi; Kamibayashi, Kiyotaka; Kitamura, Taku; Komiyama, Tomoyoshi; Zehr, E. Paul; Nakazawa, Kimitaka

    2016-01-01

    Both active and passive rhythmic limb movements reduce the amplitude of spinal cord Hoffmann (H-) reflexes in muscles of moving and distant limbs. This could have clinical utility in remote modulation of the pathologically hyperactive reflexes found in spasticity after stroke or spinal cord injury. However, such clinical translation is currently hampered by a lack of critical information regarding the minimum or effective duration of passive movement needed for modulating spinal cord excitability. We therefore investigated the H-reflex modulation in the flexor carpi radialis (FCR) muscle during and after various durations (5, 10, 15, and 30 min) of passive stepping in 11 neurologically normal subjects. Passive stepping was performed by a robotic gait trainer system (Lokomat®) while a single pulse of electrical stimulation to the median nerve elicited H-reflexes in the FCR. The amplitude of the FCR H-reflex was significantly suppressed during passive stepping. Although 30 min of passive stepping was sufficient to elicit a persistent H-reflex suppression that lasted up to 15 min, 5 min of passive stepping was not. The duration of H-reflex suppression correlated with that of the stepping. These findings suggest that the accumulation of stepping-related afferent feedback from the leg plays a role in generating short-term interlimb plasticity in the circuitry of the FCR H-reflex. PMID:27499737

  20. Common mechanisms of synaptic plasticity in vertebrates and invertebrates

    PubMed Central

    Glanzman, David L.

    2016-01-01

    Until recently, the literature on learning-related synaptic plasticity in invertebrates has been dominated by models assuming plasticity is mediated by presynaptic changes, whereas the vertebrate literature has been dominated by models assuming it is mediated by postsynaptic changes. Here I will argue that this situation does not reflect a biological reality and that, in fact, invertebrate and vertebrate nervous systems share a common set of mechanisms of synaptic plasticity. PMID:20152143

  1. Sleep and synaptic plasticity in the developing and adult brain.

    PubMed

    Frank, Marcos G

    2015-01-01

    Sleep is hypothesized to play an integral role in brain plasticity. This has traditionally been investigated using behavioral assays. In the last 10-15 years, studies combining sleep measurements with in vitro and in vivo models of synaptic plasticity have provided exciting new insights into how sleep alters synaptic strength. In addition, new theories have been proposed that integrate older ideas about sleep function and recent discoveries in the field of synaptic plasticity. There remain, however, important challenges and unanswered questions. For example, sleep does not appear to have a single effect on synaptic strength. An unbiased review of the literature indicates that the effects of sleep vary widely depending on ontogenetic stage, the type of waking experience (or stimulation protocols) that precede sleep and the type of neuronal synapse under examination. In this review, I discuss these key findings in the context of current theories that posit different roles for sleep in synaptic plasticity.

  2. A light-stimulated synaptic transistor with synaptic plasticity and memory functions based on InGaZnOx-Al2O3 thin film structure

    NASA Astrophysics Data System (ADS)

    Li, H. K.; Chen, T. P.; Liu, P.; Hu, S. G.; Liu, Y.; Zhang, Q.; Lee, P. S.

    2016-06-01

    In this work, a synaptic transistor based on the indium gallium zinc oxide (IGZO)-aluminum oxide (Al2O3) thin film structure, which uses ultraviolet (UV) light pulses as the pre-synaptic stimulus, has been demonstrated. The synaptic transistor exhibits the behavior of synaptic plasticity like the paired-pulse facilitation. In addition, it also shows the brain's memory behaviors including the transition from short-term memory to long-term memory and the Ebbinghaus forgetting curve. The synapse-like behavior and memory behaviors of the transistor are due to the trapping and detrapping processes of the holes, which are generated by the UV pulses, at the IGZO/Al2O3 interface and/or in the Al2O3 layer.

  3. Pannexin 1 regulates bidirectional hippocampal synaptic plasticity in adult mice

    PubMed Central

    Ardiles, Alvaro O.; Flores-Muñoz, Carolina; Toro-Ayala, Gabriela; Cárdenas, Ana M.; Palacios, Adrian G.; Muñoz, Pablo; Fuenzalida, Marco; Sáez, Juan C.; Martínez, Agustín D.

    2014-01-01

    The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca2+ concentration and NMDA receptor (NMDAR) composition of GluN2 subunits. Pannexin 1 (Panx1), a member of the integral membrane protein family, has been shown to form non-selective channels and to regulate the induction of synaptic plasticity as well as hippocampal-dependent learning. Although Panx1 channels have been suggested to play a role in excitatory long-term potentiation (LTP), it remains unknown whether these channels also modulate long-term depression (LTD) or the balance between both types of synaptic plasticity. To study how Panx1 contributes to excitatory synaptic efficacy, we examined the age-dependent effects of eliminating or blocking Panx1 channels on excitatory synaptic plasticity within the CA1 region of the mouse hippocampus. By using different protocols to induce bidirectional synaptic plasticity, Panx1 channel blockade or lack of Panx1 were found to enhance LTP, whereas both conditions precluded the induction of LTD in adults, but not in young animals. These findings suggest that Panx1 channels restrain the sliding threshold for the induction of synaptic plasticity and underlying brain mechanisms of learning and memory. PMID:25360084

  4. Pannexin 1 regulates bidirectional hippocampal synaptic plasticity in adult mice.

    PubMed

    Ardiles, Alvaro O; Flores-Muñoz, Carolina; Toro-Ayala, Gabriela; Cárdenas, Ana M; Palacios, Adrian G; Muñoz, Pablo; Fuenzalida, Marco; Sáez, Juan C; Martínez, Agustín D

    2014-01-01

    The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca(2+) concentration and NMDA receptor (NMDAR) composition of GluN2 subunits. Pannexin 1 (Panx1), a member of the integral membrane protein family, has been shown to form non-selective channels and to regulate the induction of synaptic plasticity as well as hippocampal-dependent learning. Although Panx1 channels have been suggested to play a role in excitatory long-term potentiation (LTP), it remains unknown whether these channels also modulate long-term depression (LTD) or the balance between both types of synaptic plasticity. To study how Panx1 contributes to excitatory synaptic efficacy, we examined the age-dependent effects of eliminating or blocking Panx1 channels on excitatory synaptic plasticity within the CA1 region of the mouse hippocampus. By using different protocols to induce bidirectional synaptic plasticity, Panx1 channel blockade or lack of Panx1 were found to enhance LTP, whereas both conditions precluded the induction of LTD in adults, but not in young animals. These findings suggest that Panx1 channels restrain the sliding threshold for the induction of synaptic plasticity and underlying brain mechanisms of learning and memory.

  5. The roles of protein expression in synaptic plasticity and memory consolidation

    PubMed Central

    Rosenberg, Tali; Gal-Ben-Ari, Shunit; Dieterich, Daniela C.; Kreutz, Michael R.; Ziv, Noam E.; Gundelfinger, Eckart D.; Rosenblum, Kobi

    2014-01-01

    The amount and availability of proteins are regulated by their synthesis, degradation, and transport. These processes can specifically, locally, and temporally regulate a protein or a population of proteins, thus affecting numerous biological processes in health and disease states. Accordingly, malfunction in the processes of protein turnover and localization underlies different neuronal diseases. However, as early as a century ago, it was recognized that there is a specific need for normal macromolecular synthesis in a specific fragment of the learning process, memory consolidation, which takes place minutes to hours following acquisition. Memory consolidation is the process by which fragile short-term memory is converted into stable long-term memory. It is accepted today that synaptic plasticity is a cellular mechanism of learning and memory processes. Interestingly, similar molecular mechanisms subserve both memory and synaptic plasticity consolidation. In this review, we survey the current view on the connection between memory consolidation processes and proteostasis, i.e., maintaining the protein contents at the neuron and the synapse. In addition, we describe the technical obstacles and possible new methods to determine neuronal proteostasis of synaptic function and better explain the process of memory and synaptic plasticity consolidation. PMID:25429258

  6. The mean time to express synaptic plasticity in integrate-and-express, stochastic models of synaptic plasticity induction.

    PubMed

    Elliott, Terry

    2011-01-01

    Stochastic models of synaptic plasticity propose that single synapses perform a directed random walk of fixed step sizes in synaptic strength, thereby embracing the view that the mechanisms of synaptic plasticity constitute a stochastic dynamical system. However, fluctuations in synaptic strength present a formidable challenge to such an approach. We have previously proposed that single synapses must interpose an integration and filtering mechanism between the induction of synaptic plasticity and the expression of synaptic plasticity in order to control fluctuations. We analyze a class of three such mechanisms in the presence of possibly non-Markovian plasticity induction processes, deriving expressions for the mean expression time in these models. One of these filtering mechanisms constitutes a discrete low-pass filter that could be implemented on a small collection of molecules at single synapses, such as CaMKII, and we analyze this discrete filter in some detail. After considering Markov induction processes, we examine our own stochastic model of spike-timing-dependent plasticity, for which the probability density functions of the induction of plasticity steps have previously been derived. We determine the dependence of the mean time to express a plasticity step on pre- and postsynaptic firing rates in this model, and we also consider, numerically, the long-term stability against fluctuations of patterns of neuronal connectivity that typically emerge during neuronal development.

  7. Mismatch novelty exploration training enhances hippocampal synaptic plasticity: a tool for cognitive stimulation?

    PubMed

    Aidil-Carvalho, M F; Carmo, A J S; Ribeiro, J A; Cunha-Reis, D

    2017-09-08

    Memory formation relies on experience-dependent changes in synaptic strength such as long-term potentiation (LTP) or long-term depression (LTD) of synaptic activity, that in turn depend on previous learning experiences through metaplasticity. Novelty detection is a particularly important cognitive stimulus in this respect, and mismatch novelty has been associated with the activation of the hippocampal CA1 area in human studies. A single exposure a new location of known objects in a familiar environment, a behavioural mismatch novelty paradigm, is known to favour the expression of LTD in hippocampal CA3 to CA1 synaptic transmission in vivo, through short-term metaplasticity. Aiming to shape hippocampal responsiveness to synaptic plasticity phenomena we developed a training program based on exploration of a known environment containing familiar objects everyday presented in a new location. Repeated exposure to this new location of objects for two weeks caused a mild long-lasting decrease in synaptic efficacy. Furthermore, it enhanced both LTP evoked by theta-burst stimulation and depotentiation evoked by low-frequency stimulation of CA3 to CA1 hippocampal synaptic transmission in juvenile rats. This suggests that training programs using these behavioural tasks involving mismatch novelty can be used to reshape brain circuits and promote cognitive recovery in pathologies where LTP/LTD imbalance occurs, such as epilepsy, aging or Dowńs syndrome, an approach that requires further investigation at the behavioural level. Copyright © 2017. Published by Elsevier Inc.

  8. The Ubiquitin-Proteasome Pathway and Synaptic Plasticity

    ERIC Educational Resources Information Center

    Hegde, Ashok N.

    2010-01-01

    Proteolysis by the ubiquitin-proteasome pathway (UPP) has emerged as a new molecular mechanism that controls wide-ranging functions in the nervous system, including fine-tuning of synaptic connections during development and synaptic plasticity in the adult organism. In the UPP, attachment of a small protein, ubiquitin, tags the substrates for…

  9. The Ubiquitin-Proteasome Pathway and Synaptic Plasticity

    ERIC Educational Resources Information Center

    Hegde, Ashok N.

    2010-01-01

    Proteolysis by the ubiquitin-proteasome pathway (UPP) has emerged as a new molecular mechanism that controls wide-ranging functions in the nervous system, including fine-tuning of synaptic connections during development and synaptic plasticity in the adult organism. In the UPP, attachment of a small protein, ubiquitin, tags the substrates for…

  10. Synaptic plasticity by antidromic firing during hippocampal network oscillations.

    PubMed

    Bukalo, Olena; Campanac, Emilie; Hoffman, Dax A; Fields, R Douglas

    2013-03-26

    Learning and other cognitive tasks require integrating new experiences into context. In contrast to sensory-evoked synaptic plasticity, comparatively little is known of how synaptic plasticity may be regulated by intrinsic activity in the brain, much of which can involve nonclassical modes of neuronal firing and integration. Coherent high-frequency oscillations of electrical activity in CA1 hippocampal neurons [sharp-wave ripple complexes (SPW-Rs)] functionally couple neurons into transient ensembles. These oscillations occur during slow-wave sleep or at rest. Neurons that participate in SPW-Rs are distinguished from adjacent nonparticipating neurons by firing action potentials that are initiated ectopically in the distal region of axons and propagate antidromically to the cell body. This activity is facilitated by GABA(A)-mediated depolarization of axons and electrotonic coupling. The possible effects of antidromic firing on synaptic strength are unknown. We find that facilitation of spontaneous SPW-Rs in hippocampal slices by increasing gap-junction coupling or by GABA(A)-mediated axon depolarization resulted in a reduction of synaptic strength, and electrical stimulation of axons evoked a widespread, long-lasting synaptic depression. Unlike other forms of synaptic plasticity, this synaptic depression is not dependent upon synaptic input or glutamate receptor activation, but rather requires L-type calcium channel activation and functional gap junctions. Synaptic stimulation delivered after antidromic firing, which was otherwise too weak to induce synaptic potentiation, triggered a long-lasting increase in synaptic strength. Rescaling synaptic weights in subsets of neurons firing antidromically during SPW-Rs might contribute to memory consolidation by sharpening specificity of subsequent synaptic input and promoting incorporation of novel information.

  11. Natural patterns of activity and long-term synaptic plasticity

    PubMed Central

    Paulsen, Ole; Sejnowski, Terrence J

    2010-01-01

    Long-term potentiation (LTP) of synaptic transmission is traditionally elicited by massively synchronous, high-frequency inputs, which rarely occur naturally. Recent in vitro experiments have revealed that both LTP and long-term depression (LTD) can arise by appropriately pairing weak synaptic inputs with action potentials in the postsynaptic cell. This discovery has generated new insights into the conditions under which synaptic modification may occur in pyramidal neurons in vivo. First, it has been shown that the temporal order of the synaptic input and the postsynaptic spike within a narrow temporal window determines whether LTP or LTD is elicited, according to a temporally asymmetric Hebbian learning rule. Second, backpropagating action potentials are able to serve as a global signal for synaptic plasticity in a neuron compared with local associative interactions between synaptic inputs on dendrites. Third, a specific temporal pattern of activity — postsynaptic bursting — accompanies synaptic potentiation in adults. PMID:10753798

  12. Experience-dependent homeostatic synaptic plasticity in neocortex

    PubMed Central

    Whitt, Jessica L.; Petrus, Emily; Lee, Hey-Kyoung

    2013-01-01

    The organism’s ability to adapt to the changing sensory environment is due in part to the ability of the nervous system to change with experience. Input and synapse specific Hebbian plasticity, such as long-term potentiation (LTP) and long-term depression (LTD), are critical for sculpting the nervous system to wire its circuit in tune with the environment and for storing memories. However, these synaptic plasticity mechanisms are innately unstable and require another mode of plasticity that maintains homeostasis to allow neurons to function within a desired dynamic range. Several modes of homeostatic adaptation are known, some of which work at the synaptic level. This review will focus on the known mechanisms of experience-induced homeostatic synaptic plasticity in the neocortex and their potential function in sensory cortex plasticity. PMID:23466332

  13. Astrocytes gate Hebbian synaptic plasticity in the striatum

    PubMed Central

    Valtcheva, Silvana; Venance, Laurent

    2016-01-01

    Astrocytes, via excitatory amino-acid transporter type-2 (EAAT2), are the major sink for released glutamate and contribute to set the strength and timing of synaptic inputs. The conditions required for the emergence of Hebbian plasticity from distributed neural activity remain elusive. Here, we investigate the role of EAAT2 in the expression of a major physiologically relevant form of Hebbian learning, spike timing-dependent plasticity (STDP). We find that a transient blockade of EAAT2 disrupts the temporal contingency required for Hebbian synaptic plasticity. Indeed, STDP is replaced by aberrant non-timing-dependent plasticity occurring for uncorrelated events. Conversely, EAAT2 overexpression impairs the detection of correlated activity and precludes STDP expression. Our findings demonstrate that EAAT2 sets the appropriate glutamate dynamics for the optimal temporal contingency between pre- and postsynaptic activity required for STDP emergence, and highlight the role of astrocytes as gatekeepers for Hebbian synaptic plasticity. PMID:27996006

  14. Experience-dependent structural synaptic plasticity in the mammalian brain.

    PubMed

    Holtmaat, Anthony; Svoboda, Karel

    2009-09-01

    Synaptic plasticity in adult neural circuits may involve the strengthening or weakening of existing synapses as well as structural plasticity, including synapse formation and elimination. Indeed, long-term in vivo imaging studies are beginning to reveal the structural dynamics of neocortical neurons in the normal and injured adult brain. Although the overall cell-specific morphology of axons and dendrites, as well as of a subpopulation of small synaptic structures, are remarkably stable, there is increasing evidence that experience-dependent plasticity of specific circuits in the somatosensory and visual cortex involves cell type-specific structural plasticity: some boutons and dendritic spines appear and disappear, accompanied by synapse formation and elimination, respectively. This Review focuses on recent evidence for such structural forms of synaptic plasticity in the mammalian cortex and outlines open questions.

  15. A Postsynaptic Role for Short-Term Neuronal Facilitation in Dendritic Spines

    PubMed Central

    Yang, Sunggu; Santos, Mariton D.; Tang, Cha-Min; Kim, Jae Geun; Yang, Sungchil

    2016-01-01

    Synaptic plasticity is a fundamental component of information processing in the brain. Presynaptic facilitation in response to repetitive stimuli, often referred to as paired-pulse facilitation (PPF), is a dominant form of short-term synaptic plasticity. Recently, an additional cellular mechanism for short-term facilitation, short-term postsynaptic plasticity (STPP), has been proposed. While a dendritic mechanism was described in hippocampus, its expression has not yet been demonstrated at the levels of the spine. Furthermore, it is unknown whether the mechanism can be expressed in other brain regions, such as sensory cortex. Here, we demonstrated that a postsynaptic response can be facilitated by prior spine excitation in both hippocampal and cortical neurons, using 3D digital holography and two-photon calcium imaging. The coordinated action of pre- and post-synaptic plasticity may provide a more thorough account of information processing in the brain. PMID:27746721

  16. Molecular mechanisms underlying neuronal synaptic plasticity: systems biology meets computational neuroscience in the wilds of synaptic plasticity.

    PubMed

    Blackwell, Kim T; Jedrzejewska-Szmek, Joanna

    2013-01-01

    Interactions among signaling pathways that are activated by transmembrane receptors produce complex networks and emergent dynamical behaviors that are implicated in synaptic plasticity. Temporal dynamics and spatial aspects are critical determinants of cell responses such as synaptic plasticity, although the mapping between spatiotemporal activity pattern and direction of synaptic plasticity is not completely understood. Computational modeling of neuronal signaling pathways has significantly contributed to understanding signaling pathways underlying synaptic plasticity. Spatial models of signaling pathways in hippocampal neurons have revealed mechanisms underlying the spatial distribution of extracellular signal-related kinase (ERK) activation in hippocampal neurons. Other spatial models have demonstrated that the major role of anchoring proteins in striatal and hippocampal synaptic plasticity is to place molecules near their activators. Simulations of yet other models have revealed that the spatial distribution of synaptic plasticity may differ for potentiation versus depression. In general, the most significant advances have been made by interactive modeling and experiments; thus, an interdisciplinary approach should be applied to investigate critical issues in neuronal signaling pathways. These issues include identifying which transmembrane receptors are key for activating ERK in neurons, and the crucial targets of kinases that produce long-lasting synaptic plasticity. Although the number of computer programs for computationally efficient simulation of large reaction-diffusion networks is increasing, parameter estimation and sensitivity analysis in these spatial models remain more difficult than in single compartment models. Advances in live cell imaging coupled with further software development will continue to accelerate the development of spatial models of synaptic plasticity. Copyright © 2013 Wiley Periodicals, Inc.

  17. Actin Tyrosine-53-Phosphorylation in Neuronal Maturation and Synaptic Plasticity.

    PubMed

    Bertling, Enni; Englund, Jonas; Minkeviciene, Rimante; Koskinen, Mikko; Segerstråle, Mikael; Castrén, Eero; Taira, Tomi; Hotulainen, Pirta

    2016-05-11

    Rapid reorganization and stabilization of the actin cytoskeleton in dendritic spines enables cellular processes underlying learning, such as long-term potentiation (LTP). Dendritic spines are enriched in exceptionally short and dynamic actin filaments, but the studies so far have not revealed the molecular mechanisms underlying the high actin dynamics in dendritic spines. Here, we show that actin in dendritic spines is dynamically phosphorylated at tyrosine-53 (Y53) in rat hippocampal and cortical neurons. Our findings show that actin phosphorylation increases the turnover rate of actin filaments and promotes the short-term dynamics of dendritic spines. During neuronal maturation, actin phosphorylation peaks at the first weeks of morphogenesis, when dendritic spines form, and the amount of Y53-phosphorylated actin decreases when spines mature and stabilize. Induction of LTP transiently increases the amount of phosphorylated actin and LTP induction is deficient in neurons expressing mutant actin that mimics phosphorylation. Actin phosphorylation provides a molecular mechanism to maintain the high actin dynamics in dendritic spines during neuronal development and to induce fast reorganization of the actin cytoskeleton in synaptic plasticity. In turn, dephosphorylation of actin is required for the stabilization of actin filaments that is necessary for proper dendritic spine maturation and LTP maintenance. Dendritic spines are small protrusions from neuronal dendrites where the postsynaptic components of most excitatory synapses reside. Precise control of dendritic spine morphology and density is critical for normal brain function. Accordingly, aberrant spine morphology is linked to many neurological diseases. The actin cytoskeleton is a structural element underlying the proper morphology of dendritic spines. Therefore, defects in the regulation of the actin cytoskeleton in neurons have been implicated in neurological diseases. Here, we revealed a novel mechanism for

  18. Cerebellar Synaptic Plasticity and the Credit Assignment Problem.

    PubMed

    Jörntell, Henrik

    2016-04-01

    The mechanism by which a learnt synaptic weight change can contribute to learning or adaptation of brain function is a type of credit assignment problem, which is a key issue for many parts of the brain. In the cerebellum, detailed knowledge not only of the local circuitry connectivity but also of the topography of different sources of afferent/external information makes this problem particularly tractable. In addition, multiple forms of synaptic plasticity and their general rules of induction have been identified. In this review, we will discuss the possible roles of synaptic and cellular plasticity at specific locations in contributing to behavioral changes. Focus will be on the parts of the cerebellum that are devoted to limb control, which constitute a large proportion of the cortex and where the knowledge of the external connectivity is particularly well known. From this perspective, a number of sites of synaptic plasticity appear to primarily have the function of balancing the overall level of activity in the cerebellar circuitry, whereas the locations at which synaptic plasticity leads to functional changes in terms of limb control are more limited. Specifically, the postsynaptic forms of long-term potentiation (LTP) and long-term depression (LTD) at the parallel fiber synapses made on interneurons and Purkinje cells, respectively, are the types of plasticity that mediate the widest associative capacity and the tightest link between the synaptic change and the external functions that are to be controlled.

  19. Learning-facilitated synaptic plasticity occurs in the intermediate hippocampus in association with spatial learning

    PubMed Central

    Kenney, Jana; Manahan-Vaughan, Denise

    2013-01-01

    The dorsoventral axis of the hippocampus is differentiated into dorsal, intermediate, and ventral parts. Whereas the dorsal part is believed to specialize in processing spatial information, the ventral may be equipped to process non-spatial information. The precise role of the intermediate hippocampus is unclear, although recent data suggests it is functionally distinct, at least from the dorsal hippocampus. Learning-facilitated synaptic plasticity describes the ability of hippocampal synapses to respond with robust synaptic plasticity (>24 h) when a spatial learning event is coupled with afferent stimulation that would normally not lead to a lasting plasticity response: in the dorsal hippocampus novel space facilitates robust expression of long-term potentiation (LTP), whereas novel spatial content facilitates long-term depression (LTD). We explored whether the intermediate hippocampus engages in this kind of synaptic plasticity in response to novel spatial experience. In freely moving rats, high-frequency stimulation at 200 Hz (3 bursts of 15 stimuli) elicited synaptic potentiation that lasted for at least 4 h. Coupling of this stimulation with the exploration of a novel holeboard resulted in LTP that lasted for over 24 h. Low frequency afferent stimulation (1 Hz, 900 pulses) resulted in short-term depression (STD) that was significantly enhanced and prolonged by exposure to a novel large orientational (landmark) cues, however LTD was not enabled. Exposure to a holeboard that included novel objects in the holeboard holes elicited a transient enhancement of STD of the population spike (PS) but not field EPSP, and also failed to facilitate the expression of LTD. Our data suggest that the intermediate dentate gyrus engages in processing of spatial information, but is functionally distinct to the dorsal dentate gyrus. This may in turn reflect their assumed different roles in synaptic information processing and memory formation. PMID:24194716

  20. Synaptic plasticity model of therapeutic sleep deprivation in major depression.

    PubMed

    Wolf, Elias; Kuhn, Marion; Normann, Claus; Mainberger, Florian; Maier, Jonathan G; Maywald, Sarah; Bredl, Aliza; Klöppel, Stefan; Biber, Knut; van Calker, Dietrich; Riemann, Dieter; Sterr, Annette; Nissen, Christoph

    2016-12-01

    Therapeutic sleep deprivation (SD) is a rapid acting treatment for major depressive disorder (MDD). Within hours, SD leads to a dramatic decrease in depressive symptoms in 50-60% of patients with MDD. Scientifically, therapeutic SD presents a unique paradigm to study the neurobiology of MDD. Yet, up to now, the neurobiological basis of the antidepressant effect, which is most likely different from today's first-line treatments, is not sufficiently understood. This article puts the idea forward that sleep/wake-dependent shifts in synaptic plasticity, i.e., the neural basis of adaptive network function and behavior, represent a critical mechanism of therapeutic SD in MDD. Particularly, this article centers on two major hypotheses of MDD and sleep, the synaptic plasticity hypothesis of MDD and the synaptic homeostasis hypothesis of sleep-wake regulation, and on how they can be integrated into a novel synaptic plasticity model of therapeutic SD in MDD. As a major component, the model proposes that therapeutic SD, by homeostatically enhancing cortical synaptic strength, shifts the initially deficient inducibility of associative synaptic long-term potentiation (LTP) in patients with MDD in a more favorable window of associative plasticity. Research on the molecular effects of SD in animals and humans, including observations in the neurotrophic, adenosinergic, monoaminergic, and glutamatergic system, provides some support for the hypothesis of associative synaptic plasticity facilitation after therapeutic SD in MDD. The model proposes a novel framework for a mechanism of action of therapeutic SD that can be further tested in humans based on non-invasive indices and in animals based on direct studies of synaptic plasticity. Further determining the mechanisms of action of SD might contribute to the development of novel fast acting treatments for MDD, one of the major health problems worldwide. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Effects of Synaptic Plasticity on Phase and Period Locking in a Network of Two Oscillatory Neurons

    PubMed Central

    2014-01-01

    We study the effects of synaptic plasticity on the determination of firing period and relative phases in a network of two oscillatory neurons coupled with reciprocal inhibition. We combine the phase response curves of the neurons with the short-term synaptic plasticity properties of the synapses to define Poincaré maps for the activity of an oscillatory network. Fixed points of these maps correspond to the phase-locked modes of the network. These maps allow us to analyze the dependence of the resulting network activity on the properties of network components. Using a combination of analysis and simulations, we show how various parameters of the model affect the existence and stability of phase-locked solutions. We find conditions on the synaptic plasticity profiles and the phase response curves of the neurons for the network to be able to maintain a constant firing period, while varying the phase of locking between the neurons or vice versa. A generalization to cobwebbing for two-dimensional maps is also discussed. PMID:24791223

  2. Modulation of Synaptic Plasticity by Glutamatergic Gliotransmission: A Modeling Study

    PubMed Central

    De Pittà, Maurizio; Brunel, Nicolas

    2016-01-01

    Glutamatergic gliotransmission, that is, the release of glutamate from perisynaptic astrocyte processes in an activity-dependent manner, has emerged as a potentially crucial signaling pathway for regulation of synaptic plasticity, yet its modes of expression and function in vivo remain unclear. Here, we focus on two experimentally well-identified gliotransmitter pathways, (i) modulations of synaptic release and (ii) postsynaptic slow inward currents mediated by glutamate released from astrocytes, and investigate their possible functional relevance on synaptic plasticity in a biophysical model of an astrocyte-regulated synapse. Our model predicts that both pathways could profoundly affect both short- and long-term plasticity. In particular, activity-dependent glutamate release from astrocytes could dramatically change spike-timing-dependent plasticity, turning potentiation into depression (and vice versa) for the same induction protocol. PMID:27195153

  3. AMPARs and synaptic plasticity: the last 25 years.

    PubMed

    Huganir, Richard L; Nicoll, Roger A

    2013-10-30

    The study of synaptic plasticity and specifically LTP and LTD is one of the most active areas of research in neuroscience. In the last 25 years we have come a long way in our understanding of the mechanisms underlying synaptic plasticity. In 1988, AMPA and NMDA receptors were not even molecularly identified and we only had a simple model of the minimal requirements for the induction of plasticity. It is now clear that the modulation of the AMPA receptor function and membrane trafficking is critical for many forms of synaptic plasticity and a large number of proteins have been identified that regulate this complex process. Here we review the progress over the last two and a half decades and discuss the future challenges in the field.

  4. Glutamatergic synaptic plasticity in the mesocorticolimbic system in addiction

    PubMed Central

    van Huijstee, Aile N.; Mansvelder, Huibert D.

    2015-01-01

    Addictive drugs remodel the brain’s reward circuitry, the mesocorticolimbic dopamine (DA) system, by inducing widespread adaptations of glutamatergic synapses. This drug-induced synaptic plasticity is thought to contribute to both the development and the persistence of addiction. This review highlights the synaptic modifications that are induced by in vivo exposure to addictive drugs and describes how these drug-induced synaptic changes may contribute to the different components of addictive behavior, such as compulsive drug use despite negative consequences and relapse. Initially, exposure to an addictive drug induces synaptic changes in the ventral tegmental area (VTA). This drug-induced synaptic potentiation in the VTA subsequently triggers synaptic changes in downstream areas of the mesocorticolimbic system, such as the nucleus accumbens (NAc) and the prefrontal cortex (PFC), with further drug exposure. These glutamatergic synaptic alterations are then thought to mediate many of the behavioral symptoms that characterize addiction. The later stages of glutamatergic synaptic plasticity in the NAc and in particular in the PFC play a role in maintaining addiction and drive relapse to drug-taking induced by drug-associated cues. Remodeling of PFC glutamatergic circuits can persist into adulthood, causing a lasting vulnerability to relapse. We will discuss how these neurobiological changes produced by drugs of abuse may provide novel targets for potential treatment strategies for addiction. PMID:25653591

  5. Cellular and molecular connections between sleep and synaptic plasticity.

    PubMed

    Benington, Joel H; Frank, Marcos G

    2003-02-01

    The hypothesis that sleep promotes learning and memory has long been a subject of active investigation. This hypothesis implies that sleep must facilitate synaptic plasticity in some way, and recent studies have provided evidence for such a function. Our knowledge of both the cellular neurophysiology of sleep states and of the cellular and molecular mechanisms underlying synaptic plasticity has expanded considerably in recent years. In this article, we review findings in these areas and discuss possible mechanisms whereby the neurophysiological processes characteristic of sleep states may serve to facilitate synaptic plasticity. We address this issue first on the cellular level, considering how activation of T-type Ca(2+) channels in nonREM sleep may promote either long-term depression or long-term potentiation, as well as how cellular events of REM sleep may influence these processes. We then consider how synchronization of neuronal activity in thalamocortical and hippocampal-neocortical networks in nonREM sleep and REM sleep could promote differential strengthening of synapses according to the degree to which activity in one neuron is synchronized with activity in other neurons in the network. Rather than advocating one specific cellular hypothesis, we have intentionally taken a broad approach, describing a range of possible mechanisms whereby sleep may facilitate synaptic plasticity on the cellular and/or network levels. We have also provided a general review of evidence for and against the hypothesis that sleep does indeed facilitate learning, memory, and synaptic plasticity.

  6. Hebbian Wiring Plasticity Generates Efficient Network Structures for Robust Inference with Synaptic Weight Plasticity

    PubMed Central

    Hiratani, Naoki; Fukai, Tomoki

    2016-01-01

    In the adult mammalian cortex, a small fraction of spines are created and eliminated every day, and the resultant synaptic connection structure is highly nonrandom, even in local circuits. However, it remains unknown whether a particular synaptic connection structure is functionally advantageous in local circuits, and why creation and elimination of synaptic connections is necessary in addition to rich synaptic weight plasticity. To answer these questions, we studied an inference task model through theoretical and numerical analyses. We demonstrate that a robustly beneficial network structure naturally emerges by combining Hebbian-type synaptic weight plasticity and wiring plasticity. Especially in a sparsely connected network, wiring plasticity achieves reliable computation by enabling efficient information transmission. Furthermore, the proposed rule reproduces experimental observed correlation between spine dynamics and task performance. PMID:27303271

  7. ECM receptors in neuronal structure, synaptic plasticity, and behavior

    PubMed Central

    Kerrisk, Meghan E.; Cingolani, Lorenzo A.; Koleske, Anthony J.

    2015-01-01

    During central nervous system development, extracellular matrix (ECM) receptors and their ligands play key roles as guidance molecules, informing neurons where and when to send axonal and dendritic projections, establish connections, and form synapses between pre- and postsynaptic cells. Once stable synapses are formed, many ECM receptors transition in function to control the maintenance of stable connections between neurons and regulate synaptic plasticity. These receptors bind to and are activated by ECM ligands. In turn, ECM receptor activation modulates downstream signaling cascades that control cytoskeletal dynamics and synaptic activity to regulate neuronal structure and function and thereby impact animal behavior. The activities of cell adhesion receptors that mediate interactions between pre- and post-synaptic partners are also strongly influenced by ECM composition. This chapter highlights a number of ECM receptors, their roles in the control of synapse structure and function, and the impact of these receptors on synaptic plasticity and animal behavior. PMID:25410355

  8. Synaptic adhesion molecule IgSF11 regulates synaptic transmission and plasticity

    PubMed Central

    Shin, Hyewon; van Riesen, Christoph; Whitcomb, Daniel; Warburton, Julia M.; Jo, Jihoon; Kim, Doyoun; Kim, Sun Gyun; Um, Seung Min; Kwon, Seok-kyu; Kim, Myoung-Hwan; Roh, Junyeop Daniel; Woo, Jooyeon; Jun, Heejung; Lee, Dongmin; Mah, Won; Kim, Hyun; Kaang, Bong-Kiun; Cho, Kwangwook; Rhee, Jeong-Seop; Choquet, Daniel; Kim, Eunjoon

    2016-01-01

    Summary Synaptic adhesion molecules regulate synapse development and plasticity through mechanisms including trans-synaptic adhesion and recruitment of diverse synaptic proteins. We report here that the immunoglobulin superfamily member 11 (IgSF11), a homophilic adhesion molecule preferentially expressed in the brain, is a novel and dual-binding partner of the postsynaptic scaffolding protein PSD-95 and AMPAR glutamate receptors (AMPARs). IgSF11 requires PSD-95 binding for its excitatory synaptic localization. In addition, IgSF11 stabilizes synaptic AMPARs, as shown by IgSF11 knockdown-induced suppression of AMPAR-mediated synaptic transmission and increased surface mobility of AMPARs, measured by high-throughput, single-molecule tracking. IgSF11 deletion in mice leads to suppression of AMPAR-mediated synaptic transmission in the dentate gyrus and long-term potentiation in the CA1 region of the hippocampus. IgSF11 does not regulate the functional characteristics of AMPARs, including desensitization, deactivation, or recovery. These results suggest that IgSF11 regulates excitatory synaptic transmission and plasticity through its tripartite interactions with PSD-95 and AMPARs. PMID:26595655

  9. Cross-modal synaptic plasticity in adult primary sensory cortices.

    PubMed

    Lee, Hey-Kyoung; Whitt, Jessica L

    2015-12-01

    Sensory loss leads to widespread adaptation of brain circuits to allow an organism to navigate its environment with its remaining senses, which is broadly referred to as cross-modal plasticity. Such adaptation can be observed even in the primary sensory cortices, and falls into two distinct categories: recruitment of the deprived sensory cortex for processing the remaining senses, which we term 'cross-modal recruitment', and experience-dependent refinement of the spared sensory cortices referred to as 'compensatory plasticity.' Here we will review recent studies demonstrating that cortical adaptation to sensory loss involves LTP/LTD and homeostatic synaptic plasticity. Cross-modal synaptic plasticity is observed in adults, hence cross-modal sensory deprivation may be an effective way to promote plasticity in adult primary sensory cortices.

  10. Circuit reactivation dynamically regulates synaptic plasticity in neocortex

    NASA Astrophysics Data System (ADS)

    Kruskal, Peter B.; Li, Lucy; Maclean, Jason N.

    2013-10-01

    Circuit reactivations involve a stereotyped sequence of neuronal firing and have been behaviourally linked to memory consolidation. Here we use multiphoton imaging and patch-clamp recording, and observe sparse and stereotyped circuit reactivations that correspond to UP states within active neurons. To evaluate the effect of the circuit on synaptic plasticity, we trigger a single spike-timing-dependent plasticity (STDP) pairing once per circuit reactivation. The pairings reliably fall within a particular epoch of the circuit sequence and result in long-term potentiation. During reactivation, the amplitude of plasticity significantly correlates with the preceding 20-25 ms of membrane depolarization rather than the depolarization at the time of pairing. This circuit-dependent plasticity provides a natural constraint on synaptic potentiation, regulating the inherent instability of STDP in an assembly phase-sequence model. Subthreshold voltage during endogenous circuit reactivations provides a critical informative context for plasticity and facilitates the stable consolidation of a spatiotemporal sequence.

  11. Diffusion dynamics of synaptic molecules during inhibitory postsynaptic plasticity

    PubMed Central

    Petrini, Enrica Maria; Barberis, Andrea

    2014-01-01

    The plasticity of inhibitory transmission is expected to play a key role in the modulation of neuronal excitability and network function. Over the last two decades, the investigation of the determinants of inhibitory synaptic plasticity has allowed distinguishing presynaptic and postsynaptic mechanisms. While there has been a remarkable progress in the characterization of presynaptically-expressed plasticity of inhibition, the postsynaptic mechanisms of inhibitory long-term synaptic plasticity only begin to be unraveled. At postsynaptic level, the expression of inhibitory synaptic plasticity involves the rearrangement of the postsynaptic molecular components of the GABAergic synapse, including GABAA receptors, scaffold proteins and structural molecules. This implies a dynamic modulation of receptor intracellular trafficking and receptor surface lateral diffusion, along with regulation of the availability and distribution of scaffold proteins. This Review will focus on the mechanisms of the multifaceted molecular reorganization of the inhibitory synapse during postsynaptic plasticity, with special emphasis on the key role of protein dynamics to ensure prompt and reliable activity-dependent adjustments of synaptic strength. PMID:25294987

  12. Synaptic plasticity mediating cocaine relapse requires matrix metalloproteinases.

    PubMed

    Smith, Alexander C W; Kupchik, Yonatan M; Scofield, Michael D; Gipson, Cassandra D; Wiggins, Armina; Thomas, Charles A; Kalivas, Peter W

    2014-12-01

    Relapse to cocaine use necessitates remodeling excitatory synapses in the nucleus accumbens and synaptic reorganization requires matrix metalloproteinase (MMP) degradation of the extracellular matrix proteins. We found enduring increases in MMP-2 activity in rats after withdrawal from self-administered cocaine and transient increases in MMP-9 during cue-induced cocaine relapse. Cue-induced heroin and nicotine relapse increased MMP activity, and increased MMP activity was required for both cocaine relapse and relapse-associated synaptic plasticity.

  13. Modulation of synaptic plasticity by stress and antidepressants.

    PubMed

    Popoli, Maurizio; Gennarelli, Massimo; Racagni, Giorgio

    2002-06-01

    Recent preclinical and clinical studies have shown that mechanisms underlying neuronal plasticity and survival are involved in both the outcome of stressful experiences and the action of antidepressants. Whereas most antidepressants predominantly affect the brain levels of monoamine neurotransmitters, it is increasingly appreciated that they also modulate neurotransmission at synapses using the neurotransmitter glutamate (the most abundant in the brain). In the hippocampus, a main area of the limbic system involved in cognitive functions as well as attention and affect, specific molecules enriched at glutamatergic synapses mediate major changes in synaptic plasticity induced by stress paradigms or antidepressant treatments. We analyze here the modifications induced by stress or antidepressants in the strength of synaptic transmission in hippocampus, and the molecular modifications induced by antidepressants in two main mediators of synaptic plasticity: the N-methyl-D-aspartate (NMDA) receptor complex for glutamate and the Ca2+/calmodulin-dependent protein kinase II (CaM kinase II). Both stress and antidepressants induce alterations in long-term potentiation of hippocampal glutamatergic synapses, which may be partly accounted for by the influence of environmental or drug-induced stimulation of monoaminergic pathways projecting to the hippocampus. In the course of antidepressant treatments significant changes have been described in both the NMDA receptor and CaM kinase II, which may account for the physiological changes observed. A central role in these synaptic changes is exerted by brain-derived neurotrophic factor (BDNF), which modulates both synaptic plasticity and its molecular mediators, as well as inducing morphological synaptic changes. The role of these molecular effectors in synaptic plasticity is discussed in relation to the action of antidepressants and the search for new molecular targets of drug action in the therapy of mood disorders.

  14. Synaptic plasticity of NMDA receptors: mechanisms and functional implications

    PubMed Central

    Hunt, David L.; Castillo, Pablo E.

    2012-01-01

    Beyond their well-established role as triggers for LTP and LTD of fast synaptic transmission mediated by AMPA receptors, an expanding body of evidence indicates that NMDA receptors (NMDARs) themselves are also dynamically regulated and subject to activity-dependent long-term plasticity. NMDARs can significantly contribute to information transfer at synapses particularly during periods of repetitive activity. It is also increasingly recognized that NMDARs participate in dendritic synaptic integration and are critical for generating persistent activity of neural assemblies. Here we review recent advances on the mechanisms and functional consequences of NMDAR plasticity. Given the unique biophysical properties of NMDARs, synaptic plasticity of NMDAR-mediated transmission emerges as a particularly powerful mechanism for the fine tuning of information encoding and storage throughout the brain. PMID:22325859

  15. Abnormal plasticity in dystonia: Disruption of synaptic homeostasis.

    PubMed

    Quartarone, Angelo; Pisani, Antonio

    2011-05-01

    Work over the past two decades lead to substantial changes in our understanding of dystonia, which was, until recently, considered an exclusively sporadic movement disorder. The discovery of several gene mutations responsible for many inherited forms of dystonia has prompted much effort in the generation of transgenic mouse models bearing mutations found in patients. The large majority of these rodent models do not exhibit overt phenotypic abnormalities, or neuronal loss in specific brain areas. Nevertheless, both subtle motor abnormalities and significant alterations of synaptic plasticity have been recorded in mice, suggestive of an altered basal ganglia circuitry. In addition, robust evidence from experimental and clinical work supports the assumption that dystonia may indeed be considered a disorder linked to the disruption of synaptic "scaling", with a prevailing facilitation of synaptic potentiation, together with the loss of synaptic inhibitory processes. Notably, neurophysiological studies from patients carrying gene mutations as well as from non-manifesting carriers have shown the presence of synaptic plasticity abnormalities, indicating the presence of specific endophenotypic traits in carriers of the gene mutation. In this survey, we review findings from a broad range of data, obtained both from animal models and human research, and propose that the abnormalities of synaptic plasticity described in mice and humans may be considered an endophenotype to dystonia, and a valid and powerful tool to investigate the pathogenic mechanisms underlying this movement disorder. This article is part of a Special Issue entitled "Advances in dystonia".

  16. Coordination of Protein Phosphorylation and Dephosphorylation in Synaptic Plasticity*

    PubMed Central

    Woolfrey, Kevin M.; Dell'Acqua, Mark L.

    2015-01-01

    A central theme in nervous system function is equilibrium: synaptic strengths wax and wane, neuronal firing rates adjust up and down, and neural circuits balance excitation with inhibition. This push/pull regulatory theme carries through to the molecular level at excitatory synapses, where protein function is controlled through phosphorylation and dephosphorylation by kinases and phosphatases. However, these opposing enzymatic activities are only part of the equation as scaffolding interactions and assembly of multi-protein complexes are further required for efficient, localized synaptic signaling. This review will focus on coordination of postsynaptic serine/threonine kinase and phosphatase signaling by scaffold proteins during synaptic plasticity. PMID:26453308

  17. A Calcium-Dependent Plasticity Rule for HCN Channels Maintains Activity Homeostasis and Stable Synaptic Learning

    PubMed Central

    Honnuraiah, Suraj; Narayanan, Rishikesh

    2013-01-01

    Theoretical and computational frameworks for synaptic plasticity and learning have a long and cherished history, with few parallels within the well-established literature for plasticity of voltage-gated ion channels. In this study, we derive rules for plasticity in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, and assess the synergy between synaptic and HCN channel plasticity in establishing stability during synaptic learning. To do this, we employ a conductance-based model for the hippocampal pyramidal neuron, and incorporate synaptic plasticity through the well-established Bienenstock-Cooper-Munro (BCM)-like rule for synaptic plasticity, wherein the direction and strength of the plasticity is dependent on the concentration of calcium influx. Under this framework, we derive a rule for HCN channel plasticity to establish homeostasis in synaptically-driven firing rate, and incorporate such plasticity into our model. In demonstrating that this rule for HCN channel plasticity helps maintain firing rate homeostasis after bidirectional synaptic plasticity, we observe a linear relationship between synaptic plasticity and HCN channel plasticity for maintaining firing rate homeostasis. Motivated by this linear relationship, we derive a calcium-dependent rule for HCN-channel plasticity, and demonstrate that firing rate homeostasis is maintained in the face of synaptic plasticity when moderate and high levels of cytosolic calcium influx induced depression and potentiation of the HCN-channel conductance, respectively. Additionally, we show that such synergy between synaptic and HCN-channel plasticity enhances the stability of synaptic learning through metaplasticity in the BCM-like synaptic plasticity profile. Finally, we demonstrate that the synergistic interaction between synaptic and HCN-channel plasticity preserves robustness of information transfer across the neuron under a rate-coding schema. Our results establish specific physiological roles

  18. Molecular mechanisms of synaptic plasticity and memory.

    PubMed

    Elgersma, Y; Silva, A J

    1999-04-01

    To unravel the molecular and cellular bases of learning and memory is one of the most ambitious goals of modern science. The progress of recent years has not only brought us closer to understanding the molecular mechanisms underlying stable, long-lasting changes in synaptic strength, but it has also provided further evidence that these mechanisms are required for memory formation.

  19. Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity

    PubMed Central

    Sadeh, Sadra; Clopath, Claudia; Rotter, Stefan

    2015-01-01

    In rodent visual cortex, synaptic connections between orientation-selective neurons are unspecific at the time of eye opening, and become to some degree functionally specific only later during development. An explanation for this two-stage process was proposed in terms of Hebbian plasticity based on visual experience that would eventually enhance connections between neurons with similar response features. For this to work, however, two conditions must be satisfied: First, orientation selective neuronal responses must exist before specific recurrent synaptic connections can be established. Second, Hebbian learning must be compatible with the recurrent network dynamics contributing to orientation selectivity, and the resulting specific connectivity must remain stable for unspecific background activity. Previous studies have mainly focused on very simple models, where the receptive fields of neurons were essentially determined by feedforward mechanisms, and where the recurrent network was small, lacking the complex recurrent dynamics of large-scale networks of excitatory and inhibitory neurons. Here we studied the emergence of functionally specific connectivity in large-scale recurrent networks with synaptic plasticity. Our results show that balanced random networks, which already exhibit highly selective responses at eye opening, can develop feature-specific connectivity if appropriate rules of synaptic plasticity are invoked within and between excitatory and inhibitory populations. If these conditions are met, the initial orientation selectivity guides the process of Hebbian learning and, as a result, functionally specific and a surplus of bidirectional connections emerge. Our results thus demonstrate the cooperation of synaptic plasticity and recurrent dynamics in large-scale functional networks with realistic receptive fields, highlight the role of inhibition as a critical element in this process, and paves the road for further computational studies of sensory

  20. Status Epilepticus Impairs Synaptic Plasticity in Rat Hippocampus and Is Followed by Changes in Expression of NMDA Receptors.

    PubMed

    Postnikova, T Y; Zubareva, O E; Kovalenko, A A; Kim, K K; Magazanik, L G; Zaitsev, A V

    2017-03-01

    Cognitive deficits and memory loss are frequent in patients with temporal lobe epilepsy. Persistent changes in synaptic efficacy are considered as a cellular substrate underlying memory processes. Electrophysiological studies have shown that the properties of short-term and long-term synaptic plasticity in the cortex and hippocampus may undergo substantial changes after seizures. However, the neural mechanisms responsible for these changes are not clear. In this study, we investigated the properties of short-term and long-term synaptic plasticity in rat hippocampal slices 24 h after pentylenetetrazole (PTZ)-induced status epilepticus. We found that the induction of long-term potentiation (LTP) in CA1 pyramidal cells is reduced compared to the control, while short-term facilitation is increased. The experimental results do not support the hypothesis that status epilepticus leads to background potentiation of hippocampal synapses and further LTP induction becomes weaker due to occlusion, as the dependence of synaptic responses on the strength of input stimulation was not different in the control and experimental animals. The decrease in LTP can be caused by impairment of molecular mechanisms of neuronal plasticity, including those associated with NMDA receptors and/or changes in their subunit composition. Real-time PCR demonstrated significant increases in the expression of GluN1 and GluN2A subunits 3 h after PTZ-induced status epilepticus. The overexpression of obligate GluN1 subunit suggests an increase in the total number of NMDA receptors in the hippocampus. A 3-fold increase in the expression of the GluN2B subunit observed 24 h after PTZ-induced status epilepticus might be indicative of an increase in the proportion of GluN2B-containing NMDA receptors. Increased expression of the GluN2B subunit may be a cause for reducing the magnitude of LTP at hippocampal synapses after status epilepticus.

  1. Glial responses to synaptic damage and plasticity.

    PubMed

    Aldskogius, H; Liu, L; Svensson, M

    1999-10-01

    We review three principally different forms of injury-induced synaptic alterations. (1) Displacement of presynaptic terminals from perikarya and dendrites of axotomized neurons, (2) central changes in primary afferent terminals of peripherally axotomized sensory ganglion cells, and (3) anterograde Wallerian-type degeneration following interruption of central axonal pathways. All these instances rapidly activate astrocytes and microglia in the vicinity of the affected synaptic terminals. The evidence suggests that activated astrocytes play important and direct roles in synapse elimination and in the processes mediating collateral reinnervation. The roles of microglia are enigmatic. They undergo activation close to axotomized motoneuron perikarya, where synapse displacement occurs, but not adjacent to axotomized intrinsic central nervous system neurons, where synapse displacement also occurs. Microglia are also rapidly activated around central primary sensory terminals of peripherally axotomized sensory ganglion cells. Occasional phagocytosis of degenerating axon terminals by microglia occur in the latter situation. However, the role of microglia may be more oriented toward the general tissue conditions rather than specifically toward synaptic terminals.

  2. Neuronal activity causes rapid changes of lateral amygdala neuronal membrane properties and reduction of synaptic integration and synaptic plasticity in vivo.

    PubMed

    Rosenkranz, J Amiel

    2011-04-20

    Neuronal membrane properties dictate neuronal responsiveness. Plasticity of membrane properties alters neuronal function and can arise in response to robust neuronal activity. Despite the potential for great impact, there is little evidence for a rapid effect of activity-dependent changes of membrane properties on many neuronal functions in vivo in mammalian brain. In this study it was tested whether periods of neuronal firing lead to a rapid change of membrane properties in neurons of a rat brain region important for some forms of learning, the lateral nucleus of the amygdala, using in vivo intracellular recordings. Our results demonstrate that rapid plasticity of membrane properties occurs in vivo, in response to action potential firing. This plasticity of membrane properties leads to changes of synaptic integration and subsequent synaptic plasticity. These changes require Ca(2+) and hyperpolarization-activated ion channels, but are NMDA independent. Furthermore, the parameters and time course of these changes would not have been predicted from most in vitro studies. The plasticity of membrane properties demonstrated here may represent a basic form of in vivo short-term plasticity that modifies neuronal function.

  3. Neuronal activity causes rapid changes of lateral amygdala neuronal membrane properties and reduction of synaptic integration and synaptic plasticity in vivo

    PubMed Central

    Rosenkranz, J. Amiel

    2011-01-01

    Neuronal membrane properties dictate neuronal responsiveness. Plasticity of membrane properties alters neuronal function and can arise in response to robust neuronal activity. Despite the potential for great impact, there is little evidence for a rapid effect of activity-dependent changes of membrane properties on many neuronal functions in vivo in mammalian brain. In this study it was tested whether periods of neuronal firing lead to a rapid change of membrane properties in neurons of a rat brain region important for some forms of learning, the lateral nucleus of the amygdala (LAT), using in vivo intracellular recordings. Our results demonstrate that rapid plasticity of membrane properties occurs in vivo, in response to action potential firing. This plasticity of membrane properties leads to changes of synaptic integration and subsequent synaptic plasticity. These changes require Ca2+, but are NMDA independent. Furthermore, the parameters and timecourse of these changes would not have been predicted from most in vitro studies. The plasticity of membrane properties demonstrated here may represent a basic form of in vivo short-term plasticity that modifies neuronal function. PMID:21508236

  4. Energy Efficient Sparse Connectivity from Imbalanced Synaptic Plasticity Rules

    PubMed Central

    Sacramento, João; Wichert, Andreas; van Rossum, Mark C. W.

    2015-01-01

    It is believed that energy efficiency is an important constraint in brain evolution. As synaptic transmission dominates energy consumption, energy can be saved by ensuring that only a few synapses are active. It is therefore likely that the formation of sparse codes and sparse connectivity are fundamental objectives of synaptic plasticity. In this work we study how sparse connectivity can result from a synaptic learning rule of excitatory synapses. Information is maximised when potentiation and depression are balanced according to the mean presynaptic activity level and the resulting fraction of zero-weight synapses is around 50%. However, an imbalance towards depression increases the fraction of zero-weight synapses without significantly affecting performance. We show that imbalanced plasticity corresponds to imposing a regularising constraint on the L 1-norm of the synaptic weight vector, a procedure that is well-known to induce sparseness. Imbalanced plasticity is biophysically plausible and leads to more efficient synaptic configurations than a previously suggested approach that prunes synapses after learning. Our framework gives a novel interpretation to the high fraction of silent synapses found in brain regions like the cerebellum. PMID:26046817

  5. The ubiquitin-proteasome pathway and synaptic plasticity

    PubMed Central

    Hegde, Ashok N.

    2010-01-01

    Proteolysis by the ubiquitin-proteasome pathway (UPP) has emerged as a new molecular mechanism that controls wide-ranging functions in the nervous system, including fine-tuning of synaptic connections during development and synaptic plasticity in the adult organism. In the UPP, attachment of a small protein, ubiquitin, tags the substrates for degradation by a multisubunit complex called the proteasome. Linkage of ubiquitin to protein substrates is highly specific and occurs through a series of well-orchestrated enzymatic steps. The UPP regulates neurotransmitter receptors, protein kinases, synaptic proteins, transcription factors, and other molecules critical for synaptic plasticity. Accumulating evidence indicates that the operation of the UPP in neurons is not homogeneous and is subject to tightly managed local regulation in different neuronal subcompartments. Investigations on both invertebrate and vertebrate model systems have revealed local roles for enzymes that attach ubiquitin to substrate proteins, as well as for enzymes that remove ubiquitin from substrates. The proteasome also has been shown to possess disparate functions in different parts of the neuron. Here I give a broad overview of the role of the UPP in synaptic plasticity and highlight the local roles and regulation of the proteolytic pathway in neurons. PMID:20566674

  6. Cell-specific synaptic plasticity induced by network oscillations

    PubMed Central

    Zarnadze, Shota; Bäuerle, Peter; Santos-Torres, Julio; Böhm, Claudia; Schmitz, Dietmar; Geiger, Jörg RP

    2016-01-01

    Gamma rhythms are known to contribute to the process of memory encoding. However, little is known about the underlying mechanisms at the molecular, cellular and network levels. Using local field potential recording in awake behaving mice and concomitant field potential and whole-cell recordings in slice preparations we found that gamma rhythms lead to activity-dependent modification of hippocampal networks, including alterations in sharp wave-ripple complexes. Network plasticity, expressed as long-lasting increases in sharp wave-associated synaptic currents, exhibits enhanced excitatory synaptic strength in pyramidal cells that is induced postsynaptically and depends on metabotropic glutamate receptor-5 activation. In sharp contrast, alteration of inhibitory synaptic strength is independent of postsynaptic activation and less pronounced. Further, we found a cell type-specific, directionally biased synaptic plasticity of two major types of GABAergic cells, parvalbumin- and cholecystokinin-expressing interneurons. Thus, we propose that gamma frequency oscillations represent a network state that introduces long-lasting synaptic plasticity in a cell-specific manner. DOI: http://dx.doi.org/10.7554/eLife.14912.001 PMID:27218453

  7. Reactive Oxygen Species: Physiological and Physiopathological Effects on Synaptic Plasticity

    PubMed Central

    Beckhauser, Thiago Fernando; Francis-Oliveira, José; De Pasquale, Roberto

    2016-01-01

    In the mammalian central nervous system, reactive oxygen species (ROS) generation is counterbalanced by antioxidant defenses. When large amounts of ROS accumulate, antioxidant mechanisms become overwhelmed and oxidative cellular stress may occur. Therefore, ROS are typically characterized as toxic molecules, oxidizing membrane lipids, changing the conformation of proteins, damaging nucleic acids, and causing deficits in synaptic plasticity. High ROS concentrations are associated with a decline in cognitive functions, as observed in some neurodegenerative disorders and age-dependent decay of neuroplasticity. Nevertheless, controlled ROS production provides the optimal redox state for the activation of transductional pathways involved in synaptic changes. Since ROS may regulate neuronal activity and elicit negative effects at the same time, the distinction between beneficial and deleterious consequences is unclear. In this regard, this review assesses current research and describes the main sources of ROS in neurons, specifying their involvement in synaptic plasticity and distinguishing between physiological and pathological processes implicated. PMID:27625575

  8. Synaptic Plasticity in Mouse Models of Autism Spectrum Disorders

    PubMed Central

    Bey, Alexandra L.; Jiang, Yong-Hui

    2012-01-01

    Analysis of synaptic plasticity together with behavioral and molecular studies have become a popular approach to model autism spectrum disorders in order to gain insight into the pathosphysiological mechanisms and to find therapeutic targets. Abnormalities of specific types of synaptic plasticity have been revealed in numerous genetically modified mice that have molecular construct validity to human autism spectrum disorders. Constrained by the feasibility of technique, the common regions analyzed in most studies are hippocampus and visual cortex. The relevance of the synaptic defects in these regions to the behavioral abnormalities of autistic like behaviors is still a subject of debate. Because the exact regions or circuits responsible for the core features of autistic behaviors in humans are still poorly understood, investigation using region-specific conditional mutant mice may help to provide the insight into the neuroanatomical basis of autism in the future. PMID:23269898

  9. Synaptic plasticity in dendrites: complications and coping strategies.

    PubMed

    Mel, Bartlett W; Schiller, Jackie; Poirazi, Panayiota

    2017-04-01

    The elaborate morphology, nonlinear membrane mechanisms and spatiotemporally varying synaptic activation patterns of dendrites complicate the expression, compartmentalization and modulation of synaptic plasticity. To grapple with this complexity, we start with the observation that neurons in different brain areas face markedly different learning problems, and dendrites of different neuron types contribute to the cell's input-output function in markedly different ways. By committing to specific assumptions regarding a neuron's learning problem and its input-output function, specific inferences can be drawn regarding the synaptic plasticity mechanisms and outcomes that we 'ought' to expect for that neuron. Exploiting this assumption-driven approach can help both in interpreting existing experimental data and designing future experiments aimed at understanding the brain's myriad learning processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. ECM receptors in neuronal structure, synaptic plasticity, and behavior.

    PubMed

    Kerrisk, Meghan E; Cingolani, Lorenzo A; Koleske, Anthony J

    2014-01-01

    During central nervous system development, extracellular matrix (ECM) receptors and their ligands play key roles as guidance molecules, informing neurons where and when to send axonal and dendritic projections, establish connections, and form synapses between pre- and postsynaptic cells. Once stable synapses are formed, many ECM receptors transition in function to control the maintenance of stable connections between neurons and regulate synaptic plasticity. These receptors bind to and are activated by ECM ligands. In turn, ECM receptor activation modulates downstream signaling cascades that control cytoskeletal dynamics and synaptic activity to regulate neuronal structure and function and thereby impact animal behavior. The activities of cell adhesion receptors that mediate interactions between pre- and postsynaptic partners are also strongly influenced by ECM composition. This chapter highlights a number of ECM receptors, their roles in the control of synapse structure and function, and the impact of these receptors on synaptic plasticity and animal behavior.

  11. Transferrin Receptor Controls AMPA Receptor Trafficking Efficiency and Synaptic Plasticity

    PubMed Central

    Liu, Ke; Lei, Run; Li, Qiong; Wang, Xin-Xin; Wu, Qian; An, Peng; Zhang, Jianchao; Zhu, Minyan; Xu, Zhiheng; Hong, Yang; Wang, Fudi; Shen, Ying; Li, Hongchang; Li, Huashun

    2016-01-01

    Transferrin receptor (TFR) is an important iron transporter regulating iron homeostasis and has long been used as a marker for clathrin mediated endocytosis. However, little is known about its additional function other than iron transport in the development of central nervous system (CNS). Here we demonstrate that TFR functions as a regulator to control AMPA receptor trafficking efficiency and synaptic plasticity. The conditional knockout (KO) of TFR in neural progenitor cells causes mice to develop progressive epileptic seizure, and dramatically reduces basal synaptic transmission and long-term potentiation (LTP). We further demonstrate that TFR KO remarkably reduces the binding efficiency of GluR2 to AP2 and subsequently decreases AMPA receptor endocytosis and recycling. Thus, our study reveals that TFR functions as a novel regulator to control AMPA trafficking efficiency and synaptic plasticity. PMID:26880306

  12. Formation and maintenance of neuronal assemblies through synaptic plasticity.

    PubMed

    Litwin-Kumar, Ashok; Doiron, Brent

    2014-11-14

    The architecture of cortex is flexible, permitting neuronal networks to store recent sensory experiences as specific synaptic connectivity patterns. However, it is unclear how these patterns are maintained in the face of the high spike time variability associated with cortex. Here we demonstrate, using a large-scale cortical network model, that realistic synaptic plasticity rules coupled with homeostatic mechanisms lead to the formation of neuronal assemblies that reflect previously experienced stimuli. Further, reverberation of past evoked states in spontaneous spiking activity stabilizes, rather than erases, this learned architecture. Spontaneous and evoked spiking activity contains a signature of learned assembly structures, leading to testable predictions about the effect of recent sensory experience on spike train statistics. Our work outlines requirements for synaptic plasticity rules capable of modifying spontaneous dynamics and shows that this modification is beneficial for stability of learned network architectures.

  13. Isoform Specificity of Protein Kinase Cs in Synaptic Plasticity

    ERIC Educational Resources Information Center

    Sossin, Wayne S.

    2007-01-01

    Protein kinase Cs (PKCs) are implicated in many forms of synaptic plasticity. However, the specific isoform(s) of PKC that underlie(s) these events are often not known. We have used "Aplysia" as a model system in order to investigate the isoform specificity of PKC actions due to the presence of fewer isoforms and a large number of documented…

  14. Progesterone Regulation of Synaptic Transmission and Plasticity in Rodent Hippocampus

    ERIC Educational Resources Information Center

    Foy, Michael R.; Akopian, Garnik; Thompson, Richard F.

    2008-01-01

    Ovarian hormones influence memory formation by eliciting changes in neural activity. The effects of various concentrations of progesterone (P4) on synaptic transmission and plasticity associated with long-term potentiation (LTP) and long-term depression (LTD) were studied using in vitro hippocampal slices. Extracellular studies show that the…

  15. Progesterone Regulation of Synaptic Transmission and Plasticity in Rodent Hippocampus

    ERIC Educational Resources Information Center

    Foy, Michael R.; Akopian, Garnik; Thompson, Richard F.

    2008-01-01

    Ovarian hormones influence memory formation by eliciting changes in neural activity. The effects of various concentrations of progesterone (P4) on synaptic transmission and plasticity associated with long-term potentiation (LTP) and long-term depression (LTD) were studied using in vitro hippocampal slices. Extracellular studies show that the…

  16. Molecular bases of caloric restriction regulation of neuronal synaptic plasticity.

    PubMed

    Fontán-Lozano, Angela; López-Lluch, Guillermo; Delgado-García, José María; Navas, Placido; Carrión, Angel Manuel

    2008-10-01

    Aging is associated with the decline of cognitive properties. This situation is magnified when neurodegenerative processes associated with aging appear in human patients. Neuronal synaptic plasticity events underlie cognitive properties in the central nervous system. Caloric restriction (CR; either a decrease in food intake or an intermittent fasting diet) can extend life span and increase disease resistance. Recent studies have shown that CR can have profound effects on brain function and vulnerability to injury and disease. Moreover, CR can stimulate the production of new neurons from stem cells (neurogenesis) and can enhance synaptic plasticity, which modulate pain sensation, enhance cognitive function, and may increase the ability of the brain to resist aging. The beneficial effects of CR appear to be the result of a cellular stress response stimulating the production of proteins that enhance neuronal plasticity and resistance to oxidative and metabolic insults; they include neurotrophic factors, neurotransmitter receptors, protein chaperones, and mitochondrial biosynthesis regulators. In this review, we will present and discuss the effect of CR in synaptic processes underlying analgesia and cognitive improvement in healthy, sick, and aging animals. We will also discuss the possible role of mitochondrial biogenesis induced by CR in regulation of neuronal synaptic plasticity.

  17. Isoform Specificity of Protein Kinase Cs in Synaptic Plasticity

    ERIC Educational Resources Information Center

    Sossin, Wayne S.

    2007-01-01

    Protein kinase Cs (PKCs) are implicated in many forms of synaptic plasticity. However, the specific isoform(s) of PKC that underlie(s) these events are often not known. We have used "Aplysia" as a model system in order to investigate the isoform specificity of PKC actions due to the presence of fewer isoforms and a large number of documented…

  18. Long Term Synaptic Plasticity and Learning in Neuronal Networks.

    DTIC Science & Technology

    1987-09-14

    2312/Al Al -p 1. TITLE (Include Security Classification) ’a LONG TERM SYNAPTIC PLASTICITY AND LEARNING IN NEURONAL NETWORKS 12. PERSONAL AUTHOR(S...Analysis of Simple Neuronal Networks " (2nd Annual Symposium on Networks in Brain and Computer Architecture, North Texas State University, Denton, TX

  19. Theta/beta neurofeedback in children with ADHD: Feasibility of a short-term setting and plasticity effects.

    PubMed

    Van Doren, Jessica; Heinrich, Hartmut; Bezold, Mareile; Reuter, Nina; Kratz, Oliver; Horndasch, Stefanie; Berking, Matthias; Ros, Tomas; Gevensleben, Holger; Moll, Gunther H; Studer, Petra

    2017-02-01

    Neurofeedback (NF) is increasingly used as a therapy for attention-deficit/hyperactivity disorder (ADHD), however behavioral improvements require 20 plus training sessions. More economic evaluation strategies are needed to test methodological optimizations and mechanisms of action. In healthy adults, neuroplastic effects have been demonstrated directly after a single session of NF training. The aim of our study was to test the feasibility of short-term theta/beta NF in children with ADHD and to learn more about the mechanisms underlying this protocol. Children with ADHD conducted two theta/beta NF sessions. In the first half of the sessions, three NF trials (puzzles as feedback animations) were run with pre- and post-reading and picture search tasks. A significant decrease of the theta/beta ratio (TBR), driven by a decrease of theta activity, was found in the NF trials of the second session demonstrating rapid and successful neuroregulation by children with ADHD. For pre-post comparisons, children were split into good vs. poor regulator groups based on the slope of their TBR over the NF trials. For the reading task, significant EEG changes were seen for the theta band from pre- to post-NF depending on individual neuroregulation ability. This neuroplastic effect was not restricted to the feedback electrode Cz, but appeared as a generalized pattern, maximal over midline and right-hemisphere electrodes. Our findings indicate that short-term NF may be a valuable and economical tool to study the neuroplastic mechanisms of targeted NF protocols in clinical disorders, such as theta/beta training in children with ADHD.

  20. proBDNF negatively regulates neuronal remodeling, synaptic transmission, and synaptic plasticity in hippocampus.

    PubMed

    Yang, Jianmin; Harte-Hargrove, Lauren C; Siao, Chia-Jen; Marinic, Tina; Clarke, Roshelle; Ma, Qian; Jing, Deqiang; Lafrancois, John J; Bath, Kevin G; Mark, Willie; Ballon, Douglas; Lee, Francis S; Scharfman, Helen E; Hempstead, Barbara L

    2014-05-08

    Experience-dependent plasticity shapes postnatal development of neural circuits, but the mechanisms that refine dendritic arbors, remodel spines, and impair synaptic activity are poorly understood. Mature brain-derived neurotrophic factor (BDNF) modulates neuronal morphology and synaptic plasticity, including long-term potentiation (LTP) via TrkB activation. BDNF is initially translated as proBDNF, which binds p75(NTR). In vitro, recombinant proBDNF modulates neuronal structure and alters hippocampal long-term plasticity, but the actions of endogenously expressed proBDNF are unclear. Therefore, we generated a cleavage-resistant probdnf knockin mouse. Our results demonstrate that proBDNF negatively regulates hippocampal dendritic complexity and spine density through p75(NTR). Hippocampal slices from probdnf mice exhibit depressed synaptic transmission, impaired LTP, and enhanced long-term depression (LTD) in area CA1. These results suggest that proBDNF acts in vivo as a biologically active factor that regulates hippocampal structure, synaptic transmission, and plasticity, effects that are distinct from those of mature BDNF. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  1. ProBDNF negatively regulates neuronal remodeling, synaptic transmission and synaptic plasticity in hippocampus

    PubMed Central

    Yang, Jianmin; Harte-Hargrove, Lauren C.; Siao, Chia-Jen; Marinic, Tina; Clarke, Roshelle; Ma, Qian; Jing, Deqiang; LaFrancois, John J.; Bath, Kevin G.; Mark, Willie; Ballon, Douglas; Lee, Francis S.; Scharfman, Helen E.; Hempstead, Barbara L.

    2014-01-01

    Summary Experience-dependent plasticity shapes postnatal development of neural circuits, but the mechanisms that refine dendritic arbors, remodel spines, and impair synaptic activity are poorly understood. Mature brain-derived neurotrophic factor (BDNF) modulates neuronal morphology and synaptic plasticity, including long-term potentiation (LTP) via TrkB activation. BDNF is initially translated as proBDNF which binds p75NTR. In vitro, recombinant proBDNF modulates neuronal structure and alters hippocampal long-term plasticity, but the actions of endogenously expressed proBDNF are unclear. Therefore, we generated a cleavage-resistant probdnf knock-in mouse. Our results demonstrate that proBDNF negatively regulates hippocampal dendritic complexity and spine density through p75NTR. Hippocampal slices from probdnf mice exhibit depressed synaptic transmission, impaired LTP and enhanced long-term depression (LTD) in area CA1. These results suggest that proBDNF acts in vivo as a biologically active factor that regulates hippocampal structure, synaptic transmission and plasticity, effects that are distinct from mature BDNF. PMID:24746813

  2. Functional consequences of pre- and postsynaptic expression of synaptic plasticity.

    PubMed

    Costa, Rui Ponte; Mizusaki, Beatriz E P; Sjöström, P Jesper; van Rossum, Mark C W

    2017-03-05

    Growing experimental evidence shows that both homeostatic and Hebbian synaptic plasticity can be expressed presynaptically as well as postsynaptically. In this review, we start by discussing this evidence and methods used to determine expression loci. Next, we discuss the functional consequences of this diversity in pre- and postsynaptic expression of both homeostatic and Hebbian synaptic plasticity. In particular, we explore the functional consequences of a biologically tuned model of pre- and postsynaptically expressed spike-timing-dependent plasticity complemented with postsynaptic homeostatic control. The pre- and postsynaptic expression in this model predicts (i) more reliable receptive fields and sensory perception, (ii) rapid recovery of forgotten information (memory savings), and (iii) reduced response latencies, compared with a model with postsynaptic expression only. Finally, we discuss open questions that will require a considerable research effort to better elucidate how the specific locus of expression of homeostatic and Hebbian plasticity alters synaptic and network computations.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.

  3. Neural ECM molecules in synaptic plasticity, learning, and memory.

    PubMed

    Senkov, Oleg; Andjus, Pavle; Radenovic, Lidija; Soriano, Eduardo; Dityatev, Alexander

    2014-01-01

    Neural extracellular matrix (ECM) molecules derived from neurons and glial cells accumulate in the extracellular space and regulate synaptic plasticity through modulation of perisomal GABAergic inhibition, intrinsic neuronal excitability, integrin signaling, and activities of L-type Ca(2+) channels, NMDA receptors, and Rho-associated kinase. Genetic or enzymatic targeting of ECM molecules proved to bidirectionally modulate acquisition of memories, depending on experimental conditions, and to promote cognitive flexibility and extinction of fear and drug memories. Furthermore, evidence is accumulating that dysregulation of ECM is linked to major psychiatric and neurodegenerative diseases and that targeting ECM molecules may rescue cognitive deficits in animal models of these diseases. Thus, the ECM emerged as a key component of synaptic plasticity, learning, and memory and as an attractive target for developing new generation of synapse plasticizing drugs.

  4. The synaptic plasticity and memory hypothesis: encoding, storage and persistence

    PubMed Central

    Takeuchi, Tomonori; Duszkiewicz, Adrian J.; Morris, Richard G. M.

    2014-01-01

    The synaptic plasticity and memory hypothesis asserts that activity-dependent synaptic plasticity is induced at appropriate synapses during memory formation and is both necessary and sufficient for the encoding and trace storage of the type of memory mediated by the brain area in which it is observed. Criteria for establishing the necessity and sufficiency of such plasticity in mediating trace storage have been identified and are here reviewed in relation to new work using some of the diverse techniques of contemporary neuroscience. Evidence derived using optical imaging, molecular-genetic and optogenetic techniques in conjunction with appropriate behavioural analyses continues to offer support for the idea that changing the strength of connections between neurons is one of the major mechanisms by which engrams are stored in the brain. PMID:24298167

  5. Synaptic plasticity in cephalopods; more than just learning and memory?

    PubMed

    Brown, Euan R; Piscopo, Stefania

    2013-06-01

    The outstanding behavioural capacity of cephalopods is underpinned by a highly sophisticated nervous system anatomy and neural mechanisms that often differ significantly from similarly complex systems in vertebrates and insects. Cephalopods exhibit considerable behavioural flexibility and adaptability, and it might be expected that this should be supported by evident cellular and synaptic plasticity. Here, we review what little is known of the cellular mechanisms that underlie plasticity in cephalopods, particularly from the point of view of synaptic function. We conclude that cephalopods utilise short-, medium-, and long-term plasticity mechanisms that are superficially similar to those so far described in vertebrate and insect synapses. These mechanisms, however, often differ significantly from those in other animals at the biophysical level and are deployed not just in the central nervous system, but also to a limited extent in the peripheral nervous system and neuromuscular junctions.

  6. Short-term Cortical Plasticity Associated With Feedback-Error Learning After Locomotor Training in a Patient With Incomplete Spinal Cord Injury

    PubMed Central

    Peters, Sue; Borich, Michael R.; Boyd, Lara A.; Lam, Tania

    2015-01-01

    Background and Purpose For rehabilitation strategies to be effective, training should be based on principles of motor learning, such as feedback-error learning, that facilitate adaptive processes in the nervous system by inducing errors and recalibration of sensory and motor systems. This case report suggests that locomotor resistance training can enhance somatosensory and corticospinal excitability and modulate resting-state brain functional connectivity in a patient with motor-incomplete spinal cord injury (SCI). Case Description The short-term cortical plasticity of a 31-year-old man who had sustained an incomplete SCI 9.5 years previously was explored in response to body-weight–supported treadmill training with velocity-dependent resistance applied with a robotic gait orthosis. The following neurophysiological and neuroimaging measures were recorded before and after training. Sensory evoked potentials were elicited by electrical stimulation of the tibial nerve and recorded from the somatosensory cortex. Motor evoked potentials were generated with transcranial magnetic stimulation applied over the tibialis anterior muscle representation in the primary motor cortex. Resting-state functional magnetic resonance imaging was performed to evaluate short-term changes in patterns of brain activity associated with locomotor training. Outcomes Somatosensory excitability and corticospinal excitability were observed to increase after locomotor resistance training. Motor evoked potentials increased (particularly at higher stimulation intensities), and seed-based resting-state functional magnetic resonance imaging analyses revealed increased functional connectivity strength in the motor cortex associated with the less affected side after training. Discussion The observations suggest evidence of short-term cortical plasticity in 3 complementary neurophysiological measures after one session of locomotor resistance training. Future investigation in a sample of people with

  7. Short-term cortical plasticity associated with feedback-error learning after locomotor training in a patient with incomplete spinal cord injury.

    PubMed

    Chisholm, Amanda E; Peters, Sue; Borich, Michael R; Boyd, Lara A; Lam, Tania

    2015-02-01

    For rehabilitation strategies to be effective, training should be based on principles of motor learning, such as feedback-error learning, that facilitate adaptive processes in the nervous system by inducing errors and recalibration of sensory and motor systems. This case report suggests that locomotor resistance training can enhance somatosensory and corticospinal excitability and modulate resting-state brain functional connectivity in a patient with motor-incomplete spinal cord injury (SCI). The short-term cortical plasticity of a 31-year-old man who had sustained an incomplete SCI 9.5 years previously was explored in response to body-weight-supported treadmill training with velocity-dependent resistance applied with a robotic gait orthosis. The following neurophysiological and neuroimaging measures were recorded before and after training. Sensory evoked potentials were elicited by electrical stimulation of the tibial nerve and recorded from the somatosensory cortex. Motor evoked potentials were generated with transcranial magnetic stimulation applied over the tibialis anterior muscle representation in the primary motor cortex. Resting-state functional magnetic resonance imaging was performed to evaluate short-term changes in patterns of brain activity associated with locomotor training. Somatosensory excitability and corticospinal excitability were observed to increase after locomotor resistance training. Motor evoked potentials increased (particularly at higher stimulation intensities), and seed-based resting-state functional magnetic resonance imaging analyses revealed increased functional connectivity strength in the motor cortex associated with the less affected side after training. The observations suggest evidence of short-term cortical plasticity in 3 complementary neurophysiological measures after one session of locomotor resistance training. Future investigation in a sample of people with incomplete SCI will enhance the understanding of potential neural

  8. Frequency-Dependent Changes in NMDAR-Dependent Synaptic Plasticity

    PubMed Central

    Kumar, Arvind; Mehta, Mayank R.

    2011-01-01

    The NMDAR-dependent synaptic plasticity is thought to mediate several forms of learning, and can be induced by spike trains containing a small number of spikes occurring with varying rates and timing, as well as with oscillations. We computed the influence of these variables on the plasticity induced at a single NMDAR containing synapse using a reduced model that was analytically tractable, and these findings were confirmed using detailed, multi-compartment model. In addition to explaining diverse experimental results about the rate and timing dependence of synaptic plasticity, the model made several novel and testable predictions. We found that there was a preferred frequency for inducing long-term potentiation (LTP) such that higher frequency stimuli induced lesser LTP, decreasing as 1/f when the number of spikes in the stimulus was kept fixed. Among other things, the preferred frequency for inducing LTP varied as a function of the distance of the synapse from the soma. In fact, same stimulation frequencies could induce LTP or long-term depression depending on the dendritic location of the synapse. Next, we found that rhythmic stimuli induced greater plasticity then irregular stimuli. Furthermore, brief bursts of spikes significantly expanded the timing dependence of plasticity. Finally, we found that in the ∼5–15-Hz frequency range both rate- and timing-dependent plasticity mechanisms work synergistically to render the synaptic plasticity most sensitive to spike timing. These findings provide computational evidence that oscillations can have a profound influence on the plasticity of an NMDAR-dependent synapse, and show a novel role for the dendritic morphology in this process. PMID:21994493

  9. Emerging Link between Alzheimer's Disease and Homeostatic Synaptic Plasticity

    PubMed Central

    Jang, Sung-Soo; Chung, Hee Jung

    2016-01-01

    Alzheimer's disease (AD) is an irreversible brain disorder characterized by progressive cognitive decline and neurodegeneration of brain regions that are crucial for learning and memory. Although intracellular neurofibrillary tangles and extracellular senile plaques, composed of insoluble amyloid-β (Aβ) peptides, have been the hallmarks of postmortem AD brains, memory impairment in early AD correlates better with pathological accumulation of soluble Aβ oligomers and persistent weakening of excitatory synaptic strength, which is demonstrated by inhibition of long-term potentiation, enhancement of long-term depression, and loss of synapses. However, current, approved interventions aiming to reduce Aβ levels have failed to retard disease progression; this has led to a pressing need to identify and target alternative pathogenic mechanisms of AD. Recently, it has been suggested that the disruption of Hebbian synaptic plasticity in AD is due to aberrant metaplasticity, which is a form of homeostatic plasticity that tunes the magnitude and direction of future synaptic plasticity based on previous neuronal or synaptic activity. This review examines emerging evidence for aberrant metaplasticity in AD. Putative mechanisms underlying aberrant metaplasticity in AD will also be discussed. We hope this review inspires future studies to test the extent to which these mechanisms contribute to the etiology of AD and offer therapeutic targets. PMID:27019755

  10. Short-Term Intervention Effects of the PATHS Curriculum in Young Low-Income Children: Capitalizing on Plasticity.

    PubMed

    Fishbein, Diana H; Domitrovich, Celene; Williams, Jason; Gitukui, Stephanie; Guthrie, Charles; Shapiro, Daniel; Greenberg, Mark

    2016-12-01

    Deficits in behavioral and cognitive regulation are prevalent in children reared in poverty relative to more affluent children due to the effects of adverse conditions on the developmental underpinnings of these skills. Despite evidence to suggest that these emergent processes are susceptible to environmental inputs, research documenting short-term intervention program influences on these regulatory domains in young impoverished children is limited. We sought to determine the proximal effects of a universal school-based intervention (the PATHS Curriculum) on social, emotional, relational, and cognitive outcomes in urban poor kindergarten children. Four schools in high-poverty neighborhoods with similar demographic characteristics were randomly assigned to either PATHS or an attentional control. Teacher-reported measures of behavior (e.g., attention, concentration, aggression), peer nominations (e.g., likability, aggression, acceptance), and tasks gauging inhibitory control were administered in the fall of kindergarten and again in the spring after one academic year (about 6 months) of PATHS. Children who received PATHS exhibited significantly greater improvements than control students across all teacher-rated behavioral measures of social competence (i.e., emotion regulation, prosocial behavior, peer relations) and behavioral problems (i.e., aggression, internalizing behaviors, impulsivity and hyperactivity) at post-test as well as improvements in motor inhibition. This line of research constitutes an important frontier for prevention research given the implications for improving ultimate outcomes for otherwise disadvantaged children.

  11. Chaos and Correlated Avalanches in Excitatory Neural Networks with Synaptic Plasticity.

    PubMed

    Pittorino, Fabrizio; Ibáñez-Berganza, Miguel; di Volo, Matteo; Vezzani, Alessandro; Burioni, Raffaella

    2017-03-03

    A collective chaotic phase with power law scaling of activity events is observed in a disordered mean field network of purely excitatory leaky integrate-and-fire neurons with short-term synaptic plasticity. The dynamical phase diagram exhibits two transitions from quasisynchronous and asynchronous regimes to the nontrivial, collective, bursty regime with avalanches. In the homogeneous case without disorder, the system synchronizes and the bursty behavior is reflected into a period doubling transition to chaos for a two dimensional discrete map. Numerical simulations show that the bursty chaotic phase with avalanches exhibits a spontaneous emergence of persistent time correlations and enhanced Kolmogorov complexity. Our analysis reveals a mechanism for the generation of irregular avalanches that emerges from the combination of disorder and deterministic underlying chaotic dynamics.

  12. Synchronization and long-time memory in neural networks with inhibitory hubs and synaptic plasticity

    NASA Astrophysics Data System (ADS)

    Bertolotti, Elena; Burioni, Raffaella; di Volo, Matteo; Vezzani, Alessandro

    2017-01-01

    We investigate the dynamical role of inhibitory and highly connected nodes (hub) in synchronization and input processing of leaky-integrate-and-fire neural networks with short term synaptic plasticity. We take advantage of a heterogeneous mean-field approximation to encode the role of network structure and we tune the fraction of inhibitory neurons fI and their connectivity level to investigate the cooperation between hub features and inhibition. We show that, depending on fI, highly connected inhibitory nodes strongly drive the synchronization properties of the overall network through dynamical transitions from synchronous to asynchronous regimes. Furthermore, a metastable regime with long memory of external inputs emerges for a specific fraction of hub inhibitory neurons, underlining the role of inhibition and connectivity also for input processing in neural networks.

  13. Chaos and Correlated Avalanches in Excitatory Neural Networks with Synaptic Plasticity

    NASA Astrophysics Data System (ADS)

    Pittorino, Fabrizio; Ibáñez-Berganza, Miguel; di Volo, Matteo; Vezzani, Alessandro; Burioni, Raffaella

    2017-03-01

    A collective chaotic phase with power law scaling of activity events is observed in a disordered mean field network of purely excitatory leaky integrate-and-fire neurons with short-term synaptic plasticity. The dynamical phase diagram exhibits two transitions from quasisynchronous and asynchronous regimes to the nontrivial, collective, bursty regime with avalanches. In the homogeneous case without disorder, the system synchronizes and the bursty behavior is reflected into a period doubling transition to chaos for a two dimensional discrete map. Numerical simulations show that the bursty chaotic phase with avalanches exhibits a spontaneous emergence of persistent time correlations and enhanced Kolmogorov complexity. Our analysis reveals a mechanism for the generation of irregular avalanches that emerges from the combination of disorder and deterministic underlying chaotic dynamics.

  14. MCTP is an ER-resident calcium sensor that stabilizes synaptic transmission and homeostatic plasticity.

    PubMed

    Genç, Özgür; Dickman, Dion K; Ma, Wenpei; Tong, Amy; Fetter, Richard D; Davis, Graeme W

    2017-05-09

    Presynaptic homeostatic plasticity (PHP) controls synaptic transmission in organisms from Drosophila to human and is hypothesized to be relevant to the cause of human disease. However, the underlying molecular mechanisms of PHP are just emerging and direct disease associations remain obscure. In a forward genetic screen for mutations that block PHP we identified mctp (Multiple C2 Domain Proteins with Two Transmembrane Regions). Here we show that MCTP localizes to the membranes of the endoplasmic reticulum (ER) that elaborate throughout the soma, dendrites, axon and presynaptic terminal. Then, we demonstrate that MCTP functions downstream of presynaptic calcium influx with separable activities to stabilize baseline transmission, short-term release dynamics and PHP. Notably, PHP specifically requires the calcium coordinating residues in each of the three C2 domains of MCTP. Thus, we propose MCTP as a novel, ER-localized calcium sensor and a source of calcium-dependent feedback for the homeostatic stabilization of neurotransmission.

  15. The Spacing Effect for Structural Synaptic Plasticity Provides Specificity and Precision in Plastic Changes.

    PubMed

    San Martin, Alvaro; Rela, Lorena; Gelb, Bruce; Pagani, Mario Rafael

    2017-05-10

    In contrast to trials of training without intervals (massed training), training trials spaced over time (spaced training) induce a more persistent memory identified as long-term memory (LTM). This phenomenon, known as the spacing effect for memory, is poorly understood. LTM is supported by structural synaptic plasticity; however, how synapses integrate spaced stimuli remains elusive. Here, we analyzed events of structural synaptic plasticity at the single-synapse level after distinct patterns of stimulation in motoneurons of Drosophila We found that the spacing effect is a phenomenon detected at synaptic level, which determines the specificity and the precision in structural synaptic plasticity. Whereas a single pulse of stimulation (massed) induced structural synaptic plasticity, the same amount of stimulation divided in three spaced stimuli completely prevented it. This inhibitory effect was determined by the length of the interstimulus intervals. The inhibitory effect of the spacing was lost by suppressing the activity of Ras or mitogen-activated protein kinase, whereas the overexpression of Ras-WT enhanced it. Moreover, dividing the same total time of stimulation into five or more stimuli produced a higher precision in the number of events of plasticity. Ras mutations associated with intellectual disability abolished the spacing effect and led neurons to decode distinct stimulation patterns as massed stimulation. This evidence suggests that the spacing effect for memory may result from the effect of the spacing in synaptic plasticity, which appears to be a property not limited to neurons involved in learning and memory. We propose a model of spacing-dependent structural synaptic plasticity.SIGNIFICANCE STATEMENT Long-term memory (LTM) induced by repeated trials spaced over time is known as the spacing effect, a common property in the animal kingdom. Altered mechanisms in the spacing effect have been found in animal models of disorders with intellectual

  16. Dystroglycan mediates homeostatic synaptic plasticity at GABAergic synapses.

    PubMed

    Pribiag, Horia; Peng, Huashan; Shah, Waris Ali; Stellwagen, David; Carbonetto, Salvatore

    2014-05-06

    Dystroglycan (DG), a cell adhesion molecule well known to be essential for skeletal muscle integrity and formation of neuromuscular synapses, is also present at inhibitory synapses in the central nervous system. Mutations that affect DG function not only result in muscular dystrophies, but also in severe cognitive deficits and epilepsy. Here we demonstrate a role of DG during activity-dependent homeostatic regulation of hippocampal inhibitory synapses. Prolonged elevation of neuronal activity up-regulates DG expression and glycosylation, and its localization to inhibitory synapses. Inhibition of protein synthesis prevents the activity-dependent increase in synaptic DG and GABAA receptors (GABAARs), as well as the homeostatic scaling up of GABAergic synaptic transmission. RNAi-mediated knockdown of DG blocks homeostatic scaling up of inhibitory synaptic strength, as does knockdown of like-acetylglucosaminyltransferase (LARGE)--a glycosyltransferase critical for DG function. In contrast, DG is not required for the bicuculline-induced scaling down of excitatory synaptic strength or the tetrodotoxin-induced scaling down of inhibitory synaptic strength. The DG ligand agrin increases GABAergic synaptic strength in a DG-dependent manner that mimics homeostatic scaling up induced by increased activity, indicating that activation of this pathway alone is sufficient to regulate GABAAR trafficking. These data demonstrate that DG is regulated in a physiologically relevant manner in neurons and that DG and its glycosylation are essential for homeostatic plasticity at inhibitory synapses.

  17. Genetic Rescue of Functional Senescence in Synaptic and Behavioral Plasticity

    PubMed Central

    Donlea, Jeffrey M.; Ramanan, Narendrakumar; Silverman, Neal; Shaw, Paul J.

    2014-01-01

    Study Objectives: Aging has been linked with decreased neural plasticity and memory formation in humans and in laboratory model species such as the fruit fly, Drosophila melanogaster. Here, we examine plastic responses following social experience in Drosophila as a high-throughput method to identify interventions that prevent these impairments. Patients or Participants: Wild-type and transgenic Drosophila melanogaster. Design and Interventions: Young (5-day old) or aged (20-day old) adult female Drosophila were housed in socially enriched (n = 35-40) or isolated environments, then assayed for changes in sleep and for structural markers of synaptic terminal growth in the ventral lateral neurons (LNVs) of the circadian clock. Measurements and Results: When young flies are housed in a socially enriched environment, they exhibit synaptic elaboration within a component of the circadian circuitry, the LNVs, which is followed by increased sleep. Aged flies, however, no longer exhibit either of these plastic changes. Because of the tight correlation between neural plasticity and ensuing increases in sleep, we use sleep after enrichment as a high-throughput marker for neural plasticity to identify interventions that prolong youthful plasticity in aged flies. To validate this strategy, we find three independent genetic manipulations that delay age-related losses in plasticity: (1) elevation of dopaminergic signaling, (2) over-expression of the transcription factor blistered (bs) in the LNVs, and (3) reduction of the Imd immune signaling pathway. These findings provide proof-of-principle evidence that measuring changes in sleep in flies after social enrichment may provide a highly scalable assay for the study of age-related deficits in synaptic plasticity. Conclusions: These studies demonstrate that Drosophila provides a promising model for the study of age-related loss of neural plasticity and begin to identify genes that might be manipulated to delay the onset of functional

  18. Chronic Caffeine Treatment Prevents Sleep Deprivation-Induced Impairment of Cognitive Function and Synaptic Plasticity

    PubMed Central

    Alhaider, Ibrahim A.; Aleisa, Abdulaziz M.; Tran, Trinh T.; Alzoubi, Karem H.; Alkadhi, Karim A.

    2010-01-01

    Study Objectives: This study was undertaken to provide a detailed account of the effect of chronic treatment with a small dose of caffeine on the deleterious effects of sleep loss on brain function in rats. Experimental Design: We investigated the effects of chronic (4 weeks) caffeine treatment (0.3 g/L in drinking water) on memory impairment in acutely (24 h) sleep-deprived adult male Wistar rats. Sleep deprivation was induced using the modified multiple platform model. The effects of caffeine on sleep deprivation-induced hippocampus-dependent learning and memory deficits were studied by 3 approaches: learning and memory performance in the radial arm water maze task, electrophysiological recording of early long-term potentiation (E-LTP) in area CA1 of the hippocampus, and levels of memory- and synaptic plasticity-related signaling molecules after E-LTP induction. Measurement and Results: The results showed that chronic caffeine treatment prevented impairment of hippocampus-dependent learning, short-term memory and E-LTP of area CA1 in the sleep-deprived rats. In correlation, chronic caffeine treatment prevented sleep deprivation-associated decrease in the levels of phosphorylated calcium/calmodulin-dependent protein kinase II (P-CaMKII) during expression of E-LTP. Conclusions: The results suggest that long-term use of a low dose of caffeine prevents impairment of short-term memory and E-LTP in acutely sleep-deprived rats. Citation: Alhaider IA; Aleisa AM; Tran TT; Alzoubi KH; Alkadhi KA. Chronic caffeine treatment prevents sleep deprivation-induced impairment of cognitive function and synaptic plasticity. SLEEP 2010;33(4):437-444. PMID:20394312

  19. Functional consequences of pre- and postsynaptic expression of synaptic plasticity

    PubMed Central

    Mizusaki, Beatriz E. P.

    2017-01-01

    Growing experimental evidence shows that both homeostatic and Hebbian synaptic plasticity can be expressed presynaptically as well as postsynaptically. In this review, we start by discussing this evidence and methods used to determine expression loci. Next, we discuss the functional consequences of this diversity in pre- and postsynaptic expression of both homeostatic and Hebbian synaptic plasticity. In particular, we explore the functional consequences of a biologically tuned model of pre- and postsynaptically expressed spike-timing-dependent plasticity complemented with postsynaptic homeostatic control. The pre- and postsynaptic expression in this model predicts (i) more reliable receptive fields and sensory perception, (ii) rapid recovery of forgotten information (memory savings), and (iii) reduced response latencies, compared with a model with postsynaptic expression only. Finally, we discuss open questions that will require a considerable research effort to better elucidate how the specific locus of expression of homeostatic and Hebbian plasticity alters synaptic and network computations. This article is part of the themed issue ‘Integrating Hebbian and homeostatic plasticity’. PMID:28093547

  20. Astrocyte plasticity: implications for synaptic and neuronal activity.

    PubMed

    Pirttimaki, Tiina M; Parri, H Rheinallt

    2013-12-01

    Astrocytes are increasingly implicated in a range of functions in the brain, many of which were previously ascribed to neurons. Much of the prevailing interest centers on the role of astrocytes in the modulation of synaptic transmission and their involvement in the induction of forms of plasticity such as long-term potentiation and long-term depression. However, there is also an increasing realization that astrocytes themselves can undergo plasticity. This plasticity may be manifest as changes in protein expression which may modify calcium activity within the cells, changes in morphology that affect the environment of the synapse and the extracellular space, or changes in gap junction astrocyte coupling that modify the transfer of ions and metabolites through astrocyte networks. Plasticity in the way that astrocytes release gliotransmitters can also have direct effects on synaptic activity and neuronal excitability. Astrocyte plasticity can potentially have profound effects on neuronal network activity and be recruited in pathological conditions. An emerging principle of astrocyte plasticity is that it is often induced by neuronal activity, reinforcing our emerging understanding of the working brain as a constant interaction between neurons and glial cells.

  1. Tunicamycin impairs olfactory learning and synaptic plasticity in the olfactory bulb.

    PubMed

    Tong, Jia; Okutani, Fumino; Murata, Yoshihiro; Taniguchi, Mutsuo; Namba, Toshiharu; Wang, Yu-Jie; Kaba, Hideto

    2017-03-06

    Tunicamycin (TM) induces endoplasmic reticulum (ER) stress and inhibits N-glycosylation in cells. ER stress is associated with neuronal death in neurodegenerative disorders, such as Parkinson's disease and Alzheimer's disease, and most patients complain of the impairment of olfactory recognition. Here we examined the effects of TM on aversive olfactory learning and the underlying synaptic plasticity in the main olfactory bulb (MOB). Behavioral experiments demonstrated that the intrabulbar infusion of TM disabled aversive olfactory learning without affecting short-term memory. Histological analyses revealed that TM infusion upregulated C/EBP homologous protein (CHOP), a marker of ER stress, in the mitral and granule cell layers of MOB. Electrophysiological data indicated that TM inhibited tetanus-induced long-term potentiation (LTP) at the dendrodendritic excitatory synapse from mitral to granule cells. A low dose of TM (250nM) abolished the late phase of LTP, and a high dose (1μM) inhibited the early and late phases of LTP. Further, high-dose, but not low-dose, TM reduced the paired-pulse facilitation ratio, suggesting that the inhibitory effects of TM on LTP are partially mediated through the presynaptic machinery. Thus, our results support the hypothesis that TM-induced ER stress impairs olfactory learning by inhibiting synaptic plasticity via presynaptic and postsynaptic mechanisms in MOB.

  2. Sleep and protein synthesis-dependent synaptic plasticity: impacts of sleep loss and stress

    PubMed Central

    Grønli, Janne; Soulé, Jonathan; Bramham, Clive R.

    2014-01-01

    Sleep has been ascribed a critical role in cognitive functioning. Several lines of evidence implicate sleep in the consolidation of synaptic plasticity and long-term memory. Stress disrupts sleep while impairing synaptic plasticity and cognitive performance. Here, we discuss evidence linking sleep to mechanisms of protein synthesis-dependent synaptic plasticity and synaptic scaling. We then consider how disruption of sleep by acute and chronic stress may impair these mechanisms and degrade sleep function. PMID:24478645

  3. Amyloid Beta as a Modulator of Synaptic Plasticity

    PubMed Central

    Parihar, Mordhwaj S; Brewer, Gregory J

    2011-01-01

    Alzheimer’s disease is associated with synapse loss, memory dysfunction and pathological accumulation of amyloid beta in plaques. However, an exclusively pathological role for amyloid beta is being challenged by new evidence for an essential function of amyloid beta at the synapse. Amyloid beta protein exists in different assembly states in the central nervous system and plays distinct roles ranging from synapse and memory formation to memory loss and neuronal cell death. Amyloid beta is present in the brain of symptom-free people where it likely performs important physiological roles. New evidence indicates that synaptic activity directly evokes the release of amyloid beta at the synapse. At physiological levels, amyloid beta is a normal, soluble product of neuronal metabolism that regulates synaptic function beginning early in life. Monomeric amyloid beta 40 and 42 are the predominant forms required for synaptic plasticity and neuronal survival. With age, some assemblies of amyloid beta are associated with synaptic failure and Alzheimer’s disease pathology, possibly targeting the N-methyl-D-aspartic acid (NMDA) receptor through the α7-nicotinic acetylcholine receptor (α7-nAChR), mitochondrial amyloid-β alcohol dehydrogenase (ABAD) and cyclophilin D. But emerging data suggests a distinction between age effects on the target response in contrast to the assembly state or the accumulation of the peptide. Both aging and beta amyloid independently decrease neuronal plasticity. Our laboratory has reported that amyloid beta, glutamate and lactic acid are each increasingly toxic with neuron age. The basis of the age-related toxicity partly resides in age-related mitochondrial dysfunction and an oxidative shift in mitochondrial and cytoplasmic redox potential. In turn, signaling through phosphorylated extracellular signal-regulated protein kinases (pERK) is affected along with an age-independent increase in phosphorylated cAMP response element-binding protein (p

  4. Aging and Synaptic Plasticity: A Review

    PubMed Central

    Bergado, Jorge A.; Almaguer, William

    2002-01-01

    Aging affects all systems, but the brain seems to be particularly vulnerable to the action of negative, age-dependent factors. A gradual loss of memory functions is one of the earliest and most widespread consequences of brain aging. The causes for such impairment are still unclear. Long-term potentiation (LTP) is one form of neural plasticity, which has been proposed as the cellular correlate for memory. LTP is affected by aging, and such alteration might be causally related to memory dysfunction. In the present paper, we review the evidence sustaining the existence of a causal link between cognitive and LTP impairments, as well as the possible mechanisms involved. New results indicate a possible involvement of a deficient reinforcement of LTP by affective influences. PMID:12959152

  5. Synaptic Plasticity and Neurological Disorders in Neurotropic Viral Infections

    PubMed Central

    Atluri, Venkata Subba Rao; Hidalgo, Melissa; Samikkannu, Thangavel; Kurapati, Kesava Rao Venkata; Nair, Madhavan

    2015-01-01

    Based on the type of cells or tissues they tend to harbor or attack, many of the viruses are characterized. But, in case of neurotropic viruses, it is not possible to classify them based on their tropism because many of them are not primarily neurotropic. While rabies and poliovirus are considered as strictly neurotropic, other neurotropic viruses involve nervous tissue only secondarily. Since the AIDS pandemic, the interest in neurotropic viral infections has become essential for all clinical neurologists. Although these neurotropic viruses are able to be harbored in or infect the nervous system, not all the neurotropic viruses have been reported to cause disrupted synaptic plasticity and impaired cognitive functions. In this review, we have discussed the neurotropic viruses, which play a major role in altered synaptic plasticity and neurological disorders. PMID:26649202

  6. Does autophagy work in synaptic plasticity and memory?

    PubMed

    Shehata, Mohammad; Inokuchi, Kaoru

    2014-01-01

    Many studies have reported the roles played by regulated proteolysis in neural plasticity and memory. Within this context, most of the research focused on the ubiquitin-proteasome system and the endosome-lysosome system while giving lesser consideration to another major protein degradation system, namely, autophagy. Although autophagy intersects with many of the pathways known to underlie synaptic plasticity and memory, only few reports related autophagy to synaptic remodeling. These pathways include PI3K-mTOR pathway and endosome-dependent proteolysis. In this review, we will discuss several lines of evidence supporting a physiological role of autophagy in memory processes, and the possible mechanistic scenarios for how autophagy could fulfill this function.

  7. Synaptic plasticity in sleep: learning, homeostasis, and disease

    PubMed Central

    Wang, Gordon; Grone, Brian; Colas, Damien; Appelbaum, Lior; Mourrain, Philippe

    2012-01-01

    Sleep is a fundamental and evolutionarily conserved aspect of animal life. Recent studies have shed light on the role of sleep in synaptic plasticity. Demonstrations of memory replay and synapse homeostasis suggest that one essential role of sleep is in the consolidation and optimization of synaptic circuits to retain salient memory traces despite the noise of daily experience. Here, we review this recent evidence, and suggest that sleep creates a heightened state of plasticity, which may be essential for this optimization. Furthermore, we discuss how sleep deficits seen in diseases such as Alzheimer’s disease and autism spectrum disorders might not just reflect underlying circuit malfunction, but could also play a direct role in the progression of those disorders. PMID:21840068

  8. Neuropsin--a possible modulator of synaptic plasticity.

    PubMed

    Shiosaka, Sadao; Ishikawa, Yasuyuki

    2011-09-01

    Accumulating evidence has suggested pivotal roles for neural proteases in development, maturation, aging, and cognitive functions. Among such proteases, neuropsin, a kallikrein gene-related (KLK) endoprotease, appears to have a significant plasticity function that has been analyzed primarily in the hippocampal Schaffer-collateral pathway. In this article, after reviewing the general features of neuropsin, its role in Schaffer-collateral synaptic plasticity is discussed in some detail. Enzymatically active neuropsin is necessary to establish the early phase of long-term potentiation (LTP). This type of LTP, which can be elicited by rather weak tetanic stimulation, is significant in synaptic late association between two independent hippocampal synapses. Neuropsin deficiency completely impaired the early phase of LTP, leading to the absence of late associativity. Associations between early and persistent-LTP synapses may be related to mammalian working memory and consequently integration in learning and memory.

  9. Translational regulatory mechanisms in persistent forms of synaptic plasticity.

    PubMed

    Kelleher, Raymond J; Govindarajan, Arvind; Tonegawa, Susumu

    2004-09-30

    Memory and synaptic plasticity exhibit distinct temporal phases, with long-lasting forms distinguished by their dependence on macromolecular synthesis. Prevailing models for the molecular mechanisms underlying long-lasting synaptic plasticity have largely focused on transcriptional regulation. However, a growing body of evidence now supports a crucial role for neuronal activity-dependent mRNA translation, which may occur in dendrites for a subset of neuronal mRNAs. Recent work has begun to define the signaling mechanisms coupling synaptic activation to the protein synthesis machinery. The ERK and mTOR signaling pathways have been shown to regulate the activity of the general translational machinery, while the translation of particular classes of mRNAs is additionally controlled by gene-specific mechanisms. Rapid enhancement of the synthesis of a diverse array of neuronal proteins through such mechanisms provides the components necessary for persistent forms of LTP and LTD. These findings have important implications for the synapse specificity and associativity of protein synthesis-dependent changes in synaptic strength.

  10. Aquaporin-4 water channels and synaptic plasticity in the hippocampus

    PubMed Central

    Scharfman, Helen E.; Binder, Devin K.

    2013-01-01

    Aquaporin-4 (AQP4) is the major water channel expressed in the central nervous system (CNS) and is primarily expressed in glial cells. Many studies have shown that AQP4 regulates the response of the CNS to insults or injury, but far less is known about the potential for AQP4 to influence synaptic plasticity or behavior. Recent studies have examined long-term potentiation (LTP), long-term depression (LTD), and behavior in AQP4 knockout (KO) and wild-type mice to gain more insight into its potential role. The results showed a selective effect of AQP4 deletion on LTP of the Schaffer collateral pathway in hippocampus using an LTP induction protocol that simulates pyramidal cell firing during theta oscillations (theta-burst stimulation; TBS). However, a different LTP induction protocol was unaffected by AQP4 deletion. There was also a defect in LTD after low frequency stimulation (LFS) in AQP4 KO mice. Interestingly, some slices from AQP4 KO mice exhibited LTD after TBS instead of LTP, or LTP following LFS instead of LTD. These data suggest that AQP4 and astrocytes influence the polarity of long-term synaptic plasticity (potentiation or depression). These potentially powerful roles expand the influence of AQP4 and astrocytes beyond the original suggestions related to regulation of extracellular potassium and water balance. Remarkably, AQP4 KO mice did not show deficits in basal transmission, suggesting specificity for long-term synaptic plasticity. The mechanism appears to be related to neurotrophins and specifically brain-derived neurotrophic factor (BDNF) because pharmacological blockade of neurotrophin trk receptors or scavenging ligands such as BDNF restored plasticity. The in vitro studies predicted effects in vivo of AQP4 deletion because AQP4 KO mice performed worse using a task that requires memory for the location of objects (object placement). However, performance on other hippocampal-dependent tasks was spared. The results suggest an unanticipated and

  11. Aquaporin-4 water channels and synaptic plasticity in the hippocampus.

    PubMed

    Scharfman, Helen E; Binder, Devin K

    2013-12-01

    Aquaporin-4 (AQP4) is the major water channel expressed in the central nervous system (CNS) and is primarily expressed in glial cells. Many studies have shown that AQP4 regulates the response of the CNS to insults or injury, but far less is known about the potential for AQP4 to influence synaptic plasticity or behavior. Recent studies have examined long-term potentiation (LTP), long-term depression (LTD), and behavior in AQP4 knockout (KO) and wild-type mice to gain more insight into its potential role. The results showed a selective effect of AQP4 deletion on LTP of the Schaffer collateral pathway in hippocampus using an LTP induction protocol that simulates pyramidal cell firing during theta oscillations (theta-burst stimulation; TBS). However, LTP produced by a different induction protocol was unaffected. There was also a defect in LTD after low frequency stimulation (LFS) in AQP4 KO mice. Interestingly, some slices from AQP4 KO mice exhibited LTD after TBS instead of LTP, or LTP following LFS instead of LTD. These data suggest that AQP4 and astrocytes influence the polarity of long-term synaptic plasticity (potentiation or depression). These potentially powerful roles expand the influence of AQP4 and astrocytes beyond the original suggestions related to regulation of extracellular potassium and water balance. Remarkably, AQP4 KO mice did not show deficits in basal transmission, suggesting specificity for long-term synaptic plasticity. The mechanism appears to be related to neurotrophins and specifically brain-derived neurotrophic factor (BDNF) because pharmacological blockade of neurotrophin trk receptors or scavenging ligands such as BDNF restored plasticity. The in vitro studies predicted effects in vivo of AQP4 deletion because AQP4 KO mice performed worse using a task that requires memory for the location of objects (object placement). However, performance on other hippocampal-dependent tasks was spared. The results suggest an unanticipated and selective

  12. Auditory Nerve Fibers Excite Targets Through Synapses That Vary in Convergence, Strength, and Short-Term Plasticity

    PubMed Central

    Cao, Xiao-Jie

    2010-01-01

    Auditory nerve fibers are the major source of excitation to the three groups of principal cells of the ventral cochlear nucleus (VCN), bushy, T stellate, and octopus cells. Shock-evoked excitatory postsynaptic currents (eEPSCs) in slices from mice showed systematic differences between groups of principal cells, indicating that target cells contribute to determining pre- and postsynaptic properties of synapses from spiral ganglion cells. Bushy cells likely to be small spherical bushy cells receive no more than three, most often two, excitatory inputs; those likely to be globular bushy cells receive at least four, most likely five, inputs. T stellate cells receive 6.5 inputs. Octopus cells receive >60 inputs. The N-methyl-d-aspartate (NMDA) components of eEPSCs were largest in T stellate, smaller in bushy, and smallest in octopus cells, and they were larger in neurons from younger than older mice. The average AMPA conductance of a unitary input is 22 ± 15 nS in both groups of bushy cells, <1.5 nS in octopus cells, and 4.6 ± 3 nS in T stellate cells. Sensitivity to philanthotoxin (PhTX) and rectification in the intracellular presence of spermine indicate that AMPA receptors that mediate eEPSCs in T stellate cells contain more GluR2 subunits than those in bushy and octopus cells. The AMPA components of eEPSCs were briefer in bushy (0.5 ms half-width) than in T stellate and octopus cells (0.8–0.9 ms half-width). Widening of eEPSCs in the presence of cyclothiazide (CTZ) indicates that desensitization shortens eEPSCs. CTZ-insensitive synaptic depression of the AMPA components was greater in bushy and octopus than in T stellate cells. PMID:20739600

  13. Auditory nerve fibers excite targets through synapses that vary in convergence, strength, and short-term plasticity.

    PubMed

    Cao, Xiao-Jie; Oertel, Donata

    2010-11-01

    Auditory nerve fibers are the major source of excitation to the three groups of principal cells of the ventral cochlear nucleus (VCN), bushy, T stellate, and octopus cells. Shock-evoked excitatory postsynaptic currents (eEPSCs) in slices from mice showed systematic differences between groups of principal cells, indicating that target cells contribute to determining pre- and postsynaptic properties of synapses from spiral ganglion cells. Bushy cells likely to be small spherical bushy cells receive no more than three, most often two, excitatory inputs; those likely to be globular bushy cells receive at least four, most likely five, inputs. T stellate cells receive 6.5 inputs. Octopus cells receive >60 inputs. The N-methyl-d-aspartate (NMDA) components of eEPSCs were largest in T stellate, smaller in bushy, and smallest in octopus cells, and they were larger in neurons from younger than older mice. The average AMPA conductance of a unitary input is 22 ± 15 nS in both groups of bushy cells, <1.5 nS in octopus cells, and 4.6 ± 3 nS in T stellate cells. Sensitivity to philanthotoxin (PhTX) and rectification in the intracellular presence of spermine indicate that AMPA receptors that mediate eEPSCs in T stellate cells contain more GluR2 subunits than those in bushy and octopus cells. The AMPA components of eEPSCs were briefer in bushy (0.5 ms half-width) than in T stellate and octopus cells (0.8-0.9 ms half-width). Widening of eEPSCs in the presence of cyclothiazide (CTZ) indicates that desensitization shortens eEPSCs. CTZ-insensitive synaptic depression of the AMPA components was greater in bushy and octopus than in T stellate cells.

  14. Sensory Deprivation Triggers Synaptic and Intrinsic Plasticity in the Hippocampus.

    PubMed

    Milshtein-Parush, Hila; Frere, Samuel; Regev, Limor; Lahav, Coren; Benbenishty, Amit; Ben-Eliyahu, Shamgar; Goshen, Inbal; Slutsky, Inna

    2017-04-12

    Hippocampus, a temporal lobe structure involved in learning and memory, receives information from all sensory modalities. Despite extensive research on the role of sensory experience in cortical map plasticity, little is known about whether and how sensory experience regulates functioning of the hippocampal circuits. Here, we show that 9 ± 2 days of whisker deprivation during early mouse development depresses activity of CA3 pyramidal neurons by several principal mechanisms: decrease in release probability, increase in the fraction of silent synapses, and reduction in intrinsic excitability. As a result of deprivation-induced presynaptic inhibition, CA3-CA1 synaptic facilitation was augmented at high frequencies, shifting filtering properties of synapses. The changes in the AMPA-mediated synaptic transmission were accompanied by an increase in NR2B-containing NMDA receptors and a reduction in the AMPA/NMDA ratio. The observed reconfiguration of the CA3-CA1 connections may represent a homeostatic adaptation to augmentation in synaptic activity during the initial deprivation phase. In adult mice, tactile disuse diminished intrinsic excitability without altering synaptic facilitation. We suggest that sensory experience regulates computations performed by the hippocampus by tuning its synaptic and intrinsic characteristics.

  15. AKAP Signaling Complexes in Regulation of Excitatory Synaptic Plasticity

    PubMed Central

    Sanderson, Jennifer L.; Dell'Acqua, Mark L.

    2011-01-01

    Plasticity at excitatory glutamatergic synapses in the central nervous system is believed to be critical for neuronal circuits to process and encode information allowing animals to perform complex behaviors such as learning and memory. In addition, alterations in synaptic plasticity are associated with human diseases including Alzheimer's, epilepsy, chronic pain, drug addiction, and schizophrenia. Long-term potentiation (LTP) and depression (LTD) in the hippocampal region of the brain are two forms of synaptic plasticity that increase or decrease, respectively, the strength of synaptic transmission by postsynaptic AMPA-type glutamate receptors. Both LTP and LTD are induced by activation of NMDA-type glutamate receptors but differ in the level and duration of Ca2+ influx through the NMDA receptor and the subsequent engagement of downstream signaling by protein kinases including PKA, PKC, and CaMKII and phosphatases including PP1 and calcineurin-PP2B (CaN). This review addresses the important emerging roles of the A-kinase anchoring protein (AKAP) family of scaffold proteins in regulating localization of PKA and other kinases and phosphatases to postsynaptic multi-protein complexes that control NMDA and AMPA receptor function during LTP and LTD. PMID:21498812

  16. AKAP signaling complexes in regulation of excitatory synaptic plasticity.

    PubMed

    Sanderson, Jennifer L; Dell'Acqua, Mark L

    2011-06-01

    Plasticity at excitatory glutamatergic synapses in the central nervous system is believed to be critical for neuronal circuits to process and encode information, allowing animals to perform complex behaviors such as learning and memory. In addition, alterations in synaptic plasticity are associated with human diseases, including Alzheimer disease, epilepsy, chronic pain, drug addiction, and schizophrenia. Long-term potentiation (LTP) and depression (LTD) in the hippocampal region of the brain are two forms of synaptic plasticity that increase or decrease, respectively, the strength of synaptic transmission by postsynaptic AMPA-type glutamate receptors. Both LTP and LTD are induced by activation of NMDA-type glutamate receptors but differ in the level and duration of Ca(2+) influx through the NMDA receptor and the subsequent engagement of downstream signaling by protein kinases, including PKA, PKC, and CaMKII, and phosphatases, including PP1 and calcineurin-PP2B (CaN). This review addresses the important emerging roles of the A-kinase anchoring protein family of scaffold proteins in regulating localization of PKA and other kinases and phosphatases to postsynaptic multiprotein complexes that control NMDA and AMPA receptor function during LTP and LTD.

  17. HDAC2 negatively regulates memory formation and synaptic plasticity

    PubMed Central

    Guan, Ji-Song; Haggarty, Stephen J.; Giacometti, Emanuela; Dannenberg, Jan-Hermen; Joseph, Nadine; Gao, Jun; Nieland, Thomas J.F.; Zhou, Ying; Wang, Xinyu; Mazitschek, Ralph; Bradner, James E.; DePinho, Ronald A.; Jaenisch, Rudolf; Tsai, Li-Huei

    2012-01-01

    Chromatin modifications, especially histone-tail acetylation, have been implicated in memory formation. Increased histone-tail acetylation induced by inhibitors of histone deacetylases (HDACis) facilitates learning and memory in wildtype mice as well as in mouse models of neurodegeneration. Harnessing the therapeutic potential of HDACi requires knowledge of the specific HDAC family member(s) linked to cognitive enhancement. Here we show that neuron-specific overexpression of HDAC2, but not HDAC1, reduced dendritic spine density, synapse number, synaptic plasticity, and memory formation. Conversely, HDAC2 deficiency resulted in increased synapse number and memory facilitation, similar to chronic HDACi treatment in mice. Notably, reduced synapse number and learning impairment of HDAC2-overexpressing mice were ameliorated by chronic HDACi treatment. Correspondingly, HDACi treatment failed to further facilitate memory formation in HDAC2-deficient mice. Furthermore, analysis of promoter occupancy revealed association of HDAC2 with the promoters of genes implicated in synaptic plasticity and memory formation. Together, our results suggest that HDAC2 plays a role in modulating synaptic plasticity and long-lasting changes of neural circuits, which in turn negatively regulates learning and memory. These observations encourage the development and testing of HDAC2-selective inhibitors for human diseases associated with memory impairment. PMID:19424149

  18. NMDA receptor-dependent synaptic plasticity in dorsal and intermediate hippocampus exhibits distinct frequency-dependent profiles.

    PubMed

    Kenney, Jana; Manahan-Vaughan, Denise

    2013-11-01

    The hippocampus may be functionally differentiated along its dorsoventral axis. In contrast to the wealth of data available on synaptic plasticity mechanisms in the dorsal hippocampus, little is known about synaptic plasticity processes in the intermediate hippocampus. Behavioral data suggest that this structure may play a distinct role in learning and memory. Here, we compared amplitudes, frequency-dependency and persistency of long-term potentiation (LTP) and long-term depression (LTD) in the dorsal (DDG) and intermediate dentate gyrus (IDG). In freely moving rats, high-frequency stimulation (HFS) at 200 Hz (10 burst of 15 stimuli) elicited LTP of similar magnitude in both structures that persisted for over 24 h. The intermediate dentate gyrus is more likely to exhibit persistent LTP than its dorsal counterpart, however: HFS at 200 Hz (3 or 1 burst(s)) or 100 Hz elicited short-term potentiation (STP) in DDG, unlike in the IDG, where LTP could be recorded for at least 4 h. Whereas low frequency stimulation (LFS) at 1 Hz elicited long-lasting LTD (>24 h) in the DDG, it had no significant effect on fEPSP profile in the IDG. LFS at 2 Hz elicited short-term depression in DDG and had no effect in IDG. LTP in both IDG and DDG required activation of N-methyl-D-aspartate receptors. Paired-pulse and input-output responses differed in IDG and DDG. Our data suggest that afferent input from the entorhinal cortex generates a different response profile in the dorsal vs. intermediate DG, which may in turn relate to their postulated distinct roles in synaptic information processing and memory formation. This article is part of the Special Issue entitled 'Glutamate Receptor-Dependent Synaptic Plasticity'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Convergent evidence for abnormal striatal synaptic plasticity in dystonia

    PubMed Central

    Peterson, David A.; Sejnowski, Terrence J.; Poizner, Howard

    2010-01-01

    Dystonia is a functionally disabling movement disorder characterized by abnormal movements and postures. Although substantial recent progress has been made in identifying genetic factors, the pathophysiology of the disease remains a mystery. A provocative suggestion gaining broader acceptance is that some aspect of neural plasticity may be abnormal. There is also evidence that, at least in some forms of dystonia, sensorimotor “use” may be a contributing factor. Most empirical evidence of abnormal plasticity in dystonia comes from measures of sensorimotor cortical organization and physiology. However, the basal ganglia also play a critical role in sensorimotor function. Furthermore, the basal ganglia are prominently implicated in traditional models of dystonia, are the primary targets of stereotactic neurosurgical interventions, and provide a neural substrate for sensorimotor learning influenced by neuromodulators. Our working hypothesis is that abnormal plasticity in the basal ganglia is a critical link between the etiology and pathophysiology of dystonia. In this review we set up the background for this hypothesis by integrating a large body of disparate indirect evidence that dystonia may involve abnormalities in synaptic plasticity in the striatum. After reviewing evidence implicating the striatum in dystonia, we focus on the influence of two neuromodulatory systems: dopamine and acetylcholine. For both of these neuromodulators, we first describe the evidence for abnormalities in dystonia and then the means by which it may influence striatal synaptic plasticity. Collectively, the evidence suggests that many different forms of dystonia may involve abnormal plasticity in the striatum. An improved understanding of these altered plastic processes would help inform our understanding of the pathophysiology of dystonia, and, given the role of the striatum in sensorimotor learning, provide a principled basis for designing therapies aimed at the dynamic processes

  20. A Model of Bidirectional Synaptic Plasticity: From Signaling Network to Channel Conductance

    ERIC Educational Resources Information Center

    Castellani, Gastone C.; Quinlan, Elizabeth M.; Bersani, Ferdinando; Cooper, Leon N.; Shouval, Harel Z.

    2005-01-01

    In many regions of the brain, including the mammalian cortex, the strength of synaptic transmission can be bidirectionally regulated by cortical activity (synaptic plasticity). One line of evidence indicates that long-term synaptic potentiation (LTP) and long-term synaptic depression (LTD), correlate with the phosphorylation/dephosphorylation of…

  1. A Model of Bidirectional Synaptic Plasticity: From Signaling Network to Channel Conductance

    ERIC Educational Resources Information Center

    Castellani, Gastone C.; Quinlan, Elizabeth M.; Bersani, Ferdinando; Cooper, Leon N.; Shouval, Harel Z.

    2005-01-01

    In many regions of the brain, including the mammalian cortex, the strength of synaptic transmission can be bidirectionally regulated by cortical activity (synaptic plasticity). One line of evidence indicates that long-term synaptic potentiation (LTP) and long-term synaptic depression (LTD), correlate with the phosphorylation/dephosphorylation of…

  2. Spectrotemporal Dynamics of Auditory Cortical Synaptic Receptive Field Plasticity

    PubMed Central

    Froemke, Robert C.; Martins, Ana Raquel O.

    2011-01-01

    The nervous system must dynamically represent sensory information in order for animals to perceive and operate within a complex, changing environment. Receptive field plasticity in the auditory cortex allows cortical networks to organize around salient features of the sensory environment during postnatal development, and then subsequently refine these representations depending on behavioral context later in life. Here we review the major features of auditory cortical receptive field plasticity in young and adult animals, focusing on modifications to frequency tuning of synaptic inputs. Alteration in the patterns of acoustic input, including sensory deprivation and tonal exposure, leads to rapid adjustments of excitatory and inhibitory strengths that collectively determine the suprathreshold tuning curves of cortical neurons. Long-term cortical plasticity also requires co-activation of subcortical neuromodulatory control nuclei such as the cholinergic nucleus basalis, particularly in adults. Regardless of developmental stage, regulation of inhibition seems to be a general mechanism by which changes in sensory experience and neuromodulatory state can remodel cortical receptive fields. We discuss recent findings suggesting that the microdynamics of synaptic receptive field plasticity unfold as a multi-phase set of distinct phenomena, initiated by disrupting the balance between excitation and inhibition, and eventually leading to wide-scale changes to many synapses throughout the cortex. These changes are coordinated to enhance the representations of newly-significant stimuli, possibly for improved signal processing and language learning in humans. PMID:21426927

  3. A light-stimulated synaptic transistor with synaptic plasticity and memory functions based on InGaZnO{sub x}–Al{sub 2}O{sub 3} thin film structure

    SciTech Connect

    Li, H. K.; Chen, T. P. Liu, P.; Zhang, Q.; Hu, S. G.; Liu, Y.; Lee, P. S.

    2016-06-28

    In this work, a synaptic transistor based on the indium gallium zinc oxide (IGZO)–aluminum oxide (Al{sub 2}O{sub 3}) thin film structure, which uses ultraviolet (UV) light pulses as the pre-synaptic stimulus, has been demonstrated. The synaptic transistor exhibits the behavior of synaptic plasticity like the paired-pulse facilitation. In addition, it also shows the brain's memory behaviors including the transition from short-term memory to long-term memory and the Ebbinghaus forgetting curve. The synapse-like behavior and memory behaviors of the transistor are due to the trapping and detrapping processes of the holes, which are generated by the UV pulses, at the IGZO/Al{sub 2}O{sub 3} interface and/or in the Al{sub 2}O{sub 3} layer.

  4. Endocannabinoid-mediated synaptic plasticity and addiction-related behavior.

    PubMed

    Sidhpura, Nimish; Parsons, Loren H

    2011-12-01

    Endogenous cannabinoids (eCBs) are retrograde messengers that provide feedback inhibition of both excitatory and inhibitory transmission in brain through the activation of presynaptic CB₁ receptors. Substantial evidence indicates that eCBs mediate various forms of short- and long-term plasticity in brain regions involved in the etiology of addiction. The present review provides an overview of the mechanisms through which eCBs mediate various forms of synaptic plasticity and discusses evidence that eCB-mediated plasticity is disrupted following exposure to a variety of abused substances that differ substantially in pharmacodynamic mechanism including alcohol, psychostimulants and cannabinoids. The possible involvement of dysregulated eCB signaling in maladaptive behaviors that evolve over long-term drug exposure is also discussed, with a particular focus on altered behavioral responses to drug exposure, deficient extinction of drug-related memories, increased drug craving and relapse, heightened stress sensitivity and persistent affective disruption (anxiety and depression).

  5. Endocannabinoid-mediated synaptic plasticity and addiction-related behavior

    PubMed Central

    Sidhpura, Nimish; Parsons, Loren H.

    2011-01-01

    Endogenous cannabinoids (eCBs) are retrograde messengers that provide feedback inhibition of both excitatory and inhibitory transmission in brain through the activation of presynaptic CB1 receptors. Substantial evidence indicates that eCBs mediate various forms of short- and long-term plasticity in brain regions involved in the etiology of addiction. The present review provides an overview of the mechanisms through which eCBs mediate various forms of synaptic plasticity and discusses evidence that eCB-mediated plasticity is disrupted following exposure to a variety of abused substances that differ substantially in pharmacodynamic mechanism including alcohol, psychostimulants and cannabinoids. The possible involvement of dysregulated eCB signaling in maladaptive behaviors that evolve over long-term drug exposure is also discussed, with a particular focus on altered behavioral responses to drug exposure, deficient extinction of drug-related memories, increased drug craving and relapse, heightened stress sensitivity and persistent affective disruption (anxiety and depression). PMID:21669214

  6. A putative lysophosphatidylinositol receptor GPR55 modulates hippocampal synaptic plasticity.

    PubMed

    Hurst, Katrina; Badgley, Corinne; Ellsworth, Tanner; Bell, Spencer; Friend, Lindsey; Prince, Brad; Welch, Jacob; Cowan, Zack; Williamson, Ryan; Lyon, Chris; Anderson, Brandon; Poole, Brian; Christensen, Michael; McNeil, Michael; Call, Jarrod; Edwards, Jeffrey G

    2017-09-01

    GPR55, an orphan G-protein coupled receptor, is activated by lysophosphatidylinositol (LPI) and the endocannabinoid anandamide, as well as by other compounds including THC. LPI is a potent endogenous ligand of GPR55 and neither GPR55 nor LPIs' functions in the brain are well understood. While endocannabinoids are well known to modulate brain synaptic plasticity, the potential role LPI could have on brain plasticity has never been demonstrated. Therefore, we examined not only GPR55 expression, but also the role its endogenous ligand could play in long-term potentiation, a common form of synaptic plasticity. Using quantitative RT-PCR, electrophysiology, and behavioral assays, we examined hippocampal GPR55 expression and function. qRT-PCR results indicate that GPR55 is expressed in hippocampi of both rats and mice. Immunohistochemistry and single cell PCR demonstrates GPR55 protein in pyramidal cells of CA1 and CA3 layers in the hippocampus. Application of the GPR55 endogenous agonist LPI to hippocampal slices of GPR55(+/+) mice significantly enhanced CA1 LTP. This effect was absent in GPR55(-/-) mice, and blocked by the GPR55 antagonist CID 16020046. We also examined paired-pulse ratios of GPR55(-/-) and GPR55(+/+) mice with or without LPI and noted significant enhancement in paired-pulse ratios by LPI in GPR55(+/+) mice. Behaviorally, GPR55(-/-) and GPR55(+/+) mice did not differ in memory tasks including novel object recognition, radial arm maze, or Morris water maze. However, performance on radial arm maze and elevated plus maze task suggests GPR55(-/-) mice have a higher frequency of immobile behavior. This is the first demonstration of LPI involvement in hippocampal synaptic plasticity. © 2017 Wiley Periodicals, Inc.

  7. The computational power of astrocyte mediated synaptic plasticity

    PubMed Central

    Min, Rogier; Santello, Mirko; Nevian, Thomas

    2012-01-01

    Research in the last two decades has made clear that astrocytes play a crucial role in the brain beyond their functions in energy metabolism and homeostasis. Many studies have shown that astrocytes can dynamically modulate neuronal excitability and synaptic plasticity, and might participate in higher brain functions like learning and memory. With the plethora of astrocyte mediated signaling processes described in the literature today, the current challenge is to identify, which of these processes happen under what physiological condition, and how this shapes information processing and, ultimately, behavior. To answer these questions will require a combination of advanced physiological, genetical, and behavioral experiments. Additionally, mathematical modeling will prove crucial for testing predictions on the possible functions of astrocytes in neuronal networks, and to generate novel ideas as to how astrocytes can contribute to the complexity of the brain. Here, we aim to provide an outline of how astrocytes can interact with neurons. We do this by reviewing recent experimental literature on astrocyte-neuron interactions, discussing the dynamic effects of astrocytes on neuronal excitability and short- and long-term synaptic plasticity. Finally, we will outline the potential computational functions that astrocyte-neuron interactions can serve in the brain. We will discuss how astrocytes could govern metaplasticity in the brain, how they might organize the clustering of synaptic inputs, and how they could function as memory elements for neuronal activity. We conclude that astrocytes can enhance the computational power of neuronal networks in previously unexpected ways. PMID:23125832

  8. A Nonlinear Cable Framework for Bidirectional Synaptic Plasticity

    PubMed Central

    Iannella, Nicolangelo; Launey, Thomas; Abbott, Derek; Tanaka, Shigeru

    2014-01-01

    Finding the rules underlying how axons of cortical neurons form neural circuits and modify their corresponding synaptic strength is the still subject of intense research. Experiments have shown that internal calcium concentration, and both the precise timing and temporal order of pre and postsynaptic action potentials, are important constituents governing whether the strength of a synapse located on the dendrite is increased or decreased. In particular, previous investigations focusing on spike timing-dependent plasticity (STDP) have typically observed an asymmetric temporal window governing changes in synaptic efficacy. Such a temporal window emphasizes that if a presynaptic spike, arriving at the synaptic terminal, precedes the generation of a postsynaptic action potential, then the synapse is potentiated; however if the temporal order is reversed, then depression occurs. Furthermore, recent experimental studies have now demonstrated that the temporal window also depends on the dendritic location of the synapse. Specifically, it was shown that in distal regions of the apical dendrite, the magnitude of potentiation was smaller and the window for depression was broader, when compared to observations from the proximal region of the dendrite. To date, the underlying mechanism(s) for such a distance-dependent effect is (are) currently unknown. Here, using the ionic cable theory framework in conjunction with the standard calcium based plasticity model, we show for the first time that such distance-dependent inhomogeneities in the temporal learning window for STDP can be largely explained by both the spatial and active properties of the dendrite. PMID:25148478

  9. Structural Components of Synaptic Plasticity and Memory Consolidation

    PubMed Central

    Bailey, Craig H.; Kandel, Eric R.; Harris, Kristen M.

    2015-01-01

    Consolidation of implicit memory in the invertebrate Aplysia and explicit memory in the mammalian hippocampus are associated with remodeling and growth of preexisting synapses and the formation of new synapses. Here, we compare and contrast structural components of the synaptic plasticity that underlies these two distinct forms of memory. In both cases, the structural changes involve time-dependent processes. Thus, some modifications are transient and may contribute to early formative stages of long-term memory, whereas others are more stable, longer lasting, and likely to confer persistence to memory storage. In addition, we explore the possibility that trans-synaptic signaling mechanisms governing de novo synapse formation during development can be reused in the adult for the purposes of structural synaptic plasticity and memory storage. Finally, we discuss how these mechanisms set in motion structural rearrangements that prepare a synapse to strengthen the same memory and, perhaps, to allow it to take part in other memories as a basis for understanding how their anatomical representation results in the enhanced expression and storage of memories in the brain. PMID:26134321

  10. Important roles of Vilse in dendritic architecture and synaptic plasticity

    PubMed Central

    Lee, Jin-Yu; Lee, Li-Jen; Fan, Chih-Chen; Chang, Ho-Ching; Shih, Hsin-An; Min, Ming-Yuan; Chang, Mau-Sun

    2017-01-01

    Vilse/Arhgap39 is a Rho GTPase activating protein (RhoGAP) and utilizes its WW domain to regulate Rac/Cdc42-dependent morphogenesis in Drosophila and murine hippocampal neurons. However, the function of Vilse in mammalian dendrite architecture and synaptic plasticity remained unclear. In the present study, we aimed to explore the possible role of Vilse in dendritic structure and synaptic function in the brain. Homozygous knockout of Vilse resulted in premature embryonic lethality in mice. Changes in dendritic complexity and spine density were noticed in hippocampal neurons of Camk2a-Cre mediated forebrain-specific Vilse knockout (VilseΔ/Δ) mice. VilseΔ/Δ mice displayed impaired spatial memory in water maze and Y-maze tests. Electrical stimulation in hippocampal CA1 region revealed that the synaptic transmission and plasticity were defected in VilseΔ/Δ mice. Collectively, our results demonstrate that Vilse is essential for embryonic development and required for spatial memory. PMID:28368047

  11. The computational power of astrocyte mediated synaptic plasticity.

    PubMed

    Min, Rogier; Santello, Mirko; Nevian, Thomas

    2012-01-01

    Research in the last two decades has made clear that astrocytes play a crucial role in the brain beyond their functions in energy metabolism and homeostasis. Many studies have shown that astrocytes can dynamically modulate neuronal excitability and synaptic plasticity, and might participate in higher brain functions like learning and memory. With the plethora of astrocyte mediated signaling processes described in the literature today, the current challenge is to identify, which of these processes happen under what physiological condition, and how this shapes information processing and, ultimately, behavior. To answer these questions will require a combination of advanced physiological, genetical, and behavioral experiments. Additionally, mathematical modeling will prove crucial for testing predictions on the possible functions of astrocytes in neuronal networks, and to generate novel ideas as to how astrocytes can contribute to the complexity of the brain. Here, we aim to provide an outline of how astrocytes can interact with neurons. We do this by reviewing recent experimental literature on astrocyte-neuron interactions, discussing the dynamic effects of astrocytes on neuronal excitability and short- and long-term synaptic plasticity. Finally, we will outline the potential computational functions that astrocyte-neuron interactions can serve in the brain. We will discuss how astrocytes could govern metaplasticity in the brain, how they might organize the clustering of synaptic inputs, and how they could function as memory elements for neuronal activity. We conclude that astrocytes can enhance the computational power of neuronal networks in previously unexpected ways.

  12. A nonlinear cable framework for bidirectional synaptic plasticity.

    PubMed

    Iannella, Nicolangelo; Launey, Thomas; Abbott, Derek; Tanaka, Shigeru

    2014-01-01

    Finding the rules underlying how axons of cortical neurons form neural circuits and modify their corresponding synaptic strength is the still subject of intense research. Experiments have shown that internal calcium concentration, and both the precise timing and temporal order of pre and postsynaptic action potentials, are important constituents governing whether the strength of a synapse located on the dendrite is increased or decreased. In particular, previous investigations focusing on spike timing-dependent plasticity (STDP) have typically observed an asymmetric temporal window governing changes in synaptic efficacy. Such a temporal window emphasizes that if a presynaptic spike, arriving at the synaptic terminal, precedes the generation of a postsynaptic action potential, then the synapse is potentiated; however if the temporal order is reversed, then depression occurs. Furthermore, recent experimental studies have now demonstrated that the temporal window also depends on the dendritic location of the synapse. Specifically, it was shown that in distal regions of the apical dendrite, the magnitude of potentiation was smaller and the window for depression was broader, when compared to observations from the proximal region of the dendrite. To date, the underlying mechanism(s) for such a distance-dependent effect is (are) currently unknown. Here, using the ionic cable theory framework in conjunction with the standard calcium based plasticity model, we show for the first time that such distance-dependent inhomogeneities in the temporal learning window for STDP can be largely explained by both the spatial and active properties of the dendrite.

  13. Fragile X Syndrome: Keys to the Molecular Genetics of Synaptic Plasticity

    ERIC Educational Resources Information Center

    Lombroso, Paul J.; Ogren, Marilee P.

    2008-01-01

    Fragile X syndrome, the most common form of inherited mental retardation is discussed. The relationship between specific impairments in synaptic plasticity and Fragile X syndrome is investigated as it strengthens synaptic contacts between neurons.

  14. Fragile X Syndrome: Keys to the Molecular Genetics of Synaptic Plasticity

    ERIC Educational Resources Information Center

    Lombroso, Paul J.; Ogren, Marilee P.

    2008-01-01

    Fragile X syndrome, the most common form of inherited mental retardation is discussed. The relationship between specific impairments in synaptic plasticity and Fragile X syndrome is investigated as it strengthens synaptic contacts between neurons.

  15. Dendritic calcium nonlinearities switch the direction of synaptic plasticity in fast-spiking interneurons.

    PubMed

    Camiré, Olivier; Topolnik, Lisa

    2014-03-12

    Postsynaptic calcium (Ca2+) nonlinearities allow neuronal coincidence detection and site-specific plasticity. Whether such events exist in dendrites of interneurons and play a role in regulation of synaptic efficacy remains unknown. Here, we used a combination of whole-cell patch-clamp recordings and two-photon Ca2+ imaging to reveal Ca2+ nonlinearities associated with synaptic integration in dendrites of mouse hippocampal CA1 fast-spiking interneurons. Local stimulation of distal dendritic branches within stratum oriens/alveus elicited fast Ca2+ transients, which showed a steep sigmoidal relationship to stimulus intensity. Supralinear Ca2+ events required Ca2+ entry through AMPA receptors with a subsequent Ca2+ release from internal stores. To investigate the functional significance of supralinear Ca2+ signals, we examined activity-dependent fluctuations in transmission efficacy triggered by Ca2+ signals of different amplitudes at excitatory synapses of interneurons. Subthreshold theta-burst stimulation (TBS) produced small amplitude postsynaptic Ca2+ transients and triggered long-term potentiation. In contrast, the suprathreshold TBS, which was associated with the generation of supralinear Ca2+ events, triggered long-term depression. Blocking group I/II metabotropic glutamate receptors (mGluRs) during suprathreshold TBS resulted in a slight reduction of supralinear Ca2+ events and induction of short-term depression. In contrast, blocking internal stores and supralinear Ca2+ signals during suprathreshold TBS switched the direction of plasticity from depression back to potentiation. These data reveal a novel type of supralinear Ca2+ events at synapses lacking the GluA2 AMPA subtype of glutamate receptors and demonstrate a general mechanism by which Ca2+ -permeable AMPA receptors, together with internal stores and mGluRs, control the direction of plasticity at interneuron excitatory synapses.

  16. ERK Pathway Activation Bidirectionally Affects Visual Recognition Memory and Synaptic Plasticity in the Perirhinal Cortex

    PubMed Central

    Silingardi, Davide; Angelucci, Andrea; De Pasquale, Roberto; Borsotti, Marco; Squitieri, Giovanni; Brambilla, Riccardo; Putignano, Elena; Pizzorusso, Tommaso; Berardi, Nicoletta

    2011-01-01

    ERK 1,2 pathway mediates experience-dependent gene transcription in neurons and several studies have identified its pivotal role in experience-dependent synaptic plasticity and in forms of long term memory involving hippocampus, amygdala, or striatum. The perirhinal cortex (PRHC) plays an essential role in familiarity-based object recognition memory. It is still unknown whether ERK activation in PRHC is necessary for recognition memory consolidation. Most important, it is unknown whether by modulating the gain of the ERK pathway it is possible to bidirectionally affect visual recognition memory and PRHC synaptic plasticity. We have first pharmacologically blocked ERK activation in the PRHC of adult mice and found that this was sufficient to impair long term recognition memory in a familiarity-based task, the object recognition task (ORT). We have then tested performance in the ORT in Ras-GRF1 knock-out (KO) mice, which exhibit a reduced activation of ERK by neuronal activity, and in ERK1 KO mice, which have an increased activation of ERK2 and exhibit enhanced striatal plasticity and striatal mediated memory. We found that Ras-GRF1 KO mice have normal short term memory but display a long term memory deficit; memory reconsolidation is also impaired. On the contrary, ERK1 KO mice exhibit a better performance than WT mice at 72 h retention interval, suggesting a longer lasting recognition memory. In parallel with behavioral data, LTD was strongly reduced and LTP was significantly smaller in PRHC slices from Ras-GRF1 KO than in WT mice while enhanced LTP and LTD were found in PRHC slices from ERK1 KO mice. PMID:22232579

  17. Dynamic learning and memory, synaptic plasticity and neurogenesis: an update

    PubMed Central

    Stuchlik, Ales

    2014-01-01

    Mammalian memory is the result of the interaction of millions of neurons in the brain and their coordinated activity. Candidate mechanisms for memory are synaptic plasticity changes, such as long-term potentiation (LTP). LTP is essentially an electrophysiological phenomenon manifested in hours-lasting increase on postsynaptic potentials after synapse tetanization. It is thought to ensure long-term changes in synaptic efficacy in distributed networks, leading to persistent changes in the behavioral patterns, actions and choices, which are often interpreted as the retention of information, i.e., memory. Interestingly, new neurons are born in the mammalian brain and adult hippocampal neurogenesis is proposed to provide a substrate for dynamic and flexible aspects of behavior such as pattern separation, prevention of interference, flexibility of behavior and memory resolution. This work provides a brief review on the memory and involvement of LTP and adult neurogenesis in memory phenomena. PMID:24744707

  18. Neural ECM proteases in learning and synaptic plasticity.

    PubMed

    Tsilibary, Effie; Tzinia, Athina; Radenovic, Lidija; Stamenkovic, Vera; Lebitko, Tomasz; Mucha, Mariusz; Pawlak, Robert; Frischknecht, Renato; Kaczmarek, Leszek

    2014-01-01

    Recent studies implicate extracellular proteases in synaptic plasticity, learning, and memory. The data are especially strong for such serine proteases as thrombin, tissue plasminogen activator, neurotrypsin, and neuropsin as well as matrix metalloproteinases, MMP-9 in particular. The role of those enzymes in the aforementioned phenomena is supported by the experimental results on the expression patterns (at the gene expression and protein and enzymatic activity levels) and functional studies, including knockout mice, specific inhibitors, etc. Counterintuitively, the studies have shown that the extracellular proteolysis is not responsible mainly for an overall degradation of the extracellular matrix (ECM) and loosening perisynaptic structures, but rather allows for releasing signaling molecules from the ECM, transsynaptic proteins, and latent form of growth factors. Notably, there are also indications implying those enzymes in the major neuropsychiatric disorders, probably by contributing to synaptic aberrations underlying such diseases as schizophrenia, bipolar, autism spectrum disorders, and drug addiction.

  19. Dendritic spine actin dynamics in neuronal maturation and synaptic plasticity.

    PubMed

    Hlushchenko, Iryna; Koskinen, Mikko; Hotulainen, Pirta

    2016-09-01

    The majority of the postsynaptic terminals of excitatory synapses in the central nervous system exist on small bulbous structures on dendrites known as dendritic spines. The actin cytoskeleton is a structural element underlying the proper development and morphology of dendritic spines. Synaptic activity patterns rapidly change actin dynamics, leading to morphological changes in dendritic spines. In this mini-review, we will discuss recent findings on neuronal maturation and synaptic plasticity-induced changes in the dendritic spine actin cytoskeleton. We propose that actin dynamics in dendritic spines decrease through actin filament crosslinking during neuronal maturation. In long-term potentiation, we evaluate the model of fast breakdown of actin filaments through severing and rebuilding through polymerization and later stabilization through crosslinking. We will discuss the role of Ca(2+) in long-term depression, and suggest that actin filaments are dissolved through actin filament severing. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Information processing and synaptic plasticity at hippocampal mossy fiber terminals.

    PubMed

    Evstratova, Alesya; Tóth, Katalin

    2014-01-01

    Granule cells of the dentate gyrus receive cortical information and they transform and transmit this code to the CA3 area via their axons, the mossy fibers (MFs). Structural and functional complexity of this network has been extensively studied at various organizational levels. This review is focused on the anatomical and physiological properties of the MF system. We will discuss the mechanism by which dentate granule cells process signals from single action potentials (APs), short bursts and longer stimuli. Various parameters of synaptic interactions at different target cells such as quantal transmission, short- and long-term plasticity (LTP) will be summarized. Different types of synaptic contacts formed by MFs have unique sets of rules for information processing during different rates of granule cell activity. We will investigate the complex interactions between key determinants of information transfer between the dentate gyrus and the CA3 area of the hippocampus.

  1. Information processing and synaptic plasticity at hippocampal mossy fiber terminals

    PubMed Central

    Evstratova, Alesya; Tóth, Katalin

    2014-01-01

    Granule cells of the dentate gyrus receive cortical information and they transform and transmit this code to the CA3 area via their axons, the mossy fibers (MFs). Structural and functional complexity of this network has been extensively studied at various organizational levels. This review is focused on the anatomical and physiological properties of the MF system. We will discuss the mechanism by which dentate granule cells process signals from single action potentials (APs), short bursts and longer stimuli. Various parameters of synaptic interactions at different target cells such as quantal transmission, short- and long-term plasticity (LTP) will be summarized. Different types of synaptic contacts formed by MFs have unique sets of rules for information processing during different rates of granule cell activity. We will investigate the complex interactions between key determinants of information transfer between the dentate gyrus and the CA3 area of the hippocampus. PMID:24550783

  2. Synaptic plasticity deficits in an experimental model of rett syndrome: long-term potentiation saturation and its pharmacological reversal.

    PubMed

    Weng, S-M; McLeod, F; Bailey, M E S; Cobb, S R

    2011-04-28

    Rett syndrome (RTT), a disorder caused almost exclusively by mutations in the X-linked gene, MECP2, has a phenotype thought to be primarily of neurological origin. Disruption of Mecp2 in mice results in a prominent RTT-like phenotype. One of the consequences of MeCP2 absence in the brain is altered functional and structural plasticity. We aimed to characterize synaptic effects related to plasticity in the hippocampus further and establish whether plasticity defects are amenable to pharmacological reversal. Using male mice in which Mecp2 expression was prevented by a stop cassette, we assessed synaptic plasticity in area CA1 at different phenotypic stages, scoring the mice weekly for overt RTT-like signs. Strongly symptomatic Mecp2(stop/y) mice displayed reduced long-term potentiation (LTP, 40.2±1.6% of wild-type), post-tetanic potentiation (PTP, 45±18.8% of wild-type) and paired-pulse facilitation (PPF, 78±0.1% of wild type) (all P<0.05), the impairment increasing with symptom severity score. These plasticity impairments were absent in presymptomatic mice. Repeated high frequency stimulation revealed pronounced LTP saturation in symptomatic Mecp2(stop/y) mice, suggesting an LTP 'ceiling' effect. Bath application of the weak NMDA receptor blocker memantine (1 μM) resulted in partial restoration of a short-term plasticity component. These data support that idea that progressive functional synaptic impairment is a key feature in the RTT brain and demonstrate the potential for the pharmacological restoration of plasticity function.

  3. Spike-Timing Dependent Plasticity Beyond Synapse – Pre- and Post-Synaptic Plasticity of Intrinsic Neuronal Excitability

    PubMed Central

    Debanne, Dominique; Poo, Mu-Ming

    2010-01-01

    Long-lasting plasticity of synaptic transmission is classically thought to be the cellular substrate for information storage in the brain. Recent data indicate however that it is not the whole story and persistent changes in the intrinsic neuronal excitability have been shown to occur in parallel to the induction of long-term synaptic modifications. This form of plasticity depends on the regulation of voltage-gated ion channels. Here we review the experimental evidence for plasticity of neuronal excitability induced at pre- or postsynaptic sites when long-term plasticity of synaptic transmission is induced with Spike-Timing Dependent Plasticity (STDP) protocols. We describe the induction and expression mechanisms of the induced changes in excitability. Finally, the functional synergy between synaptic and non-synaptic plasticity and their spatial extent are discussed. PMID:21423507

  4. Effects of T-588, a cognitive enhancer compound, on synaptic plasticity in the dentate gyrus of freely moving rats.

    PubMed

    Yamaguchi, H; Tamura, R; Kuriwaki, J I; Eifuku, S; Ono, T

    2001-07-01

    (1R)-1-benzo [b] thiophen-5-yl-2-[2-(diethylamino) ethoxy] ethan-1-ol hydrochloride (T-588) is a compound for the treatment of neurodegenerative disorders, including Alzheimer's disease and cerebrovascular diseases. T-588 reportedly alleviates learning and memory deficits in animal models of dementia. In the present study, we investigated the effects of T-588 on the induction and decay of long-term potentiation (LTP) and on the responses to paired-pulse (pp) stimulation in freely moving rats. Perforant path-evoked field potentials were recorded in the dentate gyrus by chronically implanted electrodes. LTP was induced by high-frequency stimulation 30 min after oral administration of T-588 (0.3 or 3 mg/kg). T-588 significantly augmented the increase in population spike amplitude and field excitatory postsynaptic potential slope after LTP induction. T-588 also prolonged the decay of augmented population spike amplitude, but had no significant effect on the response to pp stimulation. These results suggest that T-588 facilitates long-term synaptic plasticity, but not short-term synaptic plasticity in the dentate gyrus of freely moving rats. The effect of T-588 on long-term synaptic plasticity may contribute to the alleviation of learning and memory dysfunction seen in animal models.

  5. Short-term high-fat-and-fructose feeding produces insulin signaling alterations accompanied by neurite and synaptic reduction and astroglial activation in the rat hippocampus

    PubMed Central

    Calvo-Ochoa, Erika; Hernández-Ortega, Karina; Ferrera, Patricia; Morimoto, Sumiko; Arias, Clorinda

    2014-01-01

    Chronic consumption of high-fat-and-fructose diets (HFFD) is associated with the development of insulin resistance (InsRes) and obesity. Systemic insulin resistance resulting from long-term HFFD feeding has detrimental consequences on cognitive performance, neurogenesis, and long-term potentiation establishment, accompanied by neuronal alterations in the hippocampus. However, diet-induced hippocampal InsRes has not been reported. Therefore, we investigated whether short-term HFFD feeding produced hippocampal insulin signaling alterations associated with neuronal changes in the hippocampus. Rats were fed with a control diet or an HFFD consisting of 10% lard supplemented chow and 20% high-fructose syrup in the drinking water. Our results show that 7 days of HFFD feeding induce obesity and InsRes, associated with the following alterations in the hippocampus: (1) a decreased insulin signaling; (2) a decreased hippocampal weight; (3) a reduction in dendritic arborization in CA1 and microtubule-associated protein 2 (MAP-2) levels; (4) a decreased dendritic spine number in CA1 and synaptophysin content, along with an increase in tau phosphorylation; and finally, (5) an increase in reactive astrocyte associated with microglial changes. To our knowledge, this is the first report addressing hippocampal insulin signaling, as well as morphologic, structural, and functional modifications due to short-term HFFD feeding in the rat. PMID:24667917

  6. Natural Firing Patterns Imply Low Sensitivity of Synaptic Plasticity to Spike Timing Compared with Firing Rate.

    PubMed

    Graupner, Michael; Wallisch, Pascal; Ostojic, Srdjan

    2016-11-02

    Synaptic plasticity is sensitive to the rate and the timing of presynaptic and postsynaptic action potentials. In experimental protocols inducing plasticity, the imposed spike trains are typically regular and the relative timing between every presynaptic and postsynaptic spike is fixed. This is at odds with firing patterns observed in the cortex of intact animals, where cells fire irregularly and the timing between presynaptic and postsynaptic spikes varies. To investigate synaptic changes elicited by in vivo-like firing, we used numerical simulations and mathematical analysis of synaptic plasticity models. We found that the influence of spike timing on plasticity is weaker than expected from regular stimulation protocols. Moreover, when neurons fire irregularly, synaptic changes induced by precise spike timing can be equivalently induced by a modest firing rate variation. Our findings bridge the gap between existing results on synaptic plasticity and plasticity occurring in vivo, and challenge the dominant role of spike timing in plasticity.

  7. MPTP-meditated hippocampal dopamine deprivation modulates synaptic transmission and activity-dependent synaptic plasticity

    SciTech Connect

    Zhu Guoqi; Chen Ying; Huang Yuying; Li Qinglin; Behnisch, Thomas

    2011-08-01

    Parkinson's disease (PD)-like symptoms including learning deficits are inducible by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Therefore, it is possible that MPTP may disturb hippocampal memory processing by modulation of dopamine (DA)- and activity-dependent synaptic plasticity. We demonstrate here that intraperitoneal (i.p.) MPTP injection reduces the number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN) within 7 days. Subsequently, the TH expression level in SN and hippocampus and the amount of DA and its metabolite DOPAC in striatum and hippocampus decrease. DA depletion does not alter basal synaptic transmission and changes pair-pulse facilitation (PPF) of field excitatory postsynaptic potentials (fEPSPs) only at the 30 ms inter-pulse interval. In addition, the induction of long-term potentiation (LTP) is impaired whereas the duration of long-term depression (LTD) becomes prolonged. Since both LTP and LTD depend critically on activation of NMDA and DA receptors, we also tested the effect of DA depletion on NMDA receptor-mediated synaptic transmission. Seven days after MPTP injection, the NMDA receptor-mediated fEPSPs are decreased by about 23%. Blocking the NMDA receptor-mediated fEPSP does not mimic the MPTP-LTP. Only co-application of D1/D5 and NMDA receptor antagonists during tetanization resembled the time course of fEPSP potentiation as observed 7 days after i.p. MPTP injection. Together, our data demonstrate that MPTP-induced degeneration of DA neurons and the subsequent hippocampal DA depletion alter NMDA receptor-mediated synaptic transmission and activity-dependent synaptic plasticity. - Highlights: > I.p. MPTP-injection mediates death of dopaminergic neurons. > I.p. MPTP-injection depletes DA and DOPAC in striatum and hippocampus. > I.p. MPTP-injection does not alter basal synaptic transmission. > Reduction of LTP and enhancement of LTD after i.p. MPTP-injection. > Attenuation of NMDA-receptors mediated f

  8. Proton-Mediated Block of Ca2+ Channels during Multivesicular Release Regulates Short-Term Plasticity at an Auditory Hair Cell Synapse

    PubMed Central

    Cho, Soyoun

    2014-01-01

    Synaptic vesicles release both neurotransmitter and protons during exocytosis, which may result in a transient acidification of the synaptic cleft that can block Ca2+ channels located close to the sites of exocytosis. Evidence for this effect has been reported for retinal ribbon-type synapses, but not for hair cell ribbon synapses. Here, we report evidence for proton release from bullfrog auditory hair cells when they are held at more physiological, in vivo–like holding potentials (Vh = −60 mV) that facilitate multivesicular release. During paired recordings of hair cells and afferent fibers, L-type voltage-gated Ca2+ currents showed a transient block, which was highly correlated with the EPSC amplitude (or the amount of glutamate release). This effect was masked at Vh = −90 mV due to the presence of a T-type Ca2+ current and blocked by strong pH buffering with HEPES or TABS. Increasing vesicular pH with internal methylamine in hair cells also abolished the transient block. High concentrations of intracellular Ca2+ buffer (10 mm BAPTA) greatly reduced exocytosis and abolished the transient block of the Ca2+ current. We estimate that this transient block is due to the rapid multivesicular release of ∼600–1300 H+ ions per synaptic ribbon. Finally, during a train of depolarizing pulses, paired pulse plasticity was significantly changed by using 40 mm HEPES in addition to bicarbonate buffer. We propose that this transient block of Ca2+ current leads to more efficient exocytosis per Ca2+ ion influx and it may contribute to spike adaptation at the auditory nerve. PMID:25429130

  9. Endocannabinoid Signaling and Long-term Synaptic Plasticity

    PubMed Central

    Heifets, Boris D.; Castillo, Pablo E.

    2015-01-01

    Endocannabinoids (eCBs) are key activity-dependent signals regulating synaptic transmission throughout the CNS. Accordingly, eCBs are involved in neural functions ranging from feeding homeostasis to cognition. There is great interest in understanding how exogenous (e.g. cannabis) and endogenous cannabinoids affect behavior. As behavioral adaptations are widely considered to rely on changes in synaptic strength, the prevalence of eCB-mediated long term depression (eCB-LTD) at synapses throughout the brain merits close attention. The induction and expression of eCB-LTD, while remarkably similar at various synapses, is controlled by an array of regulatory influences which we are just beginning to uncover. This complexity endows eCB-LTD with important computational properties, such as coincidence detection and input specificity, critical for higher CNS functions like learning and memory. In this article, we review the major molecular and cellular mechanisms underlying eCB-LTD, as well as the potential physiological relevance of this widespread form of synaptic plasticity. PMID:19575681

  10. Interneuron- and GABAA receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells

    PubMed Central

    He, Qionger; Duguid, Ian; Clark, Beverley; Panzanelli, Patrizia; Patel, Bijal; Thomas, Philip; Fritschy, Jean-Marc; Smart, Trevor G.

    2015-01-01

    Inhibitory synaptic plasticity is important for shaping both neuronal excitability and network activity. Here we investigate the input and GABAA receptor subunit specificity of inhibitory synaptic plasticity by studying cerebellar interneuron–Purkinje cell (PC) synapses. Depolarizing PCs initiated a long-lasting increase in GABA-mediated synaptic currents. By stimulating individual interneurons, this plasticity was observed at somatodendritic basket cell synapses, but not at distal dendritic stellate cell synapses. Basket cell synapses predominantly express β2-subunit-containing GABAA receptors; deletion of the β2-subunit ablates this plasticity, demonstrating its reliance on GABAA receptor subunit composition. The increase in synaptic currents is dependent upon an increase in newly synthesized cell surface synaptic GABAA receptors and is abolished by preventing CaMKII phosphorylation of GABAA receptors. Our results reveal a novel GABAA receptor subunit- and input-specific form of inhibitory synaptic plasticity that regulates the temporal firing pattern of the principal output cells of the cerebellum. PMID:26179122

  11. Interneuron- and GABAA receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells

    NASA Astrophysics Data System (ADS)

    He, Qionger; Duguid, Ian; Clark, Beverley; Panzanelli, Patrizia; Patel, Bijal; Thomas, Philip; Fritschy, Jean-Marc; Smart, Trevor G.

    2015-07-01

    Inhibitory synaptic plasticity is important for shaping both neuronal excitability and network activity. Here we investigate the input and GABAA receptor subunit specificity of inhibitory synaptic plasticity by studying cerebellar interneuron-Purkinje cell (PC) synapses. Depolarizing PCs initiated a long-lasting increase in GABA-mediated synaptic currents. By stimulating individual interneurons, this plasticity was observed at somatodendritic basket cell synapses, but not at distal dendritic stellate cell synapses. Basket cell synapses predominantly express β2-subunit-containing GABAA receptors; deletion of the β2-subunit ablates this plasticity, demonstrating its reliance on GABAA receptor subunit composition. The increase in synaptic currents is dependent upon an increase in newly synthesized cell surface synaptic GABAA receptors and is abolished by preventing CaMKII phosphorylation of GABAA receptors. Our results reveal a novel GABAA receptor subunit- and input-specific form of inhibitory synaptic plasticity that regulates the temporal firing pattern of the principal output cells of the cerebellum.

  12. A Kinetic Model Unifying Presynaptic Short-Term Facilitation and Depression

    PubMed Central

    Lee, Chuang-Chung J.; Anton, Mihai; Poon, Chi-Sang; McRae, Gregory J.

    2009-01-01

    Short-term facilitation and depression refer to the increase and decrease of synaptic strength under repetitive stimuli within a timescale of milliseconds to seconds. This phenomenon has been attributed to primarily presynaptic mechanisms such as calcium-dependent transmitter release and presynaptic vesicle depletion. Previous modeling studies that aimed to integrate the complex short-term facilitation and short-term depression data derived from varying synapses have relied on computer simulation or abstract mathematical approaches. Here, we propose a unified theory of synaptic short-term plasticity based on realistic yet tractable and testable model descriptions of the underlying intracellular biochemical processes. Analysis of the model equations leads to a closed-form solution of the resonance frequency, a function of several critical biophysical parameters, as the single key indicator of the propensity for synaptic facilitation or depression under repetitive stimuli. This integrative model is supported by a broad range of transient and frequency response experimental data including those from facilitating, depressing or mixed-mode synapses. Specifically, the theory predicts that high calcium initial concentration and large gain of calcium action result in low resonance frequency and hence depressing behavior. In contrast, for synapses that are less sensitive to calcium or have higher recovery rate, resonance frequency becomes higher and thus facilitation prevails. The notion of resonance frequency therefore allows valuable quantitative parametric assessment of the contributions of various presynaptic mechanisms to the directionality of synaptic short-term plasticity. Thus, the model provides the reasons behind the switching behavior between facilitation and depression observed in experiments. New experiments are also suggested to control the short-term synaptic signal processing through adjusting the resonance frequency and bandwidth. PMID:19093195

  13. Ras and Rap signaling in synaptic plasticity and mental disorders.

    PubMed

    Stornetta, Ruth L; Zhu, J Julius

    2011-02-01

    The Ras family GTPases (Ras, Rap1, and Rap2) and their downstream mitogen-activated protein kinases (ERK, JNK, and p38MAPK) and PI3K signaling cascades control various physiological processes. In neuronal cells, recent studies have shown that these parallel cascades signal distinct forms of AMPA-sensitive glutamate receptor trafficking during experience-dependent synaptic plasticity and adaptive behavior. Interestingly, both hypo- and hyperactivation of Ras/ Rap signaling impair the capacity of synaptic plasticity, underscoring the importance of a "happy-medium" dynamic regulation of the signaling. Moreover, accumulating reports have linked various genetic defects that either up- or down-regulate Ras/Rap signaling with several mental disorders associated with learning disability (e.g., Alzheimer's disease, Angelman syndrome, autism, cardio-facio-cutaneous syndrome, Coffin-Lowry syndrome, Costello syndrome, Cowden and Bannayan-Riley-Ruvalcaba syndromes, fragile X syndrome, neurofibromatosis type 1, Noonan syndrome, schizophrenia, tuberous sclerosis, and X-linked mental retardation), highlighting the necessity of happy-medium dynamic regulation of Ras/Rap signaling in learning behavior. Thus, the recent advances in understanding of neuronal Ras/Rap signaling provide a useful guide for developing novel treatments for mental diseases.

  14. Emerging links between homeostatic synaptic plasticity and neurological disease.

    PubMed

    Wondolowski, Joyce; Dickman, Dion

    2013-11-21

    Homeostatic signaling systems are ubiquitous forms of biological regulation, having been studied for hundreds of years in the context of diverse physiological processes including body temperature and osmotic balance. However, only recently has this concept been brought to the study of excitatory and inhibitory electrical activity that the nervous system uses to establish and maintain stable communication. Synapses are a primary target of neuronal regulation with a variety of studies over the past 15 years demonstrating that these cellular junctions are under bidirectional homeostatic control. Recent work from an array of diverse systems and approaches has revealed exciting new links between homeostatic synaptic plasticity and a variety of seemingly disparate neurological and psychiatric diseases. These include autism spectrum disorders, intellectual disabilities, schizophrenia, and Fragile X Syndrome. Although the molecular mechanisms through which defective homeostatic signaling may lead to disease pathogenesis remain unclear, rapid progress is likely to be made in the coming years using a powerful combination of genetic, imaging, electrophysiological, and next generation sequencing approaches. Importantly, understanding homeostatic synaptic plasticity at a cellular and molecular level may lead to developments in new therapeutic innovations to treat these diseases. In this review we will examine recent studies that demonstrate homeostatic control of postsynaptic protein translation, retrograde signaling, and presynaptic function that may contribute to the etiology of complex neurological and psychiatric diseases.

  15. Synaptic Plasticity Enables Adaptive Self-Tuning Critical Networks

    PubMed Central

    Stepp, Nigel; Plenz, Dietmar; Srinivasa, Narayan

    2015-01-01

    During rest, the mammalian cortex displays spontaneous neural activity. Spiking of single neurons during rest has been described as irregular and asynchronous. In contrast, recent in vivo and in vitro population measures of spontaneous activity, using the LFP, EEG, MEG or fMRI suggest that the default state of the cortex is critical, manifested by spontaneous, scale-invariant, cascades of activity known as neuronal avalanches. Criticality keeps a network poised for optimal information processing, but this view seems to be difficult to reconcile with apparently irregular single neuron spiking. Here, we simulate a 10,000 neuron, deterministic, plastic network of spiking neurons. We show that a combination of short- and long-term synaptic plasticity enables these networks to exhibit criticality in the face of intrinsic, i.e. self-sustained, asynchronous spiking. Brief external perturbations lead to adaptive, long-term modification of intrinsic network connectivity through long-term excitatory plasticity, whereas long-term inhibitory plasticity enables rapid self-tuning of the network back to a critical state. The critical state is characterized by a branching parameter oscillating around unity, a critical exponent close to -3/2 and a long tail distribution of a self-similarity parameter between 0.5 and 1. PMID:25590427

  16. Lithium rescues synaptic plasticity and memory in Down syndrome mice

    PubMed Central

    Contestabile, Andrea; Greco, Barbara; Ghezzi, Diego; Tucci, Valter; Benfenati, Fabio; Gasparini, Laura

    2012-01-01

    Down syndrome (DS) patients exhibit abnormalities of hippocampal-dependent explicit memory, a feature that is replicated in relevant mouse models of the disease. Adult hippocampal neurogenesis, which is impaired in DS and other neuropsychiatric diseases, plays a key role in hippocampal circuit plasticity and has been implicated in learning and memory. However, it remains unknown whether increasing adult neurogenesis improves hippocampal plasticity and behavioral performance in the multifactorial context of DS. We report that, in the Ts65Dn mouse model of DS, chronic administration of lithium, a clinically used mood stabilizer, promoted the proliferation of neuronal precursor cells through the pharmacological activation of the Wnt/β-catenin pathway and restored adult neurogenesis in the hippocampal dentate gyrus (DG) to physiological levels. The restoration of adult neurogenesis completely rescued the synaptic plasticity of newborn neurons in the DG and led to the full recovery of behavioral performance in fear conditioning, object location, and novel object recognition tests. These findings indicate that reestablishing a functional population of hippocampal newborn neurons in adult DS mice rescues hippocampal plasticity and memory and implicate adult neurogenesis as a promising therapeutic target to alleviate cognitive deficits in DS patients. PMID:23202733

  17. Synaptic plasticity enables adaptive self-tuning critical networks.

    PubMed

    Stepp, Nigel; Plenz, Dietmar; Srinivasa, Narayan

    2015-01-01

    During rest, the mammalian cortex displays spontaneous neural activity. Spiking of single neurons during rest has been described as irregular and asynchronous. In contrast, recent in vivo and in vitro population measures of spontaneous activity, using the LFP, EEG, MEG or fMRI suggest that the default state of the cortex is critical, manifested by spontaneous, scale-invariant, cascades of activity known as neuronal avalanches. Criticality keeps a network poised for optimal information processing, but this view seems to be difficult to reconcile with apparently irregular single neuron spiking. Here, we simulate a 10,000 neuron, deterministic, plastic network of spiking neurons. We show that a combination of short- and long-term synaptic plasticity enables these networks to exhibit criticality in the face of intrinsic, i.e. self-sustained, asynchronous spiking. Brief external perturbations lead to adaptive, long-term modification of intrinsic network connectivity through long-term excitatory plasticity, whereas long-term inhibitory plasticity enables rapid self-tuning of the network back to a critical state. The critical state is characterized by a branching parameter oscillating around unity, a critical exponent close to -3/2 and a long tail distribution of a self-similarity parameter between 0.5 and 1.

  18. MicroRNAs regulate synaptic plasticity underlying drug addiction.

    PubMed

    Smith, A C W; Kenny, P J

    2017-09-05

    Chronic use of drugs of abuse results in neurochemical, morphological and behavioral plasticity that underlies the emergence of compulsive drug seeking and vulnerability to relapse during periods of attempted abstinence. Identifying and reversing addiction-relevant plasticity is seen as a potential point of pharmacotherapeutic intervention in drug-addicted individuals. Despite considerable advances in our understanding of the actions of drugs of abuse in the brain this information has thus far yielded few novel treatment options addicted individuals. MicroRNAs are small non-coding RNAs that can each regulate the translation of hundreds to thousands of messenger RNAs. The highly pleiotropic nature of miRNAs has focused attention on their contribution to addiction-relevant structural and functional plasticity in the brain and their potential utility as targets for medications development. In this review, we discuss the roles of miRNAs in synaptic plasticity underlying the development of addiction and then briefly discuss the possibility of using circulating miRNA as biomarkers for addiction. This article is protected by copyright. All rights reserved.

  19. Circuit Motifs for Contrast-Adaptive Differentiation in Early Sensory Systems: The Role of Presynaptic Inhibition and Short-Term Plasticity

    PubMed Central

    Zhang, Danke; Wu, Si; Rasch, Malte J.

    2015-01-01

    In natural signals, such as the luminance value across of a visual scene, abrupt changes in intensity value are often more relevant to an organism than intensity values at other positions and times. Thus to reduce redundancy, sensory systems are specialized to detect the times and amplitudes of informative abrupt changes in the input stream rather than coding the intensity values at all times. In theory, a system that responds transiently to fast changes is called a differentiator. In principle, several different neural circuit mechanisms exist that are capable of responding transiently to abrupt input changes. However, it is unclear which circuit would be best suited for early sensory systems, where the dynamic range of the natural input signals can be very wide. We here compare the properties of different simple neural circuit motifs for implementing signal differentiation. We found that a circuit motif based on presynaptic inhibition (PI) is unique in a sense that the vesicle resources in the presynaptic site can be stably maintained over a wide range of stimulus intensities, making PI a biophysically plausible mechanism to implement a differentiator with a very wide dynamical range. Moreover, by additionally considering short-term plasticity (STP), differentiation becomes contrast adaptive in the PI-circuit but not in other potential neural circuit motifs. Numerical simulations show that the behavior of the adaptive PI-circuit is consistent with experimental observations suggesting that adaptive presynaptic inhibition might be a good candidate neural mechanism to achieve differentiation in early sensory systems. PMID:25723493

  20. Circuit motifs for contrast-adaptive differentiation in early sensory systems: the role of presynaptic inhibition and short-term plasticity.

    PubMed

    Zhang, Danke; Wu, Si; Rasch, Malte J

    2015-01-01

    In natural signals, such as the luminance value across of a visual scene, abrupt changes in intensity value are often more relevant to an organism than intensity values at other positions and times. Thus to reduce redundancy, sensory systems are specialized to detect the times and amplitudes of informative abrupt changes in the input stream rather than coding the intensity values at all times. In theory, a system that responds transiently to fast changes is called a differentiator. In principle, several different neural circuit mechanisms exist that are capable of responding transiently to abrupt input changes. However, it is unclear which circuit would be best suited for early sensory systems, where the dynamic range of the natural input signals can be very wide. We here compare the properties of different simple neural circuit motifs for implementing signal differentiation. We found that a circuit motif based on presynaptic inhibition (PI) is unique in a sense that the vesicle resources in the presynaptic site can be stably maintained over a wide range of stimulus intensities, making PI a biophysically plausible mechanism to implement a differentiator with a very wide dynamical range. Moreover, by additionally considering short-term plasticity (STP), differentiation becomes contrast adaptive in the PI-circuit but not in other potential neural circuit motifs. Numerical simulations show that the behavior of the adaptive PI-circuit is consistent with experimental observations suggesting that adaptive presynaptic inhibition might be a good candidate neural mechanism to achieve differentiation in early sensory systems.

  1. Spike-driven synaptic plasticity: theory, simulation, VLSI implementation.

    PubMed

    Fusi, S; Annunziato, M; Badoni, D; Salamon, A; Amit, D J

    2000-10-01

    We present a model for spike-driven dynamics of a plastic synapse, suited for aVLSI implementation. The synaptic device behaves as a capacitor on short timescales and preserves the memory of two stable states (efficacies) on long timescales. The transitions (LTP/LTD) are stochastic because both the number and the distribution of neural spikes in any finite (stimulation) interval fluctuate, even at fixed pre- and postsynaptic spike rates. The dynamics of the single synapse is studied analytically by extending the solution to a classic problem in queuing theory (Takacs process). The model of the synapse is implemented in aVLSI and consists of only 18 transistors. It is also directly simulated. The simulations indicate that LTP/LTD probabilities versus rates are robust to fluctuations of the electronic parameters in a wide range of rates. The solutions for these probabilities are in very good agreement with both the simulations and measurements. Moreover, the probabilities are readily manipulable by variations of the chip's parameters, even in ranges where they are very small. The tests of the electronic device cover the range from spontaneous activity (3-4 Hz) to stimulus-driven rates (50 Hz). Low transition probabilities can be maintained in all ranges, even though the intrinsic time constants of the device are short (approximately 100 ms). Synaptic transitions are triggered by elevated presynaptic rates: for low presynaptic rates, there are essentially no transitions. The synaptic device can preserve its memory for years in the absence of stimulation. Stochasticity of learning is a result of the variability of interspike intervals; noise is a feature of the distributed dynamics of the network. The fact that the synapse is binary on long timescales solves the stability problem of synaptic efficacies in the absence of stimulation. Yet stochastic learning theory ensures that it does not affect the collective behavior of the network, if the transition probabilities are

  2. Obesity elicits interleukin 1-mediated deficits in hippocampal synaptic plasticity.

    PubMed

    Erion, Joanna R; Wosiski-Kuhn, Marlena; Dey, Aditi; Hao, Shuai; Davis, Catherine L; Pollock, Norman K; Stranahan, Alexis M

    2014-02-12

    Adipose tissue is a known source of proinflammatory cytokines in obese humans and animal models, including the db/db mouse, in which obesity arises as a result of leptin receptor insensitivity. Inflammatory cytokines induce cognitive deficits across numerous conditions, but no studies have determined whether obesity-induced inflammation mediates synaptic dysfunction. To address this question, we used a treadmill training paradigm in which mice were exposed to daily training sessions or an immobile belt, with motivation achieved by delivery of compressed air on noncompliance. Treadmill training prevented hippocampal microgliosis, abolished expression of microglial activation markers, and also blocked the functional sensitization observed in isolated cells after ex vivo exposure to lipopolysaccharide. Reduced microglial reactivity with exercise was associated with reinstatement of hippocampus-dependent memory, reversal of deficits in long-term potentiation, and normalization of hippocampal dendritic spine density. Because treadmill training evokes broad responses not limited to the immune system, we next assessed whether directly manipulating adiposity through lipectomy and fat transplantation influences inflammation, cognition, and synaptic plasticity. Lipectomy prevents and fat transplantation promotes systemic and central inflammation, with associated alterations in cognitive and synaptic function. Levels of interleukin 1β (IL1β) emerged as a correlate of adiposity and cognitive impairment across both the treadmill and lipectomy studies, so we manipulated hippocampal IL1 signaling using intrahippocampal delivery of IL1 receptor antagonist (IL1ra). Intrahippocampal IL1ra prevented synaptic dysfunction, proinflammatory priming, and cognitive impairment. This pattern supports a central role for IL1-mediated neuroinflammation as a mechanism for cognitive deficits in obesity and diabetes.

  3. Alterations in hippocampal excitability, synaptic transmission and synaptic plasticity in a neurodevelopmental model of schizophrenia.

    PubMed

    Sanderson, Thomas M; Cotel, Marie-Caroline; O'Neill, Michael J; Tricklebank, Mark D; Collingridge, Graham L; Sher, Emanuele

    2012-03-01

    The risk of developing schizophrenia has been linked to perturbations in embryonic development, but the physiological alterations that result from such insults are incompletely understood. Here, we have investigated aspects of hippocampal physiology in a proposed neurodevelopmental model of schizophrenia, induced during gestation in rats by injection of the antimitotic agent methylazoxymethanol acetate (MAM) at embryonic day 17 (MAM(E17)). We observed a reduction in synaptic innervation and synaptic transmission in the dorsal hippocampus of MAM(E17) treated rats, accompanied by a pronounced increase in CA1 pyramidal neuron excitability. Pharmacological investigations suggested that a deficit in GABAergic inhibition could account for the increase in excitability; furthermore, some aspects of the hyper-excitability could be normalised by the GABA(A) receptor (GABA(A)R) potentiator diazepam. Despite these alterations, two major forms of synaptic plasticity, long-term potentiation (LTP) and long-term depression (LTD) could be readily induced. In contrast, there was a substantial deficit in the reversal of LTP, depotentiation. These findings suggest that delivering neurodevelopmental insults at E17 may offer insights into some of the physiological alterations that underlie behavioural and cognitive symptoms observed in schizophrenia.

  4. Synaptic Plasticity Selectively Activated by Polarization-Dependent Energy-Efficient Ion Migration in an Ultrathin Ferroelectric Tunnel Junction.

    PubMed

    Yoon, Chansoo; Lee, Ji Hye; Lee, Sangik; Jeon, Ji Hoon; Jang, Jun Tae; Kim, Dae Hwan; Kim, Young Heon; Park, Bae Ho

    2017-03-08

    Selectively activated inorganic synaptic devices, showing a high on/off ratio, ultrasmall dimensions, low power consumption, and short programming time, are required to emulate the functions of high-capacity and energy-efficient reconfigurable human neural systems combining information storage and processing ( Li et al. Sci. Rep. 2014 , 4 , 4096 ). Here, we demonstrate that such a synaptic device is realized using a Ag/PbZr0.52Ti0.48O3 (PZT)/La0.8Sr0.2MnO3 (LSMO) ferroelectric tunnel junction (FTJ) with ultrathin PZT (thickness of ∼4 nm). Ag ion migration through the very thin FTJ enables a large on/off ratio (10(7)) and low energy consumption (potentiation energy consumption = ∼22 aJ and depression energy consumption = ∼2.5 pJ). In addition, the simple alignment of the downward polarization in PZT selectively activates the synaptic plasticity of the FTJ and the transition from short-term plasticity to long-term potentiation.

  5. Mammalian Vestibular Macular Synaptic Plasticity: Results from SLS-2 Spaceflight

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.D.

    1994-01-01

    The effects of exposure to microgravity were studied in rat utricular maculas collected inflight (IF, day 13), post-flight on day of orbiter landing (day 14, R+O) and after 14 days (R+ML). Controls were collected at corresponding times. The objectives were 1) to learn whether hair cell ribbon synapses counts would be higher in tissues collected in space than in tissues collected postflight during or after readaptation to Earth's gravity; and 2) to compare results with those of SLS-1. Maculas were fixed by immersion, micro-dissected, dehydrated and prepared for ultrastructural study by usual methods. Synapses were counted in 100 serial sections 150 nm thick and were located to specific hair cells in montages of every 7th section. Counts were analyzed for statistical significance using analysis of variance. Results in maculas of IF dissected rats, one 13 day control (IFC), and one R + 0 rat have been analyzed. Study of an R+ML macula is nearly completed. For type I cells, IF mean is 2.3 +/-1.6; IFC mean is 1.6 +/-1.0; R+O mean is 2.3 +/- 1.6. For type II cells, IF mean is 11.4 +/- 17.1; IFC mean is 5.5 +/-3.5; R+O mean is 10.1 +/- 7.4. The difference between IF and IFC means for type I cells is statistically significant (p less than 0.0464). For type It cells, IF compared to IFC means, p less than 0.0003; and for IFC to R+O means, p less than 0.0139. Shifts toward spheres (p less than 0.0001) and pairs (p less than 0.0139) were significant in type II cells of IF rats. The results are largely replicating findings from SLS-1 and indicate that spaceflight affects synaptic number, form and distribution, particularly in type II hair cells. The increases in synaptic number and in sphere-like ribbons are interpreted to improve synaptic efficacy, to help return afferent discharges to a more normal state. Findings indicate that a great capacity for synaptic plasticity exists in mammalian gravity sensors, and that this plasticity is more dominant in the local circuitry. The

  6. Mammalian Vestibular Macular Synaptic Plasticity: Results from SLS-2 Spaceflight

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.D.

    1994-01-01

    The effects of exposure to microgravity were studied in rat utricular maculas collected inflight (IF, day 13), post-flight on day of orbiter landing (day 14, R+O) and after 14 days (R+ML). Controls were collected at corresponding times. The objectives were 1) to learn whether hair cell ribbon synapses counts would be higher in tissues collected in space than in tissues collected postflight during or after readaptation to Earth's gravity; and 2) to compare results with those of SLS-1. Maculas were fixed by immersion, micro-dissected, dehydrated and prepared for ultrastructural study by usual methods. Synapses were counted in 100 serial sections 150 nm thick and were located to specific hair cells in montages of every 7th section. Counts were analyzed for statistical significance using analysis of variance. Results in maculas of IF dissected rats, one 13 day control (IFC), and one R + 0 rat have been analyzed. Study of an R+ML macula is nearly completed. For type I cells, IF mean is 2.3 +/-1.6; IFC mean is 1.6 +/-1.0; R+O mean is 2.3 +/- 1.6. For type II cells, IF mean is 11.4 +/- 17.1; IFC mean is 5.5 +/-3.5; R+O mean is 10.1 +/- 7.4. The difference between IF and IFC means for type I cells is statistically significant (p less than 0.0464). For type It cells, IF compared to IFC means, p less than 0.0003; and for IFC to R+O means, p less than 0.0139. Shifts toward spheres (p less than 0.0001) and pairs (p less than 0.0139) were significant in type II cells of IF rats. The results are largely replicating findings from SLS-1 and indicate that spaceflight affects synaptic number, form and distribution, particularly in type II hair cells. The increases in synaptic number and in sphere-like ribbons are interpreted to improve synaptic efficacy, to help return afferent discharges to a more normal state. Findings indicate that a great capacity for synaptic plasticity exists in mammalian gravity sensors, and that this plasticity is more dominant in the local circuitry. The

  7. NFAT regulates pre-synaptic development and activity-dependent plasticity in Drosophila

    PubMed Central

    Freeman, Amanda; Franciscovich, Amy; Bowers, Mallory; Sandstrom, David J.; Sanyal, Subhabrata

    2010-01-01

    The calcium-regulated transcription factor NFAT is emerging as a key regulator of neuronal development and plasticity but precise cellular consequences of NFAT function remain poorly understood. Here, we report that the single Drosophila NFAT homolog is widely expressed in the nervous system including motor neurons and unexpectedly controls neural excitability. Likely due to this effect on excitability, NFAT regulates overall larval locomotion and both chronic and acute forms of activity-dependent plasticity at the larval glutamatergic neuro-muscular synapse. Specifically, NFAT-dependent synaptic phenotypes include changes in the number of pre-synaptic boutons, stable modifications in synaptic microtubule architecture and pre-synaptic transmitter release, while no evidence is found for synaptic retraction or alterations in the level of the synaptic cell adhesion molecule FasII. We propose that NFAT regulates pre-synaptic development and constraints long-term plasticity by dampening neuronal excitability. PMID:21185939

  8. Synaptic plasticity and memory functions achieved in a WO3-x-based nanoionics device by using the principle of atomic switch operation.

    PubMed

    Yang, Rui; Terabe, Kazuya; Yao, Yiping; Tsuruoka, Tohru; Hasegawa, Tsuyoshi; Gimzewski, James K; Aono, Masakazu

    2013-09-27

    A compact neuromorphic nanodevice with inherent learning and memory properties emulating those of biological synapses is the key to developing artificial neural networks rivaling their biological counterparts. Experimental results showed that memorization with a wide time scale from volatile to permanent can be achieved in a WO3-x-based nanoionics device and can be precisely and cumulatively controlled by adjusting the device's resistance state and input pulse parameters such as the amplitude, interval, and number. This control is analogous to biological synaptic plasticity including short-term plasticity, long-term potentiation, transition from short-term memory to long-term memory, forgetting processes for short- and long-term memory, learning speed, and learning history. A compact WO3-x-based nanoionics device with a simple stacked layer structure should thus be a promising candidate for use as an inorganic synapse in artificial neural networks due to its striking resemblance to the biological synapse.

  9. Reelin Supplementation Enhances Cognitive Ability, Synaptic Plasticity, and Dendritic Spine Density

    ERIC Educational Resources Information Center

    Rogers, Justin T.; Rusiana, Ian; Trotter, Justin; Zhao, Lisa; Donaldson, Erika; Pak, Daniel T.S.; Babus, Lenard W.; Peters, Melinda; Banko, Jessica L.; Chavis, Pascale; Rebeck, G. William; Hoe, Hyang-Sook; Weeber, Edwin J.

    2011-01-01

    Apolipoprotein receptors belong to an evolutionarily conserved surface receptor family that has intimate roles in the modulation of synaptic plasticity and is necessary for proper hippocampal-dependent memory formation. The known lipoprotein receptor ligand Reelin is important for normal synaptic plasticity, dendritic morphology, and cognitive…

  10. Histone Deacetylase Inhibition Facilitates Massed Pattern-Induced Synaptic Plasticity and Memory

    ERIC Educational Resources Information Center

    Pandey, Kiran; Sharma, Kaushik P.; Sharma, Shiv K.

    2015-01-01

    Massed training is less effective for long-term memory formation than the spaced training. The role of acetylation in synaptic plasticity and memory is now well established. However, the role of this important protein modification in synaptic plasticity induced by massed pattern of stimulation or memory induced by massed training is not well…

  11. Histone Deacetylase Inhibition Facilitates Massed Pattern-Induced Synaptic Plasticity and Memory

    ERIC Educational Resources Information Center

    Pandey, Kiran; Sharma, Kaushik P.; Sharma, Shiv K.

    2015-01-01

    Massed training is less effective for long-term memory formation than the spaced training. The role of acetylation in synaptic plasticity and memory is now well established. However, the role of this important protein modification in synaptic plasticity induced by massed pattern of stimulation or memory induced by massed training is not well…

  12. Reelin Supplementation Enhances Cognitive Ability, Synaptic Plasticity, and Dendritic Spine Density

    ERIC Educational Resources Information Center

    Rogers, Justin T.; Rusiana, Ian; Trotter, Justin; Zhao, Lisa; Donaldson, Erika; Pak, Daniel T.S.; Babus, Lenard W.; Peters, Melinda; Banko, Jessica L.; Chavis, Pascale; Rebeck, G. William; Hoe, Hyang-Sook; Weeber, Edwin J.

    2011-01-01

    Apolipoprotein receptors belong to an evolutionarily conserved surface receptor family that has intimate roles in the modulation of synaptic plasticity and is necessary for proper hippocampal-dependent memory formation. The known lipoprotein receptor ligand Reelin is important for normal synaptic plasticity, dendritic morphology, and cognitive…

  13. Endocannabinoid System and Synaptic Plasticity: Implications for Emotional Responses

    PubMed Central

    Viveros, María-Paz; Marco, Eva-María; Llorente, Ricardo; López-Gallardo, Meritxell

    2007-01-01

    The endocannabinoid system has been involved in the regulation of anxiety, and proposed as an inhibitory modulator of neuronal, behavioral and adrenocortical responses to stressful stimuli. Brain regions such as the amygdala, hippocampus and cortex, which are directly involved in the regulation of emotional behavior, contain high densities of cannabinoid CB1 receptors. Mutant mice lacking CB1 receptors show anxiogenic and depressive-like behaviors as well as an altered hypothalamus pituitary adrenal axis activity, whereas enhancement of endocannabinoid signaling produces anxiolytic and antidepressant-like effects. Genetic and pharmacological approaches also support an involvement of endocannabinoids in extinction of aversive memories. Thus, the endocannabinoid system appears to play a pivotal role in the regulation of emotional states. Endocannabinoids have emerged as mediators of short- and long-term synaptic plasticity in diverse brain structures. Despite the fact that most of the studies on this field have been performed using in vitro models, endocannabinoid-mediated plasticity might be considered as a plausible candidate underlying some of the diverse physiological functions of the endogenous cannabinoid system, including developmental, affective and cognitive processes. In this paper, we will focus on the functional relevance of endocannabinoid-mediated plasticity within the framework of emotional responses. Alterations of the endocannabinoid system may constitute an important factor in the aetiology of certain neuropsychiatric disorders, and, in turn, enhancers of endocannabinoid signaling could represent a potential therapeutical tool in the treatment of both anxiety and depressive symptoms. PMID:17641734

  14. Strain-Dependent Variations in Spatial Learning and in Hippocampal Synaptic Plasticity in the Dentate Gyrus Of Freely Behaving Rats

    PubMed Central

    Manahan-Vaughan, Denise; Schwegler, Herbert

    2011-01-01

    Hippocampal synaptic plasticity is believed to comprise the cellular basis for spatial learning. Strain-dependent differences in synaptic plasticity in the CA1 region have been reported. However, it is not known whether these differences extend to other synapses within the trisynaptic circuit, although there is evidence for morphological variations within that path. We investigated whether Wistar and Hooded Lister (HL) rat strains express differences in synaptic plasticity in the dentate gyrus in vivo. We also explored whether they exhibit differences in the ability to engage in spatial learning in an eight-arm radial maze. Basal synaptic transmission was stable over a 24-h period in both rat strains, and the input–output relationship of both strains was not significantly different. Paired-pulse analysis revealed significantly less paired-pulse facilitation in the HL strain when pulses were given 40–100 ms apart. Low frequency stimulation at 1 Hz evoked long-term depression (>24 h) in Wistar and short-term depression (<2 h) in HL rats; 200 Hz stimulation induced long-term potentiation (>24 h) in Wistar, and a transient, significantly smaller potentiation (<1 h) in HL rats, suggesting that HL rats have higher thresholds for expression of persistent synaptic plasticity. Training for 10 days in an eight-arm radial maze revealed that HL rats master the working memory task faster than Wistar rats, although both strains show an equivalent performance by the end of the trial period. HL rats also perform more efficiently in a double working and reference memory task. On the other hand, Wistar rats show better reference memory performance on the final (8–10) days of training. Wistar rats were less active and more anxious than HL rats. These data suggest that strain-dependent variations in hippocampal synaptic plasticity occur in different hippocampal synapses. A clear correlation with differences in spatial learning is not evident however. PMID:21436876

  15. Natural Firing Patterns Imply Low Sensitivity of Synaptic Plasticity to Spike Timing Compared with Firing Rate

    PubMed Central

    Wallisch, Pascal; Ostojic, Srdjan

    2016-01-01

    Synaptic plasticity is sensitive to the rate and the timing of presynaptic and postsynaptic action potentials. In experimental protocols inducing plasticity, the imposed spike trains are typically regular and the relative timing between every presynaptic and postsynaptic spike is fixed. This is at odds with firing patterns observed in the cortex of intact animals, where cells fire irregularly and the timing between presynaptic and postsynaptic spikes varies. To investigate synaptic changes elicited by in vivo-like firing, we used numerical simulations and mathematical analysis of synaptic plasticity models. We found that the influence of spike timing on plasticity is weaker than expected from regular stimulation protocols. Moreover, when neurons fire irregularly, synaptic changes induced by precise spike timing can be equivalently induced by a modest firing rate variation. Our findings bridge the gap between existing results on synaptic plasticity and plasticity occurring in vivo, and challenge the dominant role of spike timing in plasticity. SIGNIFICANCE STATEMENT Synaptic plasticity, the change in efficacy of connections between neurons, is thought to underlie learning and memory. The dominant paradigm posits that the precise timing of neural action potentials (APs) is central for plasticity induction. This concept is based on experiments using highly regular and stereotyped patterns of APs, in stark contrast with natural neuronal activity. Using synaptic plasticity models, we investigated how irregular, in vivo-like activity shapes synaptic plasticity. We found that synaptic changes induced by precise timing of APs are much weaker than suggested by regular stimulation protocols, and can be equivalently induced by modest variations of the AP rate alone. Our results call into question the dominant role of precise AP timing for plasticity in natural conditions. PMID:27807166

  16. Rapid change of AM fungal community in a rain-fed wheat field with short-term plastic film mulching practice.

    PubMed

    Liu, Yongjun; Mao, Lin; He, Xinhua; Cheng, Gang; Ma, Xiaojun; An, Lizhe; Feng, Huyuan

    2012-01-01

    Plastic film mulching (PFM) is a widely used agricultural practice in the temperate semi-arid Loess Plateau of China. However, how beneficial soil microbes, arbuscular mycorrhizal (AM) fungi in particular, respond to the PFM practice is not known. Here, a field experiment was performed to study the effects of a 3-month short-term PFM practice on AM fungi in plots planted with spring wheat (Triticum aestivum L. cv. Dingxi-2) in the Loess Plateau. AM colonization, spore density, wheat spike weight, and grain phosphorus (P) content were significantly increased in the PFM treatments, and these changes were mainly attributable to changes in soil properties such as available P and soil moisture. Alkaline phosphatase activity was significantly higher in PFM soils, but levels of AM fungal-related glomalin were similar between treatments. A total of nine AM fungal phylotypes were detected in root samples based on AM fungal SSU rDNA analyses, with six and five phylotypes in PFM and no-PFM plots, respectively. Although AM fungal phylotype richness was not statistically different between treatments, the community compositions were different, with four and three specific phylotypes in the PFM and no-PFM plots, respectively. A significant and rapid change in AM fungal, wheat, and soil variables following PFM suggested that the functioning of the AM symbiosis had been changed in the wheat field under PFM. Future studies are needed to investigate whether PFM applied over a longer term has a similar effect on the AM fungal community and their functioning in an agricultural ecosystem.

  17. Adenosine gates synaptic plasticity at hippocampal mossy fiber synapses

    NASA Astrophysics Data System (ADS)

    Moore, Kimberly A.; Nicoll, Roger A.; Schmitz, Dietmar

    2003-11-01

    The release properties of synapses in the central nervous system vary greatly, not only across anatomically distinct types of synapses but also among the same class of synapse. This variation manifests itself in large part by differences in the probability of transmitter release, which affects such activity-dependent presynaptic forms of plasticity as paired-pulse facilitation and frequency facilitation. This heterogeneity in presynaptic function reflects differences in the intrinsic properties of the synaptic terminal and the activation of presynaptic neurotransmitter receptors. Here we show that the unique presynaptic properties of the hippocampal mossy fiber synapse are largely imparted onto the synapse by the continuous local action of extracellular adenosine at presynaptic A1 adenosine receptors, which maintains a low basal probability of transmitter release.

  18. Circadian Mechanisms Underlying Reward-Related Neurophysiology and Synaptic Plasticity

    PubMed Central

    Parekh, Puja K.; McClung, Colleen A.

    2016-01-01

    Evidence from clinical and preclinical research provides an undeniable link between disruptions in the circadian clock and the development of psychiatric diseases, including mood and substance abuse disorders. The molecular clock, which controls daily patterns of physiological and behavioral activity in living organisms, when desynchronized, may exacerbate or precipitate symptoms of psychiatric illness. One of the outstanding questions remaining in this field is that of cause and effect in the relationship between circadian rhythm disruption and psychiatric disease. Focus has recently turned to uncovering the role of circadian proteins beyond the maintenance of homeostatic systems and outside of the suprachiasmatic nucleus (SCN), the master pacemaker region of the brain. In this regard, several groups, including our own, have sought to understand how circadian proteins regulate mechanisms of synaptic plasticity and neurotransmitter signaling in mesocorticolimbic brain regions, which are known to be critically involved in reward processing and mood. This regulation can come in the form of direct transcriptional control of genes central to mood and reward, including those associated with dopaminergic activity in the midbrain. It can also be seen at the circuit level through indirect connections of mesocorticolimbic regions with the SCN. Circadian misalignment paradigms as well as genetic models of circadian disruption have helped to elucidate some of the complex interactions between these systems and neural activity influencing behavior. In this review, we explore findings that link circadian protein function with synaptic adaptations underlying plasticity as it may contribute to the development of mood disorders and addiction. In light of recent advances in technology and sophisticated methods for molecular and circuit-level interrogation, we propose future directions aimed at teasing apart mechanisms through which the circadian system modulates mood and reward

  19. Pannexin1 Stabilizes Synaptic Plasticity and Is Needed for Learning

    PubMed Central

    Kurtenbach, Stefan; Wildförster, Verena; Dvoriantchikova, Galina; Hanske, Julian; Petrasch-Parwez, Elisabeth; Shestopalov, Valery I.; Dermietzel, Rolf; Manahan-Vaughan, Denise; Zoidl, Georg

    2012-01-01

    Pannexin 1 (Panx1) represents a class of vertebrate membrane channels, bearing significant sequence homology with the invertebrate gap junction proteins, the innexins and more distant similarities in the membrane topologies and pharmacological sensitivities with gap junction proteins of the connexin family. In the nervous system, cooperation among pannexin channels, adenosine receptors, and KATP channels modulating neuronal excitability via ATP and adenosine has been recognized, but little is known about the significance in vivo. However, the localization of Panx1 at postsynaptic sites in hippocampal neurons and astrocytes in close proximity together with the fundamental role of ATP and adenosine for CNS metabolism and cell signaling underscore the potential relevance of this channel to synaptic plasticity and higher brain functions. Here, we report increased excitability and potently enhanced early and persistent LTP responses in the CA1 region of acute slice preparations from adult Panx1−/− mice. Adenosine application and N-methyl-D-aspartate receptor (NMDAR)-blocking normalized this phenotype, suggesting that absence of Panx1 causes chronic extracellular ATP/adenosine depletion, thus facilitating postsynaptic NMDAR activation. Compensatory transcriptional up-regulation of metabotropic glutamate receptor 4 (grm4) accompanies these adaptive changes. The physiological modification, promoted by loss of Panx1, led to distinct behavioral alterations, enhancing anxiety and impairing object recognition and spatial learning in Panx1−/− mice. We conclude that ATP release through Panx1 channels plays a critical role in maintaining synaptic strength and plasticity in CA1 neurons of the adult hippocampus. This result provides the rationale for in-depth analysis of Panx1 function and adenosine based therapies in CNS disorders. PMID:23284764

  20. MCTP is an ER-resident calcium sensor that stabilizes synaptic transmission and homeostatic plasticity

    PubMed Central

    Genç, Özgür; Dickman, Dion K; Ma, Wenpei; Tong, Amy; Fetter, Richard D; Davis, Graeme W

    2017-01-01

    Presynaptic homeostatic plasticity (PHP) controls synaptic transmission in organisms from Drosophila to human and is hypothesized to be relevant to the cause of human disease. However, the underlying molecular mechanisms of PHP are just emerging and direct disease associations remain obscure. In a forward genetic screen for mutations that block PHP we identified mctp (Multiple C2 Domain Proteins with Two Transmembrane Regions). Here we show that MCTP localizes to the membranes of the endoplasmic reticulum (ER) that elaborate throughout the soma, dendrites, axon and presynaptic terminal. Then, we demonstrate that MCTP functions downstream of presynaptic calcium influx with separable activities to stabilize baseline transmission, short-term release dynamics and PHP. Notably, PHP specifically requires the calcium coordinating residues in each of the three C2 domains of MCTP. Thus, we propose MCTP as a novel, ER-localized calcium sensor and a source of calcium-dependent feedback for the homeostatic stabilization of neurotransmission. DOI: http://dx.doi.org/10.7554/eLife.22904.001 PMID:28485711

  1. Chronic caffeine treatment prevents sleep deprivation-induced impairment of cognitive function and synaptic plasticity.

    PubMed

    Alhaider, Ibrahim A; Aleisa, Abdulaziz M; Tran, Trinh T; Alzoubi, Karem H; Alkadhi, Karim A

    2010-04-01

    This study was undertaken to provide a detailed account of the effect of chronic treatment with a small dose of caffeine on the deleterious effects of sleep loss on brain function in rats. We investigated the effects of chronic (4 weeks) caffeine treatment (0.3 g/L in drinking water) on memory impairment in acutely (24 h) sleep-deprived adult male Wistar rats. Sleep deprivation was induced using the modified multiple platform model. The effects of caffeine on sleep deprivation-induced hippocampus-dependent learning and memory deficits were studied by 3 approaches: learning and memory performance in the radial arm water maze task, electrophysiological recording of early long-term potentiation (E-LTP) in area CA1 of the hippocampus, and levels of memory- and synaptic plasticity-related signaling molecules after E-LTP induction. The results showed that chronic caffeine treatment prevented impairment of hippocampus-dependent learning, shortterm memory and E-LTP of area CA1 in the sleep-deprived rats. In correlation, chronic caffeine treatment prevented sleep deprivation-associated decrease in the levels of phosphorylated calcium/calmodulin-dependent protein kinase II (P-CaMKII) during expression of E-LTP. The results suggest that long-term use of a low dose of caffeine prevents impairment of short-term memory and E-LTP in acutely sleep-deprived rats.

  2. Impaired hippocampal synaptic plasticity in C6 glioma-bearing rats.

    PubMed

    Wang, Yi-Yi; Liu, Shi-Chang; Yang, Zhuo; Zhang, Tao

    2011-07-01

    For many glioblastoma multiforme patients, cognitive deficits are part of the disease process. In this study we attempted to determine the role of synaptic plasticity and glutamate (Glu) in C6 glioma-bearing rats. Male Sprague-Dawley (SD) rats were subjected to tumor implantation in the right caudate putamen nucleus. At 17 days after tumor implantation, animals were exposed to an open field test. The numbers of crossings and rearings were used as measures of exploration processes. An input/output (I/O) curve was first determined using the measurements of field excitatory postsynaptic potential (fEPSP) slope in response to a series of stimulation intensities. The short-term potentiation (STP) and long-term potentiation (LTP) induced by high-frequency stimulation (HFS) in the CA1 region of the contralateral hippocampus to the tumor were recorded. The glutamate and γ-aminobutyric acid (GABA) content of contralateral hippocampus were quantified by high-performance liquid chromatography (HPLC). C6 glioma-bearing rats showed a trend for a rightward shift of input/output relationship and significant deficits in maintenance of STP and LTP. Quantitative analysis by HPLC of glutamate and γ-aminobutyric acid revealed that Glu concentration and Glu/GABA ratio were increased significantly in contralateral hippocampus, suggesting impairment of excitatory and inhibitory synaptic transmission. The results suggest that the neurocognitive deficits in C6 glioma-bearing rats may be mediated via profound changes in neuroplasticity and elevated Glu concentration and Glu/GABA ratio in hippocampus area of the brain.

  3. Sleep recalibrates homeostatic and associative synaptic plasticity in the human cortex

    PubMed Central

    Kuhn, Marion; Wolf, Elias; Maier, Jonathan G.; Mainberger, Florian; Feige, Bernd; Schmid, Hanna; Bürklin, Jan; Maywald, Sarah; Mall, Volker; Jung, Nikolai H.; Reis, Janine; Spiegelhalder, Kai; Klöppel, Stefan; Sterr, Annette; Eckert, Anne; Riemann, Dieter; Normann, Claus; Nissen, Christoph

    2016-01-01

    Sleep is ubiquitous in animals and humans, but its function remains to be further determined. The synaptic homeostasis hypothesis of sleep–wake regulation proposes a homeostatic increase in net synaptic strength and cortical excitability along with decreased inducibility of associative synaptic long-term potentiation (LTP) due to saturation after sleep deprivation. Here we use electrophysiological, behavioural and molecular indices to non-invasively study net synaptic strength and LTP-like plasticity in humans after sleep and sleep deprivation. We demonstrate indices of increased net synaptic strength (TMS intensity to elicit a predefined amplitude of motor-evoked potential and EEG theta activity) and decreased LTP-like plasticity (paired associative stimulation induced change in motor-evoked potential and memory formation) after sleep deprivation. Changes in plasma BDNF are identified as a potential mechanism. Our study indicates that sleep recalibrates homeostatic and associative synaptic plasticity, believed to be the neural basis for adaptive behaviour, in humans. PMID:27551934

  4. Sleep recalibrates homeostatic and associative synaptic plasticity in the human cortex.

    PubMed

    Kuhn, Marion; Wolf, Elias; Maier, Jonathan G; Mainberger, Florian; Feige, Bernd; Schmid, Hanna; Bürklin, Jan; Maywald, Sarah; Mall, Volker; Jung, Nikolai H; Reis, Janine; Spiegelhalder, Kai; Klöppel, Stefan; Sterr, Annette; Eckert, Anne; Riemann, Dieter; Normann, Claus; Nissen, Christoph

    2016-08-23

    Sleep is ubiquitous in animals and humans, but its function remains to be further determined. The synaptic homeostasis hypothesis of sleep-wake regulation proposes a homeostatic increase in net synaptic strength and cortical excitability along with decreased inducibility of associative synaptic long-term potentiation (LTP) due to saturation after sleep deprivation. Here we use electrophysiological, behavioural and molecular indices to non-invasively study net synaptic strength and LTP-like plasticity in humans after sleep and sleep deprivation. We demonstrate indices of increased net synaptic strength (TMS intensity to elicit a predefined amplitude of motor-evoked potential and EEG theta activity) and decreased LTP-like plasticity (paired associative stimulation induced change in motor-evoked potential and memory formation) after sleep deprivation. Changes in plasma BDNF are identified as a potential mechanism. Our study indicates that sleep recalibrates homeostatic and associative synaptic plasticity, believed to be the neural basis for adaptive behaviour, in humans.

  5. Abnormal cortical synaptic plasticity in minimal hepatic encephalopathy.

    PubMed

    Golaszewski, Stefan; Langthaler, Patrick B; Schwenker, Kerstin; Florea, Cristina; Christova, Monica; Brigo, Francesco; Trinka, Eugen; Nardone, Raffaele

    2016-07-01

    Minimal hepatic encephalopathy (MHE) represents the earliest stage of hepatic encephalopathy (HE). MHE is characterized by cognitive function impairment in the domains of attention, vigilance and integrative function, while obvious clinical manifestations are lacking. In the present study, we aimed at assessing whether subjects with MHE showed alterations in synaptic plasticity within the motor cortex. Previous findings suggest that learning in human motor cortex occurs through long-term potentiation (LTP)-like mechanisms. We employed therefore the paired associative stimulation (PAS) protocol by transcranial magnetic stimulation (TMS), which is able to induce LTP-like effects in the motor cortex of normal subjects. Fifteen patients with MHE and 15 age- and sex-matched cirrhotic patients without MHE were recruited. PAS consisted of 180 electrical stimuli of the right median nerve paired with a single TMS over the hotspot of right abductor pollicis brevis (APB) at an ISI of 25ms (PAS25). We measured motor evoked potentials (MEPs) before and after each intervention for up to 30min. In healthy subjects the PAS25 protocol was followed by a significant increase of the MEP amplitude. On the contrary, in patients with MHE the MEP amplitude was slightly reduced after PAS. These findings demonstrated that associative sensorimotor plasticity, an indirect probe for motor learning, is impaired in MHE patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Fructose consumption reduces hippocampal synaptic plasticity underlying cognitive performance

    PubMed Central

    Cisternas, Pedro; Salazar, Paulina; Serrano, Felipe G.; Montecinos-Oliva, Carla; Arredondo, Sebastián B.; Varela-Nallar, Lorena; Barja, Salesa; Vio, Carlos P.; Gomez-Pinilla, Fernando; Inestrosa, Nibaldo C.

    2017-01-01

    Metabolic syndrome (MetS) is a global epidemic, which involves a spectrum of metabolic disorders comprising diabetes and obesity. The impact of MetS on the brain is becoming to be a concern, however, the poor understanding of mechanisms involved has limited the development of therapeutic strategies. We induced a MetS-like condition by exposing mice to fructose feeding for 7 weeks. There was a dramatic deterioration in the capacity of the hippocampus to sustain synaptic plasticity in the forms of long-term potentiation (LTP) and long-term depression (LTD). Mice exposed to fructose showed a reduction in the number of contact zones and the size of postsynaptic densities (PSDs) in the hippocampus, as well as a decrease in hippocampal neurogenesis. There was an increase in lipid peroxidation likely associated with a deficiency in plasma membrane excitability. Consistent with an overall hippocampal dysfunction, there was a subsequent decrease in hippocampal dependent learning and memory performance, i.e., spatial learning and episodic memory. Most of the pathological sequel of MetS in the brain was reversed three month after discontinue fructose feeding. These results are novel to show that MetS triggers a cascade of molecular events, which disrupt hippocampal functional plasticity, and specific aspects of learning and memory function. The overall information raises concerns about the risk imposed by excessive fructose consumption on the pathology of neurological disorders. PMID:26300486

  7. Fructose consumption reduces hippocampal synaptic plasticity underlying cognitive performance.

    PubMed

    Cisternas, Pedro; Salazar, Paulina; Serrano, Felipe G; Montecinos-Oliva, Carla; Arredondo, Sebastián B; Varela-Nallar, Lorena; Barja, Salesa; Vio, Carlos P; Gomez-Pinilla, Fernando; Inestrosa, Nibaldo C

    2015-11-01

    Metabolic syndrome (MetS) is a global epidemic, which involves a spectrum of metabolic disorders comprising diabetes and obesity. The impact of MetS on the brain is becoming to be a concern, however, the poor understanding of mechanisms involved has limited the development of therapeutic strategies. We induced a MetS-like condition by exposing mice to fructose feeding for 7weeks. There was a dramatic deterioration in the capacity of the hippocampus to sustain synaptic plasticity in the forms of long-term potentiation (LTP) and long-term depression (LTD). Mice exposed to fructose showed a reduction in the number of contact zones and the size of postsynaptic densities (PSDs) in the hippocampus, as well as a decrease in hippocampal neurogenesis. There was an increase in lipid peroxidation likely associated with a deficiency in plasma membrane excitability. Consistent with an overall hippocampal dysfunction, there was a subsequent decrease in hippocampal dependent learning and memory performance, i.e., spatial learning and episodic memory. Most of the pathological sequel of MetS in the brain was reversed three month after discontinue fructose feeding. These results are novel to show that MetS triggers a cascade of molecular events, which disrupt hippocampal functional plasticity, and specific aspects of learning and memory function. The overall information raises concerns about the risk imposed by excessive fructose consumption on the pathology of neurological disorders. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  8. Neuromodulation and metamodulation by adenosine: Impact and subtleties upon synaptic plasticity regulation.

    PubMed

    Sebastião, Ana M; Ribeiro, Joaquim A

    2015-09-24

    Synaptic plasticity mechanisms, i.e. the sequence of events that underlies persistent changes in synaptic strength as a consequence of transient alteration in neuronal firing, are greatly influenced by the 'chemical atmosphere' of the synapses, that is to say by the presence of molecules at the synaptic cleft able to fine-tune the activity of other molecules more directly related to plasticity. One of those fine tuners is adenosine, known for a long time as an ubiquitous neuromodulator and metamodulator and recognized early as influencing synaptic plasticity. In this review we will refer to the mechanisms that adenosine can use to affect plasticity, emphasizing aspects of the neurobiology of adenosine relevant to its ability to control synaptic functioning. This article is part of a Special Issue entitled Brain and Memory.

  9. A unifying theory of synaptic long-term plasticity based on a sparse distribution of synaptic strength

    PubMed Central

    Krieg, Daniel; Triesch, Jochen

    2014-01-01

    Long-term synaptic plasticity is fundamental to learning and network function. It has been studied under various induction protocols and depends on firing rates, membrane voltage, and precise timing of action potentials. These protocols show different facets of a common underlying mechanism but they are mostly modeled as distinct phenomena. Here, we show that all of these different dependencies can be explained from a single computational principle. The objective is a sparse distribution of excitatory synaptic strength, which may help to reduce metabolic costs associated with synaptic transmission. Based on this objective we derive a stochastic gradient ascent learning rule which is of differential-Hebbian type. It is formulated in biophysical quantities and can be related to current mechanistic theories of synaptic plasticity. The learning rule accounts for experimental findings from all major induction protocols and explains a classic phenomenon of metaplasticity. Furthermore, our model predicts the existence of metaplasticity for spike-timing-dependent plasticity Thus, we provide a theory of long-term synaptic plasticity that unifies different induction protocols and provides a connection between functional and mechanistic levels of description. PMID:24624080

  10. The Role of GluK4 in Synaptic Plasticity and Affective Behavior in Mice

    NASA Astrophysics Data System (ADS)

    Catches, Justin Samuel

    Kainate receptors (KARs) are glutamate-gated ion channels that signal through both ionotropic and metabotropic pathways (Contractor et al., 2011). Combinations of five KAR subunits (GluK1-5) form tetrameric receptors with GluK1, GluK2, and GluK3 able to form functional homomeric channels. The high-affinity subunits, GluK4 and GluK5, do not form homomeric channels but modify the properties of heteromeric receptors. Expression of the GluK4 receptor subunit in the forebrain is restricted to the CA3 region of the hippocampus and dentate gyrus regions where KARs modulate synaptic plasticity. In this study, ablation of Grik4, which encodes GluK4, in mice reduced KAR synaptic currents and altered activation properties of postsynaptic receptors but left two forms of presynaptic short-term plasticity intact. Disruption of both Grik4 and Grik5 caused complete loss of the postsynaptic ionotropic KAR current and impaired presynaptic frequency facilitation. Additionally, KAR surface expression was altered at pre- and postsynaptic sites at the MF synapse. Despite the loss of ionotropic signaling, KAR-mediated inhibition of the slow afterhyperpolarization current, which is dependent on metabotropic signaling, was intact in CA3 neurons. Long-term potentiation at the MF-CA3 synapse was reduced, likely through a loss of KAR modulation of excitability of the presynaptic MF axons. Genetic variants in the human GRIK4 gene alter the susceptibility for affective disorders (Bloss and Hunter, 2010). We found that ablation of Grik4 in mice resulted in reduced anxiety and an antidepressant-like phenotype. In the elevated zero-maze, a test for anxiety and risk taking behavior, and in two anxiogenic tests, marble-burying and novelty-induced suppression of feeding, anxiety-like behavior was consistently reduced in knockout animals. In the forced swim, a test of learned helplessness used to determine depression-like behavior, knockout mice demonstrated significantly less immobility suggesting

  11. Signalling mechanisms mediated by the phosphoinositide 3-kinase/Akt cascade in synaptic plasticity and memory in the rat.

    PubMed

    Horwood, Jennifer M; Dufour, Franck; Laroche, Serge; Davis, Sabrina

    2006-06-01

    The phosphoinositide 3-kinase (PI3K)/Akt signalling cascade has classically been implicated in promoting cell survival but more recently has been shown to regulate a number of other cellular functions. In particular, studies have suggested that PI3K contributes to mechanisms associated with synaptic plasticity and memory processes but the function of this cascade in forms of synaptic plasticity, such as long-term potentiation, remains controversial and the PI3K substrates which mediate these effects are poorly understood. Here we report that the PI3K inhibitor LY294002 infused i.c.v. in vivo blocked maintenance of long-term potentiation induced in the dentate gyrus with a single tetanus to the perforant path but not with repeated tetani. This pattern of stimulation led to rapid and transient phosphorylation of the PI3K substrate Akt at Ser473 but not at Thr308. Functional readout of partial activation of Akt was demonstrated by an increase in phosphorylation of two downstream substrates, Forkhead (FKHR) and mammalian target of rapamycin (mTOR), in a delayed and prolonged manner at Akt-specific phosphorylation sites. LY294002 blocked phosphorylation of Akt and the prolonged phosphorylation of FKHR and mTOR but did not impair long-term potentiation-induced phosphorylation of extracellular receptor kinase. In addition, the same i.c.v. concentration of LY294002 impaired long-term consolidation of recognition memory but not short-term recognition memory or spatial learning and repeated training in the recognition memory task overcame the deficit in consolidation. These results suggest that activation of the PI3K/Akt pathway may contribute to the mechanisms of synaptic plasticity and memory consolidation by promoting cell survival via FKHR and protein synthesis via mTOR. Importantly, only partial activation of Akt at its Ser473 residue was necessary to mediate these effects.

  12. Calcium dynamics predict direction of synaptic plasticity in striatal spiny projection neurons.

    PubMed

    Jędrzejewska-Szmek, Joanna; Damodaran, Sriraman; Dorman, Daniel B; Blackwell, Kim T

    2017-04-01

    The striatum is a major site of learning and memory formation for sensorimotor and cognitive association. One of the mechanisms used by the brain for memory storage is synaptic plasticity - the long-lasting, activity-dependent change in synaptic strength. All forms of synaptic plasticity require an elevation in intracellular calcium, and a common hypothesis is that the amplitude and duration of calcium transients can determine the direction of synaptic plasticity. The utility of this hypothesis in the striatum is unclear in part because dopamine is required for striatal plasticity and in part because of the diversity in stimulation protocols. To test whether calcium can predict plasticity direction, we developed a calcium-based plasticity rule using a spiny projection neuron model with sophisticated calcium dynamics including calcium diffusion, buffering and pump extrusion. We utilized three spike timing-dependent plasticity (STDP) induction protocols, in which postsynaptic potentials are paired with precisely timed action potentials and the timing of such pairing determines whether potentiation or depression will occur. Results show that despite the variation in calcium dynamics, a single, calcium-based plasticity rule, which explicitly considers duration of calcium elevations, can explain the direction of synaptic weight change for all three STDP protocols. Additional simulations show that the plasticity rule correctly predicts the NMDA receptor dependence of long-term potentiation and the L-type channel dependence of long-term depression. By utilizing realistic calcium dynamics, the model reveals mechanisms controlling synaptic plasticity direction, and shows that the dynamics of calcium, not just calcium amplitude, are crucial for synaptic plasticity. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. The origin of glutamatergic synaptic inputs controls synaptic plasticity and its modulation by alcohol in mice nucleus accumbens

    PubMed Central

    Ji, Xincai; Saha, Sucharita; Martin, Gilles E.

    2015-01-01

    It is widely accepted that long-lasting changes of synaptic strength in the nucleus accumbens (NAc), a brain region involved in drug reward, mediate acute and chronic effects of alcohol. However, our understanding of the mechanisms underlying the effects of alcohol on synaptic plasticity is limited by the fact that the NAc receives glutamatergic inputs from distinct brain regions (e.g., the prefrontal cortex (PFCx), the amygdala and the hippocampus), each region providing different information (e.g., spatial, emotional and cognitive). Combining whole-cell patch-clamp recordings and the optogenetic technique, we examined synaptic plasticity, and its regulation by alcohol, at cortical, hippocampal and amygdala inputs in fresh slices of mouse tissue. We showed that the origin of synaptic inputs determines the basic properties of glutamatergic synaptic transmission, the expression of spike-timing dependent long-term depression (tLTD) and long-term potentiation (LTP) and long-term potentiation (tLTP) and their regulation by alcohol. While we observed both tLTP and tLTD at amygadala and hippocampal synapses, we showed that cortical inputs only undergo tLTD. Functionally, we provide evidence that acute Ethyl Alcohol (EtOH) has little effects on higher order information coming from the PFCx, while severely impacting the ability of emotional and contextual information to induce long-lasting changes of synaptic strength. PMID:26257641

  14. Synaptic plasticity preserved with arachidonic acid diet in aged rats.

    PubMed

    Kotani, Susumu; Nakazawa, Hiroe; Tokimasa, Takayuki; Akimoto, Kengo; Kawashima, Hiroshi; Toyoda-Ono, Yoshiko; Kiso, Yoshinobu; Okaichi, Hiroshige; Sakakibara, Manabu

    2003-08-01

    We examined whether synaptic plasticity was preserved in aged rats administered an arachidonic acid (AA) containing diet. Young male Fischer-344 rats (2 mo of age), and two groups of aged rats of the same strain (2 y of age) who consumed either a control diet or an AA ethyl ester-containing diet for at least 3 mo were used. In the Morris water maze task, aged rats on the AA diet had tendency to show better performance than aged rats on the control diet. Long-term potentiation induced by tetanic stimulation was recorded from a 300 microm thick hippocampal slice with a 36 multi-electrode-array positioned at the dendrites of CA1 pyramidal neurons. The degree of potentiation after 1 h in aged rats on the AA diet was comparable as that of young controls. Phospholipid analysis revealed that AA and docosahexaenoic acid were the major fatty acids in the hippocampus in aged rats. There was a correlation between the behavioral measure and the changes in excitatory postsynaptic potential slope and between the physiologic measure and the total amount of AA in hippocampus.

  15. Synchrony arising from a balanced synaptic plasticity in a network of heterogeneous neural oscillators

    NASA Astrophysics Data System (ADS)

    Karbowski, Jan; Ermentrout, G. Bard

    2002-03-01

    We investigate the dynamics of a recurrent network of coupled heterogeneous neural oscillators with experimentally observed spike-timing-dependent synaptic plasticity. We show both theoretically and by computer simulations that, in a regime of a balance between synaptic potentiation and depression, the network of such oscillators converges to a stable synchronous state. The stability of this state is fostered by flexible synaptic weights which adjust themselves based on the relative timing of firing of pre- and postsynaptic oscillators.

  16. Can short-term oral fine motor training affect precision of task performance and induce cortical plasticity of the jaw muscles?

    PubMed

    Zhang, Hong; Kumar, Abhishek; Kothari, Mohit; Luo, Xiaoping; Trulsson, Mats; Svensson, Krister G; Svensson, Peter

    2016-07-01

    The aim was to test the hypothesis that short-term oral sensorimotor training of the jaw muscles would increase the precision of task performance and induce neuroplastic changes in the corticomotor pathways, related to the masseter muscle. Fifteen healthy volunteers performed six series with ten trials of an oral sensorimotor task. The task was to manipulate and position a spherical chocolate candy in between the anterior teeth and split it into two equal halves. The precision of the task performance was evaluated by comparing the ratio between the two split halves. A series of "hold-and-split" tasks was also performed before and after the training. The hold force and split force along with the electromyographic (EMG) activity of jaw muscles were recorded. Motor-evoked potentials and cortical motor maps of the right masseter muscle were evoked by transcranial magnetic stimulation. There was a significant effect of series on the precision of the task performance during the short-term oral sensorimotor training (P < 0.002). The hold force during the "hold-and-split" task was significantly lower after training than before the short-term training (P = 0.011). However, there was no change in the split force and the EMG activity of the jaw muscles before and after the training. Further, there was a significant increase in the amplitude of the motor-evoked potentials (P < 0.016) and in the motor cortex map areas (P = 0.033), after the short-term oral sensorimotor training. Therefore, short-term oral sensorimotor task training increased the precision of task performance and induced signs of neuroplastic changes in the corticomotor pathways, related to the masseter muscle.

  17. MYOSIN IIB REGULATES ACTIN DYNAMICS DURING SYNAPTIC PLASTICITY AND MEMORY FORMATION

    PubMed Central

    Rex, Christopher S.; Gavin, Cristin F.; Rubio, Maria D.; Kramar, Eniko A.; Chen, Lulu Y.; Jia, Yousheng; Huganir, Richard L.; Muzyczka, Nicholas; Gall, Christine M.; Miller, Courtney A.; Lynch, Gary; Rumbaugh, Gavin

    2010-01-01

    Reorganization of the actin cytoskeleton is essential for synaptic plasticity and memory formation. Presently, the mechanisms that trigger actin dynamics during these brain processes are poorly understood. In this study, we show that myosin II motor activity is downstream of LTP induction and is necessary for the emergence of specialized actin structures that stabilize an early phase of LTP. We also demonstrate that myosin II activity contributes importantly to an actin-dependent process that underlies memory consolidation. Pharmacological treatments that promote actin polymerization reversed the effects of a myosin II inhibitor on LTP and memory. We conclude that myosin II motors regulate plasticity by imparting mechanical forces onto the spine actin cytoskeleton in response to synaptic stimulation. These cytoskeletal forces trigger the emergence of actin structures that stabilize synaptic plasticity. Our studies provide a novel mechanical framework for understanding cytoskeletal dynamics associated with synaptic plasticity and memory formation. PMID:20797537

  18. Phosphorylation of Complexin by PKA Regulates Activity-dependent Spontaneous Neurotransmitter Release and Structural Synaptic Plasticity

    PubMed Central

    Cho, Richard W.; Buhl, Lauren K.; Volfson, Dina; Tran, Adrienne; Li, Feng; Akbergenova, Yulia; Littleton, J. Troy

    2016-01-01

    Summary Synaptic plasticity is a fundamental feature of the nervous system that allows adaptation to changing behavioral environments. Most studies of synaptic plasticity have examined the regulated trafficking of postsynaptic glutamate receptors that generates alterations in synaptic transmission. Whether and how changes in the presynaptic release machinery contribute to neuronal plasticity is less clear. The SNARE complex mediates neurotransmitter release in response to presynaptic Ca++ entry. Here we show that the SNARE fusion clamp Complexin undergoes activity-dependent phosphorylation that alters the basic properties of neurotransmission in Drosophila. Retrograde signaling following stimulation activates PKA-dependent phosphorylation of the Complexin C-terminus that selectively and transiently enhances spontaneous release. Enhanced spontaneous release is required for activity-dependent synaptic growth. These data indicate that SNARE-dependent fusion mechanisms can be regulated in an activity-dependent manner and highlight the key role of spontaneous neurotransmitter release as a mediator of functional and structural plasticity. PMID:26590346

  19. The Formation of Multi-synaptic Connections by the Interaction of Synaptic and Structural Plasticity and Their Functional Consequences

    PubMed Central

    Fauth, Michael; Wörgötter, Florentin; Tetzlaff, Christian

    2015-01-01

    Cortical connectivity emerges from the permanent interaction between neuronal activity and synaptic as well as structural plasticity. An important experimentally observed feature of this connectivity is the distribution of the number of synapses from one neuron to another, which has been measured in several cortical layers. All of these distributions are bimodal with one peak at zero and a second one at a small number (3–8) of synapses. In this study, using a probabilistic model of structural plasticity, which depends on the synaptic weights, we explore how these distributions can emerge and which functional consequences they have. We find that bimodal distributions arise generically from the interaction of structural plasticity with synaptic plasticity rules that fulfill the following biological realistic constraints: First, the synaptic weights have to grow with the postsynaptic activity. Second, this growth curve and/or the input-output relation of the postsynaptic neuron have to change sub-linearly (negative curvature). As most neurons show such input-output-relations, these constraints can be fulfilled by many biological reasonable systems. Given such a system, we show that the different activities, which can explain the layer-specific distributions, correspond to experimentally observed activities. Considering these activities as working point of the system and varying the pre- or postsynaptic stimulation reveals a hysteresis in the number of synapses. As a consequence of this, the connectivity between two neurons can be controlled by activity but is also safeguarded against overly fast changes. These results indicate that the complex dynamics between activity and plasticity will, already between a pair of neurons, induce a variety of possible stable synaptic distributions, which could support memory mechanisms. PMID:25590330

  20. A single in-vivo exposure to delta 9THC blocks endocannabinoid-mediated synaptic plasticity.

    PubMed

    Mato, Susana; Chevaleyre, Vivien; Robbe, David; Pazos, Angel; Castillo, Pablo E; Manzoni, Olivier J

    2004-06-01

    Endogenous cannabinoids (eCB) mediate synaptic plasticity in brain regions involved in learning and reward. Here we show that in mice, a single in-vivo exposure to Delta 9-tetrahydrocannabinol (THC) abolishes the retrograde signaling that underlies eCB-mediated synaptic plasticity in both nucleus accumbens (NAc) and hippocampus in vitro. This effect is reversible within 3 days and is associated with a transient modification in the functional properties of cannabinoid receptors.

  1. Coexistence of Multiple Types of Synaptic Plasticity in Individual Hippocampal CA1 Pyramidal Neurons.

    PubMed

    Edelmann, Elke; Cepeda-Prado, Efrain; Leßmann, Volkmar

    2017-01-01

    Understanding learning and memory mechanisms is an important goal in neuroscience. To gain insights into the underlying cellular mechanisms for memory formation, synaptic plasticity processes are studied with various techniques in different brain regions. A valid model to scrutinize different ways to enhance or decrease synaptic transmission is recording of long-term potentiation (LTP) or long-term depression (LTD). At the single cell level, spike timing-dependent plasticity (STDP) protocols have emerged as a powerful tool to investigate synaptic plasticity with stimulation paradigms that also likely occur during memory formation in vivo. Such kind of plasticity can be induced by different STDP paradigms with multiple repeat numbers and stimulation patterns. They subsequently recruit or activate different molecular pathways and neuromodulators for induction and expression of STDP. Dopamine (DA) and brain-derived neurotrophic factor (BDNF) have been recently shown to be important modulators for hippocampal STDP at Schaffer collateral (SC)-CA1 synapses and are activated exclusively by distinguishable STDP paradigms. Distinct types of parallel synaptic plasticity in a given neuron depend on specific subcellular molecular prerequisites. Since the basal and apical dendrites of CA1 pyramidal neurons are known to be heterogeneous, and distance-dependent dendritic gradients for specific receptors and ion channels are described, the dendrites might provide domain specific locations for multiple types of synaptic plasticity in the same neuron. In addition to the distinct signaling and expression mechanisms of various types of LTP and LTD, activation of these different types of plasticity might depend on background brain activity states. In this article, we will discuss some ideas why multiple forms of synaptic plasticity can simultaneously and independently coexist and can contribute so effectively to increasing the efficacy of memory storage and processing capacity of the

  2. Increased expression of the PI3K enhancer PIKE mediates deficits in synaptic plasticity and behavior in fragile X syndrome.

    PubMed

    Gross, Christina; Chang, Chia-Wei; Kelly, Seth M; Bhattacharya, Aditi; McBride, Sean M J; Danielson, Scott W; Jiang, Michael Q; Chan, Chi Bun; Ye, Keqiang; Gibson, Jay R; Klann, Eric; Jongens, Thomas A; Moberg, Kenneth H; Huber, Kimberly M; Bassell, Gary J

    2015-05-05

    The PI3K enhancer PIKE links PI3K catalytic subunits to group 1 metabotropic glutamate receptors (mGlu1/5) and activates PI3K signaling. The roles of PIKE in synaptic plasticity and the etiology of mental disorders are unknown. Here, we show that increased PIKE expression is a key mediator of impaired mGlu1/5-dependent neuronal plasticity in mouse and fly models of the inherited intellectual disability fragile X syndrome (FXS). Normalizing elevated PIKE protein levels in FXS mice reversed deficits in molecular and cellular plasticity and improved behavior. Notably, PIKE reduction rescued PI3K-dependent and -independent neuronal defects in FXS. We further show that PI3K signaling is increased in a fly model of FXS and that genetic reduction of the Drosophila ortholog of PIKE, CenG1A rescued excessive PI3K signaling, mushroom body defects, and impaired short-term memory in these flies. Our results demonstrate a crucial role of increased PIKE expression in exaggerated mGlu1/5 signaling causing neuronal defects in FXS.

  3. Modulation of Synaptic Plasticity by Exercise Training as a Basis for Ischemic Stroke Rehabilitation.

    PubMed

    Nie, Jingjing; Yang, Xiaosu

    2017-01-01

    In recent years, rehabilitation of ischemic stroke draws more and more attention in the world, and has been linked to changes of synaptic plasticity. Exercise training improves motor function of ischemia as well as cognition which is associated with formation of learning and memory. The molecular basis of learning and memory might be synaptic plasticity. Research has therefore been conducted in an attempt to relate effects of exercise training to neuroprotection and neurogenesis adjacent to the ischemic injury brain. The present paper reviews the current literature addressing this question and discusses the possible mechanisms involved in modulation of synaptic plasticity by exercise training. This review shows the pathological process of synaptic dysfunction in ischemic roughly and then discusses the effects of exercise training on scaffold proteins and regulatory protein expression. The expression of scaffold proteins generally increased after training, but the effects on regulatory proteins were mixed. Moreover, the compositions of postsynaptic receptors were changed and the strength of synaptic transmission was enhanced after training. Finally, the recovery of cognition is critically associated with synaptic remodeling in an injured brain, and the remodeling occurs through a number of local regulations including mRNA translation, remodeling of cytoskeleton, and receptor trafficking into and out of the synapse. We do provide a comprehensive knowledge of synaptic plasticity enhancement obtained by exercise training in this review.

  4. Reelin supplementation recovers synaptic plasticity and cognitive deficits in a mouse model for Angelman syndrome.

    PubMed

    Hethorn, Whitney R; Ciarlone, Stephanie L; Filonova, Irina; Rogers, Justin T; Aguirre, Daniela; Ramirez, Raquel A; Grieco, Joseph C; Peters, Melinda M; Gulick, Danielle; Anderson, Anne E; L Banko, Jessica; Lussier, April L; Weeber, Edwin J

    2015-05-01

    The Reelin signaling pathway is implicated in processes controlling synaptic plasticity and hippocampus-dependent learning and memory. A single direct in vivo application of Reelin enhances long-term potentiation, increases dendritic spine density and improves associative and spatial learning and memory. Angelman syndrome (AS) is a neurological disorder that presents with an overall defect in synaptic function, including decreased long-term potentiation, reduced dendritic spine density, and deficits in learning and memory, making it an attractive model in which to examine the ability of Reelin to recover synaptic function and cognitive deficits. In this study, we investigated the effects of Reelin administration on synaptic plasticity and cognitive function in a mouse model of AS and demonstrated that bilateral, intraventricular injections of Reelin recover synaptic function and corresponding hippocampus-dependent associative and spatial learning and memory. Additionally, we describe alteration of the Reelin profile in tissue from both the AS mouse and post-mortem human brain.

  5. Bidirectional Synaptic Structural Plasticity after Chronic Cocaine Administration Occurs through Rap1 Small GTPase Signaling.

    PubMed

    Cahill, Michael E; Bagot, Rosemary C; Gancarz, Amy M; Walker, Deena M; Sun, HaoSheng; Wang, Zi-Jun; Heller, Elizabeth A; Feng, Jian; Kennedy, Pamela J; Koo, Ja Wook; Cates, Hannah M; Neve, Rachael L; Shen, Li; Dietz, David M; Nestler, Eric J

    2016-02-03

    Dendritic spines are the sites of most excitatory synapses in the CNS, and opposing alterations in the synaptic structure of medium spiny neurons (MSNs) of the nucleus accumbens (NAc), a primary brain reward region, are seen at early versus late time points after cocaine administration. Here we investigate the time-dependent molecular and biochemical processes that regulate this bidirectional synaptic structural plasticity of NAc MSNs and associated changes in cocaine reward in response to chronic cocaine exposure. Our findings reveal key roles for the bidirectional synaptic expression of the Rap1b small GTPase and an associated local synaptic protein translation network in this process. The transcriptional mechanisms and pathway-specific inputs to NAc that regulate Rap1b expression are also characterized. Collectively, these findings provide a precise mechanism by which nuclear to synaptic interactions induce "metaplasticity" in NAc MSNs, and we reveal the specific effects of this plasticity on reward behavior in a brain circuit-specific manner.

  6. Buyang Huanwu decoction facilitates neurorehabilitation through an improvement of synaptic plasticity in cerebral ischemic rats.

    PubMed

    Pan, Ruihuan; Cai, Jun; Zhan, Lechang; Guo, Youhua; Huang, Run-Yue; Li, Xiong; Zhou, Mingchao; Xu, Dandan; Zhan, Jie; Chen, Hongxia

    2017-03-28

    Loss of neural function is a critical but unsolved issue after cerebral ischemia insult. Neuronal plasticity and remodeling are crucial for recovery of neural functions after brain injury. Buyang Huanwu decoction, which is a classic formula in traditional Chinese medicine, can positively alter synaptic plasticity. This study assessed the effects of Buyang Huanwu decoction in combination with physical exercise on neuronal plasticity in cerebral ischemic rats. Cerebral ischemic rats were administered Buyang Huanwu decoction and participated in physical exercise after the induction of a permanent middle cerebral artery occlusion. The neurobehavioral functions and infarct volumes were evaluated. The presynaptic (SYN), postsynaptic (GAP-43) and cytoskeletal (MAP-2) proteins in the coronal brain samples were evaluated by immunohistochemistry and western blot analyses. The ultrastructure of the neuronal synaptic junctions in the same region were analyzed using transmission electron microscopy. Combination treatment of Buyang Huanwu decoction and physical exercise ameliorated the neurobehavioral deficits (p < 0.05), significantly enhanced the expression levels of SYN, GAP-43 and MAP-2 (p < 0.05), and maintained the synaptic ultrastructure. Buyang Huanwu decoction facilitated neurorehabilitation following a cerebral ischemia insult through an improvement in synaptic plasticity. Graphical abstract The Buyang Huanwu decoction (BYHWD) combined with physical exercise (PE) attenuates synaptic disruption and promotes synaptic plasticity following cerebral ischemia (stroke).

  7. A Spiking Working Memory Model Based on Hebbian Short-Term Potentiation.

    PubMed

    Fiebig, Florian; Lansner, Anders

    2017-01-04

    A dominant theory of working memory (WM), referred to as the persistent activity hypothesis, holds that recurrently connected neural networks, presumably located in the prefrontal cortex, encode and maintain WM memory items through sustained elevated activity. Reexamination of experimental data has shown that prefrontal cortex activity in single units during delay periods is much more variable than predicted by such a theory and associated computational models. Alternative models of WM maintenance based on synaptic plasticity, such as short-term nonassociative (non-Hebbian) synaptic facilitation, have been suggested but cannot account for encoding of novel associations. Here we test the hypothesis that a recently identified fast-expressing form of Hebbian synaptic plasticity (associative short-term potentiation) is a possible mechanism for WM encoding and maintenance. Our simulations using a spiking neural network model of cortex reproduce a range of cognitive memory effects in the classical multi-item WM task of encoding and immediate free recall of word lists. Memory reactivation in the model occurs in discrete oscillatory bursts rather than as sustained activity. We relate dynamic network activity as well as key synaptic characteristics to electrophysiological measurements. Our findings support the hypothesis that fast Hebbian short-term potentiation is a key WM mechanism. Working memory (WM) is a key component of cognition. Hypotheses about the neural mechanism behind WM are currently under revision. Reflecting recent findings of fast Hebbian synaptic plasticity in cortex, we test whether a cortical spiking neural network model with such a mechanism can learn a multi-item WM task (word list learning). We show that our model can reproduce human cognitive phenomena and achieve comparable memory performance in both free and cued recall while being simultaneously compatible with experimental data on structure, connectivity, and neurophysiology of the underlying

  8. A Spiking Working Memory Model Based on Hebbian Short-Term Potentiation

    PubMed Central

    Fiebig, Florian

    2017-01-01

    A dominant theory of working memory (WM), referred to as the persistent activity hypothesis, holds that recurrently connected neural networks, presumably located in the prefrontal cortex, encode and maintain WM memory items through sustained elevated activity. Reexamination of experimental data has shown that prefrontal cortex activity in single units during delay periods is much more variable than predicted by such a theory and associated computational models. Alternative models of WM maintenance based on synaptic plasticity, such as short-term nonassociative (non-Hebbian) synaptic facilitation, have been suggested but cannot account for encoding of novel associations. Here we test the hypothesis that a recently identified fast-expressing form of Hebbian synaptic plasticity (associative short-term potentiation) is a possible mechanism for WM encoding and maintenance. Our simulations using a spiking neural network model of cortex reproduce a range of cognitive memory effects in the classical multi-item WM task of encoding and immediate free recall of word lists. Memory reactivation in the model occurs in discrete oscillatory bursts rather than as sustained activity. We relate dynamic network activity as well as key synaptic characteristics to electrophysiological measurements. Our findings support the hypothesis that fast Hebbian short-term potentiation is a key WM mechanism. SIGNIFICANCE STATEMENT Working memory (WM) is a key component of cognition. Hypotheses about the neural mechanism behind WM are currently under revision. Reflecting recent findings of fast Hebbian synaptic plasticity in cortex, we test whether a cortical spiking neural network model with such a mechanism can learn a multi-item WM task (word list learning). We show that our model can reproduce human cognitive phenomena and achieve comparable memory performance in both free and cued recall while being simultaneously compatible with experimental data on structure, connectivity, and

  9. The role of nitric oxide in pre-synaptic plasticity and homeostasis

    PubMed Central

    Hardingham, Neil; Dachtler, James; Fox, Kevin

    2013-01-01

    Since the observation that nitric oxide (NO) can act as an intercellular messenger in the brain, the past 25 years have witnessed the steady accumulation of evidence that it acts pre-synaptically at both glutamatergic and GABAergic synapses to alter release-probability in synaptic plasticity. NO does so by acting on the synaptic machinery involved in transmitter release and, in a coordinated fashion, on vesicular recycling mechanisms. In this review, we examine the body of evidence for NO acting as a retrograde factor at synapses, and the evidence from in vivo and in vitro studies that specifically establish NOS1 (neuronal nitric oxide synthase) as the important isoform of NO synthase in this process. The NOS1 isoform is found at two very different locations and at two different spatial scales both in the cortex and hippocampus. On the one hand it is located diffusely in the cytoplasm of a small population of GABAergic neurons and on the other hand the alpha isoform is located discretely at the post-synaptic density (PSD) in spines of pyramidal cells. The present evidence is that the number of NOS1 molecules that exist at the PSD are so low that a spine can only give rise to modest concentrations of NO and therefore only exert a very local action. The NO receptor guanylate cyclase is located both pre- and post-synaptically and this suggests a role for NO in the coordination of local pre- and post-synaptic function during plasticity at individual synapses. Recent evidence shows that NOS1 is also located post-synaptic to GABAergic synapses and plays a pre-synaptic role in GABAergic plasticity as well as glutamatergic plasticity. Studies on the function of NO in plasticity at the cellular level are corroborated by evidence that NO is also involved in experience-dependent plasticity in the cerebral cortex. PMID:24198758

  10. Loss of Cdc42 leads to defects in synaptic plasticity and remote memory recall.

    PubMed

    Kim, Il Hwan; Wang, Hong; Soderling, Scott H; Yasuda, Ryohei

    2014-07-08

    Cdc42 is a signaling protein important for reorganization of actin cytoskeleton and morphogenesis of cells. However, the functional role of Cdc42 in synaptic plasticity and in behaviors such as learning and memory are not well understood. Here we report that postnatal forebrain deletion of Cdc42 leads to deficits in synaptic plasticity and in remote memory recall using conditional knockout of Cdc42. We found that deletion of Cdc42 impaired LTP in the Schaffer collateral synapses and postsynaptic structural plasticity of dendritic spines in CA1 pyramidal neurons in the hippocampus. Additionally, loss of Cdc42 did not affect memory acquisition, but instead significantly impaired remote memory recall. Together these results indicate that the postnatal functions of Cdc42 may be crucial for the synaptic plasticity in hippocampal neurons, which contribute to the capacity for remote memory recall.

  11. Plasticity of Hippocampal Excitatory-Inhibitory Balance: Missing the Synaptic Control in the Epileptic Brain

    PubMed Central

    Bonansco, Christian; Fuenzalida, Marco

    2016-01-01

    Synaptic plasticity is the capacity generated by experience to modify the neural function and, thereby, adapt our behaviour. Long-term plasticity of glutamatergic and GABAergic transmission occurs in a concerted manner, finely adjusting the excitatory-inhibitory (E/I) balance. Imbalances of E/I function are related to several neurological diseases including epilepsy. Several evidences have demonstrated that astrocytes are able to control the synaptic plasticity, with astrocytes being active partners in synaptic physiology and E/I balance. Here, we revise molecular evidences showing the epileptic stage as an abnormal form of long-term brain plasticity and propose the possible participation of astrocytes to the abnormal increase of glutamatergic and decrease of GABAergic neurotransmission in epileptic networks. PMID:27006834

  12. Plasticity of Hippocampal Excitatory-Inhibitory Balance: Missing the Synaptic Control in the Epileptic Brain.

    PubMed

    Bonansco, Christian; Fuenzalida, Marco

    2016-01-01

    Synaptic plasticity is the capacity generated by experience to modify the neural function and, thereby, adapt our behaviour. Long-term plasticity of glutamatergic and GABAergic transmission occurs in a concerted manner, finely adjusting the excitatory-inhibitory (E/I) balance. Imbalances of E/I function are related to several neurological diseases including epilepsy. Several evidences have demonstrated that astrocytes are able to control the synaptic plasticity, with astrocytes being active partners in synaptic physiology and E/I balance. Here, we revise molecular evidences showing the epileptic stage as an abnormal form of long-term brain plasticity and propose the possible participation of astrocytes to the abnormal increase of glutamatergic and decrease of GABAergic neurotransmission in epileptic networks.

  13. Fragile X mental retardation protein in learning-related synaptic plasticity.

    PubMed

    Mercaldo, Valentina; Descalzi, Giannina; Zhuo, Min

    2009-12-31

    Fragile X syndrome (FXS) is caused by a lack of the fragile X mental retardation protein (FMRP) due to silencing of the Fmr1 gene. As an RNA binding protein, FMRP is thought to contribute to synaptic plasticity by regulating plasticity-related protein synthesis and other signaling pathways. Previous studies have mostly focused on the roles of FMRP within the hippocampus--a key structure for spatial memory. However, recent studies indicate that FMRP may have a more general contribution to brain functions, including synaptic plasticity and modulation within the prefrontal cortex. In this brief review, we will focus on recent studies reported in the prefrontal cortex, including the anterior cingulate cortex (ACC). We hypothesize that alterations in ACC-related plasticity and synaptic modulation may contribute to various forms of cognitive deficits associated with FXS.

  14. Amyloid Precursor Protein Regulates Cav1.2 L-type Calcium Channel Levels and Function to Influence GABAergic Short-term Plasticity

    PubMed Central

    Yang, Li; Wang, Zilai; Wang, Baiping; Justice, Nicholas J.; Zheng, Hui

    2010-01-01

    Amyloid precursor protein (APP) has been strongly implicated in the pathogenesis of Alzheimer’s disease (AD). Although impaired synaptic function is believed to be an early and causative event in AD, how APP physiologically regulates synaptic properties remains poorly understood. Here, we report a critical role for APP in the regulation of L-type calcium channels (LTCC) in GABAergic inhibitory neurons in striatum and hippocampus. APP deletion in mice leads to an increase in the levels of Cav1.2, the pore-forming subunit of LTCCs, and subsequent increases in GABAergic calcium currents (ICa 2+) that can be reversed by re-introduction of APP. Upregulated levels of Cav1.2 result in reduced GABAergic paired-pulse inhibition (PPI) and increased GABAergic post-tetanic potentiation (PTP) in both striatal and hippocampal neurons, indicating that APP modulates synaptic properties of GABAergic neurons by regulating Cav1.2. Furthermore, APP physically interacts with Cav1.2, suggesting a mechanism in which loss of APP leads to an inappropriate accumulation and aberrant activity of Cav1.2. These results provide a direct link between APP and calcium signaling and might help explain how altered APP regulation leads to changes in synaptic function that occur with AD. PMID:20016080

  15. Age-related impairments in neuronal plasticity markers and astrocytic GFAP and their reversal by late-onset short term dietary restriction.

    PubMed

    Kaur, Manpreet; Sharma, Sandeep; Kaur, Gurcharan

    2008-12-01

    Recent studies on the effects of dietary restriction (DR) in rodents and primates have shown that even late-onset short-term regimens can bring about comparable beneficial changes seen in animals subjected to life-long DR. We studied the effect of aging on the expression of neural cell adhesion molecule (NCAM), its polysialylated form PSA-NCAM and astrocytic marker glial fibrillary acidic protein (GFAP) by immunohistofluorescent staining and immunoblotting in 1, 3, 6, 18 and 24 months old male wistar rats. Maximum expression of NCAM and PSA-NCAM was observed in sub-granular zone (SGZ) or granular cell layer (GCL) of hippocampus, arcuate region and paraventricular area of hypothalamus and piriform cortex layer II from 1 and 3 months old rats, thereafter, gradual downregulation was observed in 6, 18 and 24 months old rats. Progressive increase in astrocytic GFAP expression was noticed in these regions of brain with age. We further addressed whether DR initiated in late adulthood in 24 months old rats confers beneficial effects and can reverse changes in expression of NCAM, PSA-NCAM and GFAP. These results suggest that even late-onset short term DR regimen in old rats can have beneficial effects on neuroplasticity.

  16. Structurally dissimilar antimanic agents modulate synaptic plasticity by regulating AMPA glutamate receptor subunit GluR1 synaptic expression.

    PubMed

    Du, Jing; Gray, Neil A; Falke, Cynthia; Yuan, Peixiong; Szabo, Steven; Manji, Husseini K

    2003-11-01

    A growing body of data from clinical and preclinical studies suggests that the glutamatergic system may represent a novel therapeutic target for severe recurrent mood disorders. Since synapse-specific glutamate receptor expression/localization is known to play critical roles in synaptic plasticity, we investigated the effects of mood stabilizers on AMPA receptor expression. Rats were treated chronically with lithium or valproate, hippocampal synaptosomes were isolated, and GluR1 levels were determined. Additionally, hippocampal neurons were prepared from E18 rat embryos and treated with lithium or valproate. Surface expression of GluR1 was determined using a biotinylation assay, and double-immunostaining with anti-GluR1 and anti-synaptotagmin antibodies was used to determine synaptic GluR1 levels. The AMPA receptor subunit GluR1 expression in hippocampal synaptosomes was significantly reduced by both chronic lithium and valproate. Overall, these studies show that AMPA receptor subunit GluR1 is a common target for two structurally highly dissimilar, but highly efficacious, mood stabilizers, lithium and valproate. These studies suggest that regulation of glutamatergically mediated synaptic plasticity may play a role in the treatment of mood disorders, and raise the possibility that agents more directly affecting synaptic GluR1 may represent novel therapies for this devastating illness.

  17. Phosphorylation of AMPA receptors is required for sensory deprivation-induced homeostatic synaptic plasticity.

    PubMed

    Goel, Anubhuti; Xu, Linda W; Snyder, Kevin P; Song, Lihua; Goenaga-Vazquez, Yamila; Megill, Andrea; Takamiya, Kogo; Huganir, Richard L; Lee, Hey-Kyoung

    2011-03-31

    Sensory experience, and the lack thereof, can alter the function of excitatory synapses in the primary sensory cortices. Recent evidence suggests that changes in sensory experience can regulate the synaptic level of Ca(2+)-permeable AMPA receptors (CP-AMPARs). However, the molecular mechanisms underlying such a process have not been determined. We found that binocular visual deprivation, which is a well-established in vivo model to produce multiplicative synaptic scaling in visual cortex of juvenile rodents, is accompanied by an increase in the phosphorylation of AMPAR GluR1 (or GluA1) subunit at the serine 845 (S845) site and the appearance of CP-AMPARs at synapses. To address the role of GluR1-S845 in visual deprivation-induced homeostatic synaptic plasticity, we used mice lacking key phosphorylation sites on the GluR1 subunit. We found that mice specifically lacking the GluR1-S845 site (GluR1-S845A mutants), which is a substrate of cAMP-dependent kinase (PKA), show abnormal basal excitatory synaptic transmission and lack visual deprivation-induced homeostatic synaptic plasticity. We also found evidence that increasing GluR1-S845 phosphorylation alone is not sufficient to produce normal multiplicative synaptic scaling. Our study provides concrete evidence that a GluR1 dependent mechanism, especially S845 phosphorylation, is a necessary pre-requisite step for in vivo homeostatic synaptic plasticity.

  18. SIRT1 is essential for normal cognitive function and synaptic plasticity

    PubMed Central

    Michán, Shaday; Li, Ying; Chou, Maggie Meng-Hsiu; Parrella, Edoardo; Ge, Huanying; Long, Jeffrey M.; Allard, Joanne S.; Lewis, Kaitlyn; Miller, Marshall; Xu, Wei; Mervis, Ronald F.; Chen, Jing; Guerin, Karen I.; Smith, Lois E. H.; McBurney, Michael W.; Sinclair, David A.; Baudry, Michel; de Cabo, Rafael; Longo, Valter D.

    2010-01-01

    Conservation of normal cognitive functions relies on the proper performance of the nervous system at the cellular and molecular level. The mammalian NAD+-dependent deacetylase, SIRT1, impacts different processes potentially involved in the maintenance of brain integrity such as chromatin remodeling, DNA repair, cell survival and neurogenesis. Here we show that SIRT1 is expressed in neurons of the hippocampus, a key structure in learning and memory. Using a combination of behavioral and electrophysiological paradigms we analyzed the effects of SIRT1 deficiency and overexpression on mouse learning and memory as well as on synaptic plasticity. We demonstrated that the absence of SIRT1 impaired cognitive abilities, including immediate memory, classical conditioning and spatial learning. In addition, we found that the cognitive deficits in SIRT1 knockout mice were associated with defects in synaptic plasticity without alterations in basal synaptic transmission or NMDA receptor function. Brains of SIRT1-KO mice exhibited normal morphology and dendritic spine structure but display a decrease in dendritic branching, branch length and complexity of neuronal dendritic arbors. Also, a decrease in ERK1/2 phosphorylation and altered expression of hippocampal genes involved in synaptic function, lipid metabolism and myelination were detected in SIRT1-KO mice. In contrast, mice with high levels of SIRT1 expression in brain exhibited regular synaptic plasticity and memory. We conclude that SIRT1 is indispensable for normal learning, memory and synaptic plasticity in mice. PMID:20660252

  19. Synaptic plasticity along the sleep-wake cycle: implications for epilepsy.

    PubMed

    Romcy-Pereira, Rodrigo N; Leite, João P; Garcia-Cairasco, Norberto

    2009-01-01

    Activity-dependent changes in synaptic efficacy (i.e., synaptic plasticity) can alter the way neurons communicate and process information as a result of experience. Synaptic plasticity mechanisms involve both molecular and structural modifications that affect synaptic functioning, either enhancing or depressing neuronal transmission. They include redistribution of postsynaptic receptors, activation of intracellular signaling cascades, and formation/retraction of dendritic spines, among others. During the sleep-wake cycle, as the result of particular neurochemical and neuronal firing modes, distinct oscillatory patterns organize the activity of neuronal populations, modulating synaptic plasticity. Such modulation, for example, has been shown in the visual cortex following sleep deprivation and in the ability to induce hippocampal long-term potentiation during sleep. In epilepsy, synchronized behavioral states tend to contribute to the initiation of paroxystic discharges and are considered more epileptogenic than desynchronized states. Here, we review some of the current understandings of synaptic plasticity changes in wake and sleep states and how sleep may affect epileptic seizures.

  20. A neuromorphic implementation of multiple spike-timing synaptic plasticity rules for large-scale neural networks

    PubMed Central

    Wang, Runchun M.; Hamilton, Tara J.; Tapson, Jonathan C.; van Schaik, André

    2015-01-01

    We present a neuromorphic implementation of multiple synaptic plasticity learning rules, which include both Spike Timing Dependent Plasticity (STDP) and Spike Timing Dependent Delay Plasticity (STDDP). We present a fully digital implementation as well as a mixed-signal implementation, both of which use a novel dynamic-assignment time-multiplexing approach and support up to 226 (64M) synaptic plasticity elements. Rather than implementing dedicated synapses for particular types of synaptic plasticity, we implemented a more generic synaptic plasticity adaptor array that is separate from the neurons in the neural network. Each adaptor performs synaptic plasticity according to the arrival times of the pre- and post-synaptic spikes assigned to it, and sends out a weighted or delayed pre-synaptic spike to the post-synaptic neuron in the neural network. This strategy provides great flexibility for building complex large-scale neural networks, as a neural network can be configured for multiple synaptic plasticity rules without changing its structure. We validate the proposed neuromorphic implementations with measurement results and illustrate that the circuits are capable of performing both STDP and STDDP. We argue that it is practical to scale the work presented here up to 236 (64G) synaptic adaptors on a current high-end FPGA platform. PMID:26041985

  1. A neuromorphic implementation of multiple spike-timing synaptic plasticity rules for large-scale neural networks.

    PubMed

    Wang, Runchun M; Hamilton, Tara J; Tapson, Jonathan C; van Schaik, André

    2015-01-01

    We present a neuromorphic implementation of multiple synaptic plasticity learning rules, which include both Spike Timing Dependent Plasticity (STDP) and Spike Timing Dependent Delay Plasticity (STDDP). We present a fully digital implementation as well as a mixed-signal implementation, both of which use a novel dynamic-assignment time-multiplexing approach and support up to 2(26) (64M) synaptic plasticity elements. Rather than implementing dedicated synapses for particular types of synaptic plasticity, we implemented a more generic synaptic plasticity adaptor array that is separate from the neurons in the neural network. Each adaptor performs synaptic plasticity according to the arrival times of the pre- and post-synaptic spikes assigned to it, and sends out a weighted or delayed pre-synaptic spike to the post-synaptic neuron in the neural network. This strategy provides great flexibility for building complex large-scale neural networks, as a neural network can be configured for multiple synaptic plasticity rules without changing its structure. We validate the proposed neuromorphic implementations with measurement results and illustrate that the circuits are capable of performing both STDP and STDDP. We argue that it is practical to scale the work presented here up to 2(36) (64G) synaptic adaptors on a current high-end FPGA platform.

  2. Learning and Memory, Part II: Molecular Mechanisms of Synaptic Plasticity

    ERIC Educational Resources Information Center

    Lombroso, Paul; Ogren, Marilee

    2009-01-01

    The molecular events that are responsible for strengthening synaptic connections and how these are linked to memory and learning are discussed. The laboratory preparations that allow the investigation of these events are also described.

  3. Spike Train Auto-Structure Impacts Post-Synaptic Firing and Timing-Based Plasticity

    PubMed Central

    Scheller, Bertram; Castellano, Marta; Vicente, Raul; Pipa, Gordon

    2011-01-01

    Cortical neurons are typically driven by several thousand synapses. The precise spatiotemporal pattern formed by these inputs can modulate the response of a post-synaptic cell. In this work, we explore how the temporal structure of pre-synaptic inhibitory and excitatory inputs impact the post-synaptic firing of a conductance-based integrate and fire neuron. Both the excitatory and inhibitory input was modeled by renewal gamma processes with varying shape factors for modeling regular and temporally random Poisson activity. We demonstrate that the temporal structure of mutually independent inputs affects the post-synaptic firing, while the strength of the effect depends on the firing rates of both the excitatory and inhibitory inputs. In a second step, we explore the effect of temporal structure of mutually independent inputs on a simple version of Hebbian learning, i.e., hard bound spike-timing-dependent plasticity. We explore both the equilibrium weight distribution and the speed of the transient weight dynamics for different mutually independent gamma processes. We find that both the equilibrium distribution of the synaptic weights and the speed of synaptic changes are modulated by the temporal structure of the input. Finally, we highlight that the sensitivity of both the post-synaptic firing as well as the spike-timing-dependent plasticity on the auto-structure of the input of a neuron could be used to modulate the learning rate of synaptic modification. PMID:22203800

  4. Downregulation of caveolin-1 contributes to the synaptic plasticity deficit in the hippocampus of aged rats

    PubMed Central

    Liu, Yang; Liang, Zhanhua; Liu, Jing; Zou, Wei; Li, Xiaoyan; Wang, Yachen; An, Lijia

    2013-01-01

    Caveolin-1 is involved in the regulation of synaptic plasticity, but the relationship between its pression and cognitive function during aging remains controversial. To explore the relationship be-tween synaptic plasticity in the aging process and changes in learning and memory, we examined caveolin-1 expression in the hippocampus, cortex and cerebellum of rats at different ages. We also examined the relationship between the expression of caveolin-1 and synaptophysin, a marker of synaptic plasticity. Hippocampal caveolin-1 and synaptophysin expression in aged (22–24 month old) rats was significantly lower than that in young (1 month old) and adult (4 months old) rats. pression levels of both proteins were significantly greater in the cortex of aged rats than in that of young or adult rats, and levels were similar between the three age groups in the cerebellum. Linear regression analysis revealed that hippocampal expression of synaptophysin was associated with memory and learning abilities. Moreover, synaptophysin expression correlated positively with caveolin-1 expression in the hippocampus, cortex and cerebellum. These results confirm that caveolin-1 has a regulatory effect on synaptic plasticity, and suggest that the downregulation of hippocampal caveolin-1 expression causes a decrease in synaptic plasticity during physiological aging. PMID:25206583

  5. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot.

    PubMed

    Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin; Manoonpong, Poramate

    2015-01-01

    Walking animals, like insects, with little neural computing can effectively perform complex behaviors. For example, they can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking robot is a challenging task. Thus, in this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking robot. The turning information is transmitted as descending steering signals to the neural locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations. The adaptation also enables the robot to effectively escape from sharp corners or deadlocks. Using backbone joint control embedded in the the locomotion control allows the robot to climb over small obstacles

  6. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot

    PubMed Central

    Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin; Manoonpong, Poramate

    2015-01-01

    Walking animals, like insects, with little neural computing can effectively perform complex behaviors. For example, they can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking robot is a challenging task. Thus, in this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking robot. The turning information is transmitted as descending steering signals to the neural locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations. The adaptation also enables the robot to effectively escape from sharp corners or deadlocks. Using backbone joint control embedded in the the locomotion control allows the robot to climb over small obstacles

  7. EEA1 restores homeostatic synaptic plasticity in hippocampal neurons from Rett syndrome mice.

    PubMed

    Xu, Xin; Pozzo-Miller, Lucas

    2017-08-15

    Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in MECP2, the gene encoding the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2). Mecp2 deletion in mice results in an imbalance of excitation and inhibition in hippocampal neurons, which affects 'Hebbian' synaptic plasticity. We show that Mecp2-deficient neurons also lack homeostatic synaptic plasticity, likely due to reduced levels of EEA1, a protein involved in AMPA receptor endocytosis. Expression of EEA1 restored homeostatic synaptic plasticity in Mecp2-deficient neurons, providing novel targets of intervention in Rett syndrome. Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in MECP2, the gene encoding the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2). Deletion of Mecp2 in mice results in an imbalance of synaptic excitation and inhibition in hippocampal pyramidal neurons, which affects 'Hebbian' long-term synaptic plasticity. Since the excitatory-inhibitory balance is maintained by homeostatic mechanisms, we examined the role of MeCP2 in homeostatic synaptic plasticity (HSP) at excitatory synapses. Negative feedback HSP, also known as synaptic scaling, maintains the global synaptic strength of individual neurons in response to sustained alterations in neuronal activity. Hippocampal neurons from Mecp2 knockout (KO) mice do not show the characteristic homeostatic scaling up of the amplitude of miniature excitatory postsynaptic currents (mEPSCs) and of synaptic levels of the GluA1 subunit of AMPA-type glutamate receptors after 48 h silencing with the Na(+) channel blocker tetrodotoxin. This deficit in HSP is bidirectional because Mecp2 KO neurons also failed to scale down mEPSC amplitudes and GluA1 synaptic levels after 48 h blockade of type A GABA receptor (GABAA R)-mediated inhibition with bicuculline. Consistent with the role of synaptic trafficking of AMPA-type of glutamate receptors in HSP, Mecp2 KO neurons

  8. Altered Synaptic Plasticity in Tourette's Syndrome and Its Relationship to Motor Skill Learning

    PubMed Central

    Ganos, Christos; Kahl, Ursula; Bäumer, Tobias; Münchau, Alexander

    2014-01-01

    Gilles de la Tourette syndrome is a neuropsychiatric disorder characterized by motor and phonic tics that can be considered motor responses to preceding inner urges. It has been shown that Tourette patients have inferior performance in some motor learning tasks and reduced synaptic plasticity induced by transcranial magnetic stimulation. However, it has not been investigated whether altered synaptic plasticity is directly linked to impaired motor skill acquisition in Tourette patients. In this study, cortical plasticity was assessed by measuring motor-evoked potentials before and after paired associative stimulation in 14 Tourette patients (13 male; age 18–39) and 15 healthy controls (12 male; age 18–33). Tic and urge severity were assessed using the Yale Global Tic Severity Scale and the Premonitory Urges for Tics Scale. Motor learning was assessed 45 minutes after inducing synaptic plasticity and 9 months later, using the rotary pursuit task. On average, long-term potentiation-like effects in response to the paired associative stimulation were present in healthy controls but not in patients. In Tourette patients, long-term potentiation-like effects were associated with more and long-term depression-like effects with less severe urges and tics. While motor learning did not differ between patients and healthy controls 45 minutes after inducing synaptic plasticity, the learning curve of the healthy controls started at a significantly higher level than the Tourette patients' 9 months later. Induced synaptic plasticity correlated positively with motor skills in healthy controls 9 months later. The present study confirms previously found long-term improvement in motor performance after paired associative stimulation in healthy controls but not in Tourette patients. Tourette patients did not show long-term potentiation in response to PAS and also showed reduced levels of motor skill consolidation after 9 months compared to healthy controls. Moreover, synaptic

  9. GRASP1 Regulates Synaptic Plasticity and Learning through Endosomal Recycling of AMPA Receptors.

    PubMed

    Chiu, Shu-Ling; Diering, Graham Hugh; Ye, Bing; Takamiya, Kogo; Chen, Chih-Ming; Jiang, Yuwu; Niranjan, Tejasvi; Schwartz, Charles E; Wang, Tao; Huganir, Richard L

    2017-03-22

    Learning depends on experience-dependent modification of synaptic efficacy and neuronal connectivity in the brain. We provide direct evidence for physiological roles of the recycling endosome protein GRASP1 in glutamatergic synapse function and animal behavior. Mice lacking GRASP1 showed abnormal excitatory synapse number, synaptic plasticity, and hippocampal-dependent learning and memory due to a failure in learning-induced synaptic AMPAR incorporation. We identified two GRASP1 point mutations from intellectual disability (ID) patients that showed convergent disruptive effects on AMPAR recycling and glutamate uncaging-induced structural and functional plasticity. Wild-type GRASP1, but not ID mutants, rescued spine loss in hippocampal CA1 neurons in Grasp1 knockout mice. Together, these results demonstrate a requirement for normal recycling endosome function in AMPAR-dependent synaptic function and neuronal connectivity in vivo, and suggest a potential role for GRASP1 in the pathophysiology of human cognitive disorders.

  10. Systems biology of synaptic plasticity: a review on N-methyl-D-aspartate receptor mediated biochemical pathways and related mathematical models.

    PubMed

    He, Y; Kulasiri, D; Samarasinghe, S

    2014-08-01

    Synaptic plasticity, an emergent property of synaptic networks, has shown strong correlation to one of the essential functions of the brain, memory formation. Through understanding synaptic plasticity, we hope to discover the modulators and mechanisms that trigger memory formation. In this paper, we first review the well understood modulators and mechanisms underlying N-methyl-D-aspartate receptor dependent synaptic plasticity, a major form of synaptic plasticity in hippocampus, and then comment on the key mathematical modelling approaches available in the literature to understand synaptic plasticity as the integration of the established functionalities of synaptic components.

  11. Differential effects of excitatory and inhibitory plasticity on synaptically-driven neuronal Input-Output functions

    PubMed Central

    Carvalho, Tiago P.; Buonomano, Dean V.

    2009-01-01

    Ultimately, whether or not a neuron produces a spike determines its contribution to local computations. In response to brief stimuli the probability a neuron will fire can be described by its input-output function, which depends on the net balance and timing of excitatory and inhibitory currents. While excitatory and inhibitory synapses are plastic, most studies examine plasticity of subthreshold events. Thus, the effects of concerted regulation of excitatory and inhibitory synaptic strength on neuronal input-output functions are not well understood. Here, theoretical analyses reveal that excitatory synaptic strength controls the threshold of the neuronal input-output function, while inhibitory plasticity alters the threshold and gain. Experimentally, changes in the balance of excitation and inhibition in CA1 pyramidal neurons also altered their input-output function as predicted by the model. These results support the existence of two functional modes of plasticity that can be used to optimize information processing: threshold and gain plasticity. PMID:19285473

  12. Synaptic Plasticity and Learning Behaviors Mimicked in Single Inorganic Synapses of Pt/HfOx/ZnOx/TiN Memristive System

    NASA Astrophysics Data System (ADS)

    Wang, Lai-Guo; Zhang, Wei; Chen, Yan; Cao, Yan-Qiang; Li, Ai-Dong; Wu, Di

    2017-01-01

    In this work, a kind of new memristor with the simple structure of Pt/HfOx/ZnOx/TiN was fabricated completely via combination of thermal-atomic layer deposition (TALD) and plasma-enhanced ALD (PEALD). The synaptic plasticity and learning behaviors of Pt/HfOx/ZnOx/TiN memristive system have been investigated deeply. Multilevel resistance states are obtained by varying the programming voltage amplitudes during the pulse cycling. The device conductance can be continuously increased or decreased from cycle to cycle with better endurance characteristics up to about 3 × 103 cycles. Several essential synaptic functions are simultaneously achieved in such a single double-layer of HfOx/ZnOx device, including nonlinear transmission properties, such as long-term plasticity (LTP), short-term plasticity (STP), and spike-timing-dependent plasticity. The transformation from STP to LTP induced by repetitive pulse stimulation is confirmed in Pt/HfOx/ZnOx/TiN memristive device. Above all, simple structure of Pt/HfOx/ZnOx/TiN by ALD technique is a kind of promising memristor device for applications in artificial neural network.

  13. Synaptic Plasticity and Learning Behaviors Mimicked in Single Inorganic Synapses of Pt/HfOx/ZnOx/TiN Memristive System.

    PubMed

    Wang, Lai-Guo; Zhang, Wei; Chen, Yan; Cao, Yan-Qiang; Li, Ai-Dong; Wu, Di

    2017-12-01

    In this work, a kind of new memristor with the simple structure of Pt/HfOx/ZnOx/TiN was fabricated completely via combination of thermal-atomic layer deposition (TALD) and plasma-enhanced ALD (PEALD). The synaptic plasticity and learning behaviors of Pt/HfOx/ZnOx/TiN memristive system have been investigated deeply. Multilevel resistance states are obtained by varying the programming voltage amplitudes during the pulse cycling. The device conductance can be continuously increased or decreased from cycle to cycle with better endurance characteristics up to about 3 × 10(3) cycles. Several essential synaptic functions are simultaneously achieved in such a single double-layer of HfOx/ZnOx device, including nonlinear transmission properties, such as long-term plasticity (LTP), short-term plasticity (STP), and spike-timing-dependent plasticity. The transformation from STP to LTP induced by repetitive pulse stimulation is confirmed in Pt/HfOx/ZnOx/TiN memristive device. Above all, simple structure of Pt/HfOx/ZnOx/TiN by ALD technique is a kind of promising memristor device for applications in artificial neural network.

  14. GABAergic synaptic plasticity during a developmentally regulated sleep-like state in C. elegans.

    PubMed

    Dabbish, Nooreen S; Raizen, David M

    2011-11-02

    Approximately one-fourth of the neurons in Caenorhabditis elegans adults are born during larval development, indicating tremendous plasticity in larval nervous system structure. Larval development shows cyclical expression of sleep-like quiescent behavior during lethargus periods, which occur at larval stage transitions. We studied plasticity at the neuromuscular junction during lethargus using the acetylcholinesterase inhibitor aldicarb. The rate of animal contraction when exposed to aldicarb is controlled by the balance between excitatory cholinergic and inhibitory GABAergic input on the muscle. During lethargus, there is an accelerated rate of contraction on aldicarb. Mutant analysis and optogenetic studies reveal that GABAergic synaptic transmission is reduced during lethargus. Worms in lethargus show partial resistance to GABA(A) receptor agonists, indicating that postsynaptic mechanisms contribute to lethargus-dependent plasticity. Using genetic manipulations that separate the quiescent state from the developmental stage, we show that the synaptic plasticity is dependent on developmental time and not on the behavioral state of the animal. We propose that the synaptic plasticity regulated by a developmental clock in C. elegans is analogous to synaptic plasticity regulated by the circadian clock in other species.

  15. Long-term social recognition memory is mediated by oxytocin-dependent synaptic plasticity in the medial amygdala.

    PubMed

    Gur, Rotem; Tendler, Alex; Wagner, Shlomo

    2014-09-01

    Recognition of specific individuals is fundamental to mammalian social behavior and is mediated in most mammals by the main and accessory olfactory systems. Both these systems innervate the medial amygdala (MeA), where activity of the neuropeptide oxytocin is thought to mediate social recognition memory (SRM). The specific contribution of the MeA to SRM formation and the specific actions of oxytocin in the MeA are unknown. We used the social discrimination test to evaluate short-term and long-term SRM in adult Sprague-Dawley male rats (n = 38). The role of protein synthesis in the MeA was investigated by local application of the protein synthesis blocker anisomycin (n = 11). Synaptic plasticity was assessed in vivo by recording the MeA evoked field potential responses to stimulation of the main (n = 21) and accessory (n = 56) olfactory bulbs before and after theta burst stimulation. Intracerebroventricular administration of saline, oxytocin, or oxytocin receptor antagonist was used to measure the effect of oxytocin on synaptic plasticity. Anisomycin application to the MeA prevented the formation of long-term SRM. In addition, the responses of MeA neurons underwent long-term depression (LTD) after theta burst stimulation of the accessory olfactory bulb, but not the main accessory bulb, in an oxytocin-dependent manner. No LTD was found in socially isolated rats, which are known to lack long-term SRM. Finally, accessory olfactory bulb stimulation before SRM acquisition blocked long-term SRM, supporting the involvement of LTD in the MeA in formation of long-term SRM. Our results indicate that long-term SRM in rats involves protein synthesis and oxytocin-dependent LTD in the MeA. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. Neuronal Kmt2a/Mll1 Histone Methyltransferase Is Essential for Prefrontal Synaptic Plasticity and Working Memory

    PubMed Central

    Jakovcevski, Mira; Ruan, Hongyu; Shen, Erica Y.; Dincer, Aslihan; Javidfar, Behnam; Ma, Qi; Peter, Cyril J.; Cheung, Iris; Mitchell, Amanda C.; Jiang, Yan; Lin, Cong L.; Pothula, Venu; Stewart, A. Francis; Ernst, Patricia

    2015-01-01

    Neuronal histone H3-lysine 4 methylation landscapes are defined by sharp peaks at gene promoters and other cis-regulatory sequences, but molecular and cellular phenotypes after neuron-specific deletion of H3K4 methyl-regulators remain largely unexplored. We report that neuronal ablation of the H3K4-specific methyltransferase, Kmt2a/Mixed-lineage leukemia 1 (Mll1), in mouse postnatal forebrain and adult prefrontal cortex (PFC) is associated with increased anxiety and robust cognitive deficits without locomotor dysfunction. In contrast, only mild behavioral phenotypes were observed after ablation of the Mll1 ortholog Kmt2b/Mll2 in PFC. Impaired working memory after Kmt2a/Mll1 ablation in PFC neurons was associated with loss of training-induced transient waves of Arc immediate early gene expression critical for synaptic plasticity. Medial prefrontal layer V pyramidal neurons, a major output relay of the cortex, demonstrated severely impaired synaptic facilitation and temporal summation, two forms of short-term plasticity essential for working memory. Chromatin immunoprecipitation followed by deep sequencing in Mll1-deficient cortical neurons revealed downregulated expression and loss of the transcriptional mark, trimethyl-H3K4, at <50 loci, including the homeodomain transcription factor Meis2. Small RNA-mediated Meis2 knockdown in PFC was associated with working memory defects similar to those elicited by Mll1 deletion. Therefore, mature prefrontal neurons critically depend on maintenance of Mll1-regulated H3K4 methylation at a subset of genes with an essential role in cognition and emotion. PMID:25834037

  17. Neuronal Kmt2a/Mll1 histone methyltransferase is essential for prefrontal synaptic plasticity and working memory.

    PubMed

    Jakovcevski, Mira; Ruan, Hongyu; Shen, Erica Y; Dincer, Aslihan; Javidfar, Behnam; Ma, Qi; Peter, Cyril J; Cheung, Iris; Mitchell, Amanda C; Jiang, Yan; Lin, Cong L; Pothula, Venu; Stewart, A Francis; Ernst, Patricia; Yao, Wei-Dong; Akbarian, Schahram

    2015-04-01

    Neuronal histone H3-lysine 4 methylation landscapes are defined by sharp peaks at gene promoters and other cis-regulatory sequences, but molecular and cellular phenotypes after neuron-specific deletion of H3K4 methyl-regulators remain largely unexplored. We report that neuronal ablation of the H3K4-specific methyltransferase, Kmt2a/Mixed-lineage leukemia 1 (Mll1), in mouse postnatal forebrain and adult prefrontal cortex (PFC) is associated with increased anxiety and robust cognitive deficits without locomotor dysfunction. In contrast, only mild behavioral phenotypes were observed after ablation of the Mll1 ortholog Kmt2b/Mll2 in PFC. Impaired working memory after Kmt2a/Mll1 ablation in PFC neurons was associated with loss of training-induced transient waves of Arc immediate early gene expression critical for synaptic plasticity. Medial prefrontal layer V pyramidal neurons, a major output relay of the cortex, demonstrated severely impaired synaptic facilitation and temporal summation, two forms of short-term plasticity essential for working memory. Chromatin immunoprecipitation followed by deep sequencing in Mll1-deficient cortical neurons revealed downregulated expression and loss of the transcriptional mark, trimethyl-H3K4, at <50 loci, including the homeodomain transcription factor Meis2. Small RNA-mediated Meis2 knockdown in PFC was associated with working memory defects similar to those elicited by Mll1 deletion. Therefore, mature prefrontal neurons critically depend on maintenance of Mll1-regulated H3K4 methylation at a subset of genes with an essential role in cognition and emotion. Copyright © 2015 the authors 0270-6474/15/355097-12$15.00/0.

  18. In vivo BDNF modulation of adult functional and morphological synaptic plasticity at hippocampal mossy fibers.

    PubMed

    Gómez-Palacio-Schjetnan, Andrea; Escobar, Martha L

    2008-11-07

    Brain-derived neurotrophic factor (BDNF) has been proposed as a key regulator and mediator of long-term synaptic modifications related to learning and memory maintenance. Our previous studies show that application of high-frequency stimulation (HFS) sufficient to elicit LTP at the dentate gyrus (DG)-CA3 pathway produces mossy fiber structural modifications 7 days after tetanic stimulation. In the present study, we show that acute intrahippocampal microinfusion of BDNF induces a lasting potentiation of synaptic efficacy in the DG-CA3 projection of anesthetized adult rats. Furthermore, we show that BDNF functional modifications in synaptic efficacy are accompanied by a presynaptic structural long-lasting reorganization at the hippocampal mossy fiber pathway. These findings support the idea that BDNF plays an important role as synaptic messenger of activity-dependent synaptic plasticity in the adult mammalian brain, in vivo.

  19. Synaptic transmission and plasticity require AMPA receptor anchoring via its N-terminal domain.

    PubMed

    Watson, Jake F; Ho, Hinze; Greger, Ingo H

    2017-03-14

    AMPA-type glutamate receptors (AMPARs) mediate fast excitatory neurotransmission and are selectively recruited during activity-dependent plasticity to increase synaptic strength. A prerequisite for faithful signal transmission is the positioning and clustering of AMPARs at postsynaptic sites. The mechanisms underlying this positioning have largely been ascribed to the receptor cytoplasmic C-termini and to AMPAR-associated auxiliary subunits, both interacting with the postsynaptic scaffold. Here, using mouse organotypic hippocampal slices, we show that the extracellular AMPAR N-terminal domain (NTD), which projects midway into the synaptic cleft, plays a fundamental role in this process. This highly sequence-diverse domain mediates synaptic anchoring in a subunit-selective manner. Receptors lacking the NTD exhibit increased mobility in synapses, depress synaptic transmission and are unable to sustain long-term potentiation (LTP). Thus, synaptic transmission and the expression of LTP are dependent upon an AMPAR anchoring mechanism that is driven by the NTD.

  20. Modelling the molecular mechanisms of synaptic plasticity using systems biology approaches.

    PubMed

    Kotaleski, Jeanette Hellgren; Blackwell, Kim T

    2010-04-01

    Synaptic plasticity is thought to underlie learning and memory, but the complexity of the interactions between the ion channels, enzymes and genes that are involved in synaptic plasticity impedes a deep understanding of this phenomenon. Computer modelling has been used to investigate the information processing that is performed by the signalling pathways involved in synaptic plasticity in principal neurons of the hippocampus, striatum and cerebellum. In the past few years, new software developments that combine computational neuroscience techniques with systems biology techniques have allowed large-scale, kinetic models of the molecular mechanisms underlying long-term potentiation and long-term depression. We highlight important advancements produced by these quantitative modelling efforts and introduce promising approaches that use advancements in live-cell imaging.

  1. Autoregulatory and paracrine control of synaptic and behavioral plasticity by octopaminergic signaling.

    PubMed

    Koon, Alex C; Ashley, James; Barria, Romina; DasGupta, Shamik; Brain, Ruth; Waddell, Scott; Alkema, Mark J; Budnik, Vivian

    2011-02-01

    Adrenergic signaling has important roles in synaptic plasticity and metaplasticity. However, the underlying mechanisms of these functions remain poorly understood. We investigated the role of octopamine, the invertebrate counterpart of adrenaline and noradrenaline, in synaptic and behavioral plasticity in Drosophila. We found that an increase in locomotor speed induced by food deprivation was accompanied by an activity- and octopamine-dependent extension of octopaminergic arbors and that the formation and maintenance of these arbors required electrical activity. Growth of octopaminergic arbors was controlled by a cAMP- and CREB-dependent positive-feedback mechanism that required Octβ2R octopamine autoreceptors. Notably, this autoregulation was necessary for the locomotor response. In addition, octopamine neurons regulated the expansion of excitatory glutamatergic neuromuscular arbors through Octβ2Rs on glutamatergic motor neurons. Our results provide a mechanism for global regulation of excitatory synapses, presumably to maintain synaptic and behavioral plasticity in a dynamic range.

  2. Learning, AMPA receptor mobility and synaptic plasticity depend on n-cofilin-mediated actin dynamics

    PubMed Central

    Rust, Marco B; Gurniak, Christine B; Renner, Marianne; Vara, Hugo; Morando, Laura; Görlich, Andreas; Sassoè-Pognetto, Marco; Banchaabouchi, Mumna Al; Giustetto, Maurizio; Triller, Antoine; Choquet, Daniel; Witke, Walter

    2010-01-01

    Neuronal plasticity is an important process for learning, memory and complex behaviour. Rapid remodelling of the actin cytoskeleton in the postsynaptic compartment is thought to have an important function for synaptic plasticity. However, the actin-binding proteins involved and the molecular mechanisms that in vivo link actin dynamics to postsynaptic physiology are not well understood. Here, we show that the actin filament depolymerizing protein n-cofilin is controlling dendritic spine morphology and postsynaptic parameters such as late long-term potentiation and long-term depression. Loss of n-cofilin-mediated synaptic actin dynamics in the forebrain specifically leads to impairment of all types of associative learning, whereas exploratory learning is not affected. We provide evidence for a novel function of n-cofilin function in synaptic plasticity and in the control of extrasynaptic excitatory AMPA receptors diffusion. These results suggest a critical function of actin dynamics in associative learning and postsynaptic receptor availability. PMID:20407421

  3. A novel synaptic plasticity rule explains homeostasis of neuromuscular transmission

    PubMed Central

    Ouanounou, Gilles; Baux, Gérard; Bal, Thierry

    2016-01-01

    Excitability differs among muscle fibers and undergoes continuous changes during development and growth, yet the neuromuscular synapse maintains a remarkable fidelity of execution. Here we show in two evolutionarily distant vertebrates (Xenopus laevis cell culture and mouse nerve-muscle ex-vivo) that the skeletal muscle cell constantly senses, through two identified calcium signals, synaptic events and their efficacy in eliciting spikes. These sensors trigger retrograde signal(s) that control presynaptic neurotransmitter release, resulting in synaptic potentiation or depression. In the absence of spikes, synaptic events trigger potentiation. Once the synapse is sufficiently strong to initiate spiking, the occurrence of these spikes activates a negative retrograde feedback. These opposing signals dynamically balance the synapse in order to continuously adjust neurotransmitter release to a level matching current muscle cell excitability. DOI: http://dx.doi.org/10.7554/eLife.12190.001 PMID:27138195

  4. Noradrenergic control of associative synaptic plasticity by selective modulation of instructive signals

    PubMed Central

    Carey, Megan R.; Regehr, Wade G.

    2010-01-01

    Synapses throughout the brain are modified through associative mechanisms in which one input provides an instructive signal for changes in the strength of a second co-activated input. In cerebellar Purkinje cells, climbing fiber synapses provide an instructive signal for plasticity at parallel fiber synapses. Here we show that noradrenaline activates α2-adrenergic receptors to control short-term and long-term associative plasticity of parallel fiber synapses. This regulation of plasticity does not reflect a conventional direct modulation of the postsynaptic Purkinje cell or presynaptic parallel fibers. Instead, noradrenaline reduces associative plasticity by selectively decreasing the probability of release at the climbing fiber synapse, which in turn decreases climbing fiber-evoked dendritic calcium signals. These findings raise the possibility that targeted presynaptic modulation of instructive synapses could provide a general mechanism for dynamic context-dependent modulation of associative plasticity. PMID:19376071

  5. Pre- and postsynaptic twists in BDNF secretion and action in synaptic plasticity.

    PubMed

    Edelmann, Elke; Lessmann, Volkmar; Brigadski, Tanja

    2014-01-01

    Overwhelming evidence collected since the early 1990's strongly supports the notion that BDNF is among the key regulators of synaptic plasticity in many areas of the mammalian central nervous system. Still, due to the extremely low expression levels of endogenous BDNF in most brain areas, surprisingly little data i) pinpointing pre- and postsynaptic release sites, ii) unraveling the time course of release, and iii) elucidating the physiological levels of synaptic activity driving this secretion are available. Likewise, our knowledge regarding pre- and postsynaptic effects of endogenous BDNF at the single cell level in mediating long-term potentiation still is sparse. Thus, our review will discuss the data currently available regarding synaptic BDNF secretion in response to physiologically relevant levels of activity, and will discuss how endogenously secreted BDNF affects synaptic plasticity, giving a special focus on spike timing-dependent types of LTP and on mossy fiber LTP. We will attempt to open up perspectives how the remaining challenging questions regarding synaptic BDNF release and action might be addressed by future experiments. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.

  6. Impairments of Synaptic Plasticity in Aged Animals and in Animal Models of Alzheimer's Disease

    PubMed Central

    Balietti, Marta; Tamagnini, Francesco; Fattoretti, Patrizia; Burattini, Costanza; Casoli, Tiziana; Platano, Daniela; Lattanzio, Fabrizia

    2012-01-01

    Abstract Aging is associated with a gradual decline in cognitive functions, and more dramatic cognitive impairments occur in patients affected by Alzheimer's disease (AD). Electrophysiological and molecular studies performed in aged animals and in animal models of AD have shown that cognitive decline is associated with significant modifications in synaptic plasticity (i.e., activity-dependent changes in synaptic strength) and have elucidated some of the cellular mechanisms underlying this process. Morphological studies have revealed a correlation between the quality of memory performance and the extent of structural changes of synaptic contacts occurring during memory consolidation. We briefly review recent experimental evidence here. PMID:22533439

  7. Learning structure of sensory inputs with synaptic plasticity leads to interference

    PubMed Central

    Chrol-Cannon, Joseph; Jin, Yaochu

    2015-01-01

    Synaptic plasticity is often explored as a form of unsupervised adaptation in cortical microcircuits to learn the structure of complex sensory inputs and thereby improve performance of classification and prediction. The question of whether the specific structure of the input patterns is encoded in the structure of neural networks has been largely neglected. Existing studies that have analyzed input-specific structural adaptation have used simplified, synthetic inputs in contrast to complex and noisy patterns found in real-world sensory data. In this work, input-specific structural changes are analyzed for three empirically derived models of plasticity applied to three temporal sensory classification tasks that include complex, real-world visual and auditory data. Two forms of spike-timing dependent plasticity (STDP) and the Bienenstock-Cooper-Munro (BCM) plasticity rule are used to adapt the recurrent network structure during the training process before performance is tested on the pattern recognition tasks. It is shown that synaptic adaptation is highly sensitive to specific classes of input pattern. However, plasticity does not improve the performance on sensory pattern recognition tasks, partly due to synaptic interference between consecutively presented input samples. The changes in synaptic strength produced by one stimulus are reversed by the presentation of another, thus largely preventing input-specific synaptic changes from being retained in the structure of the network. To solve the problem of interference, we suggest that models of plasticity be extended to restrict neural activity and synaptic modification to a subset of the neural circuit, which is increasingly found to be the case in experimental neuroscience. PMID:26300769

  8. Lovastatin improves impaired synaptic plasticity and phasic alertness in patients with neurofibromatosis type 1.

    PubMed

    Mainberger, Florian; Jung, Nikolai H; Zenker, Martin; Wahlländer, Ute; Freudenberg, Leonie; Langer, Susanne; Berweck, Steffen; Winkler, Tobias; Straube, Andreas; Heinen, Florian; Granström, Sofia; Mautner, Victor-Felix; Lidzba, Karen; Mall, Volker

    2013-10-02

    Neurofibromatosis type 1 (NF1) is one of the most common genetic disorders causing learning disabilities by mutations in the neurofibromin gene, an important inhibitor of the RAS pathway. In a mouse model of NF1, a loss of function mutation of the neurofibromin gene resulted in increased gamma aminobutyric acid (GABA)-mediated inhibition which led to decreased synaptic plasticity and deficits in attentional performance. Most importantly, these defictis were normalized by lovastatin. This placebo-controlled, double blind, randomized study aimed to investigate synaptic plasticity and cognition in humans with NF1 and tried to answer the question whether potential deficits may be rescued by lovastatin. In NF1 patients (n = 11; 19-44 years) and healthy controls (HC; n = 11; 19-31 years) paired pulse transcranial magnetic stimulation (TMS) was used to study intracortical inhibition (paired pulse) and synaptic plasticity (paired associative stimulation). On behavioural level the Test of Attentional Performance (TAP) was used. To study the effect of 200 mg lovastatin for 4 days on all these parameters, a placebo-controlled, double blind, randomized trial was performed. In patients with NF1, lovastatin revealed significant decrease of intracortical inhibition, significant increase of synaptic plasticity as well as significant increase of phasic alertness. Compared to HC, patients with NF1 exposed increased intracortical inhibition, impaired synaptic plasticity and deficits in phasic alertness. This study demonstrates, for the first time, a link between a pathological RAS pathway activity, intracortical inhibition and impaired synaptic plasticity and its rescue by lovastatin in humans. Our findings revealed mechanisms of attention disorders in humans with NF1 and support the idea of a potential clinical benefit of lovastatin as a therapeutic option.

  9. Lovastatin improves impaired synaptic plasticity and phasic alertness in patients with neurofibromatosis type 1

    PubMed Central

    2013-01-01

    Background Neurofibromatosis type 1 (NF1) is one of the most common genetic disorders causing learning disabilities by mutations in the neurofibromin gene, an important inhibitor of the RAS pathway. In a mouse model of NF1, a loss of function mutation of the neurofibromin gene resulted in increased gamma aminobutyric acid (GABA)-mediated inhibition which led to decreased synaptic plasticity and deficits in attentional performance. Most importantly, these defictis were normalized by lovastatin. This placebo-controlled, double blind, randomized study aimed to investigate synaptic plasticity and cognition in humans with NF1 and tried to answer the question whether potential deficits may be rescued by lovastatin. Methods In NF1 patients (n = 11; 19–44 years) and healthy controls (HC; n = 11; 19–31 years) paired pulse transcranial magnetic stimulation (TMS) was used to study intracortical inhibition (paired pulse) and synaptic plasticity (paired associative stimulation). On behavioural level the Test of Attentional Performance (TAP) was used. To study the effect of 200 mg lovastatin for 4 days on all these parameters, a placebo-controlled, double blind, randomized trial was performed. Results In patients with NF1, lovastatin revealed significant decrease of intracortical inhibition, significant increase of synaptic plasticity as well as significant increase of phasic alertness. Compared to HC, patients with NF1 exposed increased intracortical inhibition, impaired synaptic plasticity and deficits in phasic alertness. Conclusions This study demonstrates, for the first time, a link between a pathological RAS pathway activity, intracortical inhibition and impaired synaptic plasticity and its rescue by lovastatin in humans. Our findings revealed mechanisms of attention disorders in humans with NF1 and support the idea of a potential clinical benefit of lovastatin as a therapeutic option. PMID:24088225

  10. Electrochemical-reaction-induced synaptic plasticity in MoOx-based solid state electrochemical cells.

    PubMed

    Yang, Chuan-Sen; Shang, Da-Shan; Chai, Yi-Sheng; Yan, Li-Qin; Shen, Bao-Gen; Sun, Young

    2017-02-08

    Solid state electrochemical cells with synaptic functions have important applications in building smart-terminal networks. Here, the essential synaptic functions including potentiation and depression of synaptic weight, transition from short- to long-term plasticity, spike-rate-dependent plasticity, and spike-timing-dependent plasticity behavior were successfully realized in an Ag/MoOx/fluorine-doped tin oxide (FTO) cell with continual resistance switching. The synaptic plasticity underlying these functions was controlled by tuning the excitatory post-synaptic current (EPSC) decay, which is determined by the applied voltage pulse number, width, frequency, and intervals between the pre- and post-spikes. The physical mechanism of the artificial synapse operation is attributed to the interfacial electrochemical reaction processes of the MoOx films with the adsorbed water, where protons generated by water decomposition under an electric field diffused into the MoOx films and intercalated into the lattice, leading to the short- and long-term retention of cell resistance, respectively. These results indicate the possibility of achieving advanced artificial synapses with solid state electrochemical cells and will contribute to the development of smart-terminal networking systems.

  11. Reelin supplementation enhances cognitive ability, synaptic plasticity, and dendritic spine density

    PubMed Central

    Rogers, Justin T.; Rusiana, Ian; Trotter, Justin; Zhao, Lisa; Donaldson, Erika; Pak, Daniel T.S.; Babus, Lenard W.; Peters, Melinda; Banko, Jessica L.; Chavis, Pascale; Rebeck, G. William; Hoe, Hyang-Sook; Weeber, Edwin J.

    2011-01-01

    Apolipoprotein receptors belong to an evolutionarily conserved surface receptor family that has intimate roles in the modulation of synaptic plasticity and is necessary for proper hippocampal-dependent memory formation. The known lipoprotein receptor ligand Reelin is important for normal synaptic plasticity, dendritic morphology, and cognitive function; however, the in vivo effect of enhanced Reelin signaling on cognitive function and synaptic plasticity in wild-type mice is unknown. The present studies test the hypothesis that in vivo enhancement of Reelin signaling can alter synaptic plasticity and ultimately influence processes of learning and memory. Purified recombinant Reelin was injected bilaterally into the ventricles of wild-type mice. We demonstrate that a single in vivo injection of Reelin increased activation of adaptor protein Disabled-1 and cAMP-response element binding protein after 15 min. These changes correlated with increased dendritic spine density, increased hippocampal CA1 long-term potentiation (LTP), and enhanced performance in associative and spatial learning and memory. The present study suggests that an acute elevation of in vivo Reelin can have long-term effects on synaptic function and cognitive ability in wild-type mice. PMID:21852430

  12. Intracerebroventricular administration of ouabain alters synaptic plasticity and dopamine release in rat medial prefrontal cortex.

    PubMed

    Sui, Li; Song, Xiao-Jin; Ren, Jie; Ju, Li-Hua; Wang, Yan

    2013-08-01

    Intracerebroventricular (ICV) administration of ouabain, a specific Na-K-ATPase inhibitor, in rats mimics the manic phenotypes of bipolar disorder and thus has been proposed as one of the best animal models of mania. Bipolar mania has been known to be associated with dysfunctions of medial prefrontal cortex (mPFC), a brain area critically involved in mental functions; however, the exact mechanism underlying these dysfunctions is not yet clear. The present study investigated synaptic transmission, synaptic plasticity, and dopamine release in Sprague-Dawley rat mPFC following ICV administration of ouabain (5 μl of 1 mM ouabain). The electrophysiological results demonstrated that ouabain depressed the short- and the long-term synaptic plasticity, represented by paired-pulse facilitation and long-term potentiation, respectively, in the mPFC. These ouabain-induced alterations in synaptic plasticity can be prevented by pre-treatment with lithium (intraperitoneal injection of 47.5 mg/kg lithium, twice a day, 7 days), which acts as an effective mood stabilizer in preventing mania. The electrochemical results demonstrated that ICV administration of ouabain enhanced dopamine release in the mPFC, which did not be affected by pre-treatment with lithium. These findings suggested that alterations in synaptic plasticity and dopamine release in the mPFC might underlie the dysfunctions of mPFC accompanied with ouabain administration-induced bipolar mania.

  13. Chondroitin Sulfate Induces Depression of Synaptic Transmission and Modulation of Neuronal Plasticity in Rat Hippocampal Slices.

    PubMed

    Albiñana, Elisa; Gutierrez-Luengo, Javier; Hernández-Juarez, Natalia; Baraibar, Andrés M; Montell, Eulalia; Vergés, Josep; García, Antonio G; Hernández-Guijo, Jesus M

    2015-01-01

    It is currently known that in CNS the extracellular matrix is involved in synaptic stabilization and limitation of synaptic plasticity. However, it has been reported that the treatment with chondroitinase following injury allows the formation of new synapses and increased plasticity and functional recovery. So, we hypothesize that some components of extracellular matrix may modulate synaptic transmission. To test this hypothesis we evaluated the effects of chondroitin sulphate (CS) on excitatory synaptic transmission, cellular excitability, and neuronal plasticity using extracellular recordings in the CA1 area of rat hippocampal slices. CS caused a reversible depression of evoked field excitatory postsynaptic potentials in a concentration-dependent manner. CS also reduced the population spike amplitude evoked after orthodromic stimulation but not when the population spikes were antidromically evoked; in this last case a potentiation was observed. CS also enhanced paired-pulse facilitation and long-term potentiation. Our study provides evidence that CS, a major component of the brain perineuronal net and extracellular matrix, has a function beyond the structural one, namely, the modulation of synaptic transmission and neuronal plasticity in the hippocampus.

  14. Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity

    PubMed Central

    2017-01-01

    Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, forming trans-complexes spanning the synaptic cleft or cis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affect their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics. PMID:28255461

  15. Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity

    SciTech Connect

    Rudenko, Gabby

    2017-01-01

    Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, formingtrans-complexes spanning the synaptic cleft orcis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affect their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics.

  16. Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity.

    PubMed

    Rudenko, Gabby

    2017-01-01

    Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, forming trans-complexes spanning the synaptic cleft or cis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affect their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics.

  17. miRNAs in NMDA receptor-dependent synaptic plasticity and psychiatric disorders

    PubMed Central

    Shen, Hongmei; Li, Zheng

    2017-01-01

    The identification and functional delineation of miRNAs (a class of small non-coding RNAs) have added a new layer of complexity to our understanding of the molecular mechanisms underlying synaptic plasticity. Genome-wide association studies in conjunction with investigations in cellular and animal models, moreover, provide evidence that miRNAs are involved in psychiatric disorders. In the present review, we examine the current knowledge about the roles played by miRNAs in NMDA (N-methyl-d-aspartate) receptor-dependent synaptic plasticity and psychiatric disorders. PMID:27252401

  18. All About Running: Synaptic Plasticity, Growth Factors and Adult Hippocampal Neurogenesis

    PubMed Central

    Vivar, Carmen; Potter, Michelle C.; van Praag, Henriette

    2015-01-01

    Accumulating evidence from animal and human research shows exercise benefits learning and memory, which may reduce the risk of neurodegenerative diseases, and could delay age-related cognitive decline. Exercise-induced improvements in learning and memory are correlated with enhanced adult hippocampal neurogenesis and increased activity-dependent synaptic plasticity. In this present chapter we will highlight the effects of physical activity on cognition in rodents, as well as on dentate gyrus (DG) neurogenesis, synaptic plasticity, spine density, neurotransmission and growth factors, in particular brain-derived nerve growth factor (BDNF). PMID:22847651

  19. Spike-timing-dependent synaptic plasticity depends on dendritic location

    NASA Astrophysics Data System (ADS)

    Froemke, Robert C.; Poo, Mu-ming; Dan, Yang

    2005-03-01

    In the neocortex, each neuron receives thousands of synaptic inputs distributed across an extensive dendritic tree. Although postsynaptic processing of each input is known to depend on its dendritic location, it is unclear whether activity-dependent synaptic modification is also location-dependent. Here we report that both the magnitude and the temporal specificity of spike-timing-dependent synaptic modification vary along the apical dendrite of rat cortical layer 2/3 pyramidal neurons. At the distal dendrite, the magnitude of long-term potentiation is smaller, and the window of pre-/postsynaptic spike interval for long-term depression (LTD) is broader. The spike-timing window for LTD correlates with the window of action potential-induced suppression of NMDA (N-methyl-D-aspartate) receptors; this correlation applies to both their dendritic location-dependence and pharmacological properties. Presynaptic stimulation with partial blockade of NMDA receptors induced LTD and occluded further induction of spike-timing-dependent LTD, suggesting that NMDA receptor suppression underlies LTD induction. Computer simulation studies showed that the dendritic inhomogeneity of spike-timing-dependent synaptic modification leads to differential input selection at distal and proximal dendrites according to the temporal characteristics of presynaptic spike trains. Such location-dependent tuning of inputs, together with the dendritic heterogeneity of postsynaptic processing, could enhance the computational capacity of cortical pyramidal neurons.

  20. Long Term Synaptic Plasticity and Learning in Neuronal Networks

    DTIC Science & Technology

    1989-01-14

    Videomicroscopy and synaptic physiology of cultured hippocampal slices. Soc, Neurosci. Abstr. 14:246, 1988. Griffith, W.H., Brown, T.H. and Johnston, D...Chapman, P.F., Chang, V., and Brown, T.H. . Videomicroscopy of acute brain slices from hippocampus and amygdala. Brain Res. Bull, 21: 373-383, 1988

  1. Hippocampal Testosterone Relates to Reference Memory Performance and Synaptic Plasticity in Male Rats

    PubMed Central

    Schulz, Kristina; Korz, Volker

    2010-01-01

    Steroids are important neuromodulators influencing cognitive performance and synaptic plasticity. While the majority of literature concerns adrenal- and gonadectomized animals, very little is known about the “natural” endogenous release of hormones during learning. Therefore, we measured blood and brain (hippocampus, prefrontal cortex) testosterone, estradiol, and corticosterone concentrations of intact male rats undergoing a spatial learning paradigm which is known to reinforce hippocampal plasticity. We found significant modulations of all investigated hormones over the training course. Corticosterone and testosterone were correlated manifold with behavior, while estradiol expressed fewer correlations. In the recall session, testosterone was tightly coupled to reference memory (RM) performance, which is crucial for reinforcement of synaptic plasticity in the dentate gyrus. Intriguingly, prefrontal cortex and hippocampal levels related differentially to RM performance. Correlations of testosterone and corticosterone switched from unspecific activity to specific cognitive functions over training. Correspondingly, exogenous application of testosterone revealed different effects on synaptic and neuronal plasticity in trained versus untrained animals. While hippocampal long-term potentiation (LTP) of the field excitatory postsynaptic potential (fEPSP) was prolonged in untrained rats, both the fEPSP- and the population spike amplitude (PSA)-LTP was impaired in trained rats. Behavioral performance was unaffected, but correlations of hippocampal field potentials with behavior were decoupled in treated rats. The data provide important evidence that besides adrenal, also gonadal steroids play a mechanistic role in linking synaptic plasticity to cognitive performance. PMID:21188275

  2. Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition.

    PubMed

    Wu, Aiguo; Ying, Zhe; Gomez-Pinilla, Fernando

    2006-02-01

    The pervasive action of oxidative stress on neuronal function and plasticity after traumatic brain injury (TBI) is becoming increasingly recognized. Here, we evaluated the capacity of the powerful antioxidant curry spice curcumin ingested in the diet to counteract the oxidative damage encountered in the injured brain. In addition, we have examined the possibility that dietary curcumin may favor the injured brain by interacting with molecular mechanisms that maintain synaptic plasticity and cognition. The analysis was focused on the BDNF system based on its action on synaptic plasticity and cognition by modulating synapsin I and CREB. Rats were exposed to a regular diet or a diet high in saturated fat, with or without 500 ppm curcumin for 4 weeks (n = 8/group), before a mild fluid percussion injury (FPI) was performed. The high-fat diet has been shown to exacerbate the effects of TBI on synaptic plasticity and cognitive function. Supplementation of curcumin in the diet dramatically reduced oxidative damage and normalized levels of BDNF, synapsin I, and CREB that had been altered after TBI. Furthermore, curcumin supplementation counteracted the cognitive impairment caused by TBI. These results are in agreement with previous evidence, showing that oxidative stress can affect the injured brain by acting through the BDNF system to affect synaptic plasticity and cognition. The fact that oxidative stress is an intrinsic component of the neurological sequel of TBI and other insults indicates that dietary antioxidant therapy is a realistic approach to promote protective mechanisms in the injured brain.

  3. Fear Extinction as a Model for Synaptic Plasticity in Major Depressive Disorder

    PubMed Central

    Feige, Bernd; Blechert, Jens; Normann, Claus; Nissen, Christoph

    2014-01-01

    Background The neuroplasticity hypothesis of major depressive disorder proposes that a dysfunction of synaptic plasticity represents a basic pathomechanism of the disorder. Animal models of depression indicate enhanced plasticity in a ventral emotional network, comprising the amygdala. Here, we investigated fear extinction learning as a non-invasive probe for amygdala-dependent synaptic plasticity in patients with major depressive disorder and healthy controls. Methods Differential fear conditioning was measured in 37 inpatients with severe unipolar depression (International Classification of Diseases, 10th revision, criteria) and 40 healthy controls. The eye-blink startle response, a subcortical output signal that is modulated by local synaptic plasticity in the amygdala in fear acquisition and extinction learning, was recorded as the primary outcome parameter. Results After robust and similar fear acquisition in both groups, patients with major depressive disorder showed significantly enhanced fear extinction learning in comparison to healthy controls, as indicated by startle responses to conditioned stimuli. The strength of extinction learning was positively correlated with the total illness duration. Conclusions The finding of enhanced fear extinction learning in major depressive disorder is consistent with the concept that the disorder is characterized by enhanced synaptic plasticity in the amygdala and the ventral emotional network. Clinically, the observation emphasizes the potential of successful extinction learning, the basis of exposure therapy, in anxiety-related disorders despite the frequent comorbidity of major depressive disorder. PMID:25545818

  4. Brain Deletion of Insulin Receptor Substrate 2 Disrupts Hippocampal Synaptic Plasticity and Metaplasticity

    PubMed Central

    Costello, Derek A.; Claret, Marc; Al-Qassab, Hind; Plattner, Florian; Irvine, Elaine E.; Choudhury, Agharul I.; Giese, K. Peter; Withers, Dominic J.; Pedarzani, Paola

    2012-01-01

    Objective Diabetes mellitus is associated with cognitive deficits and an increased risk of dementia, particularly in the elderly. These deficits and the corresponding neurophysiological structural and functional alterations are linked to both metabolic and vascular changes, related to chronic hyperglycaemia, but probably also defects in insulin action in the brain. To elucidate the specific role of brain insulin signalling in neuronal functions that are relevant for cognitive processes we have investigated the behaviour of neurons and synaptic plasticity in the hippocampus of mice lacking the insulin receptor substrate protein 2 (IRS-2). Research Design and Methods To study neuronal function and synaptic plasticity in the absence of confounding factors such as hyperglycaemia, we used a mouse model with a central nervous system- (CNS)-restricted deletion of IRS-2 (NesCreIrs2KO). Results We report a deficit in NMDA receptor-dependent synaptic plasticity in the hippocampus of NesCreIrs2KO mice, with a concomitant loss of metaplasticity, the modulation of synaptic plasticity by the previous activity of a synapse. These plasticity changes are associated with reduced basal phosphorylation of the NMDA receptor subunit NR1 and of downstream targets of the PI3K pathway, the protein kinases Akt and GSK-3β. Conclusions These findings reveal molecular and cellular mechanisms that might underlie cognitive deficits linked to specific defects of neuronal insulin signalling. PMID:22383997

  5. Coexistence of Multiple Types of Synaptic Plasticity in Individual Hippocampal CA1 Pyramidal Neurons

    PubMed Central

    Edelmann, Elke; Cepeda-Prado, Efrain; Leßmann, Volkmar

    2017-01-01

    Understanding learning and memory mechanisms is an important goal in neuroscience. To gain insights into the underlying cellular mechanisms for memory formation, synaptic plasticity processes are studied with various techniques in different brain regions. A valid model to scrutinize different ways to enhance or decrease synaptic transmission is recording of long-term potentiation (LTP) or long-term depression (LTD). At the single cell level, spike timing-dependent plasticity (STDP) protocols have emerged as a powerful tool to investigate synaptic plasticity with stimulation paradigms that also likely occur during memory formation in vivo. Such kind of plasticity can be induced by different STDP paradigms with multiple repeat numbers and stimulation patterns. They subsequently recruit or activate different molecular pathways and neuromodulators for induction and expression of STDP. Dopamine (DA) and brain-derived neurotrophic factor (BDNF) have been recently shown to be important modulators for hippocampal STDP at Schaffer collateral (SC)-CA1 synapses and are activated exclusively by distinguishable STDP paradigms. Distinct types of parallel synaptic plasticity in a given neuron depend on specific subcellular molecular prerequisites. Since the basal and apical dendrites of CA1 pyramidal neurons are known to be heterogeneous, and distance-dependent dendritic gradients for specific receptors and ion channels are described, the dendrites might provide domain specific locations for multiple types of synaptic plasticity in the same neuron. In addition to the distinct signaling and expression mechanisms of various types of LTP and LTD, activation of these different types of plasticity might depend on background brain activity states. In this article, we will discuss some ideas why multiple forms of synaptic plasticity can simultaneously and independently coexist and can contribute so effectively to increasing the efficacy of memory storage and processing capacity of the