A parallel algorithm for finding the shortest exit paths in mines
NASA Astrophysics Data System (ADS)
Jastrzab, Tomasz; Buchcik, Agata
2017-11-01
In the paper we study the problem of finding the shortest exit path in an underground mine in case of emergency. Since emergency situations, such as underground fires, can put the miners' lives at risk, the ability to quickly determine the safest exit path is crucial. We propose a parallel algorithm capable of finding the shortest path between the safe exit point and any other point in the mine. The algorithm is also able to take into account the characteristics of individual miners, to make the path determination more reliable.
Smell Detection Agent Based Optimization Algorithm
NASA Astrophysics Data System (ADS)
Vinod Chandra, S. S.
2016-09-01
In this paper, a novel nature-inspired optimization algorithm has been employed and the trained behaviour of dogs in detecting smell trails is adapted into computational agents for problem solving. The algorithm involves creation of a surface with smell trails and subsequent iteration of the agents in resolving a path. This algorithm can be applied in different computational constraints that incorporate path-based problems. Implementation of the algorithm can be treated as a shortest path problem for a variety of datasets. The simulated agents have been used to evolve the shortest path between two nodes in a graph. This algorithm is useful to solve NP-hard problems that are related to path discovery. This algorithm is also useful to solve many practical optimization problems. The extensive derivation of the algorithm can be enabled to solve shortest path problems.
NASA Astrophysics Data System (ADS)
Bakar, Sumarni Abu; Ibrahim, Milbah
2017-08-01
The shortest path problem is a popular problem in graph theory. It is about finding a path with minimum length between a specified pair of vertices. In any network the weight of each edge is usually represented in a form of crisp real number and subsequently the weight is used in the calculation of shortest path problem using deterministic algorithms. However, due to failure, uncertainty is always encountered in practice whereby the weight of edge of the network is uncertain and imprecise. In this paper, a modified algorithm which utilized heuristic shortest path method and fuzzy approach is proposed for solving a network with imprecise arc length. Here, interval number and triangular fuzzy number in representing arc length of the network are considered. The modified algorithm is then applied to a specific example of the Travelling Salesman Problem (TSP). Total shortest distance obtained from this algorithm is then compared with the total distance obtained from traditional nearest neighbour heuristic algorithm. The result shows that the modified algorithm can provide not only on the sequence of visited cities which shown to be similar with traditional approach but it also provides a good measurement of total shortest distance which is lesser as compared to the total shortest distance calculated using traditional approach. Hence, this research could contribute to the enrichment of methods used in solving TSP.
Nearby Search Indekos Based Android Using A Star (A*) Algorithm
NASA Astrophysics Data System (ADS)
Siregar, B.; Nababan, EB; Rumahorbo, JA; Andayani, U.; Fahmi, F.
2018-03-01
Indekos or rented room is a temporary residence for months or years. Society of academicians who come from out of town need a temporary residence, such as Indekos or rented room during their education, teaching, or duties. They are often found difficulty in finding a Indekos because lack of information about the Indekos. Besides, new society of academicians don’t recognize the areas around the campus and desire the shortest path from Indekos to get to the campus. The problem can be solved by implementing A Star (A*) algorithm. This algorithm is one of the shortest path algorithm to a finding shortest path from campus to the Indekos application, where the faculties in the campus as the starting point of the finding. Determination of the starting point used in this study aims to allow students to determine the starting point in finding the Indekos. The mobile based application facilitates the finding anytime and anywhere. Based on the experimental results, A* algorithm can find the shortest path with 86,67% accuracy.
Traffic-engineering-aware shortest-path routing and its application in IP-over-WDM networks [Invited
NASA Astrophysics Data System (ADS)
Lee, Youngseok; Mukherjee, Biswanath
2004-03-01
Single shortest-path routing is known to perform poorly for Internet traffic engineering (TE) where the typical optimization objective is to minimize the maximum link load. Splitting traffic uniformly over equal-cost multiple shortest paths in open shortest path first and intermediate system-intermediate system protocols does not always minimize the maximum link load when multiple paths are not carefully selected for the global traffic demand matrix. However, a TE-aware shortest path among all the equal-cost multiple shortest paths between each ingress-egress pair can be selected such that the maximum link load is significantly reduced. IP routers can use the globally optimal TE-aware shortest path without any change to existing routing protocols and without any serious configuration overhead. While calculating TE-aware shortest paths, the destination-based forwarding constraint at a node should be satisfied, because an IP router will forward a packet to the next hop toward the destination by looking up the destination prefix. We present a mathematical problem formulation for finding a set of TE-aware shortest paths for the given network as an integer linear program, and we propose a simple heuristic for solving large instances of the problem. Then we explore the usage of our proposed algorithm for the integrated TE method in IP-over-WDM networks. The proposed algorithm is evaluated through simulations in IP networks as well as in IP-over-WDM networks.
Path planning of decentralized multi-quadrotor based on fuzzy-cell decomposition algorithm
NASA Astrophysics Data System (ADS)
Iswanto, Wahyunggoro, Oyas; Cahyadi, Adha Imam
2017-04-01
The paper aims to present a design algorithm for multi quadrotor lanes in order to move towards the goal quickly and avoid obstacles in an area with obstacles. There are several problems in path planning including how to get to the goal position quickly and avoid static and dynamic obstacles. To overcome the problem, therefore, the paper presents fuzzy logic algorithm and fuzzy cell decomposition algorithm. Fuzzy logic algorithm is one of the artificial intelligence algorithms which can be applied to robot path planning that is able to detect static and dynamic obstacles. Cell decomposition algorithm is an algorithm of graph theory used to make a robot path map. By using the two algorithms the robot is able to get to the goal position and avoid obstacles but it takes a considerable time because they are able to find the shortest path. Therefore, this paper describes a modification of the algorithms by adding a potential field algorithm used to provide weight values on the map applied for each quadrotor by using decentralized controlled, so that the quadrotor is able to move to the goal position quickly by finding the shortest path. The simulations conducted have shown that multi-quadrotor can avoid various obstacles and find the shortest path by using the proposed algorithms.
Self-organization and solution of shortest-path optimization problems with memristive networks
NASA Astrophysics Data System (ADS)
Pershin, Yuriy V.; Di Ventra, Massimiliano
2013-07-01
We show that memristive networks, namely networks of resistors with memory, can efficiently solve shortest-path optimization problems. Indeed, the presence of memory (time nonlocality) promotes self organization of the network into the shortest possible path(s). We introduce a network entropy function to characterize the self-organized evolution, show the solution of the shortest-path problem and demonstrate the healing property of the solution path. Finally, we provide an algorithm to solve the traveling salesman problem. Similar considerations apply to networks of memcapacitors and meminductors, and networks with memory in various dimensions.
Multiple object tracking using the shortest path faster association algorithm.
Xi, Zhenghao; Liu, Heping; Liu, Huaping; Yang, Bin
2014-01-01
To solve the persistently multiple object tracking in cluttered environments, this paper presents a novel tracking association approach based on the shortest path faster algorithm. First, the multiple object tracking is formulated as an integer programming problem of the flow network. Then we relax the integer programming to a standard linear programming problem. Therefore, the global optimum can be quickly obtained using the shortest path faster algorithm. The proposed method avoids the difficulties of integer programming, and it has a lower worst-case complexity than competing methods but better robustness and tracking accuracy in complex environments. Simulation results show that the proposed algorithm takes less time than other state-of-the-art methods and can operate in real time.
Multiple Object Tracking Using the Shortest Path Faster Association Algorithm
Liu, Heping; Liu, Huaping; Yang, Bin
2014-01-01
To solve the persistently multiple object tracking in cluttered environments, this paper presents a novel tracking association approach based on the shortest path faster algorithm. First, the multiple object tracking is formulated as an integer programming problem of the flow network. Then we relax the integer programming to a standard linear programming problem. Therefore, the global optimum can be quickly obtained using the shortest path faster algorithm. The proposed method avoids the difficulties of integer programming, and it has a lower worst-case complexity than competing methods but better robustness and tracking accuracy in complex environments. Simulation results show that the proposed algorithm takes less time than other state-of-the-art methods and can operate in real time. PMID:25215322
Label-based routing for a family of small-world Farey graphs.
Zhai, Yinhu; Wang, Yinhe
2016-05-11
We introduce an informative labelling method for vertices in a family of Farey graphs, and deduce a routing algorithm on all the shortest paths between any two vertices in Farey graphs. The label of a vertex is composed of the precise locating position in graphs and the exact time linking to graphs. All the shortest paths routing between any pair of vertices, which number is exactly the product of two Fibonacci numbers, are determined only by their labels, and the time complexity of the algorithm is O(n). It is the first algorithm to figure out all the shortest paths between any pair of vertices in a kind of deterministic graphs. For Farey networks, the existence of an efficient routing protocol is of interest to design practical communication algorithms in relation to dynamical processes (including synchronization and structural controllability) and also to understand the underlying mechanisms that have shaped their particular structure.
Label-based routing for a family of small-world Farey graphs
NASA Astrophysics Data System (ADS)
Zhai, Yinhu; Wang, Yinhe
2016-05-01
We introduce an informative labelling method for vertices in a family of Farey graphs, and deduce a routing algorithm on all the shortest paths between any two vertices in Farey graphs. The label of a vertex is composed of the precise locating position in graphs and the exact time linking to graphs. All the shortest paths routing between any pair of vertices, which number is exactly the product of two Fibonacci numbers, are determined only by their labels, and the time complexity of the algorithm is O(n). It is the first algorithm to figure out all the shortest paths between any pair of vertices in a kind of deterministic graphs. For Farey networks, the existence of an efficient routing protocol is of interest to design practical communication algorithms in relation to dynamical processes (including synchronization and structural controllability) and also to understand the underlying mechanisms that have shaped their particular structure.
Shortest path problem on a grid network with unordered intermediate points
NASA Astrophysics Data System (ADS)
Saw, Veekeong; Rahman, Amirah; Eng Ong, Wen
2017-10-01
We consider a shortest path problem with single cost factor on a grid network with unordered intermediate points. A two stage heuristic algorithm is proposed to find a feasible solution path within a reasonable amount of time. To evaluate the performance of the proposed algorithm, computational experiments are performed on grid maps of varying size and number of intermediate points. Preliminary results for the problem are reported. Numerical comparisons against brute forcing show that the proposed algorithm consistently yields solutions that are within 10% of the optimal solution and uses significantly less computation time.
Floyd-warshall algorithm to determine the shortest path based on android
NASA Astrophysics Data System (ADS)
Ramadiani; Bukhori, D.; Azainil; Dengen, N.
2018-04-01
The development of technology has made all areas of life easier now, one of which is the ease of obtaining geographic information. The use of geographic information may vary according to need, for example, the digital map learning, navigation systems, observations area, and much more. With the support of adequate infrastructure, almost no one will ever get lost to a destination even to foreign places or that have never been visited before. The reasons why many institutions and business entities use technology to improve services to consumers and to streamline the production process undertaken and so forth. Speaking of the efficient, there are many elements related to efficiency in navigation systems, and one of them is the efficiency in terms of distance. The shortest distance determination algorithm required in this research is used Floyd-Warshall Algorithm. Floyd-Warshall algorithm is the algorithm to find the fastest path and the shortest distance between 2 nodes, while the program is intended to find the path of more than 2 nodes.
DiversePathsJ: diverse shortest paths for bioimage analysis.
Uhlmann, Virginie; Haubold, Carsten; Hamprecht, Fred A; Unser, Michael
2018-02-01
We introduce a formulation for the general task of finding diverse shortest paths between two end-points. Our approach is not linked to a specific biological problem and can be applied to a large variety of images thanks to its generic implementation as a user-friendly ImageJ/Fiji plugin. It relies on the introduction of additional layers in a Viterbi path graph, which requires slight modifications to the standard Viterbi algorithm rules. This layered graph construction allows for the specification of various constraints imposing diversity between solutions. The software allows obtaining a collection of diverse shortest paths under some user-defined constraints through a convenient and user-friendly interface. It can be used alone or be integrated into larger image analysis pipelines. http://bigwww.epfl.ch/algorithms/diversepathsj. michael.unser@epfl.ch or fred.hamprecht@iwr.uni-heidelberg.de. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Genetic Algorithm for Solving Fuzzy Shortest Path Problem in a Network with mixed fuzzy arc lengths
NASA Astrophysics Data System (ADS)
Mahdavi, Iraj; Tajdin, Ali; Hassanzadeh, Reza; Mahdavi-Amiri, Nezam; Shafieian, Hosna
2011-06-01
We are concerned with the design of a model and an algorithm for computing a shortest path in a network having various types of fuzzy arc lengths. First, we develop a new technique for the addition of various fuzzy numbers in a path using α -cuts by proposing a linear least squares model to obtain membership functions for the considered additions. Then, using a recently proposed distance function for comparison of fuzzy numbers. we propose a new approach to solve the fuzzy APSPP using of genetic algorithm. Examples are worked out to illustrate the applicability of the proposed model.
Structural factoring approach for analyzing stochastic networks
NASA Technical Reports Server (NTRS)
Hayhurst, Kelly J.; Shier, Douglas R.
1991-01-01
The problem of finding the distribution of the shortest path length through a stochastic network is investigated. A general algorithm for determining the exact distribution of the shortest path length is developed based on the concept of conditional factoring, in which a directed, stochastic network is decomposed into an equivalent set of smaller, generally less complex subnetworks. Several network constructs are identified and exploited to reduce significantly the computational effort required to solve a network problem relative to complete enumeration. This algorithm can be applied to two important classes of stochastic path problems: determining the critical path distribution for acyclic networks and the exact two-terminal reliability for probabilistic networks. Computational experience with the algorithm was encouraging and allowed the exact solution of networks that have been previously analyzed only by approximation techniques.
Calculating Least Risk Paths in 3d Indoor Space
NASA Astrophysics Data System (ADS)
Vanclooster, A.; De Maeyer, Ph.; Fack, V.; Van de Weghe, N.
2013-08-01
Over the last couple of years, research on indoor environments has gained a fresh impetus; more specifically applications that support navigation and wayfinding have become one of the booming industries. Indoor navigation research currently covers the technological aspect of indoor positioning and the modelling of indoor space. The algorithmic development to support navigation has so far been left mostly untouched, as most applications mainly rely on adapting Dijkstra's shortest path algorithm to an indoor network. However, alternative algorithms for outdoor navigation have been proposed adding a more cognitive notion to the calculated paths and as such adhering to the natural wayfinding behaviour (e.g. simplest paths, least risk paths). These algorithms are currently restricted to outdoor applications. The need for indoor cognitive algorithms is highlighted by a more challenged navigation and orientation due to the specific indoor structure (e.g. fragmentation, less visibility, confined areas…). As such, the clarity and easiness of route instructions is of paramount importance when distributing indoor routes. A shortest or fastest path indoors not necessarily aligns with the cognitive mapping of the building. Therefore, the aim of this research is to extend those richer cognitive algorithms to three-dimensional indoor environments. More specifically for this paper, we will focus on the application of the least risk path algorithm of Grum (2005) to an indoor space. The algorithm as proposed by Grum (2005) is duplicated and tested in a complex multi-storey building. The results of several least risk path calculations are compared to the shortest paths in indoor environments in terms of total length, improvement in route description complexity and number of turns. Several scenarios are tested in this comparison: paths covering a single floor, paths crossing several building wings and/or floors. Adjustments to the algorithm are proposed to be more aligned to the specific structure of indoor environments (e.g. no turn restrictions, restricted usage of rooms, vertical movement) and common wayfinding strategies indoors. In a later stage, other cognitive algorithms will be implemented and tested in both an indoor and combined indoor-outdoor setting, in an effort to improve the overall user experience during navigation in indoor environments.
Physarum can compute shortest paths.
Bonifaci, Vincenzo; Mehlhorn, Kurt; Varma, Girish
2012-09-21
Physarum polycephalum is a slime mold that is apparently able to solve shortest path problems. A mathematical model has been proposed by Tero et al. (Journal of Theoretical Biology, 244, 2007, pp. 553-564) to describe the feedback mechanism used by the slime mold to adapt its tubular channels while foraging two food sources s(0) and s(1). We prove that, under this model, the mass of the mold will eventually converge to the shortest s(0)-s(1) path of the network that the mold lies on, independently of the structure of the network or of the initial mass distribution. This matches the experimental observations by Tero et al. and can be seen as an example of a "natural algorithm", that is, an algorithm developed by evolution over millions of years. Copyright © 2012 Elsevier Ltd. All rights reserved.
Dynamic Shortest Path Algorithms for Hypergraphs
2014-01-01
the concept of relationship tree to indicate the parent –child relationship along shortest hy- perpaths. The concept can be easily explained in the...four possible relationship trees to indicate the parent –child relationship in these shortest hyperpaths. We will show in Section III that the choice of...distance of a vertex to the source on the shortest hyperpath, the parent of in the chosen relationship tree associated with the shortest hyperpaths, This
NASA Astrophysics Data System (ADS)
Hartatik; Purbayu, A.; Triyono, L.
2018-03-01
Major problem that often occurs in waste transportation in each region is the route of garbage transportation. Determination of this route should become a major concern because it affects fuel consumption and also the working time from the employee. Therefore, in this research we will develop an application to optimize with pigeonhole and dijsktra algorithm. Pigeonhole algorithm is used to determine which garbage trucks should be taken in a particular TPS. Time optimization is done by determining the shortest path that can be skipped for each garbage truck. Data generated from Pigeonhole then used to determine the shortest path by using Dijkstra algorithm.
Selective epidemic vaccination under the performant routing algorithms
NASA Astrophysics Data System (ADS)
Bamaarouf, O.; Alweimine, A. Ould Baba; Rachadi, A.; EZ-Zahraouy, H.
2018-04-01
Despite the extensive research on traffic dynamics and epidemic spreading, the effect of the routing algorithms strategies on the traffic-driven epidemic spreading has not received an adequate attention. It is well known that more performant routing algorithm strategies are used to overcome the congestion problem. However, our main result shows unexpectedly that these algorithms favor the virus spreading more than the case where the shortest path based algorithm is used. In this work, we studied the virus spreading in a complex network using the efficient path and the global dynamic routing algorithms as compared to shortest path strategy. Some previous studies have tried to modify the routing rules to limit the virus spreading, but at the expense of reducing the traffic transport efficiency. This work proposed a solution to overcome this drawback by using a selective vaccination procedure instead of a random vaccination used often in the literature. We found that the selective vaccination succeeded in eradicating the virus better than a pure random intervention for the performant routing algorithm strategies.
Detecting duplicate biological entities using Shortest Path Edit Distance.
Rudniy, Alex; Song, Min; Geller, James
2010-01-01
Duplicate entity detection in biological data is an important research task. In this paper, we propose a novel and context-sensitive Shortest Path Edit Distance (SPED) extending and supplementing our previous work on Markov Random Field-based Edit Distance (MRFED). SPED transforms the edit distance computational problem to the calculation of the shortest path among two selected vertices of a graph. We produce several modifications of SPED by applying Levenshtein, arithmetic mean, histogram difference and TFIDF techniques to solve subtasks. We compare SPED performance to other well-known distance algorithms for biological entity matching. The experimental results show that SPED produces competitive outcomes.
Comparison of Genetic Algorithm and Hill Climbing for Shortest Path Optimization Mapping
NASA Astrophysics Data System (ADS)
Fronita, Mona; Gernowo, Rahmat; Gunawan, Vincencius
2018-02-01
Traveling Salesman Problem (TSP) is an optimization to find the shortest path to reach several destinations in one trip without passing through the same city and back again to the early departure city, the process is applied to the delivery systems. This comparison is done using two methods, namely optimization genetic algorithm and hill climbing. Hill Climbing works by directly selecting a new path that is exchanged with the neighbour's to get the track distance smaller than the previous track, without testing. Genetic algorithms depend on the input parameters, they are the number of population, the probability of crossover, mutation probability and the number of generations. To simplify the process of determining the shortest path supported by the development of software that uses the google map API. Tests carried out as much as 20 times with the number of city 8, 16, 24 and 32 to see which method is optimal in terms of distance and time computation. Based on experiments conducted with a number of cities 3, 4, 5 and 6 producing the same value and optimal distance for the genetic algorithm and hill climbing, the value of this distance begins to differ with the number of city 7. The overall results shows that these tests, hill climbing are more optimal to number of small cities and the number of cities over 30 optimized using genetic algorithms.
Mobile robot dynamic path planning based on improved genetic algorithm
NASA Astrophysics Data System (ADS)
Wang, Yong; Zhou, Heng; Wang, Ying
2017-08-01
In dynamic unknown environment, the dynamic path planning of mobile robots is a difficult problem. In this paper, a dynamic path planning method based on genetic algorithm is proposed, and a reward value model is designed to estimate the probability of dynamic obstacles on the path, and the reward value function is applied to the genetic algorithm. Unique coding techniques reduce the computational complexity of the algorithm. The fitness function of the genetic algorithm fully considers three factors: the security of the path, the shortest distance of the path and the reward value of the path. The simulation results show that the proposed genetic algorithm is efficient in all kinds of complex dynamic environments.
Path querying system on mobile devices
NASA Astrophysics Data System (ADS)
Lin, Xing; Wang, Yifei; Tian, Yuan; Wu, Lun
2006-01-01
Traditional approaches to path querying problems are not efficient and convenient under most circumstances. A more convenient and reliable approach to this problem has to be found. This paper is devoted to a path querying solution on mobile devices. By using an improved Dijkstra's shortest path algorithm and a natural language translating module, this system can help people find the shortest path between two places through their cell phones or other mobile devices. The chosen path is prompted in text of natural language, as well as a map picture. This system would be useful in solving best path querying problems and have potential to be a profitable business system.
Dynamic path planning for mobile robot based on particle swarm optimization
NASA Astrophysics Data System (ADS)
Wang, Yong; Cai, Feng; Wang, Ying
2017-08-01
In the contemporary, robots are used in many fields, such as cleaning, medical treatment, space exploration, disaster relief and so on. The dynamic path planning of robot without collision is becoming more and more the focus of people's attention. A new method of path planning is proposed in this paper. Firstly, the motion space model of the robot is established by using the MAKLINK graph method. Then the A* algorithm is used to get the shortest path from the start point to the end point. Secondly, this paper proposes an effective method to detect and avoid obstacles. When an obstacle is detected on the shortest path, the robot will choose the nearest safety point to move. Moreover, calculate the next point which is nearest to the target. Finally, the particle swarm optimization algorithm is used to optimize the path. The experimental results can prove that the proposed method is more effective.
Efficient shortest-path-tree computation in network routing based on pulse-coupled neural networks.
Qu, Hong; Yi, Zhang; Yang, Simon X
2013-06-01
Shortest path tree (SPT) computation is a critical issue for routers using link-state routing protocols, such as the most commonly used open shortest path first and intermediate system to intermediate system. Each router needs to recompute a new SPT rooted from itself whenever a change happens in the link state. Most commercial routers do this computation by deleting the current SPT and building a new one using static algorithms such as the Dijkstra algorithm at the beginning. Such recomputation of an entire SPT is inefficient, which may consume a considerable amount of CPU time and result in a time delay in the network. Some dynamic updating methods using the information in the updated SPT have been proposed in recent years. However, there are still many limitations in those dynamic algorithms. In this paper, a new modified model of pulse-coupled neural networks (M-PCNNs) is proposed for the SPT computation. It is rigorously proved that the proposed model is capable of solving some optimization problems, such as the SPT. A static algorithm is proposed based on the M-PCNNs to compute the SPT efficiently for large-scale problems. In addition, a dynamic algorithm that makes use of the structure of the previously computed SPT is proposed, which significantly improves the efficiency of the algorithm. Simulation results demonstrate the effective and efficient performance of the proposed approach.
Do People Use the Shortest Path? An Empirical Test of Wardrop’s First Principle
Zhu, Shanjiang; Levinson, David
2015-01-01
Most recent route choice models, following either the random utility maximization or rule-based paradigm, require explicit enumeration of feasible routes. The quality of model estimation and prediction is sensitive to the appropriateness of the consideration set. However, few empirical studies of revealed route characteristics have been reported in the literature. This study evaluates the widely applied shortest path assumption by evaluating routes followed by residents of the Minneapolis—St. Paul metropolitan area. Accurate Global Positioning System (GPS) and Geographic Information System (GIS) data were employed to reveal routes people used over an eight to thirteen week period. Most people did not choose the shortest path. Using three weeks of that data, we find that current route choice set generation algorithms do not reveal the majority of paths that individuals took. Findings from this study may guide future efforts in building better route choice models. PMID:26267756
a Modified Genetic Algorithm for Finding Fuzzy Shortest Paths in Uncertain Networks
NASA Astrophysics Data System (ADS)
Heidari, A. A.; Delavar, M. R.
2016-06-01
In realistic network analysis, there are several uncertainties in the measurements and computation of the arcs and vertices. These uncertainties should also be considered in realizing the shortest path problem (SPP) due to the inherent fuzziness in the body of expert's knowledge. In this paper, we investigated the SPP under uncertainty to evaluate our modified genetic strategy. We improved the performance of genetic algorithm (GA) to investigate a class of shortest path problems on networks with vague arc weights. The solutions of the uncertain SPP with considering fuzzy path lengths are examined and compared in detail. As a robust metaheuristic, GA algorithm is modified and evaluated to tackle the fuzzy SPP (FSPP) with uncertain arcs. For this purpose, first, a dynamic operation is implemented to enrich the exploration/exploitation patterns of the conventional procedure and mitigate the premature convergence of GA technique. Then, the modified GA (MGA) strategy is used to resolve the FSPP. The attained results of the proposed strategy are compared to those of GA with regard to the cost, quality of paths and CPU times. Numerical instances are provided to demonstrate the success of the proposed MGA-FSPP strategy in comparison with GA. The simulations affirm that not only the proposed technique can outperform GA, but also the qualities of the paths are effectively improved. The results clarify that the competence of the proposed GA is preferred in view of quality quantities. The results also demonstrate that the proposed method can efficiently be utilized to handle FSPP in uncertain networks.
Fast marching methods for the continuous traveling salesman problem.
Andrews, June; Sethian, J A
2007-01-23
We consider a problem in which we are given a domain, a cost function which depends on position at each point in the domain, and a subset of points ("cities") in the domain. The goal is to determine the cheapest closed path that visits each city in the domain once. This can be thought of as a version of the traveling salesman problem, in which an underlying known metric determines the cost of moving through each point of the domain, but in which the actual shortest path between cities is unknown at the outset. We describe algorithms for both a heuristic and an optimal solution to this problem. The complexity of the heuristic algorithm is at worst case M.N log N, where M is the number of cities, and N the size of the computational mesh used to approximate the solutions to the shortest paths problems. The average runtime of the heuristic algorithm is linear in the number of cities and O(N log N) in the size N of the mesh.
Extended shortest path selection for package routing of complex networks
NASA Astrophysics Data System (ADS)
Ye, Fan; Zhang, Lei; Wang, Bing-Hong; Liu, Lu; Zhang, Xing-Yi
The routing strategy plays a very important role in complex networks such as Internet system and Peer-to-Peer networks. However, most of the previous work concentrates only on the path selection, e.g. Flooding and Random Walk, or finding the shortest path (SP) and rarely considering the local load information such as SP and Distance Vector Routing. Flow-based Routing mainly considers load balance and still cannot achieve best optimization. Thus, in this paper, we propose a novel dynamic routing strategy on complex network by incorporating the local load information into SP algorithm to enhance the traffic flow routing optimization. It was found that the flow in a network is greatly affected by the waiting time of the network, so we should not consider only choosing optimized path for package transformation but also consider node congestion. As a result, the packages should be transmitted with a global optimized path with smaller congestion and relatively short distance. Analysis work and simulation experiments show that the proposed algorithm can largely enhance the network flow with the maximum throughput within an acceptable calculating time. The detailed analysis of the algorithm will also be provided for explaining the efficiency.
NASA Astrophysics Data System (ADS)
Kröger, Martin
2005-06-01
We present an algorithm which returns a shortest path and related number of entanglements for a given configuration of a polymeric system in 2 or 3 dimensions. Rubinstein and Helfand, and later Everaers et al. introduced a concept to extract primitive paths for dense polymeric melts made of linear chains (a multiple disconnected multibead 'path'), where each primitive path is defined as a path connecting the (space-fixed) ends of a polymer under the constraint of non-interpenetration (excluded volume) between primitive paths of different chains, such that the multiple disconnected path fulfills a minimization criterion. The present algorithm uses geometrical operations and provides a—model independent—efficient approximate solution to this challenging problem. Primitive paths are treated as 'infinitely' thin (we further allow for finite thickness to model excluded volume), and tensionless lines rather than multibead chains, excluded volume is taken into account without a force law. The present implementation allows to construct a shortest multiple disconnected path (SP) for 2D systems (polymeric chain within spherical obstacles) and an optimal SP for 3D systems (collection of polymeric chains). The number of entanglements is then simply obtained from the SP as either the number of interior kinks, or from the average length of a line segment. Further, information about structure and potentially also the dynamics of entanglements is immediately available from the SP. We apply the method to study the 'concentration' dependence of the degree of entanglement in phantom chain systems. Program summaryTitle of program:Z Catalogue number:ADVG Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVG Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: Silicon Graphics (Irix), Sun (Solaris), PC (Linux) Operating systems or monitors under which the program has been tested: UNIX, Linux Program language used: USANSI Fortran 77 and Fortran 90 Memory required to execute with typical data: 1 MByte No. of lines in distributed program, including test data, etc.: 10 660 No. of bytes in distributed program, including test data, etc.: 119 551 Distribution formet:tar.gz Nature of physical problem: The problem is to obtain primitive paths substantiating a shortest multiple disconnected path (SP) for a given polymer configuration (chains of particles, with or without additional single particles as obstacles for the 2D case). Primitive paths are here defined as in [M. Rubinstein, E. Helfand, J. Chem. Phys. 82 (1985) 2477; R. Everaers, S.K. Sukumaran, G.S. Grest, C. Svaneborg, A. Sivasubramanian, K. Kremer, Science 303 (2004) 823] as the shortest line (path) respecting 'topological' constraints (from neighboring polymers or point obstacles) between ends of polymers. There is a unique solution for the 2D case. For the 3D case it is unique if we construct a primitive path of a single chain embedded within fixed line obstacles [J.S.B. Mitchell, Geometric shortest paths and network optimization, in: J.-R. Sack, J. Urrutia (Eds.), Handbook of Computational Geometry, Elsevier, Amsterdam, 2000, pp. 633-701]. For a large 3D configuration made of several chains, short is meant to be the Euclidean shortest multiple disconnected path (SP) where primitive paths are constructed for all chains simultaneously. While the latter problem, in general, does not possess a unique solution, the algorithm must return a locally optimal solution, robust against minor displacements of the disconnected path and chain re-labeling. The problem is solved if the number of kinks (or entanglements Z), explicitly deduced from the SP, is quite insensitive to the exact conformation of the SP which allows to estimate Z with a small error. Efficient method of solution: Primitive paths are constructed from the given polymer configuration (a non-shortest multiple disconnected path, including obstacles, if present) by first replacing each polymer contour by a line with a number of 'kinks' (beads, nodes) and 'segments' (edges). To obtain primitive paths, defined to be uncrossable by any other objects (neighboring primitive paths, line or point obstacles), the algorithm minimizes the length of all primitive paths consecutively, until a final minimum Euclidean length of the SP is reached. Fast geometric operations rather than dynamical methods are used to minimize the contour lengths of the primitive paths. Neighbor lists are used to keep track of potentially intersecting segments of other chains. Periodic boundary conditions are employed. A finite small line thickness is used in order to make sure that entanglements are not 'lost' due to finite precision of representation of numbers. Restrictions on the complexity of the problem: For a single chain embedded within fixed line or point obstacles, the algorithm returns the exact SP. For more complex problems, the algorithm returns a locally optimal SP. Except for exotic, probably rare, configurations it turns out that different locally optimal SPs possess quite an identical number of nodes. In general, the problem constructing the SP is known to be NP-hard [J.S.B. Mitchell, Geometric shortest paths and network optimization, in: J.-R. Sack, J. Urrutia (Eds.), Handbook of Computational Geometry, Elsevier, Amsterdam, 2000, pp. 633-701], and we offer a solution which should suffice to analyze physical problems, and gives an estimate about the precision and uniqueness of the result (from a standard deviation by varying the parameter: cyclicswitch). The program is NOT restricted to handle systems for which segment lengths of the SP exceed half the box size. Typical running time: Typical running times are approximately two orders of magnitude shorter compared with the ones needed for a corresponding molecular dynamics approach, and scale mostly linearly with system size. We provide a benchmark table.
Trajectory Generation and Path Planning for Autonomous Aerobots
NASA Technical Reports Server (NTRS)
Sharma, Shivanjli; Kulczycki, Eric A.; Elfes, Alberto
2007-01-01
This paper presents global path planning algorithms for the Titan aerobot based on user defined waypoints in 2D and 3D space. The algorithms were implemented using information obtained through a planner user interface. The trajectory planning algorithms were designed to accurately represent the aerobot's characteristics, such as minimum turning radius. Additionally, trajectory planning techniques were implemented to allow for surveying of a planar area based solely on camera fields of view, airship altitude, and the location of the planar area's perimeter. The developed paths allow for planar navigation and three-dimensional path planning. These calculated trajectories are optimized to produce the shortest possible path while still remaining within realistic bounds of airship dynamics.
Fast marching methods for the continuous traveling salesman problem
Andrews, June; Sethian, J. A.
2007-01-01
We consider a problem in which we are given a domain, a cost function which depends on position at each point in the domain, and a subset of points (“cities”) in the domain. The goal is to determine the cheapest closed path that visits each city in the domain once. This can be thought of as a version of the traveling salesman problem, in which an underlying known metric determines the cost of moving through each point of the domain, but in which the actual shortest path between cities is unknown at the outset. We describe algorithms for both a heuristic and an optimal solution to this problem. The complexity of the heuristic algorithm is at worst case M·N log N, where M is the number of cities, and N the size of the computational mesh used to approximate the solutions to the shortest paths problems. The average runtime of the heuristic algorithm is linear in the number of cities and O(N log N) in the size N of the mesh. PMID:17220271
Fast marching methods for the continuous traveling salesman problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, J.; Sethian, J.A.
We consider a problem in which we are given a domain, a cost function which depends on position at each point in the domain, and a subset of points ('cities') in the domain. The goal is to determine the cheapest closed path that visits each city in the domain once. This can be thought of as a version of the Traveling Salesman Problem, in which an underlying known metric determines the cost of moving through each point of the domain, but in which the actual shortest path between cities is unknown at the outset. We describe algorithms for both amore » heuristic and an optimal solution to this problem. The order of the heuristic algorithm is at worst case M * N logN, where M is the number of cities, and N the size of the computational mesh used to approximate the solutions to the shortest paths problems. The average runtime of the heuristic algorithm is linear in the number of cities and O(N log N) in the size N of the mesh.« less
Gollob, Stephan; Kocur, Georg Karl; Schumacher, Thomas; Mhamdi, Lassaad; Vogel, Thomas
2017-02-01
In acoustic emission analysis, common source location algorithms assume, independently of the nature of the propagation medium, a straight (shortest) wave path between the source and the sensors. For heterogeneous media such as concrete, the wave travels in complex paths due to the interaction with the dissimilar material contents and with the possible geometrical and material irregularities present in these media. For instance, cracks and large air voids present in concrete influence significantly the way the wave travels, by causing wave path deviations. Neglecting these deviations by assuming straight paths can introduce significant errors to the source location results. In this paper, a novel source localization method called FastWay is proposed. It accounts, contrary to most available shortest path-based methods, for the different effects of material discontinuities (cracks and voids). FastWay, based on a heterogeneous velocity model, uses the fastest rather than the shortest travel paths between the source and each sensor. The method was evaluated both numerically and experimentally and the results from both evaluation tests show that, in general, FastWay was able to locate sources of acoustic emissions more accurately and reliably than the traditional source localization methods. Copyright © 2016 Elsevier B.V. All rights reserved.
Graphs and matroids weighted in a bounded incline algebra.
Lu, Ling-Xia; Zhang, Bei
2014-01-01
Firstly, for a graph weighted in a bounded incline algebra (or called a dioid), a longest path problem (LPP, for short) is presented, which can be considered the uniform approach to the famous shortest path problem, the widest path problem, and the most reliable path problem. The solutions for LPP and related algorithms are given. Secondly, for a matroid weighted in a linear matroid, the maximum independent set problem is studied.
Optimization for Service Routes of Pallet Service Center Based on the Pallet Pool Mode
He, Shiwei; Song, Rui
2016-01-01
Service routes optimization (SRO) of pallet service center should meet customers' demand firstly and then, through the reasonable method of lines organization, realize the shortest path of vehicle driving. The routes optimization of pallet service center is similar to the distribution problems of vehicle routing problem (VRP) and Chinese postman problem (CPP), but it has its own characteristics. Based on the relevant research results, the conditions of determining the number of vehicles, the one way of the route, the constraints of loading, and time windows are fully considered, and a chance constrained programming model with stochastic constraints is constructed taking the shortest path of all vehicles for a delivering (recycling) operation as an objective. For the characteristics of the model, a hybrid intelligent algorithm including stochastic simulation, neural network, and immune clonal algorithm is designed to solve the model. Finally, the validity and rationality of the optimization model and algorithm are verified by the case. PMID:27528865
Formal language constrained path problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrett, C.; Jacob, R.; Marathe, M.
1997-07-08
In many path finding problems arising in practice, certain patterns of edge/vertex labels in the labeled graph being traversed are allowed/preferred, while others are disallowed. Motivated by such applications as intermodal transportation planning, the authors investigate the complexity of finding feasible paths in a labeled network, where the mode choice for each traveler is specified by a formal language. The main contributions of this paper include the following: (1) the authors show that the problem of finding a shortest path between a source and destination for a traveler whose mode choice is specified as a context free language is solvablemore » efficiently in polynomial time, when the mode choice is specified as a regular language they provide algorithms with improved space and time bounds; (2) in contrast, they show that the problem of finding simple paths between a source and a given destination is NP-hard, even when restricted to very simple regular expressions and/or very simple graphs; (3) for the class of treewidth bounded graphs, they show that (i) the problem of finding a regular language constrained simple path between source and a destination is solvable in polynomial time and (ii) the extension to finding context free language constrained simple paths is NP-complete. Several extensions of these results are presented in the context of finding shortest paths with additional constraints. These results significantly extend the results in [MW95]. As a corollary of the results, they obtain a polynomial time algorithm for the BEST k-SIMILAR PATH problem studied in [SJB97]. The previous best algorithm was given by [SJB97] and takes exponential time in the worst case.« less
NASA Astrophysics Data System (ADS)
Wang, Yunyun; Li, Hui; Liu, Yuze; Ji, Yuefeng; Li, Hongfa
2017-10-01
With the development of large video services and cloud computing, the network is increasingly in the form of services. In SDON, the SDN controller holds the underlying physical resource information, thus allocating the appropriate resources and bandwidth to the VON service. However, for some services that require extremely strict QoT (quality of transmission), the shortest distance path algorithm is often unable to meet the requirements because it does not take the link spectrum resources into account. And in accordance with the choice of the most unoccupied links, there may be more spectrum fragments. So here we propose a new RMLSA (the routing, modulation Level, and spectrum allocation) algorithm to reduce the blocking probability. The results show about 40% less blocking probability than the shortest-distance algorithm and the minimum usage of the spectrum priority algorithm. This algorithm is used to satisfy strict request of QoT for demands.
ERIC Educational Resources Information Center
Karagiannis, P.; Markelis, I.; Paparrizos, K.; Samaras, N.; Sifaleras, A.
2006-01-01
This paper presents new web-based educational software (webNetPro) for "Linear Network Programming." It includes many algorithms for "Network Optimization" problems, such as shortest path problems, minimum spanning tree problems, maximum flow problems and other search algorithms. Therefore, webNetPro can assist the teaching process of courses such…
Optimal Patrol to Detect Attacks at Dispersed Heterogeneous Locations
2013-12-01
path with one revisit SPR2 Shortest path with two revisits SPR3 Shortest path with three revisits TSP Traveling salesman problem UAV Unmanned aerial...path patrol pattern. Finding the shortest-path patrol pattern is an example of solving a traveling salesman problem , as described in Section 16.5 of...use of patrol paths based on the traveling salesman prob- lem (TSP), where patrollers follow the shortest Hamiltonian cycle in a graph in order to
NASA Astrophysics Data System (ADS)
Cheng, Jun; Zhang, Jun; Tian, Jinwen
2015-12-01
Based on deep analysis of the LiveWire interactive boundary extraction algorithm, a new algorithm focusing on improving the speed of LiveWire algorithm is proposed in this paper. Firstly, the Haar wavelet transform is carried on the input image, and the boundary is extracted on the low resolution image obtained by the wavelet transform of the input image. Secondly, calculating LiveWire shortest path is based on the control point set direction search by utilizing the spatial relationship between the two control points users provide in real time. Thirdly, the search order of the adjacent points of the starting node is set in advance. An ordinary queue instead of a priority queue is taken as the storage pool of the points when optimizing their shortest path value, thus reducing the complexity of the algorithm from O[n2] to O[n]. Finally, A region iterative backward projection method based on neighborhood pixel polling has been used to convert dual-pixel boundary of the reconstructed image to single-pixel boundary after Haar wavelet inverse transform. The algorithm proposed in this paper combines the advantage of the Haar wavelet transform and the advantage of the optimal path searching method based on control point set direction search. The former has fast speed of image decomposition and reconstruction and is more consistent with the texture features of the image and the latter can reduce the time complexity of the original algorithm. So that the algorithm can improve the speed in interactive boundary extraction as well as reflect the boundary information of the image more comprehensively. All methods mentioned above have a big role in improving the execution efficiency and the robustness of the algorithm.
Autonomous Navigation by a Mobile Robot
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance; Aghazarian, Hrand
2005-01-01
ROAMAN is a computer program for autonomous navigation of a mobile robot on a long (as much as hundreds of meters) traversal of terrain. Developed for use aboard a robotic vehicle (rover) exploring the surface of a remote planet, ROAMAN could also be adapted to similar use on terrestrial mobile robots. ROAMAN implements a combination of algorithms for (1) long-range path planning based on images acquired by mast-mounted, wide-baseline stereoscopic cameras, and (2) local path planning based on images acquired by body-mounted, narrow-baseline stereoscopic cameras. The long-range path-planning algorithm autonomously generates a series of waypoints that are passed to the local path-planning algorithm, which plans obstacle-avoiding legs between the waypoints. Both the long- and short-range algorithms use an occupancy-grid representation in computations to detect obstacles and plan paths. Maps that are maintained by the long- and short-range portions of the software are not shared because substantial localization errors can accumulate during any long traverse. ROAMAN is not guaranteed to generate an optimal shortest path, but does maintain the safety of the rover.
An improved hierarchical A * algorithm in the optimization of parking lots
NASA Astrophysics Data System (ADS)
Wang, Yong; Wu, Junjuan; Wang, Ying
2017-08-01
In the parking lot parking path optimization, the traditional evaluation index is the shortest distance as the best index and it does not consider the actual road conditions. Now, the introduction of a more practical evaluation index can not only simplify the hardware design of the boot system but also save the software overhead. Firstly, we establish the parking lot network graph RPCDV mathematical model and all nodes in the network is divided into two layers which were constructed using different evaluation function base on the improved hierarchical A * algorithm which improves the time optimal path search efficiency and search precision of the evaluation index. The final results show that for different sections of the program attribute parameter algorithm always faster the time to find the optimal path.
Spreading paths in partially observed social networks
NASA Astrophysics Data System (ADS)
Onnela, Jukka-Pekka; Christakis, Nicholas A.
2012-03-01
Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.
Spreading paths in partially observed social networks.
Onnela, Jukka-Pekka; Christakis, Nicholas A
2012-03-01
Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.
Solving fuzzy shortest path problem by genetic algorithm
NASA Astrophysics Data System (ADS)
Syarif, A.; Muludi, K.; Adrian, R.; Gen, M.
2018-03-01
Shortest Path Problem (SPP) is known as one of well-studied fields in the area Operations Research and Mathematical Optimization. It has been applied for many engineering and management designs. The objective is usually to determine path(s) in the network with minimum total cost or traveling time. In the past, the cost value for each arc was usually assigned or estimated as a deteministic value. For some specific real world applications, however, it is often difficult to determine the cost value properly. One way of handling such uncertainty in decision making is by introducing fuzzy approach. With this situation, it will become difficult to solve the problem optimally. This paper presents the investigations on the application of Genetic Algorithm (GA) to a new SPP model in which the cost values are represented as Triangular Fuzzy Number (TFN). We adopts the concept of ranking fuzzy numbers to determine how good the solutions. Here, by giving his/her degree value, the decision maker can determine the range of objective value. This would be very valuable for decision support system in the real world applications.Simulation experiments were carried out by modifying several test problems with 10-25 nodes. It is noted that the proposed approach is capable attaining a good solution with different degree of optimism for the tested problems.
An Effective Evolutionary Approach for Bicriteria Shortest Path Routing Problems
NASA Astrophysics Data System (ADS)
Lin, Lin; Gen, Mitsuo
Routing problem is one of the important research issues in communication network fields. In this paper, we consider a bicriteria shortest path routing (bSPR) model dedicated to calculating nondominated paths for (1) the minimum total cost and (2) the minimum transmission delay. To solve this bSPR problem, we propose a new multiobjective genetic algorithm (moGA): (1) an efficient chromosome representation using the priority-based encoding method; (2) a new operator of GA parameters auto-tuning, which is adaptively regulation of exploration and exploitation based on the change of the average fitness of parents and offspring which is occurred at each generation; and (3) an interactive adaptive-weight fitness assignment mechanism is implemented that assigns weights to each objective and combines the weighted objectives into a single objective function. Numerical experiments with various scales of network design problems show the effectiveness and the efficiency of our approach by comparing with the recent researches.
Highly Asynchronous VisitOr Queue Graph Toolkit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearce, R.
2012-10-01
HAVOQGT is a C++ framework that can be used to create highly parallel graph traversal algorithms. The framework stores the graph and algorithmic data structures on external memory that is typically mapped to high performance locally attached NAND FLASH arrays. The framework supports a vertex-centered visitor programming model. The frameworkd has been used to implement breadth first search, connected components, and single source shortest path.
Buliung, Ron N; Larsen, Kristian; Faulkner, Guy E J; Stone, Michelle R
2013-09-01
School route measurement often involves estimating the shortest network path. We challenged the relatively uncritical adoption of this method in school travel research and tested the route discordance hypothesis that several types of difference exist between shortest network paths and reported school routes. We constructed the mapped and shortest path through network routes for a sample of 759 children aged 9 to 13 years in grades 5 and 6 (boys = 45%, girls = 54%, unreported gender = 1%), in Toronto, Ontario, Canada. We used Wilcoxon signed-rank tests to compare reported with shortest-path route measures including distance, route directness, intersection crossings, and route overlap. Measurement difference was explored by mode and location. We found statistical evidence of route discordance for walkers and children who were driven and detected it more often for inner suburban cases. Evidence of route discordance varied by mode and school location. We found statistically significant differences for route structure and built environment variables measured along reported and geographic information systems-based shortest-path school routes. Uncertainty produced by the shortest-path approach challenges its conceptual and empirical validity in school travel research.
Optimal path planning for a mobile robot using cuckoo search algorithm
NASA Astrophysics Data System (ADS)
Mohanty, Prases K.; Parhi, Dayal R.
2016-03-01
The shortest/optimal path planning is essential for efficient operation of autonomous vehicles. In this article, a new nature-inspired meta-heuristic algorithm has been applied for mobile robot path planning in an unknown or partially known environment populated by a variety of static obstacles. This meta-heuristic algorithm is based on the levy flight behaviour and brood parasitic behaviour of cuckoos. A new objective function has been formulated between the robots and the target and obstacles, which satisfied the conditions of obstacle avoidance and target-seeking behaviour of robots present in the terrain. Depending upon the objective function value of each nest (cuckoo) in the swarm, the robot avoids obstacles and proceeds towards the target. The smooth optimal trajectory is framed with this algorithm when the robot reaches its goal. Some simulation and experimental results are presented at the end of the paper to show the effectiveness of the proposed navigational controller.
UNICOR: a species connectivity and corridor network simulator
E. L. Landguth; B. K. Hand; J. Glassy; S. A. Cushman; M. A. Sawaya
2012-01-01
We introduce UNIversal CORridor network simulator (UNICOR), a species connectivity and corridor identifi cation tool. UNICOR applies Dijkstra's shortest path algorithm to individual-based simulations. Outputs can be used to designate movement corridors, identify isolated populations, and prioritize conservation plans to promote species persistence. The key...
Research on Taxiway Path Optimization Based on Conflict Detection
Zhou, Hang; Jiang, Xinxin
2015-01-01
Taxiway path planning is one of the effective measures to make full use of the airport resources, and the optimized paths can ensure the safety of the aircraft during the sliding process. In this paper, the taxiway path planning based on conflict detection is considered. Specific steps are shown as follows: firstly, make an improvement on A * algorithm, the conflict detection strategy is added to search for the shortest and safe path in the static taxiway network. Then, according to the sliding speed of aircraft, a time table for each node is determined and the safety interval is treated as the constraint to judge whether there is a conflict or not. The intelligent initial path planning model is established based on the results. Finally, make an example in an airport simulation environment, detect and relieve the conflict to ensure the safety. The results indicate that the model established in this paper is effective and feasible. Meanwhile, make comparison with the improved A*algorithm and other intelligent algorithms, conclude that the improved A*algorithm has great advantages. It could not only optimize taxiway path, but also ensure the safety of the sliding process and improve the operational efficiency. PMID:26226485
Research on Taxiway Path Optimization Based on Conflict Detection.
Zhou, Hang; Jiang, Xinxin
2015-01-01
Taxiway path planning is one of the effective measures to make full use of the airport resources, and the optimized paths can ensure the safety of the aircraft during the sliding process. In this paper, the taxiway path planning based on conflict detection is considered. Specific steps are shown as follows: firstly, make an improvement on A * algorithm, the conflict detection strategy is added to search for the shortest and safe path in the static taxiway network. Then, according to the sliding speed of aircraft, a time table for each node is determined and the safety interval is treated as the constraint to judge whether there is a conflict or not. The intelligent initial path planning model is established based on the results. Finally, make an example in an airport simulation environment, detect and relieve the conflict to ensure the safety. The results indicate that the model established in this paper is effective and feasible. Meanwhile, make comparison with the improved A*algorithm and other intelligent algorithms, conclude that the improved A*algorithm has great advantages. It could not only optimize taxiway path, but also ensure the safety of the sliding process and improve the operational efficiency.
Larsen, Kristian; Faulkner, Guy E. J.; Stone, Michelle R.
2013-01-01
Objectives. School route measurement often involves estimating the shortest network path. We challenged the relatively uncritical adoption of this method in school travel research and tested the route discordance hypothesis that several types of difference exist between shortest network paths and reported school routes. Methods. We constructed the mapped and shortest path through network routes for a sample of 759 children aged 9 to 13 years in grades 5 and 6 (boys = 45%, girls = 54%, unreported gender = 1%), in Toronto, Ontario, Canada. We used Wilcoxon signed-rank tests to compare reported with shortest-path route measures including distance, route directness, intersection crossings, and route overlap. Measurement difference was explored by mode and location. Results. We found statistical evidence of route discordance for walkers and children who were driven and detected it more often for inner suburban cases. Evidence of route discordance varied by mode and school location. Conclusions. We found statistically significant differences for route structure and built environment variables measured along reported and geographic information systems–based shortest-path school routes. Uncertainty produced by the shortest-path approach challenges its conceptual and empirical validity in school travel research. PMID:23865648
Al Nasr, Kamal; Ranjan, Desh; Zubair, Mohammad; Chen, Lin; He, Jing
2014-01-01
Electron cryomicroscopy is becoming a major experimental technique in solving the structures of large molecular assemblies. More and more three-dimensional images have been obtained at the medium resolutions between 5 and 10 Å. At this resolution range, major α-helices can be detected as cylindrical sticks and β-sheets can be detected as plain-like regions. A critical question in de novo modeling from cryo-EM images is to determine the match between the detected secondary structures from the image and those on the protein sequence. We formulate this matching problem into a constrained graph problem and present an O(Δ(2)N(2)2(N)) algorithm to this NP-Hard problem. The algorithm incorporates the dynamic programming approach into a constrained K-shortest path algorithm. Our method, DP-TOSS, has been tested using α-proteins with maximum 33 helices and α-β proteins up to five helices and 12 β-strands. The correct match was ranked within the top 35 for 19 of the 20 α-proteins and all nine α-β proteins tested. The results demonstrate that DP-TOSS improves accuracy, time and memory space in deriving the topologies of the secondary structure elements for proteins with a large number of secondary structures and a complex skeleton.
Site-directed protein recombination as a shortest-path problem.
Endelman, Jeffrey B; Silberg, Jonathan J; Wang, Zhen-Gang; Arnold, Frances H
2004-07-01
Protein function can be tuned using laboratory evolution, in which one rapidly searches through a library of proteins for the properties of interest. In site-directed recombination, n crossovers are chosen in an alignment of p parents to define a set of p(n + 1) peptide fragments. These fragments are then assembled combinatorially to create a library of p(n+1) proteins. We have developed a computational algorithm to enrich these libraries in folded proteins while maintaining an appropriate level of diversity for evolution. For a given set of parents, our algorithm selects crossovers that minimize the average energy of the library, subject to constraints on the length of each fragment. This problem is equivalent to finding the shortest path between nodes in a network, for which the global minimum can be found efficiently. Our algorithm has a running time of O(N(3)p(2) + N(2)n) for a protein of length N. Adjusting the constraints on fragment length generates a set of optimized libraries with varying degrees of diversity. By comparing these optima for different sets of parents, we rapidly determine which parents yield the lowest energy libraries.
Stratum Weight Determination Using Shortest Path Algorithm
Susan L. King
2005-01-01
Forest Inventory and Analysis uses poststratification to calculate resource estimates. Each county has a different stratification, and the stratification may differ depending on the number of panels of data available. A ?5 by 5 sum? filter was passed over the reclassified forest/nonforest Multi-Resolution Landscape Characterization image used in Phase 1, generating an...
Benefit of adaptive FEC in shared backup path protected elastic optical network.
Guo, Hong; Dai, Hua; Wang, Chao; Li, Yongcheng; Bose, Sanjay K; Shen, Gangxiang
2015-07-27
We apply an adaptive forward error correction (FEC) allocation strategy to an Elastic Optical Network (EON) operated with shared backup path protection (SBPP). To maximize the protected network capacity that can be carried, an Integer Linear Programing (ILP) model and a spectrum window plane (SWP)-based heuristic algorithm are developed. Simulation results show that the FEC coding overhead required by the adaptive FEC scheme is significantly lower than that needed by a fixed FEC allocation strategy resulting in higher network capacity for the adaptive strategy. The adaptive FEC allocation strategy can also significantly outperform the fixed FEC allocation strategy both in terms of the spare capacity redundancy and the average FEC coding overhead needed per optical channel. The proposed heuristic algorithm is efficient and not only performs closer to the ILP model but also does much better than the shortest-path algorithm.
An Application of Multi-Criteria Shortest Path to a Customizable Hex-Map Environment
2015-03-26
forces which could act as intermediate destinations or obstacles to movement through the network. This is similar to a traveling salesman problem ...118 Abstract The shortest path problem of finding the optimal path through a complex network is well-studied in the field of operations research. This...research presents an applica- tion of the shortest path problem to a customizable map with terrain features and enemy engagement risk. The PathFinder
A star recognition method based on the Adaptive Ant Colony algorithm for star sensors.
Quan, Wei; Fang, Jiancheng
2010-01-01
A new star recognition method based on the Adaptive Ant Colony (AAC) algorithm has been developed to increase the star recognition speed and success rate for star sensors. This method draws circles, with the center of each one being a bright star point and the radius being a special angular distance, and uses the parallel processing ability of the AAC algorithm to calculate the angular distance of any pair of star points in the circle. The angular distance of two star points in the circle is solved as the path of the AAC algorithm, and the path optimization feature of the AAC is employed to search for the optimal (shortest) path in the circle. This optimal path is used to recognize the stellar map and enhance the recognition success rate and speed. The experimental results show that when the position error is about 50″, the identification success rate of this method is 98% while the Delaunay identification method is only 94%. The identification time of this method is up to 50 ms.
Real-time endovascular guidewire position simulation using shortest path algorithms.
Schafer, Sebastian; Singh, Vikas; Noël, Peter B; Walczak, Alan M; Xu, Jinhui; Hoffmann, Kenneth R
2009-11-01
Treatment of vascular disease often involves endovascular interventions which use the vascular system for delivering treatment devices via a previously inserted guidewire to the diseased site. Previous studies show relative reproducibility of guidewire position after insertion, indicating that the guidewire position is constrained and could be represented by an energy minimization approach. Such representation would support the surgeon's decision process in guidewire selection. In this paper, we determine the guidewire position using a k-level graph based on 3D vessel information. Guidewire properties are incorporated into the graph as edge weights given by the local bending energy related to the local bending angle. The optimal path through this weighted directed graph is determined using a shortest path algorithm. Volumetric data of two different internal carotid artery phantoms (Ø 3.5-4.6 mm) was acquired. Two guidewires (Ø 0.33 mm) of different material properties (stainless steel, plastic-coated steel core) were inserted into the phantoms. The average RMS distance between actual and simulated guidewire positions varies from 0.9 mm (plastic coated) to 1.3 mm (stainless steel); the computation time to determine the position was <2s. The results indicate that the proposed technique yields reproducible and accurate guidewire positions within a short, clinically relevant time frame. These calculated positions may be useful in facilitating neurovascular interventions.
Split-plot designs for robotic serial dilution assays.
Buzas, Jeffrey S; Wager, Carrie G; Lansky, David M
2011-12-01
This article explores effective implementation of split-plot designs in serial dilution bioassay using robots. We show that the shortest path for a robot to fill plate wells for a split-plot design is equivalent to the shortest common supersequence problem in combinatorics. We develop an algorithm for finding the shortest common supersequence, provide an R implementation, and explore the distribution of the number of steps required to implement split-plot designs for bioassay through simulation. We also show how to construct collections of split plots that can be filled in a minimal number of steps, thereby demonstrating that split-plot designs can be implemented with nearly the same effort as strip-plot designs. Finally, we provide guidelines for modeling data that result from these designs. © 2011, The International Biometric Society.
Use of graph algorithms in the processing and analysis of images with focus on the biomedical data.
Zdimalova, M; Roznovjak, R; Weismann, P; El Falougy, H; Kubikova, E
2017-01-01
Image segmentation is a known problem in the field of image processing. A great number of methods based on different approaches to this issue was created. One of these approaches utilizes the findings of the graph theory. Our work focuses on segmentation using shortest paths in a graph. Specifically, we deal with methods of "Intelligent Scissors," which use Dijkstra's algorithm to find the shortest paths. We created a new software in Microsoft Visual Studio 2013 integrated development environment Visual C++ in the language C++/CLI. We created a format application with a graphical users development environment for system Windows, with using the platform .Net (version 4.5). The program was used for handling and processing the original medical data. The major disadvantage of the method of "Intelligent Scissors" is the computational time length of Dijkstra's algorithm. However, after the implementation of a more efficient priority queue, this problem could be alleviated. The main advantage of this method we see in training that enables to adapt to a particular kind of edge, which we need to segment. The user involvement has a significant influence on the process of segmentation, which enormously aids to achieve high-quality results (Fig. 7, Ref. 13).
Two betweenness centrality measures based on Randomized Shortest Paths
Kivimäki, Ilkka; Lebichot, Bertrand; Saramäki, Jari; Saerens, Marco
2016-01-01
This paper introduces two new closely related betweenness centrality measures based on the Randomized Shortest Paths (RSP) framework, which fill a gap between traditional network centrality measures based on shortest paths and more recent methods considering random walks or current flows. The framework defines Boltzmann probability distributions over paths of the network which focus on the shortest paths, but also take into account longer paths depending on an inverse temperature parameter. RSP’s have previously proven to be useful in defining distance measures on networks. In this work we study their utility in quantifying the importance of the nodes of a network. The proposed RSP betweenness centralities combine, in an optimal way, the ideas of using the shortest and purely random paths for analysing the roles of network nodes, avoiding issues involving these two paradigms. We present the derivations of these measures and how they can be computed in an efficient way. In addition, we show with real world examples the potential of the RSP betweenness centralities in identifying interesting nodes of a network that more traditional methods might fail to notice. PMID:26838176
NASA Astrophysics Data System (ADS)
Nordin, Noraimi Azlin Mohd; Omar, Mohd; Sharif, S. Sarifah Radiah
2017-04-01
Companies are looking forward to improve their productivity within their warehouse operations and distribution centres. In a typical warehouse operation, order picking contributes more than half percentage of the operating costs. Order picking is a benchmark in measuring the performance and productivity improvement of any warehouse management. Solving order picking problem is crucial in reducing response time and waiting time of a customer in receiving his demands. To reduce the response time, proper routing for picking orders is vital. Moreover, in production line, it is vital to always make sure the supplies arrive on time. Hence, a sample routing network will be applied on EP Manufacturing Berhad (EPMB) as a case study. The Dijkstra's algorithm and Dynamic Programming method are applied to find the shortest distance for an order picker in order picking. The results show that the Dynamic programming method is a simple yet competent approach in finding the shortest distance to pick an order that is applicable in a warehouse within a short time period.
Short paths in expander graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleinberg, J.; Rubinfeld, R.
Graph expansion has proved to be a powerful general tool for analyzing the behavior of routing algorithms and the interconnection networks on which they run. We develop new routing algorithms and structural results for bounded-degree expander graphs. Our results are unified by the fact that they are all based upon, and extend, a body of work asserting that expanders are rich in short, disjoint paths. In particular, our work has consequences for the disjoint paths problem, multicommodify flow, and graph minor containment. We show: (i) A greedy algorithm for approximating the maximum disjoint paths problem achieves a polylogarithmic approximation ratiomore » in bounded-degree expanders. Although our algorithm is both deterministic and on-line, its performance guarantee is an improvement over previous bounds in expanders. (ii) For a multicommodily flow problem with arbitrary demands on a bounded-degree expander, there is a (1 + {epsilon})-optimal solution using only flow paths of polylogarithmic length. It follows that the multicommodity flow algorithm of Awerbuch and Leighton runs in nearly linear time per commodity in expanders. Our analysis is based on establishing the following: given edge weights on an expander G, one can increase some of the weights very slightly so the resulting shortest-path metric is smooth - the min-weight path between any pair of nodes uses a polylogarithmic number of edges. (iii) Every bounded-degree expander on n nodes contains every graph with O(n/log{sup O(1)} n) nodes and edges as a minor.« less
Information spread of emergency events: path searching on social networks.
Dai, Weihui; Hu, Hongzhi; Wu, Tunan; Dai, Yonghui
2014-01-01
Emergency has attracted global attentions of government and the public, and it will easily trigger a series of serious social problems if it is not supervised effectively in the dissemination process. In the Internet world, people communicate with each other and form various virtual communities based on social networks, which lead to a complex and fast information spread pattern of emergency events. This paper collects Internet data based on data acquisition and topic detection technology, analyzes the process of information spread on social networks, describes the diffusions and impacts of that information from the perspective of random graph, and finally seeks the key paths through an improved IBF algorithm. Application cases have shown that this algorithm can search the shortest spread paths efficiently, which may help us to guide and control the information dissemination of emergency events on early warning.
Spatial interpolation of river channel topography using the shortest temporal distance
NASA Astrophysics Data System (ADS)
Zhang, Yanjun; Xian, Cuiling; Chen, Huajin; Grieneisen, Michael L.; Liu, Jiaming; Zhang, Minghua
2016-11-01
It is difficult to interpolate river channel topography due to complex anisotropy. As the anisotropy is often caused by river flow, especially the hydrodynamic and transport mechanisms, it is reasonable to incorporate flow velocity into topography interpolator for decreasing the effect of anisotropy. In this study, two new distance metrics defined as the time taken by water flow to travel between two locations are developed, and replace the spatial distance metric or Euclidean distance that is currently used to interpolate topography. One is a shortest temporal distance (STD) metric. The temporal distance (TD) of a path between two nodes is calculated by spatial distance divided by the tangent component of flow velocity along the path, and the STD is searched using the Dijkstra algorithm in all possible paths between two nodes. The other is a modified shortest temporal distance (MSTD) metric in which both the tangent and normal components of flow velocity were combined. They are used to construct the methods for the interpolation of river channel topography. The proposed methods are used to generate the topography of Wuhan Section of Changjiang River and compared with Universal Kriging (UK) and Inverse Distance Weighting (IDW). The results clearly showed that the STD and MSTD based on flow velocity were reliable spatial interpolators. The MSTD, followed by the STD, presents improvement in prediction accuracy relative to both UK and IDW.
Interference Aware Routing Using Spatial Reuse in Wireless Sensor Networks
2013-12-01
practice there is no optimal STDMA algorithm due to the computational complexity of the STDMA implementation; therefore, the common approach is to...Applications, Springer Berlin Heidelberg, pp. 653–657, 2001. [26] B. Korte and J. Vygen, “Shortest Paths,” Combinatorial Optimization Theory and...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited INTERFERENCE
Efficiency and robustness of different bus network designs
NASA Astrophysics Data System (ADS)
Pang, John Zhen Fu; Bin Othman, Nasri; Ng, Keng Meng; Monterola, Christopher
2015-07-01
We compare the efficiencies and robustness of four transport networks that can be possibly formed as a result of deliberate city planning. The networks are constructed based on their spatial resemblance to the cities of Manhattan (lattice), Sudan (random), Beijing (single-blob) and Greater Cairo (dual-blob). For a given type, a genetic algorithm is employed to obtain an optimized set of the bus routes. We then simulate how commuter travels using Yen's algorithms for k shortest paths on an adjacency matrix. The cost of traveling such as walking between stations is captured by varying the weighted sums of matrices. We also consider the number of transfers a posteriori by looking at the computed shortest paths. With consideration to distances via radius of gyration, redundancies of travel and number of bus transfers, our simulations indicate that random and dual-blob are more efficient than single-blob and lattice networks. Moreover, dual-blob type is least robust when node removals are targeted but is most resilient when node failures are random. The work hopes to guide and provide technical perspectives on how geospatial distribution of a city limits the optimality of transport designs.
Trajectory Segmentation Map-Matching Approach for Large-Scale, High-Resolution GPS Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Lei; Holden, Jacob R.; Gonder, Jeffrey D.
With the development of smartphones and portable GPS devices, large-scale, high-resolution GPS data can be collected. Map matching is a critical step in studying vehicle driving activity and recognizing network traffic conditions from the data. A new trajectory segmentation map-matching algorithm is proposed to deal accurately and efficiently with large-scale, high-resolution GPS trajectory data. The new algorithm separated the GPS trajectory into segments. It found the shortest path for each segment in a scientific manner and ultimately generated a best-matched path for the entire trajectory. The similarity of a trajectory segment and its matched path is described by a similaritymore » score system based on the longest common subsequence. The numerical experiment indicated that the proposed map-matching algorithm was very promising in relation to accuracy and computational efficiency. Large-scale data set applications verified that the proposed method is robust and capable of dealing with real-world, large-scale GPS data in a computationally efficient and accurate manner.« less
Trajectory Segmentation Map-Matching Approach for Large-Scale, High-Resolution GPS Data
Zhu, Lei; Holden, Jacob R.; Gonder, Jeffrey D.
2017-01-01
With the development of smartphones and portable GPS devices, large-scale, high-resolution GPS data can be collected. Map matching is a critical step in studying vehicle driving activity and recognizing network traffic conditions from the data. A new trajectory segmentation map-matching algorithm is proposed to deal accurately and efficiently with large-scale, high-resolution GPS trajectory data. The new algorithm separated the GPS trajectory into segments. It found the shortest path for each segment in a scientific manner and ultimately generated a best-matched path for the entire trajectory. The similarity of a trajectory segment and its matched path is described by a similaritymore » score system based on the longest common subsequence. The numerical experiment indicated that the proposed map-matching algorithm was very promising in relation to accuracy and computational efficiency. Large-scale data set applications verified that the proposed method is robust and capable of dealing with real-world, large-scale GPS data in a computationally efficient and accurate manner.« less
Fuzzy logic and A* algorithm implementation on goat foraging games
NASA Astrophysics Data System (ADS)
Harsani, P.; Mulyana, I.; Zakaria, D.
2018-03-01
Goat foraging is one of the games that apply the search techniques within the scope of artificial intelligence. This game involves several actors including players and enemies. The method used in this research is fuzzy logic and Algorithm A*. Fuzzy logic is used to determine enemy behaviour. The A* algorithm is used to search for the shortest path. There are two input variables: the distance between the player and the enemy and the anger level of the goat. The output variable that has been defined is the enemy behaviour. The A* algorithm is used to determine the closest path between the player and the enemy and define the enemy's escape path to avoid the player. There are 4 types of enemies namely farmers, planters, farmers and sellers of plants. Players are goats that aims to find a meal that is a plant. In this game goats aim to spend grass in the garden in the form of a maze while avoiding the enemy. The game provides an application of artificial intelligence and is made in four difficulty levels.
Information Spread of Emergency Events: Path Searching on Social Networks
Hu, Hongzhi; Wu, Tunan
2014-01-01
Emergency has attracted global attentions of government and the public, and it will easily trigger a series of serious social problems if it is not supervised effectively in the dissemination process. In the Internet world, people communicate with each other and form various virtual communities based on social networks, which lead to a complex and fast information spread pattern of emergency events. This paper collects Internet data based on data acquisition and topic detection technology, analyzes the process of information spread on social networks, describes the diffusions and impacts of that information from the perspective of random graph, and finally seeks the key paths through an improved IBF algorithm. Application cases have shown that this algorithm can search the shortest spread paths efficiently, which may help us to guide and control the information dissemination of emergency events on early warning. PMID:24600323
Purpose-Driven Communities in Multiplex Networks: Thresholding User-Engaged Layer Aggregation
2016-06-01
dark networks is a non-trivial yet useful task. Because terrorists work hard to hide their relationships/network, analysts have an incomplete picture...them identify meaningful terrorist communities. This thesis introduces a general-purpose algorithm for community detection in multiplex dark networks...aggregation, dark networks, conductance, cluster adequacy, mod- ularity, Louvain method, shortest path interdiction 15. NUMBER OF PAGES 155 16. PRICE CODE
2016-07-22
their corresponding transmission powers . At first glance, one may wonder whether the thinnest path problem is simply a shortest path problem with the...nature of the shortest path problem. Another aspect that complicates the problem is the choice of the transmission power at each node (within a maximum...fixed transmission power at each node (in this case, the resulting hypergraph degenerates to a standard graph), the thinnest path problem is NP
The approach for shortest paths in fire succor based on component GIS technology
NASA Astrophysics Data System (ADS)
Han, Jie; Zhao, Yong; Dai, K. W.
2007-06-01
Fire safety is an important issue for the national economy and people's living. Efficiency and exactness of fire department succor directly relate to safety of peoples' lives and property. Many disadvantages of the traditional fire system have been emerged in practical applications. The preparation of pumpers is guided by wireless communication or wire communication, so its real-time and accurate performances are much poorer. The information about the reported fire, such as the position, disaster and map, et al., for alarm and command was processed by persons, which slows the reaction speed and delays the combat opportunity. In order to solve these disadvantages, it has an important role to construct a modern fire command center based on high technology. The construction of modern fire command center can realize the modernization and automation of fire command and management. It will play a great role in protecting safety of peoples' lives and property. The center can enhance battle ability and can reduce the direct and indirect loss of fire damage at most. With the development of science technology, Geographic Information System (GIS) has becoming a new information industry for hardware production, software development, data collection, space analysis and counseling. With the popularization of computers and the development of GIS, GIS has gained increasing broad applications for its strong functionality. Network analysis is one of the most important functions of GIS, and the most elementary and pivotal issue of network analysis is the calculation of shortest paths. The shortest paths are mostly applied to some emergent systems such as 119 fire alarms. These systems mainly require that the computation time of the optimal path should be 1-3 seconds. And during traveling, the next running path of the vehicles should be calculated in time. So the implement of the shortest paths must have a high efficiency. In this paper, the component GIS technology was applied to collect and record the data information (such as, the situation of this disaster, map and road status et al) of the reported fire firstly. The ant colony optimization was used to calculate the shortest path of fire succor secondly. The optimization results were sent to the pumpers, which can let pumpers choose the shortest paths intelligently and come to fire position with least time. The programming method for shortest paths is proposed in section 3. There are three parts in this section. The elementary framework of the proposed programming method is presented in part one. The systematic framework of GIS component is described in part two. The ant colony optimization employed is presented in part three. In section 4, a simple application instance was presented to demonstrate the proposed programming method. There are three parts in this section. The distributed Web application based on component GIS was described in part one. The optimization results without traffic constraint were presented in part two. The optimization results with traffic constraint were presented in part three. The contributions of this paper can be summarized as follows. (1) It proposed an effective approach for shortest paths in fire succor based on component GIS technology. This proposed approach can achieve the real-time decisions of shortest paths for fire succor. (2) It applied the ant colony optimization to implement the shortest path decision. The traffic information was considered in the shortest path decision using ant colony optimization. The final application instance suggests that the proposed approach is feasible, correct and valid.
Families of Graph Algorithms: SSSP Case Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanewala Appuhamilage, Thejaka Amila Jay; Zalewski, Marcin J.; Lumsdaine, Andrew
2017-08-28
Single-Source Shortest Paths (SSSP) is a well-studied graph problem. Examples of SSSP algorithms include the original Dijkstra’s algorithm and the parallel Δ-stepping and KLA-SSSP algorithms. In this paper, we use a novel Abstract Graph Machine (AGM) model to show that all these algorithms share a common logic and differ from one another by the order in which they perform work. We use the AGM model to thoroughly analyze the family of algorithms that arises from the common logic. We start with the basic algorithm without any ordering (Chaotic), and then we derive the existing and new algorithms by methodically exploringmore » semantic and spatial ordering of work. Our experimental results show that new derived algorithms show better performance than the existing distributed memory parallel algorithms, especially at higher scales.« less
Optimization of OSPF Routing in IP Networks
NASA Astrophysics Data System (ADS)
Bley, Andreas; Fortz, Bernard; Gourdin, Eric; Holmberg, Kaj; Klopfenstein, Olivier; Pióro, Michał; Tomaszewski, Artur; Ümit, Hakan
The Internet is a huge world-wide packet switching network comprised of more than 13,000 distinct subnetworks, referred to as Autonomous Systems (ASs)
String tightening as a self-organizing phenomenon.
Banerjee, Bonny
2007-09-01
The phenomenon of self-organization has been of special interest to the neural network community throughout the last couple of decades. In this paper, we study a variant of the self-organizing map (SOM) that models the phenomenon of self-organization of the particles forming a string when the string is tightened from one or both of its ends. The proposed variant, called the string tightening self-organizing neural network (STON), can be used to solve certain practical problems, such as computation of shortest homotopic paths, smoothing paths to avoid sharp turns, computation of convex hull, etc. These problems are of considerable interest in computational geometry, robotics path-planning, artificial intelligence (AI) (diagrammatic reasoning), very large scale integration (VLSI) routing, and geographical information systems. Given a set of obstacles and a string with two fixed terminal points in a 2-D space, the STON model continuously tightens the given string until the unique shortest configuration in terms of the Euclidean metric is reached. The STON minimizes the total length of a string on convergence by dynamically creating and selecting feature vectors in a competitive manner. Proof of correctness of this anytime algorithm and experimental results obtained by its deployment have been presented in the paper.
NASA Technical Reports Server (NTRS)
Janich, Karl W.
2005-01-01
The At-Least version of the Generalized Minimum Spanning Tree Problem (L-GMST) is a problem in which the optimal solution connects all defined clusters of nodes in a given network at a minimum cost. The L-GMST is NPHard; therefore, metaheuristic algorithms have been used to find reasonable solutions to the problem as opposed to computationally feasible exact algorithms, which many believe do not exist for such a problem. One such metaheuristic uses a swarm-intelligent Ant Colony System (ACS) algorithm, in which agents converge on a solution through the weighing of local heuristics, such as the shortest available path and the number of agents that recently used a given path. However, in a network using a solution derived from the ACS algorithm, some nodes may move around to different clusters and cause small changes in the network makeup. Rerunning the algorithm from the start would be somewhat inefficient due to the significance of the changes, so a genetic algorithm based on the top few solutions found in the ACS algorithm is proposed to quickly and efficiently adapt the network to these small changes.
Teichroeb, Julie Annette; Smeltzer, Eve Ann
2018-01-01
Animal paths are analogous to intractable mathematical problems like the Traveling Salesman Problem (TSP) and the shortest path problem (SPP). Both the TSP and SPP require an individual to find the shortest path through multiple targets but the TSP demands a return to the start, while the SPP does not. Vervet monkeys are very efficient in solving TSPs but this species is a multiple central place forager that does not always return to the same sleeping site and thus theoretically should be selected to find solutions to SPPs rather than TSPs. We examined path choice by wild vervets in an SPP experimental array where the shortest paths usually differed from those consistent with common heuristic strategies, the nearest-neighbor rule (NNR-go to the closest resource that has not been visited), and the convex hull (put a mental loop around sites, adding inner targets in order of distance from the edge)-an efficient strategy for TSPs but not SPPs. In addition, humans solving SPPs use an initial segment strategy (ISS-choose the straightest path at the beginning, only turning when necessary) and we looked at vervet paths consistent with this strategy. In 615 trials by single foragers, paths usually conformed to the NNR and rarely the slightly more efficient convex hull, supporting that vervets may be selected to solve SPPs. Further, like humans solving SPPs, vervets showed a tendency to use the ISS. Paths consistent with heuristics dropped off sharply, and use of the shortest path increased, when heuristics led to longer paths showing trade-offs in efficiency versus cognitive load. Two individuals out of 17, found the shortest path most often, showing inter-individual variation in path planning. Given support for the NNR and the ISS, we propose a new rule-of-thumb termed the "region heuristic" that vervets may apply in multi-destination routes.
Smeltzer, Eve Ann
2018-01-01
Animal paths are analogous to intractable mathematical problems like the Traveling Salesman Problem (TSP) and the shortest path problem (SPP). Both the TSP and SPP require an individual to find the shortest path through multiple targets but the TSP demands a return to the start, while the SPP does not. Vervet monkeys are very efficient in solving TSPs but this species is a multiple central place forager that does not always return to the same sleeping site and thus theoretically should be selected to find solutions to SPPs rather than TSPs. We examined path choice by wild vervets in an SPP experimental array where the shortest paths usually differed from those consistent with common heuristic strategies, the nearest-neighbor rule (NNR–go to the closest resource that has not been visited), and the convex hull (put a mental loop around sites, adding inner targets in order of distance from the edge)–an efficient strategy for TSPs but not SPPs. In addition, humans solving SPPs use an initial segment strategy (ISS–choose the straightest path at the beginning, only turning when necessary) and we looked at vervet paths consistent with this strategy. In 615 trials by single foragers, paths usually conformed to the NNR and rarely the slightly more efficient convex hull, supporting that vervets may be selected to solve SPPs. Further, like humans solving SPPs, vervets showed a tendency to use the ISS. Paths consistent with heuristics dropped off sharply, and use of the shortest path increased, when heuristics led to longer paths showing trade-offs in efficiency versus cognitive load. Two individuals out of 17, found the shortest path most often, showing inter-individual variation in path planning. Given support for the NNR and the ISS, we propose a new rule-of-thumb termed the “region heuristic” that vervets may apply in multi-destination routes. PMID:29813105
Link prediction based on local community properties
NASA Astrophysics Data System (ADS)
Yang, Xu-Hua; Zhang, Hai-Feng; Ling, Fei; Cheng, Zhi; Weng, Guo-Qing; Huang, Yu-Jiao
2016-09-01
The link prediction algorithm is one of the key technologies to reveal the inherent rule of network evolution. This paper proposes a novel link prediction algorithm based on the properties of the local community, which is composed of the common neighbor nodes of any two nodes in the network and the links between these nodes. By referring to the node degree and the condition of assortativity or disassortativity in a network, we comprehensively consider the effect of the shortest path and edge clustering coefficient within the local community on node similarity. We numerically show the proposed method provide good link prediction results.
An Energy-Efficient Target-Tracking Strategy for Mobile Sensor Networks.
Mahboubi, Hamid; Masoudimansour, Walid; Aghdam, Amir G; Sayrafian-Pour, Kamran
2017-02-01
In this paper, an energy-efficient strategy is proposed for tracking a moving target in an environment with obstacles, using a network of mobile sensors. Typically, the most dominant sources of energy consumption in a mobile sensor network are sensing, communication, and movement. The proposed algorithm first divides the field into a grid of sufficiently small cells. The grid is then represented by a graph whose edges are properly weighted to reflect the energy consumption of sensors. The proposed technique searches for near-optimal locations for the sensors in different time instants to route information from the target to destination, using a shortest path algorithm. Simulations confirm the efficacy of the proposed algorithm.
Fuzzy multi-objective chance-constrained programming model for hazardous materials transportation
NASA Astrophysics Data System (ADS)
Du, Jiaoman; Yu, Lean; Li, Xiang
2016-04-01
Hazardous materials transportation is an important and hot issue of public safety. Based on the shortest path model, this paper presents a fuzzy multi-objective programming model that minimizes the transportation risk to life, travel time and fuel consumption. First, we present the risk model, travel time model and fuel consumption model. Furthermore, we formulate a chance-constrained programming model within the framework of credibility theory, in which the lengths of arcs in the transportation network are assumed to be fuzzy variables. A hybrid intelligent algorithm integrating fuzzy simulation and genetic algorithm is designed for finding a satisfactory solution. Finally, some numerical examples are given to demonstrate the efficiency of the proposed model and algorithm.
Model of a Frame of Dynamic Routing and Its Equilibrium
NASA Astrophysics Data System (ADS)
Zhang, Shu; Yuan, Yuan; Xu, Jian
Dynamic routing algorithm based on the shortest path principle is criticized due to the oscillation induced by such routing scheme. In the present work, we propose the model of TCP/RED algorithm by a new frame of dynamic routing, based on the measurement of occupation ratio of router buffer for different links, which only requires the information of the queue size at the buffer of the router, to stabilize the system. We classify several types of equilibrium and employ the numerical method to study the stability of the steady state. Our numerical results show that the careful selection of the parameters characterizing the dynamic routing algorithm can stabilize the system in some cases.
Seamless Image Mosaicking via Synchronization
NASA Astrophysics Data System (ADS)
Santellani, E.; Maset, E.; Fusiello, A.
2018-05-01
This paper proposes an innovative method to create high-quality seamless planar mosaics. The developed pipeline ensures good robustness against many common mosaicking problems (e.g., misalignments, colour distortion, moving objects, parallax) and differs from other works in the literature because a global approach, known as synchronization, is used for image registration and colour correction. To better conceal the mosaic seamlines, images are cut along specific paths, computed using a Voronoi decomposition of the mosaic area and a shortest path algorithm. Results obtained on challenging real datasets show that the colour correction mitigates significantly the colour variations between the original images and the seams on the final mosaic are not evident.
Chen, Lei; Liu, Tao; Zhao, Xian
2018-06-01
The anatomical therapeutic chemical (ATC) classification system is a widely accepted drug classification scheme. This system comprises five levels and includes several classes in each level. Drugs are classified into classes according to their therapeutic effects and characteristics. The first level includes 14 main classes. In this study, we proposed two network-based models to infer novel potential chemicals deemed to belong in the first level of ATC classification. To build these models, two large chemical networks were constructed using the chemical-chemical interaction information retrieved from the Search Tool for Interactions of Chemicals (STITCH). Two classic network algorithms, shortest path (SP) and random walk with restart (RWR) algorithms, were executed on the corresponding network to mine novel chemicals for each ATC class using the validated drugs in a class as seed nodes. Then, the obtained chemicals yielded by these two algorithms were further evaluated by a permutation test and an association test. The former can exclude chemicals produced by the structure of the network, i.e., false positive discoveries. By contrast, the latter identifies the most important chemicals that have strong associations with the ATC class. Comparisons indicated that the two models can provide quite dissimilar results, suggesting that the results yielded by one model can be essential supplements for those obtained by the other model. In addition, several representative inferred chemicals were analyzed to confirm the reliability of the results generated by the two models. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang. Copyright © 2017 Elsevier B.V. All rights reserved.
Adaptive Bio-Inspired Wireless Network Routing for Planetary Surface Exploration
NASA Technical Reports Server (NTRS)
Alena, Richard I.; Lee, Charles
2004-01-01
Wireless mobile networks suffer connectivity loss when used in a terrain that has hills, and valleys when line of sight is interrupted or range is exceeded. To resolve this problem and achieve acceptable network performance, we have designed an adaptive, configurable, hybrid system to automatically route network packets along the best path between multiple geographically dispersed modules. This is very useful in planetary surface exploration, especially for ad-hoc mobile networks, where computational devices take an active part in creating a network infrastructure, and can actually be used to route data dynamically and even store data for later transmission between networks. Using inspiration from biological systems, this research proposes to use ant trail algorithms with multi-layered information maps (topographic maps, RF coverage maps) to determine the best route through ad-hoc network at real time. The determination of best route is a complex one, and requires research into the appropriate metrics, best method to identify the best path, optimizing traffic capacity, network performance, reliability, processing capabilities and cost. Real ants are capable of finding the shortest path from their nest to a food source without visual sensing through the use of pheromones. They are also able to adapt to changes in the environment using subtle clues. To use ant trail algorithms, we need to define the probability function. The artificial ant is, in this case, a software agent that moves from node to node on a network graph. The function to calculate the fitness (evaluate the better path) includes: length of the network edge, the coverage index, topology graph index, and pheromone trail left behind by other ant agents. Each agent modifies the environment in two different ways: 1) Local trail updating: As the ant moves between nodes it updates the amount of pheromone on the edge; and 2) Global trail updating: When all ants have completed a tour the ant that found the shortest route updates the edges in its path.
An improved global dynamic routing strategy for scale-free network with tunable clustering
NASA Astrophysics Data System (ADS)
Sun, Lina; Huang, Ning; Zhang, Yue; Bai, Yannan
2016-08-01
An efficient routing strategy can deliver packets quickly to improve the network capacity. Node congestion and transmission path length are inevitable real-time factors for a good routing strategy. Existing dynamic global routing strategies only consider the congestion of neighbor nodes and the shortest path, which ignores other key nodes’ congestion on the path. With the development of detection methods and techniques, global traffic information is readily available and important for the routing choice. Reasonable use of this information can effectively improve the network routing. So, an improved global dynamic routing strategy is proposed, which considers the congestion of all nodes on the shortest path and incorporates the waiting time of the most congested node into the path. We investigate the effectiveness of the proposed routing for scale-free network with different clustering coefficients. The shortest path routing strategy and the traffic awareness routing strategy only considering the waiting time of neighbor node are analyzed comparatively. Simulation results show that network capacity is greatly enhanced compared with the shortest path; congestion state increase is relatively slow compared with the traffic awareness routing strategy. Clustering coefficient increase will not only reduce the network throughput, but also result in transmission average path length increase for scale-free network with tunable clustering. The proposed routing is favorable to ease network congestion and network routing strategy design.
Rashno, Abdolreza; Koozekanani, Dara D; Drayna, Paul M; Nazari, Behzad; Sadri, Saeed; Rabbani, Hossein; Parhi, Keshab K
2018-05-01
This paper presents a fully automated algorithm to segment fluid-associated (fluid-filled) and cyst regions in optical coherence tomography (OCT) retina images of subjects with diabetic macular edema. The OCT image is segmented using a novel neutrosophic transformation and a graph-based shortest path method. In neutrosophic domain, an image is transformed into three sets: (true), (indeterminate) that represents noise, and (false). This paper makes four key contributions. First, a new method is introduced to compute the indeterminacy set , and a new -correction operation is introduced to compute the set in neutrosophic domain. Second, a graph shortest-path method is applied in neutrosophic domain to segment the inner limiting membrane and the retinal pigment epithelium as regions of interest (ROI) and outer plexiform layer and inner segment myeloid as middle layers using a novel definition of the edge weights . Third, a new cost function for cluster-based fluid/cyst segmentation in ROI is presented which also includes a novel approach in estimating the number of clusters in an automated manner. Fourth, the final fluid regions are achieved by ignoring very small regions and the regions between middle layers. The proposed method is evaluated using two publicly available datasets: Duke, Optima, and a third local dataset from the UMN clinic which is available online. The proposed algorithm outperforms the previously proposed Duke algorithm by 8% with respect to the dice coefficient and by 5% with respect to precision on the Duke dataset, while achieving about the same sensitivity. Also, the proposed algorithm outperforms a prior method for Optima dataset by 6%, 22%, and 23% with respect to the dice coefficient, sensitivity, and precision, respectively. Finally, the proposed algorithm also achieves sensitivity of 67.3%, 88.8%, and 76.7%, for the Duke, Optima, and the university of minnesota (UMN) datasets, respectively.
Feasible Path Generation Using Bezier Curves for Car-Like Vehicle
NASA Astrophysics Data System (ADS)
Latip, Nor Badariyah Abdul; Omar, Rosli
2017-08-01
When planning a collision-free path for an autonomous vehicle, the main criteria that have to be considered are the shortest distance, lower computation time and completeness, i.e. a path can be found if one exists. Besides that, a feasible path for the autonomous vehicle is also crucial to guarantee that the vehicle can reach the target destination considering its kinematic constraints such as non-holonomic and minimum turning radius. In order to address these constraints, Bezier curves is applied. In this paper, Bezier curves are modeled and simulated using Matlab software and the feasibility of the resulting path is analyzed. Bezier curve is derived from a piece-wise linear pre-planned path. It is found that the Bezier curves has the capability of making the planned path feasible and could be embedded in a path planning algorithm for an autonomous vehicle with kinematic constraints. It is concluded that the length of segments of the pre-planned path have to be greater than a nominal value, derived from the vehicle wheelbase, maximum steering angle and maximum speed to ensure the path for the autonomous car is feasible.
Hamamci, Andac; Kucuk, Nadir; Karaman, Kutlay; Engin, Kayihan; Unal, Gozde
2012-03-01
In this paper, we present a fast and robust practical tool for segmentation of solid tumors with minimal user interaction to assist clinicians and researchers in radiosurgery planning and assessment of the response to the therapy. Particularly, a cellular automata (CA) based seeded tumor segmentation method on contrast enhanced T1 weighted magnetic resonance (MR) images, which standardizes the volume of interest (VOI) and seed selection, is proposed. First, we establish the connection of the CA-based segmentation to the graph-theoretic methods to show that the iterative CA framework solves the shortest path problem. In that regard, we modify the state transition function of the CA to calculate the exact shortest path solution. Furthermore, a sensitivity parameter is introduced to adapt to the heterogeneous tumor segmentation problem, and an implicit level set surface is evolved on a tumor probability map constructed from CA states to impose spatial smoothness. Sufficient information to initialize the algorithm is gathered from the user simply by a line drawn on the maximum diameter of the tumor, in line with the clinical practice. Furthermore, an algorithm based on CA is presented to differentiate necrotic and enhancing tumor tissue content, which gains importance for a detailed assessment of radiation therapy response. Validation studies on both clinical and synthetic brain tumor datasets demonstrate 80%-90% overlap performance of the proposed algorithm with an emphasis on less sensitivity to seed initialization, robustness with respect to different and heterogeneous tumor types, and its efficiency in terms of computation time.
Visually based path-planning by Japanese monkeys.
Mushiake, H; Saito, N; Sakamoto, K; Sato, Y; Tanji, J
2001-03-01
To construct an animal model of strategy formation, we designed a maze path-finding task. First, we asked monkeys to capture a goal in the maze by moving a cursor on the screen. Cursor movement was linked to movements of each wrist. When the animals learned the association between cursor movement and wrist movement, we established a start and a goal in the maze, and asked them to find a path between them. We found that the animals took the shortest pathway, rather than approaching the goal randomly. We further found that the animals adopted a strategy of selecting a fixed intermediate point in the visually presented maze to select one of the shortest pathways, suggesting a visually based path planning. To examine their capacity to use that strategy flexibly, we transformed the task by blocking pathways in the maze, providing a problem to solve. The animals then developed a strategy of solving the problem by planning a novel shortest path from the start to the goal and rerouting the path to bypass the obstacle.
NASA Technical Reports Server (NTRS)
Ng, Hok K.; Grabbe, Shon; Mukherjee, Avijit
2010-01-01
The optimization of traffic flows in congested airspace with varying convective weather is a challenging problem. One approach is to generate shortest routes between origins and destinations while meeting airspace capacity constraint in the presence of uncertainties, such as weather and airspace demand. This study focuses on development of an optimal flight path search algorithm that optimizes national airspace system throughput and efficiency in the presence of uncertainties. The algorithm is based on dynamic programming and utilizes the predicted probability that an aircraft will deviate around convective weather. It is shown that the running time of the algorithm increases linearly with the total number of links between all stages. The optimal routes minimize a combination of fuel cost and expected cost of route deviation due to convective weather. They are considered as alternatives to the set of coded departure routes which are predefined by FAA to reroute pre-departure flights around weather or air traffic constraints. A formula, which calculates predicted probability of deviation from a given flight path, is also derived. The predicted probability of deviation is calculated for all path candidates. Routes with the best probability are selected as optimal. The predicted probability of deviation serves as a computable measure of reliability in pre-departure rerouting. The algorithm can also be extended to automatically adjust its design parameters to satisfy the desired level of reliability.
Constraint-Based Local Search for Constrained Optimum Paths Problems
NASA Astrophysics Data System (ADS)
Pham, Quang Dung; Deville, Yves; van Hentenryck, Pascal
Constrained Optimum Path (COP) problems arise in many real-life applications and are ubiquitous in communication networks. They have been traditionally approached by dedicated algorithms, which are often hard to extend with side constraints and to apply widely. This paper proposes a constraint-based local search (CBLS) framework for COP applications, bringing the compositionality, reuse, and extensibility at the core of CBLS and CP systems. The modeling contribution is the ability to express compositional models for various COP applications at a high level of abstraction, while cleanly separating the model and the search procedure. The main technical contribution is a connected neighborhood based on rooted spanning trees to find high-quality solutions to COP problems. The framework, implemented in COMET, is applied to Resource Constrained Shortest Path (RCSP) problems (with and without side constraints) and to the edge-disjoint paths problem (EDP). Computational results show the potential significance of the approach.
Minimizing Communication in All-Pairs Shortest Paths
2013-02-13
on a 16,384 vertex, 5% dense graph, is slightly faster using our approach (18.6 vs . 22.6 seconds) than using the replicated Johnson’s algorithm...Oracle and Samsung , as well as MathWorks. Research is also supported by DOE grants DE-SC0004938, DE-SC0005136, DE-SC0003959, DE-SC0008700, and AC02...Brickell, I. S. Dhillon, S. Sra, and J. A. Tropp. The metric nearness problem. SIAM J. Matrix Anal. Appl ., 30:375–396, 2008. [11] A. Buluç, J. R. Gilbert
2012-09-13
Jordan, Captain, USAF AFIT/DS/ENS/12-09 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright- Patterson Air Force Base...Way, Wright- Patterson AFB, Ohio, 45433, USA, +1 937-255-3636, jeremy.jordan@afit.edu jeffery.weir@afit.edu doral.sandlin@afit.edu 1.1 Abstract United...Technology 2950 Hobson Way, Wright- Patterson AFB, Ohio, 45433, USA, +1 937-255-3636, jeremy.jordan@afit.edu jeffery.weir@afit.edu doral.sandlin@afit.edu
Traffic Patrol Service Platform Scheduling and Containment Optimization Strategy
NASA Astrophysics Data System (ADS)
Wang, Tiane; Niu, Taiyang; Wan, Baocheng; Li, Jian
This article is based on the traffic and patrol police service platform settings and scheduling, in order to achieve the main purpose of rapid containment for the suspect in an emergency event. Proposing new boundary definition based on graph theory, using 0-1 programming, Dijkstra algorithm, the shortest path tree (SPT) and some of the related knowledge establish a containment model. Finally, making a combination with a city-specific data and using this model obtain the best containment plan.
Li, Longxiang; Gong, Jianhua; Zhou, Jieping
2014-01-01
Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW) with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health. PMID:24798197
Li, Longxiang; Gong, Jianhua; Zhou, Jieping
2014-01-01
Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW) with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health.
Panzacchi, Manuela; Van Moorter, Bram; Strand, Olav; Saerens, Marco; Kivimäki, Ilkka; St Clair, Colleen C; Herfindal, Ivar; Boitani, Luigi
2016-01-01
The loss, fragmentation and degradation of habitat everywhere on Earth prompts increasing attention to identifying landscape features that support animal movement (corridors) or impedes it (barriers). Most algorithms used to predict corridors assume that animals move through preferred habitat either optimally (e.g. least cost path) or as random walkers (e.g. current models), but neither extreme is realistic. We propose that corridors and barriers are two sides of the same coin and that animals experience landscapes as spatiotemporally dynamic corridor-barrier continua connecting (separating) functional areas where individuals fulfil specific ecological processes. Based on this conceptual framework, we propose a novel methodological approach that uses high-resolution individual-based movement data to predict corridor-barrier continua with increased realism. Our approach consists of two innovations. First, we use step selection functions (SSF) to predict friction maps quantifying corridor-barrier continua for tactical steps between consecutive locations. Secondly, we introduce to movement ecology the randomized shortest path algorithm (RSP) which operates on friction maps to predict the corridor-barrier continuum for strategic movements between functional areas. By modulating the parameter Ѳ, which controls the trade-off between exploration and optimal exploitation of the environment, RSP bridges the gap between algorithms assuming optimal movements (when Ѳ approaches infinity, RSP is equivalent to LCP) or random walk (when Ѳ → 0, RSP → current models). Using this approach, we identify migration corridors for GPS-monitored wild reindeer (Rangifer t. tarandus) in Norway. We demonstrate that reindeer movement is best predicted by an intermediate value of Ѳ, indicative of a movement trade-off between optimization and exploration. Model calibration allows identification of a corridor-barrier continuum that closely fits empirical data and demonstrates that RSP outperforms models that assume either optimality or random walk. The proposed approach models the multiscale cognitive maps by which animals likely navigate real landscapes and generalizes the most common algorithms for identifying corridors. Because suboptimal, but non-random, movement strategies are likely widespread, our approach has the potential to predict more realistic corridor-barrier continua for a wide range of species. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Lee, Chankyun; Cao, Xiaoyuan; Yoshikane, Noboru; Tsuritani, Takehiro; Rhee, June-Koo Kevin
2015-10-19
The feasibility of software-defined optical networking (SDON) for a practical application critically depends on scalability of centralized control performance. The paper, highly scalable routing and wavelength assignment (RWA) algorithms are investigated on an OpenFlow-based SDON testbed for proof-of-concept demonstration. Efficient RWA algorithms are proposed to achieve high performance in achieving network capacity with reduced computation cost, which is a significant attribute in a scalable centralized-control SDON. The proposed heuristic RWA algorithms differ in the orders of request processes and in the procedures of routing table updates. Combined in a shortest-path-based routing algorithm, a hottest-request-first processing policy that considers demand intensity and end-to-end distance information offers both the highest throughput of networks and acceptable computation scalability. We further investigate trade-off relationship between network throughput and computation complexity in routing table update procedure by a simulation study.
A Decision Processing Algorithm for CDC Location Under Minimum Cost SCM Network
NASA Astrophysics Data System (ADS)
Park, N. K.; Kim, J. Y.; Choi, W. Y.; Tian, Z. M.; Kim, D. J.
Location of CDC in the matter of network on Supply Chain is becoming on the high concern these days. Present status of methods on CDC has been mainly based on the calculation manually by the spread sheet to achieve the goal of minimum logistics cost. This study is focused on the development of new processing algorithm to overcome the limit of present methods, and examination of the propriety of this algorithm by case study. The algorithm suggested by this study is based on the principle of optimization on the directive GRAPH of SCM model and suggest the algorithm utilizing the traditionally introduced MST, shortest paths finding methods, etc. By the aftermath of this study, it helps to assess suitability of the present on-going SCM network and could be the criterion on the decision-making process for the optimal SCM network building-up for the demand prospect in the future.
Intelligent emission-sensitive routing for plugin hybrid electric vehicles.
Sun, Zhonghao; Zhou, Xingshe
2016-01-01
The existing transportation sector creates heavily environmental impacts and is a prime cause for the current climate change. The need to reduce emissions from this sector has stimulated efforts to speed up the application of electric vehicles (EVs). A subset of EVs, called plug-in hybrid electric vehicles (PHEVs), backup batteries with combustion engine, which makes PHEVs have a comparable driving range to conventional vehicles. However, this hybridization comes at a cost of higher emissions than all-electric vehicles. This paper studies the routing problem for PHEVs to minimize emissions. The existing shortest-path based algorithms cannot be applied to solving this problem, because of the several new challenges: (1) an optimal route may contain circles caused by detour for recharging; (2) emissions of PHEVs not only depend on the driving distance, but also depend on the terrain and the state of charge (SOC) of batteries; (3) batteries can harvest energy by regenerative braking, which makes some road segments have negative energy consumption. To address these challenges, this paper proposes a green navigation algorithm (GNA) which finds the optimal strategies: where to go and where to recharge. GNA discretizes the SOC, then makes the PHEV routing problem to satisfy the principle of optimality. Finally, GNA adopts dynamic programming to solve the problem. We evaluate GNA using synthetic maps generated by the delaunay triangulation. The results show that GNA can save more than 10 % energy and reduce 10 % emissions when compared to the shortest path algorithm. We also observe that PHEVs with the battery capacity of 10-15 KWh detour most and nearly no detour when larger than 30 KWh. This observation gives some insights when developing PHEVs.
An improved least cost routing approach for WDM optical network without wavelength converters
NASA Astrophysics Data System (ADS)
Bonani, Luiz H.; Forghani-elahabad, Majid
2016-12-01
Routing and wavelength assignment (RWA) problem has been an attractive problem in optical networks, and consequently several algorithms have been proposed in the literature to solve this problem. The most known techniques for the dynamic routing subproblem are fixed routing, fixed-alternate routing, and adaptive routing methods. The first one leads to a high blocking probability (BP) and the last one includes a high computational complexity and requires immense backing from the control and management protocols. The second one suggests a trade-off between performance and complexity, and hence we consider it to improve in our work. In fact, considering the RWA problem in a wavelength routed optical network with no wavelength converter, an improved technique is proposed for the routing subproblem in order to decrease the BP of the network. Based on fixed-alternate approach, the first k shortest paths (SPs) between each node pair is determined. We then rearrange the SPs according to a newly defined cost for the links and paths. Upon arriving a connection request, the sorted paths are consecutively checked for an available wavelength according to the most-used technique. We implement our proposed algorithm and the least-hop fixed-alternate algorithm to show how the rearrangement of SPs contributes to a lower BP in the network. The numerical results demonstrate the efficiency of our proposed algorithm in comparison with the others, considering different number of available wavelengths.
Extracting contours of oval-shaped objects by Hough transform and minimal path algorithms
NASA Astrophysics Data System (ADS)
Tleis, Mohamed; Verbeek, Fons J.
2014-04-01
Circular and oval-like objects are very common in cell and micro biology. These objects need to be analyzed, and to that end, digitized images from the microscope are used so as to come to an automated analysis pipeline. It is essential to detect all the objects in an image as well as to extract the exact contour of each individual object. In this manner it becomes possible to perform measurements on these objects, i.e. shape and texture features. Our measurement objective is achieved by probing contour detection through dynamic programming. In this paper we describe a method that uses Hough transform and two minimal path algorithms to detect contours of (ovoid-like) objects. These algorithms are based on an existing grey-weighted distance transform and a new algorithm to extract the circular shortest path in an image. The methods are tested on an artificial dataset of a 1000 images, with an F1-score of 0.972. In a case study with yeast cells, contours from our methods were compared with another solution using Pratt's figure of merit. Results indicate that our methods were more precise based on a comparison with a ground-truth dataset. As far as yeast cells are concerned, the segmentation and measurement results enable, in future work, to retrieve information from different developmental stages of the cell using complex features.
Discovery of new candidate genes related to brain development using protein interaction information.
Chen, Lei; Chu, Chen; Kong, Xiangyin; Huang, Tao; Cai, Yu-Dong
2015-01-01
Human brain development is a dramatic process composed of a series of complex and fine-tuned spatiotemporal gene expressions. A good comprehension of this process can assist us in developing the potential of our brain. However, we have only limited knowledge about the genes and gene functions that are involved in this biological process. Therefore, a substantial demand remains to discover new brain development-related genes and identify their biological functions. In this study, we aimed to discover new brain-development related genes by building a computational method. We referred to a series of computational methods used to discover new disease-related genes and developed a similar method. In this method, the shortest path algorithm was executed on a weighted graph that was constructed using protein-protein interactions. New candidate genes fell on at least one of the shortest paths connecting two known genes that are related to brain development. A randomization test was then adopted to filter positive discoveries. Of the final identified genes, several have been reported to be associated with brain development, indicating the effectiveness of the method, whereas several of the others may have potential roles in brain development.
Modeling the average shortest-path length in growth of word-adjacency networks
NASA Astrophysics Data System (ADS)
Kulig, Andrzej; DroŻdŻ, Stanisław; Kwapień, Jarosław; OświÈ©cimka, Paweł
2015-03-01
We investigate properties of evolving linguistic networks defined by the word-adjacency relation. Such networks belong to the category of networks with accelerated growth but their shortest-path length appears to reveal the network size dependence of different functional form than the ones known so far. We thus compare the networks created from literary texts with their artificial substitutes based on different variants of the Dorogovtsev-Mendes model and observe that none of them is able to properly simulate the novel asymptotics of the shortest-path length. Then, we identify the local chainlike linear growth induced by grammar and style as a missing element in this model and extend it by incorporating such effects. It is in this way that a satisfactory agreement with the empirical result is obtained.
A link-adding strategy for transport efficiency of complex networks
NASA Astrophysics Data System (ADS)
Ma, Jinlong; Han, Weizhan; Guo, Qing; Wang, Zhenyong; Zhang, Shuai
2016-12-01
The transport efficiency is one of the critical parameters to evaluate the performance of a network. In this paper, we propose an improved efficient (IE) strategy to enhance the network transport efficiency of complex networks by adding a fraction of links to an existing network based on the node’s local degree centrality and the shortest path length. Simulation results show that the proposed strategy can bring better traffic capacity and shorter average shortest path length than the low-degree-first (LDF) strategy under the shortest path routing protocol. It is found that the proposed strategy is beneficial to the improvement of overall traffic handling and delivering ability of the network. This study can alleviate the congestion in networks, and is helpful to design and optimize realistic networks.
Yanashima, Ryoji; Kitagawa, Noriyuki; Matsubara, Yoshiya; Weatheritt, Robert; Oka, Kotaro; Kikuchi, Shinichi; Tomita, Masaru; Ishizaki, Shun
2009-01-01
The scale-free and small-world network models reflect the functional units of networks. However, when we investigated the network properties of a signaling pathway using these models, no significant differences were found between the original undirected graphs and the graphs in which inactive proteins were eliminated from the gene expression data. We analyzed signaling networks by focusing on those pathways that best reflected cellular function. Therefore, our analysis of pathways started from the ligands and progressed to transcription factors and cytoskeletal proteins. We employed the Python module to assess the target network. This involved comparing the original and restricted signaling cascades as a directed graph using microarray gene expression profiles of late onset Alzheimer's disease. The most commonly used method of shortest-path analysis neglects to consider the influences of alternative pathways that can affect the activation of transcription factors or cytoskeletal proteins. We therefore introduced included k-shortest paths and k-cycles in our network analysis using the Python modules, which allowed us to attain a reasonable computational time and identify k-shortest paths. This technique reflected results found in vivo and identified pathways not found when shortest path or degree analysis was applied. Our module enabled us to comprehensively analyse the characteristics of biomolecular networks and also enabled analysis of the effects of diseases considering the feedback loop and feedforward loop control structures as an alternative path.
Osm-Oriented Method of Multimodal Route Planning
NASA Astrophysics Data System (ADS)
Li, X.; Wu, Q.; Chen, L.; Xiong, W.; Jing, N.
2015-07-01
With the increasing pervasiveness of basic facilitate of transportation and information, the need of multimodal route planning is becoming more essential in the fields of communication and transportation, urban planning, logistics management, etc. This article mainly described an OSM-oriented method of multimodal route planning. Firstly, it introduced how to extract the information we need from OSM data and build proper network model and storage model; then it analysed the accustomed cost standard adopted by most travellers; finally, we used shortest path algorithm to calculate the best route with multiple traffic means.
Surface Navigation Using Optimized Waypoints and Particle Swarm Optimization
NASA Technical Reports Server (NTRS)
Birge, Brian
2013-01-01
The design priority for manned space exploration missions is almost always placed on human safety. Proposed manned surface exploration tasks (lunar, asteroid sample returns, Mars) have the possibility of astronauts traveling several kilometers away from a home base. Deviations from preplanned paths are expected while exploring. In a time-critical emergency situation, there is a need to develop an optimal home base return path. The return path may or may not be similar to the outbound path, and what defines optimal may change with, and even within, each mission. A novel path planning algorithm and prototype program was developed using biologically inspired particle swarm optimization (PSO) that generates an optimal path of traversal while avoiding obstacles. Applications include emergency path planning on lunar, Martian, and/or asteroid surfaces, generating multiple scenarios for outbound missions, Earth-based search and rescue, as well as human manual traversal and/or path integration into robotic control systems. The strategy allows for a changing environment, and can be re-tasked at will and run in real-time situations. Given a random extraterrestrial planetary or small body surface position, the goal was to find the fastest (or shortest) path to an arbitrary position such as a safe zone or geographic objective, subject to possibly varying constraints. The problem requires a workable solution 100% of the time, though it does not require the absolute theoretical optimum. Obstacles should be avoided, but if they cannot be, then the algorithm needs to be smart enough to recognize this and deal with it. With some modifications, it works with non-stationary error topologies as well.
Methodology for Augmenting Existing Paths with Additional Parallel Transects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, John E.
2013-09-30
Visual Sample Plan (VSP) is sample planning software that is used, among other purposes, to plan transect sampling paths to detect areas that were potentially used for munition training. This module was developed for application on a large site where existing roads and trails were to be used as primary sampling paths. Gap areas between these primary paths needed to found and covered with parallel transect paths. These gap areas represent areas on the site that are more than a specified distance from a primary path. These added parallel paths needed to optionally be connected together into a single path—themore » shortest path possible. The paths also needed to optionally be attached to existing primary paths, again with the shortest possible path. Finally, the process must be repeatable and predictable so that the same inputs (primary paths, specified distance, and path options) will result in the same set of new paths every time. This methodology was developed to meet those specifications.« less
A graph-based network-vulnerability analysis system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swiler, L.P.; Phillips, C.; Gaylor, T.
1998-05-03
This paper presents a graph based approach to network vulnerability analysis. The method is flexible, allowing analysis of attacks from both outside and inside the network. It can analyze risks to a specific network asset, or examine the universe of possible consequences following a successful attack. The analysis system requires as input a database of common attacks, broken into atomic steps, specific network configuration and topology information, and an attacker profile. The attack information is matched with the network configuration information and an attacker profile to create a superset attack graph. Nodes identify a stage of attack, for example themore » class of machines the attacker has accessed and the user privilege level he or she has compromised. The arcs in the attack graph represent attacks or stages of attacks. By assigning probabilities of success on the arcs or costs representing level of effort for the attacker, various graph algorithms such as shortest path algorithms can identify the attack paths with the highest probability of success.« less
A graph-based network-vulnerability analysis system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swiler, L.P.; Phillips, C.; Gaylor, T.
1998-01-01
This report presents a graph-based approach to network vulnerability analysis. The method is flexible, allowing analysis of attacks from both outside and inside the network. It can analyze risks to a specific network asset, or examine the universe of possible consequences following a successful attack. The analysis system requires as input a database of common attacks, broken into atomic steps, specific network configuration and topology information, and an attacker profile. The attack information is matched with the network configuration information and an attacker profile to create a superset attack graph. Nodes identify a stage of attack, for example the classmore » of machines the attacker has accessed and the user privilege level he or she has compromised. The arcs in the attack graph represent attacks or stages of attacks. By assigning probabilities of success on the arcs or costs representing level-of-effort for the attacker, various graph algorithms such as shortest-path algorithms can identify the attack paths with the highest probability of success.« less
NASA Astrophysics Data System (ADS)
Guex, Guillaume
2016-05-01
In recent articles about graphs, different models proposed a formalism to find a type of path between two nodes, the source and the target, at crossroads between the shortest-path and the random-walk path. These models include a freely adjustable parameter, allowing to tune the behavior of the path toward randomized movements or direct routes. This article presents a natural generalization of these models, namely a model with multiple sources and targets. In this context, source nodes can be viewed as locations with a supply of a certain good (e.g. people, money, information) and target nodes as locations with a demand of the same good. An algorithm is constructed to display the flow of goods in the network between sources and targets. With again a freely adjustable parameter, this flow can be tuned to follow routes of minimum cost, thus displaying the flow in the context of the optimal transportation problem or, by contrast, a random flow, known to be similar to the electrical current flow if the random-walk is reversible. Moreover, a source-targetcoupling can be retrieved from this flow, offering an optimal assignment to the transportation problem. This algorithm is described in the first part of this article and then illustrated with case studies.
NASA Astrophysics Data System (ADS)
Yu, W.; Ai, T.
2014-11-01
Accessibility analysis usually requires special models of spatial location analysis based on some geometric constructions, such as Voronoi diagram (abbreviated to VD). There are many achievements in classic Voronoi model research, however suffering from the following limitations for location-based services (LBS) applications. (1) It is difficult to objectively reflect the actual service areas of facilities by using traditional planar VDs, because human activities in LBS are usually constrained only to the network portion of the planar space. (2) Although some researchers have adopted network distance to construct VDs, their approaches are used in a static environment, where unrealistic measures of shortest path distance based on assumptions about constant travel speeds through the network were often used. (3) Due to the computational complexity of the shortest-path distance calculating, previous researches tend to be very time consuming, especially for large datasets and if multiple runs are required. To solve the above problems, a novel algorithm is developed in this paper. We apply network-based quadrat system and 1-D sequential expansion to find the corresponding subnetwork for each focus. The idea is inspired by the natural phenomenon that water flow extends along certain linear channels until meets others or arrives at the end of route. In order to accommodate the changes in traffic conditions, the length of network-quadrat is set upon the traffic condition of the corresponding street. The method has the advantage over Dijkstra's algorithm in that the time cost is avoided, and replaced with a linear time operation.
Randomized shortest-path problems: two related models.
Saerens, Marco; Achbany, Youssef; Fouss, François; Yen, Luh
2009-08-01
This letter addresses the problem of designing the transition probabilities of a finite Markov chain (the policy) in order to minimize the expected cost for reaching a destination node from a source node while maintaining a fixed level of entropy spread throughout the network (the exploration). It is motivated by the following scenario. Suppose you have to route agents through a network in some optimal way, for instance, by minimizing the total travel cost-nothing particular up to now-you could use a standard shortest-path algorithm. Suppose, however, that you want to avoid pure deterministic routing policies in order, for instance, to allow some continual exploration of the network, avoid congestion, or avoid complete predictability of your routing strategy. In other words, you want to introduce some randomness or unpredictability in the routing policy (i.e., the routing policy is randomized). This problem, which will be called the randomized shortest-path problem (RSP), is investigated in this work. The global level of randomness of the routing policy is quantified by the expected Shannon entropy spread throughout the network and is provided a priori by the designer. Then, necessary conditions to compute the optimal randomized policy-minimizing the expected routing cost-are derived. Iterating these necessary conditions, reminiscent of Bellman's value iteration equations, allows computing an optimal policy, that is, a set of transition probabilities in each node. Interestingly and surprisingly enough, this first model, while formulated in a totally different framework, is equivalent to Akamatsu's model ( 1996 ), appearing in transportation science, for a special choice of the entropy constraint. We therefore revisit Akamatsu's model by recasting it into a sum-over-paths statistical physics formalism allowing easy derivation of all the quantities of interest in an elegant, unified way. For instance, it is shown that the unique optimal policy can be obtained by solving a simple linear system of equations. This second model is therefore more convincing because of its computational efficiency and soundness. Finally, simulation results obtained on simple, illustrative examples show that the models behave as expected.
Hopfield networks for solving Tower of Hanoi problems
NASA Astrophysics Data System (ADS)
Kaplan, G. B.; Güzeliş, Cüneyt
2001-08-01
In this paper, Hopfield neural networks have been considered in solving the Tower of Hanoi test which is used in the determining of deficit of planning capability of the human prefrontal cortex. The main difference between this paper and the ones in the literature which use neural networks is that the Tower of Hanoi problem has been formulated here as a special shortest-path problem. In the literature, some Hopfield networks are developed for solving the shortest path problem which is a combinatorial optimization problem having a diverse field of application. The approach given in this paper gives the possibility of solving the Tower of Hanoi problem using these Hopfield networks. Also, the paper proposes new Hopfield network models for the shortest path and hence the Tower of Hanoi problems and compares them to the available ones in terms of the memory and time (number of steps) needed in the simulations.
Routing channels in VLSI layout
NASA Astrophysics Data System (ADS)
Cai, Hong
A number of algorithms for the automatic routing of interconnections in Very Large Scale Integration (VLSI) building-block layouts are presented. Algorithms for the topological definition of channels, the global routing and the geometrical definition of channels are presented. In contrast to traditional approaches the definition and ordering of the channels is done after the global routing. This approach has the advantage that global routing information can be taken into account to select the optimal channel structure. A polynomial algorithm for the channel definition and ordering problem is presented. The existence of a conflict-free channel structure is guaranteed by enforcing a sliceable placement. Algorithms for finding the shortest connection path are described. A separate algorithm is developed for the power net routing, because the two power nets must be planarly routed with variable wire width. An integrated placement and routing system for generating building-block layout is briefly described. Some experimental results and design experiences in using the system are also presented. Very good results are obtained.
Defect-free atomic array formation using the Hungarian matching algorithm
NASA Astrophysics Data System (ADS)
Lee, Woojun; Kim, Hyosub; Ahn, Jaewook
2017-05-01
Deterministic loading of single atoms onto arbitrary two-dimensional lattice points has recently been demonstrated, where by dynamically controlling the optical-dipole potential, atoms from a probabilistically loaded lattice were relocated to target lattice points to form a zero-entropy atomic lattice. In this atom rearrangement, how to pair atoms with the target sites is a combinatorial optimization problem: brute-force methods search all possible combinations so the process is slow, while heuristic methods are time efficient but optimal solutions are not guaranteed. Here, we use the Hungarian matching algorithm as a fast and rigorous alternative to this problem of defect-free atomic lattice formation. Our approach utilizes an optimization cost function that restricts collision-free guiding paths so that atom loss due to collision is minimized during rearrangement. Experiments were performed with cold rubidium atoms that were trapped and guided with holographically controlled optical-dipole traps. The result of atom relocation from a partially filled 7 ×7 lattice to a 3 ×3 target lattice strongly agrees with the theoretical analysis: using the Hungarian algorithm minimizes the collisional and trespassing paths and results in improved performance, with over 50% higher success probability than the heuristic shortest-move method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromberger, Seth A.; Klymko, Christine F.; Henderson, Keith A.
Betweenness centrality is a graph statistic used to nd vertices that are participants in a large number of shortest paths in a graph. This centrality measure is commonly used in path and network interdiction problems and its complete form requires the calculation of all-pairs shortest paths for each vertex. This leads to a time complexity of O(jV jjEj), which is impractical for large graphs. Estimation of betweenness centrality has focused on performing shortest-path calculations on a subset of randomly- selected vertices. This reduces the complexity of the centrality estimation to O(jSjjEj); jSj < jV j, which can be scaled appropriatelymore » based on the computing resources available. An estimation strategy that uses random selection of vertices for seed selection is fast and simple to implement, but may not provide optimal estimation of betweenness centrality when the number of samples is constrained. Our experimentation has identi ed a number of alternate seed-selection strategies that provide lower error than random selection in common scale-free graphs. These strategies are discussed and experimental results are presented.« less
A novel algorithm for fast grasping of unknown objects using C-shape configuration
NASA Astrophysics Data System (ADS)
Lei, Qujiang; Chen, Guangming; Meijer, Jonathan; Wisse, Martijn
2018-02-01
Increasing grasping efficiency is very important for the robots to grasp unknown objects especially subjected to unfamiliar environments. To achieve this, a new algorithm is proposed based on the C-shape configuration. Specifically, the geometric model of the used under-actuated gripper is approximated as a C-shape. To obtain an appropriate graspable position, this C-shape configuration is applied to fit geometric model of an unknown object. The geometric model of unknown object is constructed by using a single-view partial point cloud. To examine the algorithm using simulations, a comparison of the commonly used motion planners is made. The motion planner with the highest number of solved runs, lowest computing time and the shortest path length is chosen to execute grasps found by this grasping algorithm. The simulation results demonstrate that excellent grasping efficiency is achieved by adopting our algorithm. To validate this algorithm, experiment tests are carried out using a UR5 robot arm and an under-actuated gripper. The experimental results show that steady grasping actions are obtained. Hence, this research provides a novel algorithm for fast grasping of unknown objects.
Beyond Hosting Capacity: Using Shortest Path Methods to Minimize Upgrade Cost Pathways: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gensollen, Nicolas; Horowitz, Kelsey A; Palmintier, Bryan S
We present in this paper a graph based forwardlooking algorithm applied to distribution planning in the context of distributed PV penetration. We study the target hosting capacity (THC) problem where the objective is to find the cheapest sequence of system upgrades to reach a predefined hosting capacity target value. We show in this paper that commonly used short-term cost minimization approaches lead most of the time to suboptimal solutions. By comparing our method against such myopic techniques on real distribution systems, we show that our algorithm is able to reduce the overall integration costs by looking at future decisions. Becausemore » hosting capacity is hard to compute, this problem requires efficient methods to search the space. We demonstrate here that heuristics using domain specific knowledge can be efficiently used to improve the algorithm performance such that real distribution systems can be studied.« less
Experimental evaluation of certification trails using abstract data type validation
NASA Technical Reports Server (NTRS)
Wilson, Dwight S.; Sullivan, Gregory F.; Masson, Gerald M.
1993-01-01
Certification trails are a recently introduced and promising approach to fault-detection and fault-tolerance. Recent experimental work reveals many cases in which a certification-trail approach allows for significantly faster program execution time than a basic time-redundancy approach. Algorithms for answer-validation of abstract data types allow a certification trail approach to be used for a wide variety of problems. An attempt to assess the performance of algorithms utilizing certification trails on abstract data types is reported. Specifically, this method was applied to the following problems: heapsort, Hullman tree, shortest path, and skyline. Previous results used certification trails specific to a particular problem and implementation. The approach allows certification trails to be localized to 'data structure modules,' making the use of this technique transparent to the user of such modules.
Algorithm Engineering: Concepts and Practice
NASA Astrophysics Data System (ADS)
Chimani, Markus; Klein, Karsten
Over the last years the term algorithm engineering has become wide spread synonym for experimental evaluation in the context of algorithm development. Yet it implies even more. We discuss the major weaknesses of traditional "pen and paper" algorithmics and the ever-growing gap between theory and practice in the context of modern computer hardware and real-world problem instances. We present the key ideas and concepts of the central algorithm engineering cycle that is based on a full feedback loop: It starts with the design of the algorithm, followed by the analysis, implementation, and experimental evaluation. The results of the latter can then be reused for modifications to the algorithmic design, stronger or input-specific theoretic performance guarantees, etc. We describe the individual steps of the cycle, explaining the rationale behind them and giving examples of how to conduct these steps thoughtfully. Thereby we give an introduction to current algorithmic key issues like I/O-efficient or parallel algorithms, succinct data structures, hardware-aware implementations, and others. We conclude with two especially insightful success stories—shortest path problems and text search—where the application of algorithm engineering techniques led to tremendous performance improvements compared with previous state-of-the-art approaches.
Greedy data transportation scheme with hard packet deadlines for wireless ad hoc networks.
Lee, HyungJune
2014-01-01
We present a greedy data transportation scheme with hard packet deadlines in ad hoc sensor networks of stationary nodes and multiple mobile nodes with scheduled trajectory path and arrival time. In the proposed routing strategy, each stationary ad hoc node en route decides whether to relay a shortest-path stationary node toward destination or a passing-by mobile node that will carry closer to destination. We aim to utilize mobile nodes to minimize the total routing cost as far as the selected route can satisfy the end-to-end packet deadline. We evaluate our proposed routing algorithm in terms of routing cost, packet delivery ratio, packet delivery time, and usability of mobile nodes based on network level simulations. Simulation results show that our proposed algorithm fully exploits the remaining time till packet deadline to turn into networking benefits of reducing the overall routing cost and improving packet delivery performance. Also, we demonstrate that the routing scheme guarantees packet delivery with hard deadlines, contributing to QoS improvement in various network services.
Greedy Data Transportation Scheme with Hard Packet Deadlines for Wireless Ad Hoc Networks
Lee, HyungJune
2014-01-01
We present a greedy data transportation scheme with hard packet deadlines in ad hoc sensor networks of stationary nodes and multiple mobile nodes with scheduled trajectory path and arrival time. In the proposed routing strategy, each stationary ad hoc node en route decides whether to relay a shortest-path stationary node toward destination or a passing-by mobile node that will carry closer to destination. We aim to utilize mobile nodes to minimize the total routing cost as far as the selected route can satisfy the end-to-end packet deadline. We evaluate our proposed routing algorithm in terms of routing cost, packet delivery ratio, packet delivery time, and usability of mobile nodes based on network level simulations. Simulation results show that our proposed algorithm fully exploits the remaining time till packet deadline to turn into networking benefits of reducing the overall routing cost and improving packet delivery performance. Also, we demonstrate that the routing scheme guarantees packet delivery with hard deadlines, contributing to QoS improvement in various network services. PMID:25258736
A performance evaluation of ACO and SA TSP in a supply chain network
NASA Astrophysics Data System (ADS)
Rao, T. Srinivas
2017-07-01
Supply Chain management and E commerce business solutions are one of the prominent areas of active research. In our paper we have modelled a supply chain model which aggregates all the manufacturers requirement and the products are supplied to all the manufacturer through a common vehicle routing algorithm. An appropriate tsp has been constructed for all the manufacturers which determines the shortest route thru which the aggregated material can be supplied in the shortest possible time. In this paper we have solved the shortest route through constructing a Simulated annealing algorithm and Ant colony algorithm and their performance is evaluated.
Metabolic PathFinding: inferring relevant pathways in biochemical networks.
Croes, Didier; Couche, Fabian; Wodak, Shoshana J; van Helden, Jacques
2005-07-01
Our knowledge of metabolism can be represented as a network comprising several thousands of nodes (compounds and reactions). Several groups applied graph theory to analyse the topological properties of this network and to infer metabolic pathways by path finding. This is, however, not straightforward, with a major problem caused by traversing irrelevant shortcuts through highly connected nodes, which correspond to pool metabolites and co-factors (e.g. H2O, NADP and H+). In this study, we present a web server implementing two simple approaches, which circumvent this problem, thereby improving the relevance of the inferred pathways. In the simplest approach, the shortest path is computed, while filtering out the selection of highly connected compounds. In the second approach, the shortest path is computed on the weighted metabolic graph where each compound is assigned a weight equal to its connectivity in the network. This approach significantly increases the accuracy of the inferred pathways, enabling the correct inference of relatively long pathways (e.g. with as many as eight intermediate reactions). Available options include the calculation of the k-shortest paths between two specified seed nodes (either compounds or reactions). Multiple requests can be submitted in a queue. Results are returned by email, in textual as well as graphical formats (available in http://www.scmbb.ulb.ac.be/pathfinding/).
Routing optimization in networks based on traffic gravitational field model
NASA Astrophysics Data System (ADS)
Liu, Longgeng; Luo, Guangchun
2017-04-01
For research on the gravitational field routing mechanism on complex networks, we further analyze the gravitational effect of paths. In this study, we introduce the concept of path confidence degree to evaluate the unblocked reliability of paths that it takes the traffic state of all nodes on the path into account from the overall. On the basis of this, we propose an improved gravitational field routing protocol considering all the nodes’ gravities on the path and the path confidence degree. In order to evaluate the transmission performance of the routing strategy, an order parameter is introduced to measure the network throughput by the critical value of phase transition from a free-flow phase to a jammed phase, and the betweenness centrality is used to evaluate the transmission performance and traffic congestion of the network. Simulation results show that compared with the shortest-path routing strategy and the previous gravitational field routing strategy, the proposed algorithm improves the network throughput considerably and effectively balances the traffic load within the network, and all nodes in the network are utilized high efficiently. As long as γ ≥ α, the transmission performance can reach the maximum and remains unchanged for different α and γ, which ensures that the proposed routing protocol is high efficient and stable.
A graph-based system for network-vulnerability analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swiler, L.P.; Phillips, C.
1998-06-01
This paper presents a graph-based approach to network vulnerability analysis. The method is flexible, allowing analysis of attacks from both outside and inside the network. It can analyze risks to a specific network asset, or examine the universe of possible consequences following a successful attack. The graph-based tool can identify the set of attack paths that have a high probability of success (or a low effort cost) for the attacker. The system could be used to test the effectiveness of making configuration changes, implementing an intrusion detection system, etc. The analysis system requires as input a database of common attacks,more » broken into atomic steps, specific network configuration and topology information, and an attacker profile. The attack information is matched with the network configuration information and an attacker profile to create a superset attack graph. Nodes identify a stage of attack, for example the class of machines the attacker has accessed and the user privilege level he or she has compromised. The arcs in the attack graph represent attacks or stages of attacks. By assigning probabilities of success on the arcs or costs representing level-of-effort for the attacker, various graph algorithms such as shortest-path algorithms can identify the attack paths with the highest probability of success.« less
Towards a Multiscale Approach to Cybersecurity Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, Emilie A.; Hui, Peter SY; Choudhury, Sutanay
2013-11-12
We propose a multiscale approach to modeling cyber networks, with the goal of capturing a view of the network and overall situational awareness with respect to a few key properties--- connectivity, distance, and centrality--- for a system under an active attack. We focus on theoretical and algorithmic foundations of multiscale graphs, coming from an algorithmic perspective, with the goal of modeling cyber system defense as a specific use case scenario. We first define a notion of \\emph{multiscale} graphs, in contrast with their well-studied single-scale counterparts. We develop multiscale analogs of paths and distance metrics. As a simple, motivating example ofmore » a common metric, we present a multiscale analog of the all-pairs shortest-path problem, along with a multiscale analog of a well-known algorithm which solves it. From a cyber defense perspective, this metric might be used to model the distance from an attacker's position in the network to a sensitive machine. In addition, we investigate probabilistic models of connectivity. These models exploit the hierarchy to quantify the likelihood that sensitive targets might be reachable from compromised nodes. We believe that our novel multiscale approach to modeling cyber-physical systems will advance several aspects of cyber defense, specifically allowing for a more efficient and agile approach to defending these systems.« less
Guiding brine shrimp through mazes by solving reaction diffusion equations
NASA Astrophysics Data System (ADS)
Singal, Krishma; Fenton, Flavio
Excitable systems driven by reaction diffusion equations have been shown to not only find solutions to mazes but to also to find the shortest path between the beginning and the end of the maze. In this talk we describe how we can use the Fitzhugh-Nagumo model, a generic model for excitable media, to solve a maze by varying the basin of attraction of its two fixed points. We demonstrate how two dimensional mazes are solved numerically using a Java Applet and then accelerated to run in real time by using graphic processors (GPUs). An application of this work is shown by guiding phototactic brine shrimp through a maze solved by the algorithm. Once the path is obtained, an Arduino directs the shrimp through the maze using lights from LEDs placed at the floor of the Maze. This method running in real time could be eventually used for guiding robots and cars through traffic.
Path similarity skeleton graph matching.
Bai, Xiang; Latecki, Longin Jan
2008-07-01
This paper presents a novel framework to for shape recognition based on object silhouettes. The main idea is to match skeleton graphs by comparing the shortest paths between skeleton endpoints. In contrast to typical tree or graph matching methods, we completely ignore the topological graph structure. Our approach is motivated by the fact that visually similar skeleton graphs may have completely different topological structures. The proposed comparison of shortest paths between endpoints of skeleton graphs yields correct matching results in such cases. The skeletons are pruned by contour partitioning with Discrete Curve Evolution, which implies that the endpoints of skeleton branches correspond to visual parts of the objects. The experimental results demonstrate that our method is able to produce correct results in the presence of articulations, stretching, and occlusion.
Which Way Is Jerusalem? Navigating on a Spheroid
ERIC Educational Resources Information Center
Schechter, Murray
2007-01-01
Given two points on a spheroidal planet, what is the direction from the first to the second? The answer depends, of course, on what path you take. This paper compares two paths which suggest themselves, namely, the loxodrome, which is the path in which the direction stays constant, and the geodesic, which is the shortest path. The geodesic does…
NASA Astrophysics Data System (ADS)
Wang, Honghuan; Xing, Fangyuan; Yin, Hongxi; Zhao, Nan; Lian, Bizhan
2016-02-01
With the explosive growth of network services, the reasonable traffic scheduling and efficient configuration of network resources have an important significance to increase the efficiency of the network. In this paper, an adaptive traffic scheduling policy based on the priority and time window is proposed and the performance of this algorithm is evaluated in terms of scheduling ratio. The routing and spectrum allocation are achieved by using the Floyd shortest path algorithm and establishing a node spectrum resource allocation model based on greedy algorithm, which is proposed by us. The fairness index is introduced to improve the capability of spectrum configuration. The results show that the designed traffic scheduling strategy can be applied to networks with multicast and broadcast functionalities, and makes them get real-time and efficient response. The scheme of node spectrum configuration improves the frequency resource utilization and gives play to the efficiency of the network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, N.S.V.; Kareti, S.; Shi, Weimin
A formal framework for navigating a robot in a geometric terrain by an unknown set of obstacles is considered. Here the terrain model is not a priori known, but the robot is equipped with a sensor system (vision or touch) employed for the purpose of navigation. The focus is restricted to the non-heuristic algorithms which can be theoretically shown to be correct within a given framework of models for the robot, terrain and sensor system. These formulations, although abstract and simplified compared to real-life scenarios, provide foundations for practical systems by highlighting the underlying critical issues. First, the authors considermore » the algorithms that are shown to navigate correctly without much consideration given to the performance parameters such as distance traversed, etc. Second, they consider non-heuristic algorithms that guarantee bounds on the distance traversed or the ratio of the distance traversed to the shortest path length (computed if the terrain model is known). Then they consider the navigation of robots with very limited computational capabilities such as finite automata, etc.« less
Improved Results for Route Planning in Stochastic Transportation Networks
NASA Technical Reports Server (NTRS)
Boyan, Justin; Mitzenmacher, Michael
2000-01-01
In the bus network problem, the goal is to generate a plan for getting from point X to point Y within a city using buses in the smallest expected time. Because bus arrival times are not determined by a fixed schedule but instead may be random. the problem requires more than standard shortest path techniques. In recent work, Datar and Ranade provide algorithms in the case where bus arrivals are assumed to be independent and exponentially distributed. We offer solutions to two important generalizations of the problem, answering open questions posed by Datar and Ranade. First, we provide a polynomial time algorithm for a much wider class of arrival distributions, namely those with increasing failure rate. This class includes not only exponential distributions but also uniform, normal, and gamma distributions. Second, in the case where bus arrival times are independent and geometric discrete random variable,. we provide an algorithm for transportation networks of buses and trains, where trains run according to a fixed schedule.
Virtual Network Embedding via Monte Carlo Tree Search.
Haeri, Soroush; Trajkovic, Ljiljana
2018-02-01
Network virtualization helps overcome shortcomings of the current Internet architecture. The virtualized network architecture enables coexistence of multiple virtual networks (VNs) on an existing physical infrastructure. VN embedding (VNE) problem, which deals with the embedding of VN components onto a physical network, is known to be -hard. In this paper, we propose two VNE algorithms: MaVEn-M and MaVEn-S. MaVEn-M employs the multicommodity flow algorithm for virtual link mapping while MaVEn-S uses the shortest-path algorithm. They formalize the virtual node mapping problem by using the Markov decision process (MDP) framework and devise action policies (node mappings) for the proposed MDP using the Monte Carlo tree search algorithm. Service providers may adjust the execution time of the MaVEn algorithms based on the traffic load of VN requests. The objective of the algorithms is to maximize the profit of infrastructure providers. We develop a discrete event VNE simulator to implement and evaluate performance of MaVEn-M, MaVEn-S, and several recently proposed VNE algorithms. We introduce profitability as a new performance metric that captures both acceptance and revenue to cost ratios. Simulation results show that the proposed algorithms find more profitable solutions than the existing algorithms. Given additional computation time, they further improve embedding solutions.
BootGraph: probabilistic fiber tractography using bootstrap algorithms and graph theory.
Vorburger, Robert S; Reischauer, Carolin; Boesiger, Peter
2013-02-01
Bootstrap methods have recently been introduced to diffusion-weighted magnetic resonance imaging to estimate the measurement uncertainty of ensuing diffusion parameters directly from the acquired data without the necessity to assume a noise model. These methods have been previously combined with deterministic streamline tractography algorithms to allow for the assessment of connection probabilities in the human brain. Thereby, the local noise induced disturbance in the diffusion data is accumulated additively due to the incremental progression of streamline tractography algorithms. Graph based approaches have been proposed to overcome this drawback of streamline techniques. For this reason, the bootstrap method is in the present work incorporated into a graph setup to derive a new probabilistic fiber tractography method, called BootGraph. The acquired data set is thereby converted into a weighted, undirected graph by defining a vertex in each voxel and edges between adjacent vertices. By means of the cone of uncertainty, which is derived using the wild bootstrap, a weight is thereafter assigned to each edge. Two path finding algorithms are subsequently applied to derive connection probabilities. While the first algorithm is based on the shortest path approach, the second algorithm takes all existing paths between two vertices into consideration. Tracking results are compared to an established algorithm based on the bootstrap method in combination with streamline fiber tractography and to another graph based algorithm. The BootGraph shows a very good performance in crossing situations with respect to false negatives and permits incorporating additional constraints, such as a curvature threshold. By inheriting the advantages of the bootstrap method and graph theory, the BootGraph method provides a computationally efficient and flexible probabilistic tractography setup to compute connection probability maps and virtual fiber pathways without the drawbacks of streamline tractography algorithms or the assumption of a noise distribution. Moreover, the BootGraph can be applied to common DTI data sets without further modifications and shows a high repeatability. Thus, it is very well suited for longitudinal studies and meta-studies based on DTI. Copyright © 2012 Elsevier Inc. All rights reserved.
Risk-Hedged Approach for Re-Routing Air Traffic Under Weather Uncertainty
NASA Technical Reports Server (NTRS)
Sadovsky, Alexander V.; Bilimoria, Karl D.
2016-01-01
This presentation corresponds to: our paper explores a new risk-hedged approach for re-routing air traffic around forecast convective weather. In this work, flying through a more likely weather instantiation is considered to pose a higher level of risk. Current operational practice strategically plans re-routes to avoid only the most likely (highest risk) weather instantiation, and then tactically makes any necessary adjustments as the weather evolves. The risk-hedged approach strategically plans re-routes by minimizing the risk-adjusted path length, incorporating multiple possible weather instantiations with associated likelihoods (risks). The resulting model is transparent and is readily analyzed for realism and treated with well-understood shortest-path algorithms. Risk-hedged re-routes are computed for some example weather instantiations. The main result is that in some scenarios, relative to an operational-practice proxy solution, the risk-hedged solution provides the benefits of lower risk as well as shorter path length. In other scenarios, the benefits of the risk-hedged solution are ambiguous, because the solution is characterized by a tradeoff between risk and path length. The risk-hedged solution can be executed in those scenarios where it provides a clear benefit over current operational practice.
NASA Astrophysics Data System (ADS)
Zheng, Feifei; Simpson, Angus R.; Zecchin, Aaron C.
2011-08-01
This paper proposes a novel optimization approach for the least cost design of looped water distribution systems (WDSs). Three distinct steps are involved in the proposed optimization approach. In the first step, the shortest-distance tree within the looped network is identified using the Dijkstra graph theory algorithm, for which an extension is proposed to find the shortest-distance tree for multisource WDSs. In the second step, a nonlinear programming (NLP) solver is employed to optimize the pipe diameters for the shortest-distance tree (chords of the shortest-distance tree are allocated the minimum allowable pipe sizes). Finally, in the third step, the original looped water network is optimized using a differential evolution (DE) algorithm seeded with diameters in the proximity of the continuous pipe sizes obtained in step two. As such, the proposed optimization approach combines the traditional deterministic optimization technique of NLP with the emerging evolutionary algorithm DE via the proposed network decomposition. The proposed methodology has been tested on four looped WDSs with the number of decision variables ranging from 21 to 454. Results obtained show the proposed approach is able to find optimal solutions with significantly less computational effort than other optimization techniques.
Vervet monkeys use paths consistent with context-specific spatial movement heuristics.
Teichroeb, Julie A
2015-10-01
Animal foraging routes are analogous to the computationally demanding "traveling salesman problem" (TSP), where individuals must find the shortest path among several locations before returning to the start. Humans approximate solutions to TSPs using simple heuristics or "rules of thumb," but our knowledge of how other animals solve multidestination routing problems is incomplete. Most nonhuman primate species have shown limited ability to route plan. However, captive vervets were shown to solve a TSP for six sites. These results were consistent with either planning three steps ahead or a risk-avoidance strategy. I investigated how wild vervet monkeys (Chlorocebus pygerythrus) solved a path problem with six, equally rewarding food sites; where site arrangement allowed assessment of whether vervets found the shortest route and/or used paths consistent with one of three simple heuristics to navigate. Single vervets took the shortest possible path in fewer than half of the trials, usually in ways consistent with the most efficient heuristic (the convex hull). When in competition, vervets' paths were consistent with different, more efficient heuristics dependent on their dominance rank (a cluster strategy for dominants and the nearest neighbor rule for subordinates). These results suggest that, like humans, vervets may solve multidestination routing problems by applying simple, adaptive, context-specific "rules of thumb." The heuristics that were consistent with vervet paths in this study are the same as some of those asserted to be used by humans. These spatial movement strategies may have common evolutionary roots and be part of a universal mental navigational toolkit. Alternatively, they may have emerged through convergent evolution as the optimal way to solve multidestination routing problems.
Integrated Flight Path Planning System and Flight Control System for Unmanned Helicopters
Jan, Shau Shiun; Lin, Yu Hsiang
2011-01-01
This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM). PMID:22164029
Integrated flight path planning system and flight control system for unmanned helicopters.
Jan, Shau Shiun; Lin, Yu Hsiang
2011-01-01
This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM).
ERIC Educational Resources Information Center
Theilmann, Florian
2017-01-01
The classical "brachistochrone" problem asks for the path on which a mobile point M just driven by its own gravity will travel in the shortest possible time between two given points "A" and "B." The resulting curve, the cycloid, will also be the "tautochrone" curve, i.e. the travelling time of the mobile…
Kwon, TaeKyu; Agrawal, Kunal; Li, Yunfeng; Pizlo, Zygmunt
2015-01-01
Finding the occluding contours of objects in real 2D retinal images of natural 3D scenes is done by determining, which contour fragments are relevant, and the order in which they should be connected. We developed a model that finds the closed contour represented in the image by solving a shortest path problem that uses a log-polar representation of the image; the kind of representation known to exist in area V1 of the primate cortex. The shortest path in a log-polar representation favors the smooth, convex and closed contours in the retinal image that have the smallest number of gaps. This approach is practical because finding a globally-optimal solution to a shortest path problem is computationally easy. Our model was tested in four psychophysical experiments. In the first two experiments, the subject was presented with a fragmented convex or concave polygon target among a large number of unrelated pieces of contour (distracters). The density of these pieces of contour was uniform all over the screen to minimize spatially-local cues. The orientation of each target contour fragment was randomly perturbed by varying the levels of jitter. Subjects drew a closed contour that represented the target’s contour on a screen. The subjects’ performance was nearly perfect when the jitter-level was low. Their performance deteriorated as jitter-levels were increased. The performance of our model was very similar to our subjects’. In two subsequent experiments, the subject was asked to discriminate a briefly-presented egg-shaped object while maintaining fixation at several different positions relative to the closed contour of the shape. The subject’s discrimination performance was affected by the fixation position in much the same way as the model’s. PMID:26241462
Advisory Algorithm for Scheduling Open Sectors, Operating Positions, and Workstations
NASA Technical Reports Server (NTRS)
Bloem, Michael; Drew, Michael; Lai, Chok Fung; Bilimoria, Karl D.
2012-01-01
Air traffic controller supervisors configure available sector, operating position, and work-station resources to safely and efficiently control air traffic in a region of airspace. In this paper, an algorithm for assisting supervisors with this task is described and demonstrated on two sample problem instances. The algorithm produces configuration schedule advisories that minimize a cost. The cost is a weighted sum of two competing costs: one penalizing mismatches between configurations and predicted air traffic demand and another penalizing the effort associated with changing configurations. The problem considered by the algorithm is a shortest path problem that is solved with a dynamic programming value iteration algorithm. The cost function contains numerous parameters. Default values for most of these are suggested based on descriptions of air traffic control procedures and subject-matter expert feedback. The parameter determining the relative importance of the two competing costs is tuned by comparing historical configurations with corresponding algorithm advisories. Two sample problem instances for which appropriate configuration advisories are obvious were designed to illustrate characteristics of the algorithm. Results demonstrate how the algorithm suggests advisories that appropriately utilize changes in airspace configurations and changes in the number of operating positions allocated to each open sector. The results also demonstrate how the advisories suggest appropriate times for configuration changes.
A biologically inspired neural network for dynamic programming.
Francelin Romero, R A; Kacpryzk, J; Gomide, F
2001-12-01
An artificial neural network with a two-layer feedback topology and generalized recurrent neurons, for solving nonlinear discrete dynamic optimization problems, is developed. A direct method to assign the weights of neural networks is presented. The method is based on Bellmann's Optimality Principle and on the interchange of information which occurs during the synaptic chemical processing among neurons. The neural network based algorithm is an advantageous approach for dynamic programming due to the inherent parallelism of the neural networks; further it reduces the severity of computational problems that can occur in methods like conventional methods. Some illustrative application examples are presented to show how this approach works out including the shortest path and fuzzy decision making problems.
Tree-space statistics and approximations for large-scale analysis of anatomical trees.
Feragen, Aasa; Owen, Megan; Petersen, Jens; Wille, Mathilde M W; Thomsen, Laura H; Dirksen, Asger; de Bruijne, Marleen
2013-01-01
Statistical analysis of anatomical trees is hard to perform due to differences in the topological structure of the trees. In this paper we define statistical properties of leaf-labeled anatomical trees with geometric edge attributes by considering the anatomical trees as points in the geometric space of leaf-labeled trees. This tree-space is a geodesic metric space where any two trees are connected by a unique shortest path, which corresponds to a tree deformation. However, tree-space is not a manifold, and the usual strategy of performing statistical analysis in a tangent space and projecting onto tree-space is not available. Using tree-space and its shortest paths, a variety of statistical properties, such as mean, principal component, hypothesis testing and linear discriminant analysis can be defined. For some of these properties it is still an open problem how to compute them; others (like the mean) can be computed, but efficient alternatives are helpful in speeding up algorithms that use means iteratively, like hypothesis testing. In this paper, we take advantage of a very large dataset (N = 8016) to obtain computable approximations, under the assumption that the data trees parametrize the relevant parts of tree-space well. Using the developed approximate statistics, we illustrate how the structure and geometry of airway trees vary across a population and show that airway trees with Chronic Obstructive Pulmonary Disease come from a different distribution in tree-space than healthy ones. Software is available from http://image.diku.dk/aasa/software.php.
NASA Astrophysics Data System (ADS)
Goldsworthy, Brett
2017-08-01
Ship exhaust emissions need to be allocated accurately in both space and time in order to examine many of the associated impacts, including on air quality and health. Data on ship activity from the Automatic Identification System (AIS) allow ship exhaust emissions to be calculated with fine spatial and temporal resolution. However, there are spatial gaps in the coverage afforded by the coastal network of ground stations that are used to collect the AIS data. This paper focuses on the problem of allocating emissions to the coastal gap regions. Allocating emissions to these regions involves generating interpolated ship tracks that both span the gaps and avoid coming too close to land. In most cases, a simple shortest path or straight line interpolation produces tracks that do not overlap or come too close to land. Where the simple method does not produce acceptable results, vessel tracks are steered around land on shortest available paths using a combination of visibility graphs and Dijkstra's algorithm. A geographical cluster analysis is first used to identify the boundary regions of the data gaps. The properties of the data gaps are summarised in terms of the length, duration and speed of the spanning tracks. The interpolation methods are used to improve the spatial distribution of emissions. It is also shown that emissions in the gap regions can contribute substantially to the total ship exhaust emissions in close proximity to highly populated areas.
Circuity analyses of HSR network and high-speed train paths in China
Zhao, Shuo; Huang, Jie; Shan, Xinghua
2017-01-01
Circuity, defined as the ratio of the shortest network distance to the Euclidean distance between one origin–destination (O-D) pair, can be adopted as a helpful evaluation method of indirect degrees of train paths. In this paper, the maximum circuity of the paths of operated trains is set to be the threshold value of the circuity of high-speed train paths. For the shortest paths of any node pairs, if their circuity is not higher than the threshold value, the paths can be regarded as the reasonable paths. With the consideration of a certain relative or absolute error, we cluster the reasonable paths on the basis of their inclusion relationship and the center path of each class represents a passenger transit corridor. We take the high-speed rail (HSR) network in China at the end of 2014 as an example, and obtain 51 passenger transit corridors, which are alternative sets of train paths. Furthermore, we analyze the circuity distribution of paths of all node pairs in the network. We find that the high circuity of train paths can be decreased with the construction of a high-speed railway line, which indicates that the structure of the HSR network in China tends to be more complete and the HSR network can make the Chinese railway network more efficient. PMID:28945757
Fast surface-based travel depth estimation algorithm for macromolecule surface shape description.
Giard, Joachim; Alface, Patrice Rondao; Gala, Jean-Luc; Macq, Benoît
2011-01-01
Travel Depth, introduced by Coleman and Sharp in 2006, is a physical interpretation of molecular depth, a term frequently used to describe the shape of a molecular active site or binding site. Travel Depth can be seen as the physical distance a solvent molecule would have to travel from a point of the surface, i.e., the Solvent-Excluded Surface (SES), to its convex hull. Existing algorithms providing an estimation of the Travel Depth are based on a regular sampling of the molecule volume and the use of the Dijkstra's shortest path algorithm. Since Travel Depth is only defined on the molecular surface, this volume-based approach is characterized by a large computational complexity due to the processing of unnecessary samples lying inside or outside the molecule. In this paper, we propose a surface-based approach that restricts the processing to data defined on the SES. This algorithm significantly reduces the complexity of Travel Depth estimation and makes possible the analysis of large macromolecule surface shape description with high resolution. Experimental results show that compared to existing methods, the proposed algorithm achieves accurate estimations with considerably reduced processing times.
Identification of influential nodes in complex networks: Method from spreading probability viewpoint
NASA Astrophysics Data System (ADS)
Bao, Zhong-Kui; Ma, Chuang; Xiang, Bing-Bing; Zhang, Hai-Feng
2017-02-01
The problem of identifying influential nodes in complex networks has attracted much attention owing to its wide applications, including how to maximize the information diffusion, boost product promotion in a viral marketing campaign, prevent a large scale epidemic and so on. From spreading viewpoint, the probability of one node propagating its information to one other node is closely related to the shortest distance between them, the number of shortest paths and the transmission rate. However, it is difficult to obtain the values of transmission rates for different cases, to overcome such a difficulty, we use the reciprocal of average degree to approximate the transmission rate. Then a semi-local centrality index is proposed to incorporate the shortest distance, the number of shortest paths and the reciprocal of average degree simultaneously. By implementing simulations in real networks as well as synthetic networks, we verify that our proposed centrality can outperform well-known centralities, such as degree centrality, betweenness centrality, closeness centrality, k-shell centrality, and nonbacktracking centrality. In particular, our findings indicate that the performance of our method is the most significant when the transmission rate nears to the epidemic threshold, which is the most meaningful region for the identification of influential nodes.
Zhu, LiuCun; Chen, XiJia; Kong, Xiangyin; Cai, Yu-Dong
2016-11-01
Hepatitis is a type of infectious disease that induces inflammation of the liver without pinpointing a particular pathogen or pathogenesis. Type C hepatitis, as a type of hepatitis, has been reported to induce cirrhosis and hepatocellular carcinoma within a very short amount of time. It is a great threat to human health. Some studies have revealed that trace elements are associated with infection with and immune rejection against hepatitis C virus (HCV). However, the mechanism underlying this phenomenon is still unclear. In this study, we aimed to expand our knowledge of this phenomenon by designing a computational method to identify genes that may be related to both HCV and trace element metabolic processes. The searching procedure included three stages. First, a shortest path algorithm was applied to a large network, constructed by protein-protein interactions, to identify potential genes of interest. Second, a permutation test was executed to exclude false discoveries. Finally, some rules based on the betweenness and associations between candidate genes and HCV and trace elements were built to select core genes among the remaining genes. 12 lists of genes, corresponding to 12 types of trace elements, were obtained. These genes are deemed to be associated with HCV infection and trace elements metabolism. The analyses indicate that some genes may be related to both HCV and trace element metabolic processes, further confirming the associations between HCV and trace elements. The method was further tested on another set of HCV genes, the results indicate that this method is quite robustness. The newly found genes may partially reveal unknown mechanisms between HCV infection and trace element metabolism. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang. Copyright © 2016 Elsevier B.V. All rights reserved.
Understanding disordered systems through numerical simulation and algorithm development
NASA Astrophysics Data System (ADS)
Sweeney, Sean Michael
Disordered systems arise in many physical contexts. Not all matter is uniform, and impurities or heterogeneities can be modeled by fixed random disorder. Numerous complex networks also possess fixed disorder, leading to applications in transportation systems, telecommunications, social networks, and epidemic modeling, to name a few. Due to their random nature and power law critical behavior, disordered systems are difficult to study analytically. Numerical simulation can help overcome this hurdle by allowing for the rapid computation of system states. In order to get precise statistics and extrapolate to the thermodynamic limit, large systems must be studied over many realizations. Thus, innovative algorithm development is essential in order reduce memory or running time requirements of simulations. This thesis presents a review of disordered systems, as well as a thorough study of two particular systems through numerical simulation, algorithm development and optimization, and careful statistical analysis of scaling properties. Chapter 1 provides a thorough overview of disordered systems, the history of their study in the physics community, and the development of techniques used to study them. Topics of quenched disorder, phase transitions, the renormalization group, criticality, and scale invariance are discussed. Several prominent models of disordered systems are also explained. Lastly, analysis techniques used in studying disordered systems are covered. In Chapter 2, minimal spanning trees on critical percolation clusters are studied, motivated in part by an analytic perturbation expansion by Jackson and Read that I check against numerical calculations. This system has a direct mapping to the ground state of the strongly disordered spin glass. We compute the path length fractal dimension of these trees in dimensions d = {2, 3, 4, 5} and find our results to be compatible with the analytic results suggested by Jackson and Read. In Chapter 3, the random bond Ising ferromagnet is studied, which is especially useful since it serves as a prototype for more complicated disordered systems such as the random field Ising model and spin glasses. We investigate the effect that changing boundary spins has on the locations of domain walls in the interior of the random ferromagnet system. We provide an analytic proof that ground state domain walls in the two dimensional system are decomposable, and we map these domain walls to a shortest paths problem. By implementing a multiple-source shortest paths algorithm developed by Philip Klein, we are able to efficiently probe domain wall locations for all possible configurations of boundary spins. We consider lattices with uncorrelated dis- order, as well as disorder that is spatially correlated according to a power law. We present numerical results for the scaling exponent governing the probability that a domain wall can be induced that passes through a particular location in the system's interior, and we compare these results to previous results on the directed polymer problem.
Modelling information flow along the human connectome using maximum flow.
Lyoo, Youngwook; Kim, Jieun E; Yoon, Sujung
2018-01-01
The human connectome is a complex network that transmits information between interlinked brain regions. Using graph theory, previously well-known network measures of integration between brain regions have been constructed under the key assumption that information flows strictly along the shortest paths possible between two nodes. However, it is now apparent that information does flow through non-shortest paths in many real-world networks such as cellular networks, social networks, and the internet. In the current hypothesis, we present a novel framework using the maximum flow to quantify information flow along all possible paths within the brain, so as to implement an analogy to network traffic. We hypothesize that the connection strengths of brain networks represent a limit on the amount of information that can flow through the connections per unit of time. This allows us to compute the maximum amount of information flow between two brain regions along all possible paths. Using this novel framework of maximum flow, previous network topological measures are expanded to account for information flow through non-shortest paths. The most important advantage of the current approach using maximum flow is that it can integrate the weighted connectivity data in a way that better reflects the real information flow of the brain network. The current framework and its concept regarding maximum flow provides insight on how network structure shapes information flow in contrast to graph theory, and suggests future applications such as investigating structural and functional connectomes at a neuronal level. Copyright © 2017 Elsevier Ltd. All rights reserved.
UMDR: Multi-Path Routing Protocol for Underwater Ad Hoc Networks with Directional Antenna
NASA Astrophysics Data System (ADS)
Yang, Jianmin; Liu, Songzuo; Liu, Qipei; Qiao, Gang
2018-01-01
This paper presents a new routing scheme for underwater ad hoc networks based on directional antennas. Ad hoc networks with directional antennas have become a hot research topic because of space reuse may increase networks capacity. At present, researchers have applied traditional self-organizing routing protocols (such as DSR, AODV) [1] [2] on this type of networks, and the routing scheme is based on the shortest path metric. However, such routing schemes often suffer from long transmission delays and frequent link fragmentation along the intermediate nodes of the selected route. This is caused by a unique feature of directional transmission, often called as “deafness”. In this paper, we take a different approach to explore the advantages of space reuse through multipath routing. This paper introduces the validity of the conventional routing scheme in underwater ad hoc networks with directional antennas, and presents a special design of multipath routing algorithm for directional transmission. The experimental results show a significant performance improvement in throughput and latency.
Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images.
Tian, Jing; Marziliano, Pina; Baskaran, Mani; Tun, Tin Aung; Aung, Tin
2013-03-01
Enhanced Depth Imaging (EDI) optical coherence tomography (OCT) provides high-definition cross-sectional images of the choroid in vivo, and hence is used in many clinical studies. However, the quantification of the choroid depends on the manual labelings of two boundaries, Bruch's membrane and the choroidal-scleral interface. This labeling process is tedious and subjective of inter-observer differences, hence, automatic segmentation of the choroid layer is highly desirable. In this paper, we present a fast and accurate algorithm that could segment the choroid automatically. Bruch's membrane is detected by searching the pixel with the biggest gradient value above the retinal pigment epithelium (RPE) and the choroidal-scleral interface is delineated by finding the shortest path of the graph formed by valley pixels using Dijkstra's algorithm. The experiments comparing automatic segmentation results with the manual labelings are conducted on 45 EDI-OCT images and the average of Dice's Coefficient is 90.5%, which shows good consistency of the algorithm with the manual labelings. The processing time for each image is about 1.25 seconds.
An Application of Self-Organizing Map for Multirobot Multigoal Path Planning with Minmax Objective.
Faigl, Jan
2016-01-01
In this paper, Self-Organizing Map (SOM) for the Multiple Traveling Salesman Problem (MTSP) with minmax objective is applied to the robotic problem of multigoal path planning in the polygonal domain. The main difficulty of such SOM deployment is determination of collision-free paths among obstacles that is required to evaluate the neuron-city distances in the winner selection phase of unsupervised learning. Moreover, a collision-free path is also needed in the adaptation phase, where neurons are adapted towards the presented input signal (city) to the network. Simple approximations of the shortest path are utilized to address this issue and solve the robotic MTSP by SOM. Suitability of the proposed approximations is verified in the context of cooperative inspection, where cities represent sensing locations that guarantee to "see" the whole robots' workspace. The inspection task formulated as the MTSP-Minmax is solved by the proposed SOM approach and compared with the combinatorial heuristic GENIUS. The results indicate that the proposed approach provides competitive results to GENIUS and support applicability of SOM for robotic multigoal path planning with a group of cooperating mobile robots. The proposed combination of approximate shortest paths with unsupervised learning opens further applications of SOM in the field of robotic planning.
An Application of Self-Organizing Map for Multirobot Multigoal Path Planning with Minmax Objective
Faigl, Jan
2016-01-01
In this paper, Self-Organizing Map (SOM) for the Multiple Traveling Salesman Problem (MTSP) with minmax objective is applied to the robotic problem of multigoal path planning in the polygonal domain. The main difficulty of such SOM deployment is determination of collision-free paths among obstacles that is required to evaluate the neuron-city distances in the winner selection phase of unsupervised learning. Moreover, a collision-free path is also needed in the adaptation phase, where neurons are adapted towards the presented input signal (city) to the network. Simple approximations of the shortest path are utilized to address this issue and solve the robotic MTSP by SOM. Suitability of the proposed approximations is verified in the context of cooperative inspection, where cities represent sensing locations that guarantee to “see” the whole robots' workspace. The inspection task formulated as the MTSP-Minmax is solved by the proposed SOM approach and compared with the combinatorial heuristic GENIUS. The results indicate that the proposed approach provides competitive results to GENIUS and support applicability of SOM for robotic multigoal path planning with a group of cooperating mobile robots. The proposed combination of approximate shortest paths with unsupervised learning opens further applications of SOM in the field of robotic planning. PMID:27340395
Predictions of first passage times in sparse discrete fracture networks using graph-based reductions
NASA Astrophysics Data System (ADS)
Hyman, J.; Hagberg, A.; Srinivasan, G.; Mohd-Yusof, J.; Viswanathan, H. S.
2017-12-01
We present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths. First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. Accurate estimates of first passage times are obtained with an order of magnitude reduction of CPU time and mesh size using the proposed method.
Predictions of first passage times in sparse discrete fracture networks using graph-based reductions
NASA Astrophysics Data System (ADS)
Hyman, Jeffrey D.; Hagberg, Aric; Srinivasan, Gowri; Mohd-Yusof, Jamaludin; Viswanathan, Hari
2017-07-01
We present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths. First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. Accurate estimates of first passage times are obtained with an order of magnitude reduction of CPU time and mesh size using the proposed method.
Fast Transformation of Temporal Plans for Efficient Execution
NASA Technical Reports Server (NTRS)
Tsamardinos, Ioannis; Muscettola, Nicola; Morris, Paul
1998-01-01
Temporal plans permit significant flexibility in specifying the occurrence time of events. Plan execution can make good use of that flexibility. However, the advantage of execution flexibility is counterbalanced by the cost during execution of propagating the time of occurrence of events throughout the flexible plan. To minimize execution latency, this propagation needs to be very efficient. Previous work showed that every temporal plan can be reformulated as a dispatchable plan, i.e., one for which propagation to immediate neighbors is sufficient. A simple algorithm was given that finds a dispatchable plan with a minimum number of edges in cubic time and quadratic space. In this paper, we focus on the efficiency of the reformulation process, and improve on that result. A new algorithm is presented that uses linear space and has time complexity equivalent to Johnson s algorithm for all-pairs shortest-path problems. Experimental evidence confirms the practical effectiveness of the new algorithm. For example, on a large commercial application, the performance is improved by at least two orders of magnitude. We further show that the dispatchable plan, already minimal in the total number of edges, can also be made minimal in the maximum number of edges incoming or outgoing at any node.
NASA Astrophysics Data System (ADS)
Roy, Priyanka; Gholami, Peyman; Kuppuswamy Parthasarathy, Mohana; Zelek, John; Lakshminarayanan, Vasudevan
2018-02-01
Segmentation of spectral-domain Optical Coherence Tomography (SD-OCT) images facilitates visualization and quantification of sub-retinal layers for diagnosis of retinal pathologies. However, manual segmentation is subjective, expertise dependent, and time-consuming, which limits applicability of SD-OCT. Efforts are therefore being made to implement active-contours, artificial intelligence, and graph-search to automatically segment retinal layers with accuracy comparable to that of manual segmentation, to ease clinical decision-making. Although, low optical contrast, heavy speckle noise, and pathologies pose challenges to automated segmentation. Graph-based image segmentation approach stands out from the rest because of its ability to minimize the cost function while maximising the flow. This study has developed and implemented a shortest-path based graph-search algorithm for automated intraretinal layer segmentation of SD-OCT images. The algorithm estimates the minimal-weight path between two graph-nodes based on their gradients. Boundary position indices (BPI) are computed from the transition between pixel intensities. The mean difference between BPIs of two consecutive layers quantify individual layer thicknesses, which shows statistically insignificant differences when compared to a previous study [for overall retina: p = 0.17, for individual layers: p > 0.05 (except one layer: p = 0.04)]. These results substantiate the accurate delineation of seven intraretinal boundaries in SD-OCT images by this algorithm, with a mean computation time of 0.93 seconds (64-bit Windows10, core i5, 8GB RAM). Besides being self-reliant for denoising, the algorithm is further computationally optimized to restrict segmentation within the user defined region-of-interest. The efficiency and reliability of this algorithm, even in noisy image conditions, makes it clinically applicable.
Olariu, Victor; Manesso, Erica; Peterson, Carsten
2017-06-01
Depicting developmental processes as movements in free energy genetic landscapes is an illustrative tool. However, exploring such landscapes to obtain quantitative or even qualitative predictions is hampered by the lack of free energy functions corresponding to the biochemical Michaelis-Menten or Hill rate equations for the dynamics. Being armed with energy landscapes defined by a network and its interactions would open up the possibility of swiftly identifying cell states and computing optimal paths, including those of cell reprogramming, thereby avoiding exhaustive trial-and-error simulations with rate equations for different parameter sets. It turns out that sigmoidal rate equations do have approximate free energy associations. With this replacement of rate equations, we develop a deterministic method for estimating the free energy surfaces of systems of interacting genes at different noise levels or temperatures. Once such free energy landscape estimates have been established, we adapt a shortest path algorithm to determine optimal routes in the landscapes. We explore the method on three circuits for haematopoiesis and embryonic stem cell development for commitment and reprogramming scenarios and illustrate how the method can be used to determine sequential steps for onsets of external factors, essential for efficient reprogramming.
Improved routing strategy based on gravitational field theory
NASA Astrophysics Data System (ADS)
Song, Hai-Quan; Guo, Jin
2015-10-01
Routing and path selection are crucial for many communication and logistic applications. We study the interaction between nodes and packets and establish a simple model for describing the attraction of the node to the packet in transmission process by using the gravitational field theory, considering the real and potential congestion of the nodes. On the basis of this model, we propose a gravitational field routing strategy that considers the attractions of all of the nodes on the travel path to the packet. In order to illustrate the efficiency of proposed routing algorithm, we introduce the order parameter to measure the throughput of the network by the critical value of phase transition from a free flow phase to a congested phase, and study the distribution of betweenness centrality and traffic jam. Simulations show that, compared with the shortest path routing strategy, the gravitational field routing strategy considerably enhances the throughput of the network and balances the traffic load, and nearly all of the nodes are used efficiently. Project supported by the Technology and Development Research Project of China Railway Corporation (Grant No. 2012X007-D) and the Key Program of Technology and Development Research Foundation of China Railway Corporation (Grant No. 2012X003-A).
Olariu, Victor; Manesso, Erica
2017-01-01
Depicting developmental processes as movements in free energy genetic landscapes is an illustrative tool. However, exploring such landscapes to obtain quantitative or even qualitative predictions is hampered by the lack of free energy functions corresponding to the biochemical Michaelis–Menten or Hill rate equations for the dynamics. Being armed with energy landscapes defined by a network and its interactions would open up the possibility of swiftly identifying cell states and computing optimal paths, including those of cell reprogramming, thereby avoiding exhaustive trial-and-error simulations with rate equations for different parameter sets. It turns out that sigmoidal rate equations do have approximate free energy associations. With this replacement of rate equations, we develop a deterministic method for estimating the free energy surfaces of systems of interacting genes at different noise levels or temperatures. Once such free energy landscape estimates have been established, we adapt a shortest path algorithm to determine optimal routes in the landscapes. We explore the method on three circuits for haematopoiesis and embryonic stem cell development for commitment and reprogramming scenarios and illustrate how the method can be used to determine sequential steps for onsets of external factors, essential for efficient reprogramming. PMID:28680655
Paving the Way Towards Reactive Planar Spanner Construction in Wireless Networks
NASA Astrophysics Data System (ADS)
Frey, Hannes; Rührup, Stefan
A spanner is a subgraph of a given graph that supports the original graph's shortest path lengths up to a constant factor. Planar spanners and their distributed construction are of particular interest for geographic routing, which is an efficient localized routing scheme for wireless ad hoc and sensor networks. Planarity of the network graph is a key criterion for guaranteed delivery, while the spanner property supports efficiency in terms of path length. We consider the problem of reactive local spanner construction, where a node's local topology is determined on demand. Known message-efficient reactive planarization algorithms do not preserve the spanner property, while reactive spanner constructions with a low message overhead have not been described so far. We introduce the concept of direct planarization which may be an enabler of efficient reactive spanner construction. Given an edge, nodes check for all incident intersecting edges a certain geometric criterion and withdraw the edge if this criterion is not satisfied. We use this concept to derive a generic reactive topology control mechanism and consider two geometric criteria. Simulation results show that direct planarization increases the performance of localized geographic routing by providing shorter paths than existing reactive approaches.
Longest jobs first algorithm in solving job shop scheduling using adaptive genetic algorithm (GA)
NASA Astrophysics Data System (ADS)
Alizadeh Sahzabi, Vahid; Karimi, Iman; Alizadeh Sahzabi, Navid; Mamaani Barnaghi, Peiman
2012-01-01
In this paper, genetic algorithm was used to solve job shop scheduling problems. One example discussed in JSSP (Job Shop Scheduling Problem) and I described how we can solve such these problems by genetic algorithm. The goal in JSSP is to gain the shortest process time. Furthermore I proposed a method to obtain best performance on performing all jobs in shortest time. The method mainly, is according to Genetic algorithm (GA) and crossing over between parents always follows the rule which the longest process is at the first in the job queue. In the other word chromosomes is suggested to sorts based on the longest processes to shortest i.e. "longest job first" says firstly look which machine contains most processing time during its performing all its jobs and that is the bottleneck. Secondly, start sort those jobs which are belonging to that specific machine descending. Based on the achieved results," longest jobs first" is the optimized status in job shop scheduling problems. In our results the accuracy would grow up to 94.7% for total processing time and the method improved 4% the accuracy of performing all jobs in the presented example.
Conception et analyse d'un systeme d'optimisation de plans de vol pour les avions
NASA Astrophysics Data System (ADS)
Maazoun, Wissem
The main objective of this thesis is to develop an optimization method for the preparation of flight plans for aircrafts. The flight plan minimizes all costs associated with the flight. We determine an optimal path for an airplane from a departure airport to a destination airport. The optimal path minimizes the sum of all costs, i.e. the cost of fuel added to the cost of time (wages, rental of the aircraft, arrival delays, etc.). The optimal trajectory is obtained by considering all possible trajectories on a 3D graph (longitude, latitude and altitude) where the altitude levels are separated by 2,000 feet, and by applying a shortest path algorithm. The main task was to accurately compute fuel consumption on each edge of the graph, making sure that each arc has a minimal cost and is covered in a realistic way from the point of view of control, i.e. in accordance with the rules of navigation. To compute the cost of an arc, we take into account weather conditions (temperature, pressure, wind components, etc.). The optimization of each arc is done via the evaluation of an optimum speed that takes all costs into account. Each arc of the graph typically includes several sub-phases of the flight, e.g. altitude change, speed change, and constant speed and altitude. In the initial climb and the final descent phases, the costs are determined by considering altitude changes at constant CAS (Calibrated Air Speed) or constant Mach number. CAS and Mach number are adjusted to minimize cost. The aerodynamic model used is the one proposed by Eurocontrol, which uses the BADA (Base of Aircraft Data) tables. This model is based on the total energy equation that determines the instantaneous fuel consumption. Calculations on each arc are done by solving a system of differential equations that systematically takes all costs into account. To compute the cost of an arc, we must know the time to go through it, which is generally unknown. To have well-posed boundary conditions, we use the horizontal displacement as the independent variable of the system of differential equations. We consider the velocity components of the wind in a 3D system of coordinates to compute the instantaneous ground speed of the aircraft. To consider the cost of time, we use the cost index. The cost of an arc depends on the aircraft mass at the beginning of this arc, and this mass depends on the path. As we consider all possible paths, the cost of an arc must be computed for each trajectory to which it belongs. For a long-distance flight, the number of arcs to be considered in the graph is large and therefore the cost of an arc is typically computed many times. Our algorithm computes the costs of one million arcs in seconds while having a high accuracy. The determination of the optimal trajectory can therefore be done in a short time. To get the optimal path, the mass of the aircraft at the departure point must also be optimal. It is therefore necessary to know the optimal amount of fuel for the journey. The aircraft mass is known only at the arrival point. This mass is the mass of the aircraft including passengers, cargo and reserve fuel mass. The optimal path is determined by calculating backwards, i.e. from the arrival point to the departure point. For the determination of the optimal trajectory, we use an elliptical grid that has focal points at the departure and arrival points. The use of this grid is essential for the construction of a direct and acyclic graph. We use the Bellman-Ford algorithm on a DAG to determine the shortest path. This algorithm is easy to implement and results in short computation times. Our algorithm computes an optimal trajectory with an optimal cost for each arc. Altitude changes are done optimally with respect to the mass of the aircraft and the cost of time. Our algorithm gives the mass, speed, altitude and total cost at any point of the trajectory as well as the optimal profiles of climb and descent. A prototype has been implemented in C. We made simulations of all types of possible arcs and of several complete trajectories to illustrate the behaviour of the algorithm.
LayTracks3D: A new approach for meshing general solids using medial axis transform
Quadros, William Roshan
2015-08-22
This study presents an extension of the all-quad meshing algorithm called LayTracks to generate high quality hex-dominant meshes of general solids. LayTracks3D uses the mapping between the Medial Axis (MA) and the boundary of the 3D domain to decompose complex 3D domains into simpler domains called Tracks. Tracks in 3D have no branches and are symmetric, non-intersecting, orthogonal to the boundary, and the shortest path from the MA to the boundary. These properties of tracks result in desired meshes with near cube shape elements at the boundary, structured mesh along the boundary normal with any irregular nodes restricted to themore » MA, and sharp boundary feature preservation. The algorithm has been tested on a few industrial CAD models and hex-dominant meshes are shown in the Results section. Work is underway to extend LayTracks3D to generate all-hex meshes.« less
NASA Astrophysics Data System (ADS)
Meyer, Nele Kristin; Schwanghart, Wolfgang; Korup, Oliver
2014-05-01
Norwegian's road network is frequently affected by debris flows. Both damage repair and traffic interruption generate high economic losses and necessitate a rigorous assessment of where losses are expected to be high and where preventive measures should be focused on. In recent studies, we have developed susceptibility and trigger probability maps that serve as input into a hazard calculation at the scale of first-order watersheds. Here we combine these results with graph theory to assess the impact of debris flows on the road network of southern Norway. Susceptibility and trigger probability are aggregated for individual road sections to form a reliability index that relates to the failure probability of a link that connects two network vertices, e.g., road junctions. We define link vulnerability as a function of traffic volume and additional link failure distance. Additional link failure distance is the extra length of the alternative path connecting the two associated link vertices in case the network link fails and is calculated by a shortest-path algorithm. The product of network reliability and vulnerability indices represent the risk index. High risk indices identify critical links for the Norwegian road network and are investigated in more detail. Scenarios demonstrating the impact of single or multiple debris flow events are run for the most important routes between seven large cities in southern Norway. First results show that the reliability of the road network is lowest in the central and north-western part of the study area. Road network vulnerability is highest in the mountainous regions in central southern Norway where the road density is low and in the vicinity of cities where the traffic volume is large. The scenarios indicate that city connections that have their shortest path via routes crossing the central part of the study area have the highest risk of route failure.
Biomimetics in Intelligent Sensor and Actuator Automation Systems
NASA Astrophysics Data System (ADS)
Bruckner, Dietmar; Dietrich, Dietmar; Zucker, Gerhard; Müller, Brit
Intelligent machines are really an old mankind's dream. With increasing technological development, the requirements for intelligent devices also increased. However, up to know, artificial intelligence (AI) lacks solutions to the demands of truly intelligent machines that have no problems to integrate themselves into daily human environments. Current hardware with a processing power of billions of operations per second (but without any model of human-like intelligence) could not substantially contribute to the intelligence of machines when compared with that of the early AI times. There are great results, of course. Machines are able to find the shortest path between far apart cities on the map; algorithms let you find information described only by few key words. But no machine is able to get us a cup of coffee from the kitchen yet.
A class-based link prediction using Distance Dependent Chinese Restaurant Process
NASA Astrophysics Data System (ADS)
Andalib, Azam; Babamir, Seyed Morteza
2016-08-01
One of the important tasks in relational data analysis is link prediction which has been successfully applied on many applications such as bioinformatics, information retrieval, etc. The link prediction is defined as predicting the existence or absence of edges between nodes of a network. In this paper, we propose a novel method for link prediction based on Distance Dependent Chinese Restaurant Process (DDCRP) model which enables us to utilize the information of the topological structure of the network such as shortest path and connectivity of the nodes. We also propose a new Gibbs sampling algorithm for computing the posterior distribution of the hidden variables based on the training data. Experimental results on three real-world datasets show the superiority of the proposed method over other probabilistic models for link prediction problem.
Short superstrings and the structure of overlapping strings.
Armen, C; Stein, C
1995-01-01
Given a collection of strings S = [s1,...,sn] over an alphabet sigma, a superstring alpha of S is a string containing each si as a substring, that is, for each i, 1 < or = i < or = n, alpha contains a block of magnitude of si consecutive characters that match si exactly. The shortest superstring problem is the problem of finding a superstring alpha of minimum length. The shortest superstring problem has applications in both computational biology and data compression. The shortest superstring problem is NP-hard (Gallant et al., 1980); in fact, it was recently shown to be MAX SNP-hard (Blum et al., 1994). Given the importance of the applications, several heuristics and approximation algorithms have been proposed. Constant factor approximation algorithms have been given in Blum et al. (1994) (factor of 3), Teng and Yao (1993) (factor of 2 8/9), Czumaj et al. (1994) (factor of 2 5/6), and Kosaraju et al. (1994) (factor of 2 50/63). Informally, the key to any algorithm for the shortest superstring problem is to identify sets of strings with large amounts of similarity, or overlap. Although the previous algorithms and their analyses have grown increasingly sophisticated, they reveal remarkably little about the structure of strings with large amounts of overlap. In this sense, they are solving a more general problem than the one at hand. In this paper, we study the structure of strings with large amounts of overlap and use our understanding to give an algorithm that finds a superstring whose length is no more than 2 3/4 times that of the optimal superstring. Our algorithm runs in O(magnitude of S + n3) time, which matches that of previous algorithms. We prove several interesting properties about short periodic strings, allowing us to answer questions of the following form: Given a string with some periodic structure, characterize all the possible periodic strings that can have a large amount of overlap with the first string.
Avoiding Braess' Paradox Through Collective Intelligence
NASA Technical Reports Server (NTRS)
Wolpert , David H.; Tumer, Kagan
1999-01-01
In an Ideal Shortest Path Algorithm (ISPA), at each moment each router in a network sends all of its traffic down the path that will incur the lowest cost to that traffic. In the limit of an infinitesimally small amount of traffic for a particular router, its routing that traffic via an ISPA is optimal, as far as cost incurred by that traffic is concerned. We demonstrate though that in many cases, due to the side-effects of one router's actions on another routers performance, having routers use ISPA's is suboptimal as far as global aggregate cost is concerned, even when only used to route infinitesimally small amounts of traffic. As a particular example of this we present an instance of Braess' paradox for ISPA'S, in which adding new links to a network decreases overall throughput. We also demonstrate that load-balancing, in which the routing decisions are made to optimize the global cost incurred by all traffic currently being routed, is suboptimal as far as global cost averaged across time is concerned. This is also due to "side-effects", in this case of current routing decision on future traffic. The theory of COllective INtelligence (COIN) is concerned precisely with the issue of avoiding such deleterious side-effects. We present key concepts from that theory and use them to derive an idealized algorithm whose performance is better than that of the ISPA, even in the infinitesimal limit. We present experiments verifying this, and also showing that a machine-learning-based version of this COIN algorithm in which costs are only imprecisely estimated (a version potentially applicable in the real world) also outperforms the ISPA, despite having access to less information than does the ISPA. In particular, this COIN algorithm avoids Braess' paradox.
Predictions of first passage times in sparse discrete fracture networks using graph-based reductions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyman, Jeffrey De'Haven; Hagberg, Aric Arild; Mohd-Yusof, Jamaludin
Here, we present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We also derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths.more » First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. We obtain accurate estimates of first passage times with an order of magnitude reduction of CPU time and mesh size using the proposed method.« less
Predictions of first passage times in sparse discrete fracture networks using graph-based reductions
Hyman, Jeffrey De'Haven; Hagberg, Aric Arild; Mohd-Yusof, Jamaludin; ...
2017-07-10
Here, we present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We also derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths.more » First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. We obtain accurate estimates of first passage times with an order of magnitude reduction of CPU time and mesh size using the proposed method.« less
A combinatorial approach to the design of vaccines.
Martínez, Luis; Milanič, Martin; Legarreta, Leire; Medvedev, Paul; Malaina, Iker; de la Fuente, Ildefonso M
2015-05-01
We present two new problems of combinatorial optimization and discuss their applications to the computational design of vaccines. In the shortest λ-superstring problem, given a family S1,...,S(k) of strings over a finite alphabet, a set Τ of "target" strings over that alphabet, and an integer λ, the task is to find a string of minimum length containing, for each i, at least λ target strings as substrings of S(i). In the shortest λ-cover superstring problem, given a collection X1,...,X(n) of finite sets of strings over a finite alphabet and an integer λ, the task is to find a string of minimum length containing, for each i, at least λ elements of X(i) as substrings. The two problems are polynomially equivalent, and the shortest λ-cover superstring problem is a common generalization of two well known combinatorial optimization problems, the shortest common superstring problem and the set cover problem. We present two approaches to obtain exact or approximate solutions to the shortest λ-superstring and λ-cover superstring problems: one based on integer programming, and a hill-climbing algorithm. An application is given to the computational design of vaccines and the algorithms are applied to experimental data taken from patients infected by H5N1 and HIV-1.
Rashno, Abdolreza; Nazari, Behzad; Koozekanani, Dara D.; Drayna, Paul M.; Sadri, Saeed; Rabbani, Hossein
2017-01-01
A fully-automated method based on graph shortest path, graph cut and neutrosophic (NS) sets is presented for fluid segmentation in OCT volumes for exudative age related macular degeneration (EAMD) subjects. The proposed method includes three main steps: 1) The inner limiting membrane (ILM) and the retinal pigment epithelium (RPE) layers are segmented using proposed methods based on graph shortest path in NS domain. A flattened RPE boundary is calculated such that all three types of fluid regions, intra-retinal, sub-retinal and sub-RPE, are located above it. 2) Seed points for fluid (object) and tissue (background) are initialized for graph cut by the proposed automated method. 3) A new cost function is proposed in kernel space, and is minimized with max-flow/min-cut algorithms, leading to a binary segmentation. Important properties of the proposed steps are proven and quantitative performance of each step is analyzed separately. The proposed method is evaluated using a publicly available dataset referred as Optima and a local dataset from the UMN clinic. For fluid segmentation in 2D individual slices, the proposed method outperforms the previously proposed methods by 18%, 21% with respect to the dice coefficient and sensitivity, respectively, on the Optima dataset, and by 16%, 11% and 12% with respect to the dice coefficient, sensitivity and precision, respectively, on the local UMN dataset. Finally, for 3D fluid volume segmentation, the proposed method achieves true positive rate (TPR) and false positive rate (FPR) of 90% and 0.74%, respectively, with a correlation of 95% between automated and expert manual segmentations using linear regression analysis. PMID:29059257
Coordinating robot motion, sensing, and control in plans. LDRD project final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xavier, P.G.; Brown, R.G.; Watterberg, P.A.
1997-08-01
The goal of this project was to develop a framework for robotic planning and execution that provides a continuum of adaptability with respect to model incompleteness, model error, and sensing error. For example, dividing robot motion into gross-motion planning, fine-motion planning, and sensor-augmented control had yielded productive research and solutions to individual problems. Unfortunately, these techniques could only be combined by hand with ad hoc methods and were restricted to systems where all kinematics are completely modeled in planning. The original intent was to develop methods for understanding and autonomously synthesizing plans that coordinate motion, sensing, and control. The projectmore » considered this problem from several perspectives. Results included (1) theoretical methods to combine and extend gross-motion and fine-motion planning; (2) preliminary work in flexible-object manipulation and an implementable algorithm for planning shortest paths through obstacles for the free-end of an anchored cable; (3) development and implementation of a fast swept-body distance algorithm; and (4) integration of Sandia`s C-Space Toolkit geometry engine and SANDROS motion planer and improvements, which yielded a system practical for everyday motion planning, with path-segment planning at interactive speeds. Results (3) and (4) have either led to follow-on work or are being used in current projects, and they believe that (2) will eventually be also.« less
Estimation of distributed Fermat-point location for wireless sensor networking.
Huang, Po-Hsian; Chen, Jiann-Liang; Larosa, Yanuarius Teofilus; Chiang, Tsui-Lien
2011-01-01
This work presents a localization scheme for use in wireless sensor networks (WSNs) that is based on a proposed connectivity-based RF localization strategy called the distributed Fermat-point location estimation algorithm (DFPLE). DFPLE applies triangle area of location estimation formed by intersections of three neighboring beacon nodes. The Fermat point is determined as the shortest path from three vertices of the triangle. The area of estimated location then refined using Fermat point to achieve minimum error in estimating sensor nodes location. DFPLE solves problems of large errors and poor performance encountered by localization schemes that are based on a bounding box algorithm. Performance analysis of a 200-node development environment reveals that, when the number of sensor nodes is below 150, the mean error decreases rapidly as the node density increases, and when the number of sensor nodes exceeds 170, the mean error remains below 1% as the node density increases. Second, when the number of beacon nodes is less than 60, normal nodes lack sufficient beacon nodes to enable their locations to be estimated. However, the mean error changes slightly as the number of beacon nodes increases above 60. Simulation results revealed that the proposed algorithm for estimating sensor positions is more accurate than existing algorithms, and improves upon conventional bounding box strategies.
a Movable Charging Unit for Green Mobility
NASA Astrophysics Data System (ADS)
ElBanhawy, E. Y.; Nassar, K.
2013-05-01
Battery swapping of electric vehicles (EVs) matter appears to be the swiftest and most convenient to users. The existence of swapping stations increases the feasibility of distributed energy storage via the electric grid. However, it is a cost-prohibitive way of charging. Early adaptors' preferences of /perceptions about EV system in general, has its inflectional effects on potential users hence the market penetration level. Yet, the charging matter of electric batteries worries the users and puts more pressure on them with the more rigorous planning-ahead they have to make prior to any trip. This paper presents a distinctive way of charging. It aims at making the overall charging process at ease. From a closer look into the literature, most of EVs' populations depend on domestic charge. Domestic charging gives them more confidence and increases the usability factor of the EV system. Nevertheless, they still need to count on the publically available charging points to reach their destination(s). And when it comes to multifamily residences, it becomes a thorny problem as these apartments do not have a room for charging outlets. Having said the irritating charging time needed to fatten the batteries over the day and the minimal average mileage drove daily, hypothetically, home delivery charging (Movable Charging Unit-MCU) would be a stupendous solution. The paper discusses the integration of shortest path algorithm problem with the information about EV users within a metropolitan area, developing an optimal route for a charging unit. This MCU delivers charging till homes whether by swapping batteries or by fast charging facility. Information about users is to be provided by the service provider of the neighbourhood, which includes charging patterns (timing, power capacity). This problem lies under the shortest path algorithms problem. It provides optimal route of charging that in return shall add more reliability and usability values and alleviate the charging/ limited range / daily planning anxieties. The model is in a very preliminary stage of development, future work is needed to elaborate on the model and developing a complete feasibility study.
Achieving Crossed Strong Barrier Coverage in Wireless Sensor Network.
Han, Ruisong; Yang, Wei; Zhang, Li
2018-02-10
Barrier coverage has been widely used to detect intrusions in wireless sensor networks (WSNs). It can fulfill the monitoring task while extending the lifetime of the network. Though barrier coverage in WSNs has been intensively studied in recent years, previous research failed to consider the problem of intrusion in transversal directions. If an intruder knows the deployment configuration of sensor nodes, then there is a high probability that it may traverse the whole target region from particular directions, without being detected. In this paper, we introduce the concept of crossed barrier coverage that can overcome this defect. We prove that the problem of finding the maximum number of crossed barriers is NP-hard and integer linear programming (ILP) is used to formulate the optimization problem. The branch-and-bound algorithm is adopted to determine the maximum number of crossed barriers. In addition, we also propose a multi-round shortest path algorithm (MSPA) to solve the optimization problem, which works heuristically to guarantee efficiency while maintaining near-optimal solutions. Several conventional algorithms for finding the maximum number of disjoint strong barriers are also modified to solve the crossed barrier problem and for the purpose of comparison. Extensive simulation studies demonstrate the effectiveness of MSPA.
Büttner, Kathrin; Krieter, Joachim
2018-08-01
The analysis of trade networks as well as the spread of diseases within these systems focuses mainly on pure animal movements between farms. However, additional data included as edge weights can complement the informational content of the network analysis. However, the inclusion of edge weights can also alter the outcome of the network analysis. Thus, the aim of the study was to compare unweighted and weighted network analyses of a pork supply chain in Northern Germany and to evaluate the impact on the centrality parameters. Five different weighted network versions were constructed by adding the following edge weights: number of trade contacts, number of delivered livestock, average number of delivered livestock per trade contact, geographical distance and reciprocal geographical distance. Additionally, two different edge weight standardizations were used. The network observed from 2013 to 2014 contained 678 farms which were connected by 1,018 edges. General network characteristics including shortest path structure (e.g. identical shortest paths, shortest path lengths) as well as centrality parameters for each network version were calculated. Furthermore, the targeted and the random removal of farms were performed in order to evaluate the structural changes in the networks. All network versions and edge weight standardizations revealed the same number of shortest paths (1,935). Between 94.4 to 98.9% of the unweighted network and the weighted network versions were identical. Furthermore, depending on the calculated centrality parameters and the edge weight standardization used, it could be shown that the weighted network versions differed from the unweighted network (e.g. for the centrality parameters based on ingoing trade contacts) or did not differ (e.g. for the centrality parameters based on the outgoing trade contacts) with regard to the Spearman Rank Correlation and the targeted removal of farms. The choice of standardization method as well as the inclusion or exclusion of specific farm types (e.g. abattoirs) can alter the results significantly. These facts have to be considered when centrality parameters are to be used for the implementation of prevention and control strategies in the case of an epidemic. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhu, Daqi; Huang, Huan; Yang, S X
2013-04-01
For a 3-D underwater workspace with a variable ocean current, an integrated multiple autonomous underwater vehicle (AUV) dynamic task assignment and path planning algorithm is proposed by combing the improved self-organizing map (SOM) neural network and a novel velocity synthesis approach. The goal is to control a team of AUVs to reach all appointed target locations for only one time on the premise of workload balance and energy sufficiency while guaranteeing the least total and individual consumption in the presence of the variable ocean current. First, the SOM neuron network is developed to assign a team of AUVs to achieve multiple target locations in 3-D ocean environment. The working process involves special definition of the initial neural weights of the SOM network, the rule to select the winner, the computation of the neighborhood function, and the method to update weights. Then, the velocity synthesis approach is applied to plan the shortest path for each AUV to visit the corresponding target in a dynamic environment subject to the ocean current being variable and targets being movable. Lastly, to demonstrate the effectiveness of the proposed approach, simulation results are given in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, R.G.
Much controversy surrounds government regulation of routing and scheduling of Hazardous Materials Transportation (HMT). Increases in operating costs must be balanced against expected benefits from local HMT bans and curfews when promulgating or preempting HMT regulations. Algorithmic approaches for evaluating HMT routing and scheduling regulatory policy are described. A review of current US HMT regulatory policy is presented to provide a context for the analysis. Next, a multiobjective shortest path algorithm to find the set of efficient routes under conflicting objectives is presented. This algorithm generates all efficient routes under any partial ordering in a single pass through the network.more » Also, scheduling algorithms are presented to estimate the travel time delay due to HMT curfews along a route. Algorithms are presented assuming either deterministic or stochastic travel times between curfew cities and also possible rerouting to avoid such cities. These algorithms are applied to the case study of US highway transport of spent nuclear fuel from reactors to permanent repositories. Two data sets were used. One data set included the US Interstate Highway System (IHS) network with reactor locations, possible repository sites, and 150 heavily populated areas (HPAs). The other data set contained estimates of the population residing with 0.5 miles of the IHS and the Eastern US. Curfew delay is dramatically reduced by optimally scheduling departure times unless inter-HPA travel times are highly uncertain. Rerouting shipments to avoid HPAs is a less efficient approach to reducing delay.« less
A shortest-path graph kernel for estimating gene product semantic similarity.
Alvarez, Marco A; Qi, Xiaojun; Yan, Changhui
2011-07-29
Existing methods for calculating semantic similarity between gene products using the Gene Ontology (GO) often rely on external resources, which are not part of the ontology. Consequently, changes in these external resources like biased term distribution caused by shifting of hot research topics, will affect the calculation of semantic similarity. One way to avoid this problem is to use semantic methods that are "intrinsic" to the ontology, i.e. independent of external knowledge. We present a shortest-path graph kernel (spgk) method that relies exclusively on the GO and its structure. In spgk, a gene product is represented by an induced subgraph of the GO, which consists of all the GO terms annotating it. Then a shortest-path graph kernel is used to compute the similarity between two graphs. In a comprehensive evaluation using a benchmark dataset, spgk compares favorably with other methods that depend on external resources. Compared with simUI, a method that is also intrinsic to GO, spgk achieves slightly better results on the benchmark dataset. Statistical tests show that the improvement is significant when the resolution and EC similarity correlation coefficient are used to measure the performance, but is insignificant when the Pfam similarity correlation coefficient is used. Spgk uses a graph kernel method in polynomial time to exploit the structure of the GO to calculate semantic similarity between gene products. It provides an alternative to both methods that use external resources and "intrinsic" methods with comparable performance.
Optimizing Mars Airplane Trajectory with the Application Navigation System
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Riley, Derek
2004-01-01
Planning complex missions requires a number of programs to be executed in concert. The Application Navigation System (ANS), developed in the NAS Division, can execute many interdependent programs in a distributed environment. We show that the ANS simplifies user effort and reduces time in optimization of the trajectory of a martian airplane. We use a software package, Cart3D, to evaluate trajectories and a shortest path algorithm to determine the optimal trajectory. ANS employs the GridScape to represent the dynamic state of the available computer resources. Then, ANS uses a scheduler to dynamically assign ready task to machine resources and the GridScape for tracking available resources and forecasting completion time of running tasks. We demonstrate system capability to schedule and run the trajectory optimization application with efficiency exceeding 60% on 64 processors.
Developing a hybrid dictionary-based bio-entity recognition technique.
Song, Min; Yu, Hwanjo; Han, Wook-Shin
2015-01-01
Bio-entity extraction is a pivotal component for information extraction from biomedical literature. The dictionary-based bio-entity extraction is the first generation of Named Entity Recognition (NER) techniques. This paper presents a hybrid dictionary-based bio-entity extraction technique. The approach expands the bio-entity dictionary by combining different data sources and improves the recall rate through the shortest path edit distance algorithm. In addition, the proposed technique adopts text mining techniques in the merging stage of similar entities such as Part of Speech (POS) expansion, stemming, and the exploitation of the contextual cues to further improve the performance. The experimental results show that the proposed technique achieves the best or at least equivalent performance among compared techniques, GENIA, MESH, UMLS, and combinations of these three resources in F-measure. The results imply that the performance of dictionary-based extraction techniques is largely influenced by information resources used to build the dictionary. In addition, the edit distance algorithm shows steady performance with three different dictionaries in precision whereas the context-only technique achieves a high-end performance with three difference dictionaries in recall.
Towards a hybrid energy efficient multi-tree-based optimized routing protocol for wireless networks.
Mitton, Nathalie; Razafindralambo, Tahiry; Simplot-Ryl, David; Stojmenovic, Ivan
2012-12-13
This paper considers the problem of designing power efficient routing with guaranteed delivery for sensor networks with unknown geographic locations. We propose HECTOR, a hybrid energy efficient tree-based optimized routing protocol, based on two sets of virtual coordinates. One set is based on rooted tree coordinates, and the other is based on hop distances toward several landmarks. In HECTOR, the node currently holding the packet forwards it to its neighbor that optimizes ratio of power cost over distance progress with landmark coordinates, among nodes that reduce landmark coordinates and do not increase distance in tree coordinates. If such a node does not exist, then forwarding is made to the neighbor that reduces tree-based distance only and optimizes power cost over tree distance progress ratio. We theoretically prove the packet delivery and propose an extension based on the use of multiple trees. Our simulations show the superiority of our algorithm over existing alternatives while guaranteeing delivery, and only up to 30% additional power compared to centralized shortest weighted path algorithm.
Towards a Hybrid Energy Efficient Multi-Tree-Based Optimized Routing Protocol for Wireless Networks
Mitton, Nathalie; Razafindralambo, Tahiry; Simplot-Ryl, David; Stojmenovic, Ivan
2012-01-01
This paper considers the problem of designing power efficient routing with guaranteed delivery for sensor networks with unknown geographic locations. We propose HECTOR, a hybrid energy efficient tree-based optimized routing protocol, based on two sets of virtual coordinates. One set is based on rooted tree coordinates, and the other is based on hop distances toward several landmarks. In HECTOR, the node currently holding the packet forwards it to its neighbor that optimizes ratio of power cost over distance progress with landmark coordinates, among nodes that reduce landmark coordinates and do not increase distance in tree coordinates. If such a node does not exist, then forwarding is made to the neighbor that reduces tree-based distance only and optimizes power cost over tree distance progress ratio. We theoretically prove the packet delivery and propose an extension based on the use of multiple trees. Our simulations show the superiority of our algorithm over existing alternatives while guaranteeing delivery, and only up to 30% additional power compared to centralized shortest weighted path algorithm. PMID:23443398
Developing a hybrid dictionary-based bio-entity recognition technique
2015-01-01
Background Bio-entity extraction is a pivotal component for information extraction from biomedical literature. The dictionary-based bio-entity extraction is the first generation of Named Entity Recognition (NER) techniques. Methods This paper presents a hybrid dictionary-based bio-entity extraction technique. The approach expands the bio-entity dictionary by combining different data sources and improves the recall rate through the shortest path edit distance algorithm. In addition, the proposed technique adopts text mining techniques in the merging stage of similar entities such as Part of Speech (POS) expansion, stemming, and the exploitation of the contextual cues to further improve the performance. Results The experimental results show that the proposed technique achieves the best or at least equivalent performance among compared techniques, GENIA, MESH, UMLS, and combinations of these three resources in F-measure. Conclusions The results imply that the performance of dictionary-based extraction techniques is largely influenced by information resources used to build the dictionary. In addition, the edit distance algorithm shows steady performance with three different dictionaries in precision whereas the context-only technique achieves a high-end performance with three difference dictionaries in recall. PMID:26043907
A Routing Protocol for Packet Radio Networks
1995-01-01
table of node K is a matrix containing, for each destination L and each neighbor of K (say M ), the distance to L ( NEOPRQ ) and the predecessor ( S OP Q...identifier T The distance to the destination ( N OP ) T The predecessor of the shortest path chosen toward L ( S OP ) T The successor ( U OP ) of the shortest...P and the predecessor is updated as S OP À ¾ S Q P . Thus, a node can determine whether or not an update received from M affects its other distance
Planification de trajectoires pour une flotte d'UAVs
NASA Astrophysics Data System (ADS)
Ait El Cadi, Abdessamad
In this thesis we address the problem of coordinating and controlling a fleet of Unmanned Aerial Vehicles (UAVs) during a surveillance mission in a dynamic context. The problem is vast and is related to several scientific domains. We have studied three important parts of this problem: • modeling the ground with all its constraints; • computing a shortest non-holonomic continuous path in a risky environment with a presence of obstacles; • planning a surveillance mission for a fleet of UAVs in a real context. While investigating the scientific literature related to these topics, we have detected deficiencies in the modeling of the ground and in the computation of the shortest continuous path, two critical aspects for the planning of a mission. So after the literature review, we have proposed answers to these two aspects and have applied our developments to the planning of a mission of a fleet of UAVs in a risky environment with the presence of obstacles. Obstacles could be natural like mountain or any non flyable zone. We have first modeled the ground as a directed graph. However, instead of using a classic mesh, we opted for an intelligent modeling that reduces the computing time on the graph without losing accuracy. The proposed model is based on the concept of visibility graph, and it also takes into account the obstacles, the danger areas and the constraint of non-holonomy of the UAVs- the kinematic constraint of the planes that imposes a maximum steering angle. The graph is then cleaned to keep only the minimum information needed for the calculation of trajectories. The generation of this graph possibly requires a lot of computation time, but it is done only once before the planning and will not affect the performance of trajectory calculations. We have also developed another simpler graph that does not take into account the constraint of non-holonomy. The advantage of this second graph is that it reduces the computation time. However, it requires the use of a correction procedure to make the resulting trajectory non-holonomic. This correction is possible within the context of our missions, but not for all types of autonomous vehicles. Once the directed graph is generated, we propose the use of a procedure for calculating the shortest continuous non-holonomic path in a risky environment with the presence of obstacles. The directed graph already incorporates all the constraints, which makes it possible to model the problem as a shortest path problem with resource a resource constraint (the resource here is the amount of permitted risk). The results are very satisfactory since the resulting routes are non-holonomic paths that meet all constraints. Moreover, the computing time is very short. For cases based on the simpler graph, we have created a procedure for correcting the trajectory to make it non-holonomic. All calculations of non-holonomy are based on Dubins curves (1957). We have finally applied our results to the planning of a mission of a fleet of UAVs in a risky environment with the presence of obstacles. For this purpose, we have developed a directed multi-graph where, for each pair of targets (points of departure and return of the mission included), we calculate a series of shorter trajectories with different limits of risk -- from the risk-free path to the riskiest path. We then use a Tabu Search with two tabu lists. Using these procedures, we have been able to produce routes for a fleet of UAVs that minimize the cost of the mission while respecting the limit of risk and avoiding obstacles. Tests are conducted on examples created on the basis of descriptions given by the Canadian Defense and, also on some instances of the CVRP (Capacitated Vehicle Routing Problem), those described by Christofides et Elion and those described by Christofides, Mingozzi et Toth. The results are of very satisfactory since all trajectories are non-holonomic and the improvement of the objective, when compared to a simple constructive method, achieves in some cases between 10 % and 43 %. We have even obtained an improvement of 69 %, but on a poor solution generated by a greedy algorithm. (Abstract shortened by UMI.)
Wang, Meng; Wu, Kai; Lu, Changhong; Kong, Xiangyin
2015-01-01
Prostate cancer is a type of cancer that occurs in the male prostate, a gland in the male reproductive system. Because prostate cancer cells may spread to other parts of the body and can influence human reproduction, understanding the mechanisms underlying this disease is critical for designing effective treatments. The identification of as many genes and chemicals related to prostate cancer as possible will enhance our understanding of this disease. In this study, we proposed a computational method to identify new candidate genes and chemicals based on currently known genes and chemicals related to prostate cancer by applying a shortest path approach in a hybrid network. The hybrid network was constructed according to information concerning chemical-chemical interactions, chemical-protein interactions, and protein-protein interactions. Many of the obtained genes and chemicals are associated with prostate cancer. PMID:26504486
Network Design for Reliability and Resilience to Attack
2014-03-01
attacker can destroy n arcs in the network SPNI Shortest-Path Network-Interdiction problem TSP Traveling Salesman Problem UB upper bound UKR Ukraine...elimination from the traveling salesman problem (TSP). Literature calls a walk that does not contain a cycle a path [19]. The objective function in...arc lengths as random variables with known probability distributions. The m-median problem seeks to design a network with minimum average travel cost
NASA Astrophysics Data System (ADS)
Yunia Mayasari, Ratih; Atmojo Kusmayadi, Tri
2018-04-01
Let G be a connected graph with vertex set V(G) and edge set E(G). For every pair of vertices u,v\\in V(G), the interval I[u, v] between u and v to be the collection of all vertices that belong to some shortest u ‑ v path. A vertex s\\in V(G) strongly resolves two vertices u and v if u belongs to a shortest v ‑ s path or v belongs to a shortest u ‑ s path. A vertex set S of G is a strong resolving set of G if every two distinct vertices of G are strongly resolved by some vertex of S. The strong metric basis of G is a strong resolving set with minimal cardinality. The strong metric dimension sdim(G) of a graph G is defined as the cardinality of strong metric basis. In this paper we determine the strong metric dimension of a generalized butterfly graph, starbarbell graph, and {C}mȯ {P}n graph. We obtain the strong metric dimension of generalized butterfly graph is sdim(BFn ) = 2n ‑ 2. The strong metric dimension of starbarbell graph is sdim(S{B}{m1,{m}2,\\ldots,{m}n})={\\sum }i=1n({m}i-1)-1. The strong metric dimension of {C}mȯ {P}n graph are sdim({C}mȯ {P}n)=2m-1 for m > 3 and n = 2, and sdim({C}mȯ {P}n)=2m-2 for m > 3 and n > 2.
Groupwise Image Registration Guided by a Dynamic Digraph of Images.
Tang, Zhenyu; Fan, Yong
2016-04-01
For groupwise image registration, graph theoretic methods have been adopted for discovering the manifold of images to be registered so that accurate registration of images to a group center image can be achieved by aligning similar images that are linked by the shortest graph paths. However, the image similarity measures adopted to build a graph of images in the extant methods are essentially pairwise measures, not effective for capturing the groupwise similarity among multiple images. To overcome this problem, we present a groupwise image similarity measure that is built on sparse coding for characterizing image similarity among all input images and build a directed graph (digraph) of images so that similar images are connected by the shortest paths of the digraph. Following the shortest paths determined according to the digraph, images are registered to a group center image in an iterative manner by decomposing a large anatomical deformation field required to register an image to the group center image into a series of small ones between similar images. During the iterative image registration, the digraph of images evolves dynamically at each iteration step to pursue an accurate estimation of the image manifold. Moreover, an adaptive dictionary strategy is adopted in the groupwise image similarity measure to ensure fast convergence of the iterative registration procedure. The proposed method has been validated based on both simulated and real brain images, and experiment results have demonstrated that our method was more effective for learning the manifold of input images and achieved higher registration accuracy than state-of-the-art groupwise image registration methods.
NASA Astrophysics Data System (ADS)
Iyer, Sridhar
2016-12-01
The ever-increasing global Internet traffic will inevitably lead to a serious upgrade of the current optical networks' capacity. The legacy infrastructure can be enhanced not only by increasing the capacity but also by adopting advance modulation formats, having increased spectral efficiency at higher data rate. In a transparent mixed-line-rate (MLR) optical network, different line rates, on different wavelengths, can coexist on the same fiber. Migration to data rates higher than 10 Gbps requires the implementation of phase modulation schemes. However, the co-existing on-off keying (OOK) channels cause critical physical layer impairments (PLIs) to the phase modulated channels, mainly due to cross-phase modulation (XPM), which in turn limits the network's performance. In order to mitigate this effect, a more sophisticated PLI-Routing and Wavelength Assignment (PLI-RWA) scheme needs to be adopted. In this paper, we investigate the critical impairment for each data rate and the way it affects the quality of transmission (QoT). In view of the aforementioned, we present a novel dynamic PLI-RWA algorithm for MLR optical networks. The proposed algorithm is compared through simulations with the shortest path and minimum hop routing schemes. The simulation results show that performance of the proposed algorithm is better than the existing schemes.
Yan, Jing; Li, Xiaolei; Luo, Xiaoyuan; Guan, Xinping
2017-01-01
Due to the lack of a physical line of defense, intrusion detection becomes one of the key issues in applications of underwater wireless sensor networks (UWSNs), especially when the confidentiality has prime importance. However, the resource-constrained property of UWSNs such as sparse deployment and energy constraint makes intrusion detection a challenging issue. This paper considers a virtual-lattice-based approach to the intrusion detection problem in UWSNs. Different from most existing works, the UWSNs consist of two kinds of nodes, i.e., sensor nodes (SNs), which cannot move autonomously, and actuator nodes (ANs), which can move autonomously according to the performance requirement. With the cooperation of SNs and ANs, the intruder detection probability is defined. Then, a virtual lattice-based monitor (VLM) algorithm is proposed to detect the intruder. In order to reduce the redundancy of communication links and improve detection probability, an optimal and coordinative lattice-based monitor patrolling (OCLMP) algorithm is further provided for UWSNs, wherein an equal price search strategy is given for ANs to find the shortest patrolling path. Under VLM and OCLMP algorithms, the detection probabilities are calculated, while the topology connectivity can be guaranteed. Finally, simulation results are presented to show that the proposed method in this paper can improve the detection accuracy and save the energy consumption compared with the conventional methods. PMID:28531127
Zhang, Jian; Suo, Yan; Liu, Min; Xu, Xun
2018-06-01
Proliferative diabetic retinopathy (PDR) is one of the most common complications of diabetes and can lead to blindness. Proteomic studies have provided insight into the pathogenesis of PDR and a series of PDR-related genes has been identified but are far from fully characterized because the experimental methods are expensive and time consuming. In our previous study, we successfully identified 35 candidate PDR-related genes through the shortest-path algorithm. In the current study, we developed a computational method using the random walk with restart (RWR) algorithm and the protein-protein interaction (PPI) network to identify potential PDR-related genes. After some possible genes were obtained by the RWR algorithm, a three-stage filtration strategy, which includes the permutation test, interaction test and enrichment test, was applied to exclude potential false positives caused by the structure of PPI network, the poor interaction strength, and the limited similarity on gene ontology (GO) terms and biological pathways. As a result, 36 candidate genes were discovered by the method which was different from the 35 genes reported in our previous study. A literature review showed that 21 of these 36 genes are supported by previous experiments. These findings suggest the robustness and complementary effects of both our efforts using different computational methods, thus providing an alternative method to study PDR pathogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.
Minimum-Risk Path Finding by an Adaptive Amoebal Network
NASA Astrophysics Data System (ADS)
Nakagaki, Toshiyuki; Iima, Makoto; Ueda, Tetsuo; Nishiura, Yasumasa; Saigusa, Tetsu; Tero, Atsushi; Kobayashi, Ryo; Showalter, Kenneth
2007-08-01
When two food sources are presented to the slime mold Physarum in the dark, a thick tube for absorbing nutrients is formed that connects the food sources through the shortest route. When the light-avoiding organism is partially illuminated, however, the tube connecting the food sources follows a different route. Defining risk as the experimentally measurable rate of light-avoiding movement, the minimum-risk path is exhibited by the organism, determined by integrating along the path. A model for an adaptive-tube network is presented that is in good agreement with the experimental observations.
On the Eikonal equation in the pedestrian flow problem
NASA Astrophysics Data System (ADS)
Felcman, J.; Kubera, P.
2017-07-01
We consider the Pedestrian Flow Equations (PFEs) as the coupled system formed by the Eikonal equation and the first order hyperbolic system with the source term. The hyperbolic system consists of the continuity equation and momentum equation of fluid dynamics. Specifying the social and pressure forces in the momentum equation we come to the assumption that each pedestrian is trying to move in a desired direction (e.g. to the exit in the panic situation) with a desired velocity, where his velocity and the direction of movement depend on the density of pedestrians in his neighborhood. In [1] we used the model, where the desired direction of movement is given by the solution of the Eikonal equation (more precisely by the gradient of the solution). Here we avoid the solution of the Eikonal equation, which is the novelty of the paper. Based on the fact that the solution of the Eikonal equation has the meaning of the shortest time to reach the exit, we define explicitly such a function in the framework of the Dijkstra's algorithm for the shortest path in the graph. This is done at the discrete level of the solution. As the graph we use the underlying triangulation, where the norm of each edge is density depending and has the dimension of the time. The numerical examples of the solution of the PFEs with and without the solution of the Eikonal equation are presented.
Yan, Fei; Christmas, William; Kittler, Josef
2008-10-01
In this paper, we propose a multilayered data association scheme with graph-theoretic formulation for tracking multiple objects that undergo switching dynamics in clutter. The proposed scheme takes as input object candidates detected in each frame. At the object candidate level, "tracklets'' are "grown'' from sets of candidates that have high probabilities of containing only true positives. At the tracklet level, a directed and weighted graph is constructed, where each node is a tracklet, and the edge weight between two nodes is defined according to the "compatibility'' of the two tracklets. The association problem is then formulated as an all-pairs shortest path (APSP) problem in this graph. Finally, at the path level, by analyzing the APSPs, all object trajectories are identified, and track initiation and track termination are automatically dealt with. By exploiting a special topological property of the graph, we have also developed a more efficient APSP algorithm than the general-purpose ones. The proposed data association scheme is applied to tennis sequences to track tennis balls. Experiments show that it works well on sequences where other data association methods perform poorly or fail completely.
Time lagged ordinal partition networks for capturing dynamics of continuous dynamical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCullough, Michael; Iu, Herbert Ho-Ching; Small, Michael
2015-05-15
We investigate a generalised version of the recently proposed ordinal partition time series to network transformation algorithm. First, we introduce a fixed time lag for the elements of each partition that is selected using techniques from traditional time delay embedding. The resulting partitions define regions in the embedding phase space that are mapped to nodes in the network space. Edges are allocated between nodes based on temporal succession thus creating a Markov chain representation of the time series. We then apply this new transformation algorithm to time series generated by the Rössler system and find that periodic dynamics translate tomore » ring structures whereas chaotic time series translate to band or tube-like structures—thereby indicating that our algorithm generates networks whose structure is sensitive to system dynamics. Furthermore, we demonstrate that simple network measures including the mean out degree and variance of out degrees can track changes in the dynamical behaviour in a manner comparable to the largest Lyapunov exponent. We also apply the same analysis to experimental time series generated by a diode resonator circuit and show that the network size, mean shortest path length, and network diameter are highly sensitive to the interior crisis captured in this particular data set.« less
Models for IP/MPLS routing performance: convergence, fast reroute, and QoS impact
NASA Astrophysics Data System (ADS)
Choudhury, Gagan L.
2004-09-01
We show how to model the black-holing and looping of traffic during an Interior Gateway Protocol (IGP) convergence event at an IP network and how to significantly improve both the convergence time and packet loss duration through IGP parameter tuning and algorithmic improvement. We also explore some congestion avoidance and congestion control algorithms that can significantly improve stability of networks in the face of occasional massive control message storms. Specifically we show the positive impacts of prioritizing Hello and Acknowledgement packets and slowing down LSA generation and retransmission generation on detecting congestion in the network. For some types of video, voice signaling and circuit emulation applications it is necessary to reduce traffic loss durations following a convergence event to below 100 ms and we explore that using Fast Reroute algorithms based on Multiprotocol Label Switching Traffic Engineering (MPLS-TE) that effectively bypasses IGP convergence. We explore the scalability of primary and backup MPLS-TE tunnels where MPLS-TE domain is in the backbone-only or edge-to-edge. We also show how much extra backbone resource is needed to support Fast Reroute and how can that be reduced by taking advantage of Constrained Shortest Path (CSPF) routing of MPLS-TE and by reserving less than 100% of primary tunnel bandwidth during Fast Reroute.
Firefly as a novel swarm intelligence variable selection method in spectroscopy.
Goodarzi, Mohammad; dos Santos Coelho, Leandro
2014-12-10
A critical step in multivariate calibration is wavelength selection, which is used to build models with better prediction performance when applied to spectral data. Up to now, many feature selection techniques have been developed. Among all different types of feature selection techniques, those based on swarm intelligence optimization methodologies are more interesting since they are usually simulated based on animal and insect life behavior to, e.g., find the shortest path between a food source and their nests. This decision is made by a crowd, leading to a more robust model with less falling in local minima during the optimization cycle. This paper represents a novel feature selection approach to the selection of spectroscopic data, leading to more robust calibration models. The performance of the firefly algorithm, a swarm intelligence paradigm, was evaluated and compared with genetic algorithm and particle swarm optimization. All three techniques were coupled with partial least squares (PLS) and applied to three spectroscopic data sets. They demonstrate improved prediction results in comparison to when only a PLS model was built using all wavelengths. Results show that firefly algorithm as a novel swarm paradigm leads to a lower number of selected wavelengths while the prediction performance of built PLS stays the same. Copyright © 2014. Published by Elsevier B.V.
Li, Min; Li, Qi; Ganegoda, Gamage Upeksha; Wang, JianXin; Wu, FangXiang; Pan, Yi
2014-11-01
Identification of disease-causing genes among a large number of candidates is a fundamental challenge in human disease studies. However, it is still time-consuming and laborious to determine the real disease-causing genes by biological experiments. With the advances of the high-throughput techniques, a large number of protein-protein interactions have been produced. Therefore, to address this issue, several methods based on protein interaction network have been proposed. In this paper, we propose a shortest path-based algorithm, named SPranker, to prioritize disease-causing genes in protein interaction networks. Considering the fact that diseases with similar phenotypes are generally caused by functionally related genes, we further propose an improved algorithm SPGOranker by integrating the semantic similarity of GO annotations. SPGOranker not only considers the topological similarity between protein pairs in a protein interaction network but also takes their functional similarity into account. The proposed algorithms SPranker and SPGOranker were applied to 1598 known orphan disease-causing genes from 172 orphan diseases and compared with three state-of-the-art approaches, ICN, VS and RWR. The experimental results show that SPranker and SPGOranker outperform ICN, VS, and RWR for the prioritization of orphan disease-causing genes. Importantly, for the case study of severe combined immunodeficiency, SPranker and SPGOranker predict several novel causal genes.
Modeling Physarum space exploration using memristors
NASA Astrophysics Data System (ADS)
Ntinas, V.; Vourkas, I.; Sirakoulis, G. Ch; Adamatzky, A. I.
2017-05-01
Slime mold Physarum polycephalum optimizes its foraging behaviour by minimizing the distances between the sources of nutrients it spans. When two sources of nutrients are present, the slime mold connects the sources, with its protoplasmic tubes, along the shortest path. We present a two-dimensional mesh grid memristor based model as an approach to emulate Physarum’s foraging strategy, which includes space exploration and reinforcement of the optimally formed interconnection network in the presence of multiple aliment sources. The proposed algorithmic approach utilizes memristors and LC contours and is tested in two of the most popular computational challenges for Physarum, namely maze and transportation networks. Furthermore, the presented model is enriched with the notion of noise presence, which positively contributes to a collective behavior and enables us to move from deterministic to robust results. Consequently, the corresponding simulation results manage to reproduce, in a much better qualitative way, the expected transportation networks.
Zhang, Zili; Gao, Chao; Lu, Yuxiao; Liu, Yuxin; Liang, Mingxin
2016-01-01
Bi-objective Traveling Salesman Problem (bTSP) is an important field in the operations research, its solutions can be widely applied in the real world. Many researches of Multi-objective Ant Colony Optimization (MOACOs) have been proposed to solve bTSPs. However, most of MOACOs suffer premature convergence. This paper proposes an optimization strategy for MOACOs by optimizing the initialization of pheromone matrix with the prior knowledge of Physarum-inspired Mathematical Model (PMM). PMM can find the shortest route between two nodes based on the positive feedback mechanism. The optimized algorithms, named as iPM-MOACOs, can enhance the pheromone in the short paths and promote the search ability of ants. A series of experiments are conducted and experimental results show that the proposed strategy can achieve a better compromise solution than the original MOACOs for solving bTSPs. PMID:26751562
Zhang, Zili; Gao, Chao; Lu, Yuxiao; Liu, Yuxin; Liang, Mingxin
2016-01-01
Bi-objective Traveling Salesman Problem (bTSP) is an important field in the operations research, its solutions can be widely applied in the real world. Many researches of Multi-objective Ant Colony Optimization (MOACOs) have been proposed to solve bTSPs. However, most of MOACOs suffer premature convergence. This paper proposes an optimization strategy for MOACOs by optimizing the initialization of pheromone matrix with the prior knowledge of Physarum-inspired Mathematical Model (PMM). PMM can find the shortest route between two nodes based on the positive feedback mechanism. The optimized algorithms, named as iPM-MOACOs, can enhance the pheromone in the short paths and promote the search ability of ants. A series of experiments are conducted and experimental results show that the proposed strategy can achieve a better compromise solution than the original MOACOs for solving bTSPs.
Principal curve detection in complicated graph images
NASA Astrophysics Data System (ADS)
Liu, Yuncai; Huang, Thomas S.
2001-09-01
Finding principal curves in an image is an important low level processing in computer vision and pattern recognition. Principal curves are those curves in an image that represent boundaries or contours of objects of interest. In general, a principal curve should be smooth with certain length constraint and allow either smooth or sharp turning. In this paper, we present a method that can efficiently detect principal curves in complicated map images. For a given feature image, obtained from edge detection of an intensity image or thinning operation of a pictorial map image, the feature image is first converted to a graph representation. In graph image domain, the operation of principal curve detection is performed to identify useful image features. The shortest path and directional deviation schemes are used in our algorithm os principal verve detection, which is proven to be very efficient working with real graph images.
Distribution of shortest cycle lengths in random networks
NASA Astrophysics Data System (ADS)
Bonneau, Haggai; Hassid, Aviv; Biham, Ofer; Kühn, Reimer; Katzav, Eytan
2017-12-01
We present analytical results for the distribution of shortest cycle lengths (DSCL) in random networks. The approach is based on the relation between the DSCL and the distribution of shortest path lengths (DSPL). We apply this approach to configuration model networks, for which analytical results for the DSPL were obtained before. We first calculate the fraction of nodes in the network which reside on at least one cycle. Conditioning on being on a cycle, we provide the DSCL over ensembles of configuration model networks with degree distributions which follow a Poisson distribution (Erdős-Rényi network), degenerate distribution (random regular graph), and a power-law distribution (scale-free network). The mean and variance of the DSCL are calculated. The analytical results are found to be in very good agreement with the results of computer simulations.
Tang, Jiqiang; Yang, Wu; Zhu, Lingyun; Wang, Dong; Feng, Xin
2017-04-26
In recent years, Wireless Sensor Networks with a Mobile Sink (WSN-MS) have been an active research topic due to the widespread use of mobile devices. However, how to get the balance between data delivery latency and energy consumption becomes a key issue of WSN-MS. In this paper, we study the clustering approach by jointly considering the Route planning for mobile sink and Clustering Problem (RCP) for static sensor nodes. We solve the RCP problem by using the minimum travel route clustering approach, which applies the minimum travel route of the mobile sink to guide the clustering process. We formulate the RCP problem as an Integer Non-Linear Programming (INLP) problem to shorten the travel route of the mobile sink under three constraints: the communication hops constraint, the travel route constraint and the loop avoidance constraint. We then propose an Imprecise Induction Algorithm (IIA) based on the property that the solution with a small hop count is more feasible than that with a large hop count. The IIA algorithm includes three processes: initializing travel route planning with a Traveling Salesman Problem (TSP) algorithm, transforming the cluster head to a cluster member and transforming the cluster member to a cluster head. Extensive experimental results show that the IIA algorithm could automatically adjust cluster heads according to the maximum hops parameter and plan a shorter travel route for the mobile sink. Compared with the Shortest Path Tree-based Data-Gathering Algorithm (SPT-DGA), the IIA algorithm has the characteristics of shorter route length, smaller cluster head count and faster convergence rate.
NASA Astrophysics Data System (ADS)
Reynolds, A. M.
2010-06-01
Here, we report on numerical simulations showing that chemotaxis will take a body through a maze via the shortest possible route to the source of a chemoattractant. This is a robust finding that does not depend on the geometrical makeup of the maze. The predictions are supported by recent experimental studies which have shown that by moving down gradients in pH , a droplet of organic solvent can find the shortest of multiple possible paths through a maze to an acid-soaked exit. They are also consistent with numerical and experimental evidence that plant-parasitic nematodes take the shortest route through the labyrinth of air-filled pores within soil to preferred host plants that produce volatile chemoattractants. The predictions support the view that maze-solving is a robust property of chemotaxis and is not specific to particular kinds of maze or to the fractal structure of air-filled channels within soils.
The application of muscle wrapping to voxel-based finite element models of skeletal structures.
Liu, Jia; Shi, Junfen; Fitton, Laura C; Phillips, Roger; O'Higgins, Paul; Fagan, Michael J
2012-01-01
Finite elements analysis (FEA) is now used routinely to interpret skeletal form in terms of function in both medical and biological applications. To produce accurate predictions from FEA models, it is essential that the loading due to muscle action is applied in a physiologically reasonable manner. However, it is common for muscle forces to be represented as simple force vectors applied at a few nodes on the model's surface. It is certainly rare for any wrapping of the muscles to be considered, and yet wrapping not only alters the directions of muscle forces but also applies an additional compressive load from the muscle belly directly to the underlying bone surface. This paper presents a method of applying muscle wrapping to high-resolution voxel-based finite element (FE) models. Such voxel-based models have a number of advantages over standard (geometry-based) FE models, but the increased resolution with which the load can be distributed over a model's surface is particularly advantageous, reflecting more closely how muscle fibre attachments are distributed. In this paper, the development, application and validation of a muscle wrapping method is illustrated using a simple cylinder. The algorithm: (1) calculates the shortest path over the surface of a bone given the points of origin and ultimate attachment of the muscle fibres; (2) fits a Non-Uniform Rational B-Spline (NURBS) curve from the shortest path and calculates its tangent, normal vectors and curvatures so that normal and tangential components of the muscle force can be calculated and applied along the fibre; and (3) automatically distributes the loads between adjacent fibres to cover the bone surface with a fully distributed muscle force, as is observed in vivo. Finally, we present a practical application of this approach to the wrapping of the temporalis muscle around the cranium of a macaque skull.
NASA Astrophysics Data System (ADS)
Bai, Chao-Ying; Huang, Guo-Jiao; Li, Xiao-Ling; Zhou, Bing; Greenhalgh, Stewart
2013-11-01
To overcome the deficiency of some current grid-/cell-based ray tracing algorithms, which are only able to handle first arrivals or primary reflections (or conversions) in anisotropic media, we have extended the functionality of the multistage irregular shortest-path method to 2-D/3-D tilted transversely isotropic (TTI) media. The new approach is able to track multiple transmitted/reflected/converted arrivals composed of any kind of combinations of transmissions, reflections and mode conversions. The basic principle is that the seven parameters (five elastic parameters plus two polar angles defining the tilt of the symmetry axis) of the TTI media are sampled at primary nodes, and the group velocity values at secondary nodes are obtained by tri-linear interpolation of the primary nodes across each cell, from which the group velocities of the three wave modes (qP, qSV and qSH) are calculated. Finally, we conduct grid-/cell-based wave front expansion to trace multiple transmitted/reflected/converted arrivals from one region to the next. The results of calculations in uniform anisotropic media indicate that the numerical results agree with the analytical solutions except in directions of SV-wave triplications, at which only the lowest velocity value is selected at the singularity points by the multistage irregular shortest-path anisotropic ray tracing method. This verifies the accuracy of the methodology. Several simulation results show that the new method is able to efficiently and accurately approximate situations involving continuous velocity variations and undulating discontinuities, and that it is suitable for any combination of multiple transmitted/reflected/converted arrival tracking in TTI media of arbitrary strength and tilt. Crosshole synthetic traveltime tomographic tests have been performed, which highlight the importance of using such code when the medium is distinctly anisotropic.
Adamatzky, Andrew I
2014-01-01
A cellular slime mould Physarum polycephalum is a monstrously large single cell visible by an unaided eye. The slime mold explores space in parallel, is guided by gradients of chemoattractants, and propagates toward sources of nutrients along nearly shortest paths. The slime mold is a living prototype of amorphous biological computers and robotic devices capable of solving a range of tasks of graph optimization and computational geometry. When presented with a distribution of nutrients, the slime mold spans the sources of nutrients with a network of protoplasmic tubes. This protoplasmic network matches a network of major transport routes of a country when configuration of major urban areas is represented by nutrients. A transport route connecting two cities should ideally be a shortest path, and this is usually the case in computer simulations and laboratory experiments with flat substrates. What searching strategies does the slime mold adopt when exploring 3-D terrains? How are optimal and transport routes approximated by protoplasmic tubes? Do the routes built by the slime mold on 3-D terrain match real-world transport routes? To answer these questions, we conducted pioneer laboratory experiments with Nylon terrains of USA and Germany. We used the slime mold to approximate route 20, the longest road in USA, and autobahn 7, the longest national motorway in Europe. We found that slime mold builds longer transport routes on 3-D terrains, compared to flat substrates yet sufficiently approximates man-made transport routes studied. We demonstrate that nutrients placed in destination sites affect performance of slime mold, and show how the mold navigates around elevations. In cellular automaton models of the slime mold, we have shown variability of the protoplasmic routes might depends on physiological states of the slime mold. Results presented will contribute toward development of novel algorithms for sensorial fusion, information processing, and decision making, and will provide inspirations in design of bioinspired amorphous robotic devices.
Biologically inspired EM image alignment and neural reconstruction.
Knowles-Barley, Seymour; Butcher, Nancy J; Meinertzhagen, Ian A; Armstrong, J Douglas
2011-08-15
Three-dimensional reconstruction of consecutive serial-section transmission electron microscopy (ssTEM) images of neural tissue currently requires many hours of manual tracing and annotation. Several computational techniques have already been applied to ssTEM images to facilitate 3D reconstruction and ease this burden. Here, we present an alternative computational approach for ssTEM image analysis. We have used biologically inspired receptive fields as a basis for a ridge detection algorithm to identify cell membranes, synaptic contacts and mitochondria. Detected line segments are used to improve alignment between consecutive images and we have joined small segments of membrane into cell surfaces using a dynamic programming algorithm similar to the Needleman-Wunsch and Smith-Waterman DNA sequence alignment procedures. A shortest path-based approach has been used to close edges and achieve image segmentation. Partial reconstructions were automatically generated and used as a basis for semi-automatic reconstruction of neural tissue. The accuracy of partial reconstructions was evaluated and 96% of membrane could be identified at the cost of 13% false positive detections. An open-source reference implementation is available in the Supplementary information. seymour.kb@ed.ac.uk; douglas.armstrong@ed.ac.uk Supplementary data are available at Bioinformatics online.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagberg, Aric; Swart, Pieter; S Chult, Daniel
NetworkX is a Python language package for exploration and analysis of networks and network algorithms. The core package provides data structures for representing many types of networks, or graphs, including simple graphs, directed graphs, and graphs with parallel edges and self loops. The nodes in NetworkX graphs can be any (hashable) Python object and edges can contain arbitrary data; this flexibility mades NetworkX ideal for representing networks found in many different scientific fields. In addition to the basic data structures many graph algorithms are implemented for calculating network properties and structure measures: shortest paths, betweenness centrality, clustering, and degree distributionmore » and many more. NetworkX can read and write various graph formats for eash exchange with existing data, and provides generators for many classic graphs and popular graph models, such as the Erdoes-Renyi, Small World, and Barabasi-Albert models, are included. The ease-of-use and flexibility of the Python programming language together with connection to the SciPy tools make NetworkX a powerful tool for scientific computations. We discuss some of our recent work studying synchronization of coupled oscillators to demonstrate how NetworkX enables research in the field of computational networks.« less
Current-flow efficiency of networks
NASA Astrophysics Data System (ADS)
Liu, Kai; Yan, Xiaoyong
2018-02-01
Many real-world networks, from infrastructure networks to social and communication networks, can be formulated as flow networks. How to realistically measure the transport efficiency of these networks is of fundamental importance. The shortest-path-based efficiency measurement has limitations, as it assumes that flow travels only along those shortest paths. Here, we propose a new metric named current-flow efficiency, in which we calculate the average reciprocal effective resistance between all pairs of nodes in the network. This metric takes the multipath effect into consideration and is more suitable for measuring the efficiency of many real-world flow equilibrium networks. Moreover, this metric can handle a disconnected graph and can thus be used to identify critical nodes and edges from the efficiency-loss perspective. We further analyze how the topological structure affects the current-flow efficiency of networks based on some model and real-world networks. Our results enable a better understanding of flow networks and shed light on the design and improvement of such networks with higher transport efficiency.
Application of cellular automatons and ant algorithms in avionics
NASA Astrophysics Data System (ADS)
Kuznetsov, A. V.; Selvesiuk, N. I.; Platoshin, G. A.; Semenova, E. V.
2018-03-01
The paper considers two algorithms for searching quasi-optimal solutions of discrete optimization problems with regard to the tasks of avionics placing. The first one solves the problem of optimal placement of devices by installation locations, the second one is for the problem of finding the shortest route between devices. Solutions are constructed using a cellular automaton and the ant colony algorithm.
jCompoundMapper: An open source Java library and command-line tool for chemical fingerprints
2011-01-01
Background The decomposition of a chemical graph is a convenient approach to encode information of the corresponding organic compound. While several commercial toolkits exist to encode molecules as so-called fingerprints, only a few open source implementations are available. The aim of this work is to introduce a library for exactly defined molecular decompositions, with a strong focus on the application of these features in machine learning and data mining. It provides several options such as search depth, distance cut-offs, atom- and pharmacophore typing. Furthermore, it provides the functionality to combine, to compare, or to export the fingerprints into several formats. Results We provide a Java 1.6 library for the decomposition of chemical graphs based on the open source Chemistry Development Kit toolkit. We reimplemented popular fingerprinting algorithms such as depth-first search fingerprints, extended connectivity fingerprints, autocorrelation fingerprints (e.g. CATS2D), radial fingerprints (e.g. Molprint2D), geometrical Molprint, atom pairs, and pharmacophore fingerprints. We also implemented custom fingerprints such as the all-shortest path fingerprint that only includes the subset of shortest paths from the full set of paths of the depth-first search fingerprint. As an application of jCompoundMapper, we provide a command-line executable binary. We measured the conversion speed and number of features for each encoding and described the composition of the features in detail. The quality of the encodings was tested using the default parametrizations in combination with a support vector machine on the Sutherland QSAR data sets. Additionally, we benchmarked the fingerprint encodings on the large-scale Ames toxicity benchmark using a large-scale linear support vector machine. The results were promising and could often compete with literature results. On the large Ames benchmark, for example, we obtained an AUC ROC performance of 0.87 with a reimplementation of the extended connectivity fingerprint. This result is comparable to the performance achieved by a non-linear support vector machine using state-of-the-art descriptors. On the Sutherland QSAR data set, the best fingerprint encodings showed a comparable or better performance on 5 of the 8 benchmarks when compared against the results of the best descriptors published in the paper of Sutherland et al. Conclusions jCompoundMapper is a library for chemical graph fingerprints with several tweaking possibilities and exporting options for open source data mining toolkits. The quality of the data mining results, the conversion speed, the LPGL software license, the command-line interface, and the exporters should be useful for many applications in cheminformatics like benchmarks against literature methods, comparison of data mining algorithms, similarity searching, and similarity-based data mining. PMID:21219648
A multilevel probabilistic beam search algorithm for the shortest common supersequence problem.
Gallardo, José E
2012-01-01
The shortest common supersequence problem is a classical problem with many applications in different fields such as planning, Artificial Intelligence and especially in Bioinformatics. Due to its NP-hardness, we can not expect to efficiently solve this problem using conventional exact techniques. This paper presents a heuristic to tackle this problem based on the use at different levels of a probabilistic variant of a classical heuristic known as Beam Search. The proposed algorithm is empirically analysed and compared to current approaches in the literature. Experiments show that it provides better quality solutions in a reasonable time for medium and large instances of the problem. For very large instances, our heuristic also provides better solutions, but required execution times may increase considerably.
An industrial robot singular trajectories planning based on graphs and neural networks
NASA Astrophysics Data System (ADS)
Łęgowski, Adrian; Niezabitowski, Michał
2016-06-01
Singular trajectories are rarely used because of issues during realization. A method of planning trajectories for given set of points in task space with use of graphs and neural networks is presented. In every desired point the inverse kinematics problem is solved in order to derive all possible solutions. A graph of solutions is made. The shortest path is determined to define required nodes in joint space. Neural networks are used to define the path between these nodes.
Fayyaz S, S Kiavash; Liu, Xiaoyue Cathy; Zhang, Guohui
2017-01-01
The social functions of urbanized areas are highly dependent on and supported by the convenient access to public transportation systems, particularly for the less privileged populations who have restrained auto ownership. To accurately evaluate the public transit accessibility, it is critical to capture the spatiotemporal variation of transit services. This can be achieved by measuring the shortest paths or minimum travel time between origin-destination (OD) pairs at each time-of-day (e.g. every minute). In recent years, General Transit Feed Specification (GTFS) data has been gaining popularity for between-station travel time estimation due to its interoperability in spatiotemporal analytics. Many software packages, such as ArcGIS, have developed toolbox to enable the travel time estimation with GTFS. They perform reasonably well in calculating travel time between OD pairs for a specific time-of-day (e.g. 8:00 AM), yet can become computational inefficient and unpractical with the increase of data dimensions (e.g. all times-of-day and large network). In this paper, we introduce a new algorithm that is computationally elegant and mathematically efficient to address this issue. An open-source toolbox written in C++ is developed to implement the algorithm. We implemented the algorithm on City of St. George's transit network to showcase the accessibility analysis enabled by the toolbox. The experimental evidence shows significant reduction on computational time. The proposed algorithm and toolbox presented is easily transferable to other transit networks to allow transit agencies and researchers perform high resolution transit performance analysis.
Fayyaz S., S. Kiavash; Zhang, Guohui
2017-01-01
The social functions of urbanized areas are highly dependent on and supported by the convenient access to public transportation systems, particularly for the less privileged populations who have restrained auto ownership. To accurately evaluate the public transit accessibility, it is critical to capture the spatiotemporal variation of transit services. This can be achieved by measuring the shortest paths or minimum travel time between origin-destination (OD) pairs at each time-of-day (e.g. every minute). In recent years, General Transit Feed Specification (GTFS) data has been gaining popularity for between-station travel time estimation due to its interoperability in spatiotemporal analytics. Many software packages, such as ArcGIS, have developed toolbox to enable the travel time estimation with GTFS. They perform reasonably well in calculating travel time between OD pairs for a specific time-of-day (e.g. 8:00 AM), yet can become computational inefficient and unpractical with the increase of data dimensions (e.g. all times-of-day and large network). In this paper, we introduce a new algorithm that is computationally elegant and mathematically efficient to address this issue. An open-source toolbox written in C++ is developed to implement the algorithm. We implemented the algorithm on City of St. George’s transit network to showcase the accessibility analysis enabled by the toolbox. The experimental evidence shows significant reduction on computational time. The proposed algorithm and toolbox presented is easily transferable to other transit networks to allow transit agencies and researchers perform high resolution transit performance analysis. PMID:28981544
Diedrich, Karl T; Roberts, John A; Schmidt, Richard H; Parker, Dennis L
2012-12-01
Attributes like length, diameter, and tortuosity of tubular anatomical structures such as blood vessels in medical images can be measured from centerlines. This study develops methods for comparing the accuracy and stability of centerline algorithms. Sample data included numeric phantoms simulating arteries and clinical human brain artery images. Centerlines were calculated from segmented phantoms and arteries with shortest paths centerline algorithms developed with different cost functions. The cost functions were the inverse modified distance from edge (MDFE(i) ), the center of mass (COM), the binary-thinned (BT)-MDFE(i) , and the BT-COM. The accuracy of the centerline algorithms were measured by the root mean square error from known centerlines of phantoms. The stability of the centerlines was measured by starting the centerline tree from different points and measuring the differences between trees. The accuracy and stability of the centerlines were visualized by overlaying centerlines on vasculature images. The BT-COM cost function centerline was the most stable in numeric phantoms and human brain arteries. The MDFE(i) -based centerline was most accurate in the numeric phantoms. The COM-based centerline correctly handled the "kissing" artery in 16 of 16 arteries in eight subjects whereas the BT-COM was correct in 10 of 16 and MDFE(i) was correct in 6 of 16. The COM-based centerline algorithm was selected for future use based on the ability to handle arteries where the initial binary vessels segmentation exhibits closed loops. The selected COM centerline was found to measure numerical phantoms to within 2% of the known length. Copyright © 2012 Wiley Periodicals, Inc.
Automation on the generation of genome-scale metabolic models.
Reyes, R; Gamermann, D; Montagud, A; Fuente, D; Triana, J; Urchueguía, J F; de Córdoba, P Fernández
2012-12-01
Nowadays, the reconstruction of genome-scale metabolic models is a nonautomatized and interactive process based on decision making. This lengthy process usually requires a full year of one person's work in order to satisfactory collect, analyze, and validate the list of all metabolic reactions present in a specific organism. In order to write this list, one manually has to go through a huge amount of genomic, metabolomic, and physiological information. Currently, there is no optimal algorithm that allows one to automatically go through all this information and generate the models taking into account probabilistic criteria of unicity and completeness that a biologist would consider. This work presents the automation of a methodology for the reconstruction of genome-scale metabolic models for any organism. The methodology that follows is the automatized version of the steps implemented manually for the reconstruction of the genome-scale metabolic model of a photosynthetic organism, Synechocystis sp. PCC6803. The steps for the reconstruction are implemented in a computational platform (COPABI) that generates the models from the probabilistic algorithms that have been developed. For validation of the developed algorithm robustness, the metabolic models of several organisms generated by the platform have been studied together with published models that have been manually curated. Network properties of the models, like connectivity and average shortest mean path of the different models, have been compared and analyzed.
Analytic solution of the lifeguard problem
NASA Astrophysics Data System (ADS)
De Luca, Roberto; Di Mauro, Marco; Naddeo, Adele
2018-03-01
A simple version due to Feynman of Fermat’s principle is analyzed. It deals with the path a lifeguard on a beach must follow to reach a drowning swimmer. The solution for the exact point, P(x, 0) , at the beach-sea boundary, corresponding to the fastest path to the swimmer, is worked out in detail and the analogy with light traveling at the air-water boundary is described. The results agree with the known conclusion that the shortest path does not coincide with the fastest one. The relevance of the subject for a basic physics course, at an advanced high school level, is pointed out.
Development of the PEBLebl Traveling Salesman Problem Computerized Testbed
ERIC Educational Resources Information Center
Mueller, Shane T.; Perelman, Brandon S.; Tan, Yin Yin; Thanasuan, Kejkaew
2015-01-01
The traveling salesman problem (TSP) is a combinatorial optimization problem that requires finding the shortest path through a set of points ("cities") that returns to the starting point. Because humans provide heuristic near-optimal solutions to Euclidean versions of the problem, it has sometimes been used to investigate human visual…
Minati, Ludovico; Cercignani, Mara; Chan, Dennis
2013-10-01
Graph theory-based analyses of brain network topology can be used to model the spatiotemporal correlations in neural activity detected through fMRI, and such approaches have wide-ranging potential, from detection of alterations in preclinical Alzheimer's disease through to command identification in brain-machine interfaces. However, due to prohibitive computational costs, graph-based analyses to date have principally focused on measuring connection density rather than mapping the topological architecture in full by exhaustive shortest-path determination. This paper outlines a solution to this problem through parallel implementation of Dijkstra's algorithm in programmable logic. The processor design is optimized for large, sparse graphs and provided in full as synthesizable VHDL code. An acceleration factor between 15 and 18 is obtained on a representative resting-state fMRI dataset, and maps of Euclidean path length reveal the anticipated heterogeneous cortical involvement in long-range integrative processing. These results enable high-resolution geodesic connectivity mapping for resting-state fMRI in patient populations and real-time geodesic mapping to support identification of imagined actions for fMRI-based brain-machine interfaces. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Study on Earthquake Emergency Evacuation Drill Trainer Development
NASA Astrophysics Data System (ADS)
ChangJiang, L.
2016-12-01
With the improvement of China's urbanization, to ensure people survive the earthquake needs scientific routine emergency evacuation drills. Drawing on cellular automaton, shortest path algorithm and collision avoidance, we designed a model of earthquake emergency evacuation drill for school scenes. Based on this model, we made simulation software for earthquake emergency evacuation drill. The software is able to perform the simulation of earthquake emergency evacuation drill by building spatial structural model and selecting the information of people's location grounds on actual conditions of constructions. Based on the data of simulation, we can operate drilling in the same building. RFID technology could be used here for drill data collection which read personal information and send it to the evacuation simulation software via WIFI. Then the simulation software would contrast simulative data with the information of actual evacuation process, such as evacuation time, evacuation path, congestion nodes and so on. In the end, it would provide a contrastive analysis report to report assessment result and optimum proposal. We hope the earthquake emergency evacuation drill software and trainer can provide overall process disposal concept for earthquake emergency evacuation drill in assembly occupancies. The trainer can make the earthquake emergency evacuation more orderly, efficient, reasonable and scientific to fulfill the increase in coping capacity of urban hazard.
Applications of Temporal Graph Metrics to Real-World Networks
NASA Astrophysics Data System (ADS)
Tang, John; Leontiadis, Ilias; Scellato, Salvatore; Nicosia, Vincenzo; Mascolo, Cecilia; Musolesi, Mirco; Latora, Vito
Real world networks exhibit rich temporal information: friends are added and removed over time in online social networks; the seasons dictate the predator-prey relationship in food webs; and the propagation of a virus depends on the network of human contacts throughout the day. Recent studies have demonstrated that static network analysis is perhaps unsuitable in the study of real world network since static paths ignore time order, which, in turn, results in static shortest paths overestimating available links and underestimating their true corresponding lengths. Temporal extensions to centrality and efficiency metrics based on temporal shortest paths have also been proposed. Firstly, we analyse the roles of key individuals of a corporate network ranked according to temporal centrality within the context of a bankruptcy scandal; secondly, we present how such temporal metrics can be used to study the robustness of temporal networks in presence of random errors and intelligent attacks; thirdly, we study containment schemes for mobile phone malware which can spread via short range radio, similar to biological viruses; finally, we study how the temporal network structure of human interactions can be exploited to effectively immunise human populations. Through these applications we demonstrate that temporal metrics provide a more accurate and effective analysis of real-world networks compared to their static counterparts.
NASA Astrophysics Data System (ADS)
Chen, Lei; Huang, Tao; Zhang, Yu-Hang; Jiang, Yang; Zheng, Mingyue; Cai, Yu-Dong
2016-07-01
Tumors are formed by the abnormal proliferation of somatic cells with disordered growth regulation under the influence of tumorigenic factors. Recently, the theory of “cancer drivers” connects tumor initiation with several specific mutations in the so-called cancer driver genes. According to the differentiation of four basic levels between tumor and adjacent normal tissues, the cancer drivers can be divided into the following: (1) Methylation level, (2) microRNA level, (3) mutation level, and (4) mRNA level. In this study, a computational method is proposed to identify novel lung adenocarcinoma drivers based on dysfunctional genes on the methylation, microRNA, mutation and mRNA levels. First, a large network was constructed using protein-protein interactions. Next, we searched all of the shortest paths connecting dysfunctional genes on different levels and extracted new candidate genes lying on these paths. Finally, the obtained candidate genes were filtered by a permutation test and an additional strict selection procedure involving a betweenness ratio and an interaction score. Several candidate genes remained, which are deemed to be related to two different levels of cancer. The analyses confirmed our assertions that some have the potential to contribute to the tumorigenesis process on multiple levels.
Tang, Jiqiang; Yang, Wu; Zhu, Lingyun; Wang, Dong; Feng, Xin
2017-01-01
In recent years, Wireless Sensor Networks with a Mobile Sink (WSN-MS) have been an active research topic due to the widespread use of mobile devices. However, how to get the balance between data delivery latency and energy consumption becomes a key issue of WSN-MS. In this paper, we study the clustering approach by jointly considering the Route planning for mobile sink and Clustering Problem (RCP) for static sensor nodes. We solve the RCP problem by using the minimum travel route clustering approach, which applies the minimum travel route of the mobile sink to guide the clustering process. We formulate the RCP problem as an Integer Non-Linear Programming (INLP) problem to shorten the travel route of the mobile sink under three constraints: the communication hops constraint, the travel route constraint and the loop avoidance constraint. We then propose an Imprecise Induction Algorithm (IIA) based on the property that the solution with a small hop count is more feasible than that with a large hop count. The IIA algorithm includes three processes: initializing travel route planning with a Traveling Salesman Problem (TSP) algorithm, transforming the cluster head to a cluster member and transforming the cluster member to a cluster head. Extensive experimental results show that the IIA algorithm could automatically adjust cluster heads according to the maximum hops parameter and plan a shorter travel route for the mobile sink. Compared with the Shortest Path Tree-based Data-Gathering Algorithm (SPT-DGA), the IIA algorithm has the characteristics of shorter route length, smaller cluster head count and faster convergence rate. PMID:28445434
NASA Astrophysics Data System (ADS)
Russell, Scott; Walker, David M.; Tordesillas, Antoinette
2016-03-01
A framework for the multiscale characterization of the coupled evolution of the solid grain fabric and its associated pore space in dense granular media is developed. In this framework, a pseudo-dual graph transformation of the grain contact network produces a graph of pores which can be readily interpreted as a pore space network. Survivability, a new metric succinctly summarizing the connectivity of the solid grain and pore space networks, measures material robustness. The size distribution and the connectivity of pores can be characterized quantitatively through various network properties. Assortativity characterizes the pore space with respect to the parity of the number of particles enclosing the pore. Multiscale clusters of odd parity versus even parity contact cycles alternate spatially along the shear band: these represent, respectively, local jamming and unjamming regions that continually switch positions in time throughout the failure regime. Optimal paths, established using network shortest paths in favor of large pores, provide clues on preferential paths for interstitial matter transport. In systems with higher rolling resistance at contacts, less tortuous shortest paths thread through larger pores in shear bands. Notably the structural patterns uncovered in the pore space suggest that more robust models of interstitial pore flow through deforming granular systems require a proper consideration of the evolution of in situ shear band and fracture patterns - not just globally, but also inside these localized failure zones.
NASA Astrophysics Data System (ADS)
Gunawan, D.; Marzuki, I.; Candra, A.
2018-03-01
Geographic Information Systems (GIS) plays an essential role in shipping service related application. By utilizing GIS, the courier can find the route to deliver goods for its customer. This research proposes a standalone mobile application to provide the shortest route to the destinations by utilizing geographic information systems with A-Star algorithm. This application is intended to be used although the area has no Internet network available. The developed application can handle several drop off points then calculates the shortest route that passes through all the drop off points. According to the conducted testing, the number of drop off points that can be calculated is influenced by the specification of the smartphone. More destinations require more smartphone resources and time to process.
Graph-based analysis of kinetics on multidimensional potential-energy surfaces.
Okushima, T; Niiyama, T; Ikeda, K S; Shimizu, Y
2009-09-01
The aim of this paper is twofold: one is to give a detailed description of an alternative graph-based analysis method, which we call saddle connectivity graph, for analyzing the global topography and the dynamical properties of many-dimensional potential-energy landscapes and the other is to give examples of applications of this method in the analysis of the kinetics of realistic systems. A Dijkstra-type shortest path algorithm is proposed to extract dynamically dominant transition pathways by kinetically defining transition costs. The applicability of this approach is first confirmed by an illustrative example of a low-dimensional random potential. We then show that a coarse-graining procedure tailored for saddle connectivity graphs can be used to obtain the kinetic properties of 13- and 38-atom Lennard-Jones clusters. The coarse-graining method not only reduces the complexity of the graphs, but also, with iterative use, reveals a self-similar hierarchical structure in these clusters. We also propose that the self-similarity is common to many-atom Lennard-Jones clusters.
Certification trails and software design for testability
NASA Technical Reports Server (NTRS)
Sullivan, Gregory F.; Wilson, Dwight S.; Masson, Gerald M.
1993-01-01
Design techniques which may be applied to make program testing easier were investigated. Methods for modifying a program to generate additional data which we refer to as a certification trail are presented. This additional data is designed to allow the program output to be checked more quickly and effectively. Certification trails were described primarily from a theoretical perspective. A comprehensive attempt to assess experimentally the performance and overall value of the certification trail method is reported. The method was applied to nine fundamental, well-known algorithms for the following problems: convex hull, sorting, huffman tree, shortest path, closest pair, line segment intersection, longest increasing subsequence, skyline, and voronoi diagram. Run-time performance data for each of these problems is given, and selected problems are described in more detail. Our results indicate that there are many cases in which certification trails allow for significantly faster overall program execution time than a 2-version programming approach, and also give further evidence of the breadth of applicability of this method.
Denoising and segmentation of retinal layers in optical coherence tomography images
NASA Astrophysics Data System (ADS)
Dash, Puspita; Sigappi, A. N.
2018-04-01
Optical Coherence Tomography (OCT) is an imaging technique used to localize the intra-retinal boundaries for the diagnostics of macular diseases. Due to speckle noise, low image contrast and accurate segmentation of individual retinal layers is difficult. Due to this, a method for retinal layer segmentation from OCT images is presented. This paper proposes a pre-processing filtering approach for denoising and segmentation methods for segmenting retinal layers OCT images using graph based segmentation technique. These techniques are used for segmentation of retinal layers for normal as well as patients with Diabetic Macular Edema. The algorithm based on gradient information and shortest path search is applied to optimize the edge selection. In this paper the four main layers of the retina are segmented namely Internal limiting membrane (ILM), Retinal pigment epithelium (RPE), Inner nuclear layer (INL) and Outer nuclear layer (ONL). The proposed method is applied on a database of OCT images of both ten normal and twenty DME affected patients and the results are found to be promising.
On Modeling and Analysis of MIMO Wireless Mesh Networks with Triangular Overlay Topology
Cao, Zhanmao; Wu, Chase Q.; Zhang, Yuanping; ...
2015-01-01
Multiple input multiple output (MIMO) wireless mesh networks (WMNs) aim to provide the last-mile broadband wireless access to the Internet. Along with the algorithmic development for WMNs, some fundamental mathematical problems also emerge in various aspects such as routing, scheduling, and channel assignment, all of which require an effective mathematical model and rigorous analysis of network properties. In this paper, we propose to employ Cartesian product of graphs (CPG) as a multichannel modeling approach and explore a set of unique properties of triangular WMNs. In each layer of CPG with a single channel, we design a node coordinate scheme thatmore » retains the symmetric property of triangular meshes and develop a function for the assignment of node identity numbers based on their coordinates. We also derive a necessary-sufficient condition for interference-free links and combinatorial formulas to determine the number of the shortest paths for channel realization in triangular WMNs.« less
A graphic method for identification of novel glioma related genes.
Gao, Yu-Fei; Shu, Yang; Yang, Lei; He, Yi-Chun; Li, Li-Peng; Huang, GuaHua; Li, Hai-Peng; Jiang, Yang
2014-01-01
Glioma, as the most common and lethal intracranial tumor, is a serious disease that causes many deaths every year. Good comprehension of the mechanism underlying this disease is very helpful to design effective treatments. However, up to now, the knowledge of this disease is still limited. It is an important step to understand the mechanism underlying this disease by uncovering its related genes. In this study, a graphic method was proposed to identify novel glioma related genes based on known glioma related genes. A weighted graph was constructed according to the protein-protein interaction information retrieved from STRING and the well-known shortest path algorithm was employed to discover novel genes. The following analysis suggests that some of them are related to the biological process of glioma, proving that our method was effective in identifying novel glioma related genes. We hope that the proposed method would be applied to study other diseases and provide useful information to medical workers, thereby designing effective treatments of different diseases.
On Finding Shortest Paths on Convex Polyhedra.
1985-05-01
versi ty of N laryhrid ml Collge :IJR-. M T) 207-12 COMPUTER SCIENCE TECHNICAL REPR SERWS .UE TE UNIVERSITY OF MARYLAND COLLEGE PARK, MARYLAND S 20742...planar layout can be physically interpreted as cutting the polyhedron along the ridges and unfolding the resulting object onto the plane. o% 4e.. ~16 A o
ERIC Educational Resources Information Center
Mellinger, Keith E.; Viglione, Raymond
2012-01-01
The Spider and the Fly puzzle, originally attributed to the great puzzler Henry Ernest Dudeney, and now over 100 years old, asks for the shortest path between two points on a particular square prism. We explore a generalization, find that the original solution only holds in certain cases, and suggest how this discovery might be used in the…
Relevancy in Problem Solving: A Computational Framework
ERIC Educational Resources Information Center
Kwisthout, Johan
2012-01-01
When computer scientists discuss the computational complexity of, for example, finding the shortest path from building A to building B in some town or city, their starting point typically is a formal description of the problem at hand, e.g., a graph with weights on every edge where buildings correspond to vertices, routes between buildings to…
2015-12-24
minimizing a weighted sum ofthe time and control effort needed to collect sensor data. This problem formulation is a modified traveling salesman ...29 2.5 The Shortest Path Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5.1 Traveling Salesman Problem ...48 3.3.1 Initial Guess by Traveling Salesman Problem Solution
Kéchichian, Razmig; Valette, Sébastien; Desvignes, Michel; Prost, Rémy
2013-11-01
We derive shortest-path constraints from graph models of structure adjacency relations and introduce them in a joint centroidal Voronoi image clustering and Graph Cut multiobject semiautomatic segmentation framework. The vicinity prior model thus defined is a piecewise-constant model incurring multiple levels of penalization capturing the spatial configuration of structures in multiobject segmentation. Qualitative and quantitative analyses and comparison with a Potts prior-based approach and our previous contribution on synthetic, simulated, and real medical images show that the vicinity prior allows for the correct segmentation of distinct structures having identical intensity profiles and improves the precision of segmentation boundary placement while being fairly robust to clustering resolution. The clustering approach we take to simplify images prior to segmentation strikes a good balance between boundary adaptivity and cluster compactness criteria furthermore allowing to control the trade-off. Compared with a direct application of segmentation on voxels, the clustering step improves the overall runtime and memory footprint of the segmentation process up to an order of magnitude without compromising the quality of the result.
NASA Astrophysics Data System (ADS)
Vatutin, Eduard
2017-12-01
The article deals with the problem of analysis of effectiveness of the heuristic methods with limited depth-first search techniques of decision obtaining in the test problem of getting the shortest path in graph. The article briefly describes the group of methods based on the limit of branches number of the combinatorial search tree and limit of analyzed subtree depth used to solve the problem. The methodology of comparing experimental data for the estimation of the quality of solutions based on the performing of computational experiments with samples of graphs with pseudo-random structure and selected vertices and arcs number using the BOINC platform is considered. It also shows description of obtained experimental results which allow to identify the areas of the preferable usage of selected subset of heuristic methods depending on the size of the problem and power of constraints. It is shown that the considered pair of methods is ineffective in the selected problem and significantly inferior to the quality of solutions that are provided by ant colony optimization method and its modification with combinatorial returns.
Distributive routing and congestion control in wireless multihop ad hoc communication networks
NASA Astrophysics Data System (ADS)
Glauche, Ingmar; Krause, Wolfram; Sollacher, Rudolf; Greiner, Martin
2004-10-01
Due to their inherent complexity, engineered wireless multihop ad hoc communication networks represent a technological challenge. Having no mastering infrastructure the nodes have to selforganize themselves in such a way that for example network connectivity, good data traffic performance and robustness are guaranteed. In this contribution the focus is on routing and congestion control. First, random data traffic along shortest path routes is studied by simulations as well as theoretical modeling. Measures of congestion like end-to-end time delay and relaxation times are given. A scaling law of the average time delay with respect to network size is revealed and found to depend on the underlying network topology. In the second step, a distributive routing and congestion control is proposed. Each node locally propagates its routing cost estimates and information about its congestion state to its neighbors, which then update their respective cost estimates. This allows for a flexible adaptation of end-to-end routes to the overall congestion state of the network. Compared to shortest-path routing, the critical network load is significantly increased.
Identification of literary movements using complex networks to represent texts
NASA Astrophysics Data System (ADS)
Amancio, Diego Raphael; Oliveira, Osvaldo N., Jr.; da Fontoura Costa, Luciano
2012-04-01
The use of statistical methods to analyze large databases of text has been useful in unveiling patterns of human behavior and establishing historical links between cultures and languages. In this study, we identified literary movements by treating books published from 1590 to 1922 as complex networks, whose metrics were analyzed with multivariate techniques to generate six clusters of books. The latter correspond to time periods coinciding with relevant literary movements over the last five centuries. The most important factor contributing to the distinctions between different literary styles was the average shortest path length, in particular the asymmetry of its distribution. Furthermore, over time there has emerged a trend toward larger average shortest path lengths, which is correlated with increased syntactic complexity, and a more uniform use of the words reflected in a smaller power-law coefficient for the distribution of word frequency. Changes in literary style were also found to be driven by opposition to earlier writing styles, as revealed by the analysis performed with geometrical concepts. The approaches adopted here are generic and may be extended to analyze a number of features of languages and cultures.
2015-11-11
reliable data message delivery. The basic mechanism of link-based routing schemes is the broadcasting of a control message (called a “ hello ”) to all of its...short- est path route to a destination by using the set of ex- changed hello messages between users of the network. With sufficiently high frequency... hello messages are suc- cessfully exchanged across a high error link, and since this link is of longer distance, it gets used to build a shortest path
2015-09-07
reliable data message delivery. The basic mechanism of link-based routing schemes is the broadcasting of a control message (called a “ hello ”) to all of its...short- est path route to a destination by using the set of ex- changed hello messages between users of the network. With sufficiently high frequency... hello messages are suc- cessfully exchanged across a high error link, and since this link is of longer distance, it gets used to build a shortest path
Experimental evaluation of the certification-trail method
NASA Technical Reports Server (NTRS)
Sullivan, Gregory F.; Wilson, Dwight S.; Masson, Gerald M.; Itoh, Mamoru; Smith, Warren W.; Kay, Jonathan S.
1993-01-01
Certification trails are a recently introduced and promising approach to fault-detection and fault-tolerance. A comprehensive attempt to assess experimentally the performance and overall value of the method is reported. The method is applied to algorithms for the following problems: huffman tree, shortest path, minimum spanning tree, sorting, and convex hull. Our results reveal many cases in which an approach using certification-trails allows for significantly faster overall program execution time than a basic time redundancy-approach. Algorithms for the answer-validation problem for abstract data types were also examined. This kind of problem provides a basis for applying the certification-trail method to wide classes of algorithms. Answer-validation solutions for two types of priority queues were implemented and analyzed. In both cases, the algorithm which performs answer-validation is substantially faster than the original algorithm for computing the answer. Next, a probabilistic model and analysis which enables comparison between the certification-trail method and the time-redundancy approach were presented. The analysis reveals some substantial and sometimes surprising advantages for ther certification-trail method. Finally, the work our group performed on the design and implementation of fault injection testbeds for experimental analysis of the certification trail technique is discussed. This work employs two distinct methodologies, software fault injection (modification of instruction, data, and stack segments of programs on a Sun Sparcstation ELC and on an IBM 386 PC) and hardware fault injection (control, address, and data lines of a Motorola MC68000-based target system pulsed at logical zero/one values). Our results indicate the viability of the certification trail technique. It is also believed that the tools developed provide a solid base for additional exploration.
Image flows and one-liner graphical image representation.
Makhervaks, Vadim; Barequet, Gill; Bruckstein, Alfred
2002-10-01
This paper introduces a novel graphical image representation consisting of a single curve-the one-liner. The first step of the algorithm involves the detection and ranking of image edges. A new edge exploration technique is used to perform both tasks simultaneously. This process is based on image flows. It uses a gradient vector field and a new operator to explore image edges. Estimation of the derivatives of the image is performed by using local Taylor expansions in conjunction with a weighted least-squares method. This process finds all the possible image edges without any pruning, and collects information that allows the edges found to be prioritized. This enables the most important edges to be selected to form a skeleton of the representation sought. The next step connects the selected edges into one continuous curve-the one-liner. It orders the selected edges and determines the curves connecting them. These two problems are solved separately. Since the abstract graph setting of the first problem is NP-complete, we reduce it to a variant of the traveling salesman problem and compute an approximate solution to it. We solve the second problem by using Dijkstra's shortest-path algorithm. The full software implementation for the entire one-liner determination process is available.
Potential paths for male-mediated gene flow to and from an isolated grizzly bear population
Peck, Christopher P.; van Manen, Frank T.; Costello, Cecily M.; Haroldson, Mark A.; Landenburger, Lisa; Roberts, Lori L.; Bjornlie, Daniel D.; Mace, Richard D.
2017-01-01
For several decades, grizzly bear populations in the Greater Yellowstone Ecosystem (GYE) and the Northern Continental Divide Ecosystem (NCDE) have increased in numbers and range extent. The GYE population remains isolated and although effective population size has increased since the early 1980s, genetic connectivity between these populations remains a long-term management goal. With only ~110 km distance separating current estimates of occupied range for these populations, the potential for gene flow is likely greater now than it has been for many decades. We sought to delineate potential paths that would provide the opportunity for male-mediated gene flow between the two populations. We first developed step-selection functions to generate conductance layers using ecological, physical, and anthropogenic landscape features associated with non-stationary GPS locations of 124 male grizzly bears (199 bear-years). We then used a randomized shortest path (RSP) algorithm to estimate the average number of net passages for all grid cells in the study region, when moving from an origin to a destination node. Given habitat characteristics that were the basis for the conductance layer, movements follow certain grid cell sequences more than others and the resulting RSP values thus provide a measure of movement potential. Repeating this process for 100 pairs of random origin and destination nodes, we identified paths for three levels of random deviation (θ) from the least-cost path. We observed broad-scale concordance between model predictions for paths originating in the NCDE and those originating in the GYE for all three levels of movement exploration. Model predictions indicated that male grizzly bear movement between the ecosystems could involve a variety of routes, and verified observations of grizzly bears outside occupied range supported this finding. Where landscape features concentrated paths into corridors (e.g., because of anthropogenic influence), they typically followed neighboring mountain ranges, of which several could serve as pivotal stepping stones. The RSP layers provide detailed, spatially explicit information for land managers and organizations working with land owners to identify and prioritize conservation measures that maintain or enhance the integrity of potential areas conducive to male grizzly bear dispersal.
Creative foraging: An experimental paradigm for studying exploration and discovery
Mayo, Avraham E.; Mayo, Ruth; Rozenkrantz, Liron; Tendler, Avichai; Alon, Uri; Noy, Lior
2017-01-01
Creative exploration is central to science, art and cognitive development. However, research on creative exploration is limited by a lack of high-resolution automated paradigms. To address this, we present such an automated paradigm, the creative foraging game, in which people search for novel and valuable solutions in a large and well-defined space made of all possible shapes made of ten connected squares. Players discovered shape categories such as digits, letters, and airplanes as well as more abstract categories. They exploited each category, then dropped it to explore once again, and so on. Aligned with a prediction of optimal foraging theory (OFT), during exploration phases, people moved along meandering paths that are about three times longer than the shortest paths between shapes; when exploiting a category of related shapes, they moved along the shortest paths. The moment of discovery of a new category was usually done at a non-prototypical and ambiguous shape, which can serve as an experimental proxy for creative leaps. People showed individual differences in their search patterns, along a continuum between two strategies: a mercurial quick-to-discover/quick-to-drop strategy and a thorough slow-to-discover/slow-to-drop strategy. Contrary to optimal foraging theory, players leave exploitation to explore again far before categories are depleted. This paradigm opens the way for automated high-resolution study of creative exploration. PMID:28767668
Roads at risk - traffic detours from debris flows in southern Norway
NASA Astrophysics Data System (ADS)
Meyer, N. K.; Schwanghart, W.; Korup, O.; Nadim, F.
2014-10-01
Globalization and interregional exchange of people, goods, and services has boosted the importance of and reliance on all kinds of transport networks. The linear structure of road networks is especially sensitive to natural hazards. In southern Norway, steep topography and extreme weather events promote frequent traffic disruption caused by debris flows. Topographic susceptibility and trigger frequency maps serve as input into a hazard appraisal at the scale of first-order catchments to quantify the impact of debris flows on the road network in terms of a failure likelihood of each link connecting two network vertices, e.g., road junctions. We compute total additional traffic loads as a function of traffic volume and excess distance, i.e. the extra length of an alternative path connecting two previously disrupted network vertices using a shortest-path algorithm. Our risk metric of link failure is the total additional annual traffic load expressed as vehicle kilometers because of debris-flow related road closures. We present two scenarios demonstrating the impact of debris flows on the road network, and quantify the associated path failure likelihood between major cities in southern Norway. The scenarios indicate that major routes crossing the central and northwestern part of the study area are associated with high link failure risk. Yet options for detours on major routes are manifold, and incur only little additional costs provided that drivers are sufficiently well informed about road closures. Our risk estimates may be of importance to road network managers and transport companies relying of speedy delivery of services and goods.
Roads at risk: traffic detours from debris flows in southern Norway
NASA Astrophysics Data System (ADS)
Meyer, N. K.; Schwanghart, W.; Korup, O.; Nadim, F.
2015-05-01
Globalisation and interregional exchange of people, goods, and services has boosted the importance of and reliance on all kinds of transport networks. The linear structure of road networks is especially sensitive to natural hazards. In southern Norway, steep topography and extreme weather events promote frequent traffic disruption caused by debris flows. Topographic susceptibility and trigger frequency maps serve as input into a hazard appraisal at the scale of first-order catchments to quantify the impact of debris flows on the road network in terms of a failure likelihood of each link connecting two network vertices, e.g. road junctions. We compute total additional traffic loads as a function of traffic volume and excess distance, i.e. the extra length of an alternative path connecting two previously disrupted network vertices using a shortest-path algorithm. Our risk metric of link failure is the total additional annual traffic load, expressed as vehicle kilometres, because of debris-flow-related road closures. We present two scenarios demonstrating the impact of debris flows on the road network and quantify the associated path-failure likelihood between major cities in southern Norway. The scenarios indicate that major routes crossing the central and north-western part of the study area are associated with high link-failure risk. Yet options for detours on major routes are manifold and incur only little additional costs provided that drivers are sufficiently well informed about road closures. Our risk estimates may be of importance to road network managers and transport companies relying on speedy delivery of services and goods.
Applications to determine the shortest tower BTS distance using Dijkstra algorithm
NASA Astrophysics Data System (ADS)
Mardana, Herwin; Maharani, Septya; Hatta, Heliza Rahmania
2017-02-01
Telecommunications Tower or so-called BTS (Base Transceiver System) Toweris one of the main components in the network infrastructure that has experienced an increase in the number of construction. Telecommunications tower function as a place to put the antenna signal transmitter (access network) to provide communication services to customers around the tower. In addition, other use of telecommunications tower also to place the transmission signal antenna (transport network using microwave technology) for connecting customers with a central area. Therefore, in needed of a decision support system that can provide recommendations planting route of fiber optic cable with the shortest distance in purpose the use of fiber optic cable becoming more efficient. The results of the research were the shortest rule information, showing the distance to be travelled and the map view to enabling users to look at these.
Programs for road network planning.
Ward W. Carson; Dennis P. Dykstra
1978-01-01
This paper describes four computer programs developed to assist logging engineers to plan transportation in a forest. The objective of these programs, to be used together, is to find the shortest path through a transportation network from a point of departure to a destination. Three of the programs use the digitizing and plotting capabilities of a programable desk-top...
On Compact Book Storage in Libraries.
ERIC Educational Resources Information Center
Ravindran, Arunachalam
The optimal storage of books by size in libraries is considered in this paper. It is shown that for a given collection of books of various sizes, the optimum number of shelf heights to use can be determined by finding the shortest path in an equivalent network. Applications of this model to inventory control, assortment and packaging problems are…
A Dynamic Programming Approach to Identifying the Shortest Path in Virtual Learning Environments
ERIC Educational Resources Information Center
Fazlollahtabar, Hamed
2008-01-01
E-learning has been widely adopted as a promising solution by many organizations to offer learning-on-demand opportunities to individual employees (learners) in order to reduce training time and cost. While successful information systems models have received much attention among researchers, little research has been conducted to assess the success…
Human performance on visually presented Traveling Salesman problems.
Vickers, D; Butavicius, M; Lee, M; Medvedev, A
2001-01-01
Little research has been carried out on human performance in optimization problems, such as the Traveling Salesman problem (TSP). Studies by Polivanova (1974, Voprosy Psikhologii, 4, 41-51) and by MacGregor and Ormerod (1996, Perception & Psychophysics, 58, 527-539) suggest that: (1) the complexity of solutions to visually presented TSPs depends on the number of points on the convex hull; and (2) the perception of optimal structure is an innate tendency of the visual system, not subject to individual differences. Results are reported from two experiments. In the first, measures of the total length and completion speed of pathways, and a measure of path uncertainty were compared with optimal solutions produced by an elastic net algorithm and by several heuristic methods. Performance was also compared under instructions to draw the shortest or the most attractive pathway. In the second, various measures of performance were compared with scores on Raven's advanced progressive matrices (APM). The number of points on the convex hull did not determine the relative optimality of solutions, although both this factor and the total number of points influenced solution speed and path uncertainty. Subjects' solutions showed appreciable individual differences, which had a strong correlation with APM scores. The relation between perceptual organization and the process of solving visually presented TSPs is briefly discussed, as is the potential of optimization for providing a conceptual framework for the study of intelligence.
Cooperative path planning for multi-USV based on improved artificial bee colony algorithm
NASA Astrophysics Data System (ADS)
Cao, Lu; Chen, Qiwei
2018-03-01
Due to the complex constraints, more uncertain factors and critical real-time demand of path planning for multiple unmanned surface vehicle (multi-USV), an improved artificial bee colony (I-ABC) algorithm were proposed to solve the model of cooperative path planning for multi-USV. First the Voronoi diagram of battle field space is conceived to generate the optimal area of USVs paths. Then the chaotic searching algorithm is used to initialize the collection of paths, which is regard as foods of the ABC algorithm. With the limited data, the initial collection can search the optimal area of paths perfectly. Finally simulations of the multi-USV path planning under various threats have been carried out. Simulation results verify that the I-ABC algorithm can improve the diversity of nectar source and the convergence rate of algorithm. It can increase the adaptability of dynamic battlefield and unexpected threats for USV.
ERIC Educational Resources Information Center
MacGregor, James N.; Chronicle, Edward P.; Ormerod, Thomas C.
2006-01-01
We compared the performance of three heuristics with that of subjects on variants of a well-known combinatorial optimization task, the Traveling Salesperson Problem (TSP). The present task consisted of finding the shortest path through an array of points from one side of the array to the other. Like the standard TSP, the task is computationally…
Bajo, R; Pusil, S; López, M E; Canuet, L; Pereda, E; Osipova, D; Maestú, F; Pekkonen, E
2015-07-01
Scopolamine administration may be considered as a psychopharmacological model of Alzheimer's disease (AD). Here, we studied a group of healthy elderly under scopolamine to test whether it elicits similar changes in brain connectivity as those observed in AD, thereby verifying a possible model of AD impairment. We did it by testing healthy elderly subjects in two experimental conditions: glycopyrrolate (placebo) and scopolamine administration. We then analyzed magnetoencephalographic (MEG) data corresponding to both conditions in resting-state with eyes closed. This analysis was performed in source space by combining a nonlinear frequency band-specific measure of functional connectivity (phase locking value, PLV) with network analysis methods. Under scopolamine, functional connectivity between several brain areas was significantly reduced as compared to placebo, in most frequency bands analyzed. Besides, regarding the two complex network indices studied (clustering and shortest path length), clustering significantly decreased in the alpha band while shortest path length significantly increased also in alpha band both after scopolamine administration. Overall our findings indicate that both PLV and graph analysis are suitable tools to measure brain connectivity changes induced by scopolamine, which causes alterations in brain connectivity apparently similar to those reported in AD.
NASA Astrophysics Data System (ADS)
Wu, Zikai; Hou, Baoyu; Zhang, Hongjuan; Jin, Feng
2014-04-01
Deterministic network models have been attractive media for discussing dynamical processes' dependence on network structural features. On the other hand, the heterogeneity of weights affect dynamical processes taking place on networks. In this paper, we present a family of weighted expanded Koch networks based on Koch networks. They originate from a r-polygon, and each node of current generation produces m r-polygons including the node and whose weighted edges are scaled by factor w in subsequent evolutionary step. We derive closed-form expressions for average weighted shortest path length (AWSP). In large network, AWSP stays bounded with network order growing (0 < w < 1). Then, we focus on a special random walks and trapping issue on the networks. In more detail, we calculate exactly the average receiving time (ART). ART exhibits a sub-linear dependence on network order (0 < w < 1), which implies that nontrivial weighted expanded Koch networks are more efficient than un-weighted expanded Koch networks in receiving information. Besides, efficiency of receiving information at hub nodes is also dependent on parameters m and r. These findings may pave the way for controlling information transportation on general weighted networks.
Pepe, Daniele; Do, Jin Hwan
2015-12-16
Increasing evidence indicates that different morphological types of cell death coexist in the brain of patients with Parkinson's disease (PD), but the molecular explanation for this is still under investigation. In this study, we identified perturbed pathways in two different cell models for PD through the following procedures: (1) enrichment pathway analysis with differentially expressed genes and the Reactome pathway database, and (2) construction of the shortest path model for the enriched pathway and detection of significant shortest path model with fitting time-course microarray data of each PD cell model to structural equation model. Two PD cell models constructed by the same neurotoxin showed different perturbed pathways. That is, one showed perturbation of three Reactome pathways, including cellular senescence, chromatin modifying enzymes, and chromatin organization, while six modules within metabolism pathway represented perturbation in the other. This suggests that the activation of common upstream cell death pathways in PD may result in various down-stream processes, which might be associated with different morphological types of cell death. In addition, our results might provide molecular clues for coexistence of different morphological types of cell death in PD patients.
Fair sharing of resources in a supply network with constraints.
Carvalho, Rui; Buzna, Lubos; Just, Wolfram; Helbing, Dirk; Arrowsmith, David K
2012-04-01
This paper investigates the effect of network topology on the fair allocation of network resources among a set of agents, an all-important issue for the efficiency of transportation networks all around us. We analyze a generic mechanism that distributes network capacity fairly among existing flow demands. The problem can be solved by semianalytical methods on a nearest-neighbor graph with one source and sink pair, when transport occurs over shortest paths. For this setup, we uncover a broad range of patterns of intersecting shortest paths as a function of the distance between the source and the sink. When the number of intersections is the maximum and the distance between the source and the sink is large, we find that a fair allocation implies a decrease of at least 50% from the maximum throughput. We also find that the histogram of the flow allocations assigned to the agents decays as a power law with exponent -1. Our semianalytical framework suggests possible explanations for the well-known reduction of the throughput in fair allocations. It also suggests that the combination of network topology and routing rules can lead to highly uneven (but fair) distributions of resources, a remark of caution to network designers.
To Each According to its Degree: The Meritocracy and Topocracy of Embedded Markets
NASA Astrophysics Data System (ADS)
Borondo, J.; Borondo, F.; Rodriguez-Sickert, C.; Hidalgo, C. A.
2014-01-01
A system is said to be meritocratic if the compensation and power available to individuals is determined by their abilities and merits. A system is topocratic if the compensation and power available to an individual is determined primarily by her position in a network. Here we introduce a model that is perfectly meritocratic for fully connected networks but that becomes topocratic for sparse networks-like the ones in society. In the model, individuals produce and sell content, but also distribute the content produced by others when they belong to the shortest path connecting a buyer and a seller. The production and distribution of content defines two channels of compensation: a meritocratic channel, where individuals are compensated for the content they produce, and a topocratic channel, where individual compensation is based on the number of shortest paths that go through them in the network. We solve the model analytically and show that the distribution of payoffs is meritocratic only if the average degree of the nodes is larger than a root of the total number of nodes. We conclude that, in the light of this model, the sparsity and structure of networks represents a fundamental constraint to the meritocracy of societies.
Fair sharing of resources in a supply network with constraints
NASA Astrophysics Data System (ADS)
Carvalho, Rui; Buzna, Lubos; Just, Wolfram; Helbing, Dirk; Arrowsmith, David K.
2012-04-01
This paper investigates the effect of network topology on the fair allocation of network resources among a set of agents, an all-important issue for the efficiency of transportation networks all around us. We analyze a generic mechanism that distributes network capacity fairly among existing flow demands. The problem can be solved by semianalytical methods on a nearest-neighbor graph with one source and sink pair, when transport occurs over shortest paths. For this setup, we uncover a broad range of patterns of intersecting shortest paths as a function of the distance between the source and the sink. When the number of intersections is the maximum and the distance between the source and the sink is large, we find that a fair allocation implies a decrease of at least 50% from the maximum throughput. We also find that the histogram of the flow allocations assigned to the agents decays as a power law with exponent -1. Our semianalytical framework suggests possible explanations for the well-known reduction of the throughput in fair allocations. It also suggests that the combination of network topology and routing rules can lead to highly uneven (but fair) distributions of resources, a remark of caution to network designers.
To each according to its degree: the meritocracy and topocracy of embedded markets.
Borondo, J; Borondo, F; Rodriguez-Sickert, C; Hidalgo, C A
2014-01-21
A system is said to be meritocratic if the compensation and power available to individuals is determined by their abilities and merits. A system is topocratic if the compensation and power available to an individual is determined primarily by her position in a network. Here we introduce a model that is perfectly meritocratic for fully connected networks but that becomes topocratic for sparse networks-like the ones in society. In the model, individuals produce and sell content, but also distribute the content produced by others when they belong to the shortest path connecting a buyer and a seller. The production and distribution of content defines two channels of compensation: a meritocratic channel, where individuals are compensated for the content they produce, and a topocratic channel, where individual compensation is based on the number of shortest paths that go through them in the network. We solve the model analytically and show that the distribution of payoffs is meritocratic only if the average degree of the nodes is larger than a root of the total number of nodes. We conclude that, in the light of this model, the sparsity and structure of networks represents a fundamental constraint to the meritocracy of societies.
Sorting genomes by reciprocal translocations, insertions, and deletions.
Qi, Xingqin; Li, Guojun; Li, Shuguang; Xu, Ying
2010-01-01
The problem of sorting by reciprocal translocations (abbreviated as SBT) arises from the field of comparative genomics, which is to find a shortest sequence of reciprocal translocations that transforms one genome Pi into another genome Gamma, with the restriction that Pi and Gamma contain the same genes. SBT has been proved to be polynomial-time solvable, and several polynomial algorithms have been developed. In this paper, we show how to extend Bergeron's SBT algorithm to include insertions and deletions, allowing to compare genomes containing different genes. In particular, if the gene set of Pi is a subset (or superset, respectively) of the gene set of Gamma, we present an approximation algorithm for transforming Pi into Gamma by reciprocal translocations and deletions (insertions, respectively), providing a sorting sequence with length at most OPT + 2, where OPT is the minimum number of translocations and deletions (insertions, respectively) needed to transform Pi into Gamma; if Pi and Gamma have different genes but not containing each other, we give a heuristic to transform Pi into Gamma by a shortest sequence of reciprocal translocations, insertions, and deletions, with bounds for the length of the sorting sequence it outputs. At a conceptual level, there is some similarity between our algorithm and the algorithm developed by El Mabrouk which is used to sort two chromosomes with different gene contents by reversals, insertions, and deletions.
NASA Astrophysics Data System (ADS)
Abd-El-Barr, Mostafa
2010-12-01
The use of non-binary (multiple-valued) logic in the synthesis of digital systems can lead to savings in chip area. Advances in very large scale integration (VLSI) technology have enabled the successful implementation of multiple-valued logic (MVL) circuits. A number of heuristic algorithms for the synthesis of (near) minimal sum-of products (two-level) realisation of MVL functions have been reported in the literature. The direct cover (DC) technique is one such algorithm. The ant colony optimisation (ACO) algorithm is a meta-heuristic that uses constructive greediness to explore a large solution space in finding (near) optimal solutions. The ACO algorithm mimics the ant's behaviour in the real world in using the shortest path to reach food sources. We have previously introduced an ACO-based heuristic for the synthesis of two-level MVL functions. In this article, we introduce the ACO-DC hybrid technique for the synthesis of multi-level MVL functions. The basic idea is to use an ant to decompose a given MVL function into a number of levels and then synthesise each sub-function using a DC-based technique. The results obtained using the proposed approach are compared to those obtained using existing techniques reported in the literature. A benchmark set consisting of 50,000 randomly generated 2-variable 4-valued functions is used in the comparison. The results obtained using the proposed ACO-DC technique are shown to produce efficient realisation in terms of the average number of gates (as a measure of chip area) needed for the synthesis of a given MVL function.
Improved Efficient Routing Strategy on Scale-Free Networks
NASA Astrophysics Data System (ADS)
Jiang, Zhong-Yuan; Liang, Man-Gui
Since the betweenness of nodes in complex networks can theoretically represent the traffic load of nodes under the currently used routing strategy, we propose an improved efficient (IE) routing strategy to enhance to the network traffic capacity based on the betweenness centrality. Any node with the highest betweenness is susceptible to traffic congestion. An efficient way to improve the network traffic capacity is to redistribute the heavy traffic load from these central nodes to non-central nodes, so in this paper, we firstly give a path cost function by considering the sum of node betweenness with a tunable parameter β along the actual path. Then, by minimizing the path cost, our IE routing strategy achieved obvious improvement on the network transport efficiency. Simulations on scale-free Barabási-Albert (BA) networks confirmed the effectiveness of our strategy, when compared with the efficient routing (ER) and the shortest path (SP) routing.
A mathematical model for adaptive transport network in path finding by true slime mold.
Tero, Atsushi; Kobayashi, Ryo; Nakagaki, Toshiyuki
2007-02-21
We describe here a mathematical model of the adaptive dynamics of a transport network of the true slime mold Physarum polycephalum, an amoeboid organism that exhibits path-finding behavior in a maze. This organism possesses a network of tubular elements, by means of which nutrients and signals circulate through the plasmodium. When the organism is put in a maze, the network changes its shape to connect two exits by the shortest path. This process of path-finding is attributed to an underlying physiological mechanism: a tube thickens as the flux through it increases. The experimental evidence for this is, however, only qualitative. We constructed a mathematical model of the general form of the tube dynamics. Our model contains a key parameter corresponding to the extent of the feedback regulation between the thickness of a tube and the flux through it. We demonstrate the dependence of the behavior of the model on this parameter.
NASA Astrophysics Data System (ADS)
Ramadhani, T.; Hertono, G. F.; Handari, B. D.
2017-07-01
The Multiple Traveling Salesman Problem (MTSP) is the extension of the Traveling Salesman Problem (TSP) in which the shortest routes of m salesmen all of which start and finish in a single city (depot) will be determined. If there is more than one depot and salesmen start from and return to the same depot, then the problem is called Fixed Destination Multi-depot Multiple Traveling Salesman Problem (MMTSP). In this paper, MMTSP will be solved using the Ant Colony Optimization (ACO) algorithm. ACO is a metaheuristic optimization algorithm which is derived from the behavior of ants in finding the shortest route(s) from the anthill to a form of nourishment. In solving the MMTSP, the algorithm is observed with respect to different chosen cities as depots and non-randomly three parameters of MMTSP: m, K, L, those represents the number of salesmen, the fewest cities that must be visited by a salesman, and the most number of cities that can be visited by a salesman, respectively. The implementation is observed with four dataset from TSPLIB. The results show that the different chosen cities as depots and the three parameters of MMTSP, in which m is the most important parameter, affect the solution.
A graph-based semantic similarity measure for the gene ontology.
Alvarez, Marco A; Yan, Changhui
2011-12-01
Existing methods for calculating semantic similarities between pairs of Gene Ontology (GO) terms and gene products often rely on external databases like Gene Ontology Annotation (GOA) that annotate gene products using the GO terms. This dependency leads to some limitations in real applications. Here, we present a semantic similarity algorithm (SSA), that relies exclusively on the GO. When calculating the semantic similarity between a pair of input GO terms, SSA takes into account the shortest path between them, the depth of their nearest common ancestor, and a novel similarity score calculated between the definitions of the involved GO terms. In our work, we use SSA to calculate semantic similarities between pairs of proteins by combining pairwise semantic similarities between the GO terms that annotate the involved proteins. The reliability of SSA was evaluated by comparing the resulting semantic similarities between proteins with the functional similarities between proteins derived from expert annotations or sequence similarity. Comparisons with existing state-of-the-art methods showed that SSA is highly competitive with the other methods. SSA provides a reliable measure for semantics similarity independent of external databases of functional-annotation observations.
Ma, Ling; Liu, Xiabi; Gao, Yan; Zhao, Yanfeng; Zhao, Xinming; Zhou, Chunwu
2017-02-01
This paper proposes a new method of content based medical image retrieval through considering fused, context-sensitive similarity. Firstly, we fuse the semantic and visual similarities between the query image and each image in the database as their pairwise similarities. Then, we construct a weighted graph whose nodes represent the images and edges measure their pairwise similarities. By using the shortest path algorithm over the weighted graph, we obtain a new similarity measure, context-sensitive similarity measure, between the query image and each database image to complete the retrieval process. Actually, we use the fused pairwise similarity to narrow down the semantic gap for obtaining a more accurate pairwise similarity measure, and spread it on the intrinsic data manifold to achieve the context-sensitive similarity for a better retrieval performance. The proposed method has been evaluated on the retrieval of the Common CT Imaging Signs of Lung Diseases (CISLs) and achieved not only better retrieval results but also the satisfactory computation efficiency. Copyright © 2017 Elsevier Inc. All rights reserved.
Seamline Determination Based on PKGC Segmentation for Remote Sensing Image Mosaicking
Dong, Qiang; Liu, Jinghong
2017-01-01
This paper presents a novel method of seamline determination for remote sensing image mosaicking. A two-level optimization strategy is applied to determine the seamline. Object-level optimization is executed firstly. Background regions (BRs) and obvious regions (ORs) are extracted based on the results of parametric kernel graph cuts (PKGC) segmentation. The global cost map which consists of color difference, a multi-scale morphological gradient (MSMG) constraint, and texture difference is weighted by BRs. Finally, the seamline is determined in the weighted cost from the start point to the end point. Dijkstra’s shortest path algorithm is adopted for pixel-level optimization to determine the positions of seamline. Meanwhile, a new seamline optimization strategy is proposed for image mosaicking with multi-image overlapping regions. The experimental results show the better performance than the conventional method based on mean-shift segmentation. Seamlines based on the proposed method bypass the obvious objects and take less time in execution. This new method is efficient and superior for seamline determination in remote sensing image mosaicking. PMID:28749446
Compressive sensing of high betweenness centrality nodes in networks
NASA Astrophysics Data System (ADS)
Mahyar, Hamidreza; Hasheminezhad, Rouzbeh; Ghalebi K., Elahe; Nazemian, Ali; Grosu, Radu; Movaghar, Ali; Rabiee, Hamid R.
2018-05-01
Betweenness centrality is a prominent centrality measure expressing importance of a node within a network, in terms of the fraction of shortest paths passing through that node. Nodes with high betweenness centrality have significant impacts on the spread of influence and idea in social networks, the user activity in mobile phone networks, the contagion process in biological networks, and the bottlenecks in communication networks. Thus, identifying k-highest betweenness centrality nodes in networks will be of great interest in many applications. In this paper, we introduce CS-HiBet, a new method to efficiently detect top- k betweenness centrality nodes in networks, using compressive sensing. CS-HiBet can perform as a distributed algorithm by using only the local information at each node. Hence, it is applicable to large real-world and unknown networks in which the global approaches are usually unrealizable. The performance of the proposed method is evaluated by extensive simulations on several synthetic and real-world networks. The experimental results demonstrate that CS-HiBet outperforms the best existing methods with notable improvements.
NASA Astrophysics Data System (ADS)
Franco, Patrick; Ogier, Jean-Marc; Loonis, Pierre; Mullot, Rémy
Recently we have developed a model for shape description and matching. Based on minimum spanning trees construction and specifics stages like the mixture, it seems to have many desirable properties. Recognition invariance in front shift, rotated and noisy shape was checked through median scale tests related to GREC symbol reference database. Even if extracting the topology of a shape by mapping the shortest path connecting all the pixels seems to be powerful, the construction of graph induces an expensive algorithmic cost. In this article we discuss on the ways to reduce time computing. An alternative solution based on image compression concepts is provided and evaluated. The model no longer operates in the image space but in a compact space, namely the Discrete Cosine space. The use of block discrete cosine transform is discussed and justified. The experimental results led on the GREC2003 database show that the proposed method is characterized by a good discrimination power, a real robustness to noise with an acceptable time computing.
Congestion control and routing over satellite networks
NASA Astrophysics Data System (ADS)
Cao, Jinhua
Satellite networks and transmissions find their application in fields of computer communications, telephone communications, television broadcasting, transportation, space situational awareness systems and so on. This thesis mainly focuses on two networking issues affecting satellite networking: network congestion control and network routing optimization. Congestion, which leads to long queueing delays, packet losses or both, is a networking problem that has drawn the attention of many researchers. The goal of congestion control mechanisms is to ensure high bandwidth utilization while avoiding network congestion by regulating the rate at which traffic sources inject packets into a network. In this thesis, we propose a stable congestion controller using data-driven, safe switching control theory to improve the dynamic performance of satellite Transmission Control Protocol/Active Queue Management (TCP/AQM) networks. First, the stable region of the Proportional-Integral (PI) parameters for a nominal model is explored. Then, a PI controller, whose parameters are adaptively tuned by switching among members of a given candidate set, using observed plant data, is presented and compared with some classical AQM policy examples, such as Random Early Detection (RED) and fixed PI control. A new cost detectable switching law with an interval cost function switching algorithm, which improves the performance and also saves the computational cost, is developed and compared with a law commonly used in the switching control literature. Finite-gain stability of the system is proved. A fuzzy logic PI controller is incorporated as a special candidate to achieve good performance at all nominal points with the available set of candidate controllers. Simulations are presented to validate the theory. An effocient routing algorithm plays a key role in optimizing network resources. In this thesis, we briefly analyze Low Earth Orbit (LEO) satellite networks, review the Cross Entropy (CE) method and then develop a novel on-demand routing system named Cross Entropy Accelerated Ant Routing System (CEAARS) for regular constellation LEO satellite networks. By implementing simulations on an Iridium-like satellite network, we compare the proposed CEAARS algorithm with the two approaches to adaptive routing protocols on the Internet: distance-vector (DV) and link-state (LS), as well as with the original Cross Entropy Ant Routing System (CEARS). DV algorithms are based on distributed Bellman Ford algorithm, and LS algorithms are implementation of Dijkstras single source shortest path. The results show that CEAARS not only remarkably improves the convergence speed of achieving optimal or suboptimal paths, but also reduces the number of overhead ants (management packets).
Interactogeneous: Disease Gene Prioritization Using Heterogeneous Networks and Full Topology Scores
Gonçalves, Joana P.; Francisco, Alexandre P.; Moreau, Yves; Madeira, Sara C.
2012-01-01
Disease gene prioritization aims to suggest potential implications of genes in disease susceptibility. Often accomplished in a guilt-by-association scheme, promising candidates are sorted according to their relatedness to known disease genes. Network-based methods have been successfully exploiting this concept by capturing the interaction of genes or proteins into a score. Nonetheless, most current approaches yield at least some of the following limitations: (1) networks comprise only curated physical interactions leading to poor genome coverage and density, and bias toward a particular source; (2) scores focus on adjacencies (direct links) or the most direct paths (shortest paths) within a constrained neighborhood around the disease genes, ignoring potentially informative indirect paths; (3) global clustering is widely applied to partition the network in an unsupervised manner, attributing little importance to prior knowledge; (4) confidence weights and their contribution to edge differentiation and ranking reliability are often disregarded. We hypothesize that network-based prioritization related to local clustering on graphs and considering full topology of weighted gene association networks integrating heterogeneous sources should overcome the above challenges. We term such a strategy Interactogeneous. We conducted cross-validation tests to assess the impact of network sources, alternative path inclusion and confidence weights on the prioritization of putative genes for 29 diseases. Heat diffusion ranking proved the best prioritization method overall, increasing the gap to neighborhood and shortest paths scores mostly on single source networks. Heterogeneous associations consistently delivered superior performance over single source data across the majority of methods. Results on the contribution of confidence weights were inconclusive. Finally, the best Interactogeneous strategy, heat diffusion ranking and associations from the STRING database, was used to prioritize genes for Parkinson’s disease. This method effectively recovered known genes and uncovered interesting candidates which could be linked to pathogenic mechanisms of the disease. PMID:23185389
Carroll, Carlos; McRae, Brad H; Brookes, Allen
2012-02-01
Centrality metrics evaluate paths between all possible pairwise combinations of sites on a landscape to rank the contribution of each site to facilitating ecological flows across the network of sites. Computational advances now allow application of centrality metrics to landscapes represented as continuous gradients of habitat quality. This avoids the binary classification of landscapes into patch and matrix required by patch-based graph analyses of connectivity. It also avoids the focus on delineating paths between individual pairs of core areas characteristic of most corridor- or linkage-mapping methods of connectivity analysis. Conservation of regional habitat connectivity has the potential to facilitate recovery of the gray wolf (Canis lupus), a species currently recolonizing portions of its historic range in the western United States. We applied 3 contrasting linkage-mapping methods (shortest path, current flow, and minimum-cost-maximum-flow) to spatial data representing wolf habitat to analyze connectivity between wolf populations in central Idaho and Yellowstone National Park (Wyoming). We then applied 3 analogous betweenness centrality metrics to analyze connectivity of wolf habitat throughout the northwestern United States and southwestern Canada to determine where it might be possible to facilitate range expansion and interpopulation dispersal. We developed software to facilitate application of centrality metrics. Shortest-path betweenness centrality identified a minimal network of linkages analogous to those identified by least-cost-path corridor mapping. Current flow and minimum-cost-maximum-flow betweenness centrality identified diffuse networks that included alternative linkages, which will allow greater flexibility in planning. Minimum-cost-maximum-flow betweenness centrality, by integrating both land cost and habitat capacity, allows connectivity to be considered within planning processes that seek to maximize species protection at minimum cost. Centrality analysis is relevant to conservation and landscape genetics at a range of spatial extents, but it may be most broadly applicable within single- and multispecies planning efforts to conserve regional habitat connectivity. ©2011 Society for Conservation Biology.
De Vreese, Luc Pieter; Pradelli, Samantha; Massini, Giulia; Buscema, Massimo; Savarè, Rita; Grossi, Enzo
2005-12-01
In the clinical setting, brief general mental status tests tend to detect early-stage Alzheimer's disease (AD) less well than more specific cognitive tests. Some preliminary information was collected on the diagnostic accuracy of the Traveling Salesman Problem (TSP) compared with the Mini-Mental State Examination (MMSE) in recognizing early AD from normal aging. Fifteen AD outpatients (mean +/- SD MMSE: 24.45 +/- 2.61) and 30 age- and education-matched controls were submitted in a single blind protocol to a paper-and-pencil visually-presented version of the TSP, containing a random array of 30 points (TSP30). The task consisted of drawing the shortest continuous path, passing through each point once and only once, and returning to the starting point. Path lengths for subjects' solutions were computed and compared with the optimal solution given by a specific evolutionary algorithm called GenD. TP30 discriminated significantly better between AD subjects and controls (ROC curve AUC = 0.976; 95% CI 0.94-1.01) compared with the MMSE corrected for age and education (ROC curve AUC = 0.877; 95% CI 0.74-1.005). A path length of 478.2354, taken as "cut-off point", classified correctly subjects with a sensitivity of 93.3% and a specificity of 99.3%, whereas a score corrected for age and education of 25.85 on the MMSE had a sensitivity of 73.3% and a specificity of 96.7%. The TSP seems to be particularly sensitive to early AD and independent of patient's age and educational level. The high diagnostic ability, simplicity, and independence of age and education make the TSP promising as a screening test for early AD.
Computational path planner for product assembly in complex environments
NASA Astrophysics Data System (ADS)
Shang, Wei; Liu, Jianhua; Ning, Ruxin; Liu, Mi
2013-03-01
Assembly path planning is a crucial problem in assembly related design and manufacturing processes. Sampling based motion planning algorithms are used for computational assembly path planning. However, the performance of such algorithms may degrade much in environments with complex product structure, narrow passages or other challenging scenarios. A computational path planner for automatic assembly path planning in complex 3D environments is presented. The global planning process is divided into three phases based on the environment and specific algorithms are proposed and utilized in each phase to solve the challenging issues. A novel ray test based stochastic collision detection method is proposed to evaluate the intersection between two polyhedral objects. This method avoids fake collisions in conventional methods and degrades the geometric constraint when a part has to be removed with surface contact with other parts. A refined history based rapidly-exploring random tree (RRT) algorithm which bias the growth of the tree based on its planning history is proposed and employed in the planning phase where the path is simple but the space is highly constrained. A novel adaptive RRT algorithm is developed for the path planning problem with challenging scenarios and uncertain environment. With extending values assigned on each tree node and extending schemes applied, the tree can adapts its growth to explore complex environments more efficiently. Experiments on the key algorithms are carried out and comparisons are made between the conventional path planning algorithms and the presented ones. The comparing results show that based on the proposed algorithms, the path planner can compute assembly path in challenging complex environments more efficiently and with higher success. This research provides the references to the study of computational assembly path planning under complex environments.
Path planning on satellite images for unmanned surface vehicles
NASA Astrophysics Data System (ADS)
Yang, Joe-Ming; Tseng, Chien-Ming; Tseng, P. S.
2015-01-01
In recent years, the development of autonomous surface vehicles has been a field of increasing research interest. There are two major areas in this field: control theory and path planning. This study focuses on path planning, and two objectives are discussed: path planning for Unmanned Surface Vehicles (USVs) and implementation of path planning in a real map. In this paper, satellite thermal images are converted into binary images which are used as the maps for the Finite Angle A* algorithm (FAA*), an advanced A* algorithm that is used to determine safer and suboptimal paths for USVs. To plan a collision-free path, the algorithm proposed in this article considers the dimensions of surface vehicles. Furthermore, the turning ability of a surface vehicle is also considered, and a constraint condition is introduced to improve the quality of the path planning algorithm, which makes the traveled path smoother. This study also shows a path planning experiment performed on a real satellite thermal image, and the path planning results can be used by an USV.
Spatial correlation analysis of urban traffic state under a perspective of community detection
NASA Astrophysics Data System (ADS)
Yang, Yanfang; Cao, Jiandong; Qin, Yong; Jia, Limin; Dong, Honghui; Zhang, Aomuhan
2018-05-01
Understanding the spatial correlation of urban traffic state is essential for identifying the evolution patterns of urban traffic state. However, the distribution of traffic state always has characteristics of large spatial span and heterogeneity. This paper adapts the concept of community detection to the correlation network of urban traffic state and proposes a new perspective to identify the spatial correlation patterns of traffic state. In the proposed urban traffic network, the nodes represent road segments, and an edge between a pair of nodes is added depending on the result of significance test for the corresponding correlation of traffic state. Further, the process of community detection in the urban traffic network (named GWPA-K-means) is applied to analyze the spatial dependency of traffic state. The proposed method extends the traditional K-means algorithm in two steps: (i) redefines the initial cluster centers by two properties of nodes (the GWPA value and the minimum shortest path length); (ii) utilizes the weight signal propagation process to transfer the topological information of the urban traffic network into a node similarity matrix. Finally, numerical experiments are conducted on a simple network and a real urban road network in Beijing. The results show that GWPA-K-means algorithm is valid in spatial correlation analysis of traffic state. The network science and community structure analysis perform well in describing the spatial heterogeneity of traffic state on a large spatial scale.
Evaluation of concurrent priority queue algorithms. Technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Q.
1991-02-01
The priority queue is a fundamental data structure that is used in a large variety of parallel algorithms, such as multiprocessor scheduling and parallel best-first search of state-space graphs. This thesis addresses the design and experimental evaluation of two novel concurrent priority queues: a parallel Fibonacci heap and a concurrent priority pool, and compares them with the concurrent binary heap. The parallel Fibonacci heap is based on the sequential Fibonacci heap, which is theoretically the most efficient data structure for sequential priority queues. This scheme not only preserves the efficient operation time bounds of its sequential counterpart, but also hasmore » very low contention by distributing locks over the entire data structure. The experimental results show its linearly scalable throughput and speedup up to as many processors as tested (currently 18). A concurrent access scheme for a doubly linked list is described as part of the implementation of the parallel Fibonacci heap. The concurrent priority pool is based on the concurrent B-tree and the concurrent pool. The concurrent priority pool has the highest throughput among the priority queues studied. Like the parallel Fibonacci heap, the concurrent priority pool scales linearly up to as many processors as tested. The priority queues are evaluated in terms of throughput and speedup. Some applications of concurrent priority queues such as the vertex cover problem and the single source shortest path problem are tested.« less
Present-day and future global bottom-up ship emission inventories including polar routes.
Paxian, Andreas; Eyring, Veronika; Beer, Winfried; Sausen, Robert; Wright, Claire
2010-02-15
We present a global bottom-up ship emission algorithm that calculates fuel consumption, emissions, and vessel traffic densities for present-day (2006) and two future scenarios (2050) considering the opening of Arctic polar routes due to projected sea ice decline. Ship movements and actual ship engine power per individual ship from Lloyd's Marine Intelligence Unit (LMIU) ship statistics for six months in 2006 and further mean engine data from literature serve as input. The developed SeaKLIM algorithm automatically finds the most probable shipping route for each combination of start and destination port of a certain ship movement by calculating the shortest path on a predefined model grid while considering land masses, sea ice, shipping canal sizes, and climatological mean wave heights. The resulting present-day ship activity agrees well with observations. The global fuel consumption of 221 Mt in 2006 lies in the range of previously published inventories when undercounting of ship numbers in the LMIU movement database (40,055 vessels) is considered. Extrapolated to 2007 and ship numbers per ship type of the recent International Maritime Organization (IMO) estimate (100,214 vessels), a fuel consumption of 349 Mt is calculated which is in good agreement with the IMO total of 333 Mt. The future scenarios show Arctic polar routes with regional fuel consumption on the Northeast and Northwest Passage increasing by factors of up to 9 and 13 until 2050, respectively.
Evaluating CoLiDeS + Pic: The Role of Relevance of Pictures in User Navigation Behaviour
ERIC Educational Resources Information Center
Karanam, Saraschandra; van Oostendorp, Herre; Indurkhya, Bipin
2012-01-01
CoLiDeS + Pic is a cognitive model of web-navigation that incorporates semantic information from pictures into CoLiDeS. In our earlier research, we have demonstrated that by incorporating semantic information from pictures, CoLiDeS + Pic can predict the hyperlinks on the shortest path more frequently, and also with greater information scent,…
2014-09-18
Operations and Developing Issues . . . . . . . . . . . . . . . . . . 6 2.1.2 Next-Generation Air Transportation System (NextGen...Air Traffic Management ESP Euclidean Shortest Path FAA Federal Aviation Administration FCFS First-Come-First-Served HCS Hybrid Control System KKT...Karush-Kuhn-Tucker LGR Legendre-Gauss-Radau MLD Minimum Lateral Distance NAS National Airspace System NASA National Aeronautics and Space Administration
Path connectivity based spectral defragmentation in flexible bandwidth networks.
Wang, Ying; Zhang, Jie; Zhao, Yongli; Zhang, Jiawei; Zhao, Jie; Wang, Xinbo; Gu, Wanyi
2013-01-28
Optical networks with flexible bandwidth provisioning have become a very promising networking architecture. It enables efficient resource utilization and supports heterogeneous bandwidth demands. In this paper, two novel spectrum defragmentation approaches, i.e. Maximum Path Connectivity (MPC) algorithm and Path Connectivity Triggering (PCT) algorithm, are proposed based on the notion of Path Connectivity, which is defined to represent the maximum variation of node switching ability along the path in flexible bandwidth networks. A cost-performance-ratio based profitability model is given to denote the prons and cons of spectrum defragmentation. We compare these two proposed algorithms with non-defragmentation algorithm in terms of blocking probability. Then we analyze the differences of defragmentation profitability between MPC and PCT algorithms.
Rao, Akshay; Elara, Mohan Rajesh; Elangovan, Karthikeyan
This paper aims to develop a local path planning algorithm for a bio-inspired, reconfigurable crawling robot. A detailed description of the robotic platform is first provided, and the suitability for deployment of each of the current state-of-the-art local path planners is analyzed after an extensive literature review. The Enhanced Vector Polar Histogram algorithm is described and reformulated to better fit the requirements of the platform. The algorithm is deployed on the robotic platform in crawling configuration and favorably compared with other state-of-the-art local path planning algorithms.
NASA Technical Reports Server (NTRS)
Izumi, K. H.; Thompson, J. L.; Groce, J. L.; Schwab, R. W.
1986-01-01
The design requirements for a 4D path definition algorithm are described. These requirements were developed for the NASA ATOPS as an extension of the Local Flow Management/Profile Descent algorithm. They specify the processing flow, functional and data architectures, and system input requirements, and recommended the addition of a broad path revision (reinitialization) function capability. The document also summarizes algorithm design enhancements and the implementation status of the algorithm on an in-house PDP-11/70 computer. Finally, the requirements for the pilot-computer interfaces, the lateral path processor, and guidance and steering function are described.
Enhanced round robin CPU scheduling with burst time based time quantum
NASA Astrophysics Data System (ADS)
Indusree, J. R.; Prabadevi, B.
2017-11-01
Process scheduling is a very important functionality of Operating system. The main-known process-scheduling algorithms are First Come First Serve (FCFS) algorithm, Round Robin (RR) algorithm, Priority scheduling algorithm and Shortest Job First (SJF) algorithm. Compared to its peers, Round Robin (RR) algorithm has the advantage that it gives fair share of CPU to the processes which are already in the ready-queue. The effectiveness of the RR algorithm greatly depends on chosen time quantum value. Through this research paper, we are proposing an enhanced algorithm called Enhanced Round Robin with Burst-time based Time Quantum (ERRBTQ) process scheduling algorithm which calculates time quantum as per the burst-time of processes already in ready queue. The experimental results and analysis of ERRBTQ algorithm clearly indicates the improved performance when compared with conventional RR and its variants.
Differential-Evolution Control Parameter Optimization for Unmanned Aerial Vehicle Path Planning
Kok, Kai Yit; Rajendran, Parvathy
2016-01-01
The differential evolution algorithm has been widely applied on unmanned aerial vehicle (UAV) path planning. At present, four random tuning parameters exist for differential evolution algorithm, namely, population size, differential weight, crossover, and generation number. These tuning parameters are required, together with user setting on path and computational cost weightage. However, the optimum settings of these tuning parameters vary according to application. Instead of trial and error, this paper presents an optimization method of differential evolution algorithm for tuning the parameters of UAV path planning. The parameters that this research focuses on are population size, differential weight, crossover, and generation number. The developed algorithm enables the user to simply define the weightage desired between the path and computational cost to converge with the minimum generation required based on user requirement. In conclusion, the proposed optimization of tuning parameters in differential evolution algorithm for UAV path planning expedites and improves the final output path and computational cost. PMID:26943630
Ant Navigation: Fractional Use of the Home Vector
Cheung, Allen; Hiby, Lex; Narendra, Ajay
2012-01-01
Home is a special location for many animals, offering shelter from the elements, protection from predation, and a common place for gathering of the same species. Not surprisingly, many species have evolved efficient, robust homing strategies, which are used as part of each and every foraging journey. A basic strategy used by most animals is to take the shortest possible route home by accruing the net distances and directions travelled during foraging, a strategy well known as path integration. This strategy is part of the navigation toolbox of ants occupying different landscapes. However, when there is a visual discrepancy between test and training conditions, the distance travelled by animals relying on the path integrator varies dramatically between species: from 90% of the home vector to an absolute distance of only 50 cm. We here ask what the theoretically optimal balance between PI-driven and landmark-driven navigation should be. In combination with well-established results from optimal search theory, we show analytically that this fractional use of the home vector is an optimal homing strategy under a variety of circumstances. Assuming there is a familiar route that an ant recognizes, theoretically optimal search should always begin at some fraction of the home vector, depending on the region of familiarity. These results are shown to be largely independent of the search algorithm used. Ant species from different habitats appear to have optimized their navigation strategy based on the availability and nature of navigational information content in their environment. PMID:23209744
Sadiq, Abderrahmane; El Fazziki, Abdelaziz; Ouarzazi, Jamal; Sadgal, Mohamed
2016-01-01
This paper presents an integrated and adaptive problem-solving approach to control the on-road air quality by modeling the road infrastructure, managing traffic based on pollution level and generating recommendations for road users. The aim is to reduce vehicle emissions in the most polluted road segments and optimizing the pollution levels. For this we propose the use of historical and real time pollution records and contextual data to calculate the air quality index on road networks and generate recommendations for reassigning traffic flow in order to improve the on-road air quality. The resulting air quality indexes are used in the system's traffic network generation, which the cartography is represented by a weighted graph. The weights evolve according to the pollution indexes and path properties and the graph is therefore dynamic. Furthermore, the systems use the available pollution data and meteorological records in order to predict the on-road pollutant levels by using an artificial neural network based prediction model. The proposed approach combines the benefits of multi-agent systems, Big data technology, machine learning tools and the available data sources. For the shortest path searching in the road network, we use the Dijkstra algorithm over Hadoop MapReduce framework. The use Hadoop framework in the data retrieve and analysis process has significantly improved the performance of the proposed system. Also, the agent technology allowed proposing a suitable solution in terms of robustness and agility.
Path optimization with limited sensing ability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Sung Ha, E-mail: kang@math.gatech.edu; Kim, Seong Jun, E-mail: skim396@math.gatech.edu; Zhou, Haomin, E-mail: hmzhou@math.gatech.edu
2015-10-15
We propose a computational strategy to find the optimal path for a mobile sensor with limited coverage to traverse a cluttered region. The goal is to find one of the shortest feasible paths to achieve the complete scan of the environment. We pose the problem in the level set framework, and first consider a related question of placing multiple stationary sensors to obtain the full surveillance of the environment. By connecting the stationary locations using the nearest neighbor strategy, we form the initial guess for the path planning problem of the mobile sensor. Then the path is optimized by reducingmore » its length, via solving a system of ordinary differential equations (ODEs), while maintaining the complete scan of the environment. Furthermore, we use intermittent diffusion, which converts the ODEs into stochastic differential equations (SDEs), to find an optimal path whose length is globally minimal. To improve the computation efficiency, we introduce two techniques, one to remove redundant connecting points to reduce the dimension of the system, and the other to deal with the entangled path so the solution can escape the local traps. Numerical examples are shown to illustrate the effectiveness of the proposed method.« less
Evidence of Probabilistic Behaviour in Protein Interaction Networks
2008-01-31
Evidence of degree-weighted connectivity in nine PPI networks. a, Homo sapiens (human); b, Drosophila melanogaster (fruit fly); c-e, Saccharomyces...illustrates maps for the networks of Homo sapiens and Dro- sophila melanogaster, while maps for the remaining net- works are provided in Additional file 2. As...protein-protein interaction networks. a, Homo sapiens ; b, Drosophila melanogaster. Distances shown as average shortest path lengths L(k1, k2) between
Modeling Network Interdiction Tasks
2015-09-17
they may attack the flaw to cause widespread chaos. Attacks such as these are considered a form of network interdiction. Assessing the networks over...and forms a foundation for the techniques of the measures and models approaches of the research framework, which is depicted in Figure 2. The...ensures the distance of the shortest (i, j) path is computed. This insight is attributed to Warshall [62]. The algorithm’s present form is attributed
Arias, Carlos Roberto; Yeh, Hsiang-Yuan; Soo, Von-Wun
2012-01-01
Finding a genetic disease-related gene is not a trivial task. Therefore, computational methods are needed to present clues to the biomedical community to explore genes that are more likely to be related to a specific disease as biomarker. We present biomarker identification problem using gene prioritization method called gene prioritization from microarray data based on shortest paths, extended with structural and biological properties and edge flux using voting scheme (GP-MIDAS-VXEF). The method is based on finding relevant interactions on protein interaction networks, then scoring the genes using shortest paths and topological analysis, integrating the results using a voting scheme and a biological boosting. We applied two experiments, one is prostate primary and normal samples and the other is prostate primary tumor with and without lymph nodes metastasis. We used 137 truly prostate cancer genes as benchmark. In the first experiment, GP-MIDAS-VXEF outperforms all the other state-of-the-art methods in the benchmark by retrieving the truest related genes from the candidate set in the top 50 scores found. We applied the same technique to infer the significant biomarkers in prostate cancer with lymph nodes metastasis which is not established well. PMID:22654636
NASA Astrophysics Data System (ADS)
van der Linden, Joost H.; Narsilio, Guillermo A.; Tordesillas, Antoinette
2016-08-01
We present a data-driven framework to study the relationship between fluid flow at the macroscale and the internal pore structure, across the micro- and mesoscales, in porous, granular media. Sphere packings with varying particle size distribution and confining pressure are generated using the discrete element method. For each sample, a finite element analysis of the fluid flow is performed to compute the permeability. We construct a pore network and a particle contact network to quantify the connectivity of the pores and particles across the mesoscopic spatial scales. Machine learning techniques for feature selection are employed to identify sets of microstructural properties and multiscale complex network features that optimally characterize permeability. We find a linear correlation (in log-log scale) between permeability and the average closeness centrality of the weighted pore network. With the pore network links weighted by the local conductance, the average closeness centrality represents a multiscale measure of efficiency of flow through the pore network in terms of the mean geodesic distance (or shortest path) between all pore bodies in the pore network. Specifically, this study objectively quantifies a hypothesized link between high permeability and efficient shortest paths that thread through relatively large pore bodies connected to each other by high conductance pore throats, embodying connectivity and pore structure.
The drug target genes show higher evolutionary conservation than non-target genes.
Lv, Wenhua; Xu, Yongdeng; Guo, Yiying; Yu, Ziqi; Feng, Guanglong; Liu, Panpan; Luan, Meiwei; Zhu, Hongjie; Liu, Guiyou; Zhang, Mingming; Lv, Hongchao; Duan, Lian; Shang, Zhenwei; Li, Jin; Jiang, Yongshuai; Zhang, Ruijie
2016-01-26
Although evidence indicates that drug target genes share some common evolutionary features, there have been few studies analyzing evolutionary features of drug targets from an overall level. Therefore, we conducted an analysis which aimed to investigate the evolutionary characteristics of drug target genes. We compared the evolutionary conservation between human drug target genes and non-target genes by combining both the evolutionary features and network topological properties in human protein-protein interaction network. The evolution rate, conservation score and the percentage of orthologous genes of 21 species were included in our study. Meanwhile, four topological features including the average shortest path length, betweenness centrality, clustering coefficient and degree were considered for comparison analysis. Then we got four results as following: compared with non-drug target genes, 1) drug target genes had lower evolutionary rates; 2) drug target genes had higher conservation scores; 3) drug target genes had higher percentages of orthologous genes and 4) drug target genes had a tighter network structure including higher degrees, betweenness centrality, clustering coefficients and lower average shortest path lengths. These results demonstrate that drug target genes are more evolutionarily conserved than non-drug target genes. We hope that our study will provide valuable information for other researchers who are interested in evolutionary conservation of drug targets.
Indoor Navigation Design Integrated with Smart Phones and Rfid Devices
NASA Astrophysics Data System (ADS)
Ortakci, Y.; Demiral, E.; Atila, U.; Karas, I. R.
2015-10-01
High rise, complex and huge buildings in the cities are almost like a small city with their tens of floors, hundreds of corridors and rooms and passages. Due to size and complexity of these buildings, people need guidance to find their way to the destination in these buildings. In this study, a mobile application is developed to visualize pedestrian's indoor position as 3D in their smartphone and RFID Technology is used to detect the position of pedestrian. While the pedestrian is walking on his/her way on the route, smartphone will guide the pedestrian by displaying the photos of indoor environment on the route. Along the tour, an RFID (Radio-Frequency Identification) device is integrated to the system. The pedestrian will carry the RFID device during his/her tour in the building. The RFID device will send the position data to the server directly in every two seconds periodically. On the other side, the pedestrian will just select the destination point in the mobile application on smartphone and sent the destination point to the server. The shortest path from the pedestrian position to the destination point is found out by the script on the server. This script also sends the environment photo of the first node on the acquired shortest path to the client as an indoor navigation module.
Reducing 4D CT artifacts using optimized sorting based on anatomic similarity.
Johnston, Eric; Diehn, Maximilian; Murphy, James D; Loo, Billy W; Maxim, Peter G
2011-05-01
Four-dimensional (4D) computed tomography (CT) has been widely used as a tool to characterize respiratory motion in radiotherapy. The two most commonly used 4D CT algorithms sort images by the associated respiratory phase or displacement into a predefined number of bins, and are prone to image artifacts at transitions between bed positions. The purpose of this work is to demonstrate a method of reducing motion artifacts in 4D CT by incorporating anatomic similarity into phase or displacement based sorting protocols. Ten patient datasets were retrospectively sorted using both the displacement and phase based sorting algorithms. Conventional sorting methods allow selection of only the nearest-neighbor image in time or displacement within each bin. In our method, for each bed position either the displacement or the phase defines the center of a bin range about which several candidate images are selected. The two dimensional correlation coefficients between slices bordering the interface between adjacent couch positions are then calculated for all candidate pairings. Two slices have a high correlation if they are anatomically similar. Candidates from each bin are then selected to maximize the slice correlation over the entire data set using the Dijkstra's shortest path algorithm. To assess the reduction of artifacts, two thoracic radiation oncologists independently compared the resorted 4D datasets pairwise with conventionally sorted datasets, blinded to the sorting method, to choose which had the least motion artifacts. Agreement between reviewers was evaluated using the weighted kappa score. Anatomically based image selection resulted in 4D CT datasets with significantly reduced motion artifacts with both displacement (P = 0.0063) and phase sorting (P = 0.00022). There was good agreement between the two reviewers, with complete agreement 34 times and complete disagreement 6 times. Optimized sorting using anatomic similarity significantly reduces 4D CT motion artifacts compared to conventional phase or displacement based sorting. This improved sorting algorithm is a straightforward extension of the two most common 4D CT sorting algorithms.
NASA Astrophysics Data System (ADS)
de Bruine, Marco; Apituley, Arnoud; Donovan, David Patrick; Klein Baltink, Hendrik; Jorrit de Haij, Marijn
2017-05-01
The height of the atmospheric boundary layer or mixing layer is an important parameter for understanding the dynamics of the atmosphere and the dispersion of trace gases and air pollution. The height of the mixing layer (MLH) can be retrieved, among other methods, from lidar or ceilometer backscatter data. These instruments use the vertical backscatter lidar signal to infer MLHL, which is feasible because the main sources of aerosols are situated at the surface and vertical gradients are expected to go from the aerosol loaded mixing layer close to the ground to the cleaner free atmosphere above. Various lidar/ceilometer algorithms are currently applied, but accounting for MLH temporal development is not always well taken care of. As a result, MLHL retrievals may jump between different atmospheric layers, rather than reliably track true MLH development over time. This hampers the usefulness of MLHL time series, e.g. for process studies, model validation/verification and climatology. Here, we introduce a new method pathfinder
, which applies graph theory to simultaneously evaluate time frames that are consistent with scales of MLH dynamics, leading to coherent tracking of MLH. Starting from a grid of gradients in the backscatter profiles, MLH development is followed using Dijkstra's shortest path algorithm (Dijkstra, 1959). Locations of strong gradients are connected under the condition that subsequent points on the path are limited to a restricted vertical range. The search is further guided by rules based on the presence of clouds and residual layers. After being applied to backscatter lidar data from Cabauw, excellent agreement is found with wind profiler retrievals for a 12-day period in 2008 (R2 = 0.90) and visual judgment of lidar data during a full year in 2010 (R2 = 0.96). These values compare favourably to other MLHL methods applied to the same lidar data set and corroborate more consistent MLH tracking by pathfinder.
A Minimum Path Algorithm Among 3D-Polyhedral Objects
NASA Astrophysics Data System (ADS)
Yeltekin, Aysin
1989-03-01
In this work we introduce a minimum path theorem for 3D case. We also develop an algorithm based on the theorem we prove. The algorithm will be implemented on the software package we develop using C language. The theorem we introduce states that; "Given the initial point I, final point F and S be the set of finite number of static obstacles then an optimal path P from I to F, such that PA S = 0 is composed of straight line segments which are perpendicular to the edge segments of the objects." We prove the theorem as well as we develop the following algorithm depending on the theorem to find the minimum path among 3D-polyhedral objects. The algorithm generates the point Qi on edge ei such that at Qi one can find the line which is perpendicular to the edge and the IF line. The algorithm iteratively provides a new set of initial points from Qi and exploits all possible paths. Then the algorithm chooses the minimum path among the possible ones. The flowchart of the program as well as the examination of its numerical properties are included.
Entanglement-Gradient Routing for Quantum Networks.
Gyongyosi, Laszlo; Imre, Sandor
2017-10-27
We define the entanglement-gradient routing scheme for quantum repeater networks. The routing framework fuses the fundamentals of swarm intelligence and quantum Shannon theory. Swarm intelligence provides nature-inspired solutions for problem solving. Motivated by models of social insect behavior, the routing is performed using parallel threads to determine the shortest path via the entanglement gradient coefficient, which describes the feasibility of the entangled links and paths of the network. The routing metrics are derived from the characteristics of entanglement transmission and relevant measures of entanglement distribution in quantum networks. The method allows a moderate complexity decentralized routing in quantum repeater networks. The results can be applied in experimental quantum networking, future quantum Internet, and long-distance quantum communications.
Automated flight path planning for virtual endoscopy.
Paik, D S; Beaulieu, C F; Jeffrey, R B; Rubin, G D; Napel, S
1998-05-01
In this paper, a novel technique for rapid and automatic computation of flight paths for guiding virtual endoscopic exploration of three-dimensional medical images is described. While manually planning flight paths is a tedious and time consuming task, our algorithm is automated and fast. Our method for positioning the virtual camera is based on the medial axis transform but is much more computationally efficient. By iteratively correcting a path toward the medial axis, the necessity of evaluating simple point criteria during morphological thinning is eliminated. The virtual camera is also oriented in a stable viewing direction, avoiding sudden twists and turns. We tested our algorithm on volumetric data sets of eight colons, one aorta and one bronchial tree. The algorithm computed the flight paths in several minutes per volume on an inexpensive workstation with minimal computation time added for multiple paths through branching structures (10%-13% per extra path). The results of our algorithm are smooth, centralized paths that aid in the task of navigation in virtual endoscopic exploration of three-dimensional medical images.
Explicitly computing geodetic coordinates from Cartesian coordinates
NASA Astrophysics Data System (ADS)
Zeng, Huaien
2013-04-01
This paper presents a new form of quartic equation based on Lagrange's extremum law and a Groebner basis under the constraint that the geodetic height is the shortest distance between a given point and the reference ellipsoid. A very explicit and concise formulae of the quartic equation by Ferrari's line is found, which avoids the need of a good starting guess for iterative methods. A new explicit algorithm is then proposed to compute geodetic coordinates from Cartesian coordinates. The convergence region of the algorithm is investigated and the corresponding correct solution is given. Lastly, the algorithm is validated with numerical experiments.
Hierarchical heuristic search using a Gaussian mixture model for UAV coverage planning.
Lin, Lanny; Goodrich, Michael A
2014-12-01
During unmanned aerial vehicle (UAV) search missions, efficient use of UAV flight time requires flight paths that maximize the probability of finding the desired subject. The probability of detecting the desired subject based on UAV sensor information can vary in different search areas due to environment elements like varying vegetation density or lighting conditions, making it likely that the UAV can only partially detect the subject. This adds another dimension of complexity to the already difficult (NP-Hard) problem of finding an optimal search path. We present a new class of algorithms that account for partial detection in the form of a task difficulty map and produce paths that approximate the payoff of optimal solutions. The algorithms use the mode goodness ratio heuristic that uses a Gaussian mixture model to prioritize search subregions. The algorithms search for effective paths through the parameter space at different levels of resolution. We compare the performance of the new algorithms against two published algorithms (Bourgault's algorithm and LHC-GW-CONV algorithm) in simulated searches with three real search and rescue scenarios, and show that the new algorithms outperform existing algorithms significantly and can yield efficient paths that yield payoffs near the optimal.
A Geographic Optimization Approach to Coast Guard Ship Basing
2015-06-01
information found an optimal result for partition- ing. Carlsson applies the travelling salesman problem (tries to find the shortest path to visit a list of...maximum 200 words) This thesis studies the problem of finding efficient ship base locations, area of operations (AO) among bases, and ship assignments...for a coast guard (CG) organization. This problem is faced by many CGs around the world and is motivated by the need to optimize operational outcomes
Improving the Air Mobility Command’s Air Refueler Route Building Capabilities
2014-03-27
routing tool. Sundar and Rathinam [18] also study a traveling salesman version of the problem in the unmanned aerial vehicle realm. Their focus is on...constrained shortest path with fuel limitations. The objective is to minimize the distance traveled . Some aircraft routing problems involve...radius and network density their only limitations. 4 O’Rourke et al. [15] examine a traveling salesman version of aircraft routing in the unmanned aerial
Finding Minimal Addition Chains with a Particle Swarm Optimization Algorithm
NASA Astrophysics Data System (ADS)
León-Javier, Alejandro; Cruz-Cortés, Nareli; Moreno-Armendáriz, Marco A.; Orantes-Jiménez, Sandra
The addition chains with minimal length are the basic block to the optimal computation of finite field exponentiations. It has very important applications in the areas of error-correcting codes and cryptography. However, obtaining the shortest addition chains for a given exponent is a NP-hard problem. In this work we propose the adaptation of a Particle Swarm Optimization algorithm to deal with this problem. Our proposal is tested on several exponents whose addition chains are considered hard to find. We obtained very promising results.
Evaluating progressive-rendering algorithms in appearance design tasks.
Jiawei Ou; Karlik, Ondrej; Křivánek, Jaroslav; Pellacini, Fabio
2013-01-01
Progressive rendering is becoming a popular alternative to precomputational approaches to appearance design. However, progressive algorithms create images exhibiting visual artifacts at early stages. A user study investigated these artifacts' effects on user performance in appearance design tasks. Novice and expert subjects performed lighting and material editing tasks with four algorithms: random path tracing, quasirandom path tracing, progressive photon mapping, and virtual-point-light rendering. Both the novices and experts strongly preferred path tracing to progressive photon mapping and virtual-point-light rendering. None of the participants preferred random path tracing to quasirandom path tracing or vice versa; the same situation held between progressive photon mapping and virtual-point-light rendering. The user workflow didn’t differ significantly with the four algorithms. The Web Extras include a video showing how four progressive-rendering algorithms converged (at http://youtu.be/ck-Gevl1e9s), the source code used, and other supplementary materials.
An experimental analysis on OSPF-TE convergence time
NASA Astrophysics Data System (ADS)
Huang, S.; Kitayama, K.; Cugini, F.; Paolucci, F.; Giorgetti, A.; Valcarenghi, L.; Castoldi, P.
2008-11-01
Open shortest path first (OSPF) protocol is commonly used as an interior gateway protocol (IGP) in MPLS and generalized MPLS (GMPLS) networks to determine the topology over which label-switched paths (LSPs) can be established. Traffic-engineering extensions (network states such as link bandwidth information, available wavelengths, signal quality, etc) have been recently enabled in OSPF (henceforth, called OSPF-TE) to support shortest path first (SPF) tree calculation upon different purposes, thus possibly achieving optimal path computation and helping improve resource utilization efficiency. Adding these features into routing phase can exploit the OSPF robustness, and no additional network component is required to manage the traffic-engineering information. However, this traffic-engineering enhancement also complicates OSPF behavior. Since network states change frequently upon the dynamic trafficengineered LSP setup and release, the network is easily driven from a stable state to unstable operating regimes. In this paper, we focus on studying the OSPF-TE stability in terms of convergence time. Convergence time is referred to the time spent by the network to go back to steady states upon any network state change. An external observation method (based on black-box method) is employed to estimate the convergence time. Several experimental test-beds are developed to emulate dynamic LSP setup/release, re-routing upon single-link failure. The experimental results show that with OSPF-TE the network requires more time to converge compared to the conventional OSPF protocol without TE extension. Especially, in case of wavelength-routed optical network (WRON), introducing per wavelength availability and wavelength continuity constraint to OSPF-TE suffers severe convergence time and a large number of advertised link state advertisements (LSAs). Our study implies that long convergence time and large number of LSAs flooded in the network might cause scalability problems in OSPF-TE and impose limitations on OSPF-TE applications. New solutions to mitigate the s convergence time and to reduce the amount of state information are desired in the future.
NASA Astrophysics Data System (ADS)
Thomas, Romain; Donikian, Stéphane
Many articles dealing with agent navigation in an urban environment involve the use of various heuristics. Among them, one is prevalent: the search of the shortest path between two points. This strategy impairs the realism of the resulting behaviour. Indeed, psychological studies state that such a navigation behaviour is conditioned by the knowledge the subject has of its environment. Furthermore, the path a city dweller can follow may be influenced by many factors like his daily habits, or the path simplicity in term of minimum of direction changes. It appeared interesting to us to investigate how to mimic human navigation behavior with an autonomous agent. The solution we propose relies on an architecture based on a generic model of informed environment, a spatial cognitive map model merged with a human-like memory model, representing the agent's temporal knowledge of the environment, it gained along its experiences of navigation.
NASA Astrophysics Data System (ADS)
Chen, Chunfeng; Liu, Hua; Fan, Ge
2005-02-01
In this paper we consider the problem of designing a network of optical cross-connects(OXCs) to provide end-to-end lightpath services to label switched routers (LSRs). Like some previous work, we select the number of OXCs as our objective. Compared with the previous studies, we take into account the fault-tolerant characteristic of logical topology. First of all, using a Prufer number randomly generated, we generate a tree. By adding some edges to the tree, we can obtain a physical topology which consists of a certain number of OXCs and fiber links connecting OXCs. It is notable that we for the first time limit the number of layers of the tree produced according to the method mentioned above. Then we design the logical topologies based on the physical topologies mentioned above. In principle, we will select the shortest path in addition to some consideration on the load balancing of links and the limitation owing to the SRLG. Notably, we implement the routing algorithm for the nodes in increasing order of the degree of the nodes. With regarding to the problem of the wavelength assignment, we adopt the heuristic algorithm of the graph coloring commonly used. It is clear our problem is computationally intractable especially when the scale of the network is large. We adopt the taboo search algorithm to find the near optimal solution to our objective. We present numerical results for up to 1000 LSRs and for a wide range of system parameters such as the number of wavelengths supported by each fiber link and traffic. The results indicate that it is possible to build large-scale optical networks with rich connectivity in a cost-effective manner, using relatively few but properly dimensioned OXCs.
Dal Palú, Alessandro; Spyrakis, Francesca; Cozzini, Pietro
2012-03-01
We describe the potential of a novel method, based on Constraint Logic Programming (CLP), developed for an exhaustive sampling of protein conformational space. The CLP framework proposed here has been tested and applied to the estrogen receptor, whose activity and function is strictly related to its intrinsic, and well known, dynamics. We have investigated in particular the flexibility of H12, focusing on the pathways followed by the helix when moving from one stable crystallographic conformation to the others. Millions of geometrically feasible conformations were generated, selected and the traces connecting the different forms were determined by using a shortest path algorithm. The preliminary analyses showed a marked agreement between the crystallographic agonist-like, antagonist-like and hypothetical apo forms, and the corresponding conformations identified by the CLP framework. These promising results, together with the short computational time required to perform the analyses, make this constraint-based approach a valuable tool for the study of protein folding prediction. The CLP framework enables one to consider various structural and energetic scenarious, without changing the core algorithm. To show the feasibility of the method, we intentionally choose a pure geometric setting, neglecting the energetic evaluation of the poses, in order to be independent from a specific force field and to provide the possibility of comparing different behaviours associated with various energy models. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Multi-level tree analysis of pulmonary artery/vein trees in non-contrast CT images
NASA Astrophysics Data System (ADS)
Gao, Zhiyun; Grout, Randall W.; Hoffman, Eric A.; Saha, Punam K.
2012-02-01
Diseases like pulmonary embolism and pulmonary hypertension are associated with vascular dystrophy. Identifying such pulmonary artery/vein (A/V) tree dystrophy in terms of quantitative measures via CT imaging significantly facilitates early detection of disease or a treatment monitoring process. A tree structure, consisting of nodes and connected arcs, linked to the volumetric representation allows multi-level geometric and volumetric analysis of A/V trees. Here, a new theory and method is presented to generate multi-level A/V tree representation of volumetric data and to compute quantitative measures of A/V tree geometry and topology at various tree hierarchies. The new method is primarily designed on arc skeleton computation followed by a tree construction based topologic and geometric analysis of the skeleton. The method starts with a volumetric A/V representation as input and generates its topologic and multi-level volumetric tree representations long with different multi-level morphometric measures. A new recursive merging and pruning algorithms are introduced to detect bad junctions and noisy branches often associated with digital geometric and topologic analysis. Also, a new notion of shortest axial path is introduced to improve the skeletal arc joining two junctions. The accuracy of the multi-level tree analysis algorithm has been evaluated using computer generated phantoms and pulmonary CT images of a pig vessel cast phantom while the reproducibility of method is evaluated using multi-user A/V separation of in vivo contrast-enhanced CT images of a pig lung at different respiratory volumes.
Dumas, Marc-Emmanuel; Domange, Céline; Calderari, Sophie; Martínez, Andrea Rodríguez; Ayala, Rafael; Wilder, Steven P; Suárez-Zamorano, Nicolas; Collins, Stephan C; Wallis, Robert H; Gu, Quan; Wang, Yulan; Hue, Christophe; Otto, Georg W; Argoud, Karène; Navratil, Vincent; Mitchell, Steve C; Lindon, John C; Holmes, Elaine; Cazier, Jean-Baptiste; Nicholson, Jeremy K; Gauguier, Dominique
2016-09-30
The genetic regulation of metabolic phenotypes (i.e., metabotypes) in type 2 diabetes mellitus occurs through complex organ-specific cellular mechanisms and networks contributing to impaired insulin secretion and insulin resistance. Genome-wide gene expression profiling systems can dissect the genetic contributions to metabolome and transcriptome regulations. The integrative analysis of multiple gene expression traits and metabolic phenotypes (i.e., metabotypes) together with their underlying genetic regulation remains a challenge. Here, we introduce a systems genetics approach based on the topological analysis of a combined molecular network made of genes and metabolites identified through expression and metabotype quantitative trait locus mapping (i.e., eQTL and mQTL) to prioritise biological characterisation of candidate genes and traits. We used systematic metabotyping by 1 H NMR spectroscopy and genome-wide gene expression in white adipose tissue to map molecular phenotypes to genomic blocks associated with obesity and insulin secretion in a series of rat congenic strains derived from spontaneously diabetic Goto-Kakizaki (GK) and normoglycemic Brown-Norway (BN) rats. We implemented a network biology strategy approach to visualize the shortest paths between metabolites and genes significantly associated with each genomic block. Despite strong genomic similarities (95-99 %) among congenics, each strain exhibited specific patterns of gene expression and metabotypes, reflecting the metabolic consequences of series of linked genetic polymorphisms in the congenic intervals. We subsequently used the congenic panel to map quantitative trait loci underlying specific mQTLs and genome-wide eQTLs. Variation in key metabolites like glucose, succinate, lactate, or 3-hydroxybutyrate and second messenger precursors like inositol was associated with several independent genomic intervals, indicating functional redundancy in these regions. To navigate through the complexity of these association networks we mapped candidate genes and metabolites onto metabolic pathways and implemented a shortest path strategy to highlight potential mechanistic links between metabolites and transcripts at colocalized mQTLs and eQTLs. Minimizing the shortest path length drove prioritization of biological validations by gene silencing. These results underline the importance of network-based integration of multilevel systems genetics datasets to improve understanding of the genetic architecture of metabotype and transcriptomic regulation and to characterize novel functional roles for genes determining tissue-specific metabolism.
M-Isomap: Orthogonal Constrained Marginal Isomap for Nonlinear Dimensionality Reduction.
Zhang, Zhao; Chow, Tommy W S; Zhao, Mingbo
2013-02-01
Isomap is a well-known nonlinear dimensionality reduction (DR) method, aiming at preserving geodesic distances of all similarity pairs for delivering highly nonlinear manifolds. Isomap is efficient in visualizing synthetic data sets, but it usually delivers unsatisfactory results in benchmark cases. This paper incorporates the pairwise constraints into Isomap and proposes a marginal Isomap (M-Isomap) for manifold learning. The pairwise Cannot-Link and Must-Link constraints are used to specify the types of neighborhoods. M-Isomap computes the shortest path distances over constrained neighborhood graphs and guides the nonlinear DR through separating the interclass neighbors. As a result, large margins between both interand intraclass clusters are delivered and enhanced compactness of intracluster points is achieved at the same time. The validity of M-Isomap is examined by extensive simulations over synthetic, University of California, Irvine, and benchmark real Olivetti Research Library, YALE, and CMU Pose, Illumination, and Expression databases. The data visualization and clustering power of M-Isomap are compared with those of six related DR methods. The visualization results show that M-Isomap is able to deliver more separate clusters. Clustering evaluations also demonstrate that M-Isomap delivers comparable or even better results than some state-of-the-art DR algorithms.
Computing Maximum Cardinality Matchings in Parallel on Bipartite Graphs via Tree-Grafting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azad, Ariful; Buluc, Aydn; Pothen, Alex
It is difficult to obtain high performance when computing matchings on parallel processors because matching algorithms explicitly or implicitly search for paths in the graph, and when these paths become long, there is little concurrency. In spite of this limitation, we present a new algorithm and its shared-memory parallelization that achieves good performance and scalability in computing maximum cardinality matchings in bipartite graphs. This algorithm searches for augmenting paths via specialized breadth-first searches (BFS) from multiple source vertices, hence creating more parallelism than single source algorithms. Algorithms that employ multiple-source searches cannot discard a search tree once no augmenting pathmore » is discovered from the tree, unlike algorithms that rely on single-source searches. We describe a novel tree-grafting method that eliminates most of the redundant edge traversals resulting from this property of multiple-source searches. We also employ the recent direction-optimizing BFS algorithm as a subroutine to discover augmenting paths faster. Our algorithm compares favorably with the current best algorithms in terms of the number of edges traversed, the average augmenting path length, and the number of iterations. Here, we provide a proof of correctness for our algorithm. Our NUMA-aware implementation is scalable to 80 threads of an Intel multiprocessor and to 240 threads on an Intel Knights Corner coprocessor. On average, our parallel algorithm runs an order of magnitude faster than the fastest algorithms available. The performance improvement is more significant on graphs with small matching number.« less
Computing Maximum Cardinality Matchings in Parallel on Bipartite Graphs via Tree-Grafting
Azad, Ariful; Buluc, Aydn; Pothen, Alex
2016-03-24
It is difficult to obtain high performance when computing matchings on parallel processors because matching algorithms explicitly or implicitly search for paths in the graph, and when these paths become long, there is little concurrency. In spite of this limitation, we present a new algorithm and its shared-memory parallelization that achieves good performance and scalability in computing maximum cardinality matchings in bipartite graphs. This algorithm searches for augmenting paths via specialized breadth-first searches (BFS) from multiple source vertices, hence creating more parallelism than single source algorithms. Algorithms that employ multiple-source searches cannot discard a search tree once no augmenting pathmore » is discovered from the tree, unlike algorithms that rely on single-source searches. We describe a novel tree-grafting method that eliminates most of the redundant edge traversals resulting from this property of multiple-source searches. We also employ the recent direction-optimizing BFS algorithm as a subroutine to discover augmenting paths faster. Our algorithm compares favorably with the current best algorithms in terms of the number of edges traversed, the average augmenting path length, and the number of iterations. Here, we provide a proof of correctness for our algorithm. Our NUMA-aware implementation is scalable to 80 threads of an Intel multiprocessor and to 240 threads on an Intel Knights Corner coprocessor. On average, our parallel algorithm runs an order of magnitude faster than the fastest algorithms available. The performance improvement is more significant on graphs with small matching number.« less
Invasion Percolation and Global Optimization
NASA Astrophysics Data System (ADS)
Barabási, Albert-László
1996-05-01
Invasion bond percolation (IBP) is mapped exactly into Prim's algorithm for finding the shortest spanning tree of a weighted random graph. Exploring this mapping, which is valid for arbitrary dimensions and lattices, we introduce a new IBP model that belongs to the same universality class as IBP and generates the minimal energy tree spanning the IBP cluster.
Path Planning Method in Multi-obstacle Marine Environment
NASA Astrophysics Data System (ADS)
Zhang, Jinpeng; Sun, Hanxv
2017-12-01
In this paper, an improved algorithm for particle swarm optimization is proposed for the application of underwater robot in the complex marine environment. Not only did consider to avoid obstacles when path planning, but also considered the current direction and the size effect on the performance of the robot dynamics. The algorithm uses the trunk binary tree structure to construct the path search space and A * heuristic search method is used in the search space to find a evaluation standard path. Then the particle swarm algorithm to optimize the path by adjusting evaluation function, which makes the underwater robot in the current navigation easier to control, and consume less energy.
The Threshold Shortest Path Interdiction Problem for Critical Infrastructure Resilience Analysis
2017-09-01
being pushed over the minimum designated threshold. 1.4 Motivation A simple setting to motivate this research is the “30 minutes or it’s free” guarantee...parallel network structure in Fig. 4.4 is simple in design , yet shows a relatively high resilience when compared to the other networks in general. The high...United States Naval Academy, 2002 Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN OPERATIONS RESEARCH
Effective Task Assignment and Motion Planning for Complex UAV Operations
2011-09-01
shortest path must be one of the following six different combinations of line segments and curvature arcs: RLR , LRL, RSR, LSL, RSL, LSR, where R is a...RSL, RLR , and their mirror images LSL, LSR, LRL, respectively. This section will discuss the minimum number of waypoints required in order for Dubins...point. Then the vehicle will fly to the third waypoint along it’s turn circle. Lemma 10. For the Dubins trajectories RLR and LRL, three waypoints
Why our patients (and we) need basic science research.
Schor, Nina F
2013-05-28
In times of fiscal austerity, the tendency is to seek instant, inexpensive gratification. In the case of biomedical research, this means the shortest path to practical clinical implementation. But fueling the translational pipeline with discovery depends critically on allowing the biomedical research community to follow their science where it takes them. Fiscal constraints carry with them the risk of squelching creativity and forfeiting the power of serendipity to provide the substrate for the translational engine in the future.
The Structure and Evolution of Buyer-Supplier Networks
Mizuno, Takayuki; Souma, Wataru; Watanabe, Tsutomu
2014-01-01
In this paper, we investigate the structure and evolution of customer-supplier networks in Japan using a unique dataset that contains information on customer and supplier linkages for more than 500,000 incorporated non-financial firms for the five years from 2008 to 2012. We find, first, that the number of customer links is unequal across firms; the customer link distribution has a power-law tail with an exponent of unity (i.e., it follows Zipf's law). We interpret this as implying that competition among firms to acquire new customers yields winners with a large number of customers, as well as losers with fewer customers. We also show that the shortest path length for any pair of firms is, on average, 4.3 links. Second, we find that link switching is relatively rare. Our estimates indicate that the survival rate per year for customer links is 92 percent and for supplier links 93 percent. Third and finally, we find that firm growth rates tend to be more highly correlated the closer two firms are to each other in a customer-supplier network (i.e., the smaller is the shortest path length for the two firms). This suggests that a non-negligible portion of fluctuations in firm growth stems from the propagation of microeconomic shocks – shocks affecting only a particular firm – through customer-supplier chains. PMID:25000368
The structure and evolution of buyer-supplier networks.
Mizuno, Takayuki; Souma, Wataru; Watanabe, Tsutomu
2014-01-01
In this paper, we investigate the structure and evolution of customer-supplier networks in Japan using a unique dataset that contains information on customer and supplier linkages for more than 500,000 incorporated non-financial firms for the five years from 2008 to 2012. We find, first, that the number of customer links is unequal across firms; the customer link distribution has a power-law tail with an exponent of unity (i.e., it follows Zipf's law). We interpret this as implying that competition among firms to acquire new customers yields winners with a large number of customers, as well as losers with fewer customers. We also show that the shortest path length for any pair of firms is, on average, 4.3 links. Second, we find that link switching is relatively rare. Our estimates indicate that the survival rate per year for customer links is 92 percent and for supplier links 93 percent. Third and finally, we find that firm growth rates tend to be more highly correlated the closer two firms are to each other in a customer-supplier network (i.e., the smaller is the shortest path length for the two firms). This suggests that a non-negligible portion of fluctuations in firm growth stems from the propagation of microeconomic shocks - shocks affecting only a particular firm - through customer-supplier chains.
Mobility based multicast routing in wireless mesh networks
NASA Astrophysics Data System (ADS)
Jain, Sanjeev; Tripathi, Vijay S.; Tiwari, Sudarshan
2013-01-01
There exist two fundamental approaches to multicast routing namely minimum cost trees and shortest path trees. The (MCT's) minimum cost tree is one which connects receiver and sources by providing a minimum number of transmissions (MNTs) the MNTs approach is generally used for energy constraint sensor and mobile ad hoc networks. In this paper we have considered node mobility and try to find out simulation based comparison of the (SPT's) shortest path tree, (MST's) minimum steiner trees and minimum number of transmission trees in wireless mesh networks by using the performance metrics like as an end to end delay, average jitter, throughput and packet delivery ratio, average unicast packet delivery ratio, etc. We have also evaluated multicast performance in the small and large wireless mesh networks. In case of multicast performance in the small networks we have found that when the traffic load is moderate or high the SPTs outperform the MSTs and MNTs in all cases. The SPTs have lowest end to end delay and average jitter in almost all cases. In case of multicast performance in the large network we have seen that the MSTs provide minimum total edge cost and minimum number of transmissions. We have also found that the one drawback of SPTs, when the group size is large and rate of multicast sending is high SPTs causes more packet losses to other flows as MCTs.
Betweenness centrality in a weighted network
NASA Astrophysics Data System (ADS)
Wang, Huijuan; Hernandez, Javier Martin; van Mieghem, Piet
2008-04-01
When transport in networks follows the shortest paths, the union of all shortest path trees G∪SPT can be regarded as the “transport overlay network.” Overlay networks such as peer-to-peer networks or virtual private networks can be considered as a subgraph of G∪SPT . The traffic through the network is examined by the betweenness Bl of links in the overlay G∪SPT . The strength of disorder can be controlled by, e.g., tuning the extreme value index α of the independent and identically distributed polynomial link weights. In the strong disorder limit (α→0) , all transport flows over a critical backbone, the minimum spanning tree (MST). We investigate the betweenness distributions of wide classes of trees, such as the MST of those well-known network models and of various real-world complex networks. All these trees with different degree distributions (e.g., uniform, exponential, or power law) are found to possess a power law betweenness distribution Pr[Bl=j]˜j-c . The exponent c seems to be positively correlated with the degree variance of the tree and to be insensitive of the size N of a network. In the weak disorder regime, transport in the network traverses many links. We show that a link with smaller link weight tends to carry more traffic. This negative correlation between link weight and betweenness depends on α and the structure of the underlying topology.
NASA Astrophysics Data System (ADS)
Yuniarto, Budi; Kurniawan, Robert
2017-03-01
PLS Path Modeling (PLS-PM) is different from covariance based SEM, where PLS-PM use an approach based on variance or component, therefore, PLS-PM is also known as a component based SEM. Multiblock Partial Least Squares (MBPLS) is a method in PLS regression which can be used in PLS Path Modeling which known as Multiblock PLS Path Modeling (MBPLS-PM). This method uses an iterative procedure in its algorithm. This research aims to modify MBPLS-PM with Back Propagation Neural Network approach. The result is MBPLS-PM algorithm can be modified using the Back Propagation Neural Network approach to replace the iterative process in backward and forward step to get the matrix t and the matrix u in the algorithm. By modifying the MBPLS-PM algorithm using Back Propagation Neural Network approach, the model parameters obtained are relatively not significantly different compared to model parameters obtained by original MBPLS-PM algorithm.
Effective distances for epidemics spreading on complex networks.
Iannelli, Flavio; Koher, Andreas; Brockmann, Dirk; Hövel, Philipp; Sokolov, Igor M
2017-01-01
We show that the recently introduced logarithmic metrics used to predict disease arrival times on complex networks are approximations of more general network-based measures derived from random walks theory. Using the daily air-traffic transportation data we perform numerical experiments to compare the infection arrival time with this alternative metric that is obtained by accounting for multiple walks instead of only the most probable path. The comparison with direct simulations reveals a higher correlation compared to the shortest-path approach used previously. In addition our method allows to connect fundamental observables in epidemic spreading with the cumulant-generating function of the hitting time for a Markov chain. Our results provides a general and computationally efficient approach using only algebraic methods.
Effective distances for epidemics spreading on complex networks
NASA Astrophysics Data System (ADS)
Iannelli, Flavio; Koher, Andreas; Brockmann, Dirk; Hövel, Philipp; Sokolov, Igor M.
2017-01-01
We show that the recently introduced logarithmic metrics used to predict disease arrival times on complex networks are approximations of more general network-based measures derived from random walks theory. Using the daily air-traffic transportation data we perform numerical experiments to compare the infection arrival time with this alternative metric that is obtained by accounting for multiple walks instead of only the most probable path. The comparison with direct simulations reveals a higher correlation compared to the shortest-path approach used previously. In addition our method allows to connect fundamental observables in epidemic spreading with the cumulant-generating function of the hitting time for a Markov chain. Our results provides a general and computationally efficient approach using only algebraic methods.
An efficient routing strategy for traffic dynamics on two-layer complex networks
NASA Astrophysics Data System (ADS)
Ma, Jinlong; Wang, Huiling; Zhang, Zhuxi; Zhang, Yi; Duan, Congwen; Qi, Zhaohui; Liu, Yu
2018-05-01
In order to alleviate traffic congestion on multilayer networks, designing an efficient routing strategy is one of the most important ways. In this paper, a novel routing strategy is proposed to reduce traffic congestion on two-layer networks. In the proposed strategy, the optimal paths in the physical layer are chosen by comprehensively considering the roles of nodes’ degrees of the two layers. Both numerical and analytical results indicate that our routing strategy can reasonably redistribute the traffic load of the physical layer, and thus the traffic capacity of two-layer complex networks are significantly enhanced compared with the shortest path routing (SPR) and the global awareness routing (GAR) strategies. This study may shed some light on the optimization of networked traffic dynamics.
A novel comparator featured with input data characteristic
NASA Astrophysics Data System (ADS)
Jiang, Xiaobo; Ye, Desheng; Xu, Xiangmin; Zheng, Shuai
2016-03-01
Two types of low-power asynchronous comparators featured with input data statistical characteristic are proposed in this article. The asynchronous ripple comparator stops comparing at the first unequal bit but delivers the result to the least significant bit. The pre-stop asynchronous comparator can completely stop comparing and obtain results immediately. The proposed and contrastive comparators were implemented in SMIC 0.18 μm process with different bit widths. Simulation shows that the proposed pre-stop asynchronous comparator features the lowest power consumption, shortest average propagation delay and highest area efficiency among the comparators. Data path of low-density parity check decoder using the proposed pre-stop asynchronous comparators are most power efficient compared with other data paths with synthesised, clock gating and bitwise competition logic comparators.
ELASTIC NET FOR COX'S PROPORTIONAL HAZARDS MODEL WITH A SOLUTION PATH ALGORITHM.
Wu, Yichao
2012-01-01
For least squares regression, Efron et al. (2004) proposed an efficient solution path algorithm, the least angle regression (LAR). They showed that a slight modification of the LAR leads to the whole LASSO solution path. Both the LAR and LASSO solution paths are piecewise linear. Recently Wu (2011) extended the LAR to generalized linear models and the quasi-likelihood method. In this work we extend the LAR further to handle Cox's proportional hazards model. The goal is to develop a solution path algorithm for the elastic net penalty (Zou and Hastie (2005)) in Cox's proportional hazards model. This goal is achieved in two steps. First we extend the LAR to optimizing the log partial likelihood plus a fixed small ridge term. Then we define a path modification, which leads to the solution path of the elastic net regularized log partial likelihood. Our solution path is exact and piecewise determined by ordinary differential equation systems.
Planning paths through a spatial hierarchy - Eliminating stair-stepping effects
NASA Technical Reports Server (NTRS)
Slack, Marc G.
1989-01-01
Stair-stepping effects are a result of the loss of spatial continuity resulting from the decomposition of space into a grid. This paper presents a path planning algorithm which eliminates stair-stepping effects induced by the grid-based spatial representation. The algorithm exploits a hierarchical spatial model to efficiently plan paths for a mobile robot operating in dynamic domains. The spatial model and path planning algorithm map to a parallel machine, allowing the system to operate incrementally, thereby accounting for unexpected events in the operating space.
Guided wave radiation from a point source in the proximity of a pipe bend
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brath, A. J.; Nagy, P. B.; Simonetti, F.
Throughout the oil and gas industry corrosion and erosion damage monitoring play a central role in managing asset integrity. Recently, the use of guided wave technology in conjunction with tomography techniques has provided the possibility of obtaining point-by-point maps of wall thickness loss over the entire volume of a pipeline section between two ring arrays of ultrasonic transducers. However, current research has focused on straight pipes while little work has been done on pipe bends which are also the most susceptible to developing damage. Tomography of the bend is challenging due to the complexity and computational cost of the 3-Dmore » elastic model required to accurately describe guided wave propagation. To overcome this limitation, we introduce a 2-D anisotropic inhomogeneous acoustic model which represents a generalization of the conventional unwrapping used for straight pipes. The shortest-path ray-tracing method is then applied to the 2-D model to compute ray paths and predict the arrival times of the fundamental flexural mode, A0, excited by a point source on the straight section of pipe entering the bend and detected on the opposite side. Good agreement is found between predictions and experiments performed on an 8” diameter (D) pipe with 1.5 D bend radius. The 2-D model also reveals the existence of an acoustic lensing effect which leads to a focusing phenomenon also confirmed by the experiments. The computational efficiency of the 2-D model makes it ideally suited for tomography algorithms.« less
NASA Astrophysics Data System (ADS)
Wang, Fu; Liu, Bo; Zhang, Lijia; Xin, Xiangjun; Tian, Qinghua; Zhang, Qi; Rao, Lan; Tian, Feng; Luo, Biao; Liu, Yingjun; Tang, Bao
2016-10-01
Elastic Optical Networks are considered to be a promising technology for future high-speed network. In this paper, we propose a RSA algorithm based on the ant colony optimization of minimum consecutiveness loss (ACO-MCL). Based on the effect of the spectrum consecutiveness loss on the pheromone in the ant colony optimization, the path and spectrum of the minimal impact on the network are selected for the service request. When an ant arrives at the destination node from the source node along a path, we assume that this path is selected for the request. We calculate the consecutiveness loss of candidate-neighbor link pairs along this path after the routing and spectrum assignment. Then, the networks update the pheromone according to the value of the consecutiveness loss. We save the path with the smallest value. After multiple iterations of the ant colony optimization, the final selection of the path is assigned for the request. The algorithms are simulated in different networks. The results show that ACO-MCL algorithm performs better in blocking probability and spectrum efficiency than other algorithms. Moreover, the ACO-MCL algorithm can effectively decrease spectrum fragmentation and enhance available spectrum consecutiveness. Compared with other algorithms, the ACO-MCL algorithm can reduce the blocking rate by at least 5.9% in heavy load.
Path generation algorithm for UML graphic modeling of aerospace test software
NASA Astrophysics Data System (ADS)
Qu, MingCheng; Wu, XiangHu; Tao, YongChao; Chen, Chao
2018-03-01
Aerospace traditional software testing engineers are based on their own work experience and communication with software development personnel to complete the description of the test software, manual writing test cases, time-consuming, inefficient, loopholes and more. Using the high reliability MBT tools developed by our company, the one-time modeling can automatically generate test case documents, which is efficient and accurate. UML model to describe the process accurately express the need to rely on the path is reached, the existing path generation algorithm are too simple, cannot be combined into a path and branch path with loop, or too cumbersome, too complicated arrangement generates a path is meaningless, for aerospace software testing is superfluous, I rely on our experience of ten load space, tailor developed a description of aerospace software UML graphics path generation algorithm.
Statistical Physics of Cascading Failures in Complex Networks
NASA Astrophysics Data System (ADS)
Panduranga, Nagendra Kumar
Systems such as the power grid, world wide web (WWW), and internet are categorized as complex systems because of the presence of a large number of interacting elements. For example, the WWW is estimated to have a billion webpages and understanding the dynamics of such a large number of individual agents (whose individual interactions might not be fully known) is a challenging task. Complex network representations of these systems have proved to be of great utility. Statistical physics is the study of emergence of macroscopic properties of systems from the characteristics of the interactions between individual molecules. Hence, statistical physics of complex networks has been an effective approach to study these systems. In this dissertation, I have used statistical physics to study two distinct phenomena in complex systems: i) Cascading failures and ii) Shortest paths in complex networks. Understanding cascading failures is considered to be one of the "holy grails" in the study of complex systems such as the power grid, transportation networks, and economic systems. Studying failures of these systems as percolation on complex networks has proved to be insightful. Previously, cascading failures have been studied extensively using two different models: k-core percolation and interdependent networks. The first part of this work combines the two models into a general model, solves it analytically, and validates the theoretical predictions through extensive computer simulations. The phase diagram of the percolation transition has been systematically studied as one varies the average local k-core threshold and the coupling between networks. The phase diagram of the combined processes is very rich and includes novel features that do not appear in the models which study each of the processes separately. For example, the phase diagram consists of first- and second-order transition regions separated by two tricritical lines that merge together and enclose a two-stage transition region. In the two-stage transition, the size of the giant component undergoes a first-order jump at a certain occupation probability followed by a continuous second-order transition at a smaller occupation probability. Furthermore, at certain fixed interdependencies, the percolation transition cycles from first-order to second-order to two-stage to first-order as the k-core threshold is increased. We setup the analytical equations describing the phase boundaries of the two-stage transition region and we derive the critical exponents for each type of transition. Understanding the shortest paths between individual elements in systems like communication networks and social media networks is important in the study of information cascades in these systems. Often, large heterogeneity can be present in the connections between nodes in these networks. Certain sets of nodes can be more highly connected among themselves than with the nodes from other sets. These sets of nodes are often referred to as 'communities'. The second part of this work studies the effect of the presence of communities on the distribution of shortest paths in a network using a modular Erdős-Renyi network model. In this model, the number of communities and the degree of modularity of the network can be tuned using the parameters of the model. We find that the model reaches a percolation threshold while tuning the degree of modularity of the network and the distribution of the shortest paths in the network can be used as an indicator of how the communities are connected.
Algorithms and Sensors for Small Robot Path Following
NASA Technical Reports Server (NTRS)
Hogg, Robert W.; Rankin, Arturo L.; Roumeliotis, Stergios I.; McHenry, Michael C.; Helmick, Daniel M.; Bergh, Charles F.; Matthies, Larry
2002-01-01
Tracked mobile robots in the 20 kg size class are under development for applications in urban reconnaissance. For efficient deployment, it is desirable for teams of robots to be able to automatically execute path following behaviors, with one or more followers tracking the path taken by a leader. The key challenges to enabling such a capability are (l) to develop sensor packages for such small robots that can accurately determine the path of the leader and (2) to develop path following algorithms for the subsequent robots. To date, we have integrated gyros, accelerometers, compass/inclinometers, odometry, and differential GPS into an effective sensing package. This paper describes the sensor package, sensor processing algorithm, and path tracking algorithm we have developed for the leader/follower problem in small robots and shows the result of performance characterization of the system. We also document pragmatic lessons learned about design, construction, and electromagnetic interference issues particular to the performance of state sensors on small robots.
Frequent statistics of link-layer bit stream data based on AC-IM algorithm
NASA Astrophysics Data System (ADS)
Cao, Chenghong; Lei, Yingke; Xu, Yiming
2017-08-01
At present, there are many relevant researches on data processing using classical pattern matching and its improved algorithm, but few researches on statistical data of link-layer bit stream. This paper adopts a frequent statistical method of link-layer bit stream data based on AC-IM algorithm for classical multi-pattern matching algorithms such as AC algorithm has high computational complexity, low efficiency and it cannot be applied to binary bit stream data. The method's maximum jump distance of the mode tree is length of the shortest mode string plus 3 in case of no missing? In this paper, theoretical analysis is made on the principle of algorithm construction firstly, and then the experimental results show that the algorithm can adapt to the binary bit stream data environment and extract the frequent sequence more accurately, the effect is obvious. Meanwhile, comparing with the classical AC algorithm and other improved algorithms, AC-IM algorithm has a greater maximum jump distance and less time-consuming.
Chandrasekaran, Srinivas Niranj; Das, Jhuma; Dokholyan, Nikolay V.; Carter, Charles W.
2016-01-01
PATH rapidly computes a path and a transition state between crystal structures by minimizing the Onsager-Machlup action. It requires input parameters whose range of values can generate different transition-state structures that cannot be uniquely compared with those generated by other methods. We outline modifications to estimate these input parameters to circumvent these difficulties and validate the PATH transition states by showing consistency between transition-states derived by different algorithms for unrelated protein systems. Although functional protein conformational change trajectories are to a degree stochastic, they nonetheless pass through a well-defined transition state whose detailed structural properties can rapidly be identified using PATH. PMID:26958584
Note: A pure-sampling quantum Monte Carlo algorithm with independent Metropolis.
Vrbik, Jan; Ospadov, Egor; Rothstein, Stuart M
2016-07-14
Recently, Ospadov and Rothstein published a pure-sampling quantum Monte Carlo algorithm (PSQMC) that features an auxiliary Path Z that connects the midpoints of the current and proposed Paths X and Y, respectively. When sufficiently long, Path Z provides statistical independence of Paths X and Y. Under those conditions, the Metropolis decision used in PSQMC is done without any approximation, i.e., not requiring microscopic reversibility and without having to introduce any G(x → x'; τ) factors into its decision function. This is a unique feature that contrasts with all competing reptation algorithms in the literature. An example illustrates that dependence of Paths X and Y has adverse consequences for pure sampling.
Note: A pure-sampling quantum Monte Carlo algorithm with independent Metropolis
NASA Astrophysics Data System (ADS)
Vrbik, Jan; Ospadov, Egor; Rothstein, Stuart M.
2016-07-01
Recently, Ospadov and Rothstein published a pure-sampling quantum Monte Carlo algorithm (PSQMC) that features an auxiliary Path Z that connects the midpoints of the current and proposed Paths X and Y, respectively. When sufficiently long, Path Z provides statistical independence of Paths X and Y. Under those conditions, the Metropolis decision used in PSQMC is done without any approximation, i.e., not requiring microscopic reversibility and without having to introduce any G(x → x'; τ) factors into its decision function. This is a unique feature that contrasts with all competing reptation algorithms in the literature. An example illustrates that dependence of Paths X and Y has adverse consequences for pure sampling.
Research on cutting path optimization of sheet metal parts based on ant colony algorithm
NASA Astrophysics Data System (ADS)
Wu, Z. Y.; Ling, H.; Li, L.; Wu, L. H.; Liu, N. B.
2017-09-01
In view of the disadvantages of the current cutting path optimization methods of sheet metal parts, a new method based on ant colony algorithm was proposed in this paper. The cutting path optimization problem of sheet metal parts was taken as the research object. The essence and optimization goal of the optimization problem were presented. The traditional serial cutting constraint rule was improved. The cutting constraint rule with cross cutting was proposed. The contour lines of parts were discretized and the mathematical model of cutting path optimization was established. Thus the problem was converted into the selection problem of contour lines of parts. Ant colony algorithm was used to solve the problem. The principle and steps of the algorithm were analyzed.
Automated muscle wrapping using finite element contact detection.
Favre, Philippe; Gerber, Christian; Snedeker, Jess G
2010-07-20
Realistic muscle path representation is essential to musculoskeletal modeling of joint function. Algorithms predicting these muscle paths typically rely on a labor intensive predefinition of via points or underlying geometries to guide wrapping for given joint positions. While muscle wrapping using anatomically precise three-dimensional (3D) finite element (FE) models of bone and muscle has been achieved, computational expense and pre-processing associated with this approach exclude its use in applications such as subject-specific modeling. With the intention of combining advantageous features of both approaches, an intermediate technique relying on contact detection capabilities of commercial FE packages is presented. We applied the approach to the glenohumeral joint, and validated the method by comparison against existing experimental data. Individual muscles were modeled as a straight series of deformable beam elements and bones as anatomically precise 3D rigid bodies. Only the attachment locations and a default orientation of the undeformed muscle segment were pre-defined. The joint was then oriented in a static position of interest. The muscle segment free end was then moved along the shortest Euclidean path to its origin on the scapula, wrapping the muscle along bone surfaces by relying on software contact detection. After wrapping for a given position, the resulting moment arm was computed as the perpendicular distance from the line of action vector to the humeral head center of rotation. This approach reasonably predicted muscle length and moment arm for 27 muscle segments when compared to experimental measurements over a wide range of shoulder motion. Artificial via points or underlying contact geometries were avoided, contact detection and multiobject wrapping on the bone surfaces were automatic, and low computational cost permitted wrapping of individual muscles within seconds on a standard desktop PC. These advantages may be valuable for both general and subject-specific musculoskeletal modeling. 2010 Elsevier Ltd. All rights reserved.
Minimum expected delay-based routing protocol (MEDR) for Delay Tolerant Mobile Sensor Networks.
Feng, Yong; Liu, Ming; Wang, Xiaomin; Gong, Haigang
2010-01-01
It is a challenging work to develop efficient routing protocols for Delay Tolerant Mobile Sensor Networks (DTMSNs), which have several unique characteristics such as sensor mobility, intermittent connectivity, energy limit, and delay tolerability. In this paper, we propose a new routing protocol called Minimum Expected Delay-based Routing (MEDR) tailored for DTMSNs. MEDR achieves a good routing performance by finding and using the connected paths formed dynamically by mobile sensors. In MEDR, each sensor maintains two important parameters: Minimum Expected Delay (MED) and its expiration time. According to MED, messages will be delivered to the sensor that has at least a connected path with their hosting nodes, and has the shortest expected delay to communication directly with the sink node. Because of the changing network topology, the path is fragile and volatile, so we use the expiration time of MED to indicate the valid time of the path, and avoid wrong transmissions. Simulation results show that the proposed MEDR achieves a higher message delivery ratio with lower transmission overhead and data delivery delay than other DTMSN routing approaches.
Gramatica, Ruggero; Di Matteo, T; Giorgetti, Stefano; Barbiani, Massimo; Bevec, Dorian; Aste, Tomaso
2014-01-01
We introduce a methodology to efficiently exploit natural-language expressed biomedical knowledge for repurposing existing drugs towards diseases for which they were not initially intended. Leveraging on developments in Computational Linguistics and Graph Theory, a methodology is defined to build a graph representation of knowledge, which is automatically analysed to discover hidden relations between any drug and any disease: these relations are specific paths among the biomedical entities of the graph, representing possible Modes of Action for any given pharmacological compound. We propose a measure for the likeliness of these paths based on a stochastic process on the graph. This measure depends on the abundance of indirect paths between a peptide and a disease, rather than solely on the strength of the shortest path connecting them. We provide real-world examples, showing how the method successfully retrieves known pathophysiological Mode of Action and finds new ones by meaningfully selecting and aggregating contributions from known bio-molecular interactions. Applications of this methodology are presented, and prove the efficacy of the method for selecting drugs as treatment options for rare diseases.
Three-axis asymmetric radiation detector system
Martini, Mario Pierangelo; Gedcke, Dale A.; Raudorf, Thomas W.; Sangsingkeow, Pat
2000-01-01
A three-axis radiation detection system whose inner and outer electrodes are shaped and positioned so that the shortest path between any point on the inner electrode and the outer electrode is a different length whereby the rise time of a pulse derived from a detected radiation event can uniquely define the azimuthal and radial position of that event, and the outer electrode is divided into a plurality of segments in the longitudinal axial direction for locating the axial location of a radiation detection event occurring in the diode.
How networks split when rival leaders emerge
NASA Astrophysics Data System (ADS)
Krawczyk, Malgorzata J.; Kułakowski, Krzysztof
2018-02-01
In a model social network, two hubs are appointed as leaders. Consecutive cutting of links on a shortest path between them splits the network in two. Next, the network is growing again till the initial size. Both processes are cyclically repeated. We investigate the size of a cluster containing the largest hub, the degree, the clustering coefficient, the closeness centrality and the betweenness centrality of the largest hub, as dependent on the number of cycles. The results are interpreted in terms of the leader's benefits from conflicts.
Rough-Cut Capacity Planning in Multimodal Freight Transportation Networks
2012-09-30
transportation system to losses in es - tablished routes or assets? That is, what is the nature and length of system capability degradation due to these...Multimodal Rough-Cut Capacity Planning is mod- eled using the Resource Constrained Shortest Path Problem. We demonstrate how this approach supports...of non-zero ele - ments and the 0 entries depict appropriately dimensioned blocks of 0 entries.∣∣∣∣∑ k Ck ∣∣∣∣ Σ 0 0 0 0 Σ 0 0
Octave-spanning carrier-envelope phase stabilized visible pulse with sub-3-fs pulse duration.
Okamura, Kotaro; Kobayashi, Takayoshi
2011-01-15
The visible second harmonic of the idler output from a noncollinear optical parametric amplifier was compressed using adaptive dispersion control with a deformable mirror. The amplifier was pumped by and seeded in the signal path by a common 400 nm second-harmonic pulse from a Ti:sapphire regenerative amplifier. Thus, both the idler output and the second harmonic of the idler were passively carrier-envelope phase stabilized. The shortest pulse duration achieved was below 3 fs.
Fast Solar-Blind AlGaN/GaN 2DEG UV detector with Transparent Graphene Electrode
2017-03-01
graphene and 2D electron gas (2DEG). With introducing the graphene, photo-carriers separated by the polarization electric field of the AlGaN are...photodiodes, due to the strong intrinsic polarization effect of AlGaN. More than 105 of high signal to noise ratio of the UV detectors with fast...intrinsic polarization field vertically inside the AlGaN, the holes and electrons will travel in their shortest paths to graphene and 2DEG
Greedy algorithms in disordered systems
NASA Astrophysics Data System (ADS)
Duxbury, P. M.; Dobrin, R.
1999-08-01
We discuss search, minimal path and minimal spanning tree algorithms and their applications to disordered systems. Greedy algorithms solve these problems exactly, and are related to extremal dynamics in physics. Minimal cost path (Dijkstra) and minimal cost spanning tree (Prim) algorithms provide extremal dynamics for a polymer in a random medium (the KPZ universality class) and invasion percolation (without trapping) respectively.
CMPF: class-switching minimized pathfinding in metabolic networks.
Lim, Kevin; Wong, Limsoon
2012-01-01
The metabolic network is an aggregation of enzyme catalyzed reactions that converts one compound to another. Paths in a metabolic network are a sequence of enzymes that describe how a chemical compound of interest can be produced in a biological system. As the number of such paths is quite large, many methods have been developed to score paths so that the k-shortest paths represent the set of paths that are biologically meaningful or efficient. However, these approaches do not consider whether the sequence of enzymes can be manufactured in the same pathway/species/localization. As a result, a predicted sequence might consist of groups of enzymes that operate in distinct pathway/species/localization and may not truly reflect the events occurring within cell. We propose a path weighting method CMPF (Class-switching Minimized Pathfinder) to search for routes in a metabolic network which minimizes pathway switching. In biological terms, a pathway is a series of chemical reactions which define a specific function (e.g. glycolysis). We conjecture that routes that cross many pathways are inefficient since different pathways define different metabolic functions. In addition, native routes are also well characterized within pathways, suggesting that reasonable paths should not involve too many pathway switches. Our method can be generalized when reactions participate in a class set (e.g., pathways, species or cellular localization) so that the paths predicted have minimal class crossings. We show that our method generates k-paths that involve the least number of class switching. In addition, we also show that native paths are recoverable and alternative paths deviates less from native paths compared to other methods. This suggests that paths ranked by our method could be a way to predict paths that are likely to occur in biological systems.
Hierarchical Motion Planning for Autonomous Aerial and Terrestrial Vehicles
NASA Astrophysics Data System (ADS)
Cowlagi, Raghvendra V.
Autonomous mobile robots---both aerial and terrestrial vehicles---have gained immense importance due to the broad spectrum of their potential military and civilian applications. One of the indispensable requirements for the autonomy of a mobile vehicle is the vehicle's capability of planning and executing its motion, that is, finding appropriate control inputs for the vehicle such that the resulting vehicle motion satisfies the requirements of the vehicular task. The motion planning and control problem is inherently complex because it involves two disparate sub-problems: (1) satisfaction of the vehicular task requirements, which requires tools from combinatorics and/or formal methods, and (2) design of the vehicle control laws, which requires tools from dynamical systems and control theory. Accordingly, this problem is usually decomposed and solved over two levels of hierarchy. The higher level, called the geometric path planning level, finds a geometric path that satisfies the vehicular task requirements, e.g., obstacle avoidance. The lower level, called the trajectory planning level, involves sufficient smoothening of this geometric path followed by a suitable time parametrization to obtain a reference trajectory for the vehicle. Although simple and efficient, such hierarchical decomposition suffers a serious drawback: the geometric path planner has no information of the kinematical and dynamical constraints of the vehicle. Consequently, the geometric planner may produce paths that the trajectory planner cannot transform into a feasible reference trajectory. Two main ideas appear in the literature to remedy this problem: (a) randomized sampling-based planning, which eliminates the geometric planner altogether by planning in the vehicle state space, and (b) geometric planning supported by feedback control laws. The former class of methods suffer from a lack of optimality of the resultant trajectory, while the latter class of methods makes a restrictive assumption concerning the vehicle kinematical model. We propose a hierarchical motion planning framework based on a novel mode of interaction between these two levels of planning. This interaction rests on the solution of a special shortest-path problem on graphs, namely, one using costs defined on multiple edge transitions in the path instead of the usual single edge transition costs. These costs are provided by a local trajectory generation algorithm, which we implement using model predictive control and the concept of effective target sets for simplifying the non-convex constraints involved in the problem. The proposed motion planner ensures "consistency" between the two levels of planning, i.e., a guarantee that the higher level geometric path is always associated with a kinematically and dynamically feasible trajectory. The main contributions of this thesis are: 1. A motion planning framework based on history-dependent costs (H-costs) in cell decomposition graphs for incorporating vehicle dynamical constraints: this framework offers distinct advantages in comparison with the competing approaches of discretization of the state space, of randomized sampling-based motion planning, and of local feedback-based, decoupled hierarchical motion planning, 2. An efficient and flexible algorithm for finding optimal H-cost paths, 3. A precise and general formulation of a local trajectory problem (the tile motion planning problem) that allows independent development of the discrete planner and the trajectory planner, while maintaining "compatibility" between the two planners, 4. A local trajectory generation algorithm using mpc, and the application of the concept of effective target sets for a significant simplification of the local trajectory generation problem, 5. The geometric analysis of curvature-bounded traversal of rectangular channels, leading to less conservative results in comparison with a result reported in the literature, and also to the efficient construction of effective target sets for the solution of the tile motion planning problem, 6. A wavelet-based multi-resolution path planning scheme, and a proof of completeness of the proposed scheme: such proofs are altogether absent from other works on multi-resolution path planning, 7. A technique for extracting all information about cells---namely, the locations, the sizes, and the associated image intensities---directly from the set of significant detail coefficients considered for path planning at a given iteration, and 8. The extension of the multi-resolution path planning scheme to include vehicle dynamical constraints using the aforementioned history-dependent costs approach. The future work includes an implementation of the proposed framework involving a discrete planner that solves classical planning problems more general than the single-query path planning problem considered thus far, and involving trajectory generation schemes for realistic vehicle dynamical models such as the bicycle model.
ELASTIC NET FOR COX’S PROPORTIONAL HAZARDS MODEL WITH A SOLUTION PATH ALGORITHM
Wu, Yichao
2012-01-01
For least squares regression, Efron et al. (2004) proposed an efficient solution path algorithm, the least angle regression (LAR). They showed that a slight modification of the LAR leads to the whole LASSO solution path. Both the LAR and LASSO solution paths are piecewise linear. Recently Wu (2011) extended the LAR to generalized linear models and the quasi-likelihood method. In this work we extend the LAR further to handle Cox’s proportional hazards model. The goal is to develop a solution path algorithm for the elastic net penalty (Zou and Hastie (2005)) in Cox’s proportional hazards model. This goal is achieved in two steps. First we extend the LAR to optimizing the log partial likelihood plus a fixed small ridge term. Then we define a path modification, which leads to the solution path of the elastic net regularized log partial likelihood. Our solution path is exact and piecewise determined by ordinary differential equation systems. PMID:23226932
A novel strategy for load balancing of distributed medical applications.
Logeswaran, Rajasvaran; Chen, Li-Choo
2012-04-01
Current trends in medicine, specifically in the electronic handling of medical applications, ranging from digital imaging, paperless hospital administration and electronic medical records, telemedicine, to computer-aided diagnosis, creates a burden on the network. Distributed Service Architectures, such as Intelligent Network (IN), Telecommunication Information Networking Architecture (TINA) and Open Service Access (OSA), are able to meet this new challenge. Distribution enables computational tasks to be spread among multiple processors; hence, performance is an important issue. This paper proposes a novel approach in load balancing, the Random Sender Initiated Algorithm, for distribution of tasks among several nodes sharing the same computational object (CO) instances in Distributed Service Architectures. Simulations illustrate that the proposed algorithm produces better network performance than the benchmark load balancing algorithms-the Random Node Selection Algorithm and the Shortest Queue Algorithm, especially under medium and heavily loaded conditions.
Stochastic Evolutionary Algorithms for Planning Robot Paths
NASA Technical Reports Server (NTRS)
Fink, Wolfgang; Aghazarian, Hrand; Huntsberger, Terrance; Terrile, Richard
2006-01-01
A computer program implements stochastic evolutionary algorithms for planning and optimizing collision-free paths for robots and their jointed limbs. Stochastic evolutionary algorithms can be made to produce acceptably close approximations to exact, optimal solutions for path-planning problems while often demanding much less computation than do exhaustive-search and deterministic inverse-kinematics algorithms that have been used previously for this purpose. Hence, the present software is better suited for application aboard robots having limited computing capabilities (see figure). The stochastic aspect lies in the use of simulated annealing to (1) prevent trapping of an optimization algorithm in local minima of an energy-like error measure by which the fitness of a trial solution is evaluated while (2) ensuring that the entire multidimensional configuration and parameter space of the path-planning problem is sampled efficiently with respect to both robot joint angles and computation time. Simulated annealing is an established technique for avoiding local minima in multidimensional optimization problems, but has not, until now, been applied to planning collision-free robot paths by use of low-power computers.
NASA Astrophysics Data System (ADS)
Meng, Luming; Sheong, Fu Kit; Zeng, Xiangze; Zhu, Lizhe; Huang, Xuhui
2017-07-01
Constructing Markov state models from large-scale molecular dynamics simulation trajectories is a promising approach to dissect the kinetic mechanisms of complex chemical and biological processes. Combined with transition path theory, Markov state models can be applied to identify all pathways connecting any conformational states of interest. However, the identified pathways can be too complex to comprehend, especially for multi-body processes where numerous parallel pathways with comparable flux probability often coexist. Here, we have developed a path lumping method to group these parallel pathways into metastable path channels for analysis. We define the similarity between two pathways as the intercrossing flux between them and then apply the spectral clustering algorithm to lump these pathways into groups. We demonstrate the power of our method by applying it to two systems: a 2D-potential consisting of four metastable energy channels and the hydrophobic collapse process of two hydrophobic molecules. In both cases, our algorithm successfully reveals the metastable path channels. We expect this path lumping algorithm to be a promising tool for revealing unprecedented insights into the kinetic mechanisms of complex multi-body processes.
An optimal routing strategy on scale-free networks
NASA Astrophysics Data System (ADS)
Yang, Yibo; Zhao, Honglin; Ma, Jinlong; Qi, Zhaohui; Zhao, Yongbin
Traffic is one of the most fundamental dynamical processes in networked systems. With the traditional shortest path routing (SPR) protocol, traffic congestion is likely to occur on the hub nodes on scale-free networks. In this paper, we propose an improved optimal routing (IOR) strategy which is based on the betweenness centrality and the degree centrality of nodes in the scale-free networks. With the proposed strategy, the routing paths can accurately bypass hub nodes in the network to enhance the transport efficiency. Simulation results show that the traffic capacity as well as some other indexes reflecting transportation efficiency are further improved with the IOR strategy. Owing to the significantly improved traffic performance, this study is helpful to design more efficient routing strategies in communication or transportation systems.
Mori, Yoshiharu; Okumura, Hisashi
2015-12-05
Simulated tempering (ST) is a useful method to enhance sampling of molecular simulations. When ST is used, the Metropolis algorithm, which satisfies the detailed balance condition, is usually applied to calculate the transition probability. Recently, an alternative method that satisfies the global balance condition instead of the detailed balance condition has been proposed by Suwa and Todo. In this study, ST method with the Suwa-Todo algorithm is proposed. Molecular dynamics simulations with ST are performed with three algorithms (the Metropolis, heat bath, and Suwa-Todo algorithms) to calculate the transition probability. Among the three algorithms, the Suwa-Todo algorithm yields the highest acceptance ratio and the shortest autocorrelation time. These suggest that sampling by a ST simulation with the Suwa-Todo algorithm is most efficient. In addition, because the acceptance ratio of the Suwa-Todo algorithm is higher than that of the Metropolis algorithm, the number of temperature states can be reduced by 25% for the Suwa-Todo algorithm when compared with the Metropolis algorithm. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Bai, Danyu
2015-08-01
This paper discusses the flow shop scheduling problem to minimise the total quadratic completion time (TQCT) with release dates in offline and online environments. For this NP-hard problem, the investigation is focused on the performance of two online algorithms based on the Shortest Processing Time among Available jobs rule. Theoretical results indicate the asymptotic optimality of the algorithms as the problem scale is sufficiently large. To further enhance the quality of the original solutions, the improvement scheme is provided for these algorithms. A new lower bound with performance guarantee is provided, and computational experiments show the effectiveness of these heuristics. Moreover, several results of the single-machine TQCT problem with release dates are also obtained for the deduction of the main theorem.
Mapping chemicals in air using an environmental CAT scanning system: evaluation of algorithms
NASA Astrophysics Data System (ADS)
Samanta, A.; Todd, L. A.
A new technique is being developed which creates near real-time maps of chemical concentrations in air for environmental and occupational environmental applications. This technique, we call Environmental CAT Scanning, combines the real-time measuring technique of open-path Fourier transform infrared spectroscopy with the mapping capabilitites of computed tomography to produce two-dimensional concentration maps. With this system, a network of open-path measurements is obtained over an area; measurements are then processed using a tomographic algorithm to reconstruct the concentrations. This research focussed on the process of evaluating and selecting appropriate reconstruction algorithms, for use in the field, by using test concentration data from both computer simultation and laboratory chamber studies. Four algorithms were tested using three types of data: (1) experimental open-path data from studies that used a prototype opne-path Fourier transform/computed tomography system in an exposure chamber; (2) synthetic open-path data generated from maps created by kriging point samples taken in the chamber studies (in 1), and; (3) synthetic open-path data generated using a chemical dispersion model to create time seires maps. The iterative algorithms used to reconstruct the concentration data were: Algebraic Reconstruction Technique without Weights (ART1), Algebraic Reconstruction Technique with Weights (ARTW), Maximum Likelihood with Expectation Maximization (MLEM) and Multiplicative Algebraic Reconstruction Technique (MART). Maps were evaluated quantitatively and qualitatively. In general, MART and MLEM performed best, followed by ARTW and ART1. However, algorithm performance varied under different contaminant scenarios. This study showed the importance of using a variety of maps, particulary those generated using dispersion models. The time series maps provided a more rigorous test of the algorithms and allowed distinctions to be made among the algorithms. A comprehensive evaluation of algorithms, for the environmental application of tomography, requires the use of a battery of test concentration data before field implementation, which models reality and tests the limits of the algorithms.
A Scheduling Algorithm for Cloud Computing System Based on the Driver of Dynamic Essential Path.
Xie, Zhiqiang; Shao, Xia; Xin, Yu
2016-01-01
To solve the problem of task scheduling in the cloud computing system, this paper proposes a scheduling algorithm for cloud computing based on the driver of dynamic essential path (DDEP). This algorithm applies a predecessor-task layer priority strategy to solve the problem of constraint relations among task nodes. The strategy assigns different priority values to every task node based on the scheduling order of task node as affected by the constraint relations among task nodes, and the task node list is generated by the different priority value. To address the scheduling order problem in which task nodes have the same priority value, the dynamic essential long path strategy is proposed. This strategy computes the dynamic essential path of the pre-scheduling task nodes based on the actual computation cost and communication cost of task node in the scheduling process. The task node that has the longest dynamic essential path is scheduled first as the completion time of task graph is indirectly influenced by the finishing time of task nodes in the longest dynamic essential path. Finally, we demonstrate the proposed algorithm via simulation experiments using Matlab tools. The experimental results indicate that the proposed algorithm can effectively reduce the task Makespan in most cases and meet a high quality performance objective.
A Scheduling Algorithm for Cloud Computing System Based on the Driver of Dynamic Essential Path
Xie, Zhiqiang; Shao, Xia; Xin, Yu
2016-01-01
To solve the problem of task scheduling in the cloud computing system, this paper proposes a scheduling algorithm for cloud computing based on the driver of dynamic essential path (DDEP). This algorithm applies a predecessor-task layer priority strategy to solve the problem of constraint relations among task nodes. The strategy assigns different priority values to every task node based on the scheduling order of task node as affected by the constraint relations among task nodes, and the task node list is generated by the different priority value. To address the scheduling order problem in which task nodes have the same priority value, the dynamic essential long path strategy is proposed. This strategy computes the dynamic essential path of the pre-scheduling task nodes based on the actual computation cost and communication cost of task node in the scheduling process. The task node that has the longest dynamic essential path is scheduled first as the completion time of task graph is indirectly influenced by the finishing time of task nodes in the longest dynamic essential path. Finally, we demonstrate the proposed algorithm via simulation experiments using Matlab tools. The experimental results indicate that the proposed algorithm can effectively reduce the task Makespan in most cases and meet a high quality performance objective. PMID:27490901
Complexity, information loss, and model building: from neuro- to cognitive dynamics
NASA Astrophysics Data System (ADS)
Arecchi, F. Tito
2007-06-01
A scientific problem described within a given code is mapped by a corresponding computational problem, We call complexity (algorithmic) the bit length of the shortest instruction which solves the problem. Deterministic chaos in general affects a dynamical systems making the corresponding problem experimentally and computationally heavy, since one must reset the initial conditions at a rate higher than that of information loss (Kolmogorov entropy). One can control chaos by adding to the system new degrees of freedom (information swapping: information lost by chaos is replaced by that arising from the new degrees of freedom). This implies a change of code, or a new augmented model. Within a single code, changing hypotheses is equivalent to fixing different sets of control parameters, each with a different a-priori probability, to be then confirmed and transformed to an a-posteriori probability via Bayes theorem. Sequential application of Bayes rule is nothing else than the Darwinian strategy in evolutionary biology. The sequence is a steepest ascent algorithm, which stops once maximum probability has been reached. At this point the hypothesis exploration stops. By changing code (and hence the set of relevant variables) one can start again to formulate new classes of hypotheses . We call semantic complexity the number of accessible scientific codes, or models, that describe a situation. It is however a fuzzy concept, in so far as this number changes due to interaction of the operator with the system under investigation. These considerations are illustrated with reference to a cognitive task, starting from synchronization of neuron arrays in a perceptual area and tracing the putative path toward a model building.
Simultaneous elastic parameter inversion in 2-D/3-D TTI medium combined later arrival times
NASA Astrophysics Data System (ADS)
Bai, Chao-ying; Wang, Tao; Yang, Shang-bei; Li, Xing-wang; Huang, Guo-jiao
2016-04-01
Traditional traveltime inversion for anisotropic medium is, in general, based on a "weak" assumption in the anisotropic property, which simplifies both the forward part (ray tracing is performed once only) and the inversion part (a linear inversion solver is possible). But for some real applications, a general (both "weak" and "strong") anisotropic medium should be considered. In such cases, one has to develop a ray tracing algorithm to handle with the general (including "strong") anisotropic medium and also to design a non-linear inversion solver for later tomography. Meanwhile, it is constructive to investigate how much the tomographic resolution can be improved by introducing the later arrivals. For this motivation, we incorporated our newly developed ray tracing algorithm (multistage irregular shortest-path method) for general anisotropic media with a non-linear inversion solver (a damped minimum norm, constrained least squares problem with a conjugate gradient approach) to formulate a non-linear inversion solver for anisotropic medium. This anisotropic traveltime inversion procedure is able to combine the later (reflected) arrival times. Both 2-D/3-D synthetic inversion experiments and comparison tests show that (1) the proposed anisotropic traveltime inversion scheme is able to recover the high contrast anomalies and (2) it is possible to improve the tomographic resolution by introducing the later (reflected) arrivals, but not as expected in the isotropic medium, because the different velocity (qP, qSV and qSH) sensitivities (or derivatives) respective to the different elastic parameters are not the same but are also dependent on the inclination angle.
Examining speed versus selection in connectivity models using elk migration as an example
Brennan, Angela; Hanks, EM; Merkle, JA; Cole, EK; Dewey, SR; Courtemanch, AB; Cross, Paul C.
2018-01-01
Context: Landscape resistance is vital to connectivity modeling and frequently derived from resource selection functions (RSFs). RSFs estimate relative probability of use and tend to focus on understanding habitat preferences during slow, routine animal movements (e.g., foraging). Dispersal and migration, however, can produce rarer, faster movements, in which case models of movement speed rather than resource selection may be more realistic for identifying habitats that facilitate connectivity. Objective: To compare two connectivity modeling approaches applied to resistance estimated from models of movement rate and resource selection. Methods: Using movement data from migrating elk, we evaluated continuous time Markov chain (CTMC) and movement-based RSF models (i.e., step selection functions [SSFs]). We applied circuit theory and shortest random path (SRP) algorithms to CTMC, SSF and null (i.e., flat) resistance surfaces to predict corridors between elk seasonal ranges. We evaluated prediction accuracy by comparing model predictions to empirical elk movements. Results: All models predicted elk movements well, but models applied to CTMC resistance were more accurate than models applied to SSF and null resistance. Circuit theory models were more accurate on average than SRP algorithms. Conclusions: CTMC can be more realistic than SSFs for estimating resistance for fast movements, though SSFs may demonstrate some predictive ability when animals also move slowly through corridors (e.g., stopover use during migration). High null model accuracy suggests seasonal range data may also be critical for predicting direct migration routes. For animals that migrate or disperse across large landscapes, we recommend incorporating CTMC into the connectivity modeling toolkit.
Long, Zhiliang; Duan, Xujun; Xie, Bing; Du, Handan; Li, Rong; Xu, Qiang; Wei, Luqing; Zhang, Shao-xiang; Wu, Yi; Gao, Qing; Chen, Huafu
2013-09-25
Post-traumatic stress disorder (PTSD) is characterized by dysfunction of several discrete brain regions such as medial prefrontal gyrus with hypoactivation and amygdala with hyperactivation. However, alterations of large-scale whole brain topological organization of structural networks remain unclear. Seventeen patients with PTSD in motor vehicle accident survivors and 15 normal controls were enrolled in our study. Large-scale structural connectivity network (SCN) was constructed using diffusion tensor tractography, followed by thresholding the mean factional anisotropy matrix of 90 brain regions. Graph theory analysis was then employed to investigate their aberrant topological properties. Both patient and control group showed small-world topology in their SCNs. However, patients with PTSD exhibited abnormal global properties characterized by significantly decreased characteristic shortest path length and normalized characteristic shortest path length. Furthermore, the patient group showed enhanced nodal centralities predominately in salience network including bilateral anterior cingulate and pallidum, and hippocampus/parahippocamus gyrus, and decreased nodal centralities mainly in medial orbital part of superior frontal gyrus. The main limitation of this study is the small sample of PTSD patients, which may lead to decrease the statistic power. Consequently, this study should be considered an exploratory analysis. These results are consistent with the notion that PTSD can be understood by investigating the dysfunction of large-scale, spatially distributed neural networks, and also provide structural evidences for further exploration of neurocircuitry models in PTSD. © 2013 Elsevier B.V. All rights reserved.
Effects of amyloid and small vessel disease on white matter network disruption.
Kim, Hee Jin; Im, Kiho; Kwon, Hunki; Lee, Jong Min; Ye, Byoung Seok; Kim, Yeo Jin; Cho, Hanna; Choe, Yearn Seong; Lee, Kyung Han; Kim, Sung Tae; Kim, Jae Seung; Lee, Jae Hong; Na, Duk L; Seo, Sang Won
2015-01-01
There is growing evidence that the human brain is a large scale complex network. The structural network is reported to be disrupted in cognitively impaired patients. However, there have been few studies evaluating the effects of amyloid and small vessel disease (SVD) markers, the common causes of cognitive impairment, on structural networks. Thus, we evaluated the association between amyloid and SVD burdens and structural networks using diffusion tensor imaging (DTI). Furthermore, we determined if network parameters predict cognitive impairments. Graph theoretical analysis was applied to DTI data from 232 cognitively impaired patients with varying degrees of amyloid and SVD burdens. All patients underwent Pittsburgh compound-B (PiB) PET to detect amyloid burden, MRI to detect markers of SVD, including the volume of white matter hyperintensities and the number of lacunes, and detailed neuropsychological testing. The whole-brain network was assessed by network parameters of integration (shortest path length, global efficiency) and segregation (clustering coefficient, transitivity, modularity). PiB retention ratio was not associated with any white matter network parameters. Greater white matter hyperintensity volumes or lacunae numbers were significantly associated with decreased network integration (increased shortest path length, decreased global efficiency) and increased network segregation (increased clustering coefficient, increased transitivity, increased modularity). Decreased network integration or increased network segregation were associated with poor performances in attention, language, visuospatial, memory, and frontal-executive functions. Our results suggest that SVD alters white matter network integration and segregation, which further predicts cognitive dysfunction.
From the physics of interacting polymers to optimizing routes on the London Underground
Yeung, Chi Ho; Saad, David; Wong, K. Y. Michael
2013-01-01
Optimizing paths on networks is crucial for many applications, ranging from subway traffic to Internet communication. Because global path optimization that takes account of all path choices simultaneously is computationally hard, most existing routing algorithms optimize paths individually, thus providing suboptimal solutions. We use the physics of interacting polymers and disordered systems to analyze macroscopic properties of generic path optimization problems and derive a simple, principled, generic, and distributed routing algorithm capable of considering all individual path choices simultaneously. We demonstrate the efficacy of the algorithm by applying it to: (i) random graphs resembling Internet overlay networks, (ii) travel on the London Underground network based on Oyster card data, and (iii) the global airport network. Analytically derived macroscopic properties give rise to insightful new routing phenomena, including phase transitions and scaling laws, that facilitate better understanding of the appropriate operational regimes and their limitations, which are difficult to obtain otherwise. PMID:23898198
From the physics of interacting polymers to optimizing routes on the London Underground.
Yeung, Chi Ho; Saad, David; Wong, K Y Michael
2013-08-20
Optimizing paths on networks is crucial for many applications, ranging from subway traffic to Internet communication. Because global path optimization that takes account of all path choices simultaneously is computationally hard, most existing routing algorithms optimize paths individually, thus providing suboptimal solutions. We use the physics of interacting polymers and disordered systems to analyze macroscopic properties of generic path optimization problems and derive a simple, principled, generic, and distributed routing algorithm capable of considering all individual path choices simultaneously. We demonstrate the efficacy of the algorithm by applying it to: (i) random graphs resembling Internet overlay networks, (ii) travel on the London Underground network based on Oyster card data, and (iii) the global airport network. Analytically derived macroscopic properties give rise to insightful new routing phenomena, including phase transitions and scaling laws, that facilitate better understanding of the appropriate operational regimes and their limitations, which are difficult to obtain otherwise.
Trajectory generation for an on-road autonomous vehicle
NASA Astrophysics Data System (ADS)
Horst, John; Barbera, Anthony
2006-05-01
We describe an algorithm that generates a smooth trajectory (position, velocity, and acceleration at uniformly sampled instants of time) for a car-like vehicle autonomously navigating within the constraints of lanes in a road. The technique models both vehicle paths and lane segments as straight line segments and circular arcs for mathematical simplicity and elegance, which we contrast with cubic spline approaches. We develop the path in an idealized space, warp the path into real space and compute path length, generate a one-dimensional trajectory along the path length that achieves target speeds and positions, and finally, warp, translate, and rotate the one-dimensional trajectory points onto the path in real space. The algorithm moves a vehicle in lane safely and efficiently within speed and acceleration maximums. The algorithm functions in the context of other autonomous driving functions within a carefully designed vehicle control hierarchy.
NASA Astrophysics Data System (ADS)
Zeng, Wenhui; Yi, Jin; Rao, Xiao; Zheng, Yun
2017-11-01
In this article, collision-avoidance path planning for multiple car-like robots with variable motion is formulated as a two-stage objective optimization problem minimizing both the total length of all paths and the task's completion time. Accordingly, a new approach based on Pythagorean Hodograph (PH) curves and Modified Harmony Search algorithm is proposed to solve the two-stage path-planning problem subject to kinematic constraints such as velocity, acceleration, and minimum turning radius. First, a method of path planning based on PH curves for a single robot is proposed. Second, a mathematical model of the two-stage path-planning problem for multiple car-like robots with variable motion subject to kinematic constraints is constructed that the first-stage minimizes the total length of all paths and the second-stage minimizes the task's completion time. Finally, a modified harmony search algorithm is applied to solve the two-stage optimization problem. A set of experiments demonstrate the effectiveness of the proposed approach.
Four-dimensional guidance algorithms for aircraft in an air traffic control environment
NASA Technical Reports Server (NTRS)
Pecsvaradi, T.
1975-01-01
Theoretical development and computer implementation of three guidance algorithms are presented. From a small set of input parameters the algorithms generate the ground track, altitude profile, and speed profile required to implement an experimental 4-D guidance system. Given a sequence of waypoints that define a nominal flight path, the first algorithm generates a realistic, flyable ground track consisting of a sequence of straight line segments and circular arcs. Each circular turn is constrained by the minimum turning radius of the aircraft. The ground track and the specified waypoint altitudes are used as inputs to the second algorithm which generates the altitude profile. The altitude profile consists of piecewise constant flight path angle segments, each segment lying within specified upper and lower bounds. The third algorithm generates a feasible speed profile subject to constraints on the rate of change in speed, permissible speed ranges, and effects of wind. Flight path parameters are then combined into a chronological sequence to form the 4-D guidance vectors. These vectors can be used to drive the autopilot/autothrottle of the aircraft so that a 4-D flight path could be tracked completely automatically; or these vectors may be used to drive the flight director and other cockpit displays, thereby enabling the pilot to track a 4-D flight path manually.
A Trajectory Algorithm to Support En Route and Terminal Area Self-Spacing Concepts
NASA Technical Reports Server (NTRS)
Abbott, Terence S.
2007-01-01
This document describes an algorithm for the generation of a four dimensional aircraft trajectory. Input data for this algorithm are similar to an augmented Standard Terminal Arrival Route (STAR) with the augmentation in the form of altitude or speed crossing restrictions at waypoints on the route. Wind data at each waypoint are also inputs into this algorithm. The algorithm calculates the altitude, speed, along path distance, and along path time for each waypoint.
Online optimal obstacle avoidance for rotary-wing autonomous unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Kang, Keeryun
This thesis presents an integrated framework for online obstacle avoidance of rotary-wing unmanned aerial vehicles (UAVs), which can provide UAVs an obstacle field navigation capability in a partially or completely unknown obstacle-rich environment. The framework is composed of a LIDAR interface, a local obstacle grid generation, a receding horizon (RH) trajectory optimizer, a global shortest path search algorithm, and a climb rate limit detection logic. The key feature of the framework is the use of an optimization-based trajectory generation in which the obstacle avoidance problem is formulated as a nonlinear trajectory optimization problem with state and input constraints over the finite range of the sensor. This local trajectory optimization is combined with a global path search algorithm which provides a useful initial guess to the nonlinear optimization solver. Optimization is the natural process of finding the best trajectory that is dynamically feasible, safe within the vehicle's flight envelope, and collision-free at the same time. The optimal trajectory is continuously updated in real time by the numerical optimization solver, Nonlinear Trajectory Generation (NTG), which is a direct solver based on the spline approximation of trajectory for dynamically flat systems. In fact, the overall approach of this thesis to finding the optimal trajectory is similar to the model predictive control (MPC) or the receding horizon control (RHC), except that this thesis followed a two-layer design; thus, the optimal solution works as a guidance command to be followed by the controller of the vehicle. The framework is implemented in a real-time simulation environment, the Georgia Tech UAV Simulation Tool (GUST), and integrated in the onboard software of the rotary-wing UAV test-bed at Georgia Tech. Initially, the 2D vertical avoidance capability of real obstacles was tested in flight. The flight test evaluations were extended to the benchmark tests for 3D avoidance capability over the virtual obstacles, and finally it was demonstrated on real obstacles located at the McKenna MOUT site in Fort Benning, Georgia. Simulations and flight test evaluations demonstrate the feasibility of the developed framework for UAV applications involving low-altitude flight in an urban area.
Evolvable Neuronal Paths: A Novel Basis for Information and Search in the Brain
Fernando, Chrisantha; Vasas, Vera; Szathmáry, Eörs; Husbands, Phil
2011-01-01
We propose a previously unrecognized kind of informational entity in the brain that is capable of acting as the basis for unlimited hereditary variation in neuronal networks. This unit is a path of activity through a network of neurons, analogous to a path taken through a hidden Markov model. To prove in principle the capabilities of this new kind of informational substrate, we show how a population of paths can be used as the hereditary material for a neuronally implemented genetic algorithm, (the swiss-army knife of black-box optimization techniques) which we have proposed elsewhere could operate at somatic timescales in the brain. We compare this to the same genetic algorithm that uses a standard ‘genetic’ informational substrate, i.e. non-overlapping discrete genotypes, on a range of optimization problems. A path evolution algorithm (PEA) is defined as any algorithm that implements natural selection of paths in a network substrate. A PEA is a previously unrecognized type of natural selection that is well suited for implementation by biological neuronal networks with structural plasticity. The important similarities and differences between a standard genetic algorithm and a PEA are considered. Whilst most experiments are conducted on an abstract network model, at the conclusion of the paper a slightly more realistic neuronal implementation of a PEA is outlined based on Izhikevich spiking neurons. Finally, experimental predictions are made for the identification of such informational paths in the brain. PMID:21887266
Li, Bai; Gong, Li-gang; Yang, Wen-lun
2014-01-01
Unmanned combat aerial vehicles (UCAVs) have been of great interest to military organizations throughout the world due to their outstanding capabilities to operate in dangerous or hazardous environments. UCAV path planning aims to obtain an optimal flight route with the threats and constraints in the combat field well considered. In this work, a novel artificial bee colony (ABC) algorithm improved by a balance-evolution strategy (BES) is applied in this optimization scheme. In this new algorithm, convergence information during the iteration is fully utilized to manipulate the exploration/exploitation accuracy and to pursue a balance between local exploitation and global exploration capabilities. Simulation results confirm that BE-ABC algorithm is more competent for the UCAV path planning scheme than the conventional ABC algorithm and two other state-of-the-art modified ABC algorithms.
A Novel Discrete Differential Evolution Algorithm for the Vehicle Routing Problem in B2C E-Commerce
NASA Astrophysics Data System (ADS)
Xia, Chao; Sheng, Ying; Jiang, Zhong-Zhong; Tan, Chunqiao; Huang, Min; He, Yuanjian
2015-12-01
In this paper, a novel discrete differential evolution (DDE) algorithm is proposed to solve the vehicle routing problems (VRP) in B2C e-commerce, in which VRP is modeled by the incomplete graph based on the actual urban road system. First, a variant of classical VRP is described and a mathematical programming model for the variant is given. Second, the DDE is presented, where individuals are represented as the sequential encoding scheme, and a novel reparation operator is employed to repair the infeasible solutions. Furthermore, a FLOYD operator for dealing with the shortest route is embedded in the proposed DDE. Finally, an extensive computational study is carried out in comparison with the predatory search algorithm and genetic algorithm, and the results show that the proposed DDE is an effective algorithm for VRP in B2C e-commerce.
Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent.
Simon, Noah; Friedman, Jerome; Hastie, Trevor; Tibshirani, Rob
2011-03-01
We introduce a pathwise algorithm for the Cox proportional hazards model, regularized by convex combinations of ℓ 1 and ℓ 2 penalties (elastic net). Our algorithm fits via cyclical coordinate descent, and employs warm starts to find a solution along a regularization path. We demonstrate the efficacy of our algorithm on real and simulated data sets, and find considerable speedup between our algorithm and competing methods.
Time optimized path-choice in the termite hunting ant Megaponera analis.
Frank, Erik T; Hönle, Philipp O; Linsenmair, K Eduard
2018-05-10
Trail network systems among ants have received a lot of scientific attention due to their various applications in problem solving of networks. Recent studies have shown that ants select the fastest available path when facing different velocities on different substrates, rather than the shortest distance. The progress of decision-making by these ants is determined by pheromone-based maintenance of paths, which is a collective decision. However, path optimization through individual decision-making remains mostly unexplored. Here we present the first study of time-optimized path selection via individual decision-making by scout ants. Megaponera analis scouts search for termite foraging sites and lead highly organized raid columns to them. The path of the scout determines the path of the column. Through installation of artificial roads around M. analis nests we were able to influence the pathway choice of the raids. After road installation 59% of all recorded raids took place completely or partly on the road, instead of the direct, i.e. distance-optimized, path through grass from the nest to the termites. The raid velocity on the road was more than double the grass velocity, the detour thus saved 34.77±23.01% of the travel time compared to a hypothetical direct path. The pathway choice of the ants was similar to a mathematical model of least time allowing us to hypothesize the underlying mechanisms regulating the behavior. Our results highlight the importance of individual decision-making in the foraging behavior of ants and show a new procedure of pathway optimization. © 2018. Published by The Company of Biologists Ltd.
A Revised Trajectory Algorithm to Support En Route and Terminal Area Self-Spacing Concepts
NASA Technical Reports Server (NTRS)
Abbott, Terence S.
2010-01-01
This document describes an algorithm for the generation of a four dimensional trajectory. Input data for this algorithm are similar to an augmented Standard Terminal Arrival (STAR) with the augmentation in the form of altitude or speed crossing restrictions at waypoints on the route. This version of the algorithm accommodates descent Mach values that are different from the cruise Mach values. Wind data at each waypoint are also inputs into this algorithm. The algorithm calculates the altitude, speed, along path distance, and along path time for each waypoint.
Temporal Constraint Reasoning With Preferences
NASA Technical Reports Server (NTRS)
Khatib, Lina; Morris, Paul; Morris, Robert; Rossi, Francesca
2001-01-01
A number of reasoning problems involving the manipulation of temporal information can naturally be viewed as implicitly inducing an ordering of potential local decisions involving time (specifically, associated with durations or orderings of events) on the basis of preferences. For example. a pair of events might be constrained to occur in a certain order, and, in addition. it might be preferable that the delay between them be as large, or as small, as possible. This paper explores problems in which a set of temporal constraints is specified, where each constraint is associated with preference criteria for making local decisions about the events involved in the constraint, and a reasoner must infer a complete solution to the problem such that, to the extent possible, these local preferences are met in the best way. A constraint framework for reasoning about time is generalized to allow for preferences over event distances and durations, and we study the complexity of solving problems in the resulting formalism. It is shown that while in general such problems are NP-hard, some restrictions on the shape of the preference functions, and on the structure of the preference set, can be enforced to achieve tractability. In these cases, a simple generalization of a single-source shortest path algorithm can be used to compute a globally preferred solution in polynomial time.
Eggimann, Sven; Truffer, Bernhard; Maurer, Max
2015-11-01
The strong reliance of most utility services on centralised network infrastructures is becoming increasingly challenged by new technological advances in decentralised alternatives. However, not enough effort has been made to develop planning tools designed to address the implications of these new opportunities and to determine the optimal degree of centralisation of these infrastructures. We introduce a planning tool for sustainable network infrastructure planning (SNIP), a two-step techno-economic heuristic modelling approach based on shortest path-finding and hierarchical-agglomerative clustering algorithms to determine the optimal degree of centralisation in the field of wastewater management. This SNIP model optimises the distribution of wastewater treatment plants and the sewer network outlay relative to several cost and sewer-design parameters. Moreover, it allows us to construct alternative optimal wastewater system designs taking into account topography, economies of scale as well as the full size range of wastewater treatment plants. We quantify and confirm that the optimal degree of centralisation decreases with increasing terrain complexity and settlement dispersion while showing that the effect of the latter exceeds that of topography. Case study results for a Swiss community indicate that the calculated optimal degree of centralisation is substantially lower than the current level. Copyright © 2015 Elsevier Ltd. All rights reserved.
Appplication of statistical mechanical methods to the modeling of social networks
NASA Astrophysics Data System (ADS)
Strathman, Anthony Robert
With the recent availability of large-scale social data sets, social networks have become open to quantitative analysis via the methods of statistical physics. We examine the statistical properties of a real large-scale social network, generated from cellular phone call-trace logs. We find this network, like many other social networks to be assortative (r = 0.31) and clustered (i.e., strongly transitive, C = 0.21). We measure fluctuation scaling to identify the presence of internal structure in the network and find that structural inhomogeneity effectively disappears at the scale of a few hundred nodes, though there is no sharp cutoff. We introduce an agent-based model of social behavior, designed to model the formation and dissolution of social ties. The model is a modified Metropolis algorithm containing agents operating under the basic sociological constraints of reciprocity, communication need and transitivity. The model introduces the concept of a social temperature. We go on to show that this simple model reproduces the global statistical network features (incl. assortativity, connected fraction, mean degree, clustering, and mean shortest path length) of the real network data and undergoes two phase transitions, one being from a "gas" to a "liquid" state and the second from a liquid to a glassy state as function of this social temperature.
AWAS: A dynamic work scheduling system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Y.; Hao, J.; Kocur, G.
1994-12-31
The Automated Work Administration System (AWAS) is an automated scheduling system developed at GTE. A typical work center has 1000 employees and processes 4000 jobs each day. Jobs are geographically distributed within the service area of the work center, require different skills, and have to be done within specified time windows. Each job can take anywhere from 12 minutes to several hours to complete. Each employee can have his/her individual schedule, skill, or working area. The jobs can enter and leave the system at any time The employees dial up to the system to request for their next job atmore » the beginning of a day or after a job is done. The system is able to respond to the changes dynamically and produce close to optimum solutions at real time. We formulate the real world problem as a minimum cost network flow problem. Both employees and jobs are formulated as nodes. Relationship between jobs and employees are formulated as arcs, and working hours contributed by employees and consumed by jobs are formulated as flow. The goal is to minimize missed commitments. We solve the problem with the successive shortest path algorithm. Combined with pre-processing and post-processing, the system produces reasonable outputs and the response time is very good.« less
Yang, Jialiang; Qiu, Jing; Wang, Kejing; Zhu, Lijuan; Fan, Jingjing; Zheng, Deyin; Meng, Xiaodi; Yang, Jiasheng; Peng, Lihong; Fu, Yu; Zhang, Dahan; Peng, Shouneng; Huang, Haiyun; Zhang, Yi
2017-01-01
Obesity is a primary risk factor for many diseases such as certain cancers. In this study, we have developed three algorithms including a random-walk based method OBNet, a shortest-path based method OBsp and a direct-overlap method OBoverlap, to reveal obesity-disease connections at protein-interaction subnetworks corresponding to thousands of biological functions and pathways. Through literature mining, we also curated an obesity-associated disease list, by which we compared the methods. As a result, OBNet outperforms other two methods. OBNet can predict whether a disease is obesity-related based on its associated genes. Meanwhile, OBNet identifies extensive connections between obesity genes and genes associated with a few diseases at various functional modules and pathways. Using breast cancer and Type 2 diabetes as two examples, OBNet identifies meaningful genes that may play key roles in connecting obesity and the two diseases. For example, TGFB1 and VEGFA are inferred to be the top two key genes mediating obesity-breast cancer connection in modules associated with brain development. Finally, the top modules identified by OBNet in breast cancer significantly overlap with modules identified from TCGA breast cancer gene expression study, revealing the power of OBNet in identifying biological processes involved in the disease. PMID:29156709
NASA Astrophysics Data System (ADS)
Wood, Brian M.; Wood, Zoë J.
2006-01-01
We present a visualization and computation tool for modeling the caloric cost of pedestrian travel across three dimensional terrains. This tool is being used in ongoing archaeological research that analyzes how costs of locomotion affect the spatial distribution of trails and artifacts across archaeological landscapes. Throughout human history, traveling by foot has been the most common form of transportation, and therefore analyses of pedestrian travel costs are important for understanding prehistoric patterns of resource acquisition, migration, trade, and political interaction. Traditionally, archaeologists have measured geographic proximity based on "as the crow flies" distance. We propose new methods for terrain visualization and analysis based on measuring paths of least caloric expense, calculated using well established metabolic equations. Our approach provides a human centered metric of geographic closeness, and overcomes significant limitations of available Geographic Information System (GIS) software. We demonstrate such path computations and visualizations applied to archaeological research questions. Our system includes tools to visualize: energetic cost surfaces, comparisons of the elevation profiles of shortest paths versus least cost paths, and the display of paths of least caloric effort on Digital Elevation Models (DEMs). These analysis tools can be applied to calculate and visualize 1) likely locations of prehistoric trails and 2) expected ratios of raw material types to be recovered at archaeological sites.
The Edge-Disjoint Path Problem on Random Graphs by Message-Passing.
Altarelli, Fabrizio; Braunstein, Alfredo; Dall'Asta, Luca; De Bacco, Caterina; Franz, Silvio
2015-01-01
We present a message-passing algorithm to solve a series of edge-disjoint path problems on graphs based on the zero-temperature cavity equations. Edge-disjoint paths problems are important in the general context of routing, that can be defined by incorporating under a unique framework both traffic optimization and total path length minimization. The computation of the cavity equations can be performed efficiently by exploiting a mapping of a generalized edge-disjoint path problem on a star graph onto a weighted maximum matching problem. We perform extensive numerical simulations on random graphs of various types to test the performance both in terms of path length minimization and maximization of the number of accommodated paths. In addition, we test the performance on benchmark instances on various graphs by comparison with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always outperforms the others in terms of the number of accommodated paths when considering non trivial instances (otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution, we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all paths can be accommodated and one in which this is not possible. We also investigate the behavior of both the number of paths to be accommodated and their minimum total length.
The Edge-Disjoint Path Problem on Random Graphs by Message-Passing
2015-01-01
We present a message-passing algorithm to solve a series of edge-disjoint path problems on graphs based on the zero-temperature cavity equations. Edge-disjoint paths problems are important in the general context of routing, that can be defined by incorporating under a unique framework both traffic optimization and total path length minimization. The computation of the cavity equations can be performed efficiently by exploiting a mapping of a generalized edge-disjoint path problem on a star graph onto a weighted maximum matching problem. We perform extensive numerical simulations on random graphs of various types to test the performance both in terms of path length minimization and maximization of the number of accommodated paths. In addition, we test the performance on benchmark instances on various graphs by comparison with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always outperforms the others in terms of the number of accommodated paths when considering non trivial instances (otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution, we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all paths can be accommodated and one in which this is not possible. We also investigate the behavior of both the number of paths to be accommodated and their minimum total length. PMID:26710102
Dual stage potential field method for robotic path planning
NASA Astrophysics Data System (ADS)
Singh, Pradyumna Kumar; Parida, Pramod Kumar
2018-04-01
Path planning for autonomous mobile robots are the root for all autonomous mobile systems. Various methods are used for optimization of path to be followed by the autonomous mobile robots. Artificial potential field based path planning method is one of the most used methods for the researchers. Various algorithms have been proposed using the potential field approach. But in most of the common problems are encounters while heading towards the goal or target. i.e. local minima problem, zero potential regions problem, complex shaped obstacles problem, target near obstacle problem. In this paper we provide a new algorithm in which two types of potential functions are used one after another. The former one is to use to get the probable points and later one for getting the optimum path. In this algorithm we consider only the static obstacle and goal.
Robust Flight Path Determination for Mars Precision Landing Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Bayard, David S.; Kohen, Hamid
1997-01-01
This paper documents the application of genetic algorithms (GAs) to the problem of robust flight path determination for Mars precision landing. The robust flight path problem is defined here as the determination of the flight path which delivers a low-lift open-loop controlled vehicle to its desired final landing location while minimizing the effect of perturbations due to uncertainty in the atmospheric model and entry conditions. The genetic algorithm was capable of finding solutions which reduced the landing error from 111 km RMS radial (open-loop optimal) to 43 km RMS radial (optimized with respect to perturbations) using 200 hours of computation on an Ultra-SPARC workstation. Further reduction in the landing error is possible by going to closed-loop control which can utilize the GA optimized paths as nominal trajectories for linearization.
Curvature Continuous and Bounded Path Planning for Fixed-Wing UAVs
Jiang, Peng; Li, Deshi; Sun, Tao
2017-01-01
Unmanned Aerial Vehicles (UAVs) play an important role in applications such as data collection and target reconnaissance. An accurate and optimal path can effectively increase the mission success rate in the case of small UAVs. Although path planning for UAVs is similar to that for traditional mobile robots, the special kinematic characteristics of UAVs (such as their minimum turning radius) have not been taken into account in previous studies. In this paper, we propose a locally-adjustable, continuous-curvature, bounded path-planning algorithm for fixed-wing UAVs. To deal with the curvature discontinuity problem, an optimal interpolation algorithm and a key-point shift algorithm are proposed based on the derivation of a curvature continuity condition. To meet the upper bound for curvature and to render the curvature extrema controllable, a local replanning scheme is designed by combining arcs and Bezier curves with monotonic curvature. In particular, a path transition mechanism is built for the replanning phase using minimum curvature circles for a planning philosophy. Numerical results demonstrate that the analytical planning algorithm can effectively generate continuous-curvature paths, while satisfying the curvature upper bound constraint and allowing UAVs to pass through all predefined waypoints in the desired mission region. PMID:28925960
Curvature Continuous and Bounded Path Planning for Fixed-Wing UAVs.
Wang, Xiaoliang; Jiang, Peng; Li, Deshi; Sun, Tao
2017-09-19
Unmanned Aerial Vehicles (UAVs) play an important role in applications such as data collection and target reconnaissance. An accurate and optimal path can effectively increase the mission success rate in the case of small UAVs. Although path planning for UAVs is similar to that for traditional mobile robots, the special kinematic characteristics of UAVs (such as their minimum turning radius) have not been taken into account in previous studies. In this paper, we propose a locally-adjustable, continuous-curvature, bounded path-planning algorithm for fixed-wing UAVs. To deal with the curvature discontinuity problem, an optimal interpolation algorithm and a key-point shift algorithm are proposed based on the derivation of a curvature continuity condition. To meet the upper bound for curvature and to render the curvature extrema controllable, a local replanning scheme is designed by combining arcs and Bezier curves with monotonic curvature. In particular, a path transition mechanism is built for the replanning phase using minimum curvature circles for a planning philosophy. Numerical results demonstrate that the analytical planning algorithm can effectively generate continuous-curvature paths, while satisfying the curvature upper bound constraint and allowing UAVs to pass through all predefined waypoints in the desired mission region.
An adaptive multi-level simulation algorithm for stochastic biological systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lester, C., E-mail: lesterc@maths.ox.ac.uk; Giles, M. B.; Baker, R. E.
2015-01-14
Discrete-state, continuous-time Markov models are widely used in the modeling of biochemical reaction networks. Their complexity often precludes analytic solution, and we rely on stochastic simulation algorithms (SSA) to estimate system statistics. The Gillespie algorithm is exact, but computationally costly as it simulates every single reaction. As such, approximate stochastic simulation algorithms such as the tau-leap algorithm are often used. Potentially computationally more efficient, the system statistics generated suffer from significant bias unless tau is relatively small, in which case the computational time can be comparable to that of the Gillespie algorithm. The multi-level method [Anderson and Higham, “Multi-level Montemore » Carlo for continuous time Markov chains, with applications in biochemical kinetics,” SIAM Multiscale Model. Simul. 10(1), 146–179 (2012)] tackles this problem. A base estimator is computed using many (cheap) sample paths at low accuracy. The bias inherent in this estimator is then reduced using a number of corrections. Each correction term is estimated using a collection of paired sample paths where one path of each pair is generated at a higher accuracy compared to the other (and so more expensive). By sharing random variables between these paired paths, the variance of each correction estimator can be reduced. This renders the multi-level method very efficient as only a relatively small number of paired paths are required to calculate each correction term. In the original multi-level method, each sample path is simulated using the tau-leap algorithm with a fixed value of τ. This approach can result in poor performance when the reaction activity of a system changes substantially over the timescale of interest. By introducing a novel adaptive time-stepping approach where τ is chosen according to the stochastic behaviour of each sample path, we extend the applicability of the multi-level method to such cases. We demonstrate the efficiency of our method using a number of examples.« less
Image-based path planning for automated virtual colonoscopy navigation
NASA Astrophysics Data System (ADS)
Hong, Wei
2008-03-01
Virtual colonoscopy (VC) is a noninvasive method for colonic polyp screening, by reconstructing three-dimensional models of the colon using computerized tomography (CT). In virtual colonoscopy fly-through navigation, it is crucial to generate an optimal camera path for efficient clinical examination. In conventional methods, the centerline of the colon lumen is usually used as the camera path. In order to extract colon centerline, some time consuming pre-processing algorithms must be performed before the fly-through navigation, such as colon segmentation, distance transformation, or topological thinning. In this paper, we present an efficient image-based path planning algorithm for automated virtual colonoscopy fly-through navigation without the requirement of any pre-processing. Our algorithm only needs the physician to provide a seed point as the starting camera position using 2D axial CT images. A wide angle fisheye camera model is used to generate a depth image from the current camera position. Two types of navigational landmarks, safe regions and target regions are extracted from the depth images. Camera position and its corresponding view direction are then determined using these landmarks. The experimental results show that the generated paths are accurate and increase the user comfort during the fly-through navigation. Moreover, because of the efficiency of our path planning algorithm and rendering algorithm, our VC fly-through navigation system can still guarantee 30 FPS.
Topological patterns in street networks of self-organized urban settlements
NASA Astrophysics Data System (ADS)
Buhl, J.; Gautrais, J.; Reeves, N.; Solé, R. V.; Valverde, S.; Kuntz, P.; Theraulaz, G.
2006-02-01
Many urban settlements result from a spatially distributed, decentralized building process. Here we analyze the topological patterns of organization of a large collection of such settlements using the approach of complex networks. The global efficiency (based on the inverse of shortest-path lengths), robustness to disconnections and cost (in terms of length) of these graphs is studied and their possible origins analyzed. A wide range of patterns is found, from tree-like settlements (highly vulnerable to random failures) to meshed urban patterns. The latter are shown to be more robust and efficient.
Automatic Generation of Issue Maps: Structured, Interactive Outputs for Complex Information Needs
2012-09-01
much can result in behaviour similar to the shortest-path chains. 24 Ronald Goldman Neil Lewis Judge Lance Ito 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 jury...Connecting the Dots has also been explored in non-textual domains. The authors of [ Heath et al., 2010] propose building graphs, called Image Webs, to...could imagine a metro map summarizing a dataset of medical records. 2. Images: In [ Heath et al., 2010], Heath et al build graphs called Image Webs to rep
Stereo Image Dense Matching by Integrating Sift and Sgm Algorithm
NASA Astrophysics Data System (ADS)
Zhou, Y.; Song, Y.; Lu, J.
2018-05-01
Semi-global matching(SGM) performs the dynamic programming by treating the different path directions equally. It does not consider the impact of different path directions on cost aggregation, and with the expansion of the disparity search range, the accuracy and efficiency of the algorithm drastically decrease. This paper presents a dense matching algorithm by integrating SIFT and SGM. It takes the successful matching pairs matched by SIFT as control points to direct the path in dynamic programming with truncating error propagation. Besides, matching accuracy can be improved by using the gradient direction of the detected feature points to modify the weights of the paths in different directions. The experimental results based on Middlebury stereo data sets and CE-3 lunar data sets demonstrate that the proposed algorithm can effectively cut off the error propagation, reduce disparity search range and improve matching accuracy.
Tien, Nguyen Xuan; Kim, Semog; Rhee, Jong Myung; Park, Sang Yoon
2017-07-25
Fault tolerance has long been a major concern for sensor communications in fault-tolerant cyber physical systems (CPSs). Network failure problems often occur in wireless sensor networks (WSNs) due to various factors such as the insufficient power of sensor nodes, the dislocation of sensor nodes, the unstable state of wireless links, and unpredictable environmental interference. Fault tolerance is thus one of the key requirements for data communications in WSN applications. This paper proposes a novel path redundancy-based algorithm, called dual separate paths (DSP), that provides fault-tolerant communication with the improvement of the network traffic performance for WSN applications, such as fault-tolerant CPSs. The proposed DSP algorithm establishes two separate paths between a source and a destination in a network based on the network topology information. These paths are node-disjoint paths and have optimal path distances. Unicast frames are delivered from the source to the destination in the network through the dual paths, providing fault-tolerant communication and reducing redundant unicast traffic for the network. The DSP algorithm can be applied to wired and wireless networks, such as WSNs, to provide seamless fault-tolerant communication for mission-critical and life-critical applications such as fault-tolerant CPSs. The analyzed and simulated results show that the DSP-based approach not only provides fault-tolerant communication, but also improves network traffic performance. For the case study in this paper, when the DSP algorithm was applied to high-availability seamless redundancy (HSR) networks, the proposed DSP-based approach reduced the network traffic by 80% to 88% compared with the standard HSR protocol, thus improving network traffic performance.
Improved efficient routing strategy on two-layer complex networks
NASA Astrophysics Data System (ADS)
Ma, Jinlong; Han, Weizhan; Guo, Qing; Zhang, Shuai; Wang, Junfang; Wang, Zhihao
2016-10-01
The traffic dynamics of multi-layer networks has become a hot research topic since many networks are comprised of two or more layers of subnetworks. Due to its low traffic capacity, the traditional shortest path routing (SPR) protocol is susceptible to congestion on two-layer complex networks. In this paper, we propose an efficient routing strategy named improved global awareness routing (IGAR) strategy which is based on the betweenness centrality of nodes in the two layers. With the proposed strategy, the routing paths can bypass hub nodes of both layers to enhance the transport efficiency. Simulation results show that the IGAR strategy can bring much better traffic capacity than the SPR and the global awareness routing (GAR) strategies. Because of the significantly improved traffic performance, this study is helpful to alleviate congestion of the two-layer complex networks.
A Model of Adding Relations in Multi-levels to a Formal Organization Structure with Two Subordinates
NASA Astrophysics Data System (ADS)
Sawada, Kiyoshi; Amano, Kazuyuki
2009-10-01
This paper proposes a model of adding relations in multi-levels to a formal organization structure with two subordinates such that the communication of information between every member in the organization becomes the most efficient. When edges between every pair of nodes with the same depth in L (L = 1, 2, …, H) levels are added to a complete binary tree of height H, an optimal set of depths {N1, N2, …, NL} (H⩾N1>N2> …>NL⩾1) is obtained by maximizing the total shortening path length which is the sum of shortening lengths of shortest paths between every pair of all nodes in the complete binary tree. It is shown that {N1, N2, …, NL}* = {H, H-1, …, H-L+1}.
Eccentric connectivity index of chemical trees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haoer, R. S., E-mail: raadsehen@gmail.com; Department of Mathematics, Faculty of Computer Sciences and Mathematics, University Of Kufa, Najaf; Atan, K. A., E-mail: kamel@upm.edu.my
Let G = (V, E) be a simple connected molecular graph. In such a simple molecular graph, vertices and edges are depicted atoms and chemical bonds respectively, we refer to the sets of vertices by V (G) and edges by E (G). If d(u, v) be distance between two vertices u, v ∈ V(G) and can be defined as the length of a shortest path joining them. Then, the eccentricity connectivity index (ECI) of a molecular graph G is ξ(G) = ∑{sub v∈V(G)} d(v) ec(v), where d(v) is degree of a vertex v ∈ V(G). ec(v) is the length ofmore » a greatest path linking to another vertex of v. In this study, we focus the general formula for the eccentricity connectivity index (ECI) of some chemical trees as alkenes.« less
NASA Astrophysics Data System (ADS)
Whyte, Refael; Streeter, Lee; Cree, Michael J.; Dorrington, Adrian A.
2015-11-01
Time of flight (ToF) range cameras illuminate the scene with an amplitude-modulated continuous wave light source and measure the returning modulation envelopes: phase and amplitude. The phase change of the modulation envelope encodes the distance travelled. This technology suffers from measurement errors caused by multiple propagation paths from the light source to the receiving pixel. The multiple paths can be represented as the summation of a direct return, which is the return from the shortest path length, and a global return, which includes all other returns. We develop the use of a sinusoidal pattern from which a closed form solution for the direct and global returns can be computed in nine frames with the constraint that the global return is a spatially lower frequency than the illuminated pattern. In a demonstration on a scene constructed to have strong multipath interference, we find the direct return is not significantly different from the ground truth in 33/136 pixels tested; where for the full-field measurement, it is significantly different for every pixel tested. The variance in the estimated direct phase and amplitude increases by a factor of eight compared with the standard time of flight range camera technique.
Applications and development of new algorithms for displacement analysis using InSAR time series
NASA Astrophysics Data System (ADS)
Osmanoglu, Batuhan
Time series analysis of Synthetic Aperture Radar Interferometry (InSAR) data has become an important scientific tool for monitoring and measuring the displacement of Earth's surface due to a wide range of phenomena, including earthquakes, volcanoes, landslides, changes in ground water levels, and wetlands. Time series analysis is a product of interferometric phase measurements, which become ambiguous when the observed motion is larger than half of the radar wavelength. Thus, phase observations must first be unwrapped in order to obtain physically meaningful results. Persistent Scatterer Interferometry (PSI), Stanford Method for Persistent Scatterers (StaMPS), Short Baselines Interferometry (SBAS) and Small Temporal Baseline Subset (STBAS) algorithms solve for this ambiguity using a series of spatio-temporal unwrapping algorithms and filters. In this dissertation, I improve upon current phase unwrapping algorithms, and apply the PSI method to study subsidence in Mexico City. PSI was used to obtain unwrapped deformation rates in Mexico City (Chapter 3),where ground water withdrawal in excess of natural recharge causes subsurface, clay-rich sediments to compact. This study is based on 23 satellite SAR scenes acquired between January 2004 and July 2006. Time series analysis of the data reveals a maximum line-of-sight subsidence rate of 300mm/yr at a high enough resolution that individual subsidence rates for large buildings can be determined. Differential motion and related structural damage along an elevated metro rail was evident from the results. Comparison of PSI subsidence rates with data from permanent GPS stations indicate root mean square (RMS) agreement of 6.9 mm/yr, about the level expected based on joint data uncertainty. The Mexico City results suggest negligible recharge, implying continuing degradation and loss of the aquifer in the third largest metropolitan area in the world. Chapters 4 and 5 illustrate the link between time series analysis and three-dimensional (3-D) phase unwrapping. Chapter 4 focuses on the unwrapping path. Unwrapping algorithms can be divided into two groups, path-dependent and path-independent algorithms. Path-dependent algorithms use local unwrapping functions applied pixel-by-pixel to the dataset. In contrast, path-independent algorithms use global optimization methods such as least squares, and return a unique solution. However, when aliasing and noise are present, path-independent algorithms can underestimate the signal in some areas due to global fitting criteria. Path-dependent algorithms do not underestimate the signal, but, as the name implies, the unwrapping path can affect the result. Comparison between existing path algorithms and a newly developed algorithm based on Fisher information theory was conducted. Results indicate that Fisher information theory does indeed produce lower misfit results for most tested cases. Chapter 5 presents a new time series analysis method based on 3-D unwrapping of SAR data using extended Kalman filters. Existing methods for time series generation using InSAR data employ special filters to combine two-dimensional (2-D) spatial unwrapping with one-dimensional (1-D) temporal unwrapping results. The new method, however, combines observations in azimuth, range and time for repeat pass interferometry. Due to the pixel-by-pixel characteristic of the filter, the unwrapping path is selected based on a quality map. This unwrapping algorithm is the first application of extended Kalman filters to the 3-D unwrapping problem. Time series analyses of InSAR data are used in a variety of applications with different characteristics. Consequently, it is difficult to develop a single algorithm that can provide optimal results in all cases, given that different algorithms possess a unique set of strengths and weaknesses. Nonetheless, filter-based unwrapping algorithms such as the one presented in this dissertation have the capability of joining multiple observations into a uniform solution, which is becoming an important feature with continuously growing datasets.
Quality of service routing in wireless ad hoc networks
NASA Astrophysics Data System (ADS)
Sane, Sachin J.; Patcha, Animesh; Mishra, Amitabh
2003-08-01
An efficient routing protocol is essential to guarantee application level quality of service running on wireless ad hoc networks. In this paper we propose a novel routing algorithm that computes a path between a source and a destination by considering several important constraints such as path-life, availability of sufficient energy as well as buffer space in each of the nodes on the path between the source and destination. The algorithm chooses the best path from among the multiples paths that it computes between two endpoints. We consider the use of control packets that run at a priority higher than the data packets in determining the multiple paths. The paper also examines the impact of different schedulers such as weighted fair queuing, and weighted random early detection among others in preserving the QoS level guarantees. Our extensive simulation results indicate that the algorithm improves the overall lifetime of a network, reduces the number of dropped packets, and decreases the end-to-end delay for real-time voice application.
The application of Markov decision process in restaurant delivery robot
NASA Astrophysics Data System (ADS)
Wang, Yong; Hu, Zhen; Wang, Ying
2017-05-01
As the restaurant delivery robot is often in a dynamic and complex environment, including the chairs inadvertently moved to the channel and customers coming and going. The traditional path planning algorithm is not very ideal. To solve this problem, this paper proposes the Markov dynamic state immediate reward (MDR) path planning algorithm according to the traditional Markov decision process. First of all, it uses MDR to plan a global path, then navigates along this path. When the sensor detects there is no obstructions in front state, increase its immediate state reward value; when the sensor detects there is an obstacle in front, plan a global path that can avoid obstacle with the current position as the new starting point and reduce its state immediate reward value. This continues until the target is reached. When the robot learns for a period of time, it can avoid those places where obstacles are often present when planning the path. By analyzing the simulation experiment, the algorithm has achieved good results in the global path planning under the dynamic environment.
Research on global path planning based on ant colony optimization for AUV
NASA Astrophysics Data System (ADS)
Wang, Hong-Jian; Xiong, Wei
2009-03-01
Path planning is an important issue for autonomous underwater vehicles (AUVs) traversing an unknown environment such as a sea floor, a jungle, or the outer celestial planets. For this paper, global path planning using large-scale chart data was studied, and the principles of ant colony optimization (ACO) were applied. This paper introduced the idea of a visibility graph based on the grid workspace model. It also brought a series of pheromone updating rules for the ACO planning algorithm. The operational steps of the ACO algorithm are proposed as a model for a global path planning method for AUV. To mimic the process of smoothing a planned path, a cutting operator and an insertion-point operator were designed. Simulation results demonstrated that the ACO algorithm is suitable for global path planning. The system has many advantages, including that the operating path of the AUV can be quickly optimized, and it is shorter, safer, and smoother. The prototype system successfully demonstrated the feasibility of the concept, proving it can be applied to surveys of unstructured unmanned environments.
Wei, Kun; Ren, Bingyin
2018-02-13
In a future intelligent factory, a robotic manipulator must work efficiently and safely in a Human-Robot collaborative and dynamic unstructured environment. Autonomous path planning is the most important issue which must be resolved first in the process of improving robotic manipulator intelligence. Among the path-planning methods, the Rapidly Exploring Random Tree (RRT) algorithm based on random sampling has been widely applied in dynamic path planning for a high-dimensional robotic manipulator, especially in a complex environment because of its probability completeness, perfect expansion, and fast exploring speed over other planning methods. However, the existing RRT algorithm has a limitation in path planning for a robotic manipulator in a dynamic unstructured environment. Therefore, an autonomous obstacle avoidance dynamic path-planning method for a robotic manipulator based on an improved RRT algorithm, called Smoothly RRT (S-RRT), is proposed. This method that targets a directional node extends and can increase the sampling speed and efficiency of RRT dramatically. A path optimization strategy based on the maximum curvature constraint is presented to generate a smooth and curved continuous executable path for a robotic manipulator. Finally, the correctness, effectiveness, and practicability of the proposed method are demonstrated and validated via a MATLAB static simulation and a Robot Operating System (ROS) dynamic simulation environment as well as a real autonomous obstacle avoidance experiment in a dynamic unstructured environment for a robotic manipulator. The proposed method not only provides great practical engineering significance for a robotic manipulator's obstacle avoidance in an intelligent factory, but also theoretical reference value for other type of robots' path planning.
Optimization model of conventional missile maneuvering route based on improved Floyd algorithm
NASA Astrophysics Data System (ADS)
Wu, Runping; Liu, Weidong
2018-04-01
Missile combat plays a crucial role in the victory of war under high-tech conditions. According to the characteristics of maneuver tasks of conventional missile units in combat operations, the factors influencing road maneuvering are analyzed. Based on road distance, road conflicts, launching device speed, position requirements, launch device deployment, Concealment and so on. The shortest time optimization model was built to discuss the situation of road conflict and the strategy of conflict resolution. The results suggest that in the process of solving road conflict, the effect of node waiting is better than detour to another way. In this study, we analyzed the deficiency of the traditional Floyd algorithm which may limit the optimal way of solving road conflict, and put forward the improved Floyd algorithm, meanwhile, we designed the algorithm flow which would be better than traditional Floyd algorithm. Finally, throgh a numerical example, the model and the algorithm were proved to be reliable and effective.
Quantum Adiabatic Algorithms and Large Spin Tunnelling
NASA Technical Reports Server (NTRS)
Boulatov, A.; Smelyanskiy, V. N.
2003-01-01
We provide a theoretical study of the quantum adiabatic evolution algorithm with different evolution paths proposed in this paper. The algorithm is applied to a random binary optimization problem (a version of the 3-Satisfiability problem) where the n-bit cost function is symmetric with respect to the permutation of individual bits. The evolution paths are produced, using the generic control Hamiltonians H (r) that preserve the bit symmetry of the underlying optimization problem. In the case where the ground state of H(0) coincides with the totally-symmetric state of an n-qubit system the algorithm dynamics is completely described in terms of the motion of a spin-n/2. We show that different control Hamiltonians can be parameterized by a set of independent parameters that are expansion coefficients of H (r) in a certain universal set of operators. Only one of these operators can be responsible for avoiding the tunnelling in the spin-n/2 system during the quantum adiabatic algorithm. We show that it is possible to select a coefficient for this operator that guarantees a polynomial complexity of the algorithm for all problem instances. We show that a successful evolution path of the algorithm always corresponds to the trajectory of a classical spin-n/2 and provide a complete characterization of such paths.
Structure-guided Protein Transition Modeling with a Probabilistic Roadmap Algorithm.
Maximova, Tatiana; Plaku, Erion; Shehu, Amarda
2016-07-07
Proteins are macromolecules in perpetual motion, switching between structural states to modulate their function. A detailed characterization of the precise yet complex relationship between protein structure, dynamics, and function requires elucidating transitions between functionally-relevant states. Doing so challenges both wet and dry laboratories, as protein dynamics involves disparate temporal scales. In this paper we present a novel, sampling-based algorithm to compute transition paths. The algorithm exploits two main ideas. First, it leverages known structures to initialize its search and define a reduced conformation space for rapid sampling. This is key to address the insufficient sampling issue suffered by sampling-based algorithms. Second, the algorithm embeds samples in a nearest-neighbor graph where transition paths can be efficiently computed via queries. The algorithm adapts the probabilistic roadmap framework that is popular in robot motion planning. In addition to efficiently computing lowest-cost paths between any given structures, the algorithm allows investigating hypotheses regarding the order of experimentally-known structures in a transition event. This novel contribution is likely to open up new venues of research. Detailed analysis is presented on multiple-basin proteins of relevance to human disease. Multiscaling and the AMBER ff14SB force field are used to obtain energetically-credible paths at atomistic detail.
Comparison of some evolutionary algorithms for optimization of the path synthesis problem
NASA Astrophysics Data System (ADS)
Grabski, Jakub Krzysztof; Walczak, Tomasz; Buśkiewicz, Jacek; Michałowska, Martyna
2018-01-01
The paper presents comparison of the results obtained in a mechanism synthesis by means of some selected evolutionary algorithms. The optimization problem considered in the paper as an example is the dimensional synthesis of the path generating four-bar mechanism. In order to solve this problem, three different artificial intelligence algorithms are employed in this study.
ERIC Educational Resources Information Center
Boker, Steven M.; McArdle, J. J.; Neale, Michael
2002-01-01
Presents an algorithm for the production of a graphical diagram from a matrix formula in such a way that its components are logically and hierarchically arranged. The algorithm, which relies on the matrix equations of J. McArdle and R. McDonald (1984), calculates the individual path components of expected covariance between variables and…
A Comparison of Hybrid Approaches for Turbofan Engine Gas Path Fault Diagnosis
NASA Astrophysics Data System (ADS)
Lu, Feng; Wang, Yafan; Huang, Jinquan; Wang, Qihang
2016-09-01
A hybrid diagnostic method utilizing Extended Kalman Filter (EKF) and Adaptive Genetic Algorithm (AGA) is presented for performance degradation estimation and sensor anomaly detection of turbofan engine. The EKF is used to estimate engine component performance degradation for gas path fault diagnosis. The AGA is introduced in the integrated architecture and applied for sensor bias detection. The contributions of this work are the comparisons of Kalman Filters (KF)-AGA algorithms and Neural Networks (NN)-AGA algorithms with a unified framework for gas path fault diagnosis. The NN needs to be trained off-line with a large number of prior fault mode data. When new fault mode occurs, estimation accuracy by the NN evidently decreases. However, the application of the Linearized Kalman Filter (LKF) and EKF will not be restricted in such case. The crossover factor and the mutation factor are adapted to the fitness function at each generation in the AGA, and it consumes less time to search for the optimal sensor bias value compared to the Genetic Algorithm (GA). In a word, we conclude that the hybrid EKF-AGA algorithm is the best choice for gas path fault diagnosis of turbofan engine among the algorithms discussed.
Rock climbing: A local-global algorithm to compute minimum energy and minimum free energy pathways.
Templeton, Clark; Chen, Szu-Hua; Fathizadeh, Arman; Elber, Ron
2017-10-21
The calculation of minimum energy or minimum free energy paths is an important step in the quantitative and qualitative studies of chemical and physical processes. The computations of these coordinates present a significant challenge and have attracted considerable theoretical and computational interest. Here we present a new local-global approach to study reaction coordinates, based on a gradual optimization of an action. Like other global algorithms, it provides a path between known reactants and products, but it uses a local algorithm to extend the current path in small steps. The local-global approach does not require an initial guess to the path, a major challenge for global pathway finders. Finally, it provides an exact answer (the steepest descent path) at the end of the calculations. Numerical examples are provided for the Mueller potential and for a conformational transition in a solvated ring system.
Flight Path Synthesis and HUD Scaling for V/STOL Terminal Area Operations
DOT National Transportation Integrated Search
1995-04-01
A two circle horizontal flightpath synthesis algorithm for Vertical/Short : Takeoff and Landing (V/STOL) terminal area operations is presented. This : algorithm provides a flight-path that is tangential to the aircraft's velocity : vector at the inst...
Robot path planning algorithm based on symbolic tags in dynamic environment
NASA Astrophysics Data System (ADS)
Vokhmintsev, A.; Timchenko, M.; Melnikov, A.; Kozko, A.; Makovetskii, A.
2017-09-01
The present work will propose a new heuristic algorithms for path planning of a mobile robot in an unknown dynamic space that have theoretically approved estimates of computational complexity and are approbated for solving specific applied problems.
NASA Astrophysics Data System (ADS)
Poulter, Benjamin; Goodall, Jonathan L.; Halpin, Patrick N.
2008-08-01
SummaryThe vulnerability of coastal landscapes to sea level rise is compounded by the existence of extensive artificial drainage networks initially built to lower water tables for agriculture, forestry, and human settlements. These drainage networks are found in landscapes with little topographic relief where channel flow is characterized by bi-directional movement across multiple time-scales and related to precipitation, wind, and tidal patterns. The current configuration of many artificial drainage networks exacerbates impacts associated with sea level rise such as salt-intrusion and increased flooding. This suggests that in the short-term, drainage networks might be managed to mitigate sea level rise related impacts. The challenge, however, is that hydrologic processes in regions where channel flow direction is weakly related to slope and topography require extensive parameterization for numerical models which is limited where network size is on the order of a hundred or more kilometers in total length. Here we present an application of graph theoretic algorithms to efficiently investigate network properties relevant to the management of a large artificial drainage system in coastal North Carolina, USA. We created a digital network model representing the observation network topology and four types of drainage features (canal, collector and field ditches, and streams). We applied betweenness-centrality concepts (using Dijkstra's shortest path algorithm) to determine major hydrologic flowpaths based off of hydraulic resistance. Following this, we identified sub-networks that could be managed independently using a community structure and modularity approach. Lastly, a betweenness-centrality algorithm was applied to identify major shoreline entry points to the network that disproportionately control water movement in and out of the network. We demonstrate that graph theory can be applied to solving management and monitoring problems associated with sea level rise for poorly understood drainage networks in advance of numerical methods.
Google Maps for Crowdsourced Emergency Routing
NASA Astrophysics Data System (ADS)
Nedkov, S.; Zlatanova, S.
2012-08-01
Gathering infrastructure data in emergency situations is challenging. The affected by a disaster areas are often large and the needed observations numerous. Spaceborne remote sensing techniques cover large areas but they are of limited use as their field of view may be blocked by clouds, smoke, buildings, highways, etc. Remote sensing products furthermore require specialists to collect and analyze the data. This contrasts the nature of the damage detection problem: almost everyone is capable of observing whether a street is usable or not. The crowd is fit for solving these challenges as its members are numerous, they are willing to help and are often in the vicinity of the disaster thereby forming a highly dispersed sensor network. This paper proposes and implements a small WebGIS application for performing shortest path calculations based on crowdsourced information about the infrastructure health. The application is built on top of Google Maps and uses its routing service to calculate the shortest distance between two locations. Impassable areas are indicated on a map by people performing in-situ observations on a mobile device, and by users on a desktop machine who consult a multitude of information sources.
On Channel-Discontinuity-Constraint Routing in Wireless Networks☆
Sankararaman, Swaminathan; Efrat, Alon; Ramasubramanian, Srinivasan; Agarwal, Pankaj K.
2011-01-01
Multi-channel wireless networks are increasingly deployed as infrastructure networks, e.g. in metro areas. Network nodes frequently employ directional antennas to improve spatial throughput. In such networks, between two nodes, it is of interest to compute a path with a channel assignment for the links such that the path and link bandwidths are the same. This is achieved when any two consecutive links are assigned different channels, termed as “Channel-Discontinuity-Constraint” (CDC). CDC-paths are also useful in TDMA systems, where, preferably, consecutive links are assigned different time-slots. In the first part of this paper, we develop a t-spanner for CDC-paths using spatial properties; a sub-network containing O(n/θ) links, for any θ > 0, such that CDC-paths increase in cost by at most a factor t = (1−2 sin (θ/2))−2. We propose a novel distributed algorithm to compute the spanner using an expected number of O(n log n) fixed-size messages. In the second part, we present a distributed algorithm to find minimum-cost CDC-paths between two nodes using O(n2) fixed-size messages, by developing an extension of Edmonds’ algorithm for minimum-cost perfect matching. In a centralized implementation, our algorithm runs in O(n2) time improving the previous best algorithm which requires O(n3) running time. Moreover, this running time improves to O(n/θ) when used in conjunction with the spanner developed. PMID:24443646
Application of ant colony algorithm in path planning of the data center room robot
NASA Astrophysics Data System (ADS)
Wang, Yong; Ma, Jianming; Wang, Ying
2017-05-01
According to the Internet Data Center (IDC) room patrol robot as the background, the robot in the search path of autonomous obstacle avoidance and path planning ability, worked out in advance of the robot room patrol mission. The simulation experimental results show that the improved ant colony algorithm for IDC room patrol robot obstacle avoidance planning, makes the robot along an optimal or suboptimal and safe obstacle avoidance path to reach the target point to complete the task. To prove the feasibility of the method.
Complex networks in confined comminution
NASA Astrophysics Data System (ADS)
Walker, David M.; Tordesillas, Antoinette; Einav, Itai; Small, Michael
2011-08-01
The physical process of confined comminution is investigated within the framework of complex networks. We first characterize the topology of the unweighted contact networks as generated by the confined comminution process. We find this process gives rise to an ultimate contact network which exhibits a scale-free degree distribution and small world properties. In particular, if viewed in the context of networks through which information travels along shortest paths, we find that the global average of the node vulnerability decreases as the comminution process continues, with individual node vulnerability correlating with grain size. A possible application to the design of synthetic networks (e.g., sensor networks) is highlighted. Next we turn our attention to the physics of the granular comminution process and examine force transmission with respect to the weighted contact networks, where each link is weighted by the inverse magnitude of the normal force acting at the associated contact. We find that the strong forces (i.e., force chains) are transmitted along pathways in the network which are mainly following shortest-path routing protocols, as typically found, for example, in communication systems. Motivated by our earlier studies of the building blocks for self-organization in dense granular systems, we also explore the properties of the minimal contact cycles. The distribution of the contact strain energy intensity of 4-cycle motifs in the ultimate state of the confined comminution process is shown to be consistent with a scale-free distribution with infinite variance, thereby suggesting that 4-cycle arrangements of grains are capable of storing vast amounts of energy in their contacts without breaking.
Complex Network Theory Applied to the Growth of Kuala Lumpur's Public Urban Rail Transit Network.
Ding, Rui; Ujang, Norsidah; Hamid, Hussain Bin; Wu, Jianjun
2015-01-01
Recently, the number of studies involving complex network applications in transportation has increased steadily as scholars from various fields analyze traffic networks. Nonetheless, research on rail network growth is relatively rare. This research examines the evolution of the Public Urban Rail Transit Networks of Kuala Lumpur (PURTNoKL) based on complex network theory and covers both the topological structure of the rail system and future trends in network growth. In addition, network performance when facing different attack strategies is also assessed. Three topological network characteristics are considered: connections, clustering and centrality. In PURTNoKL, we found that the total number of nodes and edges exhibit a linear relationship and that the average degree stays within the interval [2.0488, 2.6774] with heavy-tailed distributions. The evolutionary process shows that the cumulative probability distribution (CPD) of degree and the average shortest path length show good fit with exponential distribution and normal distribution, respectively. Moreover, PURTNoKL exhibits clear cluster characteristics; most of the nodes have a 2-core value, and the CPDs of the centrality's closeness and betweenness follow a normal distribution function and an exponential distribution, respectively. Finally, we discuss four different types of network growth styles and the line extension process, which reveal that the rail network's growth is likely based on the nodes with the biggest lengths of the shortest path and that network protection should emphasize those nodes with the largest degrees and the highest betweenness values. This research may enhance the networkability of the rail system and better shape the future growth of public rail networks.
van Mierlo, Pieter; Lie, Octavian; Staljanssens, Willeke; Coito, Ana; Vulliémoz, Serge
2018-04-26
We investigated the influence of processing steps in the estimation of multivariate directed functional connectivity during seizures recorded with intracranial EEG (iEEG) on seizure-onset zone (SOZ) localization. We studied the effect of (i) the number of nodes, (ii) time-series normalization, (iii) the choice of multivariate time-varying connectivity measure: Adaptive Directed Transfer Function (ADTF) or Adaptive Partial Directed Coherence (APDC) and (iv) graph theory measure: outdegree or shortest path length. First, simulations were performed to quantify the influence of the various processing steps on the accuracy to localize the SOZ. Afterwards, the SOZ was estimated from a 113-electrodes iEEG seizure recording and compared with the resection that rendered the patient seizure-free. The simulations revealed that ADTF is preferred over APDC to localize the SOZ from ictal iEEG recordings. Normalizing the time series before analysis resulted in an increase of 25-35% of correctly localized SOZ, while adding more nodes to the connectivity analysis led to a moderate decrease of 10%, when comparing 128 with 32 input nodes. The real-seizure connectivity estimates localized the SOZ inside the resection area using the ADTF coupled to outdegree or shortest path length. Our study showed that normalizing the time-series is an important pre-processing step, while adding nodes to the analysis did only marginally affect the SOZ localization. The study shows that directed multivariate Granger-based connectivity analysis is feasible with many input nodes (> 100) and that normalization of the time-series before connectivity analysis is preferred.
Distribution of shortest path lengths in a class of node duplication network models
NASA Astrophysics Data System (ADS)
Steinbock, Chanania; Biham, Ofer; Katzav, Eytan
2017-09-01
We present analytical results for the distribution of shortest path lengths (DSPL) in a network growth model which evolves by node duplication (ND). The model captures essential properties of the structure and growth dynamics of social networks, acquaintance networks, and scientific citation networks, where duplication mechanisms play a major role. Starting from an initial seed network, at each time step a random node, referred to as a mother node, is selected for duplication. Its daughter node is added to the network, forming a link to the mother node, and with probability p to each one of its neighbors. The degree distribution of the resulting network turns out to follow a power-law distribution, thus the ND network is a scale-free network. To calculate the DSPL we derive a master equation for the time evolution of the probability Pt(L =ℓ ) , ℓ =1 ,2 ,⋯ , where L is the distance between a pair of nodes and t is the time. Finding an exact analytical solution of the master equation, we obtain a closed form expression for Pt(L =ℓ ) . The mean distance 〈L〉 t and the diameter Δt are found to scale like lnt , namely, the ND network is a small-world network. The variance of the DSPL is also found to scale like lnt . Interestingly, the mean distance and the diameter exhibit properties of a small-world network, rather than the ultrasmall-world network behavior observed in other scale-free networks, in which 〈L〉 t˜lnlnt .
High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution
NASA Astrophysics Data System (ADS)
Bai, ZengLiang; Wang, XuYang; Yang, ShenShen; Li, YongMin
2016-01-01
Efficient reconciliation is a crucial step in continuous variable quantum key distribution. The progressive-edge-growth (PEG) algorithm is an efficient method to construct relatively short block length low-density parity-check (LDPC) codes. The qua-sicyclic construction method can extend short block length codes and further eliminate the shortest cycle. In this paper, by combining the PEG algorithm and qua-si-cyclic construction method, we design long block length irregular LDPC codes with high error-correcting capacity. Based on these LDPC codes, we achieve high-efficiency Gaussian key reconciliation with slice recon-ciliation based on multilevel coding/multistage decoding with an efficiency of 93.7%.
Generalized gradient algorithm for trajectory optimization
NASA Technical Reports Server (NTRS)
Zhao, Yiyuan; Bryson, A. E.; Slattery, R.
1990-01-01
The generalized gradient algorithm presented and verified as a basis for the solution of trajectory optimization problems improves the performance index while reducing path equality constraints, and terminal equality constraints. The algorithm is conveniently divided into two phases, of which the first, 'feasibility' phase yields a solution satisfying both path and terminal constraints, while the second, 'optimization' phase uses the results of the first phase as initial guesses.
Field-Scale Modeling of Local Capillary Trapping During CO2 Injection into a Saline Aquifer
NASA Astrophysics Data System (ADS)
Ren, B.; Lake, L. W.; Bryant, S. L.
2015-12-01
Local capillary trapping is the small-scale (10-2 to 10+1 m) CO2 trapping that is caused by the capillary pressure heterogeneity. The benefit of LCT, applied specially to CO2 sequestration, is that saturation of stored CO2 is larger than the residual gas, yet these CO2 are not susceptible to leakage through failed seals. Thus quantifying the extent of local capillary trapping is valuable in design and risk assessment of geologic storage projects. Modeling local capillary trapping is computationally expensive and may even be intractable using a conventional reservoir simulator. In this paper, we propose a novel method to model local capillary trapping by combining geologic criteria and connectivity analysis. The connectivity analysis originally developed for characterizing well-to-reservoir connectivity is adapted to this problem by means of a newly defined edge weight property between neighboring grid blocks, which accounts for the multiphase flow properties, injection rate, and gravity effect. Then the connectivity is estimated from shortest path algorithm to predict the CO2 migration behavior and plume shape during injection. A geologic criteria algorithm is developed to estimate the potential local capillary traps based only on the entry capillary pressure field. The latter is correlated to a geostatistical realization of permeability field. The extended connectivity analysis shows a good match of CO2 plume computed by the full-physics simulation. We then incorporate it into the geologic algorithm to quantify the amount of LCT structures identified within the entry capillary pressure field that can be filled during CO2 injection. Several simulations are conducted in the reservoirs with different level of heterogeneity (measured by the Dykstra-Parsons coefficient) under various injection scenarios. We find that there exists a threshold Dykstra-Parsons coefficient, below which low injection rate gives rise to more LCT; whereas higher injection rate increases LCT in heterogeneous reservoirs. Both the geologic algorithm and connectivity analysis are very fast; therefore, the integrated methodology can be used as a quick tool to estimate local capillary trapping. It can also be used as a potential complement to the full-physics simulation to evaluate safe storage capacity.
The force control and path planning of electromagnetic induction-based massage robot.
Wang, Wendong; Zhang, Lei; Li, Jinzhe; Yuan, Xiaoqing; Shi, Yikai; Jiang, Qinqin; He, Lijing
2017-07-20
Massage robot is considered as an effective physiological treatment to relieve fatigue, improve blood circulation, relax muscle tone, etc. The simple massage equipment quickly spread into market due to low cost, but they are not widely accepted due to restricted massage function. Complicated structure and high cost caused difficulties for developing multi-function massage equipment. This paper presents a novel massage robot which can achieve tapping, rolling, kneading and other massage operations, and proposes an improved reciprocating path planning algorithm to improve massage effect. The number of coil turns, the coil current and the distance between massage head and yoke were chosen to investigate the influence on massage force by finite element method. The control system model of the wheeled massage robot was established, including control subsystem of the motor, path algorithm control subsystem, parameter module of the massage robot and virtual reality interface module. The improved reciprocating path planning algorithm was proposed to improve regional coverage rate and massage effect. The influence caused by coil current, the number of coil turns and the distance between massage head and yoke were simulated in Maxwell. It indicated that coil current has more important influence compared to the other two factors. The path planning simulation of the massage robot was completed in Matlab, and the results show that the improved reciprocating path planning algorithm achieved higher coverage rate than the traditional algorithm. With the analysis of simulation results, it can be concluded that the number of coil turns and the distance between the moving iron core and the yoke could be determined prior to coil current, and the force can be controllable by optimizing structure parameters of massage head and adjusting coil current. Meanwhile, it demonstrates that the proposed algorithm could effectively improve path coverage rate during massage operations, therefore the massage effect can be improved.
A Global Approach to the Optimal Trajectory Based on an Improved Ant Colony Algorithm for Cold Spray
NASA Astrophysics Data System (ADS)
Cai, Zhenhua; Chen, Tingyang; Zeng, Chunnian; Guo, Xueping; Lian, Huijuan; Zheng, You; Wei, Xiaoxu
2016-12-01
This paper is concerned with finding a global approach to obtain the shortest complete coverage trajectory on complex surfaces for cold spray applications. A slicing algorithm is employed to decompose the free-form complex surface into several small pieces of simple topological type. The problem of finding the optimal arrangement of the pieces is translated into a generalized traveling salesman problem (GTSP). Owing to its high searching capability and convergence performance, an improved ant colony algorithm is then used to solve the GTSP. Through off-line simulation, a robot trajectory is generated based on the optimized result. The approach is applied to coat real components with a complex surface by using the cold spray system with copper as the spraying material.
Evaluation of a New Backtrack Free Path Planning Algorithm for Manipulators
NASA Astrophysics Data System (ADS)
Islam, Md. Nazrul; Tamura, Shinsuke; Murata, Tomonari; Yanase, Tatsuro
This paper evaluates a newly proposed backtrack free path planning algorithm (BFA) for manipulators. BFA is an exact algorithm, i.e. it is resolution complete. Different from existing resolution complete algorithms, its computation time and memory space are proportional to the number of arms. Therefore paths can be calculated within practical and predetermined time even for manipulators with many arms, and it becomes possible to plan complicated motions of multi-arm manipulators in fully automated environments. The performance of BFA is evaluated for 2-dimensional environments while changing the number of arms and obstacle placements. Its performance under locus and attitude constraints is also evaluated. Evaluation results show that the computation volume of the algorithm is almost the same as the theoretical one, i.e. it increases linearly with the number of arms even in complicated environments. Moreover BFA achieves the constant performance independent of environments.
Genetic Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator
Mohamd Shoukry, Alaa; Gani, Showkat
2017-01-01
Genetic algorithms are evolutionary techniques used for optimization purposes according to survival of the fittest idea. These methods do not ensure optimal solutions; however, they give good approximation usually in time. The genetic algorithms are useful for NP-hard problems, especially the traveling salesman problem. The genetic algorithm depends on selection criteria, crossover, and mutation operators. To tackle the traveling salesman problem using genetic algorithms, there are various representations such as binary, path, adjacency, ordinal, and matrix representations. In this article, we propose a new crossover operator for traveling salesman problem to minimize the total distance. This approach has been linked with path representation, which is the most natural way to represent a legal tour. Computational results are also reported with some traditional path representation methods like partially mapped and order crossovers along with new cycle crossover operator for some benchmark TSPLIB instances and found improvements. PMID:29209364
Genetic Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator.
Hussain, Abid; Muhammad, Yousaf Shad; Nauman Sajid, M; Hussain, Ijaz; Mohamd Shoukry, Alaa; Gani, Showkat
2017-01-01
Genetic algorithms are evolutionary techniques used for optimization purposes according to survival of the fittest idea. These methods do not ensure optimal solutions; however, they give good approximation usually in time. The genetic algorithms are useful for NP-hard problems, especially the traveling salesman problem. The genetic algorithm depends on selection criteria, crossover, and mutation operators. To tackle the traveling salesman problem using genetic algorithms, there are various representations such as binary, path, adjacency, ordinal, and matrix representations. In this article, we propose a new crossover operator for traveling salesman problem to minimize the total distance. This approach has been linked with path representation, which is the most natural way to represent a legal tour. Computational results are also reported with some traditional path representation methods like partially mapped and order crossovers along with new cycle crossover operator for some benchmark TSPLIB instances and found improvements.
Topics on data transmission problem in software definition network
NASA Astrophysics Data System (ADS)
Gao, Wei; Liang, Li; Xu, Tianwei; Gan, Jianhou
2017-08-01
In normal computer networks, the data transmission between two sites go through the shortest path between two corresponding vertices. However, in the setting of software definition network (SDN), it should monitor the network traffic flow in each site and channel timely, and the data transmission path between two sites in SDN should consider the congestion in current networks. Hence, the difference of available data transmission theory between normal computer network and software definition network is that we should consider the prohibit graph structures in SDN, and these forbidden subgraphs represent the sites and channels in which data can't be passed by the serious congestion. Inspired by theoretical analysis of an available data transmission in SDN, we consider some computational problems from the perspective of the graph theory. Several results determined in the paper imply the sufficient conditions of data transmission in SDN in the various graph settings.
A Hybrid Computational Method for the Discovery of Novel Reproduction-Related Genes
Chen, Lei; Chu, Chen; Kong, Xiangyin; Huang, Guohua; Huang, Tao; Cai, Yu-Dong
2015-01-01
Uncovering the molecular mechanisms underlying reproduction is of great importance to infertility treatment and to the generation of healthy offspring. In this study, we discovered novel reproduction-related genes with a hybrid computational method, integrating three different types of method, which offered new clues for further reproduction research. This method was first executed on a weighted graph, constructed based on known protein-protein interactions, to search the shortest paths connecting any two known reproduction-related genes. Genes occurring in these paths were deemed to have a special relationship with reproduction. These newly discovered genes were filtered with a randomization test. Then, the remaining genes were further selected according to their associations with known reproduction-related genes measured by protein-protein interaction score and alignment score obtained by BLAST. The in-depth analysis of the high confidence novel reproduction genes revealed hidden mechanisms of reproduction and provided guidelines for further experimental validations. PMID:25768094
A hybrid computational method for the discovery of novel reproduction-related genes.
Chen, Lei; Chu, Chen; Kong, Xiangyin; Huang, Guohua; Huang, Tao; Cai, Yu-Dong
2015-01-01
Uncovering the molecular mechanisms underlying reproduction is of great importance to infertility treatment and to the generation of healthy offspring. In this study, we discovered novel reproduction-related genes with a hybrid computational method, integrating three different types of method, which offered new clues for further reproduction research. This method was first executed on a weighted graph, constructed based on known protein-protein interactions, to search the shortest paths connecting any two known reproduction-related genes. Genes occurring in these paths were deemed to have a special relationship with reproduction. These newly discovered genes were filtered with a randomization test. Then, the remaining genes were further selected according to their associations with known reproduction-related genes measured by protein-protein interaction score and alignment score obtained by BLAST. The in-depth analysis of the high confidence novel reproduction genes revealed hidden mechanisms of reproduction and provided guidelines for further experimental validations.
Efficient packet transportation on complex networks with nonuniform node capacity distribution
NASA Astrophysics Data System (ADS)
He, Xuan; Niu, Kai; He, Zhiqiang; Lin, Jiaru; Jiang, Zhong-Yuan
2015-03-01
Provided that node delivery capacity may be not uniformly distributed in many realistic networks, we present a node delivery capacity distribution in which each node capacity is composed of uniform fraction and degree related proportion. Based on the node delivery capacity distribution, we construct a novel routing mechanism called efficient weighted routing (EWR) strategy to enhance network traffic capacity and transportation efficiency. Compared with the shortest path routing and the efficient routing strategies, the EWR achieves the highest traffic capacity. After investigating average path length, network diameter, maximum efficient betweenness, average efficient betweenness, average travel time and average traffic load under extensive simulations, it indicates that the EWR appears to be a very effective routing method. The idea of this routing mechanism gives us a good insight into network science research. The practical use of this work is prospective in some real complex systems such as the Internet.
A novel method for trajectory planning of cooperative mobile manipulators.
Bolandi, Hossein; Ehyaei, Amir Farhad
2011-01-01
We have designed a two-stage scheme to consider the trajectory planning problem of two mobile manipulators for cooperative transportation of a rigid body in the presence of static obstacles. In the first stage, with regard to the static obstacles, we develop a method that searches the workspace for the shortest possible path between the start and goal configurations, by constructing a graph on a portion of the configuration space that satisfies the collision and closure constraints. The final stage is to calculate a sequence of time-optimal trajectories to go between the consecutive points of the path, with regard to the nonholonomic constraints and the maximum allowed joint accelerations. This approach allows geometric constraints such as joint limits and closed-chain constraints, along with differential constraints such as nonholonomic velocity constraints and acceleration limits, to be incorporated into the planning scheme. The simulation results illustrate the effectiveness of the proposed method.
A Novel Method for Trajectory Planning of Cooperative Mobile Manipulators
Bolandi, Hossein; Ehyaei, Amir Farhad
2011-01-01
We have designed a two-stage scheme to consider the trajectory planning problem of two mobile manipulators for cooperative transportation of a rigid body in the presence of static obstacles. In the first stage, with regard to the static obstacles, we develop a method that searches the workspace for the shortest possible path between the start and goal configurations, by constructing a graph on a portion of the configuration space that satisfies the collision and closure constraints. The final stage is to calculate a sequence of time-optimal trajectories to go between the consecutive points of the path, with regard to the nonholonomic constraints and the maximum allowed joint accelerations. This approach allows geometric constraints such as joint limits and closed-chain constraints, along with differential constraints such as nonholonomic velocity constraints and acceleration limits, to be incorporated into the planning scheme. The simulation results illustrate the effectiveness of the proposed method. PMID:22606656
A Hybrid Metaheuristic DE/CS Algorithm for UCAV Three-Dimension Path Planning
Wang, Gaige; Guo, Lihong; Duan, Hong; Wang, Heqi; Liu, Luo; Shao, Mingzhen
2012-01-01
Three-dimension path planning for uninhabited combat air vehicle (UCAV) is a complicated high-dimension optimization problem, which primarily centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. A new hybrid metaheuristic differential evolution (DE) and cuckoo search (CS) algorithm is proposed to solve the UCAV three-dimension path planning problem. DE is applied to optimize the process of selecting cuckoos of the improved CS model during the process of cuckoo updating in nest. The cuckoos can act as an agent in searching the optimal UCAV path. And then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic CS. The realization procedure for this hybrid metaheuristic approach DE/CS is also presented. In order to make the optimized UCAV path more feasible, the B-Spline curve is adopted for smoothing the path. To prove the performance of this proposed hybrid metaheuristic method, it is compared with basic CS algorithm. The experiment shows that the proposed approach is more effective and feasible in UCAV three-dimension path planning than the basic CS model. PMID:23193383
A hybrid metaheuristic DE/CS algorithm for UCAV three-dimension path planning.
Wang, Gaige; Guo, Lihong; Duan, Hong; Wang, Heqi; Liu, Luo; Shao, Mingzhen
2012-01-01
Three-dimension path planning for uninhabited combat air vehicle (UCAV) is a complicated high-dimension optimization problem, which primarily centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. A new hybrid metaheuristic differential evolution (DE) and cuckoo search (CS) algorithm is proposed to solve the UCAV three-dimension path planning problem. DE is applied to optimize the process of selecting cuckoos of the improved CS model during the process of cuckoo updating in nest. The cuckoos can act as an agent in searching the optimal UCAV path. And then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic CS. The realization procedure for this hybrid metaheuristic approach DE/CS is also presented. In order to make the optimized UCAV path more feasible, the B-Spline curve is adopted for smoothing the path. To prove the performance of this proposed hybrid metaheuristic method, it is compared with basic CS algorithm. The experiment shows that the proposed approach is more effective and feasible in UCAV three-dimension path planning than the basic CS model.
Sorting signed permutations by inversions in O(nlogn) time.
Swenson, Krister M; Rajan, Vaibhav; Lin, Yu; Moret, Bernard M E
2010-03-01
The study of genomic inversions (or reversals) has been a mainstay of computational genomics for nearly 20 years. After the initial breakthrough of Hannenhalli and Pevzner, who gave the first polynomial-time algorithm for sorting signed permutations by inversions, improved algorithms have been designed, culminating with an optimal linear-time algorithm for computing the inversion distance and a subquadratic algorithm for providing a shortest sequence of inversions--also known as sorting by inversions. Remaining open was the question of whether sorting by inversions could be done in O(nlogn) time. In this article, we present a qualified answer to this question, by providing two new sorting algorithms, a simple and fast randomized algorithm and a deterministic refinement. The deterministic algorithm runs in time O(nlogn + kn), where k is a data-dependent parameter. We provide the results of extensive experiments showing that both the average and the standard deviation for k are small constants, independent of the size of the permutation. We conclude (but do not prove) that almost all signed permutations can be sorted by inversions in O(nlogn) time.
A bat algorithm with mutation for UCAV path planning.
Wang, Gaige; Guo, Lihong; Duan, Hong; Liu, Luo; Wang, Heqi
2012-01-01
Path planning for uninhabited combat air vehicle (UCAV) is a complicated high dimension optimization problem, which mainly centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. Original bat algorithm (BA) is used to solve the UCAV path planning problem. Furthermore, a new bat algorithm with mutation (BAM) is proposed to solve the UCAV path planning problem, and a modification is applied to mutate between bats during the process of the new solutions updating. Then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic BA. The realization procedure for original BA and this improved metaheuristic approach BAM is also presented. To prove the performance of this proposed metaheuristic method, BAM is compared with BA and other population-based optimization methods, such as ACO, BBO, DE, ES, GA, PBIL, PSO, and SGA. The experiment shows that the proposed approach is more effective and feasible in UCAV path planning than the other models.
Real-time path planning and autonomous control for helicopter autorotation
NASA Astrophysics Data System (ADS)
Yomchinda, Thanan
Autorotation is a descending maneuver that can be used to recover helicopters in the event of total loss of engine power; however it is an extremely difficult and complex maneuver. The objective of this work is to develop a real-time system which provides full autonomous control for autorotation landing of helicopters. The work includes the development of an autorotation path planning method and integration of the path planner with a primary flight control system. The trajectory is divided into three parts: entry, descent and flare. Three different optimization algorithms are used to generate trajectories for each of these segments. The primary flight control is designed using a linear dynamic inversion control scheme, and a path following control law is developed to track the autorotation trajectories. Details of the path planning algorithm, trajectory following control law, and autonomous autorotation system implementation are presented. The integrated system is demonstrated in real-time high fidelity simulations. Results indicate feasibility of the capability of the algorithms to operate in real-time and of the integrated systems ability to provide safe autorotation landings. Preliminary simulations of autonomous autorotation on a small UAV are presented which will lead to a final hardware demonstration of the algorithms.
Mobile transporter path planning
NASA Technical Reports Server (NTRS)
Baffes, Paul; Wang, Lui
1990-01-01
The use of a genetic algorithm (GA) for solving the mobile transporter path planning problem is investigated. The mobile transporter is a traveling robotic vehicle proposed for the space station which must be able to reach any point of the structure autonomously. Elements of the genetic algorithm are explored in both a theoretical and experimental sense. Specifically, double crossover, greedy crossover, and tournament selection techniques are examined. Additionally, the use of local optimization techniques working in concert with the GA are also explored. Recent developments in genetic algorithm theory are shown to be particularly effective in a path planning problem domain, though problem areas can be cited which require more research.
Real-time Collision Avoidance and Path Optimizer for Semi-autonomous UAVs.
NASA Astrophysics Data System (ADS)
Hawary, A. F.; Razak, N. A.
2018-05-01
Whilst UAV offers a potentially cheaper and more localized observation platform than current satellite or land-based approaches, it requires an advance path planner to reveal its true potential, particularly in real-time missions. Manual control by human will have limited line-of-sights and prone to errors due to careless and fatigue. A good alternative solution is to equip the UAV with semi-autonomous capabilities that able to navigate via a pre-planned route in real-time fashion. In this paper, we propose an easy-and-practical path optimizer based on the classical Travelling Salesman Problem and adopts a brute force search method to re-optimize the route in the event of collisions using range finder sensor. The former utilizes a Simple Genetic Algorithm and the latter uses Nearest Neighbour algorithm. Both algorithms are combined to optimize the route and avoid collision at once. Although many researchers proposed various path planning algorithms, we find that it is difficult to integrate on a basic UAV model and often lacks of real-time collision detection optimizer. Therefore, we explore a practical benefit from this approach using on-board Arduino and Ardupilot controllers by manually emulating the motion of an actual UAV model prior to test on the flying site. The result showed that the range finder sensor provides a real-time data to the algorithm to find a collision-free path and eventually optimized the route successfully.
Application of particle swarm optimization in path planning of mobile robot
NASA Astrophysics Data System (ADS)
Wang, Yong; Cai, Feng; Wang, Ying
2017-08-01
In order to realize the optimal path planning of mobile robot in unknown environment, a particle swarm optimization algorithm based on path length as fitness function is proposed. The location of the global optimal particle is determined by the minimum fitness value, and the robot moves along the points of the optimal particles to the target position. The process of moving to the target point is done with MATLAB R2014a. Compared with the standard particle swarm optimization algorithm, the simulation results show that this method can effectively avoid all obstacles and get the optimal path.
Path Planning Algorithms for Autonomous Border Patrol Vehicles
NASA Astrophysics Data System (ADS)
Lau, George Tin Lam
This thesis presents an online path planning algorithm developed for unmanned vehicles in charge of autonomous border patrol. In this Pursuit-Evasion game, the unmanned vehicle is required to capture multiple trespassers on its own before any of them reach a target safe house where they are safe from capture. The problem formulation is based on Isaacs' Target Guarding problem, but extended to the case of multiple evaders. The proposed path planning method is based on Rapidly-exploring random trees (RRT) and is capable of producing trajectories within several seconds to capture 2 or 3 evaders. Simulations are carried out to demonstrate that the resulting trajectories approach the optimal solution produced by a nonlinear programming-based numerical optimal control solver. Experiments are also conducted on unmanned ground vehicles to show the feasibility of implementing the proposed online path planning algorithm on physical applications.
Zhang, Bo; Duan, Haibin
2017-01-01
Three-dimension path planning of uninhabited combat aerial vehicle (UCAV) is a complicated optimal problem, which mainly focused on optimizing the flight route considering the different types of constrains under complex combating environment. A novel predator-prey pigeon-inspired optimization (PPPIO) is proposed to solve the UCAV three-dimension path planning problem in dynamic environment. Pigeon-inspired optimization (PIO) is a new bio-inspired optimization algorithm. In this algorithm, map and compass operator model and landmark operator model are used to search the best result of a function. The prey-predator concept is adopted to improve global best properties and enhance the convergence speed. The characteristics of the optimal path are presented in the form of a cost function. The comparative simulation results show that our proposed PPPIO algorithm is more efficient than the basic PIO, particle swarm optimization (PSO), and different evolution (DE) in solving UCAV three-dimensional path planning problems.
Correlation based networks of equity returns sampled at different time horizons
NASA Astrophysics Data System (ADS)
Tumminello, M.; di Matteo, T.; Aste, T.; Mantegna, R. N.
2007-01-01
We investigate the planar maximally filtered graphs of the portfolio of the 300 most capitalized stocks traded at the New York Stock Exchange during the time period 2001 2003. Topological properties such as the average length of shortest paths, the betweenness and the degree are computed on different planar maximally filtered graphs generated by sampling the returns at different time horizons ranging from 5 min up to one trading day. This analysis confirms that the selected stocks compose a hierarchical system progressively structuring as the sampling time horizon increases. Finally, a cluster formation, associated to economic sectors, is quantitatively investigated.
Automatic Authorship Detection Using Textual Patterns Extracted from Integrated Syntactic Graphs
Gómez-Adorno, Helena; Sidorov, Grigori; Pinto, David; Vilariño, Darnes; Gelbukh, Alexander
2016-01-01
We apply the integrated syntactic graph feature extraction methodology to the task of automatic authorship detection. This graph-based representation allows integrating different levels of language description into a single structure. We extract textual patterns based on features obtained from shortest path walks over integrated syntactic graphs and apply them to determine the authors of documents. On average, our method outperforms the state of the art approaches and gives consistently high results across different corpora, unlike existing methods. Our results show that our textual patterns are useful for the task of authorship attribution. PMID:27589740
NASA Astrophysics Data System (ADS)
Shi, Y.; Long, Y.; Wi, X. L.
2014-04-01
When tourists visiting multiple tourist scenic spots, the travel line is usually the most effective road network according to the actual tour process, and maybe the travel line is different from planned travel line. For in the field of navigation, a proposed travel line is normally generated automatically by path planning algorithm, considering the scenic spots' positions and road networks. But when a scenic spot have a certain area and have multiple entrances or exits, the traditional described mechanism of single point coordinates is difficult to reflect these own structural features. In order to solve this problem, this paper focuses on the influence on the process of path planning caused by scenic spots' own structural features such as multiple entrances or exits, and then proposes a doubleweighted Graph Model, for the weight of both vertexes and edges of proposed Model can be selected dynamically. And then discusses the model building method, and the optimal path planning algorithm based on Dijkstra algorithm and Prim algorithm. Experimental results show that the optimal planned travel line derived from the proposed model and algorithm is more reasonable, and the travelling order and distance would be further optimized.
Planning Flight Paths of Autonomous Aerobots
NASA Technical Reports Server (NTRS)
Kulczycki, Eric; Elfes, Alberto; Sharma, Shivanjli
2009-01-01
Algorithms for planning flight paths of autonomous aerobots (robotic blimps) to be deployed in scientific exploration of remote planets are undergoing development. These algorithms are also adaptable to terrestrial applications involving robotic submarines as well as aerobots and other autonomous aircraft used to acquire scientific data or to perform surveying or monitoring functions.
Validation Studies of the Accuracy of Various SO2 Gas Retrievals in the Thermal InfraRed (8-14 μm)
NASA Astrophysics Data System (ADS)
Gabrieli, A.; Wright, R.; Lucey, P. G.; Porter, J. N.; Honniball, C.; Garbeil, H.; Wood, M.
2016-12-01
Quantifying hazardous SO2 in the atmosphere and in volcanic plumes is important for public health and volcanic eruption prediction. Remote sensing measurements of spectral radiance of plumes contain information on the abundance of SO2. However, in order to convert such measurements into SO2 path-concentrations, reliable inversion algorithms are needed. Various techniques can be employed to derive SO2 path-concentrations. The first approach employs a Partial Least Square Regression model trained using MODTRAN5 simulations for a variety of plume and atmospheric conditions. Radiances at many spectral wavelengths (8-14 μm) were used in the algorithm. The second algorithm uses measurements inside and outside the SO2 plume. Measurements in the plume-free region (background sky) make it possible to remove background atmospheric conditions and any instrumental effects. After atmospheric and instrumental effects are removed, MODTRAN5 is used to fit the SO2 spectral feature and obtain SO2 path-concentrations. The two inversion algorithms described above can be compared with the inversion algorithm for SO2 retrievals developed by Prata and Bernardo (2014). Their approach employs three wavelengths to characterize the plume temperature, the atmospheric background, and the SO2 path-concentration. The accuracy of these various techniques requires further investigation in terms of the effects of different atmospheric background conditions. Validating these inversion algorithms is challenging because ground truth measurements are very difficult. However, if the three separate inversion algorithms provide similar SO2 path-concentrations for actual measurements with various background conditions, then this increases confidence in the results. Measurements of sky radiance when looking through SO2 filled gas cells were collected with a Thermal Hyperspectral Imager (THI) under various atmospheric background conditions. These data were processed using the three inversion approaches, which were tested for convergence on the known SO2 gas cell path-concentrations. For this study, the inversion algorithms were modified to account for the gas cell configuration. Results from these studies will be presented, as well as results from SO2 gas plume measurements at Kīlauea volcano, Hawai'i.
Parameter optimization on the convergence surface of path simulations
NASA Astrophysics Data System (ADS)
Chandrasekaran, Srinivas Niranj
Computational treatments of protein conformational changes tend to focus on the trajectories themselves, despite the fact that it is the transition state structures that contain information about the barriers that impose multi-state behavior. PATH is an algorithm that computes a transition pathway between two protein crystal structures, along with the transition state structure, by minimizing the Onsager-Machlup action functional. It is rapid but depends on several unknown input parameters whose range of different values can potentially generate different transition-state structures. Transition-state structures arising from different input parameters cannot be uniquely compared with those generated by other methods. I outline modifications that I have made to the PATH algorithm that estimates these input parameters in a manner that circumvents these difficulties, and describe two complementary tests that validate the transition-state structures found by the PATH algorithm. First, I show that although the PATH algorithm and two other approaches to computing transition pathways produce different low-energy structures connecting the initial and final ground-states with the transition state, all three methods agree closely on the configurations of their transition states. Second, I show that the PATH transition states are close to the saddle points of free-energy surfaces connecting initial and final states generated by replica-exchange Discrete Molecular Dynamics simulations. I show that aromatic side-chain rearrangements create similar potential energy barriers in the transition-state structures identified by PATH for a signaling protein, a contractile protein, and an enzyme. Finally, I observed, but cannot account for, the fact that trajectories obtained for all-atom and Calpha-only simulations identify transition state structures in which the Calpha atoms are in essentially the same positions. The consistency between transition-state structures derived by different algorithms for unrelated protein systems argues that although functionally important protein conformational change trajectories are to a degree stochastic, they nonetheless pass through a well-defined transition state whose detailed structural properties can rapidly be identified using PATH. In the end, I outline the strategies that could enhance the efficiency and applicability of PATH.
Ancient village fire escape path planning based on improved ant colony algorithm
NASA Astrophysics Data System (ADS)
Xia, Wei; Cao, Kang; Hu, QianChuan
2017-06-01
The roadways are narrow and perplexing in ancient villages, it brings challenges and difficulties for people to choose route to escape when a fire occurs. In this paper, a fire escape path planning method based on ant colony algorithm is presented according to the problem. The factors in the fire environment which influence the escape speed is introduced to improve the heuristic function of the algorithm, optimal transfer strategy, and adjustment pheromone volatile factor to improve pheromone update strategy adaptively, improve its dynamic search ability and search speed. Through simulation, the dynamic adjustment of the optimal escape path is obtained, and the method is proved to be feasible.
A Trajectory Algorithm to Support En Route and Terminal Area Self-Spacing Concepts: Third Revision
NASA Technical Reports Server (NTRS)
Abbott, Terence S.
2012-01-01
This document describes an algorithm for the generation of a four dimensional trajectory. Input data for this algorithm are similar to an augmented Standard Terminal Arrival (STAR) with the augmentation in the form of altitude or speed crossing restrictions at waypoints on the route. This version of the algorithm accommodates constant radius turns and cruise altitude waypoints with calibrated airspeed, versus Mach, constraints. The algorithm calculates the altitude, speed, along path distance, and along path time for each waypoint. Wind data at each of these waypoints are also used for the calculation of ground speed and turn radius.
Research and application of genetic algorithm in path planning of logistics distribution vehicle
NASA Astrophysics Data System (ADS)
Wang, Yong; Zhou, Heng; Wang, Ying
2017-08-01
The core of the logistics distribution system is the vehicle routing planning, research path planning problem, provide a better solution has become an important issue. In order to provide the decision support for logistics and distribution operations, this paper studies the problem of vehicle routing with capacity constraints (CVRP). By establishing a mathematical model, the genetic algorithm is used to plan the path of the logistics vehicle to meet the minimum logistics and transportation costs.
Path planning for persistent surveillance applications using fixed-wing unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Keller, James F.
This thesis addresses coordinated path planning for fixed-wing Unmanned Aerial Vehicles (UAVs) engaged in persistent surveillance missions. While uniquely suited to this mission, fixed wing vehicles have maneuver constraints that can limit their performance in this role. Current technology vehicles are capable of long duration flight with a minimal acoustic footprint while carrying an array of cameras and sensors. Both military tactical and civilian safety applications can benefit from this technology. We make three main contributions: C1 A sequential path planner that generates a C 2 flight plan to persistently acquire a covering set of data over a user designated area of interest. The planner features the following innovations: • A path length abstraction that embeds kino-dynamic motion constraints to estimate feasible path length. • A Traveling Salesman-type planner to generate a covering set route based on the path length abstraction. • A smooth path generator that provides C 2 routes that satisfy user specified curvature constraints. C2 A set of algorithms to coordinate multiple UAVs, including mission commencement from arbitrary locations to the start of a coordinated mission and de-confliction of paths to avoid collisions with other vehicles and fixed obstacles. C3 A numerically robust toolbox of spline-based algorithms tailored for vehicle routing validated through flight test experiments on multiple platforms. A variety of tests and platforms are discussed. The algorithms presented are based on a technical approach with approximately equal emphasis on analysis, computation, dynamic simulation, and flight test experimentation. Our planner (C1) directly takes into account vehicle maneuverability and agility constraints that could otherwise render simple solutions infeasible. This is especially important when surveillance objectives elevate the importance of optimized paths. Researchers have developed a diverse range of solutions for persistent surveillance applications but few directly address dynamic maneuver constraints. The key feature of C1 is a two stage sequential solution that discretizes the problem so that graph search techniques can be combined with parametric polynomial curve generation. A method to abstract the kino-dynamics of the aerial platforms is then presented so that a graph search solution can be adapted for this application. An A* Traveling Salesman Problem (TSP) algorithm is developed to search the discretized space using the abstract distance metric to acquire more data or avoid obstacles. Results of the graph search are then transcribed into smooth paths based on vehicle maneuver constraints. A complete solution for a single vehicle periodic tour of the area is developed using the results of the graph search algorithm. To execute the mission, we present a simultaneous arrival algorithm (C2) to coordinate execution by multiple vehicles to satisfy data refresh requirements and to ensure there are no collisions at any of the path intersections. We present a toolbox of spline-based algorithms (C3) to streamline the development of C2 continuous paths with numerical stability. These tools are applied to an aerial persistent surveillance application to illustrate their utility. Comparisons with other parametric polynomial approaches are highlighted to underscore the benefits of the B-spline framework. Performance limits with respect to feasibility constraints are documented.
Research on Crowdsourcing Emergency Information Extraction of Based on Events' Frame
NASA Astrophysics Data System (ADS)
Yang, Bo; Wang, Jizhou; Ma, Weijun; Mao, Xi
2018-01-01
At present, the common information extraction method cannot extract the structured emergency event information accurately; the general information retrieval tool cannot completely identify the emergency geographic information; these ways also do not have an accurate assessment of these results of distilling. So, this paper proposes an emergency information collection technology based on event framework. This technique is to solve the problem of emergency information picking. It mainly includes emergency information extraction model (EIEM), complete address recognition method (CARM) and the accuracy evaluation model of emergency information (AEMEI). EIEM can be structured to extract emergency information and complements the lack of network data acquisition in emergency mapping. CARM uses a hierarchical model and the shortest path algorithm and allows the toponomy pieces to be joined as a full address. AEMEI analyzes the results of the emergency event and summarizes the advantages and disadvantages of the event framework. Experiments show that event frame technology can solve the problem of emergency information drawing and provides reference cases for other applications. When the emergency disaster is about to occur, the relevant departments query emergency's data that has occurred in the past. They can make arrangements ahead of schedule which defense and reducing disaster. The technology decreases the number of casualties and property damage in the country and world. This is of great significance to the state and society.
SSL: Signal Similarity-Based Localization for Ocean Sensor Networks.
Chen, Pengpeng; Ma, Honglu; Gao, Shouwan; Huang, Yan
2015-11-24
Nowadays, wireless sensor networks are often deployed on the sea surface for ocean scientific monitoring. One of the important challenges is to localize the nodes' positions. Existing localization schemes can be roughly divided into two types: range-based and range-free. The range-based localization approaches heavily depend on extra hardware capabilities, while range-free ones often suffer from poor accuracy and low scalability, far from the practical ocean monitoring applications. In response to the above limitations, this paper proposes a novel signal similarity-based localization (SSL) technology, which localizes the nodes' positions by fully utilizing the similarity of received signal strength and the open-air characteristics of the sea surface. In the localization process, we first estimate the relative distance between neighboring nodes through comparing the similarity of received signal strength and then calculate the relative distance for non-neighboring nodes with the shortest path algorithm. After that, the nodes' relative relation map of the whole network can be obtained. Given at least three anchors, the physical locations of nodes can be finally determined based on the multi-dimensional scaling (MDS) technology. The design is evaluated by two types of ocean experiments: a zonal network and a non-regular network using 28 nodes. Results show that the proposed design improves the localization accuracy compared to typical connectivity-based approaches and also confirm its effectiveness for large-scale ocean sensor networks.
A dynamic routing strategy with limited buffer on scale-free network
NASA Astrophysics Data System (ADS)
Wang, Yufei; Liu, Feng
2016-04-01
In this paper, we propose an integrated routing strategy based on global static topology information and local dynamic data packet queue lengths to improve the transmission efficiency of scale-free networks. The proposed routing strategy is a combination of a global static routing strategy (based on the shortest path algorithm) and local dynamic queue length management, in which, instead of using an infinite buffer, the queue length of each node i in the proposed routing strategy is limited by a critical queue length Qic. When the network traffic is lower and the queue length of each node i is shorter than its critical queue length Qic, it forwards packets according to the global routing table. With increasing network traffic, when the buffers of the nodes with higher degree are full, they do not receive packets due to their limited buffers and the packets have to be delivered to the nodes with lower degree. The global static routing strategy can shorten the transmission time that it takes a packet to reach its destination, and the local limited queue length can balance the network traffic. The optimal critical queue lengths of nodes have been analysed. Simulation results show that the proposed routing strategy can get better performance than that of the global static strategy based on topology, and almost the same performance as that of the global dynamic routing strategy with less complexity.
NASA Astrophysics Data System (ADS)
Štefanička, Tomáš; Ďuračiová, Renata; Seres, Csaba
2017-12-01
As a complex of buildings, the Faculty of Natural Sciences of the Comenius University in Bratislava tends to be difficult to navigate in spite of its size. An indoor navigation application could potentially save a lot of time and frustration. There are currently numerous technologies used in indoor navigation systems. Some of them focus on a high degree of precision and require significant financial investment; others provide only static information about a current location. In this paper we focused on the determination of an approximate location using inertial measurement systems available on most smartphones, i.e., a gyroscope and an accelerometer. The actual position of the device was calculated using "a walk detection method" based on a delayed lack of motion. We have developed an indoor navigation application that relies solely on open source JavaScript libraries to visualize the interior of the building and calculate the shortest path utilizing Dijsktra's routing algorithm. The application logic is located on the client side, so the software is able to work offline. Our solution represents an accessible lowcost and platform-independent web application that can significantly improve navigation at the Faculty of Natural Sciences. Although our application has been developed on a specific building complex, it could be used in other interiors as well.
Certification of computational results
NASA Technical Reports Server (NTRS)
Sullivan, Gregory F.; Wilson, Dwight S.; Masson, Gerald M.
1993-01-01
A conceptually novel and powerful technique to achieve fault detection and fault tolerance in hardware and software systems is described. When used for software fault detection, this new technique uses time and software redundancy and can be outlined as follows. In the initial phase, a program is run to solve a problem and store the result. In addition, this program leaves behind a trail of data called a certification trail. In the second phase, another program is run which solves the original problem again. This program, however, has access to the certification trail left by the first program. Because of the availability of the certification trail, the second phase can be performed by a less complex program and can execute more quickly. In the final phase, the two results are compared and if they agree the results are accepted as correct; otherwise an error is indicated. An essential aspect of this approach is that the second program must always generate either an error indication or a correct output even when the certification trail it receives from the first program is incorrect. The certification trail approach to fault tolerance is formalized and realizations of it are illustrated by considering algorithms for the following problems: convex hull, sorting, and shortest path. Cases in which the second phase can be run concurrently with the first and act as a monitor are discussed. The certification trail approach are compared to other approaches to fault tolerance.
Evacuation dynamic and exit optimization of a supermarket based on particle swarm optimization
NASA Astrophysics Data System (ADS)
Li, Lin; Yu, Zhonghai; Chen, Yang
2014-12-01
A modified particle swarm optimization algorithm is proposed in this paper to investigate the dynamic of pedestrian evacuation from a fire in a public building-a supermarket with multiple exits and configurations of counters. Two distinctive evacuation behaviours featured by the shortest-path strategy and the following-up strategy are simulated in the model, accounting for different categories of age and sex of the pedestrians along with the impact of the fire, including gases, heat and smoke. To examine the relationship among the progress of the overall evacuation and the layout and configuration of the site, a series of simulations are conducted in various settings: without a fire and with a fire at different locations. Those experiments reveal a general pattern of two-phase evacuation, i.e., a steep section and a flat section, in addition to the impact of the presence of multiple exits on the evacuation along with the geographic locations of the exits. For the study site, our simulations indicated the deficiency of the configuration and the current layout of this site in the process of evacuation and verified the availability of proposed solutions to resolve the deficiency. More specifically, for improvement of the effectiveness of the evacuation from the site, adding an exit between Exit 6 and Exit 7 and expanding the corridor at the right side of Exit 7 would significantly reduce the evacuation time.
Simulation and validation of concentrated subsurface lateral flow paths in an agricultural landscape
NASA Astrophysics Data System (ADS)
Zhu, Q.; Lin, H. S.
2009-08-01
The importance of soil water flow paths to the transport of nutrients and contaminants has long been recognized. However, effective means of detecting concentrated subsurface flow paths in a large landscape are still lacking. The flow direction and accumulation algorithm based on single-direction flow algorithm (D8) in GIS hydrologic modeling is a cost-effective way to simulate potential concentrated flow paths over a large area once relevant data are collected. This study tested the D8 algorithm for simulating concentrated lateral flow paths at three interfaces in soil profiles in a 19.5-ha agricultural landscape in central Pennsylvania, USA. These interfaces were (1) the interface between surface plowed layers of Ap1 and Ap2 horizons, (2) the interface with subsoil water-restricting clay layer where clay content increased to over 40%, and (3) the soil-bedrock interface. The simulated flow paths were validated through soil hydrologic monitoring, geophysical surveys, and observable soil morphological features. The results confirmed that concentrated subsurface lateral flow occurred at the interfaces with the clay layer and the underlying bedrock. At these two interfaces, the soils on the simulated flow paths were closer to saturation and showed more temporally unstable moisture dynamics than those off the simulated flow paths. Apparent electrical conductivity in the soil on the simulated flow paths was elevated and temporally unstable as compared to those outside the simulated paths. The soil cores collected from the simulated flow paths showed significantly higher Mn content at these interfaces than those away from the simulated paths. These results suggest that (1) the D8 algorithm is useful in simulating possible concentrated subsurface lateral flow paths if used with appropriate threshold value of contributing area and sufficiently detailed digital elevation model (DEM); (2) repeated electromagnetic surveys can reflect the temporal change of soil water storage and thus is a useful indicator of possible subsurface flow path over a large area; and (3) observable Mn distribution in soil profiles can be used as a simple indicator of water flow paths in soils and over the landscape; however, it does require sufficient soil sampling (by excavation or augering) to possibly infer landscape-scale subsurface flow paths. In areas where subsurface interface topography varies similarly with surface topography, surface DEM can be used to simulate potential subsurface lateral flow path reasonably so the cost associated with obtaining depth to subsurface water-restricting layer can be minimized.
Interactive Learning Environment for Bio-Inspired Optimization Algorithms for UAV Path Planning
ERIC Educational Resources Information Center
Duan, Haibin; Li, Pei; Shi, Yuhui; Zhang, Xiangyin; Sun, Changhao
2015-01-01
This paper describes the development of BOLE, a MATLAB-based interactive learning environment, that facilitates the process of learning bio-inspired optimization algorithms, and that is dedicated exclusively to unmanned aerial vehicle path planning. As a complement to conventional teaching methods, BOLE is designed to help students consolidate the…
A statistical-based scheduling algorithm in automated data path synthesis
NASA Technical Reports Server (NTRS)
Jeon, Byung Wook; Lursinsap, Chidchanok
1992-01-01
In this paper, we propose a new heuristic scheduling algorithm based on the statistical analysis of the cumulative frequency distribution of operations among control steps. It has a tendency of escaping from local minima and therefore reaching a globally optimal solution. The presented algorithm considers the real world constraints such as chained operations, multicycle operations, and pipelined data paths. The result of the experiment shows that it gives optimal solutions, even though it is greedy in nature.
NASA Astrophysics Data System (ADS)
Wang, Po-Jen; Keyawa, Nicholas R.; Euler, Craig
2012-01-01
In order to achieve highly accurate motion control and path planning for a mobile robot, an obstacle avoidance algorithm that provided a desired instantaneous turning radius and velocity was generated. This type of obstacle avoidance algorithm, which has been implemented in California State University Northridge's Intelligent Ground Vehicle (IGV), is known as Radial Polar Histogram (RPH). The RPH algorithm utilizes raw data in the form of a polar histogram that is read from a Laser Range Finder (LRF) and a camera. A desired open block is determined from the raw data utilizing a navigational heading and an elliptical approximation. The left and right most radii are determined from the calculated edges of the open block and provide the range of possible radial paths the IGV can travel through. In addition, the calculated obstacle edge positions allow the IGV to recognize complex obstacle arrangements and to slow down accordingly. A radial path optimization function calculates the best radial path between the left and right most radii and is sent to motion control for speed determination. Overall, the RPH algorithm allows the IGV to autonomously travel at average speeds of 3mph while avoiding all obstacles, with a processing time of approximately 10ms.
The profile algorithm for microwave delay estimation from water vapor radiometer data
NASA Technical Reports Server (NTRS)
Robinson, Steven E.
1988-01-01
A new algorithm has been developed for the estimation of tropospheric microwave path delays from water vapor radiometer (WVR) data, which does not require site and weather dependent empirical parameters to produce accuracy better than 0.3 cm of delay. Instead of taking the conventional linear approach, the new algorithm first uses the observables with an emission model to determine an approximate form of the vertical water vapor distribution, which is then explicitly integrated to estimate wet path delays in a second step. The intrinsic accuracy of this algorithm, excluding uncertainties caused by the radiometers and the emission model, has been examined for two channel WVR data using path delays and corresponding simulated observables computed from archived radiosonde data. It is found that annual rms errors for a wide range of sites average 0.18 cm in the absence of clouds, 0.22 cm in cloudy weather, and 0.19 cm overall. In clear weather, the new algorithm's accuracy is comparable to the best that can be obtained from conventional linear algorithms, while in cloudy weather it offers a 35 percent improvement.
A new algorithm for microwave delay estimation from water vapor radiometer data
NASA Technical Reports Server (NTRS)
Robinson, S. E.
1986-01-01
A new algorithm has been developed for the estimation of tropospheric microwave path delays from water vapor radiometer (WVR) data, which does not require site and weather dependent empirical parameters to produce high accuracy. Instead of taking the conventional linear approach, the new algorithm first uses the observables with an emission model to determine an approximate form of the vertical water vapor distribution which is then explicitly integrated to estimate wet path delays, in a second step. The intrinsic accuracy of this algorithm has been examined for two channel WVR data using path delays and stimulated observables computed from archived radiosonde data. It is found that annual RMS errors for a wide range of sites are in the range from 1.3 mm to 2.3 mm, in the absence of clouds. This is comparable to the best overall accuracy obtainable from conventional linear algorithms, which must be tailored to site and weather conditions using large radiosonde data bases. The new algorithm's accuracy and flexibility are indications that it may be a good candidate for almost all WVR data interpretation.
A Bat Algorithm with Mutation for UCAV Path Planning
Wang, Gaige; Guo, Lihong; Duan, Hong; Liu, Luo; Wang, Heqi
2012-01-01
Path planning for uninhabited combat air vehicle (UCAV) is a complicated high dimension optimization problem, which mainly centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. Original bat algorithm (BA) is used to solve the UCAV path planning problem. Furthermore, a new bat algorithm with mutation (BAM) is proposed to solve the UCAV path planning problem, and a modification is applied to mutate between bats during the process of the new solutions updating. Then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic BA. The realization procedure for original BA and this improved metaheuristic approach BAM is also presented. To prove the performance of this proposed metaheuristic method, BAM is compared with BA and other population-based optimization methods, such as ACO, BBO, DE, ES, GA, PBIL, PSO, and SGA. The experiment shows that the proposed approach is more effective and feasible in UCAV path planning than the other models. PMID:23365518
NASA Astrophysics Data System (ADS)
Schmitz, Oliver; Beelen, Rob M. J.; de Bakker, Merijn P.; Karssenberg, Derek
2015-04-01
Constructing spatio-temporal numerical models to support risk assessment, such as assessing the exposure of humans to air pollution, often requires the integration of field-based and agent-based modelling approaches. Continuous environmental variables such as air pollution are best represented using the field-based approach which considers phenomena as continuous fields having attribute values at all locations. When calculating human exposure to such pollutants it is, however, preferable to consider the population as a set of individuals each with a particular activity pattern. This would allow to account for the spatio-temporal variation in a pollutant along the space-time paths travelled by individuals, determined, for example, by home and work locations, road network, and travel times. Modelling this activity pattern requires an agent-based or individual based modelling approach. In general, field- and agent-based models are constructed with the help of separate software tools, while both approaches should play together in an interacting way and preferably should be combined into one modelling framework, which would allow for efficient and effective implementation of models by domain specialists. To overcome this lack in integrated modelling frameworks, we aim at the development of concepts and software for an integrated field-based and agent-based modelling framework. Concepts merging field- and agent-based modelling were implemented by extending PCRaster (http://www.pcraster.eu), a field-based modelling library implemented in C++, with components for 1) representation of discrete, mobile, agents, 2) spatial networks and algorithms by integrating the NetworkX library (http://networkx.github.io), allowing therefore to calculate e.g. shortest routes or total transport costs between locations, and 3) functions for field-network interactions, allowing to assign field-based attribute values to networks (i.e. as edge weights), such as aggregated or averaged concentration values. We demonstrate the approach by using six land use regression (LUR) models developed in the ESCAPE (European Study of Cohorts for Air Pollution Effects) project. These models calculate several air pollutants (e.g. NO2, NOx, PM2.5) for the entire Netherlands at a high (5 m) resolution. Using these air pollution maps, we compare exposure of individuals calculated at their x, y location of their home, their work place, and aggregated over the close surroundings of these locations. In addition, total exposure is accumulated over daily activity patterns, summing exposure at home, at the work place, and while travelling between home and workplace, by routing individuals over the Dutch road network, using the shortest route. Finally, we illustrate how routes can be calculated with the minimum total exposure (instead of shortest distance).
Algorithms for constructing optimal paths and statistical analysis of passenger traffic
NASA Astrophysics Data System (ADS)
Trofimov, S. P.; Druzhinina, N. G.; Trofimova, O. G.
2018-01-01
Several existing information systems of urban passenger transport (UPT) are considered. Author’s UPT network model is presented. To a passenger a new service is offered that is the best path from one stop to another stop at a specified time. The algorithm and software implementation for finding the optimal path are presented. The algorithm uses the current UPT schedule. The article also describes the algorithm of statistical analysis of trip payments by the electronic E-cards. The algorithm allows obtaining the density of passenger traffic during the day. This density is independent of the network topology and UPT schedules. The resulting density of the traffic flow can solve a number of practical problems. In particular, the forecast for the overflow of passenger transport in the «rush» hours, the quantitative comparison of different topologies transport networks, constructing of the best UPT timetable. The efficiency of the proposed integrated approach is demonstrated by the example of the model town with arbitrary dimensions.
Seismic wavefield propagation in 2D anisotropic media: Ray theory versus wave-equation simulation
NASA Astrophysics Data System (ADS)
Bai, Chao-ying; Hu, Guang-yi; Zhang, Yan-teng; Li, Zhong-sheng
2014-05-01
Despite the ray theory that is based on the high frequency assumption of the elastic wave-equation, the ray theory and the wave-equation simulation methods should be mutually proof of each other and hence jointly developed, but in fact parallel independent progressively. For this reason, in this paper we try an alternative way to mutually verify and test the computational accuracy and the solution correctness of both the ray theory (the multistage irregular shortest-path method) and the wave-equation simulation method (both the staggered finite difference method and the pseudo-spectral method) in anisotropic VTI and TTI media. Through the analysis and comparison of wavefield snapshot, common source gather profile and synthetic seismogram, it is able not only to verify the accuracy and correctness of each of the methods at least for kinematic features, but also to thoroughly understand the kinematic and dynamic features of the wave propagation in anisotropic media. The results show that both the staggered finite difference method and the pseudo-spectral method are able to yield the same results even for complex anisotropic media (such as a fault model); the multistage irregular shortest-path method is capable of predicting similar kinematic features as the wave-equation simulation method does, which can be used to mutually test each other for methodology accuracy and solution correctness. In addition, with the aid of the ray tracing results, it is easy to identify the multi-phases (or multiples) in the wavefield snapshot, common source point gather seismic section and synthetic seismogram predicted by the wave-equation simulation method, which is a key issue for later seismic application.
Hamdy, Osama; Marchetti, Albert; Hegazi, Refaat A; Mechanick, Jeffrey I
2014-06-01
Evidence demonstrates that medical nutrition therapy (MNT) in prediabetes and type 2 diabetes (T2D) improves glycemic control and reduces diabetes risks and complications. Consequently, MNT is included in current clinical practice guidelines. Guideline recommendations, however, are frequently limited by their complexity, contradictions, personal and cultural rigidity, and compromised portability. The transcultural Diabetes Nutrition Algorithm (tDNA) was developed to overcome these limitations. To facilitate tDNA uptake and usage, an instructional Patient Algorithm Therapy (PATh) toolkit was created. Content validation of tDNA-PATh is needed before widespread implementation. Healthcare providers (n=837) in Mexico (n=261), Taiwan (n=250), and the United States (n=326) were questioned about challenges implementing MNT in clinical practice and the projected utilization and impact of tDNA-PATh. To assess the international portability and applicability of tDNA-PATh, the survey was conducted in countries with distinct ethnic and cultural attributes. Potential respondents were screened for professional and practice demographics related to diabetes. The questionnaire was administered electronically after respondents were exposed to core tDNA-PATh components. Overall, 61% of respondents thought that tDNA-PATh could help overcome MNT implementation challenges, 91% indicated positive impressions, 83% believed they would adopt tDNA-PATh, and 80% thought tDNA-PATh would be fairly easy to implement. tDNA-PATh appears to be an effective culturally sensitive tool to foster MNT in clinical practice. By providing simple culturally specific instructions, tDNA-PATh may help to overcome current impediments to implementing recommended lifestyle modifications. Specific guidance provided by tDNA-PATh, together with included patient education materials, may increase healthcare provider efficiency.
Path Planning Algorithms for the Adaptive Sensor Fleet
NASA Technical Reports Server (NTRS)
Stoneking, Eric; Hosler, Jeff
2005-01-01
The Adaptive Sensor Fleet (ASF) is a general purpose fleet management and planning system being developed by NASA in coordination with NOAA. The current mission of ASF is to provide the capability for autonomous cooperative survey and sampling of dynamic oceanographic phenomena such as current systems and algae blooms. Each ASF vessel is a software model that represents a real world platform that carries a variety of sensors. The OASIS platform will provide the first physical vessel, outfitted with the systems and payloads necessary to execute the oceanographic observations described in this paper. The ASF architecture is being designed for extensibility to accommodate heterogenous fleet elements, and is not limited to using the OASIS platform to acquire data. This paper describes the path planning algorithms developed for the acquisition phase of a typical ASF task. Given a polygonal target region to be surveyed, the region is subdivided according to the number of vessels in the fleet. The subdivision algorithm seeks a solution in which all subregions have equal area and minimum mean radius. Once the subregions are defined, a dynamic programming method is used to find a minimum-time path for each vessel from its initial position to its assigned region. This path plan includes the effects of water currents as well as avoidance of known obstacles. A fleet-level planning algorithm then shuffles the individual vessel assignments to find the overall solution which puts all vessels in their assigned regions in the minimum time. This shuffle algorithm may be described as a process of elimination on the sorted list of permutations of a cost matrix. All these path planning algorithms are facilitated by discretizing the region of interest onto a hexagonal tiling.
Congestion patterns of electric vehicles with limited battery capacity.
Jing, Wentao; Ramezani, Mohsen; An, Kun; Kim, Inhi
2018-01-01
The path choice behavior of battery electric vehicle (BEV) drivers is influenced by the lack of public charging stations, limited battery capacity, range anxiety and long battery charging time. This paper investigates the congestion/flow pattern captured by stochastic user equilibrium (SUE) traffic assignment problem in transportation networks with BEVs, where the BEV paths are restricted by their battery capacities. The BEV energy consumption is assumed to be a linear function of path length and path travel time, which addresses both path distance limit problem and road congestion effect. A mathematical programming model is proposed for the path-based SUE traffic assignment where the path cost is the sum of the corresponding link costs and a path specific out-of-energy penalty. We then apply the convergent Lagrangian dual method to transform the original problem into a concave maximization problem and develop a customized gradient projection algorithm to solve it. A column generation procedure is incorporated to generate the path set. Finally, two numerical examples are presented to demonstrate the applicability of the proposed model and the solution algorithm.
Cooperative organic mine avoidance path planning
NASA Astrophysics Data System (ADS)
McCubbin, Christopher B.; Piatko, Christine D.; Peterson, Adam V.; Donnald, Creighton R.; Cohen, David
2005-06-01
The JHU/APL Path Planning team has developed path planning techniques to look for paths that balance the utility and risk associated with different routes through a minefield. Extending on previous years' efforts, we investigated real-world Naval mine avoidance requirements and developed a tactical decision aid (TDA) that satisfies those requirements. APL has developed new mine path planning techniques using graph based and genetic algorithms which quickly produce near-minimum risk paths for complicated fitness functions incorporating risk, path length, ship kinematics, and naval doctrine. The TDA user interface, a Java Swing application that obtains data via Corba interfaces to path planning databases, allows the operator to explore a fusion of historic and in situ mine field data, control the path planner, and display the planning results. To provide a context for the minefield data, the user interface also renders data from the Digital Nautical Chart database, a database created by the National Geospatial-Intelligence Agency containing charts of the world's ports and coastal regions. This TDA has been developed in conjunction with the COMID (Cooperative Organic Mine Defense) system. This paper presents a description of the algorithms, architecture, and application produced.
Congestion patterns of electric vehicles with limited battery capacity
2018-01-01
The path choice behavior of battery electric vehicle (BEV) drivers is influenced by the lack of public charging stations, limited battery capacity, range anxiety and long battery charging time. This paper investigates the congestion/flow pattern captured by stochastic user equilibrium (SUE) traffic assignment problem in transportation networks with BEVs, where the BEV paths are restricted by their battery capacities. The BEV energy consumption is assumed to be a linear function of path length and path travel time, which addresses both path distance limit problem and road congestion effect. A mathematical programming model is proposed for the path-based SUE traffic assignment where the path cost is the sum of the corresponding link costs and a path specific out-of-energy penalty. We then apply the convergent Lagrangian dual method to transform the original problem into a concave maximization problem and develop a customized gradient projection algorithm to solve it. A column generation procedure is incorporated to generate the path set. Finally, two numerical examples are presented to demonstrate the applicability of the proposed model and the solution algorithm. PMID:29543875
Traffic engineering and regenerator placement in GMPLS networks with restoration
NASA Astrophysics Data System (ADS)
Yetginer, Emre; Karasan, Ezhan
2002-07-01
In this paper we study regenerator placement and traffic engineering of restorable paths in Generalized Multipro-tocol Label Switching (GMPLS) networks. Regenerators are necessary in optical networks due to transmission impairments. We study a network architecture where there are regenerators at selected nodes and we propose two heuristic algorithms for the regenerator placement problem. Performances of these algorithms in terms of required number of regenerators and computational complexity are evaluated. In this network architecture with sparse regeneration, offline computation of working and restoration paths is studied with bandwidth reservation and path rerouting as the restoration scheme. We study two approaches for selecting working and restoration paths from a set of candidate paths and formulate each method as an Integer Linear Programming (ILP) prob-lem. Traffic uncertainty model is developed in order to compare these methods based on their robustness with respect to changing traffic patterns. Traffic engineering methods are compared based on number of additional demands due to traffic uncertainty that can be carried. Regenerator placement algorithms are also evaluated from a traffic engineering point of view.