Sample records for shortite

  1. Raman and infrared spectroscopic study of the anhydrous carbonate minerals shortite and barytocalcite.

    PubMed

    Frost, Ray L; Dickfos, Marilla J

    2008-11-01

    The Raman spectra of shortite and barytocalcite complimented with infrared spectra have been used to characterise the structure of these carbonate minerals. The Raman spectrum of barytocalcite shows a single band at 1086 cm(-1) attributed to the (CO3)(2-) symmetric stretching mode, in contrast to shortite where two bands are observed. The observation of two bands for shortite confirms the concept of more than one crystallographically distinct carbonate unit in the unit cell. Multiple bands are observed for the antisymmetric stretching and bending region for these minerals proving that the carbonate unit is distorted in the structure of both shortite and barytocalcite.

  2. High pressure Raman and single crystal X-ray diffraction of the alkali/calcium carbonate, shortite

    NASA Astrophysics Data System (ADS)

    Williams, Q. C.; Vennari, C.; O'Bannon, E. F., III

    2015-12-01

    Raman and synchrotron-based single crystal x-ray diffraction data have been collected on shortite (Na2Ca2(CO3)3) up to 10 GPa at 300 K. Shortite is of geological importance due to its presence in the ground-mass of kimberlites, and the alkaline-/carbon-rich character of kimberlitic eruptions. This investigation focuses on shortite's high pressure behavior and is relevant to the behavior of alkali-carbonate systems within Earth's upper mantle. X-ray data demonstrate that shortite's symmetry remains stable at high pressures—retaining orthorhombic C crystal system (Amm2) up to 10 GPa; diffraction data show a 12% volume decrease from room pressure, and a bulk modulus of 71.0(3) GPa. These also demonstrate that the c-axis is twice as compressible as the a- and b-axes. This anisotropic compression is likely due to the orientation of the relatively stiff carbonate groups, a third of which are oriented close to the plane of the a- and b-axes, c axis compression primarily involves the compaction of the 9-fold coordinate sodium and calcium polyhedral. The two distinct carbonate sites within the unit cell give rise to two Raman symmetric stretching modes of the symmetric stretch; the carbonate group stretching vibration which is close to in plane with the a- and b-axes shifts at 3.75 cm-1/GPa as opposed to the carbonate groups which is closer to in plane with the b- and c-axes which shift at 4.25 cm-1/GPa. This furthers evidence for anisotropic compression observed using x-ray diffraction--as the carbonate in plane with the a- and b-axes is compressed, the strength of oxygen bonds along the c-axis with the cations increases, thus decreasing the pressure shift of the mode. The out of plane bending vibration shifts at -0.48 cm-1/GPa, indicating an enhanced interaction of the oxygens with the cations. The multiple in plane bending modes all shift positively, as do at the low frequency lattice modes, indicating that major changes in bonding do not occur up to 10 GPa. The data collected indicates that this phase is stable at 300 K to 10 GPa. The anisotropic compaction of this alkali-rich carbonate appears to be governed by the orientation of the sodium sites, thus the behavior of alkali-rich carbonates within the kimberlitic systems is likely dependent on the bonding and local geometry of alkali cations.

  3. Efficient numerical method for investigating diatomic molecules with single active electron subjected to intense and ultrashort laser fields

    NASA Astrophysics Data System (ADS)

    Kiss, Gellért Zsolt; Borbély, Sándor; Nagy, Ladislau

    2017-12-01

    We have presented here an efficient numerical approach for the ab initio numerical solution of the time-dependent Schrödinger Equation describing diatomic molecules, which interact with ultrafast laser pulses. During the construction of the model we have assumed a frozen nuclear configuration and a single active electron. In order to increase efficiency our system was described using prolate spheroidal coordinates, where the wave function was discretized using the finite-element discrete variable representation (FE-DVR) method. The discretized wave functions were efficiently propagated in time using the short-iterative Lanczos algorithm. As a first test we have studied here how the laser induced bound state dynamics in H2+ is influenced by the strength of the driving laser field.

  4. Thermodynamic Analysis of Secondary Minerals Stability in Altered Carbonatites of the Oldoinyo Lengai Volcano, Northern Tanzania

    NASA Astrophysics Data System (ADS)

    Perova, E. N.; Zaitsev, A. N.

    2017-12-01

    Carbonatites from the Oldoinyo Lengai volcano, northern Tanzania, are unstable under normal atmospheric conditions. Owing to carbonatite interaction with water, the major minerals—gregoryite Na2(CO3), nyerereite Na2Ca(CO3)2, and sylvite KCl—are dissolved and replaced with secondary low-temperature minerals: thermonatrite Na2(CO3) · H2O, trona Na3(CO3)(HCO3) · 2H2O, nahcolite Na(HCO3), pirssonite Na2Ca(CO3)2 · 2H2O, calcite Ca(CO3), and shortite Na2Ca2(CO3)3. Thermodynamic calculations show that the formation of secondary minerals in Oldoinyo Lengai carbonatites are controlled by the pH of the pore solution, H2O and CO2 fugacity, and the ratio of Ca and Na activity in the Na2O-CaO-CO2-H2O system.

  5. The system Na2CO3-CaCO3 at 3 GPa

    NASA Astrophysics Data System (ADS)

    Podborodnikov, Ivan V.; Shatskiy, Anton; Arefiev, Anton V.; Rashchenko, Sergey V.; Chanyshev, Artem D.; Litasov, Konstantin D.

    2018-04-01

    It was suggested that alkali-alkaline earth carbonates may have a substantial role in petrological processes relevant to metasomatism and melting of the Earth's mantle. Because natrite, Na2CO3, Na-Ca carbonate (shortite and/or nyerereite), and calcite, CaCO3, have been recently reported from xenoliths of shallow mantle (110-115 km) origin, we performed experiments on phase relations in the system Na2CO3-CaCO3 at 3 GPa and 800-1300 °C. We found that the system has one intermediate compound, Na2Ca3(CO3)4, at 800 °C, and two intermediate compounds, Na2Ca(CO3)2 and Na2Ca3(CO3)4, at 850 °C. CaCO3 crystals recovered from experiments at 950 and 1000 °C are aragonite and calcite, respectively. Maximum solid solution of CaCO3 in Na2CO3 is 20 mol% at 850 °C. The Na-carbonate-Na2Ca(CO3)2 eutectic locates near 860 °C and 56 mol% Na2CO3. Na2Ca(CO3)2 melts incongruently near 880 °C to produce Na2Ca3(CO3)4 and a liquid containing about 51 mol% Na2CO3. Na2Ca3(CO3)4 disappears above 1000 °C via incongruent melting to calcite and a liquid containing about 43 mol% Na2CO3. At 1050 °C, the liquid, coexisting with Na-carbonate, contains 87 mol% Na2CO3. Na-carbonate remains solid up to 1150 °C and melts at 1200 °C. The Na2CO3 content in the liquid coexisting with calcite decreases to 15 mol% as temperature increases to 1300 °C. Considering the present and previous data, a range of the intermediate compounds on the liquidus of the Na2CO3-CaCO3 join changes as pressure increases in the following sequence: Na2Ca(CO3)2 (0.1 GPa) → Na2Ca(CO3)2, Na2Ca3(CO3)4 (3 GPa) → Na4Ca(CO3)3, Na2Ca3(CO3)4 (6 GPa). Thus, the Na2Ca(CO3)2 nyerereite stability field extends to the shallow mantle pressures. Consequently, findings of nyerereite among daughter phases in the melt inclusions in olivine from the sheared garnet peridotites are consistent with their mantle origin.

Top