Kashimura, Hiroki; Abe, Manabu; Watanabe, Shingo; ...
2017-03-08
This paper evaluates the forcing, rapid adjustment, and feedback of net shortwave radiation at the surface in the G4 experiment of the Geoengineering Model Intercomparison Project by analysing outputs from six participating models. G4 involves injection of 5 Tg yr -1 of SO 2, a sulfate aerosol precursor, into the lower stratosphere from year 2020 to 2069 against a background scenario of RCP4.5. A single-layer atmospheric model for shortwave radiative transfer is used to estimate the direct forcing of solar radiation management (SRM), and rapid adjustment and feedbacks from changes in the water vapour amount, cloud amount, and surface albedo (compared with RCP4.5). The analysismore » shows that the globally and temporally averaged SRM forcing ranges from -3.6 to -1.6 W m -2, depending on the model. The sum of the rapid adjustments and feedback effects due to changes in the water vapour and cloud amounts increase the downwelling shortwave radiation at the surface by approximately 0.4 to 1.5 W m -2 and hence weaken the effect of SRM by around 50 %. The surface albedo changes decrease the net shortwave radiation at the surface; it is locally strong (~-4 W m -2) in snow and sea ice melting regions, but minor for the global average. The analyses show that the results of the G4 experiment, which simulates sulfate geoengineering, include large inter-model variability both in the direct SRM forcing and the shortwave rapid adjustment from change in the cloud amount, and imply a high uncertainty in modelled processes of sulfate aerosols and clouds.« less
Satellite-derived aerosol radiative forcing from the 2004 British Columbia wildfires
Guo, Song; Leighton, H.
2008-01-01
The British Columbia wildfires of 2004 was one of the largest wildfire events in the last ten years in Canada. Both the shortwave and longwave smoke aerosol radiative forcing at the top-of-atmosphere (TOA) are investigated using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Clouds and the Earth's Radiant Energy System (CERES) instruments. Relationships between the radiative forcing fluxes (??F) and wildfire aerosol optical thickness (AOT) at 0.55 ??m (??0.55) are deduced for both noontime instantaneous forcing and diurnally averaged forcing. The noontime averaged instantaneous shortwave and longwave smoke aerosol radiative forcing at the TOA are 45.8??27.5 W m-2 and -12.6??6.9 W m-2, respectively for a selected study area between 62??N and 68??N in latitude and 125??W and 145??W in longitude over three mainly clear-sky days (23-25 June). The derived diurnally averaged smoke aerosol shortwave radiative forcing is 19.9??12.1 W m-2 for a mean ??0.55 of 1.88??0.71 over the same time period. The derived ??F-?? relationship can be implemented in the radiation scheme used in regional climate models to assess the effect of wildfire aerosols.
NASA Technical Reports Server (NTRS)
Redemann, J.; Turco, R. P.; Liou, K. N.; Hobbs, P. V.; Hartley, W. S.; Bergstrom, R. W.; Browell, E. V.; Russell, P. B.
2000-01-01
The vertical structure of aerosol-induced radiative flux changes in the Earth's troposphere affects local heating rates and thereby convective processes, the formation and lifetime of clouds, and hence the distribution of chemical constituents. We present observationally based estimates of the vertical structure of direct shortwave aerosol radiative forcing for two case studies from the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) which took place on the U.S. east coast in July 1996. The aerosol radiative forcings are computed using the Fu-Liou broadband radiative transfer model. The aerosol optical properties used in the radiative transfer simulations are calculated from independent vertically resolved estimates of the complex aerosol indices of refraction in two to three distinct vertical layers, using profiles of in situ particle size distributions measured aboard the University of Washington research aircraft. Aerosol single-scattering albedos at 450 nm thus determined range from 0.9 to 0.985, while the asymmetry factor varies from 0.6 to 0.8. The instantaneous shortwave aerosol radiative forcings derived from the optical properties of the aerosols are of the order of -36 Wm(exp -2) at the top of the atmosphere and about -56 Wm(exp -2) at the surface for both case studies.
NASA Astrophysics Data System (ADS)
Yang, Fan; Lu, Hui; Yang, Kun; He, Jie; Wang, Wei; Wright, Jonathon S.; Li, Chengwei; Han, Menglei; Li, Yishan
2017-11-01
Precipitation and shortwave radiation play important roles in climatic, hydrological and biogeochemical cycles. Several global and regional forcing data sets currently provide historical estimates of these two variables over China, including the Global Land Data Assimilation System (GLDAS), the China Meteorological Administration (CMA) Land Data Assimilation System (CLDAS) and the China Meteorological Forcing Dataset (CMFD). The CN05.1 precipitation data set, a gridded analysis based on CMA gauge observations, also provides high-resolution historical precipitation data for China. In this study, we present an intercomparison of precipitation and shortwave radiation data from CN05.1, CMFD, CLDAS and GLDAS during 2008-2014. We also validate all four data sets against independent ground station observations. All four forcing data sets capture the spatial distribution of precipitation over major land areas of China, although CLDAS indicates smaller annual-mean precipitation amounts than CN05.1, CMFD or GLDAS. Time series of precipitation anomalies are largely consistent among the data sets, except for a sudden decrease in CMFD after August 2014. All forcing data indicate greater temporal variations relative to the mean in dry regions than in wet regions. Validation against independent precipitation observations provided by the Ministry of Water Resources (MWR) in the middle and lower reaches of the Yangtze River indicates that CLDAS provides the most realistic estimates of spatiotemporal variability in precipitation in this region. CMFD also performs well with respect to annual mean precipitation, while GLDAS fails to accurately capture much of the spatiotemporal variability and CN05.1 contains significant high biases relative to the MWR observations. Estimates of shortwave radiation from CMFD are largely consistent with station observations, while CLDAS and GLDAS greatly overestimate shortwave radiation. All three forcing data sets capture the key features of the spatial distribution, but estimates from CLDAS and GLDAS are systematically higher than those from CMFD over most of mainland China. Based on our evaluation metrics, CLDAS slightly outperforms GLDAS. CLDAS is also closer than GLDAS to CMFD with respect to temporal variations in shortwave radiation anomalies, with substantial differences among the time series. Differences in temporal variations are especially pronounced south of 34° N. Our findings provide valuable guidance for a variety of stakeholders, including land-surface modelers and data providers.
First Global Estimates of Anthropogenic Shortwave Forcing by Methane
NASA Astrophysics Data System (ADS)
Collins, William; Feldman, Daniel; Kuo, Chaincy
2017-04-01
Although the primary well-mixed greenhouse gases (WMGHGs) absorb both shortwave and longwave radiation, to date assessments of the effects from human-induced increases in atmospheric concentrations of WMGHGs have focused almost exclusively on quantifying the longwave radiative forcing of these gases. However, earlier studies have shown that the shortwave effects of WMGHGs are comparable to many less important longwave forcing agents routinely in these assessments, for example the effects of aircraft contrails, stratospheric anthropogenic methane, and stratospheric water vapor from the oxidation of this methane. These earlier studies include the Radiative Transfer Model Intercomparison Project (RTMIP; Collins et al. 2006) conducted using line-by-line radiative transfer codes as well as the radiative parameterizations from most of the global climate models (GCMs) assembled for the Coupled Model Intercomparison Project (CMIP-3). In this talk, we discuss the first global estimates of the shortwave radiative forcing by methane due to the anthropogenic increase in CH4 between pre-industrial and present-day conditions. This forcing is a balance between reduced heating due to absorption of downwelling sunlight in the stratosphere and increased heating due to absorption of upwelling sunlight reflected from the surface as well clouds and aerosols in the troposphere. These estimates are produced using the Observing System Simulation Experiment (OSSE) framework we have developed for NASA's upcoming Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission. The OSSE is designed to compute the monthly mean shortwave radiative forcing based upon global gridded atmospheric and surface conditions extracted from either the meteorological reanalyses collected for the Analysis for MIPs (Ana4MIPs) or the CMIP-5 multi-GCM archive analyzed in the Fifth Assessment Report (AR-5) of the Intergovernmental Panel on Climate Change (IPCC). The OSSE combines these atmospheric conditions with an observationally derived prescription for the Earth's spectral surface albedo as inputs to the MODerate resolution atmospheric TRANsmission (MODTRAN) code. MODTRAN is designed to model atmospheric propagation of electromagnetic radiation for the 100-50,000 1/cm (0.2 to 100 micrometers) spectral range. This covers the spectrum from middle ultraviolet to visible light to far infrared. The most recently released version of the code, MODTRAN6, provides a spectral resolution of 0.2 1/cm using its 0.1 1/cm band model algorithm.
NASA Technical Reports Server (NTRS)
Smith, Eric A.; Sohn, B. J.
1990-01-01
Global cloudiness and radiation budget data from Nimbus 6 and 7 are used to investigate the role of cloud and surface radiative forcing and elements of the earth's general circulation. Although globally integrated cloud forcing is nearly zero, there are large regional imbalances and well regulated processes in the shortwave and longwave spectrum that control the meridional gradient structure of the net radiation balance and the factors modulating the east-west oriented North Africa-western Pacific energy transport dipole. The analysis demonstrates that clouds play a dual role in both the shortwave and longwave spectra in terms of tropical and midlatitude east-west gradients. The key result is that cloud forcing, although not always the principle regulator of interannual variability of the global climate, serves to reinforce the basic three-cell meridional circulation.
Radiative flux and forcing parameterization error in aerosol-free clear skies
Pincus, Robert; Mlawer, Eli J.; Oreopoulos, Lazaros; ...
2015-07-03
This article reports on the accuracy in aerosol- and cloud-free conditions of the radiation parameterizations used in climate models. Accuracy is assessed relative to observationally validated reference models for fluxes under present-day conditions and forcing (flux changes) from quadrupled concentrations of carbon dioxide. Agreement among reference models is typically within 1 W/m 2, while parameterized calculations are roughly half as accurate in the longwave and even less accurate, and more variable, in the shortwave. Absorption of shortwave radiation is underestimated by most parameterizations in the present day and has relatively large errors in forcing. Error in present-day conditions is essentiallymore » unrelated to error in forcing calculations. Recent revisions to parameterizations have reduced error in most cases. As a result, a dependence on atmospheric conditions, including integrated water vapor, means that global estimates of parameterization error relevant for the radiative forcing of climate change will require much more ambitious calculations.« less
Variability of the contrail radiative forcing due to crystal shape
NASA Astrophysics Data System (ADS)
Markowicz, K. M.; Witek, M. L.
2011-12-01
The aim of this study is to examine the influence of particles' shape and particles' optical properties on the contrail radiative forcing. Contrail optical properties in the shortwave and longwave range are derived using a ray-tracing geometric method and the discrete dipole approximation method, respectively. Both methods present good correspondence of the single scattering albedo and the asymmetry parameter in a transition range (3-7μm). We compare optical properties defined following simple 10 crystals habits randomly oriented: hexagonal plates, hexagonal columns with different aspect ratio, and spherical. There are substantial differences in single scattering properties between ten crystal models investigated here (e.g. hexagonal columns and plates with different aspect ratios, spherical particles). The single scattering albedo and the asymmetry parameter both vary up to 0.1 between various crystal shapes. Radiative forcing calculations were performed using a model which includes an interface between the state-of-the-art radiative transfer model Fu-Liou and databases containing optical properties of the atmosphere and surface reflectance and emissivity. This interface allows to determine radiative fluxes in the atmosphere and to estimate the contrail radiative forcing for clear- and all-sky (including natural clouds) conditions for various crystal shapes. The Fu-Liou code is fast and therefore it is suitable for computing radiative forcing on a global scale. At the same time it has sufficiently good accuracy for such global applications. A noticeable weakness of the Fu-Liou code is that it does not take into account the 3D radiative effects, e.g. cloud shading and horizontal. Radiative transfer model calculations were performed at horizontal resolution of 5x5 degree and time resolution of 20 min during day and 3 h during night. In order to calculate a geographic distribution of the global and annual mean contrail radiative forcing, the contrail cover must be determined. Two cases are discussed here: a 1% homogeneous contrail cover and the contrail cover provided by Rädel and Shine (2008). In the second distribution case, a more realistic contrail cover is taken into account. This model combines the AERO2K flight inventory with meteorological data and normalizes it with respect to the contrail cover derived from satellite observations. Simulations performed by the Fu-Liou model show significant variability of the shortwave, longwave, and net radiative forcing with crystal shape. The nonspherical crystals have smaller net forcing in contrary to spherical particles. The differences in net radiative forcing between optical models reach up to 50%. The hexagonal column and hexagonal plate particles show the smallest net radiative forcing while the largest forcing is obtained for the spheres. The global and annual mean shortwave, longwave, and net contrail radiative forcing, average over all crystal models and assuming an optical depth of 0.3 at visible wavelengths, is -5.7, 16.8, and 11.1 mW/m2, respectively. A ratio of the radiative forcings' standard deviation to the mean value, derived using 10 different ice particle models, is about 0.2 for the shortwave, 0.14 for the longwave, and 0.23 for the net radiation.
NASA Astrophysics Data System (ADS)
Widlowski, J.-L.; Pinty, B.; Clerici, M.; Dai, Y.; de Kauwe, M.; De Ridder, K.; Kallel, A.; Kobayashi, H.; Lavergne, T.; Ni-Meister, W.; Olchev, A.; Quaife, T.; Wang, S.; Yang, W.; Yang, Y.; Yuan, H.
2011-06-01
Remotely sensed, multiannual data sets of shortwave radiative surface fluxes are now available for assimilation into land surface schemes (LSSs) of climate and/or numerical weather prediction models. The RAMI4PILPS suite of virtual experiments assesses the accuracy and consistency of the radiative transfer formulations that provide the magnitudes of absorbed, reflected, and transmitted shortwave radiative fluxes in LSSs. RAMI4PILPS evaluates models under perfectly controlled experimental conditions in order to eliminate uncertainties arising from an incomplete or erroneous knowledge of the structural, spectral and illumination related canopy characteristics typical for model comparison with in situ observations. More specifically, the shortwave radiation is separated into a visible and near-infrared spectral region, and the quality of the simulated radiative fluxes is evaluated by direct comparison with a 3-D Monte Carlo reference model identified during the third phase of the Radiation transfer Model Intercomparison (RAMI) exercise. The RAMI4PILPS setup thus allows to focus in particular on the numerical accuracy of shortwave radiative transfer formulations and to pinpoint to areas where future model improvements should concentrate. The impact of increasing degrees of structural and spectral subgrid variability on the simulated fluxes is documented and the relevance of any thus emerging biases with respect to gross primary production estimates and shortwave radiative forcings due to snow and fire events are investigated.
NASA Astrophysics Data System (ADS)
Lipat, Bernard R.; Tselioudis, George; Grise, Kevin M.; Polvani, Lorenzo M.
2017-06-01
This study analyzes Coupled Model Intercomparison Project phase 5 (CMIP5) model output to examine the covariability of interannual Southern Hemisphere Hadley cell (HC) edge latitude shifts and shortwave cloud radiative effect (SWCRE). In control climate runs, during years when the HC edge is anomalously poleward, most models substantially reduce the shortwave radiation reflected by clouds in the lower midlatitude region (LML; ˜28°S-˜48°S), although no such reduction is seen in observations. These biases in HC-SWCRE covariability are linked to biases in the climatological HC extent. Notably, models with excessively equatorward climatological HC extents have weaker climatological LML subsidence and exhibit larger increases in LML subsidence with poleward HC edge expansion. This behavior, based on control climate interannual variability, has important implications for the CO2-forced model response. In 4×CO2-forced runs, models with excessively equatorward climatological HC extents produce stronger SW cloud radiative warming in the LML region and tend to have larger climate sensitivity values than models with more realistic climatological HC extents.
NASA Astrophysics Data System (ADS)
Bibi, Humera; Alam, Khan; Bibi, Samina
2017-08-01
This study provides observational results of aerosol optical and radiative characteristics over four locations in IGP. Spectral variation of Aerosol Optical Depth (AOD), Single Scattering Albedo (SSA) and Asymmetry Parameter (AP) were analysed using AErosol RObotic NETwork (AERONET) data. The analysis revealed that coarse particles were dominant in summer and pre-monsoon, while fine particles were more pronounced in winter and post-monsoon. Furthermore, the spatio-temporal variations of Shortwave Direct Aerosol Radiative Forcing (SDARF) and Shortwave Direct Aerosol Radiative Forcing Efficiency (SDARFE) at the Top Of Atmosphere (TOA), SURface (SUR) and within ATMosphere (ATM) were calculated using SBDART model. The atmospheric Heating Rate (HR) associated with SDARFATM were also computed. It was observed that the monthly averaged SDARFTOA and SDARFSUR were found to be negative leading to positive SDARFATM during all the months over all sites. The increments in net atmospheric forcing lead to maximum HR in November-December and May. The seasonal analysis of SDARF revealed that SDARFTOA and SDARFSUR were negative during all seasons. The SW atmospheric absorption translates to highest atmospheric HR during summer over Karachi and during pre-monsoon over Lahore, Jaipur and Kanpur. Like SDARF, the monthly and seasonal variations of SDARFETOA and SDARFESUR were found to be negative, resulting in positive atmospheric forcing. Additionally, to compare the model estimated forcing against AERONET derived forcing, the regression analysis of AERONET-SBDART forcing were carried out. It was observed that SDARF at SUR and TOA showed relatively higher correlation over Lahore, moderate over Jaipur and Kanpur and lower over Karachi. Finally, the analysis of National Oceanic and Atmospheric Administration Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model revealed that air masses were arriving from multiple source locations.
NASA Technical Reports Server (NTRS)
Su, Jing; Huang, Jianping; Fu, Qiang; Minnis, Patrick; Ge, Jinming; Bi, Jianrong
2008-01-01
The impact of Asian dust on cloud radiative forcing during 2003-2006 is studied by using the Earth's Radiant Energy Budget Scanner (CERES) data and the Fu-Liou radiative transfer model. Analysis of satellite data shows that the dust aerosol significantly reduced the cloud cooling effect at TOA. In dust contaminated cloudy regions, the 4-year mean values of the instantaneous shortwave, longwave and net cloud radiative forcing are -138.9, 69.1, and -69.7 Wm(sup -2), which are 57.0, 74.2, and 46.3%, respectively, of the corresponding values in more pristine cloudy regions. The satellite-retrieved cloud properties are significantly different in the dusty regions and can influence the radiative forcing indirectly. The contributions to the cloud radiation forcing by the dust direct, indirect and semi-direct effects are estimated using combined satellite observations and Fu-Liou model simulation. The 4-year mean value of combination of indirect and semi-direct shortwave radiative forcing (SWRF) is 82.2 Wm(sup -2), which is 78.4% of the total dust effect. The direct effect is only 22.7 Wm(sup -2), which is 21.6% of the total effect. Because both first and second indirect effects enhance cloud cooling, the aerosol-induced cloud warming is mainly the result of the semi-direct effect of dust.
NASA Astrophysics Data System (ADS)
Fu, Y.; Li, R.; Huang, J.; Bergeron, Y.; Fu, Y.
2017-12-01
Emissions of aerosols and trace gases from wildfires and the direct shortwave radiative forcing were studied using multi-satellite/sensor observations from Aqua Moderate-Resolution Imaging Spectroradiometer (MODIS), Aqua Atmospheric Infrared Sounder (AIRS), Aura Ozone Monitoring Instrument (OMI), and Aqua Cloud's and the Earth's Radiant Energy System (CERES). The selected cases occurred in Northeast of China (NEC), Siberia of Russia, California of America have dominant fuel types of cropland, mixed forest and needleleaf forest, respectively. The Fire radiative power (FRP) based emission coefficients (Ce) of aerosol, NOx (NO2+NO), formaldehyde (HCHO), and carbon monoxide (CO) showed significant differences from case to case. 1) the FRP of the cropland case in NEC is strongest, however, the Ce of aerosol is the lowest (20.51 ± 2.55 g MJ-1). The highest Ce of aerosol is 71.34 ± 13.24 g MJ-1 in the needleleaf fire case in California. 2) For NOx, the highest Ce existed in the cropland case in NEC (2.76 ± 0.25 g MJ-1), which is more than three times of those in the forest fires in Siberia and California. 3) The Ce of CO is 70.21±10.97 and 88.38±46.16 g MJ-1 in the forest fires in Western Siberia and California, which are about four times of that in cropland fire. 4) The variation of Ce of HCHO are relatively small among cases. Strong spatial correlations are found among aerosol optical depth (AOD), NOx, HCHO, and CO. The ratios of NOx to AOD, HCHO, and CO in the cropland case in NEC show much higher values than those in other cases. Although huge differences of emissions and composition ratios exist among cases, the direct shortwave (SW) radiative forcing efficiency (SWARFE) of smoke at the top of the atmosphere (TOA) are in good agreement, with the shortwave radiative forcing efficiencies values of 20.09 to 22.93 per unit AOD. Results in this study reveal noteworthy variations of the FRP-based emissions coefficient and relative chemical composition in the smoke. Nitrogen content in the fuel and/or soil, the biomes type burned, the combustion states (flaming or smoldering) and/or the weather condition might be respond for those differences among cases. This study also prove remarkable and consistent cooling effect of shortwave radiation forcing at TOA from the wildfire emissions in all selected cases.
Cloud Radiation Forcings and Feedbacks: General Circulation Model Tests and Observational Validation
NASA Technical Reports Server (NTRS)
Lee,Wan-Ho; Iacobellis, Sam F.; Somerville, Richard C. J.
1997-01-01
Using an atmospheric general circulation model (the National Center for Atmospheric Research Community Climate Model: CCM2), the effects on climate sensitivity of several different cloud radiation parameterizations have been investigated. In addition to the original cloud radiation scheme of CCM2, four parameterizations incorporating prognostic cloud water were tested: one version with prescribed cloud radiative properties and three other versions with interactive cloud radiative properties. The authors' numerical experiments employ perpetual July integrations driven by globally constant sea surface temperature forcings of two degrees, both positive and negative. A diagnostic radiation calculation has been applied to investigate the partial contributions of high, middle, and low cloud to the total cloud radiative forcing, as well as the contributions of water vapor, temperature, and cloud to the net climate feedback. The high cloud net radiative forcing is positive, and the middle and low cloud net radiative forcings are negative. The total net cloud forcing is negative in all of the model versions. The effect of interactive cloud radiative properties on global climate sensitivity is significant. The net cloud radiative feedbacks consist of quite different shortwave and longwave components between the schemes with interactive cloud radiative properties and the schemes with specified properties. The increase in cloud water content in the warmer climate leads to optically thicker middle- and low-level clouds and in turn to negative shortwave feedbacks for the interactive radiative schemes, while the decrease in cloud amount simply produces a positive shortwave feedback for the schemes with a specified cloud water path. For the longwave feedbacks, the decrease in high effective cloudiness for the schemes without interactive radiative properties leads to a negative feedback, while for the other cases, the longwave feedback is positive. These cloud radiation parameterizations are empirically validated by using a single-column diagnostic model. together with measurements from the Atmospheric Radiation Measurement program and from the Tropical Ocean Global Atmosphere Combined Ocean-Atmosphere Response Experiment. The inclusion of prognostic cloud water produces a notable improvement in the realism of the parameterizations, as judged by these observations. Furthermore, the observational evidence suggests that deriving cloud radiative properties from cloud water content and microphysical characteristics is a promising route to further improvement.
NASA Astrophysics Data System (ADS)
Subba, T.; Pathak, B.
2016-12-01
The North-East Indian Region (NER) (22-30ºN, 89-98ºE) in south Asia sandwiched between two global biodiversity hotspots namely, Himalaya and Indo-Burma, assumes significance owing to its unique topography with mountains in the north, east and south and densely populated Indo Gangetic plains (IGP) towards the west resulting in complex aerosol system. Multi-year (2010-2014) concurrent measurements of aerosol properties and the shortwave radiation budget are examined over four geographically distinct stations of NER operational under Indian Space Research organization's ARFINET (Aerosol Radiative Forcing over India NETwork). An attempt has been made to lessen the ambiguity of forcing estimation by validating the radiative transfer modelled ARF with the CNR4 net radiometer measured values (r2 0.98). The Normalized Difference Vegetation Index and its dependence on the extinction of the photosynthetically active radiation (PAR) due to aerosol are assessed. The spring time enhancement of aerosols in the column has shown significant surface cooling (ARF = -48 ± 5 Wm-2) over the region, while the very high Black Carbon (BC) mass concentrations near the surface (SSA > 0.8) leads to significant atmospheric warming (ARF = +41 ± 7 Wm-2) in the shortwave range. Radiative forcing estimates reveal that the atmospheric forcing by BC could be as high as +30Wm-2 over the western part, which are significantly higher than the eastern part with a consequent heating rate of 1.5 K day-1 revealing an east-west asymmetry over NER. The impact of BC aerosols on the photosynthetic rate varies among different locations ranging from -5±2 Wm-2 to -25±3 Wm-2. Almost 70% of the total atmospheric shortwave radiative absorption is attributed to just 10% contribution of Black Carbon (BC) to total mass concentration and causes a reduction of more than 30% of PAR reaching the surface over Brahmaputra valley due to direct radiative effect. Comparison of previous and the present study shows highest surface dimming is observed in west-Asia followed by IGP and west-India. Surface radiative reduction over NER is comparable to south-India standing on the third place which is still higher than that of the Himalayan and Oceanic regions.
NASA Astrophysics Data System (ADS)
Park, Jun; Hwang, Seung-On
2017-11-01
The impact of a spectral nudging technique for the dynamical downscaling of the summer surface air temperature in a high-resolution regional atmospheric model is assessed. The performance of this technique is measured by comparing 16 analysis-driven simulation sets of physical parameterization combinations of two shortwave radiation and four land surface model schemes of the model, which are known to be crucial for the simulation of the surface air temperature. It is found that the application of spectral nudging to the outermost domain has a greater impact on the regional climate than any combination of shortwave radiation and land surface model physics schemes. The optimal choice of two model physics parameterizations is helpful for obtaining more realistic spatiotemporal distributions of land surface variables such as the surface air temperature, precipitation, and surface fluxes. However, employing spectral nudging adds more value to the results; the improvement is greater than using sophisticated shortwave radiation and land surface model physical parameterizations. This result indicates that spectral nudging applied to the outermost domain provides a more accurate lateral boundary condition to the innermost domain when forced by analysis data by securing the consistency with large-scale forcing over a regional domain. This consequently indirectly helps two physical parameterizations to produce small-scale features closer to the observed values, leading to a better representation of the surface air temperature in a high-resolution downscaled climate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafson, William I.; Qian, Yun; Fast, Jerome D.
2011-07-13
Recent improvements to many global climate models include detailed, prognostic aerosol calculations intended to better reproduce the observed climate. However, the trace gas and aerosol fields are treated at the grid-cell scale with no attempt to account for sub-grid impacts on the aerosol fields. This paper begins to quantify the error introduced by the neglected sub-grid variability for the shortwave aerosol radiative forcing for a representative climate model grid spacing of 75 km. An analysis of the value added in downscaling aerosol fields is also presented to give context to the WRF-Chem simulations used for the sub-grid analysis. We foundmore » that 1) the impact of neglected sub-grid variability on the aerosol radiative forcing is strongest in regions of complex topography and complicated flow patterns, and 2) scale-induced differences in emissions contribute strongly to the impact of neglected sub-grid processes on the aerosol radiative forcing. The two of these effects together, when simulated at 75 km vs. 3 km in WRF-Chem, result in an average daytime mean bias of over 30% error in top-of-atmosphere shortwave aerosol radiative forcing for a large percentage of central Mexico during the MILAGRO field campaign.« less
Determination of Radiative Forcing of Saharan Dust using Combined TOMS and ERBE Data
NASA Technical Reports Server (NTRS)
Hsu, N. Christina; Herman, Jay R.; Weaver, Clark
1999-01-01
The direct radiative forcing of Saharan dust aerosols has been determined by combining aerosol information derived from Nimbus-7 TOMS with radiation measurements observed at the top of atmosphere (TOA) by NOAA-9 ERBE made during February-July 1985. Cloud parameters and precipitable water derived from the NOAA-9 HIRS2 instrument were used to aid in screening for clouds and water vapor in the analyses. Our results indicate that under "cloud-free" and "dry" conditions there is a good correlation between the ERBE TOA outgoing longwave fluxes and the TOMS aerosol index measurements over both land and ocean in areas under the influence of airborne Saharan dust. The ERBE TOA outgoing shortwave fluxes were also found to correlate well with the dust loading derived from TOMS over ocean. However, the calculated shortwave forcing of Saharan dust aerosols is very weak and noisy over land for the range of solar zenith angle viewed by the NOAA-9 ERBE in 1985. Sensitivity factors of the TOA outgoing fluxes to changes in aerosol index were estimated using a linear regression fit to the ERBE and TOMS measurements. The ratio of the shortwave-to-longwave response to changes in dust loading over the ocean is found to be roughly 2 to 3, but opposite in sign. The monthly averaged "clear-sky" TOA direct forcing of airborne Saharan dust was also calculated by multiplying these sensitivity factors by the TOMS monthly averaged "clear-sky" aerosol index. Both the observational and theoretical analyses indicate that the dust layer height, ambient moisture content as well as the presence of cloud all play an important role in determining the TOA direct radiative forcing due to mineral aerosols.
NASA Astrophysics Data System (ADS)
Huneeus, Nicolas; Boucher, Olivier; Alterskjær, Kari; Cole, Jason N. S.; Curry, Charles L.; Ji, Duoying; Jones, Andy; Kravitz, Ben; Kristjánsson, Jón Egill; Moore, John C.; Muri, Helene; Niemeier, Ulrike; Rasch, Phil; Robock, Alan; Singh, Balwinder; Schmidt, Hauke; Schulz, Michael; Tilmes, Simone; Watanabe, Shingo; Yoon, Jin-Ho
2014-05-01
The effective radiative forcings (including rapid adjustments) and feedbacks associated with an instantaneous quadrupling of the preindustrial CO2 concentration and a counterbalancing reduction of the solar constant are investigated in the context of the Geoengineering Model Intercomparison Project (GeoMIP). The forcing and feedback parameters of the net energy flux, as well as its different components at the top-of-atmosphere (TOA) and surface, were examined in 10 Earth System Models to better understand the impact of solar radiation management on the energy budget. In spite of their very different nature, the feedback parameter and its components at the TOA and surface are almost identical for the two forcing mechanisms, not only in the global mean but also in their geographical distributions. This conclusion holds for each of the individual models despite intermodel differences in how feedbacks affect the energy budget. This indicates that the climate sensitivity parameter is independent of the forcing (when measured as an effective radiative forcing). We also show the existence of a large contribution of the cloudy-sky component to the shortwave effective radiative forcing at the TOA suggesting rapid cloud adjustments to a change in solar irradiance. In addition, the models present significant diversity in the spatial distribution of the shortwave feedback parameter in cloudy regions, indicating persistent uncertainties in cloud feedback mechanisms.
Measuring the greenhouse effect and radiative forcing through the atmosphere
NASA Astrophysics Data System (ADS)
Philipona, Rolf; Kräuchi, Andreas; Brocard, Emmanuel
2013-04-01
In spite of a large body of existing measurements of incoming shortwave solar radiation and outgoing longwave terrestrial radiation at the Earth's surface and at the top of the atmosphere, there are few observations documenting how radiation profiles change through the atmosphere - information that is necessary to fully quantify the greenhouse effect of the Earth's atmosphere. Using weather balloons and specific radiometer equipped radiosondes, we continuously measured shortwave and longwave radiation fluxes from the surface of the Earth up to altitudes of 35 kilometers in the upper stratosphere. Comparing radiation profiles from night measurements with different amounts of water vapor, we show evidence of large greenhouse forcing. We show, that under cloud free conditions, water vapor increases with Clausius-Clapeyron ( 7% / K), and longwave downward radiation at the surface increases by 8 Watts per square meter per Kelvin. The longwave net radiation however, shows a positive increase (downward) of 2.4 Watts per square meter and Kelvin at the surface, which decreases with height and shows a similar but negative increase (upward) at the tropopause. Hence, increased tropospheric water vapor increases longwave net radiation towards the ground and towards space, and produces a heating of 0.42 Kelvin per Watt per square meter at the surface. References: Philipona et al., 2012: Solar and thermal radiation profiles and radiative forcing measured through the atmosphere. Geophys. Res. Lett., 39, L13806, doi: 10.1029/2012GL052087.
In this study, the shortwave cloud forcing (SWCF) and longwave cloud forcing (LWCF) are estimated with the newly developed two-way coupled WRF-CMAQ over the eastern United States. Preliminary indirect aerosol forcing has been successfully implemented in WRF-CMAQ. The comparisons...
Multidecadal Changes in Near-Global Cloud Cover and Estimated Cloud Cover Radiative Forcing
NASA Technical Reports Server (NTRS)
Norris, Joel
2005-01-01
The first paper was Multidecadal changes in near-global cloud cover and estimated cloud cover radiative forcing, by J. R. Norris (2005, J. Geophys. Res. - Atmos., 110, D08206, doi: lO.l029/2004JD005600). This study examined variability in zonal mean surface-observed upper-level (combined midlevel and high-level) and low-level cloud cover over land during 1971-1 996 and over ocean during 1952-1997. These data were averaged from individual synoptic reports in the Extended Edited Cloud Report Archive (EECRA). Although substantial interdecadal variability is present in the time series, long-term decreases in upper-level cloud cover occur over land and ocean at low and middle latitudes in both hemispheres. Near-global upper-level cloud cover declined by 1.5%-sky-cover over land between 1971 and 1996 and by 1.3%-sky-cover over ocean between 1952 and 1997. Consistency between EECRA upper-level cloud cover anomalies and those from the International Satellite Cloud Climatology Project (ISCCP) during 1984-1 997 suggests the surface-observed trends are real. The reduction in surface-observed upper-level cloud cover between the 1980s and 1990s is also consistent with the decadal increase in all-sky outgoing longwave radiation reported by the Earth Radiation Budget Satellite (EMS). Discrepancies occur between time series of EECRA and ISCCP low-level cloud cover due to identified and probable artifacts in satellite and surface cloud data. Radiative effects of surface-observed cloud cover anomalies, called "cloud cover radiative forcing (CCRF) anomalies," are estimated based on a linear relationship to climatological cloud radiative forcing per unit cloud cover. Zonal mean estimated longwave CCRF has decreased over most of the globe. Estimated shortwave CCRF has become slightly stronger over northern midlatitude oceans and slightly weaker over northern midlatitude land areas. A long-term decline in the magnitude of estimated shortwave CCRF occurs over low-latitude land and ocean, but comparison with EMS all-sky reflected shortwave radiation during 1985-1997 suggests this decrease may be underestimated.
NASA Astrophysics Data System (ADS)
Meola, Joseph; Absi, Anthony; Islam, Mohammed N.; Peterson, Lauren M.; Ke, Kevin; Freeman, Michael J.; Ifaraguerri, Agustin I.
2014-06-01
Hyperspectral imaging systems are currently used for numerous activities related to spectral identification of materials. These passive imaging systems rely on naturally reflected/emitted radiation as the source of the signal. Thermal infrared systems measure radiation emitted from objects in the scene. As such, they can operate at both day and night. However, visible through shortwave infrared systems measure solar illumination reflected from objects. As a result, their use is limited to daytime applications. Omni Sciences has produced high powered broadband shortwave infrared super-continuum laser illuminators. A 64-watt breadboard system was recently packaged and tested at Wright-Patterson Air Force Base to gauge beam quality and to serve as a proof-of-concept for potential use as an illuminator for a hyperspectral receiver. The laser illuminator was placed in a tower and directed along a 1.4km slant path to various target materials with reflected radiation measured with both a broadband camera and a hyperspectral imaging system to gauge performance.
Estimating shortwave solar radiation using net radiation and meteorological measurements
USDA-ARS?s Scientific Manuscript database
Shortwave radiation has a wide variety of uses in land-atmosphere interactions research. Actual evapotranspiration estimation that involves stomatal conductance models like Jarvis and Ball-Berry require shortwave radiation to estimate photon flux density. However, in most weather stations, shortwave...
Biological effects and mechanisms of shortwave radiation: a review.
Yu, Chao; Peng, Rui-Yun
2017-01-01
With the increasing knowledge of shortwave radiation, it is widely used in wireless communications, radar observations, industrial manufacturing, and medical treatments. Despite of the benefits from shortwave, these wide applications expose humans to the risk of shortwave electromagnetic radiation, which is alleged to cause potential damage to biological systems. This review focused on the exposure to shortwave electromagnetic radiation, considering in vitro, in vivo and epidemiological results that have provided insight into the biological effects and mechanisms of shortwave. Additionally, some protective measures and suggestions are discussed here in the hope of obtaining more benefits from shortwave with fewer health risks.
NASA Technical Reports Server (NTRS)
Chistopher, Sundar A.; Kliche, Donna V.; Chou, Joyce; Welch, Ronald M.
1996-01-01
Collocated measurements from the Advanced Very High Resolution Radiometer (AVHRR) and the Earth Radiation Budget Experiment (ERBE) scanner are used to examine the radiative forcing of atmospheric aerosols generated from biomass burning for 13 images in South America. Using the AVHRR, Local Area Coverage (LAC) data, a new technique based on a combination of spectral and textural measures is developed for detecting these aerosols. Then, the instantaneous shortwave, longwave, and net radiative forcing values are computed from the ERBE instantaneous scanner data. Results for the selected samples from 13 images show that the mean instantaneous net radiative forcing for areas with heavy aerosol loading is about -36 W/sq m and that for the optically thin aerosols are about -16 W/sq m. These results, although preliminary, provide the first estimates of radiative forcing of atmospheric aerosols from biomass burning using satellite data.
NASA Technical Reports Server (NTRS)
Christopher, Sundar A.; Kliche, Donna A.; Chou, Joyce; Welch, Ronald M.
1996-01-01
Collocated measurements from the Advanced Very High Resolution Radiometer (AVHRR) and the Earth Radiation Budget Experiment (ERBE) scanner are used to examine the radiative forcing of atmospheric aerosols generated from biomass burning for 13 images in South America. Using the AVHRR, Local Area Coverage (LAC) data, a new technique based on a combination of spectral and textural measures is developed for detecting these aerosols. Then, the instantaneous shortwave, longwave, and net radiative forcing values are computed from the ERBE instantaneous scanner data. Results for the selected samples from 13 images show that the mean instantaneous net radiative forcing for areas with heavy aerosol loading is about -36 W/sq m and that for the optically thin aerosols are about -16 W/sq m. These results, although preliminary, provide the first estimates of radiative forcing of atmospheric aerosols from biomass burning using satellite data.
NASA Astrophysics Data System (ADS)
Sarangi, C.; Qian, Y.; Painter, T. H.; Liu, Y.; Lin, G.; Wang, H.
2017-12-01
Radiative forcing induced by light-absorbing particles (LAP) deposited on snow is an important surface forcing. It has been debated that an aerosol-induced increase in atmospheric and surface warming over Tibetan Plateau (TP) prior to the South Asian summer monsoon can have a significant effect on the regional thermodynamics and South Asian monsoon circulation. However, knowledge about the radiative effects due to deposition of LAP in snow over TP is limited. In this study we have used a high-resolution WRF-Chem (coupled with online chemistry and snow-LAP-radiation model) simulations during 2013-2014 to estimate the spatio-temporal variation in LAP deposition on snow, specifically black carbon (BC) and dust particles, in Himalayas. Simulated distributions in meteorology, aerosol concentrations, snow albedo, snow grain size and snow depth are evaluated against satellite and in-situ measurements. The spatio-temporal change in snow albedo and snow grain size with variation in LAP deposition is investigated and the resulting shortwave LAP radiative forcing at surface is calculated. The LAP-radiative forcing due to aerosol deposition, both BC and dust, is higher in magnitude over Himalayan slopes (terrain height below 4 km) compared to that over TP (terrain height above 4 km). We found that the shortwave aerosol radiative forcing efficiency at surface due to increase in deposited mass of BC particles in snow layer ( 25 (W/m2)/ (mg/m2)) is manifold higher than the efficiency of dust particles ( 0.1 (W/m2)/ (mg/m2)) over TP. However, the radiative forcing of dust deposited in snow is similar in magnitude (maximum 20-30 W/m2) to that of BC deposited in snow over TP. This is mainly because the amount of dust deposited in snow over TP can be about 100 times greater than the amount of BC deposited in snow during polluted conditions. The impact of LAP on surface energy balance, snow melting and atmospheric thermodynamics is also examined.
Does shortwave absorption by methane influence its effectiveness?
NASA Astrophysics Data System (ADS)
Modak, Angshuman; Bala, Govindasamy; Caldeira, Ken; Cao, Long
2018-01-01
In this study, using idealized step-forcing simulations, we examine the effective radiative forcing of CH4 relative to that of CO2 and compare the effects of CH4 and CO2 forcing on the climate system. A tenfold increase in CH4 concentration in the NCAR CAM5 climate model produces similar long term global mean surface warming ( 1.7 K) as a one-third increase in CO2 concentration. However, the radiative forcing estimated for CO2 using the prescribed-SST method is 81% that of CH4, indicating that the efficacy of CH4 forcing is 0.81. This estimate is nearly unchanged when the CO2 physiological effect is included in our simulations. Further, for the same long-term global mean surface warming, we simulate a smaller precipitation increase in the CH4 case compared to the CO2 case. This is because of the fast adjustment processes—precipitation reduction in the CH4 case is larger than that of the CO2 case. This is associated with a relatively more stable atmosphere and larger atmospheric radiative forcing in the CH4 case which occurs because of near-infrared absorption by CH4 in the upper troposphere and lower stratosphere. Within a month after an increase in CH4, this shortwave heating results in a temperature increase of 0.8 K in the lower stratosphere and upper troposphere. In contrast, within a month after a CO2 increase, longwave cooling results in a temperature decrease of 3 K in the stratosphere and a small change in the upper troposphere. These fast adjustments in the lower stratospheric and upper tropospheric temperature, along with the adjustments in clouds in the troposphere, influence the effective radiative forcing and the fast precipitation response. These differences in fast climate adjustments also produce differences in the climate states from which the slow response begins to evolve and hence they are likely associated with differing feedbacks. We also find that the tropics and subtropics are relatively warmer in the CH4 case for the same global mean surface warming because of a larger longwave clear-sky and shortwave cloud forcing over these regions in the CH4 case. Further investigation using a multi-model intercomparison framework would permit an assessment of the robustness of our results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seethala, C.; Pandithurai, G.; Fast, Jerome D.
We utilized WRF-Chem multi-scale model to simulate the regional distribution of aerosols, optical properties and its effect on radiation over India for a winter month. The model is evaluated using measurements obtained from upper-air soundings, AERONET sun photometers, various satellite instruments, and pyranometers operated by the Indian Meteorological Department. The simulated downward shortwave flux was overestimated when the effect of aerosols on radiation and clouds was neglected. Downward shortwave radiation from a simulation that included aerosol-radiation interaction processes was 5 to 25 Wm{sup -2} closer to the observations, while a simulation that included aerosol-cloud interaction processes were another 1 tomore » 20 Wm{sup -2} closer to the observations. For the few observations available, the model usually underestimated particulate concentration. This is likely due to turbulent mixing, transport errors and the lack of secondary organic aerosol treatment in the model. The model efficiently captured the broad regional hotspots such as high aerosol optical depth over Indo-Gangetic basin as well as the northwestern and southern part of India. The regional distribution of aerosol optical depth compares well with AVHRR aerosol optical depth and the TOMS aerosol index. The magnitude and wavelength-dependence of simulated aerosol optical depth was also similar to the AERONET observations across India. Differences in surface shortwave radiation between simulations that included and neglected aerosol-radiation interactions were as high as -25 Wm{sup -2}, while differences in surface shortwave radiation between simulations that included and neglect aerosol-radiation-cloud interactions were as high as -30 Wm{sup -2}. The spatial variations of these differences were also compared with AVHRR observation. This study suggests that the model is able to qualitatively simulate the impact of aerosols on radiation over India; however, additional measurements of particulate mass and composition are needed to fully evaluate whether the aerosol precursor emissions are adequate when simulating radiative forcing in the region.« less
Intercomparison of Models Representing Direct Shortwave Radiative Forcing by Sulfate Aerosols
NASA Technical Reports Server (NTRS)
Boucher, O.; Schwartz, S. E.; Ackerman, T. P.; Anderson, T. L.; Bergstrom, B.; Bonnel, B.; Dahlback, A.; Fouquart, Y.; Chylek, P.; Fu, Q.;
2000-01-01
The importance of aerosols as agents of climate change has recently been highlighted. However, the magnitude of aerosol forcing by scattering of shortwave radiation (direct forcing) is still very uncertain even for the relatively well characterized sulfate aerosol. A potential source of uncertainty is in the model representation of aerosol optical properties and aerosol influences on radiative transfer in the atmosphere. Although radiative transfer methods and codes have been compared in the past, these comparisons have not focused on aerosol forcing (change in net radiative flux at the top of the atmosphere). Here we report results of a project involving 12 groups using 15 models to examine radiative forcing by sulfate aerosol for a wide range of values of particle radius, aerosol optical depth, surface albedo, and solar zenith angle. Among the models that were employed were high and low spectral resolution models incorporating a variety of radiative transfer approximations as well as a line-by-line model. The normalized forcings (forcing per sulfate column burden) obtained with the several radiative transfer models were examined, and the discrepancies were characterized. All models simulate forcings of comparable amplitude and exhibit a similar dependence on input parameters. As expected for a non-light-absorbing aerosol, forcings were negative (cooling influence) except at high surface albedo combined with small solar zenith angle. The relative standard deviation of the zenith-angle-averaged normalized broadband forcing for 15 models-was 8% for particle radius near the maximum in this forcing (approx. 0.2 microns) and at low surface albedo. Somewhat greater model-to-model discrepancies were exhibited at specific solar zenith angles. Still greater discrepancies were exhibited at small particle radii and much greater discrepancies were exhibited at high surface albedos, at which the forcing changes sign; in these situations, however, the normalized forcing is quite small quite small. Discrepancies among the models arise from inaccuracies in Mie calculations, differing treatment of the angular scattering phase function, differing wavelength and angular resolution, and differing treatment of multiple scattering. These results imply the need for standardized radiative transfer methods tailored to the direct aerosol forcing problem. However, the relatively small spread in these results suggests that the uncertainty in forcing arising from the treatment of radiative forcing of a well-characterized aerosol at well-specified surface albedo is smaller than some of the other sources of uncertainty in estimates of direct forcing by anthropogenic sulfate aerosols and anthropogenic aerosols generally.
NASA Astrophysics Data System (ADS)
Sinitsyn, Alexey
2017-04-01
Shortwave radiation is one of the key air-sea flux components playing an important role in on the ocean heat balance. The most accurate method to obtaining estimates of shortwave fluxes are the field measurements at various locations at the globe. However, these data are very sparse. Different satellite missions and re-analyses provide alternative source of short-wave radiation data, however they need are source for uncertainties and need to be validated. An alternative way to produce long-term time series of shortwave radiation is to apply bulk parameterizations of shortwave radiation to the observations of Voluntary Observing Ship (VOS) cloud data or to the cloud measurements from CM-SAF. In our work, we compare three sources of shortwave flux estimates. In-situ measurements were obtained during 12 cruises (320 day of measurements) of research cruises in different regions of the Atlantic Ocean from 2004 to 2014. Shortwave radiation was measured by the Kipp&Zonen net radiometer CNR-1. Also during the cruise, standard meteorological observations were carried out. Satellite data were the hourly and daily time series of the incoming shortwave radiation with spatial resolution 0.05x0.05 degree (METEOSAT MSG coverage Europe, Africa, Atlantic Ocean), and were obtained by the MVIRI/SEVIRI instrument from METEOSAT. SEVIRI cloud properties were taken from CLAAS-2 data record from CM-SAF. Parameterizations of shortwave fluxes used consisted of three different schemes based upon consideration of only total as well as total and low cloud cover. The incoming shortwave radiation retrieved by satellite had a positive bias of 3 Wm-2 and RMS of 69 Wm-2 compared to in-situ measurements. For different Octa categories the bias was from 1 to 5 Wm-2 and RMS from 41 to 71 Wm-2. The incoming shortwave radiation computed by bulk parameterization indicated a bias of -10 Wm-2 to 60 Wm-2 depending on the scheme and the region of the Atlantic Ocean. The results of the comparison suggest that satellite data is an excellent ground for testing bulk parameterizations of incoming shortwave radiation. Among the bulk paramterizations, the IORAS/SAIL scheme is the least biased algorithm for computing shortwave radiation from cloud observations.
The influence of extratropical cloud phase and amount feedbacks on climate sensitivity
NASA Astrophysics Data System (ADS)
Frey, William R.; Kay, Jennifer E.
2018-04-01
Global coupled climate models have large long-standing cloud and radiation biases, calling into question their ability to simulate climate and climate change. This study assesses the impact of reducing shortwave radiation biases on climate sensitivity within the Community Earth System Model (CESM). The model is modified by increasing supercooled cloud liquid to better match absorbed shortwave radiation observations over the Southern Ocean while tuning to reduce a compensating tropical shortwave bias. With a thermodynamic mixed-layer ocean, equilibrium warming in response to doubled CO2 increases from 4.1 K in the control to 5.6 K in the modified model. This 1.5 K increase in equilibrium climate sensitivity is caused by changes in two extratropical shortwave cloud feedbacks. First, reduced conversion of cloud ice to liquid at high southern latitudes decreases the magnitude of a negative cloud phase feedback. Second, warming is amplified in the mid-latitudes by a larger positive shortwave cloud feedback. The positive cloud feedback, usually associated with the subtropics, arises when sea surface warming increases the moisture gradient between the boundary layer and free troposphere. The increased moisture gradient enhances the effectiveness of mixing to dry the boundary layer, which decreases cloud amount and optical depth. When a full-depth ocean with dynamics and thermodynamics is included, ocean heat uptake preferentially cools the mid-latitude Southern Ocean, partially inhibiting the positive cloud feedback and slowing warming. Overall, the results highlight strong connections between Southern Ocean mixed-phase cloud partitioning, cloud feedbacks, and ocean heat uptake in a climate forced by greenhouse gas changes.
NASA Technical Reports Server (NTRS)
Bowling, Laura C.; Lettenmaier, Dennis P.; Nijssen, Bart; Polcher, Jan; Koster, Randal D.; Lohmann, Dag; Houser, Paul R. (Technical Monitor)
2002-01-01
The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS) Phase 2(e) showed that in cold regions the annual runoff production in Land Surface Schemes (LSSs) is closely related to the maximum snow accumulation, which in turn is controlled in large part by winter sublimation. To help further explain the relationship between snow cover, turbulent exchanges and runoff production, a simple equivalent model-(SEM) was devised to reproduce the seasonal and annual fluxes simulated by 13 LSSs that participated in PILPS Phase 2(e). The design of the SEM relates the annual partitioning of precipitation and energy in the LSSs to three primary parameters: snow albedo, effective aerodynamic resistance and evaporation efficiency. Isolation of each of the parameters showed that the annual runoff production was most sensitive to the aerodynamic resistance. The SEM was somewhat successful in reproducing the observed LSS response to a decrease in shortwave radiation and changes in wind speed forcings. SEM parameters derived from the reduced shortwave forcings suggested that increased winter stability suppressed turbulent heat fluxes over snow. Because winter sensible heat fluxes were largely negative, reductions in winter shortwave radiation imply an increase in annual average sensible heat.
Optical and radiative properties of aerosols over Abu Dhabi in the United Arab Emirates
NASA Astrophysics Data System (ADS)
Beegum, S. Naseema; Romdhane, Haifa Ben; Ali, Mohammed Tauha; Armstrong, Peter; Ghedira, Hosni
2016-12-01
The present study is on the aerosol optical and radiative properties in the short-wave radiation and its climate implications at the arid city of Abu Dhabi (24.42 ∘N, 54.61 ∘E, 4.5 m MSL), in the United Arab Emirates. The direct aerosol radiative forcings (ARF) in the short-wave region at the top (TOA) and bottom of the atmosphere (BOA) are estimated using a hybrid approach, making use of discrete ordinate radiative transfer method in conjunction with the short-wave flux and spectral aerosol optical depth (AOD) measurements, over a period of 3 years (June 2012-July 2015), at Abu Dhabi located at the south-west coast of the Arabian Gulf. The inferred microphysical properties of aerosols at the measurement site indicate strong seasonal variations from the dominance of coarse mode mineral dust aerosols during spring (March-May) and summer (June-September), to the abundance of fine/accumulation mode aerosols mainly from combustion of fossil-fuel and bio-fuel during autumn (October-November) and winter (December-February) seasons. The monthly mean diurnally averaged ARF at the BOA (TOA) varies from -13.2 Wm-2 (˜-0.96 Wm-2) in November to -39.4 Wm-2 (-11.4 Wm-2) in August with higher magnitudes of the forcing values during spring/summer seasons and lower values during autumn/winter seasons. The atmospheric aerosol forcing varies from + 12.2 Wm-2 (November) to 28.2 Wm-2 (June) with higher values throughout the spring and summer seasons, suggesting the importance of mineral dust aerosols towards the solar dimming. Seasonally, highest values of the forcing efficiency at the surface are observed in spring (-85.0 ± 4.1 W m-2 τ -1) followed closely by winter (-79.2 ± 7.1 W m-2 τ -1) and the lowest values during autumn season (-54 ± 4.3 W m-2 τ -1). The study concludes with the variations of the atmospheric heating rates induced by the forcing. Highest heating rate is observed in June (0.39 K day -1) and the lowest in November (0.17 K day -1) and the temporal variability of this parameter is linearly associated with the aerosol absorption index.
NASA Astrophysics Data System (ADS)
Siedlecki, S. A.; Nguyen, T. T.; Hermann, A. J.; Bond, N. A.; Ackerman, T. P.; Hinkelman, L. M.
2016-02-01
JISAO Seasonal Coastal Ocean Prediction of the Ecosystem (J-SCOPE) is an experimental seasonal forecast system of ocean conditions that is designed to support ecosystem-based management of fisheries in the Northwest Pacific ocean. The forecast system consists of a high resolution ROMS model with biogeochemistry forced by atmospheric and oceanic fields from the Climate Forecast System (CFS). Recent research has focused on the systematic errors in this forcing. In 2013, the predicted CFS shortwave radiation fluxes for summer were higher than the observation fluxes by nearly 100 W/m2. This forecast bias varies interannually and regionally. Hindcast experiments were set up for 2013 to estimate the impact of the shortwave radiation bias on ocean conditions in the Pacific Northwest waters. Results demonstrate that a 20% increase (decrease) in radiation fluxes can cause a warm (cold) bias in sea surface temperature (SST) of up to 1 - 1.5°C on average, and an even higher bias (± 2°C) during the June - August upwelling season. In the response to an increased radiation flux, the increased stratification from the warmer SSTs can reduce mixing and deepen the maximum phytoplankton growth zone, which consequently modifies the oxygen concentration of the water column. The effect of the change in short wave radiation fluxes on the oxygen concentrations of shelf waters is more complicated than the effect on SST. A change of up to 1 to 1.5 ml/l in bottom oxygen concentration occurs in some areas in the region. Two potential mechanisms that govern the response of the shelf water oxygen concentration are explored in this study: reduced mixing and altered chlorophyll distributions. Through the use of an oxygen budget, we can examine the relative importance of each of these mechanisms to the change in radiation.
Climate data induced uncertainty in model based estimations of terrestrial primary productivity
NASA Astrophysics Data System (ADS)
Wu, Z.; Ahlström, A.; Smith, B.; Ardö, J.; Eklundh, L.; Fensholt, R.; Lehsten, V.
2016-12-01
Models used to project global vegetation and carbon cycle differ in their estimates of historical fluxes and pools. These differences arise not only from differences between models but also from differences in the environmental and climatic data that forces the models. Here we investigate the role of uncertainties in historical climate data, encapsulated by a set of six historical climate datasets. We focus on terrestrial gross primary productivity (GPP) and analyze the results from a dynamic process-based vegetation model (LPJ-GUESS) forced by six different climate datasets and two empirical datasets of GPP (derived from flux towers and remote sensing). We find that the climate induced uncertainty, defined as the difference among historical simulations in GPP when forcing the model with the different climate datasets, can be as high as 33 Pg C yr-1 globally (19% of mean GPP). The uncertainty is partitioned into the three main climatic drivers, temperature, precipitation, and shortwave radiation. Additionally, we illustrate how the uncertainty due to a given climate driver depends both on the magnitude of the forcing data uncertainty (the data range) and the sensitivity of the modeled GPP to the driver (the ecosystem sensitivity). The analysis is performed globally and stratified into five land cover classes. We find that the dynamic vegetation model overestimates GPP, compared to empirically based GPP data over most areas, except for the tropical region. Both the simulations and empirical estimates agree that the tropical region is a disproportionate source of uncertainty in GPP estimation. This is mainly caused by uncertainties in shortwave radiation forcing, of which climate data range contributes slightly higher uncertainty than ecosystem sensitivity to shortwave radiation. We also find that precipitation dominated the climate induced uncertainty over nearly half of terrestrial vegetated surfaces, which is mainly due to large ecosystem sensitivity to precipitation. Overall, climate data ranges are found to contribute more to the climate induced uncertainty than ecosystem sensitivity. Our study highlights the need to better constrain tropical climate and demonstrate that uncertainty caused by climatic forcing data must be considered when comparing and evaluating model results and empirical datasets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuidema, P; Chiu, C; Fairall, CW
Southern Africa is the world’s largest emitter of biomass-burning (BB) aerosols. Their westward transport over the remote southeast Atlantic Ocean colocates some of the largest atmospheric loadings of absorbing aerosol with the least examined of the Earth’s major subtropical stratocumulus decks. Global aerosol model results highlight that the largest positive top-of-atmosphere forcing in the world occurs in the southeast Atlantic, but this region exhibits large differences in magnitude and sign between reputable models, in part because of high variability in the underlying model cloud distributions. Many uncertainties contribute to the highly variable model radiation fields: the aging of shortwave-absorbing aerosolmore » during transport, how much of the aerosol mixes into the cloudy boundary layer, and how the low clouds adjust to smoke-radiation and smoke-cloud interactions. In addition, the ability of the BB aerosol to absorb shortwave radiation is known to vary seasonally as the fuel type on land changes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, S.; Wang, Minghuai; Ghan, Steven J.
Aerosol-cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity (ω500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strong large-scale ascendmore » (ω500 < -25 hPa/d) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is as large as that in stratocumulus regimes, which indicates that regimes with strong large-scale ascend are as important as stratocumulus regimes in studying AIE. 42" It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm/d) contributes the most to the total aerosol indirect forcing (from 64% to nearly 100%). Results show that the uncertainty in AIE is even larger within specific dynamical regimes than that globally, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.« less
NASA Technical Reports Server (NTRS)
Zhang, Jiang-Long; Christopher, Sundar A.
2003-01-01
Using observations from the Multi-angle Imaging Spectroradiometer (MISR), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Clouds and the Earth's Radiant Energy System (CERES) instruments onboard the Terra satellite; we present a new technique for studying longwave (LW) radiative forcing of dust aerosols over the Saharan desert for cloud-free conditions. The monthly-mean LW forcing for September 2000 is 7 W/sq m and the LW forcing efficiency' (LW(sub eff)) is 15 W/sq m. Using radiative transfer calculations, we also show that the vertical distribution of aerosols and water vapor are critical to the understanding of dust aerosol forcing. Using well calibrated, spatially and temporally collocated data sets, we have combined the strengths of three sensors from the same satellite to quantify the LW radiative forcing, and show that dust aerosols have a "warming" effect over the Saharan desert that will counteract the shortwave "cooling effect" of aerosols.
Impact of Tropospheric Ozone on Summer Climate in China
NASA Astrophysics Data System (ADS)
Li, Shu; Wang, Tijian; Zanis, Prodromos; Melas, Dimitris; Zhuang, Bingliang
2018-04-01
The spatial distribution, radiative forcing, and climatic effects of tropospheric ozone in China during summer were investigated by using the regional climate model RegCM4. The results revealed that the tropospheric ozone column concentration was high in East China, Central China, North China, and the Sichuan basin during summer. The increase in tropospheric ozone levels since the industrialization era produced clear-sky shortwave and clear-sky longwave radiative forcing of 0.18 and 0.71 W m-2, respectively, which increased the average surface air temperature by 0.06 K and the average precipitation by 0.22 mm day-1 over eastern China during summer. In addition, tropospheric ozone increased the land-sea thermal contrast, leading to an enhancement of East Asian summer monsoon circulation over southern China and a weakening over northern China. The notable increase in surface air temperature in northwestern China, East China, and North China could be attributed to the absorption of longwave radiation by ozone, negative cloud amount anomaly, and corresponding positive shortwave radiation anomaly. There was a substantial increase in precipitation in the middle and lower reaches of the Yangtze River. It was related to the enhanced upward motion and the increased water vapor brought by strengthened southerly winds in the lower troposphere.
NASA Technical Reports Server (NTRS)
Cess, R. D.; Zhang, M. H.; Potter, G. L.; Alekseev, V.; Barker, H. W.; Bony, S.; Colman, R. A.; Dazlich, D. A.; DelGenio, A. D.; Deque, M.;
1997-01-01
We compare seasonal changes in cloud-radiative forcing (CRF) at the top of the atmosphere from 18 atmospheric general circulation models, and observations from the Earth Radiation Budget Experiment (ERBE). To enhance the CRF signal and suppress interannual variability, we consider only zonal mean quantities for which the extreme months (January and July), as well as the northern and southern hemispheres, have been differenced. Since seasonal variations of the shortwave component of CRF are caused by seasonal changes in both cloudiness and solar irradiance, the latter was removed. In the ERBE data, seasonal changes in CRF are driven primarily by changes in cloud amount. The same conclusion applies to the models. The shortwave component of seasonal CRF is a measure of changes in cloud amount at all altitudes, while the longwave component is more a measure of upper level clouds. Thus important insights into seasonal cloud amount variations of the models have been obtained by comparing both components, as generated by the models, with the satellite data. For example, in 10 of the 18 models the seasonal oscillations of zonal cloud patterns extend too far poleward by one latitudinal grid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, D.R.; Algieri, C.A.; Ong, J.R.
2011-04-01
Projected changes in the Earth system will likely be manifested in changes in reflected solar radiation. This paper introduces an operational Observational System Simulation Experiment (OSSE) to calculate the signals of future climate forcings and feedbacks in top-of-atmosphere reflectance spectra. The OSSE combines simulations from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report for the NCAR Community Climate System Model (CCSM) with the MODTRAN radiative transfer code to calculate reflectance spectra for simulations of current and future climatic conditions over the 21st century. The OSSE produces narrowband reflectances and broadband fluxes, the latter of which have been extensivelymore » validated against archived CCSM results. The shortwave reflectance spectra contain atmospheric features including signals from water vapor, liquid and ice clouds, and aerosols. The spectra are also strongly influenced by the surface bidirectional reflectance properties of predicted snow and sea ice and the climatological seasonal cycles of vegetation. By comparing and contrasting simulated reflectance spectra based on emissions scenarios with increasing projected and fixed present-day greenhouse gas and aerosol concentrations, we find that prescribed forcings from increases in anthropogenic sulfate and carbonaceous aerosols are detectable and are spatially confined to lower latitudes. Also, changes in the intertropical convergence zone and poleward shifts in the subsidence zones and the storm tracks are all detectable along with large changes in snow cover and sea ice fraction. These findings suggest that the proposed NASA Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission to measure shortwave reflectance spectra may help elucidate climate forcings, responses, and feedbacks.« less
Effects of clouds on the Earth radiation budget; Seasonal and inter-annual patterns
NASA Technical Reports Server (NTRS)
Dhuria, Harbans L.
1992-01-01
Seasonal and regional variations of clouds and their effects on the climatological parameters were studied. The climatological parameters surface temperature, solar insulation, short-wave absorbed, long wave emitted, and net radiation were considered. The data of climatological parameters consisted of about 20 parameters of Earth radiation budget and clouds of 2070 target areas which covered the globe. It consisted of daily and monthly averages of each parameter for each target area for the period, Jun. 1979 - May 1980. Cloud forcing and black body temperature at the top of the atmosphere were calculated. Interactions of clouds, cloud forcing, black body temperature, and the climatological parameters were investigated and analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shipeng; Wang, Minghuai; Ghan, Steven J.
Aerosol–cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity ( ω 500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strongmore » large-scale ascent ( ω 500 < −25 hPa day −1) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is close to that in subsidence regimes, which indicates that regimes with strong large-scale ascent are as important as stratocumulus regimes in studying AIE. It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm day −1) contributes the most to the total aerosol indirect forcing (from 64 to nearly 100 %). Results show that the uncertainty in AIE is even larger within specific dynamical regimes compared to the uncertainty in its global mean values, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.« less
Using radiative signatures to diagnose the cause of warming during the 2013-2014 Californian drought
NASA Astrophysics Data System (ADS)
Wolf, Sebastian; Yin, Dongqin; Roderick, Michael L.
2017-10-01
California recently experienced among the worst droughts of the last century, with exceptional precipitation deficits and co-occurring record high temperatures. The dry conditions caused severe water shortages in one of the economically most important agricultural regions of the US. It has recently been hypothesized that anthropogenic warming is increasing the likelihood of such extreme droughts in California, or more specifically, that warmer temperatures from the enhanced greenhouse effect intensify drought conditions. However, separating the cause and effect is difficult because the dry conditions lead to a reduction in evaporative cooling that contributes to the warming. Here we investigate and compare the forcing of long-term greenhouse-induced warming with the short-term warming during the 2013-2014 Californian drought. We use the concept of radiative signatures to investigate the source of the radiative perturbation during the drought, relate the signatures to expected changes due to anthropogenic warming, and assess the cause of warming based on observed changes in the surface energy balance compared to the period 2001-2012. We found that the recent meteorological drought based on precipitation deficits was characterised by an increase in incoming shortwave radiation coupled with a decline in incoming longwave radiation, which contributed to record warm temperatures. In contrast, climate models project that anthropogenic warming is accompanied by little change in incoming shortwave but a large increase in incoming longwave radiation. The warming during the drought was associated with increased incoming shortwave radiation in combination with reduced evaporative cooling from water deficits, which enhanced surface temperatures and sensible heat transfer to the atmosphere. Our analyses demonstrate that radiative signatures are a powerful tool to differentiate the source of perturbations in the surface energy balance at monthly to seasonal time scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Protat, Alain; Young, Stuart; McFarlane, Sally A.
2014-02-01
The objective of this paper is to investigate whether estimates of the cloud frequency of occurrence and associated cloud radiative forcing as derived from ground-based and satellite active remote sensing and radiative transfer calculations can be reconciled over a well instrumented active remote sensing site located in Darwin, Australia, despite the very different viewing geometry and instrument characteristics. It is found that the ground-based radar-lidar combination at Darwin does not detect most of the cirrus clouds above 10 km (due to limited lidar detection capability and signal obscuration by low-level clouds) and that the CloudSat radar - Cloud-Aerosol Lidar withmore » Orthogonal Polarization (CALIOP) combination underreports the hydrometeor frequency of occurrence below 2 km height, due to instrument limitations at these heights. The radiative impact associated with these differences in cloud frequency of occurrence is large on the surface downwelling shortwave fluxes (ground and satellite) and the top-of atmosphere upwelling shortwave and longwave fluxes (ground). Good agreement is found for other radiative fluxes. Large differences in radiative heating rate as derived from ground and satellite radar-lidar instruments and RT calculations are also found above 10 km (up to 0.35 Kday-1 for the shortwave and 0.8 Kday-1 for the longwave). Given that the ground-based and satellite estimates of cloud frequency of occurrence and radiative impact cannot be fully reconciled over Darwin, caution should be exercised when evaluating the representation of clouds and cloud-radiation interactions in large-scale models and limitations of each set of instrumentation should be considered when interpreting model-observations differences.« less
A new radiation infrastructure for the Modular Earth Submodel System (MESSy, based on version 2.51)
NASA Astrophysics Data System (ADS)
Dietmüller, Simone; Jöckel, Patrick; Tost, Holger; Kunze, Markus; Gellhorn, Catrin; Brinkop, Sabine; Frömming, Christine; Ponater, Michael; Steil, Benedikt; Lauer, Axel; Hendricks, Johannes
2016-06-01
The Modular Earth Submodel System (MESSy) provides an interface to couple submodels to a base model via a highly flexible data management facility (Jöckel et al., 2010). In the present paper we present the four new radiation related submodels RAD, AEROPT, CLOUDOPT, and ORBIT. The submodel RAD (including the shortwave radiation scheme RAD_FUBRAD) simulates the radiative transfer, the submodel AEROPT calculates the aerosol optical properties, the submodel CLOUDOPT calculates the cloud optical properties, and the submodel ORBIT is responsible for Earth orbit calculations. These submodels are coupled via the standard MESSy infrastructure and are largely based on the original radiation scheme of the general circulation model ECHAM5, however, expanded with additional features. These features comprise, among others, user-friendly and flexibly controllable (by namelists) online radiative forcing calculations by multiple diagnostic calls of the radiation routines. With this, it is now possible to calculate radiative forcing (instantaneous as well as stratosphere adjusted) of various greenhouse gases simultaneously in only one simulation, as well as the radiative forcing of cloud perturbations. Examples of online radiative forcing calculations in the ECHAM/MESSy Atmospheric Chemistry (EMAC) model are presented.
Radiative Effects of Aerosols Generated from Biomass Burning, Dust Storms, and Forest Fires
NASA Technical Reports Server (NTRS)
Christopher Sundar A.; Vulcan, Donna V.; Welch, Ronald M.
1996-01-01
Atmospheric aerosol particles, both natural and anthropogenic, are important to the earth's radiative balance. They scatter the incoming solar radiation and modify the shortwave reflective properties of clouds by acting as Cloud Condensation Nuclei (CCN). Although it has been recognized that aerosols exert a net cooling influence on climate (Twomey et al. 1984), this effect has received much less attention than the radiative forcings due to clouds and greenhouse gases. The radiative forcing due to aerosols is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign (Houghton et al. 1990). Atmospheric aerosol particles generated from biomass burning, dust storms and forest fires are important regional climatic variables. A recent study by Penner et al. (1992) proposed that smoke particles from biomass burning may have a significant impact on the global radiation balance. They estimate that about 114 Tg of smoke is produced per year in the tropics through biomass burning. The direct and indirect effects of smoke aerosol due to biomass burning could add up globally to a cooling effect as large as 2 W/sq m. Ackerman and Chung (1992) used model calculations and the Earth Radiation Budget Experiment (ERBE) data to show that in comparison to clear days, the heavy dust loading over the Saudi Arabian peninsula can change the Top of the Atmosphere (TOA) clear sky shortwave and longwave radiant exitance by 40-90 W/sq m and 5-20 W/sq m, respectively. Large particle concentrations produced from these types of events often are found with optical thicknesses greater than one. These aerosol particles are transported across considerable distances from the source (Fraser et al. 1984). and they could perturb the radiative balance significantly. In this study, the regional radiative effects of aerosols produced from biomass burning, dust storms and forest fires are examined using the Advanced Very High Resolution Radiometer (AVHRR) Local Area Coverage (LAC) data and the instantaneous scanner ERBE data from the NOAA-9 and NOAA-10 satellites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yawen; Zhang, Kai; Qian, Yun
Aerosols from fire emissions can potentially have large impact on clouds and radiation. However, fire aerosol sources are often intermittent, and their effect on weather and climate is difficult to quantify. Here we investigated the short-term effective radiative forcing of fire aerosols using the global aerosol–climate model Community Atmosphere Model version 5 (CAM5). Different from previous studies, we used nudged hindcast ensembles to quantify the forcing uncertainty due to the chaotic response to small perturbations in the atmosphere state. Daily mean emissions from three fire inventories were used to consider the uncertainty in emission strength and injection heights. The simulated aerosolmore » optical depth (AOD) and mass concentrations were evaluated against in situ measurements and reanalysis data. Overall, the results show the model has reasonably good predicting skills. Short (10-day) nudged ensemble simulations were then performed with and without fire emissions to estimate the effective radiative forcing. Results show fire aerosols have large effects on both liquid and ice clouds over the two selected regions in April 2009. Ensemble mean results show strong negative shortwave cloud radiative effect (SCRE) over almost the entirety of southern Mexico, with a 10-day regional mean value of –3.0 W m –2. Over the central US, the SCRE is positive in the north but negative in the south, and the regional mean SCRE is small (–0.56 W m –2). For the 10-day average, we found a large ensemble spread of regional mean shortwave cloud radiative effect over southern Mexico (15.6 % of the corresponding ensemble mean) and the central US (64.3 %), despite the regional mean AOD time series being almost indistinguishable during the 10-day period. Moreover, the ensemble spread is much larger when using daily averages instead of 10-day averages. In conclusion, this demonstrates the importance of using a large ensemble of simulations to estimate the short-term aerosol effective radiative forcing.« less
Liu, Yawen; Zhang, Kai; Qian, Yun; ...
2018-01-03
Aerosols from fire emissions can potentially have large impact on clouds and radiation. However, fire aerosol sources are often intermittent, and their effect on weather and climate is difficult to quantify. Here we investigated the short-term effective radiative forcing of fire aerosols using the global aerosol–climate model Community Atmosphere Model version 5 (CAM5). Different from previous studies, we used nudged hindcast ensembles to quantify the forcing uncertainty due to the chaotic response to small perturbations in the atmosphere state. Daily mean emissions from three fire inventories were used to consider the uncertainty in emission strength and injection heights. The simulated aerosolmore » optical depth (AOD) and mass concentrations were evaluated against in situ measurements and reanalysis data. Overall, the results show the model has reasonably good predicting skills. Short (10-day) nudged ensemble simulations were then performed with and without fire emissions to estimate the effective radiative forcing. Results show fire aerosols have large effects on both liquid and ice clouds over the two selected regions in April 2009. Ensemble mean results show strong negative shortwave cloud radiative effect (SCRE) over almost the entirety of southern Mexico, with a 10-day regional mean value of –3.0 W m –2. Over the central US, the SCRE is positive in the north but negative in the south, and the regional mean SCRE is small (–0.56 W m –2). For the 10-day average, we found a large ensemble spread of regional mean shortwave cloud radiative effect over southern Mexico (15.6 % of the corresponding ensemble mean) and the central US (64.3 %), despite the regional mean AOD time series being almost indistinguishable during the 10-day period. Moreover, the ensemble spread is much larger when using daily averages instead of 10-day averages. In conclusion, this demonstrates the importance of using a large ensemble of simulations to estimate the short-term aerosol effective radiative forcing.« less
NASA Astrophysics Data System (ADS)
Lolli, Simone; Campbell, James R.; Lewis, Jasper R.; Gu, Yu; Welton, Ellsworth J.
2017-06-01
We compare, for the first time, the performance of a simplified atmospheric radiative transfer algorithm package, the Corti-Peter (CP) model, versus the more complex Fu-Liou-Gu (FLG) model, for resolving top-of-the-atmosphere radiative forcing characteristics from single-layer cirrus clouds obtained from the NASA Micro-Pulse Lidar Network database in 2010 and 2011 at Singapore and in Greenbelt, Maryland, USA, in 2012. Specifically, CP simplifies calculation of both clear-sky longwave and shortwave radiation through regression analysis applied to radiative calculations, which contributes significantly to differences between the two. The results of the intercomparison show that differences in annual net top-of-the-atmosphere (TOA) cloud radiative forcing can reach 65 %. This is particularly true when land surface temperatures are warmer than 288 K, where the CP regression analysis becomes less accurate. CP proves useful for first-order estimates of TOA cirrus cloud forcing, but may not be suitable for quantitative accuracy, including the absolute sign of cirrus cloud daytime TOA forcing that can readily oscillate around zero globally.
NASA Astrophysics Data System (ADS)
Wielicki, B. A.; Cooke, R. M.; Golub, A. A.; Mlynczak, M. G.; Young, D. F.; Baize, R. R.
2016-12-01
Several previous studies have been published on the economic value of narrowing the uncertainty in climate sensitivity (Cooke et al. 2015, Cooke et al. 2016, Hope, 2015). All three of these studies estimated roughly 10 Trillion U.S. dollars for the Net Present Value and Real Option Value at a discount rate of 3%. This discount rate is the nominal discount rate used in the U.S. Social Cost of Carbon Memo (2010). The Cooke et al studies approached this problem by examining advances in accuracy of global temperature measurements, while the Hope 2015 study did not address the type of observations required. While temperature change is related to climate sensitivity, large uncertainties of a factor of 3 in current anthropogenic radiative forcing (IPCC, 2013) would need to be solved for advanced decadal temperature change observations to assist the challenge of narrowing climate sensitivity. The present study takes a new approach by extending the Cooke et al. 2015,2016 papers to replace observations of temperature change to observations of decadal change in the effects of changing clouds on the Earths radiative energy balance, a measurement known as Cloud Radiative Forcing, or Cloud Radiative Effect. Decadal change in this observation is direclty related to the largest uncertainty in climate sensitivity which is cloud feedback from changing amount of low clouds, primarily low clouds over the world's oceans. As a result, decadal changes in shortwave cloud radiative forcing are more directly related to cloud feedback uncertainty which is the dominant uncertainty in climate sensitivity. This paper will show results for the new approach, and allow an examination of the sensitivity of economic value results to different observations used as a constraint on uncertainty in climate sensitivity. The analysis suggests roughly a doubling of economic value to 20 Trillion Net Present Value or Real Option Value at 3% discount rate. The higher economic value results from two changes: a larger increase in accuracy for SW cloud radiative forcing vs temperature, and from a lower confounding noise from natural variability in the cloud radiative forcing variable compared to temperature. In particular, global average temperature is much more sensitive to the climate noise of ENSO cycles.
Impact of Dust Radiative Forcing upon Climate. Chapter 13
NASA Technical Reports Server (NTRS)
Miller, Ronald L.; Knippertz, Peter; Perez Garcia-Pando, Carlos; Perlwitz, Jan P.; Tegan, Ina
2014-01-01
Dust aerosols perturb the atmospheric radiative flux at both solar and thermal wavelengths, altering the energy and water cycles. The climate adjusts by redistributing energy and moisture, so that local temperature perturbations, for example, depend upon the forcing over the entire extent of the perturbed circulation. Within regions frequently mixed by deep convection, including the deep tropics, dust particles perturb the surface air temperature primarily through radiative forcing at the top of the atmosphere (TOA). Many models predict that dust reduces global precipitation. This reduction is typically attributed to the decrease of surface evaporation in response to dimming of the surface. A counterexample is presented, where greater shortwave absorption by dust increases evaporation and precipitation despite greater dimming of the surface. This is attributed to the dependence of surface evaporation upon TOA forcing through its influence upon surface temperature and humidity. Perturbations by dust to the surface wind speed and vegetation (through precipitation anomalies) feed back upon the dust aerosol concentration. The current uncertainty of radiative forcing attributed to dust and the resulting range of climate perturbations calculated by models remain a useful test of our understanding of the mechanisms relating dust radiative forcing to the climate response.
Diagnosing causes of cloud parameterization deficiencies using ARM measurements over SGP site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, W.; Liu, Y.; Betts, A. K.
2010-03-15
Decade-long continuous surface-based measurements at Great Southern Plains (SGP) collected by the US Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility are first used to evaluate the three major reanalyses (i.e., ERA-Interim, NCEP/NCAR Reanalysis I and NCEP/DOE Reanalysis II) to identify model biases in simulating surface shortwave cloud forcing and total cloud fraction. The results show large systematic lower biases in the modeled surface shortwave cloud forcing and cloud fraction from all the three reanalysis datasets. Then we focus on diagnosing the causes of these model biases using the Active Remote Sensing of Clouds (ARSCL) products (e.g., verticalmore » distribution of cloud fraction, cloud-base and cloud-top heights, and cloud optical depth) and meteorological measurements (temperature, humidity and stability). Efforts are made to couple cloud properties with boundary processes in the diagnosis.« less
Observations of enhanced aerosol longwave radiative forcing over an urban environment
NASA Astrophysics Data System (ADS)
Panicker, A. S.; Pandithurai, G.; Safai, P. D.; Kewat, S.
2008-02-01
Collocated measurements of sun/sky radiance, aerosol chemical composition and radiative fluxes have been utilized to estimate longwave aerosol radiative forcing over Pune, an Indian urban site during dry winter [Dec2004 to Feb2005] by two methods. Hybrid method which uses observed downwelling and modeled upwelling longwave fluxes for different aerosol loadings yielded a surface forcing of 9.4 Wm-2. Model approach includes utilization of skyradiometer derived spectral aerosol optical properties in the visible and near infra-red wavelengths, modeled aerosol properties in 1.2-40 μm using observed soot and chemical composition data, MODIS water vapor and TOMS column ozone in a radiative transfer model. Estimates from model method showed longwave enhancement of 6.5 and 8.2 Wm-2 at the surface with tropical model atmosphere and temporally varying profiles of temperature and humidity, respectively. Study reveals that about 25% of the aerosol shortwave cooling is being compensated by increase in longwave radiation due to aerosol absorption.
NASA Astrophysics Data System (ADS)
Etminan, M.; Myhre, G.; Highwood, E. J.; Shine, K. P.
2016-12-01
New calculations of the radiative forcing (RF) are presented for the three main well-mixed greenhouse gases, methane, nitrous oxide, and carbon dioxide. Methane's RF is particularly impacted because of the inclusion of the shortwave forcing; the 1750-2011 RF is about 25% higher (increasing from 0.48 W m-2 to 0.61 W m-2) compared to the value in the Intergovernmental Panel on Climate Change (IPCC) 2013 assessment; the 100 year global warming potential is 14% higher than the IPCC value. We present new simplified expressions to calculate RF. Unlike previous expressions used by IPCC, the new ones include the overlap between CO2 and N2O; for N2O forcing, the CO2 overlap can be as important as the CH4 overlap. The 1750-2011 CO2 RF is within 1% of IPCC's value but is about 10% higher when CO2 amounts reach 2000 ppm, a value projected to be possible under the extended RCP8.5 scenario.
NASA Technical Reports Server (NTRS)
Zhang, Zhibo; Meyer, Kerry G.; Platnick, Steven; Oreopoulos, Lazaros; Lee, Dongmin; Yu, Hongbin
2014-01-01
This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It addresses the overlap of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure while also accounting for subgrid-scale variations of aerosols. The method is computationally efficient because of its use of grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table based on radiative transfer calculations. We verify that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous (approximately 1:30PM local time) shortwave DRE of above cloud aerosol (ACA) that generally agrees with more rigorous pixel-level computation within 4 percent. We also estimate the impact of potential CALIOP aerosol optical depth (AOD) retrieval bias of ACA on DRE. We find that the regional and seasonal mean instantaneous DRE of ACA over southeast Atlantic Ocean would increase, from the original value of 6.4 W m(-2) based on operational CALIOP AOD to 9.6 W m(-2) if CALIOP AOD retrieval are biased low by a factor of 1.5 (Meyer et al., 2013) and further to 30.9 W m(-2) if CALIOP AOD retrieval are biased low by a factor of 5 as suggested in (Jethva et al., 2014). In contrast, the instantaneous ACA radiative forcing efficiency (RFE) remains relatively invariant in all cases at about 53 W m(-2) AOD(-1), suggesting a near linear relation between the instantaneous RFE and AOD. We also compute the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global oceans based on 4 years of CALIOP and MODIS data. We find that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds. While we demonstrate our method using CALIOP and MODIS data, it can also be extended to other satellite data sets, as well as climate model outputs.
On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models
Zhang, Shipeng; Wang, Minghuai; Ghan, Steven J.; ...
2016-03-04
Aerosol–cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity ( ω 500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strongmore » large-scale ascent ( ω 500 < −25 hPa day −1) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is close to that in subsidence regimes, which indicates that regimes with strong large-scale ascent are as important as stratocumulus regimes in studying AIE. It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm day −1) contributes the most to the total aerosol indirect forcing (from 64 to nearly 100 %). Results show that the uncertainty in AIE is even larger within specific dynamical regimes compared to the uncertainty in its global mean values, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.« less
The NSA/SHEBA Cloud & Radiation Comparison Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janet M. Intrieri; Matthew D. Shupe
2004-08-23
Cloud and radiation data from two distinctly different Arctic areas are analyzed to study the differences between coastal Alaskan and open Arctic Ocean region clouds and their respective influence on the surface radiation budget. The cloud and radiation datasets were obtained from 1) the DOE North Slope of Alaska (NSA) facility in the coastal town of Barrow, Alaska, and 2) the SHEBA field program, which was conducted from an icebreaker frozen in, and drifting with, the sea-ice for one year in the Western Arctic Ocean. Radar, lidar, radiometer, and sounding measurements from both locations were used to produce annual cyclesmore » of cloud occurrence and height, atmospheric temperature and humidity, surface longwave and shortwave broadband fluxes, surface albedo, and cloud radiative forcing. In general, both regions revealed a similar annual trend of cloud occurrence fraction with minimum values in winter (60-75%) and maximum values during spring, summer and fall (80-90%). However, the annual average cloud occurrence fraction for SHEBA (76%) was lower than the 6-year average cloud occurrence at NSA (92%). Both Arctic areas also showed similar annual cycle trends of cloud forcing with clouds warming the surface through most of the year and a period of surface cooling during the summer, when cloud shading effects overwhelm cloud greenhouse effects. The greatest difference between the two regions was observed in the magnitude of the cloud cooling effect (i.e., shortwave cloud forcing), which was significantly stronger at NSA and lasted for a longer period of time than at SHEBA. This is predominantly due to the longer and stronger melt season at NSA (i.e., albedo values that are much lower coupled with Sun angles that are somewhat higher) than the melt season observed over the ice pack at SHEBA. Longwave cloud forcing values were comparable between the two sites indicating a general similarity in cloudiness and atmospheric temperature and humidity structure between the two regions.« less
NASA Astrophysics Data System (ADS)
Bran, Sherin Hassan; Jose, Subin; Srivastava, Rohit
2018-03-01
The dynamical and optical properties of aerosols during an intense dust storm event over the Arabian Sea have been studied using Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) and space borne instruments such as MODIS, MISR, CALIPSO and CERES during the period 17 to 24 March, 2012. The model captures the spatio-temporal and vertical variations of meteorological and optical parameters, however an overestimation in simulated aerosol optical parameters are observed when compared to satellite retrievals. The correlation coefficients (R) between simulated and observed AOD from MODIS and MISR are found to be 0.54 and 0.32 respectively. Model simulated AOD on dusty days (20 and 21 March 2012) increased by 2-3 times compared to non-dusty days (17 and 24 March 2012) and the single scattering albedo (SSA) and the asymmetry parameter increased from 0.96 to 0.99 and from 0.56 to 0.66, respectively. The R between simulated shortwave (SW) radiation at top of the atmosphere (TOA) and TOA SW radiation obtained from CERES is found to be 0.43, however the model simulated SW radiation at the TOA showed an underestimation with respect to CERES. The shortwave aerosol radiative forcing (SWARF) during the event over surface and TOA are ∼ -19.3 and ∼ -14.2 Wm-2 respectively, which is about 2-5 times higher when compared to the respective forcing values during non-dust days. Estimated net radiative forcing was in the range of -13 to -21 Wm-2 at TOA and -12 to -20 Wm-2 at the surface. The heating rate during event days within the lower atmosphere near 850 hPa is found to 0.32 - 0.4 K day-1 and 0.18 - 0.22 K day-1 on dusty and non-dusty days, respectively. Results of this study may be useful for a better modeling of atmospheric aerosols and its optical and radiative properties over oceanic region.
Irrigation as an Historical Climate Forcing
NASA Technical Reports Server (NTRS)
Cook, Benjamin I.; Shukla, Sonali P.; Puma, Michael J.; Nazarenko, Larissa S.
2014-01-01
Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols, greenhouse gases, etc.) dominate the long term climate evolution in the simulations. To better constrain the magnitude and uncertainties of irrigation-forced climate anomalies, irrigation should therefore be considered as another important anthropogenic climate forcing in the next generation of historical climate simulations and multimodel assessments.
NASA Astrophysics Data System (ADS)
Randles, C. A.; Kinne, S.; Myhre, G.; Schulz, M.; Stier, P.; Fischer, J.; Doppler, L.; Highwood, E.; Ryder, C.; Harris, B.; Huttunen, J.; Ma, Y.; Pinker, R. T.; Mayer, B.; Neubauer, D.; Hitzenberger, R.; Oreopoulos, L.; Lee, D.; Pitari, G.; Di Genova, G.; Quaas, J.; Rose, Fred G.; Kato, S.; Rumbold, S. T.; Vardavas, I.; Hatzianastassiou, N.; Matsoukas, C.; Yu, H.; Zhang, F.; Zhang, H.; Lu, P.
2012-12-01
In this study we examine the performance of 31 global model radiative transfer schemes in cloud-free conditions with prescribed gaseous absorbers and no aerosols (Rayleigh atmosphere), with prescribed scattering-only aerosols, and with more absorbing aerosols. Results are compared to benchmark results from high-resolution, multi-angular line-by-line radiation models. For purely scattering aerosols, model bias relative to the line-by-line models in the top-of-the atmosphere aerosol radiative forcing ranges from roughly -10 to 20%, with over- and underestimates of radiative cooling at higher and lower sun elevation, respectively. Inter-model diversity (relative standard deviation) increases from ~10 to 15% as sun elevation increases. Inter-model diversity in atmospheric and surface forcing decreases with increased aerosol absorption, indicating that the treatment of multiple-scattering is more variable than aerosol absorption in the models considered. Aerosol radiative forcing results from multi-stream models are generally in better agreement with the line-by-line results than the simpler two-stream schemes. Considering radiative fluxes, model performance is generally the same or slightly better than results from previous radiation scheme intercomparisons. However, the inter-model diversity in aerosol radiative forcing remains large, primarily as a result of the treatment of multiple-scattering. Results indicate that global models that estimate aerosol radiative forcing with two-stream radiation schemes may be subject to persistent biases introduced by these schemes, particularly for regional aerosol forcing.
NASA Astrophysics Data System (ADS)
Randles, C. A.; Kinne, S.; Myhre, G.; Schulz, M.; Stier, P.; Fischer, J.; Doppler, L.; Highwood, E.; Ryder, C.; Harris, B.; Huttunen, J.; Ma, Y.; Pinker, R. T.; Mayer, B.; Neubauer, D.; Hitzenberger, R.; Oreopoulos, L.; Lee, D.; Pitari, G.; Di Genova, G.; Quaas, J.; Rose, F. G.; Kato, S.; Rumbold, S. T.; Vardavas, I.; Hatzianastassiou, N.; Matsoukas, C.; Yu, H.; Zhang, F.; Zhang, H.; Lu, P.
2013-03-01
In this study we examine the performance of 31 global model radiative transfer schemes in cloud-free conditions with prescribed gaseous absorbers and no aerosols (Rayleigh atmosphere), with prescribed scattering-only aerosols, and with more absorbing aerosols. Results are compared to benchmark results from high-resolution, multi-angular line-by-line radiation models. For purely scattering aerosols, model bias relative to the line-by-line models in the top-of-the atmosphere aerosol radiative forcing ranges from roughly -10 to 20%, with over- and underestimates of radiative cooling at lower and higher solar zenith angle, respectively. Inter-model diversity (relative standard deviation) increases from ~10 to 15% as solar zenith angle decreases. Inter-model diversity in atmospheric and surface forcing decreases with increased aerosol absorption, indicating that the treatment of multiple-scattering is more variable than aerosol absorption in the models considered. Aerosol radiative forcing results from multi-stream models are generally in better agreement with the line-by-line results than the simpler two-stream schemes. Considering radiative fluxes, model performance is generally the same or slightly better than results from previous radiation scheme intercomparisons. However, the inter-model diversity in aerosol radiative forcing remains large, primarily as a result of the treatment of multiple-scattering. Results indicate that global models that estimate aerosol radiative forcing with two-stream radiation schemes may be subject to persistent biases introduced by these schemes, particularly for regional aerosol forcing.
In-flight shortwave calibrations of the active cavity radiometers using tungsten lamps
NASA Technical Reports Server (NTRS)
Thomas, Susan; Lee, Robert B.; Gibson, Michael A.; Wilson, Robert S.; Bolden, William C.
1992-01-01
The Earth Radiation Budget Experiment (ERBE) active cavity radiometers are used to measure the incoming solar, reflected shortwave solar, and emitted longwave radiations from the Earth and atmosphere. The radiometers are located on the NASA's Earth Radiation Budget Satellite (ERBS) and the NOAA-9 and NOAA-10 spacecraft platforms. Two of the radiometers, one wide field of view (WFOV) and one medium field of view (MFOV), measure the total radiation in the spectral region of 0.2 to 50 microns and the other two radiometers (WFOV and MFOV) measure the shortwave radiation in the spectral region of 0.2 to 5.0 microns. For the in-flight calibrations, tungsten lamp and the sun are used as calibration sources for shortwave radiometers. Descriptions of the tungsten lamp and solar calibration procedures and mechanisms are presented. The tungsten lamp calibration measurements are compared with the measurements of solar calibration for ERBS and NOAA-9 instruments.
Angular radiation models for Earth-atmosphere system. Volume 1: Shortwave radiation
NASA Technical Reports Server (NTRS)
Suttles, J. T.; Green, R. N.; Minnis, P.; Smith, G. L.; Staylor, W. F.; Wielicki, B. A.; Walker, I. J.; Young, D. F.; Taylor, V. R.; Stowe, L. L.
1988-01-01
Presented are shortwave angular radiation models which are required for analysis of satellite measurements of Earth radiation, such as those fro the Earth Radiation Budget Experiment (ERBE). The models consist of both bidirectional and directional parameters. The bidirectional parameters are anisotropic function, standard deviation of mean radiance, and shortwave-longwave radiance correlation coefficient. The directional parameters are mean albedo as a function of Sun zenith angle and mean albedo normalized to overhead Sun. Derivation of these models from the Nimbus 7 ERB (Earth Radiation Budget) and Geostationary Operational Environmental Satellite (GOES) data sets is described. Tabulated values and computer-generated plots are included for the bidirectional and directional modes.
Solar Radiometric Data Quality Assessment of SIRS, SKYRAD and GNDRAD Measurements (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, A.; Stoffel, T.; Reda, I.
2014-03-01
Solar radiation is the driving force for the earth's weather and climate. Understanding the elements of this dynamic energy balance requires accurate measurements of broadband solar irradiance. Since the mid-1990's the ARM Program has deployed pyrheliometers and pyranometers for the measurement of direct normal irradiance (DNI), global horizontal irradiance (GHI), diffuse horizontal irradiance (DHI), and upwelling shortwave (US) radiation at permanent and mobile field research sites. This poster summarizes the basis for assessing the broadband solar radiation data available from the SIRS, SKYRAD, and GNDRAD measurement systems and provides examples of data inspections.
NASA Astrophysics Data System (ADS)
Vargo, L. J.; Galewsky, J.; Rupper, S.; Ward, D. J.
2018-04-01
The subtropical Andes (18.5-27 °S) have been glaciated in the past, but are presently glacier-free. We use idealized model experiments to quantify glacier sensitivity to changes in climate in order to investigate the climatic drivers of past glaciations. We quantify the equilibrium line altitude (ELA) sensitivity (the change in ELA per change in climate) to temperature, precipitation, and shortwave radiation for three distinct climatic regions in the subtropical Andes. We find that in the western cordillera, where conditions are hyper-arid with the highest solar radiation on Earth, ELA sensitivity is as high as 34 m per % increase in precipitation, and 70 m per % decrease in shortwave radiation. This is compared with the eastern cordillera, where precipitation is the highest of the three regions, and ELA sensitivity is only 10 m per % increase in precipitation, and 25 m per % decrease in shortwave radiation. The high ELA sensitivity to shortwave radiation highlights the influence of radiation on mass balance of high elevation and low-latitude glaciers. We also consider these quantified ELA sensitivities in context of previously dated glacial deposits from the regions. Our results suggest that glaciation of the humid eastern cordillera was driven primarily by lower temperatures, while glaciations of the arid Altiplano and western cordillera were also influenced by increases in precipitation and decreases in shortwave radiation. Using paleoclimate records from the timing of glaciation, we find that glaciation of the hyper-arid western cordillera can be explained by precipitation increases of 90-160% (1.9-2.6× higher than modern), in conjunction with associated decreases in shortwave radiation of 7-12% and in temperature of 3.5 °C.
Annual Cycle of Cloud Forcing of Surface Radiation Budget
NASA Technical Reports Server (NTRS)
Wilber, Anne C.; Smith, G. Louis; Stackhouse, Paul W., Jr.; Gupta, Shashi K.
2006-01-01
The climate of the Earth is determined by its balance of radiation. The incoming and outgoing radiation fluxes are strongly modulated by clouds, which are not well understood. The Earth Radiation Budget Experiment (Barkstrom and Smith, 1986) provided data from which the effects of clouds on radiation at the top of the atmosphere (TOA) could be computed (Ramanathan, 1987). At TOA, clouds increase the reflected solar radiation, tending to cool the planet, and decrease the OLR, causing the planet to retain its heat (Ramanathan et al., 1989; Harrison et al., 1990). The effects of clouds on radiation fluxes are denoted cloud forcing. These shortwave and longwave forcings counter each other to various degrees, so that in the tropics the result is a near balance. Over mid and polar latitude oceans, cloud forcing at TOA results in large net loss of radiation. Here, there are large areas of stratus clouds and cloud systems associated with storms. These systems are sensitive to surface temperatures and vary strongly with the annual cycle. During winter, anticyclones form over the continents and move to the oceans during summer. This movement of major cloud systems causes large changes of surface radiation, which in turn drives the surface temperature and sensible and latent heat released to the atmosphere.
NASA Technical Reports Server (NTRS)
Davies, Roger
1994-01-01
The spatial autocorrelation functions of broad-band longwave and shortwave radiances measured by the Earth Radiation Budget Experiment (ERBE) are analyzed as a function of view angle in an investigation of the general effects of scene inhomogeneity on radiation. For nadir views, the correlation distance of the autocorrelation function is about 900 km for longwave radiance and about 500 km for shortwave radiance, consistent with higher degrees of freedom in shortwave reflection. Both functions rise monotonically with view angle, but there is a substantial difference in the relative angular dependence of the shortwave and longwave functions, especially for view angles less than 50 deg. In this range, the increase with angle of the longwave functions is found to depend only on the expansion of pixel area with angle, whereas the shortwave functions show an additional dependence on angle that is attributed to the occlusion of inhomogeneities by cloud height variations. Beyond a view angle of about 50 deg, both longwave and shortwave functions appear to be affected by cloud sides. The shortwave autocorrelation functions do not satisfy the principle of directional reciprocity, thereby proving that the average scene is horizontally inhomogeneous over the scale of an ERBE pixel (1500 sq km). Coarse stratification of the measurements by cloud amount, however, indicates that the average cloud-free scene does satisfy directional reciprocity on this scale.
Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models
Andrews, Timothy; Gregory, Jonathan M.; Webb, Mark J.; ...
2012-05-15
We quantify forcing and feedbacks across available CMIP5 coupled atmosphere-ocean general circulation models (AOGCMs) by analysing simulations forced by an abrupt quadrupling of atmospheric carbon dioxide concentration. This is the first application of the linear forcing-feedback regression analysis of Gregory et al. (2004) to an ensemble of AOGCMs. The range of equilibrium climate sensitivity is 2.1–4.7 K. Differences in cloud feedbacks continue to be important contributors to this range. Some models show small deviations from a linear dependence of top-of-atmosphere radiative fluxes on global surface temperature change. We show that this phenomenon largely arises from shortwave cloud radiative effects overmore » the ocean and is consistent with independent estimates of forcing using fixed sea-surface temperature methods. Moreover, we suggest that future research should focus more on understanding transient climate change, including any time-scale dependence of the forcing and/or feedback, rather than on the equilibrium response to large instantaneous forcing.« less
NASA Technical Reports Server (NTRS)
Rapp, A. D.; Doelling, D. R.; Khaiyer, M. M.; Minnis, P.; Smith, W. L., Jr.; Nguyen, L.; Haeffelin, M. P.; Valero, F. P. J.; Asano, S.
2001-01-01
One of the objectives of the ARM Enhanced Shortwave Experiment (ARESE) is to investigate the absorption of solar radiation by clouds over the ARM Southern Great Plains central facility. A variety of techniques employing various combinations Of Surface, aircraft, and satellite data have been used to estimate the absorption empirically. During ARESE-I conducted during fall 1995, conflicting results were produced from different analyses of the combined datasets leading to the need for a more controlled experiment. ARESE-II was conducted during spring 2000. Improved calibrations, different sampling strategies, and broadband satellite data were all available to minimize some of the sources of uncertainty in the data. In this paper, cloud absorption or its parametric surrogates (e.g., Cess et al. 1995) are derived from collocated and coincident surface and satellite radiometer data from both ARESE-I and ARESE-II using the latest satellite and surface instrument calibrations.
Global Aerosol Radiative Forcing Derived from Sea WiFS-Inferred Aerosol Optical Properties
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Chan, Pui-King; Wang, Menghua
1999-01-01
Aerosol optical properties inferred from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) radiance measurements are used to compute the aerosol shortwave radiative forcing using a radiative transfer model. The aerosol optical thickness at the wavelength of 865-nm is taken from the SeaWIFS archive. It is found that the nominal optical thickness over oceans ranges from 0.1 to 0.2. Using a maritime aerosol model and the radiances measured at the various SeaWiFS channels, the Angstrom exponent is determined to be 0.2174, the single-scattering albedo to be 0.995, and the asymmetry factor to be 0.786. The radiative transfer model has eight bands in the visible and ultraviolet spectral regions and three bands in the near infrared. It includes the absorption due to aerosols, water vapor, carbon dioxide, and oxygen, and the scattering due to aerosols and gases (Rayleigh scattering). The radiative forcing is computed over global oceans for four months (January, April, July, and October, 1998) to represent four seasons. It is found that the aerosol radiative forcing is large and changes significantly with seasons near the continents with large-scale forest fires and desert dust. Averaged over oceans and the four months, the aerosol radiative forcing is approximately 7 W/sq m at the top of the atmosphere. This large radiative forcing is expected to have a significant cooling effect on the Earth's climate as implied from simulations of a number of general circulation models.
NASA Astrophysics Data System (ADS)
Mathur, R.; Pleim, J.; Wong, D.; Hogrefe, C.; Xing, J.; Wei, C.; Gan, M.
2013-12-01
While aerosol radiative effects have been recognized as some of the largest sources of uncertainty among the forcers of climate change, the verification of the spatial and temporal variability of the magnitude and directionality of aerosol radiative forcing has remained challenging. A detailed investigation of the processes regulating aerosol distributions, their optical properties, and their radiative effects and verification of their simulated effects for past conditions relative to measurements is needed in order to build confidence in the estimates of the projected impacts arising from changes in both anthropogenic forcing and climate change. Anthropogenic emissions of primary aerosol and gaseous precursors have witnessed dramatic changes over the past two decades across the northern hemisphere. During the period 1990-2010, SO2 and NOx emissions across the US have reduced by about 66% and 50%, respectively, mainly due to Title IV of the U.S. Clean Air Act Amendments (CAA). In contrast, anthropogenic emissions have increased dramatically in many developing regions during this period. We conduct a systematic investigation of changes in anthropogenic emissions of primary aerosols and gaseous precursors over the past two decades, their impacts on trends and spatial heterogeneity in anthropogenic aerosol loading across the northern hemisphere troposphere, and subsequent impacts on regional radiation budgets. The coupled WRF-CMAQ model is applied for selected time periods spanning the period 1990-2010 over a domain covering the northern hemisphere and a nested finer resolution continental U.S. domain. The model includes detailed treatment of direct effects of aerosols on photolysis rates as well as on shortwave radiation. Additionally, treatment of aerosol indirect effects on clouds has also recently been implemented. A methodology is developed to consistently estimate U.S. emission inventories for the 20-year period accounting for air quality regulations as well as population trends, economic conditions, and technology changes in motor vehicles and electric power generation. Analysis of measurements of aerosol composition, radiation, and associated variables, over the past two decades will be presented which indicate significant reductions in the tropospheric aerosol burden as well as an increase in down-welling shortwave radiation at numerous sites across the U.S. Initial applications of the coupled WRF-CMAQ model for time-periods pre and post the implementation of CAA Title IV will be discussed and comparisons with measurements to assess the model's ability to capture trends in aerosol burden, composition, and direct aerosol effects on surface shortwave radiation will be presented.
NASA Astrophysics Data System (ADS)
Camargo, S. J.; Sobel, A. H.; Polvani, L. M.; Emanuel, K.; Previdi, M. J.
2017-12-01
Previous work has shown that aerosol cooling reduces tropical cyclone (TC) potential intensity (PI) more strongly than greenhouse gas warming increases it. This has the consequence that PI shows only small increases in simulations of the historical period despite considerable global warming over that period. We use CMIP5 models, as well as offline radiative kernels, to better understand this result. The outsize effect of aerosol forcing is a consequence of the fact that tropospheric aerosols act in the shortwave while greenhouse gases act in the longwave. Shortwave forcing has a greater impact on PI than does longwave, because of the differences in the response of the surface energy budget to the direct, temperature-independent component of the forcing. Shortwave forcing mainly drives the climate system in the surface, while greenhouse gases do so at the top of the atmosphere, so that net longwave flux associated with a temperature change can be small, especially at high temperature. Our kernel results also indicate that the temperature-dependent longwave feedback component is also greater by approximately a factor of two for the shortwave than the longwave forcing. Recent papers using observations and proxy reconstructions suggested a reduction of frequency, duration and intensity of Atlantic TCs in the years following volcanic eruptions. Observations show no significant reduction of TC activity in the first season after three large volcanic eruptions in the 20th Century, with the exception of the North Atlantic. The response to these volcanic eruptions cannot be separated from the coinciding El Niño events either in observations or in reanalysis. Both the NCAR Large Ensemble and CMIP5 models show a strong reduction in the PI following large volcanic eruptions. But, given that the models response to volcanic aerosols is known to be too strong, when a bias correction is considered, the PI signal after the volcanic eruptions becomes much smaller. Furthermore, there is no statistically significant reduction in TC activity for either the explicit synthetic downscaled CMIP5 storms following the volcanic eruptions. Therefore, there is little evidence of a global reduction of TC activity from direct volcanic aerosols.
Shortwave and longwave radiative contributions to global warming under increasing CO2.
Donohoe, Aaron; Armour, Kyle C; Pendergrass, Angeline G; Battisti, David S
2014-11-25
In response to increasing concentrations of atmospheric CO2, high-end general circulation models (GCMs) simulate an accumulation of energy at the top of the atmosphere not through a reduction in outgoing longwave radiation (OLR)—as one might expect from greenhouse gas forcing—but through an enhancement of net absorbed solar radiation (ASR). A simple linear radiative feedback framework is used to explain this counterintuitive behavior. It is found that the timescale over which OLR returns to its initial value after a CO2 perturbation depends sensitively on the magnitude of shortwave (SW) feedbacks. If SW feedbacks are sufficiently positive, OLR recovers within merely several decades, and any subsequent global energy accumulation is because of enhanced ASR only. In the GCM mean, this OLR recovery timescale is only 20 y because of robust SW water vapor and surface albedo feedbacks. However, a large spread in the net SW feedback across models (because of clouds) produces a range of OLR responses; in those few models with a weak SW feedback, OLR takes centuries to recover, and energy accumulation is dominated by reduced OLR. Observational constraints of radiative feedbacks—from satellite radiation and surface temperature data—suggest an OLR recovery timescale of decades or less, consistent with the majority of GCMs. Altogether, these results suggest that, although greenhouse gas forcing predominantly acts to reduce OLR, the resulting global warming is likely caused by enhanced ASR.
NASA Technical Reports Server (NTRS)
Natarajan, Murali; Pierce, R. Bradley; Lenzen, Allen J.; Al-Saadi, Jassim A.; Soja, Amber J.; Charlock, Thomas P.; Rose, Fred G.; Winker, David M.; Worden, John R.
2012-01-01
Simulations of tropospheric ozone and carbonaceous aerosol distributions, conducted with the Real-time Air Quality Modeling System (RAQMS), are used to study the effects of major outbreaks of fires that occurred in three regions of Asia, namely Thailand, Kazakhstan, and Siberia, during spring 2008. RAQMS is a global scale meteorological and chemical modeling system. Results from these simulations, averaged over April 2008, indicate that tropospheric ozone column increases by more than 10 Dobson units (DU) near the Thailand region, and by lesser amounts in the other regions due to the fires. Widespread increases in the optical depths of organic and black carbon aerosols are also noted. We have used an off-line radiative transfer model to evaluate the direct radiative forcing due to the fire-induced changes in atmospheric composition. For clear sky, the monthly averaged radiative forcing at the top of the atmosphere (TOA) is mostly negative with peak values less than -12 W/sq m occurring near the fire regions. The negative forcing represents the increased outgoing shortwave radiation caused by scattering due to carbonaceous aerosols. At high latitudes, the radiative forcing is positive due to the presence of absorbing aerosols over regions of high surface albedo. Regions of positive forcing at TOA are more pronounced under total sky conditions. The monthly averaged radiative forcing at the surface is mostly negative, and peak values of less than -30 W/sq m occur near the fire regions. Persistently large negative forcing at the surface could alter the surface energy budget and potentially weaken the hydrological cycle.
Incoming Shortwave Fluxes at the Surface--A Comparison of GCM Results with Observations.
NASA Astrophysics Data System (ADS)
Garratt, J. R.
1994-01-01
Evidence is presented that the exam surface net radiation calculated in general circulation models at continental surfaces is mostly due to excess incoming shortwave fluxes. Based on long-term observations from 22 worldwide inland stations and results from four general circulation models the overestimate in models of 20% (11 W m2) in net radiation on an annual basis compares with 6% (9 W m2) for shortwave fluxes for the same 22 locations, or 9% (18 W m2) for a larger set of 93 stations (71 having shortwave fluxes only). For annual fluxes, these differences appear to be significant.
Bias correction of surface downwelling longwave and shortwave radiation for the EWEMBI dataset
NASA Astrophysics Data System (ADS)
Lange, Stefan
2018-05-01
Many meteorological forcing datasets include bias-corrected surface downwelling longwave and shortwave radiation (rlds and rsds). Methods used for such bias corrections range from multi-year monthly mean value scaling to quantile mapping at the daily timescale. An additional downscaling is necessary if the data to be corrected have a higher spatial resolution than the observational data used to determine the biases. This was the case when EartH2Observe (E2OBS; Calton et al., 2016) rlds and rsds were bias-corrected using more coarsely resolved Surface Radiation Budget (SRB; Stackhouse Jr. et al., 2011) data for the production of the meteorological forcing dataset EWEMBI (Lange, 2016). This article systematically compares various parametric quantile mapping methods designed specifically for this purpose, including those used for the production of EWEMBI rlds and rsds. The methods vary in the timescale at which they operate, in their way of accounting for physical upper radiation limits, and in their approach to bridging the spatial resolution gap between E2OBS and SRB. It is shown how temporal and spatial variability deflation related to bilinear interpolation and other deterministic downscaling approaches can be overcome by downscaling the target statistics of quantile mapping from the SRB to the E2OBS grid such that the sub-SRB-grid-scale spatial variability present in the original E2OBS data is retained. Cross validations at the daily and monthly timescales reveal that it is worthwhile to take empirical estimates of physical upper limits into account when adjusting either radiation component and that, overall, bias correction at the daily timescale is more effective than bias correction at the monthly timescale if sampling errors are taken into account.
NASA Astrophysics Data System (ADS)
Mai, Boru; Deng, Xuejiao; Li, Zhanqing; Liu, Jianjun; Xia, Xiang'ao; Che, Huizheng; Liu, Xia; Li, Fei; Zou, Yu; Cribb, Maureen
2018-02-01
Aerosol optical properties and direct radiative effects on surface irradiance were examined using seven years (2006-2012) of Cimel sunphotometer data collected at Panyu—the main atmospheric composition monitoring station in the Pearl River Delta (PRD) region of China. During the dry season (October to February), mean values of the aerosol optical depth (AOD) at 550 nm, the Ångström exponent, and the single scattering albedo at 440 nm (SSA) were 0.54, 1.33 and 0.87, respectively. About 90% of aerosols were dominated by fine-mode strongly absorbing particles. The size distribution was bimodal, with fine-mode particles dominating. The fine mode showed a peak at a radius of 0.12 μm in February and October (˜ 0.10 μm3μm-2). The mean diurnal shortwave direct radiative forcing at the surface, inside the atmosphere ( F ATM), and at the top of the atmosphere, was -33.4±7.0, 26.1±5.6 and -7.3±2.7Wm-2, respectively. The corresponding mean values of aerosol direct shortwave radiative forcing per AOD were -60.0 ± 7.8, 47.3 ± 8.3 and -12.8 ± 3.1 W m-2, respectively. Moreover, during the study period, F ATM showed a significant decreasing trend ( p < 0.01) and SSA increased from 0.87 in 2006 to 0.91 in 2012, suggesting a decreasing trend of absorbing particles being released into the atmosphere. Optical properties and radiative impacts of the absorbing particles can be used to improve the accuracy of inversion algorithms for satellite-based aerosol retrievals in the PRD region and to better constrain the climate effect of aerosols in climate models.
Long-term data sets of all-sky and clear-sky downwelling shortwave (SW) radiation, cloud cover fraction, and aerosol optical depth (AOD) were analyzed together with surface concentrations from several networks (e.g., Surface Radiation Budget Network (SURFRAD), Clean Air Status an...
Determine Daytime Earth's Radiation Budget from DSCOVR
NASA Astrophysics Data System (ADS)
Su, W.; Thieman, M. M.; Duda, D. P.; Khlopenkov, K. V.; Liang, L.; Sun-Mack, S.; Minnis, P.; SUN, M.
2017-12-01
The Deep Space Climate Observatory (DSCOVR) platform provides a unique perspective for remote sensing of the Earth. With the National Institute of Standards and Technology Advanced Radiometer (NISTAR) and the Earth Polychromatic Imaging Camera (EPIC) onboard, it provides full-disk measurements of the broadband shortwave and total radiances reaching the L1 position. Because the satellite orbits around the L1 spot, it continuously observes a nearly full Earth, providing the potential to determine the daytime radiation budget of the globe at the top of the atmosphere. The NISTAR is a single-pixel instrument that measures the broadband radiance from the entire globe, while EPIC is a spectral imager with channels in the UV and visible ranges. The Level 1 NISTAR shortwave radiances are filtered radiances. To determine the daytime TOA shortwave and longwave radiative fluxes, the NISTAR measured shortwave radiances must be unfiltered first. We will describe the algorithm used to un-filter the shortwave radiances. These unfiltered NISTAR radiances are then converted to the full disk shortwave and daytime longwave fluxes, by accounting for the anisotropic characteristics of the Earth-reflected and emitted radiances. These anisotropy factors are determined by using the scene identifications determined from multiple low Earth orbit and geostationary satellites matched into the EPIC field of view. Time series of daytime radiation budget determined from NISTAR will be presented, and methodology of estimating the fluxes from the small unlit crescent of the Earth that comprises part of the field of view will also be described. The daytime shortwave and longwave fluxes from NISTAR will be compared with CERES dataset.
Climate forcing by anthropogenic aerosols
NASA Technical Reports Server (NTRS)
Charlson, R. J.; Schwartz, S. E.; Hales, J. M.; Cess, R. D.; Coakley, J. A., Jr.; Hansen, J. E.; Hofmann, D. J.
1992-01-01
Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol, in particular, has imposed a major perturbation to this forcing. Both the direct scattering of short-wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.
Climate forcing by anthropogenic aerosols.
Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, J A; Hansen, J E; Hofmann, D J
1992-01-24
Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of shortwavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.
The radiative heating response to climate change
NASA Astrophysics Data System (ADS)
Maycock, Amanda
2016-04-01
The structure and magnitude of radiative heating rates in the atmosphere can change markedly in response to climate forcings; diagnosing the causes of these changes can aid in understanding parts of the large-scale circulation response to climate change. This study separates the relative drivers of projected changes in longwave and shortwave radiative heating rates over the 21st century into contributions from radiatively active gases, such as carbon dioxide, ozone and water vapour, and from changes in atmospheric and surface temperatures. Results are shown using novel radiative diagnostics applied to timeslice experiments from the UM-UKCA chemistry-climate model; these online estimates are compared to offline radiative transfer calculations. Line-by-line calculations showing spectrally-resolved changes in heating rates due to different gases will also be presented.
Large-scale effects on the regulation of tropical sea surface temperature
NASA Technical Reports Server (NTRS)
Hartmann, Dennis L.; Michelsen, Marc L.
1993-01-01
The dominant terms in the surface energy budget of the tropical oceans are absorption of solar radiation and evaporative cooling. If it is assumed that relative humidity in the boundary layer remains constant, evaporative cooling will increase rapidly with sea surface temperature (SST) because of the strong temperature dependence of saturation water vapor pressure. The resulting stabilization of SST provided by evaporative cooling is sufficient to overcome positive feedback contributed by the decrease of surface net longwave cooling with increasing SST. Evaporative cooling is sensitive to small changes in boundary-layer relative humidity. Large and negative shortwave cloud forcing in the regions of highest SST are supported by the moisture convergence associated with largescale circulations. In the descending portions of these circulations the shortwave cloud forcing is suppressed. When the effect of these circulations is taken into account by spatial averaging, the area-averaged cloud forcing shows no sensitivity to area-averaged SST changes associated with the 1987 warming event in the tropical Pacific. While the shortwave cloud forcing is large and important in the convective regions, the importance of its role in regulating the average temperature of the tropics and in modulating temperature gradients within the tropics is less clear. A heuristic model of SST is used to illustrate the possible role of large-scale atmospheric circulations on SST in the tropics and the coupling between SST gradients and mean tropical SST. The intensity of large-scale circulations responds sensitivity to SST gradients and affects the mean tropical SST by supplying dry air to the planetary boundary layer. Large SST gradients generate vigorous circulations that increase evaporation and reduce the mean SST.
Huang, Shengli; Dahal, Devendra; Liu, Heping; Jin, Suming; Young, Claudia J.; Liu, Shuang; Liu, Shu-Guang
2015-01-01
The albedo change caused by both fires and subsequent succession is spatially heterogeneous, leading to the need to assess the spatiotemporal variation of surface shortwave forcing (SSF) as a component to quantify the climate impacts of high-latitude fires. We used an image reconstruction approach to compare postfire albedo with the albedo assuming fires had not occurred. Combining the fire-caused albedo change from the 2001-2010 fires in interior Alaska and the monthly surface incoming solar radiation, we examined the spatiotemporal variation of SSF in the early successional stage of around 10 years. Our results showed that while postfire albedo generally increased in fall, winter, and spring, some burned areas could show an albedo decrease during these seasons. In summer, the albedo increased for several years and then declined again. The spring SSF distribution did not show a latitudinal decrease from south to north as previously reported. The results also indicated that although the SSF is usually largely negative in the early successional years, it may not be significant during the first postfire year. The annual 2005-2010 SSF for the 2004 fire scars was -1.30, -4.40, -3.31, -4.00, -3.42, and -2.47 Wm-2. The integrated annual SSF map showed significant spatial variation with a mean of -3.15 Wm-2 and a standard deviation of 3.26 Wm-2, 16% of burned areas having positive SSF. Our results suggest that boreal deciduous fires would be less positive for climate change than boreal evergreen fires. Future research is needed to comprehensively investigate the spatiotemporal radiative and non-radiative forcings to determine the effect of boreal fires on climate.
Effect of the environmental stimuli upon the human body in winter outdoor thermal environment.
Kurazumi, Yoshihito; Kondo, Emi; Ishii, Jin; Sakoi, Tomonori; Fukagawa, Kenta; Bolashikov, Zhecho Dimitrov; Tsuchikawa, Tadahiro; Matsubara, Naoki; Horikoshi, Tetsumi
2013-01-01
In order to manage the outdoor thermal environment with regard to human health and the environmental impact of waste heat, quantitative evaluations are indispensable. It is necessary to use a thermal environment evaluation index. The purpose of this paper is to clarify the relationship between the psychological thermal responses of the human body and winter outdoor thermal environment variables. Subjective experiments were conducted in the winter outdoor environment. Environmental factors and human psychological responses were measured. The relationship between the psychological thermal responses of the human body and the outdoor thermal environment index ETFe (enhanced conduction-corrected modified effective temperature) in winter was shown. The variables which influence the thermal sensation vote of the human body are air temperature, long-wave thermal radiation and short-wave solar radiation. The variables that influence the thermal comfort vote of the human body are air temperature, humidity, short-wave solar radiation, long-wave thermal radiation, and heat conduction. Short-wave solar radiation, and heat conduction are among the winter outdoor thermal environment variables that affect psychological responses to heat. The use of thermal environment evaluation indices that comprise short-wave solar radiation and heat conduction in winter outdoor spaces is a valid approach.
NASA Technical Reports Server (NTRS)
Cess, R. D.; Zhang, Minghua; Valero, Francisco P. J.; Pope, Shelly K.; Bucholtz, Anthony; Bush, Brett; Zender, Charles S.
1998-01-01
We have extended the interpretations made in two prior studies of the aircraft shortwave radiation measurements that were obtained as part of the Atmospheric Radiation Measurements (ARM) Enhanced Shortwave Experiments (ARESE). These extended interpretations use the 500 nm (10 nm bandwidth) measurements to minimize sampling errors in the broadband measurements. It is indicated that the clouds present during this experiment absorb more shortwave radiation than predicted by clear skies and thus by theoretical models, that at least some (less than or equal to 20%) of this enhanced cloud absorption occurs at wavelengths less than 680 nm, and that the observed cloud absorption does not appear to be an artifact of sampling errors nor of instrument calibration errors.
NASA Astrophysics Data System (ADS)
Webster, Clare; Rutter, Nick; Jonas, Tobias
2017-09-01
A comprehensive analysis of canopy surface temperatures was conducted around a small and large gap at a forested alpine site in the Swiss Alps during the 2015 and 2016 snowmelt seasons (March-April). Canopy surface temperatures within the small gap were within 2-3°C of measured reference air temperature. Vertical and horizontal variations in canopy surface temperatures were greatest around the large gap, varying up to 18°C above measured reference air temperature during clear-sky days. Nighttime canopy surface temperatures around the study site were up to 3°C cooler than reference air temperature. These measurements were used to develop a simple parameterization for correcting reference air temperature for elevated canopy surface temperatures during (1) nighttime conditions (subcanopy shortwave radiation is 0 W m-2) and (2) periods of increased subcanopy shortwave radiation >400 W m-2 representing penetration of shortwave radiation through the canopy. Subcanopy shortwave and longwave radiation collected at a single point in the subcanopy over a 24 h clear-sky period was used to calculate a nighttime bulk offset of 3°C for scenario 1 and develop a multiple linear regression model for scenario 2 using reference air temperature and subcanopy shortwave radiation to predict canopy surface temperature with a root-mean-square error (RMSE) of 0.7°C. Outside of these two scenarios, reference air temperature was used to predict subcanopy incoming longwave radiation. Modeling at 20 radiometer locations throughout two snowmelt seasons using these parameterizations reduced the mean bias and RMSE to below 10 W m s-2 at all locations.
Spatial variability of shortwave radiative fluxes in the context of snowmelt
NASA Astrophysics Data System (ADS)
Pinker, Rachel T.; Ma, Yingtao; Hinkelman, Laura; Lundquist, Jessica
2014-05-01
Snow-covered mountain ranges are a major source of water supply for run-off and groundwater recharge. Snowmelt supplies as much as 75% of surface water in basins of the western United States. Factors that affect the rate of snow melt include incoming shortwave and longwave radiation, surface albedo, snow emissivity, snow surface temperature, sensible and latent heat fluxes, ground heat flux, and energy transferred to the snowpack from deposited snow or rain. The net radiation generally makes up about 80% of the energy balance and is dominated by the shortwave radiation. Complex terrain poses a great challenge for obtaining the needed information on radiative fluxes from satellites due to elevation issues, spatially-variable cloud cover, rapidly changing surface conditions during snow fall and snow melt, lack of high quality ground truth for evaluation of the satellite based estimates, as well as scale issues between the ground observations and the satellite footprint. In this study we utilize observations of high spatial resolution (5-km) as available from the Moderate Resolution Imaging Spectro-radiometer (MODIS) to derive surface shortwave radiative fluxes in complex terrain, with attention to the impact of slopes on the amount of radiation received. The methodology developed has been applied to several water years (January to July during 2003, 2004, 2005 and 2009) over the western part of the United States, and the available information was used to derive metrics on spatial and temporal variability in the shortwave fluxes. It is planned to apply the findings from this study for testing improvements in Snow Water Equivalent (SWE) estimates.
NASA Astrophysics Data System (ADS)
Mathur, R.; Pleim, J.; Wong, D.; Wei, C.; Xing, J.; Gan, M.; Yu, S.; Binkowski, F.
2012-12-01
While aerosol radiative effects have been recognized as some of the largest sources of uncertainty among the forcers of climate change, there has been little effort devoted to verification of the spatial and temporal variability of the magnitude and directionality of aerosol radiative forcing. A comprehensive investigation of the processes regulating aerosol distributions, their optical properties, and their radiative effects and verification of their simulated effects for past conditions relative to measurements is needed in order to build confidence in the estimates of the projected impacts arising from changes in both anthropogenic forcing and climate change. This study aims at addressing this issue through a systematic investigation of changes in anthropogenic emissions of SO2 and NOx over the past two decades in the United States, their impacts on anthropogenic aerosol loading in the North American troposphere, and subsequent impacts on regional radiation budgets. A newly developed 2-way coupled meteorology and air pollution model composed of the Weather Research and Forecasting (WRF) model and the Community Multiscale Air Quality (CMAQ) model is being run for 20 years (1990 - 2010) on a 12 km resolution grid that covers most of North America including the entire conterminous US. During this period US emissions of SO2 and NOx have been reduced by about 66% and 50%, respectively, mainly due to Title IV of the U.S. Clean Air Act Amendments (CAA) that aimed to reduce emissions that contribute to acid deposition. A methodology is developed to consistently estimate emission inventories for the 20-year period accounting for air quality regulations as well as population trends, economic conditions, and technology changes in motor vehicles and electric power generation. The coupled WRF-CMAQ model includes detailed treatment of direct effects of aerosols on photolysis rates as well as on shortwave radiation and the direct effects of tropospheric ozone on the long-wave. New algorithms for the calculation of aerosol optical properties and radiation have been developed by considering both computational efficiency and more realistic aerosol states. Additionally, treatment of aerosol indirect effects on clouds has also recently been implemented. Analysis of measurements of aerosol composition, radiation, and associated variables, over the past two decades will be presented which indicate significant reductions in the tropospheric aerosol burden as well as an increase in down-welling shortwave radiation at numerous sites across the U.S. Initial applications of the coupled WRF-CMAQ model for time-periods pre and post the implementation of Title IV of the CAA will be discussed and comparisons with measurements to assess the model's ability to capture trends in aerosol burden, composition, and direct aerosol effects on surface shortwave radiation will be presented.
Vertical dependence of black carbon, sulphate and biomass burning aerosol radiative forcing
NASA Astrophysics Data System (ADS)
Samset, Bjørn H.; Myhre, Gunnar
2011-12-01
A global radiative transfer model is used to calculate the vertical profile of shortwave radiative forcing from a prescribed amount of aerosols. We study black carbon (BC), sulphate (SO4) and a black and organic carbon mixture typical of biomass burning (BIO), by prescribing aerosol burdens in layers between 1000 hPa and 20 hPa and calculating the resulting direct radiative forcing divided by the burden (NDRF). We find a strong sensitivity in the NDRF for BC with altitude, with a tenfold increase between BC close to the surface and the lower part of the stratosphere. Clouds are a major contributor to this dependence with altitude, but other factors also contribute. We break down and explain the different physical contributors to this strong sensitivity. The results show a modest regional dependence of the altitudinal dependence of BC NDRF between industrial regions, while for regions with properties deviating from the global mean NDRF variability is significant. Variations due to seasons and interannual changes in cloud conditions are found to be small. We explore the effect that large altitudinal variation in NDRF may have on model estimates of BC radiative forcing when vertical aerosol distributions are insufficiently constrained, and discuss possible applications of the present results for reducing inter-model differences.
Shortwave radiation parameterization scheme for subgrid topography
NASA Astrophysics Data System (ADS)
Helbig, N.; LöWe, H.
2012-02-01
Topography is well known to alter the shortwave radiation balance at the surface. A detailed radiation balance is therefore required in mountainous terrain. In order to maintain the computational performance of large-scale models while at the same time increasing grid resolutions, subgrid parameterizations are gaining more importance. A complete radiation parameterization scheme for subgrid topography accounting for shading, limited sky view, and terrain reflections is presented. Each radiative flux is parameterized individually as a function of sky view factor, slope and sun elevation angle, and albedo. We validated the parameterization with domain-averaged values computed from a distributed radiation model which includes a detailed shortwave radiation balance. Furthermore, we quantify the individual topographic impacts on the shortwave radiation balance. Rather than using a limited set of real topographies we used a large ensemble of simulated topographies with a wide range of typical terrain characteristics to study all topographic influences on the radiation balance. To this end slopes and partial derivatives of seven real topographies from Switzerland and the United States were analyzed and Gaussian statistics were found to best approximate real topographies. Parameterized direct beam radiation presented previously compared well with modeled values over the entire range of slope angles. The approximation of multiple, anisotropic terrain reflections with single, isotropic terrain reflections was confirmed as long as domain-averaged values are considered. The validation of all parameterized radiative fluxes showed that it is indeed not necessary to compute subgrid fluxes in order to account for all topographic influences in large grid sizes.
Arctic atmospheric preconditioning: do not rule out shortwave radiation just yet
NASA Astrophysics Data System (ADS)
Sedlar, J.
2017-12-01
Springtime atmospheric preconditioning of Arctic sea ice for enhanced or buffered sea ice melt during the subsequent melt year has received considerable research focus in recent years. A general consensus points to enhanced poleward atmospheric transport of moisture and heat during spring, effectively increasing the emission of longwave radiation to the surface. Studies have essentially ruled out the role of shortwave radiation as an effective preconditioning mechanism because of the relatively weak incident solar radiation and high surface albedo from sea ice and snow during spring. These conclusions, however, are derived primarily from atmospheric reanalysis data, which may not always represent an accurate depiction of the Arctic climate system. Here, observations of top of atmosphere radiation from state of the art satellite sensors are examined and compared with reanalysis and climate model data to examine the differences in the spring radiative budget over the Arctic Ocean for years with extreme low/high ice extent at the end of the ice melt season (September). Distinct biases are observed between satellite-based measurements and reanalysis/models, particularly for the amount of shortwave radiation trapped (warming effect) within the Arctic climate system during spring months. A connection between the differences in reanalysis/model surface albedo representation and the albedo observed by satellite is discussed. These results suggest that shortwave radiation should not be overlooked as a significant contributing mechanism to springtime Arctic atmospheric preconditioning.
NASA Technical Reports Server (NTRS)
Cess, R. D.; Zhang, M. H.; Zhou, Y.; Jing, X.; Dvortsov, V.
1996-01-01
To investigate the absorption of shortwave radiation by clouds, we have collocated satellite and surface measurements of shortwave radiation at several locations. Considerable effort has been directed toward understanding and minimizing sampling errors caused by the satellite measurements being instantaneous and over a grid that is much larger than the field of view of an upward facing surface pyranometer. The collocated data indicate that clouds absorb considerably more shortwave radiation than is predicted by theoretical models. This is consistent with the finding from both satellite and aircraft measurements that observed clouds are darker than model clouds. In the limit of thick clouds, observed top-of-the-atmosphere albedos do not exceed a value of 0.7, whereas in models the maximum albedo can be 0.8.
Seasonal and interannual variability of surface CDOM in the South China Sea associated with El Niño
NASA Astrophysics Data System (ADS)
Ma, Jinfeng; Zhan, Haigang; Du, Yan
2011-04-01
Satellite imagery of SeaWiFS from October 1997 to November 2007 is used to investigate the dominant seasonal and interannual variations of the surface light absorption due to Colored Dissolved Organic Materials (CDOM) in the South China Sea (SCS). Results show that the spatial distribution of CDOM mimics the major features of the SCS basin-scale circulation. High values of CDOM are found in upwelling regions like southeast of Vietnam in summer and northwest of Luzon in winter. At a basin scale, CDOM is high in winter when upwelling is strong, solar shortwave radiation and stratification weak, and vertical mixing intense. Opposite conditions exist in spring and summer. Interannual variability of the basin-wide CDOM is characterized by abnormal troughs during the El Niño events. A strong relationship exists between the time series of the first EOF mode (for both winter and summer) and Niño 3.4 Index. Associations of these events with climatic and hydrographic properties (i.e. wind forcing, solar shortwave radiation, Ekman pumping, vertical mixing, sea surface height and temperature) are discussed.
Shortwave and longwave radiative contributions to global warming under increasing CO2
Donohoe, Aaron; Armour, Kyle C.; Pendergrass, Angeline G.; Battisti, David S.
2014-01-01
In response to increasing concentrations of atmospheric CO2, high-end general circulation models (GCMs) simulate an accumulation of energy at the top of the atmosphere not through a reduction in outgoing longwave radiation (OLR)—as one might expect from greenhouse gas forcing—but through an enhancement of net absorbed solar radiation (ASR). A simple linear radiative feedback framework is used to explain this counterintuitive behavior. It is found that the timescale over which OLR returns to its initial value after a CO2 perturbation depends sensitively on the magnitude of shortwave (SW) feedbacks. If SW feedbacks are sufficiently positive, OLR recovers within merely several decades, and any subsequent global energy accumulation is because of enhanced ASR only. In the GCM mean, this OLR recovery timescale is only 20 y because of robust SW water vapor and surface albedo feedbacks. However, a large spread in the net SW feedback across models (because of clouds) produces a range of OLR responses; in those few models with a weak SW feedback, OLR takes centuries to recover, and energy accumulation is dominated by reduced OLR. Observational constraints of radiative feedbacks—from satellite radiation and surface temperature data—suggest an OLR recovery timescale of decades or less, consistent with the majority of GCMs. Altogether, these results suggest that, although greenhouse gas forcing predominantly acts to reduce OLR, the resulting global warming is likely caused by enhanced ASR. PMID:25385628
Effect of the Environmental Stimuli upon the Human Body in Winter Outdoor Thermal Environment
Kurazumi, Yoshihito; Kondo, Emi; Ishii, Jin; Sakoi, Tomonori; Fukagawa, Kenta; Bolashikov, Zhecho Dimitrov; Tsuchikawa, Tadahiro; Matsubara, Naoki; Horikoshi, Tetsumi
2013-01-01
In order to manage the outdoor thermal environment with regard to human health and the environmental impact of waste heat, quantitative evaluations are indispensable. It is necessary to use a thermal environment evaluation index. The purpose of this paper is to clarify the relationship between the psychological thermal responses of the human body and winter outdoor thermal environment variables. Subjective experiments were conducted in the winter outdoor environment. Environmental factors and human psychological responses were measured. The relationship between the psychological thermal responses of the human body and the outdoor thermal environment index ETFe (enhanced conduction-corrected modified effective temperature) in winter was shown. The variables which influence the thermal sensation vote of the human body are air temperature, long-wave thermal radiation and short-wave solar radiation. The variables that influence the thermal comfort vote of the human body are air temperature, humidity, short-wave solar radiation, long-wave thermal radiation, and heat conduction. Short-wave solar radiation, and heat conduction are among the winter outdoor thermal environment variables that affect psychological responses to heat. The use of thermal environment evaluation indices that comprise short-wave solar radiation and heat conduction in winter outdoor spaces is a valid approach. PMID:23861691
Spectral Invariance Principles Observed in Spectral Radiation Measurements of the Transition Zone
NASA Technical Reports Server (NTRS)
Marshak, Alexander
2011-01-01
The main theme for our research is the understanding and closure of the surface spectral shortwave radiation problem in fully 3D cloud situations by combining the new ARM scanning radars, shortwave spectrometers, and microwave radiometers with the arsenal of radiative transfer tools developed by our group. In particular, we define first a large number of cloudy test cases spanning all 3D possibilities not just the customary uniform-overcast ones. Second, for each case, we define a "Best Estimate of Clouds That Affect Shortwave Radiation" using all relevant ARM instruments, notably the new scanning radars, and contribute this to the ARM Archive. Third, we test the ASR-signature radiative transfer model RRTMG_SW for those cases, focusing on the near-IR because of long-standing problems in this spectral region, and work with the developers to improve RRTMG_SW in order to increase its penetration into the modeling community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janet Intrieri; Mathhew Shupe
2005-01-01
Cloud and radiation data from two distinctly different Arctic areas are analyzed to study the differences between coastal Alaskan and open Arctic Ocean region clouds and their respective influence on the surface radiation budget. The cloud and radiation datasets were obtained from (1) the DOE North Slope of Alaska (NSA) facility in the coastal town of Barrow, Alaska, and (2) the SHEBA field program, which was conducted from an icebreaker frozen in, and drifting with, the sea-ice for one year in the Western Arctic Ocean. Radar, lidar, radiometer, and sounding measurements from both locations were used to produce annual cyclesmore » of cloud occurrence and height, atmospheric temperature and humidity, surface longwave and shortwave broadband fluxes, surface albedo, and cloud radiative forcing. In general, both regions revealed a similar annual trend of cloud occurrence fraction with minimum values in winter (60-75%) and maximum values during spring, summer and fall (80-90%). However, the annual average cloud occurrence fraction for SHEBA (76%) was lower than the 6-year average cloud occurrence at NSA (92%). Both Arctic areas also showed similar annual cycle trends of cloud forcing with clouds warming the surface through most of the year and a period of surface cooling during the summer, when cloud shading effects overwhelm cloud greenhouse effects. The greatest difference between the two regions was observed in the magnitude of the cloud cooling effect (i.e., shortwave cloud forcing), which was significantly stronger at NSA and lasted for a longer period of time than at SHEBA. This is predominantly due to the longer and stronger melt season at NSA (i.e., albedo values that are much lower coupled with Sun angles that are somewhat higher) than the melt season observed over the ice pack at SHEBA. Longwave cloud forcing values were comparable between the two sites indicating a general similarity in cloudiness and atmospheric temperature and humidity structure between the two regions.« less
NASA Astrophysics Data System (ADS)
Pathak, B.
2015-12-01
The diurnal evolution of shortwave solar radiance at the surface has been investigated from Kipp and Zonen CNR4 net radiometer measurements in a humid sub-tropical location Dibrugarh in the North Eastern region of India. Data for a total of 345 clear days within a span of two years during March 2013- January 2015 are analyzed which are further utilized to validate the Santa Barbara Discrete Ordinate Radiative Transfer (SBDART) simulated flux. The diurnal evolution of solar radiation maximizes in its amplitude in monsoon months (JJAS) and is minimum during the winter months (DJF) prescribed by the Northern Hemisphere routine. The net shortwave radiation increases from the minimum value of ~100 Wm-2 at the beginning of the year and attains maximum ~300 Wm-2 during monsoon. Both the measured and model simulated diurnal and seasonal solar flux exhibit similar behaviour at the surface with good correlation with R2~ 0.98-0.99. The present study also focuses on the validation of the surface albedo and the albedo retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) measurements by the CNR4 net Radiometer measurements, which again shows a good agreement. This validation is essential for the reliability of satellite retrieved surface reflectance that are being utilised in the radiative transfer models. In order to study the influence of the aerosols upon the incoming solar irradiances the aerosol radiative forcing (ARF) and aerosol radiative forcing efficiency (ARFE) is estimated. The ARFEsurface during the Winter is the highest (-75.02 ± 8.03 W m-2 τ-1) and minimum during Retreating Monsoon (ON) (-58.40 ±25.03 W m-2 τ-1). For both the modeled and the field based estimation, the aerosol radiative forcing obtained during the study period ranged from -39 ±6 Wm-2 to -10 ±4 Wm-2 at the surface and 10±3 Wm-2 to 28±7 Wm-2 at the atmosphere and -7±4 Wm-2 to -10 ±3 Wm-2 at the TOA. The measured and the model ARF values differ by 5 - 8 % in winter and premonsoon and almost ~6% in monsoon. The average atmospheric heating rate is maximum in pre-monsoon for both the estimations. The observation of ARF is further compared with the ICTP's RegCM4 model in order to acquire the model utility in the location where measurements are not feasible.
NASA Technical Reports Server (NTRS)
Zhang, Z.; Meyer, K.; Platnick, S.; Oreopoulos, L.; Lee, D.; Yu, H.
2013-01-01
This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It accounts for the overlapping of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure. Effects of sub-grid scale cloud and aerosol variations on DRE are accounted for. It is computationally efficient through using grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table in radiative transfer calculations. We verified that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous shortwave DRE that generally agrees with more rigorous pixel-level computation within 4%. We have also computed the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global ocean based on 4 yr of CALIOP and MODIS data. We found that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds.
NASA Technical Reports Server (NTRS)
Zhang, Z.; Meyer, K.; Platnick, S.; Oreopoulos, L.; Lee, D.; Yu, H.
2014-01-01
This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It accounts for the overlapping of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure. Effects of sub-grid scale cloud and aerosol variations on DRE are accounted for. It is computationally efficient through using grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table in radiative transfer calculations. We verified that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous shortwave DRE that generally agrees with more rigorous pixel-level computation within 4. We have also computed the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global ocean based on 4 yr of CALIOP and MODIS data. We found that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds.
Asymmetric Response of the Equatorial Pacific SST to Climate Warming and Cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Fukai; Luo, Yiyong; Lu, Jian
The response of the equatorial Pacific Ocean to heat fluxes of equal amplitude but opposite sign is investigated using the Community Earth System Model (CESM). Results show a strong asymmetry in SST changes. In the eastern equatorial Pacific (EEP), the warming responding to the positive forcing exceeds the cooling to the negative forcing; while in the western equatorial Pacific (WEP), it is the other way around and the cooling surpasses the warming. This leads to a zonal dipole asymmetric structure, with positive values in the east and negative values in the west. A surface heat budget analysis suggests that themore » SST asymmetry is mainly resulted from the oceanic horizontal advection and vertical entrainment, with both of their linear and nonlinear components playing a role. For the linear component, its change appears to be more significant over the EEP (WEP) in the positive (negative) forcing scenario, favoring the seesaw pattern of the SST asymmetry. For the nonlinear component, its change acts to warm (cool) the EEP (WEP) in both scenarios, also favorable for the development of the SST asymmetry. Additional experiments with a slab ocean confirm the dominant role of ocean dynamical processes for this SST asymmetry. The net surface heat flux, in contrast, works to reduce the SST asymmetry through its shortwave radiation and latent heat flux components, with the former being related to the nonlinear relationship between SST and convection, and the latter being attributable to Newtonian damping and air-sea stability effects. The suppressing effect of shortwave radiation on SST asymmetry is further verified by partially coupled overriding experiments.« less
Asymmetric response of the equatorial Pacific SST to climate warming and cooling
NASA Astrophysics Data System (ADS)
Luo, Y.; Liu, F.; Lu, J.
2017-12-01
The response of the equatorial Pacific Ocean to heat fluxes of equal amplitude but opposite sign is investigated using the Community Earth System Model (CESM). Results show a strong asymmetry in SST changes. In the eastern equatorial Pacific (EEP), the warming responding to the positive forcing exceeds the cooling to the negative forcing; while in the western equatorial Pacific (WEP), it is the other way around and the cooling surpasses the warming. This leads to a zonal dipole asymmetric structure, with positive values in the east and negative values in the west. A surface heat budget analysis suggests that the SST asymmetry is mainly resulted from the oceanic horizontal advection and vertical entrainment, with both of their linear and nonlinear components playing a role. For the linear component, its change appears to be more significant over the EEP (WEP) in the positive (negative) forcing scenario, favoring the seesaw pattern of the SST asymmetry. For the nonlinear component, its change acts to warm (cool) the EEP (WEP) in both scenarios, also favorable for the development of the SST asymmetry. Additional experiments with a slab ocean confirm the dominant role of ocean dynamical processes for this SST asymmetry. The net surface heat flux, in contrast, works to reduce the SST asymmetry through its shortwave radiation and latent heat flux components, with the former being related to the nonlinear relationship between SST and convection, and the latter being attributable to Newtonian damping and air-sea stability effects. The suppressing effect of shortwave radiation on SST asymmetry is further verified by partially coupled overriding experiments.
Radiative Forcing and Temperature Response to Changes in Urban Albedos and Associated CO2 Offsets
NASA Technical Reports Server (NTRS)
Menon, Surabi; Akbari, Hashem; Mahanama, Sarith; Sednev, Igor; Levinson, Ronnen
2009-01-01
The two main forcings that can counteract to some extent the positive forcings from greenhouse gases from pre-industrial times to present-day are the aerosol and related aerosol-cloud forcings, and the radiative response to changes in surface albedo. Here, we quantify the change in radiative forcing and surface temperature that may be obtained by increasing the albedos of roofs and pavements in urban areas in temperate and tropical regions of the globe. Using the catchment land surface model (the land model coupled to the GEOS-5 Atmospheric General Circulation Model), we quantify the response of the total outgoing (outgoing shortwave+longwave) radiation to urban albedo changes. Globally, the total outgoing radiation increased by 0.5 W/square m and temperature decreased by -0.008 K for an average 0.003 increase in albedo. For the U.S. the total outgoing total radiation increased by 2.3 W/square meter, and temperature decreased by approximately 0.03 K for an average 0.01 increase in albedo. These values are for the boreal summer (Tune-July-August). Based on these forcings, the expected emitted CO2 offset for a plausible 0.25 and 0.15 increase in albedos of roofs and pavements, respectively, for all global urban areas, was found to be approximately 57 Gt CO2 . A more meaningful evaluation of the impacts of urban albedo increases on climate and the expected CO2 offsets would require simulations which better characterizes urban surfaces and represents the full annual cycle.
Radiation in controlled environments: influence of lamp type and filter material
NASA Technical Reports Server (NTRS)
Bubenheim, D. L.; Bugbee, B.; Salisbury, F. B.
1988-01-01
Radiation in controlled environments was characterized using fluorescent and various high-intensity-discharge (HID) lamps, including metal halide, low-pressure sodium, and high-pressure sodium as the radiation source. The effects of water, glass, or Plexiglas filters on radiation were determined. Photosynthetic photon flux (PPF, 400 to 700 nm), spectra (400 to 1000 nm), shortwave radiation (285-2800 nm), and total radiation (300 to 100,000 nm) were measured, and photosynthetically active radiation (PAR, 400 to 700 nm) and longwave radiation (2800 to 100,000 nm) were calculated. Measurement of PPF alone was not an adequate characterization of the radiation environment. Total radiant flux varied among lamp types at equal PPF. HID lamps provided a lower percentage of longwave radiation than fluorescent lamps, but, when HID lamps provided PPF levels greater than that possible with fluorescent lamps, the amount of longwave radiation was high. Water was the most effective longwave radiation filter. Glass and Plexiglas similarly filtered longwave more than shortwave radiation, but transmission of nonphotosynthetic shortwave radiation was less with Plexiglas than glass. The filter materials tested would not be expected to influence photomorphogenesis because radiation in the action spectrum of phytochrome was not altered, but this may not be the only pigment involved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, R.
The spatial autocorrelation functions of broad-band longwave and shortwave radiances measured by the Earth Radiation Budget Experiment (ERBE) are analyzed as a function of view angle in an investigation of the general effects of scene inhomogeneity on radiation. For nadir views, the correlation distance of the autocorrelation function is about 900 km for longwave radiance and about 500 km for shortwave radiance, consistent with higher degrees of freedom in shortwave reflection. Both functions rise monotonically with view angle, but there is a substantial difference in the relative angular dependence of the shortwave and longwave functions, especially for view angles lessmore » than 50 deg. In this range, the increase with angle of the longwave functions is found to depend only on the expansion of pixel area with angle, whereas the shortwave functions show an additional dependence on angle that is attributed to the occlusion of inhomogeneities by cloud height variations. Beyond a view angle of about 50 deg, both longwave and shortwave functions appear to be affected by cloud sides. The shortwave autocorrelation functions do not satisfy the principle of directional reciprocity, thereby proving that the average scene is horizontally inhomogeneous over the scale of an ERBE pixel (1500 sq km). Coarse stratification of the measurements by cloud amount, however, indicates that the average cloud-free scene does satisfy directional reciprocity on this scale.« less
Assessing Spectral Shortwave Cloud Observations at the Southern Great Plains Facility
NASA Technical Reports Server (NTRS)
McBride, P. J.; Marshak, A.; Wiscombe, W. J.; Flynn, C. J.; Vogelmann, A. M.
2012-01-01
The Atmospheric Radiation Measurement (ARM) program (now Atmospheric System Research) was established, in part, to improve radiation models so that they could be used reliably to compute radiation fluxes through the atmosphere, given knowledge of the surface albedo, atmospheric gases, and the aerosol and cloud properties. Despite years of observations, discrepancies still exist between radiative transfer models and observations, particularly in the presence of clouds. Progress has been made at closing discrepancies in the spectral region beyond 3 micron, but the progress lags at shorter wavelengths. Ratios of observed visible and near infrared cloud albedo from aircraft and satellite have shown both localized and global discrepancies between model and observations that are, thus far, unexplained. The capabilities of shortwave surface spectrometry have been improved in recent years at the Southern Great Plains facility (SGP) of the ARM Climate Research Facility through the addition of new instrumentation, the Shortwave Array Spectroradiometer, and upgrades to existing instrumentation, the Shortwave Spectroradiometer and the Rotating Shadowband Spectroradiometer. An airborne-based instrument, the HydroRad Spectroradiometer, was also deployed at the ARM site during the Routine ARM Aerial Facility Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign. Using the new and upgraded spectral observations along with radiative transfer models, cloud scenes at the SGP are presented with the goal of characterizing the instrumentation and the cloud fields themselves.
NASA Astrophysics Data System (ADS)
Beegum S, N.; Ben Romdhane, H.; Ghedira, H.
2013-12-01
Atmospheric aerosols are known to affect the radiation balance of the Earth-Atmospheric system directly by scattering and absorbing the solar and terrestrial radiation, and indirectly by affecting the lifetime and albedo of the clouds. Continuous and simultaneous measurements of short wave global irradiance in combination with synchronous spectral aerosol optical depth (AOD) measurements (from 340 nm to 1640 nm in 8 channels), for a period of 1 year from June 2012 to May 2013, were used for the determination of the surface direct aerosol radiative forcing and forcing efficiencies under cloud free conditions in Abu Dhabi (24.42°N, 54.61o E, 7m MSL), a coastal location in United Arab Emirates (UAE) in the Arabian Peninsula. The Rotating Shadow band Pyranometer (RSP, LI-COR) was used for the irradiance measurements (in the spectral region 400-1100 nm), whereas the AOD measurements were carried out using CIMEL Sunphotometer (CE 318-2, under AERONET program). The differential method, which is neither sensitive to calibration uncertainties nor model assumptions, has been employed for estimating forcing efficiencies from the changes in the measured fluxes. The forcing efficiency, which quantifies the net change in irradiance per unit change in AOD, is an appropriate parameter for the characterization of the aerosol radiative effects even if the microphysical and optical properties of the aerosols are not completely understood. The corresponding forcing values were estimated from the forcing efficiencies. The estimated radiative forcing and forcing efficiencies exhibited strong monthly variations. The forcing efficiencies (absolute magnitudes) were highest during March, and showed continuous decrease thereafter to reach the lowest value during September. In contrast, the forcing followed a slightly different pattern of variability, with the highest solar dimming during April ( -60 W m-2) and the minimum during February ( -20 W m-2). The results indicate that the aerosol microphysics as well as the types of aerosol undergo significant seasonal variations.
NASA Technical Reports Server (NTRS)
Zhang, Taiping; Stackhouse, Paul W., Jr.; Gupta, Shashi K.; Cox, Stephan J.; Mikovitz, Colleen; Hinkelman, Laura M.
2006-01-01
In this investigation, we make systematic Surface Radiation Budget-Baseline Surface Radiation Network (SRB-BSRN), Surface Radiation Data Centre (SRB-WRDC) and Surface Radiation Budget-Global Energy Balance Archive (SRB-GEBA) comparisons for both shortwave and longwave daily and monthly mean radiation fluxes at the Earth's surface. We first have an overview of all the comparable pairs of data in scatter or scatter density plots. Then we show the time series of the SRB data at grids in which there are ground sites where longterm records of data are available for comparison. An overall very good agreement between the SRB data and ground observations is found. To see the variability of the SRB data during the 21.5 years, we computed the global mean and its linear trend. No appreciable trend is detected at the 5% level. The empirical orthogonal functions (EOF) of the SRB deseasonalized shortwave downward flux are computed over the Pacific region, and the first EOF coefficient is found to be correlated with the ENSO Index at a high value of coefficient of 0.7083.
The rising greenhouse effect: experiments and observations in and around the Alps
NASA Astrophysics Data System (ADS)
Philipona, R.
2010-09-01
The rapid temperature increase of more than 1°C in central Europe over the last three decades is larger than expected from anthropogenic greenhouse warming. Surface radiation flux measurements in and around the Alps in fact confirm that not only thermal longwave radiation but also solar shortwave radiation increased since the 1980s. Surface energy budget analyses reveal the rising surface temperature to be well correlated with the radiative forcing, and also show an increase of the kinetic energy fluxes explaining the rise of atmospheric water vapor. Solar radiation mainly increased due to a strong decline of anthropogenic aerosols since mid of the 1980s. While anthropogenic aerosols were mainly accumulated in the boundary layer, this reduction let solar radiation to recover (solar brightening after several decades of solar dimming) mainly at low altitudes around the Alps. At high elevations in the Alps, solar forcing is much smaller and the respective temperature rise is also found to be smaller than in the lowlands. The fact that temperature increases less in the Alps than at low elevations is unexpected in the concept of greenhouse warming, but the radiation budget analyses clearly shows that in the plains solar forcing due to declining aerosols additionally increased surface temperature, whereas in the Alps temperature increased primarily due to greenhouse warming that is particularly manifested by a strong water vapor feedback.
WCRP surface radiation budget shortwave data product description, version 1.1
NASA Technical Reports Server (NTRS)
Whitlock, C. H.; Charlock, T. P.; Staylor, W. F.; Pinker, R. T.; Laszlo, I.; Dipasquale, R. C.; Ritchey, N. A.
1993-01-01
Shortwave radiative fluxes which reach the Earth's surface are key elements that influence both atmospheric and oceanic circulation. The World Climate Research Program has established the Surface Radiation Budget climatology project with the ultimate goal of determining the various components of the surface radiation budget from satellite data on a global scale. This report describes the first global product that is being produced and archived as part of that effort. The interested user can obtain the monthly global data sets free of charge using e-mail procedures.
Incorporation of UK Met Office's radiation scheme into CPTEC's global model
NASA Astrophysics Data System (ADS)
Chagas, Júlio C. S.; Barbosa, Henrique M. J.
2009-03-01
Current parameterization of radiation in the CPTEC's (Center for Weather Forecast and Climate Studies, Cachoeira Paulista, SP, Brazil) operational AGCM has its origins in the work of Harshvardhan et al. (1987) and uses the formulation of Ramaswamy and Freidenreich (1992) for the short-wave absorption by water vapor. The UK Met Office's radiation code (Edwards and Slingo, 1996) was incorporated into CPTEC's global model, initially for short-wave only, and some impacts of that were shown by Chagas and Barbosa (2006). Current paper presents some impacts of the complete incorporation (both short-wave and long-wave) of UK Met Office's scheme. Selected results from off-line comparisons with line-by-line benchmark calculations are shown. Impacts on the AGCM's climate are assessed by comparing output of climate runs of current and modified AGCM with products from GEWEX/SRB (Surface Radiation Budget) project.
The Surface Radiation Budget over Oceans and Continents.
NASA Astrophysics Data System (ADS)
Garratt, J. R.; Prata, A. J.; Rotstayn, L. D.; McAvaney, B. J.; Cusack, S.
1998-08-01
An updated evaluation of the surface radiation budget in climate models (1994-96 versions; seven datasets available, with and without aerosols) and in two new satellite-based global datasets (with aerosols) is presented. All nine datasets capture the broad mean monthly zonal variations in the flux components and in the net radiation, with maximum differences of some 100 W m2 occurring in the downwelling fluxes at specific latitudes. Using long-term surface observations, both from land stations and the Pacific warm pool (with typical uncertainties in the annual values varying between ±5 and 20 W m2), excess net radiation (RN) and downwelling shortwave flux density (So) are found in all datasets, consistent with results from earlier studies [for global land, excesses of 15%-20% (12 W m2) in RN and about 12% (20 W m2) in So]. For the nine datasets combined, the spread in annual fluxes is significant: for RN, it is 15 (50) W m2 over global land (Pacific warm pool) in an observed annual mean of 65 (135) W m2; for So, it is 25 (60) W m2 over land (warm pool) in an annual mean of 176 (197) W m2.The effects of aerosols are included in three of the authors' datasets, based on simple aerosol climatologies and assumptions regarding aerosol optical properties. They offer guidance on the broad impact of aerosols on climate, suggesting that the inclusion of aerosols in models would reduce the annual So by 15-20 W m2 over land and 5-10 W m2 over the oceans. Model differences in cloud cover contribute to differences in So between datasets; for global land, this is most clearly demonstrated through the effects of cloud cover on the surface shortwave cloud forcing. The tendency for most datasets to underestimate cloudiness, particularly over global land, and possibly to underestimate atmospheric water vapor absorption, probably contributes to the excess downwelling shortwave flux at the surface.
Microclimate and actual evapotranspiration in a humid coastal-plain environment
Dennehy, K.F.; McMahon, P.B.
1987-01-01
Continuous hourly measurements of twelve meteorologic variables recorded during 1983 and 1984 were used to examine the microclimate and actual evapotranspiration at a low-level radioactive-waste burial site near Barnwell, South Carolina. The study area is in the Atlantic Coastal Plain of southwestern South Carolina. Monthly, daily, and hourly trends in net radiation, incoming and reflected short-wave radiation, incoming and emitted long-wave radiation, soil-heat flux, dry- and wet-bulb temperatures, soil temperatures, wind direction and speed, and precipitation were used to characterize the microclimate. Average daily air temperatures ranged from -9 to 32?? Celsius during the period of study. Net radiation varied from about -27 to 251 watts m-2 and was dominated by incoming short-wave radiation throughout the year. The peak net radiation during a summer day generally occurred 2-3h before the peak vapor pressure deficit. In the winter, these peaks occurred at about the same time of day. Monthly precipitation varied from 15 to 241 mm. The Bowen ratio method was used to estimate hourly evapotranspiration, which was summed to also give daily and monthly evapotranspiration. Actual evapotranspiration varied from 0.0 to 0.7 mm h-1, 0.8-5 mm d-1, and 20-140 mm month-1 during 1983 and 1984. The maximum rate of evapotranspiration generally occurred at the same time of day as maximum net radiation, suggesting net radiation was the main driving force for evapotranspiration. Precipitation exceeded evapotranspiration during 14 months of the 2yr study period. Late fall, winter, and early spring contained the majority of these months. The maximum excess precipitation was 115 mm in February 1983. ?? 1987.
NASA Technical Reports Server (NTRS)
Wilcox, Eric M.; Roberts, Greg; Ramanathan, V.
2006-01-01
Aerosols over the Northeastern Pacific Ocean enhance the cloud drop number concentration and reduce the drop size for marine stratocumulus and cumulus clouds. These microphysical effects result in brighter clouds, as evidenced by a combination of aircraft and satellite observations. In-situ measurements from the Cloud Indirect Forcing Experiment (CIFEX) indicate that the mean cloud drop number concentration in low clouds over the polluted marine boundary layer is greater by 53/cu cm compared to clean clouds, and the mean cloud drop effective radius is smaller by 4 microns. We link these in-situ measurements of cloud modification by aerosols, for the first time, with collocated satellite broadband radiative flux observations from the Clouds and the Earth's Radiant Energy System (CERES) to show that these microphysical effects of aerosols enhance the top-of-atmosphere cooling by -9.9+/-4.3 W/sq m for overcast conditions.
Cloud-Radiative Driving of the Madden-Julian Oscillation as Seen by the A-Train
NASA Technical Reports Server (NTRS)
Del Genio, Anthony; Chen, Yonghua
2015-01-01
Cloud and water vapor radiative heating anomalies associated with convection may be an effective source of moist static energy driving the Madden-Julian Oscillation (MJO). In this paper five years of radiative heating profiles derived from CloudSat radar and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation data are analyzed to document radiative heating anomalies during the MJO. Atmospheric shortwave absorption and surface longwave radiation anomalies are of opposite sign and 10-20% as large as top-of-atmosphere outgoing longwave radiation (OLR) anomalies, confirming that OLR provides a useful estimate of the total column radiative heating anomaly. Positive anomalies generally peak about one week before the MJO peak and are smallest over the Indian Ocean. Anomalies over the Maritime Continent are strongest, and coincident with the MJO peak. Shortwave heating profile anomalies are about half as large as longwave anomalies in the active region of the MJO but generally of opposite sign; thus shortwave heating damps the longwave destabilization of the lower troposphere. The exception is the onset phase of the MJO, where shortwave and longwave heating anomalies due to thin cirrus are both positive in the upper troposphere and exert a stabilizing influence. Specific humidity anomalies in the middle troposphere reach 0.5 g kg(exp. -1), but the associated clear sky heating anomaly is very small. Radiative enhancement of column moist static energy becomes significant about 10 days before the MJO peak, when precipitation anomalies are still increasing, and then remains high after the MJO peak after precipitation has begun to decline.
Cloud Radiative Effect in dependence on Cloud Type
NASA Astrophysics Data System (ADS)
Aebi, Christine; Gröbner, Julian; Kämpfer, Niklaus; Vuilleumier, Laurent
2015-04-01
Radiative transfer of energy in the atmosphere and the influence of clouds on the radiation budget remain the greatest sources of uncertainty in the simulation of climate change. Small changes in cloudiness and radiation can have large impacts on the Earth's climate. In order to assess the opposing effects of clouds on the radiation budget and the corresponding changes, frequent and more precise radiation and cloud observations are necessary. The role of clouds on the surface radiation budget is studied in order to quantify the longwave, shortwave and the total cloud radiative forcing in dependence on the atmospheric composition and cloud type. The study is performed for three different sites in Switzerland at three different altitude levels: Payerne (490 m asl), Davos (1'560 m asl) and Jungfraujoch (3'580 m asl). On the basis of data of visible all-sky camera systems at the three aforementioned stations in Switzerland, up to six different cloud types are distinguished (Cirrus-Cirrostratus, Cirrocumulus-Altocumulus, Stratus-Altostratus, Cumulus, Stratocumulus and Cumulonimbus-Nimbostratus). These cloud types are classified with a modified algorithm of Heinle et al. (2010). This cloud type classifying algorithm is based on a set of statistical features describing the color (spectral features) and the texture of an image (textural features) (Wacker et al. (2015)). The calculation of the fractional cloud cover information is based on spectral information of the all-sky camera data. The radiation data are taken from measurements with pyranometers and pyrgeometers at the different stations. A climatology of a whole year of the shortwave, longwave and total cloud radiative effect and its sensitivity to integrated water vapor, cloud cover and cloud type will be calculated for the three above-mentioned stations in Switzerland. For the calculation of the shortwave and longwave cloud radiative effect the corresponding cloud-free reference models developed at PMOD/WRC will be used (Wacker et al. (2013)). References: Heinle, A., A. Macke and A. Srivastav (2010) Automatic cloud classification of whole sky images, Atmospheric Measurement Techniques. Wacker, S., J. Gröbner and L. Vuilleumier (2013) A method to calculate cloud-free long-wave irradiance at the surface based on radiative transfer modeling and temperature lapse rate estimates, Theoretical and Applied Climatology. Wacker, S., J. Gröbner, C. Zysset, L. Diener, P. Tzoumanikis, A. Kazantzidis, L. Vuilleumier, R. Stöckli, S. Nyeki, and N. Kämpfer (2015) Cloud observations in Switzerland using hemispherical sky cameras, Journal of Geophysical Research.
Arctic ocean radiative fluxes and cloud forcing estimated from the ISCCP C2 cloud dataset, 1983-1990
NASA Technical Reports Server (NTRS)
Schweiger, Axel J.; Key, Jeffrey R.
1994-01-01
Radiative fluxes and cloud forcings for the ocean areas of the Arctic are computed from the monthly cloud product of the International Satellite Cloud Climatology Project (ISCCP) for 1983-90. Spatially averaged short-wave fluxes are compared well with climatological values, while downwelling longwave fluxes are significantly lower. This is probably due to the fact that the ISCCP cloud amounts are underestimates. Top-of-the-atmosphere radiative fluxes are in excellent agreement with measurements from the Earth Radiation Budget Experiment (ERBE). Computed cloud forcings indicate that clouds have a warming effect at the surface and at the top of the atmosphere during winter and a cooling effect during summer. The net radiative effect of clouds is larger at the surface during winter but greater at the top of the atmosphere during summer. Overall the net radiative effect of clouds at the top of the atmosphere is one of cooling. This is in contrast to a previous result from ERBE data showing arctic cloud forcings have a net warming effect. Sensitivities to errors in input parameters are generally greater during winter with cloud amount being the most important paarameter. During summer the surface radiation balance is most sensitive to errors in the measurements of surface reflectance. The results are encouraging, but the estimated error of 20 W/sq m in surface net radiative fluxes is too large, given that estimates of the net radiative warming effect due to a doubling of CO2 are on the order of 4 W/sq m. Because it is difficult to determine the accuracy of results with existing in situ observations, it is recommended that the development of improved algorithms for the retrieval of surface radiative properties be accompanied by the simultaneous assembly of validation datasets.
Observations of Surfzone Albedo
NASA Astrophysics Data System (ADS)
Sinnett, G.; Feddersen, F.
2014-12-01
The surfzone environment (where waves break) contains several unique and previously unconsidered processes that affect the heat budget. Entering short-wave radiation is a dominant term in both shelf and surfzone heat budgets. In contrast to the shelf, however, depth limited wave breaking in the surfzone generates spray, whitewater and suspended sediments, elevating the surface albedo (ratio of reflected to incident short-wave radiation). Elevated albedo reduces the level of solar short-wave radiation entering the water, potentially resulting in less heating. Additionally, surfzone water quality is often impacted by fecal bacteria contamination. As bacteria mortality is related to short-wave solar radiation, elevated surfzone albedo could reduce pathogen mortality, impacting human health. Albedo in the open ocean has been frequently studied and parameterizations often consider solar zenith angle, wind speed and ocean chlorophyll concentration, producing albedo values typically near 0.06. However, surfzone albedo observations have been extremely sparse, yet show depth limited wave breaking may increase the albedo by nearly a factor of 10 up to 0.5. Here, we present findings from a field study at the Scripps Institution of Oceanography pier to observe the affect of waves on surfzone albedo. Concurrent measurements were taken with a four-way radiometer (to measure both downwelling and upwelling short-wave and long wave radiation) mounted above the surfzone. A co-located GoPro camera was used to relate visual aspects of the surfzone to measured reflectance, and wave height and period were observed with a bottom mounted pressure sensor in 5 m water depth just outside the surfzone. Wind speed and direction were observed on the pier 10 m above the water surface. Here, we will examine the surfzone albedo dependence on surfzone parameters, such as wave height.
CERES Fast Longwave And SHortwave Radiative Flux (FLASHFlux) Version4A.
NASA Astrophysics Data System (ADS)
Sawaengphokhai, P.; Stackhouse, P. W., Jr.; Kratz, D. P.; Gupta, S. K.
2017-12-01
The agricultural, renewable energy management, and science communities need global surface and top-of-atmosphere (TOA) radiative fluxes on a low latency basis. The Clouds and Earth's Radiant Energy System (CERES) FLASHFlux (Fast Longwave and SHortwave radiative Flux) data products address this need by enhancing the speed of CERES processing using simplified calibration and parameterized model of surface fluxes to provide a daily global radiative fluxes data set within one week of satellite observations. The CERES FLASHFlux provides two data products: 1) an overpass swath Level 2 Single Scanner Footprint (SSF) data products separately for both Aqua and Terra observations, and 2) a daily Level 3 Time Interpolated and Spatially Averaged (TISA) 1o x 1o gridded data that combines Aqua and Terra observations. The CERES FLASHFlux data product is being promoted to Version4A. Updates to FLASHFlux Version4A include a new cloud retrieval algorithm and an improved shortwave surface flux parameterization. We inter-compared FLASHFlux Version4A, FLASHFlux Version3C, CERES Edition 4 Syn1Deg and at the monthly scale CERES Edition4 EBAF (Energy Balanced and Filled) Top-of-Atmosphere and Edition 4 Surface EBAF fluxes to evaluate these improvements. We also analyze the impact of the new inputs and cloud algorithm to the surface shortwave and longwave radiative fluxes using ground sites measurement provided by CAVE (CERES/ARM Validation Experiment).
NASA Astrophysics Data System (ADS)
Sauer, D. N.; Vázquez-Navarro, M.; Gasteiger, J.; Chouza, F.; Weinzierl, B.
2016-12-01
Mineral dust is the major species of airborne particulate matter by mass in the atmosphere. Each year an estimated 200-3000 Tg of dust are emitted from the North African desert and arid regions alone. A large fraction of the dust is lifted into the free troposphere and gets transported in extended dust layers westward over the Atlantic Ocean into the Caribbean Sea. Especially over the dark surface of the ocean, those dust layers exert a significant effect on the atmospheric radiative balance though aerosol-radiation interactions. During the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) in summer 2013 airborne in-situ aerosol measurements on both sides of the Atlantic Ocean, near the African coast and the Caribbean were performed. In this study we use data about aerosol microphysical properties acquired between Cabo Verde and Senegal to derive the aerosol optical properties and the resulting radiative forcing using the radiative transfer package libRadtran. We compare the results to values retrieved from MSG/SEVIRI data using the RRUMS algorithm. The RRUMS algorithm can derive shortwave and longwave top-of-atmosphere outgoing fluxes using only information issued from the narrow-band MSG/SEVIRI channels. A specific calibration based on collocated Terra/CERES measurements ensures a correct retrieval of the upwelling flux from the dust covered pixels. The comparison of radiative forcings based on in-situ data to satellite-retrieved values enables us to extend the radiative forcing estimates from small-scale in-situ measurements to large scale satellite coverage over the Atlantic Ocean.
Huang, Shengli; Liu, Heping; Dahal, Devendra; Jin, Suming; Li, Shuang; Liu, Shu-Guang
2016-01-01
Boreal fires can cool the climate; however, this conclusion came from individual fires and may not represent the whole story. We hypothesize that the climatic impact of boreal fires depends on local landscape heterogeneity such as burn severity, prefire vegetation type, and soil properties. To test this hypothesis, spatially explicit emission of greenhouse gases (GHGs) and aerosols and their resulting radiative forcing are required as an important and necessary component towards a full assessment. In this study, we integrated remote sensing (Landsat and MODIS) and models (carbon consumption model, emission factors model, and radiative forcing model) to calculate the carbon consumption, GHGs and aerosol emissions, and their radiative forcing of 2001–2010 fires at 30 m resolution in the Yukon River Basin of Alaska. Total carbon consumption showed significant spatial variation, with a mean of 2,615 g C m−2 and a standard deviation of 2,589 g C m−2. The carbon consumption led to different amounts of GHGs and aerosol emissions, ranging from 593.26 Tg (CO2) to 0.16 Tg (N2O). When converted to equivalent CO2 based on global warming potential metric, the maximum 20 years equivalent CO2 was black carbon (713.77 Tg), and the lowest 20 years equivalent CO2 was organic carbon (−583.13 Tg). The resulting radiative forcing also showed significant spatial variation: CO2, CH4, and N2O can cause a 20-year mean radiative forcing of 7.41 W m−2 with a standard deviation of 2.87 W m−2. This emission forcing heterogeneity indicates that different boreal fires have different climatic impacts. When considering the spatial variation of other forcings, such as surface shortwave forcing, we may conclude that some boreal fires, especially boreal deciduous fires, can warm the climate.
Hotplate precipitation gauge calibrations and field measurements
NASA Astrophysics Data System (ADS)
Zelasko, Nicholas; Wettlaufer, Adam; Borkhuu, Bujidmaa; Burkhart, Matthew; Campbell, Leah S.; Steenburgh, W. James; Snider, Jefferson R.
2018-01-01
First introduced in 2003, approximately 70 Yankee Environmental Systems (YES) hotplate precipitation gauges have been purchased by researchers and operational meteorologists. A version of the YES hotplate is described in Rasmussen et al. (2011; R11). Presented here is testing of a newer version of the hotplate; this device is equipped with longwave and shortwave radiation sensors. Hotplate surface temperature, coefficients describing natural and forced convective sensible energy transfer, and radiative properties (longwave emissivity and shortwave reflectance) are reported for two of the new-version YES hotplates. These parameters are applied in a new algorithm and are used to derive liquid-equivalent accumulations (snowfall and rainfall), and these accumulations are compared to values derived by the internal algorithm used in the YES hotplates (hotplate-derived accumulations). In contrast with R11, the new algorithm accounts for radiative terms in a hotplate's energy budget, applies an energy conversion factor which does not differ from a theoretical energy conversion factor, and applies a surface area that is correct for the YES hotplate. Radiative effects are shown to be relatively unimportant for the precipitation events analyzed. In addition, this work documents a 10 % difference between the hotplate-derived and new-algorithm-derived accumulations. This difference seems consistent with R11's application of a hotplate surface area that deviates from the actual surface area of the YES hotplate and with R11's recommendation for an energy conversion factor that differs from that calculated using thermodynamic theory.
Estimating the direct radiative forcing due to haze from the 1997 forest fires in Indonesia
NASA Astrophysics Data System (ADS)
Davison, P. S.; Roberts, D. L.; Arnold, R. T.; Colvile, R. N.
2004-05-01
The El Niño event of 1997-1998 caused a severe reduction of rainfall in Indonesia that promoted the spread of forest fires, leading to a pervasive haze in the region. Here we use fire coverage data from the 1997 World Fire Atlas with a review of other available data and literature to estimate the distribution of particulate emissions from August to November 1997 and the particle size and radiative properties. Our preferred estimate of the total particulate emissions is approximately 41 Tg. The emissions have been used to drive an atmospheric model to simulate the distribution of the haze and its direct radiative effect, with and without allowing for the effects of the smoke on the atmospheric evolution. Model diagnostics of the aerosol and its radiative impact are compared with measurements and output from other models. Large decreases in the incident solar flux at the surface are obtained in the region. The simulated global mean shortwave radiative forcing at the top of the atmosphere, averaged over the 4 months, is -0.32 Wm-2. The accuracy of this calculation is discussed, and the importance of the Indonesian fires in particular and of biomass burning in general is assessed.
Solar forcing for CMIP6 (v3.2)
NASA Astrophysics Data System (ADS)
Matthes, Katja; Funke, Bernd; Andersson, Monika E.; Barnard, Luke; Beer, Jürg; Charbonneau, Paul; Clilverd, Mark A.; Dudok de Wit, Thierry; Haberreiter, Margit; Hendry, Aaron; Jackman, Charles H.; Kretzschmar, Matthieu; Kruschke, Tim; Kunze, Markus; Langematz, Ulrike; Marsh, Daniel R.; Maycock, Amanda C.; Misios, Stergios; Rodger, Craig J.; Scaife, Adam A.; Seppälä, Annika; Shangguan, Ming; Sinnhuber, Miriam; Tourpali, Kleareti; Usoskin, Ilya; van de Kamp, Max; Verronen, Pekka T.; Versick, Stefan
2017-06-01
This paper describes the recommended solar forcing dataset for CMIP6 and highlights changes with respect to CMIP5. The solar forcing is provided for radiative properties, namely total solar irradiance (TSI), solar spectral irradiance (SSI), and the F10.7 index as well as particle forcing, including geomagnetic indices Ap and Kp, and ionization rates to account for effects of solar protons, electrons, and galactic cosmic rays. This is the first time that a recommendation for solar-driven particle forcing has been provided for a CMIP exercise. The solar forcing datasets are provided at daily and monthly resolution separately for the CMIP6 preindustrial control, historical (1850-2014), and future (2015-2300) simulations. For the preindustrial control simulation, both constant and time-varying solar forcing components are provided, with the latter including variability on 11-year and shorter timescales but no long-term changes. For the future, we provide a realistic scenario of what solar behavior could be, as well as an additional extreme Maunder-minimum-like sensitivity scenario. This paper describes the forcing datasets and also provides detailed recommendations as to their implementation in current climate models.For the historical simulations, the TSI and SSI time series are defined as the average of two solar irradiance models that are adapted to CMIP6 needs: an empirical one (NRLTSI2-NRLSSI2) and a semi-empirical one (SATIRE). A new and lower TSI value is recommended: the contemporary solar-cycle average is now 1361.0 W m-2. The slight negative trend in TSI over the three most recent solar cycles in the CMIP6 dataset leads to only a small global radiative forcing of -0.04 W m-2. In the 200-400 nm wavelength range, which is important for ozone photochemistry, the CMIP6 solar forcing dataset shows a larger solar-cycle variability contribution to TSI than in CMIP5 (50 % compared to 35 %).We compare the climatic effects of the CMIP6 solar forcing dataset to its CMIP5 predecessor by using time-slice experiments of two chemistry-climate models and a reference radiative transfer model. The differences in the long-term mean SSI in the CMIP6 dataset, compared to CMIP5, impact on climatological stratospheric conditions (lower shortwave heating rates of -0.35 K day-1 at the stratopause), cooler stratospheric temperatures (-1.5 K in the upper stratosphere), lower ozone abundances in the lower stratosphere (-3 %), and higher ozone abundances (+1.5 % in the upper stratosphere and lower mesosphere). Between the maximum and minimum phases of the 11-year solar cycle, there is an increase in shortwave heating rates (+0.2 K day-1 at the stratopause), temperatures ( ˜ 1 K at the stratopause), and ozone (+2.5 % in the upper stratosphere) in the tropical upper stratosphere using the CMIP6 forcing dataset. This solar-cycle response is slightly larger, but not statistically significantly different from that for the CMIP5 forcing dataset.CMIP6 models with a well-resolved shortwave radiation scheme are encouraged to prescribe SSI changes and include solar-induced stratospheric ozone variations, in order to better represent solar climate variability compared to models that only prescribe TSI and/or exclude the solar-ozone response. We show that monthly-mean solar-induced ozone variations are implicitly included in the SPARC/CCMI CMIP6 Ozone Database for historical simulations, which is derived from transient chemistry-climate model simulations and has been developed for climate models that do not calculate ozone interactively. CMIP6 models without chemistry that perform a preindustrial control simulation with time-varying solar forcing will need to use a modified version of the SPARC/CCMI Ozone Database that includes solar variability. CMIP6 models with interactive chemistry are also encouraged to use the particle forcing datasets, which will allow the potential long-term effects of particles to be addressed for the first time. The consideration of particle forcing has been shown to significantly improve the representation of reactive nitrogen and ozone variability in the polar middle atmosphere, eventually resulting in further improvements in the representation of solar climate variability in global models.
Science support for the Earth radiation budget experiment
NASA Technical Reports Server (NTRS)
Coakley, James A., Jr.
1994-01-01
The work undertaken as part of the Earth Radiation Budget Experiment (ERBE) included the following major components: The development and application of a new cloud retrieval scheme to assess errors in the radiative fluxes arising from errors in the ERBE identification of cloud conditions. The comparison of the anisotropy of reflected sunlight and emitted thermal radiation with the anisotropy predicted by the Angular Dependence Models (ADM's) used to obtain the radiative fluxes. Additional studies included the comparison of calculated longwave cloud-free radiances with those observed by the ERBE scanner and the use of ERBE scanner data to track the calibration of the shortwave channels of the Advanced Very High Resolution Radiometer (AVHRR). Major findings included: the misidentification of cloud conditions by the ERBE scene identification algorithm could cause 15 percent errors in the shortwave flux reflected by certain scene types. For regions containing mixtures of scene types, the errors were typically less than 5 percent, and the anisotropies of the shortwave and longwave radiances exhibited a spatial scale dependence which, because of the growth of the scanner field of view from nadir to limb, gave rise to a view zenith angle dependent bias in the radiative fluxes.
NASA Astrophysics Data System (ADS)
Poliukhov, Aleksei; Chubarova, Natalia; Kinne, Stephan; Rivin, Gdaliy; Shatunova, Marina; Tarasova, Tatiana
2017-02-01
The radiation block of the COSMO non-hydrostatic mesoscale model of the atmosphere and soil active layer was tested against a relatively new effective CLIRAD(FC05)-SW radiation model and radiative measurements at the Moscow State University Meteorological Observatory (MSU MO, 55.7N, 37.5E) using different aerosol datasets in cloudless conditions. We used the data of shortwave radiation components from the Kipp&Zonen net radiometer CNR4. The model simulations were performed with the application of various aerosol climatologies including the new MACv2 climatology and the aerosol and water vapor dataset from CIMEL (AERONET) sun photometer measurements. The application of the new MACv2 climatology in the CLIRAD(FC05)-SW radiation model provides the annual average relative error of the total global radiation of -3% varying from 0.5% in May to -7.7% in December. The uncertainty of radiative calculations in the COSMO model according to preliminary estimates changes from 1.4% to 8.4%. against CLIRAD(FC05)-SW radiation model with the same parameters. We showed that in clear sky conditions the sensitivity of air temperature at 2 meters to shortwave net radiation changes is about 0.7-0.9°C per100 W/m2 due to the application of aerosol climatologies over Moscow.
NASA Astrophysics Data System (ADS)
Kazil, J.; Stier, P.; Zhang, K.; Quaas, J.; Kinne, S.; O'Donnell, D.; Rast, S.; Esch, M.; Ferrachat, S.; Lohmann, U.; Feichter, J.
2010-11-01
Nucleation from the gas phase is an important source of aerosol particles in the Earth's atmosphere, contributing to the number of cloud condensation nuclei, which form cloud droplets. We have implemented in the aerosol-climate model ECHAM5-HAM a new scheme for neutral and charged nucleation of sulfuric acid and water based on laboratory data, and nucleation of an organic compound and sulfuric acid using a parametrization of cluster activation based on field measurements. We give details of the implementation, compare results with observations, and investigate the role of the individual aerosol nucleation mechanisms for clouds and the Earth's radiative forcing. The results of our simulations are most consistent with observations when neutral and charged nucleation of sulfuric acid proceed throughout the troposphere and nucleation due to cluster activation is limited to the forested boundary layer. The globally averaged annual mean contributions of the individual nucleation processes to total absorbed solar short-wave radiation via the direct, semi-direct, indirect cloud-albedo and cloud-lifetime effects in our simulations are -1.15 W/m2 for charged H2SO4/H2O nucleation, -0.235 W/m2 for cluster activation, and -0.05 W/m2 for neutral H2SO4/H2O nucleation. The overall effect of nucleation is -2.55 W/m2, which exceeds the sum of the individual terms due to feedbacks and interactions in the model. Aerosol nucleation contributes over the oceans with -2.18 W/m2 to total absorbed solar short-wave radiation, compared to -0.37 W/m2 over land. We explain the higher effect of aerosol nucleation on Earth's radiative forcing over the oceans with the larger area covered by ocean clouds, due to the larger contrast in albedo between clouds and the ocean surface compared to continents, and the larger susceptibility of pristine clouds owing to the saturation of effects. The large effect of charged nucleation in our simulations is not in contradiction with small effects seen in local measurements: over southern Finland, where cluster activation proceeds efficiently, we find that charged nucleation of sulfuric acid and water contributes on average less than 10% to ultrafine aerosol concentrations, in good agreement with observations.
Slope effects on shortwave radiation components and net radiation
NASA Technical Reports Server (NTRS)
Walter-Shea, Elizabeth A.; Blad, Blaine L.; Hays, Cynthia J.; Mesarch, Mark A.
1992-01-01
The main objective of the International Satellite Land Surface Climatology Project (ISLSCP) has been stated as 'the development of techniques that may be applied to satellite observations of the radiation reflected and emitted from the Earth to yield quantitative information concerning land surface climatological conditions.' The major field study, FIFE (the First ISLSCP Field Experiment), was conducted in 1978-89 to accomplish this objective. Four intensive field campaigns (IFC's) were carried out in 1987 and one in 1989. Factors contributing to observed reflected radiation from the FIFE site must be understood before the radiation observed by satellites can be used to quantify surface processes. Analysis since our last report has focused on slope effects on incoming and outgoing shortwave radiation and net radiation from data collected in 1989.
Infrared Aerosol Radiative Forcing at the Surface and the Top of the Atmosphere
NASA Technical Reports Server (NTRS)
Markowicz, Krzysztof M.; Flatau, Piotr J.; Vogelmann, Andrew M.; Quinn, Patricia K.; Welton, Ellsworth J.
2003-01-01
We study the clear-sky aerosol radiative forcing at infrared wavelengths using data from the Aerosol Characterization Experiment (ACE-Asia) cruise of the NOAA R/V Ronald H. Brown. Limited number of data points is analyzed mostly from ship and collocated satellite values. An optical model is derived from chemical measurements, lidar profiles, and visible extinction measurements which is used to and estimate the infrared aerosol optical thickness and the single scattering albedo. The IR model results are compared to detailed Fourier Transform Interferometer based infrared aerosol forcing estimates, pyrgeometer based infrared downward fluxes, and against the direct solar forcing observations. This combined approach attests for the self-consistency of the optical model and allows to derive quantities such as the infrared forcing at the top of the atmosphere or the infrared optical thickness. The mean infrared aerosol optical thickness at 10 microns is 0.08 and the single scattering albedo is 0.55. The modeled infrared aerosol forcing reaches 10 W/sq m during the cruise, which is a significant contribution to the total direct aerosol forcing. The surface infrared aerosol radiative forcing is between 10 to 25% of the shortwave aerosol forcing. The infrared aerosol forcing at the top of the atmosphere can go up to 19% of the solar aerosol forcing. We show good agreement between satellite (CERES instrument) retrievals and model results at the top of the atmosphere. Over the Sea of Japan, the average infrared radiative forcing is 4.6 W/sq m in the window region at the surface and it is 1.5 W/sq m at top of the atmosphere. The top of the atmosphere IR forcing efficiency is a strong function of aerosol temperature while the surface IR forcing efficiency varies between 37 and 55 W/sq m (per infrared optical depth unit). and changes between 10 to 18 W/sq m (per infrared optical depth unit).
Aerosol optical properties and radiative effect under different weather conditions in Harbin, China
NASA Astrophysics Data System (ADS)
Mao, Qianjun; Huang, Chunlin; Zhang, Hengxing; Chen, Qixiang; Yuan, Yuan
2018-03-01
The aerosol optical properties and radiative effect under different weather conditions in Harbin (126.63°E, 45.75°N) were analyzed based on ground-based Sun/Sky radiometric (CE-318) measurements during September 2016-April 2017. The means values of aerosol optical depth (AOD500) and Angstrom exponent (AE440-870) were 0.37 ± 0.27 and 1.08 ± 0.33, respectively. The mean AOD500 under four weather conditions are apparently higher in severe pollution (Se-Po) days (0.80 ± 0.31) and moderate pollution (Mo-Po) days (0.53 ± 0.25) but lower in slight pollution (Sl-Po) days (0.37 ± 0.26) and no pollution (No-Po) days (0.26 ± 0.20), while the mean values of AE440-870 maintain high, varying from 0.98 to 1.25. The higher AE440-870 indicated that the air quality in Harbin is mainly affected by aerosols originated from anthropogenic sources. The daily values of shortwave (0.25-4 μm) direct aerosol radiative forcing (DARF) at top/bottom of atmosphere (TOA/BOA) were estimated through Santa Barbara DISORT Atmosphere Radiative Transfer (SBDART) model. Further, the aerosol radiative forcing efficiency (ARFE), radiation flux (RF) and atmosphere heating rate (HR) in Harbin were also estimated by the SBDART model.
Global radiative adjustment after a collapse of the Atlantic meridional overturning circulation
NASA Astrophysics Data System (ADS)
Drijfhout, Sybren S.
2015-10-01
The transient climate response to a collapse of the Atlantic meridional overturning circulation (AMOC) is analysed from the difference between two ensembles of climate model simulations with ECHAM5/MPI-OM, one with hosing and the other without hosing. The primary effect of the collapse is to redistribute heat over the two hemispheres. However, Northern Hemisphere sea ice increase in response to the AMOC collapse induces a hemisphere-wide cooling, amplified by atmospheric feedbacks, in particular water vapour. The Southern Hemisphere warming is governed by slower processes. After 25 years the global cooling peaks. Thereafter, the response is characterised by a gradual readjustment of global mean temperature. During the AMOC collapse a downward radiation anomaly arises at the top of the atmosphere (TOA), heating the earth's surface. The net downward radiation anomaly at TOA arises from reduced longwave emission by the atmosphere, overcompensating the increased net upward anomalies in shortwave and longwave radiation at the surface. This radiation anomaly is associated with net ocean heat uptake: cooling of the overlying atmosphere results from reduced ocean heat release through the increase of sea-ice cover in the North Atlantic. The change in energy flow arises from the reduction in latent and sensible heat flux, which dominate the surface radiation budget. Similar experiments with a climate model of intermediate complexity reveal a stronger shortwave response that acts to reduce the net downward radiation anomaly at TOA. The net shortwave and longwave radiation anomalies at TOA always decrease during the first 100 years after the AMOC collapse, but in the intermediate complexity model this is associated with a sign change after 90 years when the net radiation anomaly at TOA becomes upward, accompanied by net ocean heat loss. After several hundred years the longwave and shortwave anomalies increase again, while the net residual at TOA remains small. This radiative adjustment is associated with the transition to a colder climate.
Satellite Estimates of Surface Short-wave Fluxes: Issues of Implementation
NASA Technical Reports Server (NTRS)
Wang, H.; Pinker, Rachel; Minnis, Patrick
2006-01-01
Surface solar radiation reaching the Earth's surface is the primary forcing function of the land surface energy and water cycle. Therefore, there is a need for information on this parameter, preferably, at global scale. Satellite based estimates are now available at accuracies that meet the demands of many scientific objectives. Selection of an approach to estimate such fluxes requires consideration of trade-offs between the use of multi-spectral observations of cloud optical properties that are more difficult to implement at large scales, and methods that are simplified but easier to implement. In this study, an evaluation of such trade-offs will be performed. The University of Maryland Surface Radiation Model (UMD/SRB) has been used to reprocess five years of GOES-8 satellite observations over the United States to ensure updated calibration and improved cloud detection over snow. The UMD/SRB model was subsequently modified to allow input of information on aerosol and cloud optical depth with information from independent satellite sources. Specifically, the cloud properties from the Atmospheric Radiation Measurement (ARM) Satellite Data Analysis Program (Minnis et al., 1995) are used to drive the modified version of the model to estimate surface short-wave fluxes over the Southern Great Plain ARM sites for a twelve month period. The auxiliary data needed as model inputs such as aerosol optical depth, spectral surface albedo, water vapor and total column ozone amount were kept the same for both versions of the model. The estimated shortwave fluxes are evaluated against ground observations at the ARM Central Facility and four satellite ARM sites. During summer, the estimated fluxes based on cloud properties derived from the multi-spectral approach were in better agreement with ground measurements than those derived from the UMD/SRB model. However, in winter, the fluxes derived with the UMD/SRB model were in better agreement with ground observations than those estimated from cloud properties provided by the ARM Satellite Data Analysis Program. During the transition periods, the results were comparable.
NASA Technical Reports Server (NTRS)
Zhang, Taiping; Stackhouse, Paul W., Jr.; Gupta, Shashi K.; Cox, Stephen J.; Mikovitz, J. Colleen; Hinkelman, Laura M.
2013-01-01
The NASA/GEWEX Surface Radiation Budget (SRB) project has produced a 24.5-year continuous record of global shortwave and longwave radiation fluxes at TOA and the Earth's surface from satellite measurements. The time span of the data is from July 1983 to December 2007, and the spatial resolution is 11 latitude11 longitude. The inputs of the latest version (Release 3.0) include the GEOS Version 4.0.3 meteorological information and cloud properties derived from ISCCP DX data. The SRB products are available on 3-hourly, 3-hourly-monthly, daily and monthly time scales. To assess the quality of the product, we extensively validated the SRB data against 5969 site-months of groundbased measurements from 52 Baseline Surface Radiation Network (BSRN) stations. This paper describes first the characteristics of the BSRN data and the GEWEX SRB data, the methodology for quality control and processing of the shortwave BSRN data, and then the systematic SRB-BSRN comparisons. It is found that, except for occasional extreme outliers as seen in scatter plots, the satellite-based surface radiation data generally agree very well with BSRN measurements. Specifically, the bias/RMS for the daily and monthly mean shortwave fluxes are, respectively, -3.6/35.5 and -5.2/23.3W1 m2 under all-sky conditions.
NASA Astrophysics Data System (ADS)
Meloni, D.; Junkermann, W.; di Sarra, A.; Cacciani, M.; De Silvestri, L.; Di Iorio, T.; Estellés, V.; Gómez-Amo, J. L.; Pace, G.; Sferlazzo, D. M.
2015-04-01
Desert dust interacts with shortwave (SW) and longwave (LW) radiation, influencing the Earth radiation budget and the atmospheric vertical structure. Uncertainties on the dust role are large in the LW spectral range, where few measurements are available and the dust optical properties are not well constrained. The first airborne measurements of LW irradiance vertical profiles over the Mediterranean were carried out during the Ground-based and Airborne Measurements of Aerosol Radiative Forcing (GAMARF) campaign, which took place in spring 2008 at the island of Lampedusa. The experiment was aimed at estimating the vertical profiles of the SW and LW aerosol direct radiative forcing (ADRF) and heating rates (AHR), taking advantage of vertically resolved measurements of irradiances, meteorological parameters, and aerosol microphysical and optical properties. Two cases, characterized respectively by the presence of a homogeneous dust layer (3 May, with aerosol optical depth, AOD, at 500 nm of 0.59) and by a low aerosol burden (5 May, with AOD of 0.14), are discussed. A radiative transfer model was initialized with the measured vertical profiles and with different aerosol properties, derived from measurements or from the literature. The simulation of the irradiance vertical profiles, in particular, provides the opportunity to constrain model-derived estimates of the AHR. The measured SW and LW irradiances were reproduced when the model was initialized with the measured aerosol size distributions and refractive indices. For the dust case, the instantaneous (solar zenith angle, SZA, of 55.1°) LW-to-SW ADRF ratio was 23% at the surface and 11% at the top of the atmosphere (TOA), with a more significant LW contribution on a daily basis (52% at the surface and 26% at TOA), indicating a relevant reduction of the SW radiative effects. The AHR profiles followed the aerosol extinction profile, with comparable peaks in the SW (0.72 ± 0.11 K d-1) and in the LW (-0.52 ± 0.12 K d-1) for the considered SZA. On a daily basis, the absolute value of the heating rate was larger in the LW than in the SW, producing a net cooling effect at specific levels. These are quite unexpected results, emphasizing the important role of LW radiation.
Characterizing energy budget variability at a Sahelian site: a test of NWP model behaviour
NASA Astrophysics Data System (ADS)
Mackie, Anna; Palmer, Paul I.; Brindley, Helen
2017-12-01
We use observations of surface and top-of-the-atmosphere (TOA) broadband radiation fluxes determined from the Atmospheric Radiation Measurement programme mobile facility, the Geostationary Earth Radiation Budget (GERB) and Spinning Enhanced Visible and Infrared Imager (SEVIRI) instruments and a range of meteorological variables at a site in the Sahel to test the ability of the ECMWF Integrated Forecasting System cycle 43r1 to describe energy budget variability. The model has daily average biases of -12 and 18 W m-2 for outgoing longwave and reflected shortwave TOA radiation fluxes, respectively. At the surface, the daily average bias is 12(13) W m-2 for the longwave downwelling (upwelling) radiation flux and -21(-13) W m-2 for the shortwave downwelling (upwelling) radiation flux. Using multivariate linear models of observation-model differences, we attribute radiation flux discrepancies to physical processes, and link surface and TOA fluxes. We find that model biases in surface radiation fluxes are mainly due to a low bias in ice water path (IWP), poor description of surface albedo and model-observation differences in surface temperature. We also attribute observed discrepancies in the radiation fluxes, particularly during the dry season, to the misrepresentation of aerosol fields in the model from use of a climatology instead of a dynamic approach. At the TOA, the low IWP impacts the amount of reflected shortwave radiation while biases in outgoing longwave radiation are additionally coupled to discrepancies in the surface upwelling longwave flux and atmospheric humidity.
NASA Astrophysics Data System (ADS)
Malek, E.
2007-12-01
Clouds are visible masses of condensed droplets and frozen crystals of water in the atmosphere above the Earth. They make changes in the energy balance at local, regional, and planetary scales. They affect the climate by positive and negative feedback. To study these effects at local scale, we set up a radiation station which uses two CM21 Kipp & Zonen pyranometers (one inverted), and two CG1 Kipp & Zonen pyrgeometers (one inverted) in a semi-arid mountainous valley in Logan, Utah, U.S.A. The pyranometers and pyrgeometers were ventilated using four CV2 Kipp & Zonen ventilation systems. Ventilation of pyranometers and pyrgeometers prevents dew and frost and snow accumulation which otherwise would disturb the measurement. All sensors were installed at about 3 m above the ground, which is covered with natural vegetation during the growing season (May - September). The incoming (Rsi) and outgoing (Rso) solar or shortwave radiation, the incoming (Rli, atmospheric) and outgoing (Rlo, terrestrial) longwave radiation, along with the 2-m air temperature, humidity, and pressure have been continuously measured since 1995. We also measured the 3-m wind speed and direction, the surface temperature (using an IR thermometer) and precipitation (using a heated rain gauge). These parameters have been measured every 2 seconds and averaged into 20 minutes. For this study we chose three days: 6 April (a partially cloudy day), 29 July (a cloudless day), and 29 November (an overcast day), 2005, along with continuous study throughout the year 2005. We developed an algorithm for evaluation of cloudless-sky incoming (atmospheric) longwave radiation. Equations for cloudless-sky incoming shortwave and atmospheric longwave radiation were applied to compare the cloud-free measurements with the actual ones. Cloudless - measured incoming shortwave (solar) radiation is an indication of how much less radiation was received due to cloudiness (if any). Measured - cloudless incoming longwave (atmospheric) radiation shows the cloud (if any) contribution to the radiation budget. The results indicate that for the partial cloudy day of 6 April, 2005, cloudiness caused less shortwave radiation 23.29 - 13.76 = 9.53 MJ m-2 d-1 received at the surface. On the same day cloud contributed an additional radiation of 25.44 - 23.44 = 2.00 MJ m-2 d-1. On 29 November, 2005, these values were 9.37 - 1.98 = 7.39 and 28.82 - 23.86 = 4.96 MJ m-2 d-1, respectively. On the annual basis, the 2005 cloudiness caused a reduction of 7279 - 5800 = 1479 MJ m-2 y-1 for the shortwave radiation, while the additional longwave radiation due to cloudiness amounted to 9976 - 9573 = 403 MJ m-2 y-1. The cloudiness in 2005 caused a negative feedback on the climate in this valley.
First global WCRP shortwave surface radiation budget dataset
NASA Technical Reports Server (NTRS)
Whitlock, C. H.; Charlock, T. P.; Staylor, W. F.; Pinker, R. T.; Laszlo, I.; Ohmura, A.; Gilgen, H.; Konzelman, T.; Dipasquale, R. C.; Moats, C. D.
1995-01-01
Shortwave radiative fluxes that reach the earth's surface are key factors that influence atmospheric and oceanic circulations as well as surface climate. Yet, information on these fluxes is meager. Surface site data are generally available from only a limited number of observing stations over land. Much less is known about the large-scale variability of the shortwave radiative fluxes over the oceans, which cover most of the globe. Recognizing the need to produce global-scale fields of such fluxes for use in climate research, the World Climate Research Program has initiated activities that led to the establishment of the Surface Radiation Budget Climatology Project with the ultimate goal to determine various components of the surface radiation budget from satellite data. In this paper, the first global products that resulted from this activity are described. Monthly and daily data on a 280-km grid scale are available. Samples of climate parameters obtainable from the dataset are presented. Emphasis is given to validation and limitations of the results. For most of the globe, satellite estimates have bias values between +/- 20 W/sq m and root mean square (rms) values are around 25 W/sq m. There are specific regions with much larger uncertainties however.
First global WCRP shortwave surface radiation budget dataset
NASA Technical Reports Server (NTRS)
Whitlock, C. H.; Charlock, T. P.; Staylor, W. F.; Pinker, R. T.; Laszlo, I.; Ohmura, A.; Gilgen, H.; Konzelman, T.; DiPasquale, R. C.; Moats, C. D.
1995-01-01
Shortwave radiative fluxes that reach the Earth's surface are key factors that influence atmospheric and oceanic circulations as well as surface climate. Yet, information on these fluxes is meager. Surface site data are generally available from only a limited number of observing stations over land. Much less is known about the large-scale variability of the shortwave radiative fluxes over the oceans, which cover most of the globe. Recognizing the need to produce global-scale fields of such fluxes for use in climate research, the World Climate Research Program has initiated activities that led to the establishment of the Surface Radiation Budget Climatology Project with the ultimate goal to determine various components of the surface radiation budget from satellite data. In this paper, the first global products that resulted from this activity are described. Monthly and daily data on a 280-km grid scale are available. Samples of climate parameters obtainable from the dataset are presented. Emphasis is given to validation and limitations of the results. For most of the globe, satellite estimates have bias values between +/- 20 W/sq m and rms values are around 25 W/sq m. There are specific regions with much larger uncertainties however.
From Radio to X-rays--Some 'Real' Electrical Applications.
ERIC Educational Resources Information Center
Freeman, J. C.
1986-01-01
Describes practical applications related to X-rays, ultra-violet radiation, light radiation, short-wave infra-red radiation, medium-wave infra-red radiation, long-wave infra-red radiation, microwave radiation, and radio frequency radiation. Suggests that these applications be used during instruction on electricity. (JN)
Aerosol Absorption and Radiative Forcing
NASA Technical Reports Server (NTRS)
Stier, Philip; Seinfeld, J. H.; Kinne, Stefan; Boucher, Olivier
2007-01-01
We present a comprehensive examination of aerosol absorption with a focus on evaluating the sensitivity of the global distribution of aerosol absorption to key uncertainties in the process representation. For this purpose we extended the comprehensive aerosol-climate model ECHAM5-HAM by effective medium approximations for the calculation of aerosol effective refractive indices, updated black carbon refractive indices, new cloud radiative properties considering the effect of aerosol inclusions, as well as by modules for the calculation of long-wave aerosol radiative properties and instantaneous aerosol forcing. The evaluation of the simulated aerosol absorption optical depth with the AERONET sun-photometer network shows a good agreement in the large scale global patterns. On a regional basis it becomes evident that the update of the BC refractive indices to Bond and Bergstrom (2006) significantly improves the previous underestimation of the aerosol absorption optical depth. In the global annual-mean, absorption acts to reduce the shortwave anthropogenic aerosol top-of-atmosphere (TOA) radiative forcing clear-sky from -0.79 to -0.53 W m(sup -2) (33%) and all-sky from -0.47 to -0.13W m(sup -2 (72%). Our results confirm that basic assumptions about the BC refractive index play a key role for aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations is comparably small. We demonstrate that the diversity in the AeroCom land-surface albedo fields contributes to the uncertainty in the simulated anthropogenic aerosol radiative forcings: the usage of an upper versus lower bound of the AeroCom land albedos introduces a global annual-mean TOA forcing range of 0.19W m(sup -2) (36%) clear-sky and of 0.12W m(sup -2) (92%) all-sky. The consideration of black carbon inclusions on cloud radiative properties results in a small global annual-mean all-sky absorption of 0.05W m(sup -2) and a positive TOA forcing perturbation of 0.02W m(sup -2). The long-wave aerosol radiative effects are small for anthropogenic aerosols but become of relevance for the larger natural dust and sea-salt aerosols.
Impacts of solar-absorbing aerosol layers on the transition of stratocumulus to trade cumulus clouds
Zhou, Xiaoli; Ackerman, Andrew S.; Fridlind, Ann M.; ...
2017-10-26
Here, the effects of an initially overlying layer of solar-absorbing aerosol on the transition of stratocumulus to trade cumulus clouds are examined using large-eddy simulations. For lightly drizzling cloud the transition is generally hastened, resulting mainly from increased cloud droplet number concentration ( N c) induced by entrained aerosol. The increased N c slows sedimentation of cloud droplets and shortens their relaxation time for diffusional growth, both of which accelerate entrainment of overlying air and thereby stratocumulus breakup. However, the decrease in albedo from cloud breakup is more than offset by redistributing cloud water over a greater number of droplets,more » such that the diurnal-average shortwave forcing at the top of the atmosphere is negative. The negative radiative forcing is enhanced by sizable longwave contributions, which result from the greater cloud breakup and a reduced boundary layer height associated with aerosol heating. A perturbation of moisture instead of aerosol aloft leads to a greater liquid water path and a more gradual transition. Adding absorbing aerosol to that atmosphere results in substantial reductions in liquid water path (LWP) and cloud cover that lead to positive shortwave and negative longwave forcings on average canceling each other. Only for heavily drizzling clouds is the breakup delayed, as inhibition of precipitation overcomes cloud water loss from enhanced entrainment. Considering these simulations as an imperfect proxy for biomass burning plumes influencing Namibian stratocumulus, we expect regional indirect plus semi-direct forcings to be substantially negative to negligible at the top of the atmosphere, with its magnitude sensitive to background and perturbation properties.« less
Impacts of solar-absorbing aerosol layers on the transition of stratocumulus to trade cumulus clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xiaoli; Ackerman, Andrew S.; Fridlind, Ann M.
Here, the effects of an initially overlying layer of solar-absorbing aerosol on the transition of stratocumulus to trade cumulus clouds are examined using large-eddy simulations. For lightly drizzling cloud the transition is generally hastened, resulting mainly from increased cloud droplet number concentration ( N c) induced by entrained aerosol. The increased N c slows sedimentation of cloud droplets and shortens their relaxation time for diffusional growth, both of which accelerate entrainment of overlying air and thereby stratocumulus breakup. However, the decrease in albedo from cloud breakup is more than offset by redistributing cloud water over a greater number of droplets,more » such that the diurnal-average shortwave forcing at the top of the atmosphere is negative. The negative radiative forcing is enhanced by sizable longwave contributions, which result from the greater cloud breakup and a reduced boundary layer height associated with aerosol heating. A perturbation of moisture instead of aerosol aloft leads to a greater liquid water path and a more gradual transition. Adding absorbing aerosol to that atmosphere results in substantial reductions in liquid water path (LWP) and cloud cover that lead to positive shortwave and negative longwave forcings on average canceling each other. Only for heavily drizzling clouds is the breakup delayed, as inhibition of precipitation overcomes cloud water loss from enhanced entrainment. Considering these simulations as an imperfect proxy for biomass burning plumes influencing Namibian stratocumulus, we expect regional indirect plus semi-direct forcings to be substantially negative to negligible at the top of the atmosphere, with its magnitude sensitive to background and perturbation properties.« less
Impacts of solar-absorbing aerosol layers on the transition of stratocumulus to trade cumulus clouds
NASA Astrophysics Data System (ADS)
Zhou, Xiaoli; Ackerman, Andrew S.; Fridlind, Ann M.; Wood, Robert; Kollias, Pavlos
2017-10-01
The effects of an initially overlying layer of solar-absorbing aerosol on the transition of stratocumulus to trade cumulus clouds are examined using large-eddy simulations. For lightly drizzling cloud the transition is generally hastened, resulting mainly from increased cloud droplet number concentration (Nc) induced by entrained aerosol. The increased Nc slows sedimentation of cloud droplets and shortens their relaxation time for diffusional growth, both of which accelerate entrainment of overlying air and thereby stratocumulus breakup. However, the decrease in albedo from cloud breakup is more than offset by redistributing cloud water over a greater number of droplets, such that the diurnal-average shortwave forcing at the top of the atmosphere is negative. The negative radiative forcing is enhanced by sizable longwave contributions, which result from the greater cloud breakup and a reduced boundary layer height associated with aerosol heating. A perturbation of moisture instead of aerosol aloft leads to a greater liquid water path and a more gradual transition. Adding absorbing aerosol to that atmosphere results in substantial reductions in liquid water path (LWP) and cloud cover that lead to positive shortwave and negative longwave forcings on average canceling each other. Only for heavily drizzling clouds is the breakup delayed, as inhibition of precipitation overcomes cloud water loss from enhanced entrainment. Considering these simulations as an imperfect proxy for biomass burning plumes influencing Namibian stratocumulus, we expect regional indirect plus semi-direct forcings to be substantially negative to negligible at the top of the atmosphere, with its magnitude sensitive to background and perturbation properties.
Impacts of Solar-Absorbing Aerosol Layers on the Transition of Stratocumulus to Trade Cumulus Clouds
NASA Technical Reports Server (NTRS)
Zhou, Xiaoli; Ackerman, Andrew S.; Fridlind, Ann M.; Wood, Robert; Kollias, Pavlos
2017-01-01
The effects of an initially overlying layer of solar-absorbing aerosol on the transition of stratocumulus to trade cumulus clouds are examined using large-eddy simulations. For lightly drizzling cloud the transition is generally hastened, resulting mainly from increased cloud droplet number concentration (Nc) induced by entrained aerosol. The increased Nc slows sedimentation of cloud droplets and shortens their relaxation time for diffusional growth, both of which accelerate entrainment of overlying air and thereby stratocumulus breakup. However, the decrease in albedo from cloud breakup is more than offset by redistributing cloud water over a greater number of droplets, such that the diurnal-average shortwave forcing at the top of the atmosphere is negative. The negative radiative forcing is enhanced by sizable longwave contributions, which result from the greater cloud breakup and a reduced boundary layer height associated with aerosol heating. A perturbation of moisture instead of aerosol aloft leads to a greater liquid water path and a more gradual transition. Adding absorbing aerosol to that atmosphere results in substantial reductions in liquid water path (LWP) and cloud cover that lead to positive short-wave and negative longwave forcings on average canceling each other. Only for heavily drizzling clouds is the breakup delayed, as inhibition of precipitation overcomes cloud water loss from enhanced entrainment. Considering these simulations as an imperfect proxy for biomass burning plumes influencing Namibian stratocumulus, we expect regional indirect plus semi-direct forcings to be substantially negative to negligible at the top of the atmosphere, with its magnitude sensitive to background and perturbation properties.
NASA Astrophysics Data System (ADS)
Sanchez, Kevin J.; Roberts, Gregory C.; Calmer, Radiance; Nicoll, Keri; Hashimshoni, Eyal; Rosenfeld, Daniel; Ovadnevaite, Jurgita; Preissler, Jana; Ceburnis, Darius; O'Dowd, Colin; Russell, Lynn M.
2017-08-01
Top-down and bottom-up aerosol-cloud shortwave radiative flux closures were conducted at the Mace Head Atmospheric Research Station in Galway, Ireland, in August 2015. This study is part of the BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) European collaborative project, with the goal of understanding key processes affecting aerosol-cloud shortwave radiative flux closures to improve future climate predictions and develop sustainable policies for Europe. Instrument platforms include ground-based unmanned aerial vehicles (UAVs)1 and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1-D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction or a five-hole probe for 3-D wind vectors. UAV cloud measurements are rare and have only become possible in recent years through the miniaturization of instrumentation. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF) by between 25 and 60 W m-2. After accounting for entrainment, satellite-derived cloud droplet number concentrations (CDNCs) were within 30 % of simulated CDNC. In cases with a well-mixed boundary layer, δRF is no greater than 20 W m-2 after accounting for cloud-top entrainment and up to 50 W m-2 when entrainment is not taken into account. In cases with a decoupled boundary layer, cloud microphysical properties are inconsistent with ground-based aerosol measurements, as expected, and δRF is as high as 88 W m-2, even high (> 30 W m-2) after accounting for cloud-top entrainment. This work demonstrates the need to take in situ measurements of aerosol properties for cases where the boundary layer is decoupled as well as consider cloud-top entrainment to accurately model stratocumulus cloud radiative flux. 1The regulatory term for UAV is remotely piloted aircraft (RPA).
NASA Technical Reports Server (NTRS)
deGoncalves, Luis Gustavo G.; Shuttleworth, William J.; Vila, Daniel; Larroza, Elaine; Bottino, Marcus J.; Herdies, Dirceu L.; Aravequia, Jose A.; De Mattos, Joao G. Z.; Toll, David L.; Rodell, Matthew;
2008-01-01
The definition and derivation of a 5-year, 0.125deg, 3-hourly atmospheric forcing dataset for the South America continent is described which is appropriate for use in a Land Data Assimilation System and which, because of the limited surface observational networks available in this region, uses remotely sensed data merged with surface observations as the basis for the precipitation and downward shortwave radiation fields. The quality of this data set is evaluated against available surface observations. There are regional difference in the biases for all variables in the dataset, with biases in precipitation of the order 0-1 mm/day and RMSE of 5-15 mm/day, biases in surface solar radiation of the order 10 W/sq m and RMSE of 20 W/sq m, positive biases in temperature typically between 0 and 4 K, depending on region, and positive biases in specific humidity around 2-3 g/Kg in tropical regions and negative biases around 1-2 g/Kg further south.
Variability of aerosol optical depth and aerosol radiative forcing over Northwest Himalayan region
NASA Astrophysics Data System (ADS)
Saheb, Shaik Darga; Kant, Yogesh; Mitra, D.
2016-05-01
In recent years, the aerosol loading in India is increasing that has significant impact on the weather/climatic conditions. The present study discusses the analysis of temporal (monthly and seasonal) variation of aerosol optical depth(AOD) by the ground based observations from sun photometer and estimate the aerosol radiative forcing and heating rate over selected station Dehradun in North western Himalayas, India during 2015. The in-situ measurements data illustrate that the maximum seasonal average AOD observed during summer season AOD at 500nm ≍ 0.59+/-0.27 with an average angstrom exponent, α ≍0.86 while minimum during winter season AOD at 500nm ≍ 0.33+/-0.10 with angstrom exponent, α ≍1.18. The MODIS and MISR derived AOD was also compared with the ground measured values and are good to be in good agreement. Analysis of air mass back trajectories using HYSPLIT model reveal that the transportation of desert dust during summer months. The Optical Properties of Aerosols and clouds (OPAC) model was used to compute the aerosol optical properties like single scattering albedo (SSA), Angstrom coefficient (α) and Asymmetry(g) parameter for each day of measurement and they are incorporated in a Discrete Ordinate Radiative Transfer model, i.e Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) to estimate the direct short-wave (0.25 to 4 μm) Aerosol Radiative forcing at the Surface (SUR), the top-of-atmosphere (TOA) and Atmosphere (ATM). The maximum Aerosol Radiative Forcing (ARF) was observed during summer months at SUR ≍ -56.42 w/m2, at TOA ≍-21.62 w/m2 whereas in ATM ≍+34.79 w/m2 with corresponding to heating rate 1.24°C/day with in lower atmosphere.
NASA Astrophysics Data System (ADS)
Christensen, M.; McGarragh, G.; Thomas, G.; Povey, A.; Proud, S.; Poulsen, C. A.; Grainger, R. G.
2016-12-01
Radiative forcing by clouds, aerosols, and their interactions constitute some of the largest sources of uncertainties in the climate system (Chapter 7 IPCC, 2013). It is essential to understand the past through examination of long-term satellite observation records to provide insight into the uncertainty characteristics of these radiative forcers. As part of the ESA CCI (Climate Change Initiative) we have recently implemented a broadband radiative flux algorithm (known as BUGSrad) into the Optimal Retrieval for Aerosol and Cloud (ORAC) scheme. ORAC achieves radiative consistency of its aerosol and cloud products through an optimal estimation scheme and is highly versatile, enabling retrievals for numerous satellite sensors: ATSR, MODIS, VIIRS, AVHRR, SLSTR, SEVIRI, and AHI. An analysis of the 17-year well-calibrated Along Track Scanning Radiometer (ATSR) data is used to quantify trends in cloud and aerosol radiative effects over a wide range of spatiotemporal scales. The El Niño Southern Oscillation stands out as the largest contributing mode of variability to the radiative energy balance (long wave and shortwave fluxes) at the top of the atmosphere. Furthermore, trends in planetary albedo show substantial decreases across the Arctic Ocean (likely due to the melting of sea ice and snow) and modest increases in regions dominated by stratocumulus (e.g., off the coast of California) through notable increases in cloud fraction and liquid water path. Finally, changes in volcanic activity and biomass burning aerosol over this period show sizeable radiative forcing impacts at local-scales. We will demonstrate that radiative forcing from aerosols and clouds have played a significant role in the identified key climate processes using 17 years of satellite observational data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magi, Brian; Fu, Q.; Redemann, Jens
2008-03-13
We estimate the shortwave, diurnally-averaged direct radiative forcing (RF) of the biomass burning aerosol characterized by measurements made from the University of Washington (UW) research aircraft during the Southern African Regional Science Initiative in August and September 2000 (SAFARI-2000). We describe the methodology used to arrive at the best estimates of the measurement-based RF and discuss the confidence intervals of the estimates of RF that arise from uncertainties in measurements and assumptions necessary to describe the aerosol optical properties. We apply the methodology to the UW aircraft vertical profiles and estimate that the top of the atmosphere RF (RFtoa) rangesmore » from -1.5±3.2 to -14.4±3.5 W m-2, while the surface RF (RFsfc) ranges from -10.5±2.4 to -81.3±7.5 W m-2. These estimates imply that the aerosol RF of the atmosphere (RFatm) ranges from 5.0±2.3 to 73.3±11.0 W m-2. We compare some of the estimates to RF that we estimate using Aerosol Robotic Network (AERONET) aerosol optical properties, and show that the agreement is 2 of good for RFtoa, but poor for RFsfc. We also show that linear models accurately describe the relationship of RF with the aerosol optical depth at a wavelength of 550 nm (τ550). This relationship is known as the radiative forcing efficiency (RFE) and we find that RFtoa (unlike RFatm and RFsfc) depends not only on variations in τ550, but that the linear model itself is dependent on the magnitude of τ550. We then apply the models for RFE to daily τ550 derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite to estimate the RF over southern Africa from March 2000 to December 2006. Using the combination of UW and MODIS data, we find that the annual RFtoa, RFatm, and RFsfc over the region is -4.7±2.7 W m-2, 11.4±5.7 W m-2, and -18.3±5.8 W m-2, respectively.« less
Climate data induced uncertainty in model-based estimations of terrestrial primary productivity
NASA Astrophysics Data System (ADS)
Wu, Zhendong; Ahlström, Anders; Smith, Benjamin; Ardö, Jonas; Eklundh, Lars; Fensholt, Rasmus; Lehsten, Veiko
2017-06-01
Model-based estimations of historical fluxes and pools of the terrestrial biosphere differ substantially. These differences arise not only from differences between models but also from differences in the environmental and climatic data used as input to the models. Here we investigate the role of uncertainties in historical climate data by performing simulations of terrestrial gross primary productivity (GPP) using a process-based dynamic vegetation model (LPJ-GUESS) forced by six different climate datasets. We find that the climate induced uncertainty, defined as the range among historical simulations in GPP when forcing the model with the different climate datasets, can be as high as 11 Pg C yr-1 globally (9% of mean GPP). We also assessed a hypothetical maximum climate data induced uncertainty by combining climate variables from different datasets, which resulted in significantly larger uncertainties of 41 Pg C yr-1 globally or 32% of mean GPP. The uncertainty is partitioned into components associated to the three main climatic drivers, temperature, precipitation, and shortwave radiation. Additionally, we illustrate how the uncertainty due to a given climate driver depends both on the magnitude of the forcing data uncertainty (climate data range) and the apparent sensitivity of the modeled GPP to the driver (apparent model sensitivity). We find that LPJ-GUESS overestimates GPP compared to empirically based GPP data product in all land cover classes except for tropical forests. Tropical forests emerge as a disproportionate source of uncertainty in GPP estimation both in the simulations and empirical data products. The tropical forest uncertainty is most strongly associated with shortwave radiation and precipitation forcing, of which climate data range contributes higher to overall uncertainty than apparent model sensitivity to forcing. Globally, precipitation dominates the climate induced uncertainty over nearly half of the vegetated land area, which is mainly due to climate data range and less so due to the apparent model sensitivity. Overall, climate data ranges are found to contribute more to the climate induced uncertainty than apparent model sensitivity to forcing. Our study highlights the need to better constrain tropical climate, and demonstrates that uncertainty caused by climatic forcing data must be considered when comparing and evaluating carbon cycle model results and empirical datasets.
Flight solar calibrations using the Mirror Attenuator Mosaic (MAM): Low scattering mirror
NASA Technical Reports Server (NTRS)
Lee, Robert B., III
1992-01-01
Measurements of solar radiances reflected from the mirror attenuator mosaic (MAM) were used to calibrate the shortwave portions of the Earth Radiation Budget Experiment (ERBE) thermistor bolometer scanning radiometers. The MAM is basically a low scattering mirror which has been used to attenuate and reflect solar radiation into the fields of view for the broadband shortwave (0.2 to 5 micrometers) and total (0.2 to 50.0+ micrometers) ERBE scanning radiometers. The MAM assembly consists of a tightly packed array of aluminum, 0.3175-cm diameter concave spherical mirrors and field of view limiting baffles. The spherical mirrors are masked by a copper plate, electro-plated with black chrome. Perforations (0.14 centimeter in diameter) in the copper plate serve as apertures for the mirrors. Black anodized aluminum baffles limit the MAM clear field of view to 7.1 degrees. The MAM assemblies are located on the Earth Radiation Budget Satellite (ERBS) and on the National Oceanic and Atmospheric Administration NOAA-9 and NOAA-10 spacecraft. The 1984-1985 ERBS and 1985-1986 NOAA-9 solar calibration datasets are presented. Analyses of the calibrations indicate that the MAM exhibited no detectable degradation in its reflectance properties and that the gains of the shortwave scanners did not change. The stability of the shortwave radiometers indicates that the transmission of the Suprasil W1 filters did not degrade detectably when exposed to Earth/atmosphere-reflected solar radiation.
Studies of the net surface radiative flux from satellite radiances during FIFE
NASA Technical Reports Server (NTRS)
Frouin, Robert
1993-01-01
Studies of the net surface radiative flux from satellite radiances during First ISLSCP Field Experiment (FIFE) are presented. Topics covered include: radiative transfer model validation; calibration of VISSR and AVHRR solar channels; development and refinement of algorithms to estimate downward solar and terrestrial irradiances at the surface, including photosynthetically available radiation (PAR) and surface albedo; verification of these algorithms using in situ measurements; production of maps of shortwave irradiance, surface albedo, and related products; analysis of the temporal variability of shortwave irradiance over the FIFE site; development of a spectroscopy technique to estimate atmospheric total water vapor amount; and study of optimum linear combinations of visible and near-infrared reflectances for estimating the fraction of PAR absorbed by plants.
NASA Astrophysics Data System (ADS)
Fiedler, S.; Stevens, B.; Mauritsen, T.
2017-12-01
State-of-the-art climate models have persistently shown a spread in estimates of the effective radiative forcing (ERF) associated with anthropogenic aerosol. Different reasons for the spread are known, but their relative importance is poorly understood. In this presentation we investigate the role of natural atmospheric variability, global patterns of aerosol radiative effects, and magnitudes of aerosol-cloud interaction in controlling the ERF of anthropogenic aerosol (Fiedler et al., 2017). We use the Earth system model MPI-ESM1.2 for conducting ensembles of atmosphere-only simulations and calculate the shortwave ERF of anthropogenic aerosol at the top of the atmosphere. The radiative effects are induced with the new parameterisation MACv2-SP (Stevens et al., 2017) that prescribes observationally constrained anthropogenic aerosol optical properties and an associated Twomey effect. Firstly, we compare the ERF of global patterns of anthropogenic aerosol from the mid-1970s and today. Our results suggest that such a substantial pattern difference has a negligible impact on the global mean ERF, when the natural variability of the atmosphere is considered. The clouds herein efficiently mask the clear-sky contributions to the forcing and reduce the detectability of significant anthropogenic aerosol radiative effects in all-sky conditions. Secondly, we strengthen the forcing magnitude through increasing the effect of aerosol-cloud interaction by prescribing an enhanced Twomey effect. In that case, the different spatial pattern of aerosol radiative effects from the mid-1970s and today causes a moderate change (15%) in the ERF of anthropogenic aerosol in our model. This finding lets us speculate that models with strong aerosol-cloud interactions would show a stronger ERF change with anthropogenic aerosol patterns. Testing whether the anthropogenic aerosol radiative forcing is model-dependent under prescribed aerosol conditions is currently ongoing work using MACv2-SP in comprehensive aerosol-climate models in the framework of the EU-funded project BACCHUS. In the future, MACv2-SP will be used in models participating in the Radiative Forcing Model Intercomparison Project (Pincus et al., 2016).
Transport and radiative impacts of atmospheric pollen using online, observation-based emissions
NASA Astrophysics Data System (ADS)
Wozniak, M. C.; Steiner, A. L.; Solmon, F.; Li, Y.
2015-12-01
Atmospheric pollen emitted from trees and grasses exhibits both a high temporal variability and a highly localized spatial distribution that has been difficult to quantify in the atmosphere. Pollen's radiative impact is also not quantified because it is neglected in climate modeling studies. Here we couple an online, meteorological active pollen emissions model guided by observations of airborne pollen to understand the role of pollen in the atmosphere. We use existing pollen counts from 2003-2008 across the continental U.S. in conjunction with a tree database and historical meteorological data to create an observation-based phenological model that produces accurately scaled and timed emissions. These emissions are emitted and transported within the regional climate model (RegCM4) and the direct radiative effect is calculated. Additionally, we simulate the rupture of coarse pollen grains into finer particles by adding a second size mode for pollen emissions, which contributes to the shortwave radiative forcing and also has an indirect effect on climate.
NASA Technical Reports Server (NTRS)
Redemann, Jens; Russell, Philip B.; Winker, David M.; McCormick, M. Patrick; Hipskind, R. Stephen (Technical Monitor)
2000-01-01
The current low confidence in the estimates of aerosol-induced perturbations of Earth's radiation balance is caused by the highly non-uniform compositional, spatial and temporal distributions of tropospheric aerosols on a global scale owing to their heterogeneous sources and short lifetimes. Nevertheless, recent studies have shown that the inclusion of aerosol effects in climate model calculations can improve agreement with observed spatial and temporal temperature distributions. In light of the short lifetimes of aerosols, determination of their global distribution with space-borne sensors seems to be a necessary approach. Until recently, satellite measurements of tropospheric aerosols have been approximate and did not provide the full set of information required to determine their radiative effects. With the advent of active aerosol remote sensing from space (e.g., PICASSO-CENA), the applicability fo lidar-derived aerosol 180 deg -backscatter data to radiative flux calculations and hence studies of aerosol effects on climate needs to be investigated.
NASA Astrophysics Data System (ADS)
Menzel, R.; Paynter, D.; Jones, A. L.
2017-12-01
Due to their relatively low computational cost, radiative transfer models in global climate models (GCMs) run on traditional CPU architectures generally consist of shortwave and longwave parameterizations over a small number of wavelength bands. With the rise of newer GPU and MIC architectures, however, the performance of high resolution line-by-line radiative transfer models may soon approach those of the physical parameterizations currently employed in GCMs. Here we present an analysis of the current performance of a new line-by-line radiative transfer model currently under development at GFDL. Although originally designed to specifically exploit GPU architectures through the use of CUDA, the radiative transfer model has recently been extended to include OpenMP in an effort to also effectively target MIC architectures such as Intel's Xeon Phi. Using input data provided by the upcoming Radiative Forcing Model Intercomparison Project (RFMIP, as part of CMIP 6), we compare model results and performance data for various model configurations and spectral resolutions run on both GPU and Intel Knights Landing architectures to analogous runs of the standard Oxford Reference Forward Model on traditional CPUs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quaas, Johannes; Ming, Yi; Menon, Surabi
2009-04-10
Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterizes aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (Ta) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found thatmore » the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over the ocean. The relationship between Ta and liquid water path is simulated much too strongly by the models. It is shown that this is partly related to the representation of the second aerosol indirect effect in terms of autoconversion. A positive relationship between total cloud fraction (fcld) and Ta as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld - Ta relationship, our results indicate that none can be identified as unique explanation. Relationships similar to the ones found in satellite data between Ta and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - Ta relationship show a strong positive correlation between Ta and fcld The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of Ta, and parameterisation assumptions such as a lower bound on Nd. Nevertheless, the strengths of the statistical relationships are good predictors for the aerosol forcings in the models. An estimate of the total short-wave aerosol forcing inferred from the combination of these predictors for the modelled forcings with the satellite-derived statistical relationships yields a global annual mean value of -1.5+-0.5 Wm-2. An alternative estimate obtained by scaling the simulated clear- and cloudy-sky forcings with estimates of anthropogenic Ta and satellite-retrieved Nd - Ta regression slopes, respectively, yields a global annual mean clear-sky (aerosol direct effect) estimate of -0.4+-0.2 Wm-2 and a cloudy-sky (aerosol indirect effect) estimate of -0.7+-0.5 Wm-2, with a total estimate of -1.2+-0.4 Wm-2.« less
Estimation of aerosol direct radiative forcing in Lecce during the 2013 ADRIMED campaign
NASA Astrophysics Data System (ADS)
Barragan, Ruben; Romano, Salvatore; Sicard, Michaël.; Burlizzi, Pasquale; Perrone, Maria-Rita; Comeron, Adolfo
2015-10-01
In the framework of the ChArMEx (Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr/) initiative, a field campaign took place in the western Mediterranean Basin between 10 June and 5 July 2013 within the ADRIMED (Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) project. The scientific objectives of ADRIMED are the characterization of the typical "Mediterranean aerosol" and its direct radiative forcing (column closure and regional scale). This work is focused on the multi-intrusion Saharan dust transport period of moderate intensity that occurred over the western and central Mediterranean Basin during the period 14 - 27 June. The dust plumes were detected by the EARLINET/ACTRIS (European Aerosol Research Lidar Network / Aerosols, Clouds, and Trace gases Research InfraStructure Network, http://www.actris.net/) lidar stations of Barcelona (16 and 17 June) and Lecce (22 June). First, two well-known and robust radiative transfer models, parametrized by lidar profiles for the aerosol vertical distribution, are validated both in the shortwave and longwave spectral range 1) at the surface with down- and up-ward flux measurements from radiometers and 2) at the top of the atmosphere with upward flux measurements from the CERES (Clouds and the Earth's Radiant Energy System) radiometers on board the AQUA and TERRA satellites. The differences between models and their limitations are discussed. The instantaneous and clear-sky direct radiative forcing of mineral dust is then estimated using lidar data for parametrizing the particle vertical distribution at Lecce. The difference between the obtained forcings is discussed in regard to the mineralogy and vertical structure of the dust plume.
NASA Astrophysics Data System (ADS)
Breider, Thomas J.; Mickley, Loretta J.; Jacob, Daniel J.; Ge, Cui; Wang, Jun; Payer Sulprizio, Melissa; Croft, Betty; Ridley, David A.; McConnell, Joseph R.; Sharma, Sangeeta; Husain, Liaquat; Dutkiewicz, Vincent A.; Eleftheriadis, Konstantinos; Skov, Henrik; Hopke, Phillip K.
2017-03-01
Arctic observations show large decreases in the concentrations of sulfate and black carbon (BC) aerosols since the early 1980s. These near-term climate-forcing pollutants perturb the radiative balance of the atmosphere and may have played an important role in recent Arctic warming. We use the GEOS-Chem global chemical transport model to construct a 3-D representation of Arctic aerosols that is generally consistent with observations and their trends from 1980 to 2010. Observations at Arctic surface sites show significant decreases in sulfate and BC mass concentrations of 2-3% per year. We find that anthropogenic aerosols yield a negative forcing over the Arctic, with an average 2005-2010 Arctic shortwave radiative forcing (RF) of -0.19 ± 0.05 W m-2 at the top of atmosphere (TOA). Anthropogenic sulfate in our study yields more strongly negative forcings over the Arctic troposphere in spring (-1.17 ± 0.10 W m-2) than previously reported. From 1980 to 2010, TOA negative RF by Arctic aerosol declined, from -0.67 ± 0.06 W m-2 to -0.19 ± 0.05 W m-2, yielding a net TOA RF of +0.48 ± 0.06 W m-2. The net positive RF is due almost entirely to decreases in anthropogenic sulfate loading over the Arctic. We estimate that 1980-2010 trends in aerosol-radiation interactions over the Arctic and Northern Hemisphere midlatitudes have contributed a net warming at the Arctic surface of +0.27 ± 0.04 K, roughly one quarter of the observed warming. Our study does not consider BC emissions from gas flaring nor the regional climate response to aerosol-cloud interactions or BC deposition on snow.
NASA Astrophysics Data System (ADS)
Liu, Z.; Yim, S. H. L.; Lau, G.
2016-12-01
Part of organic carbon defined as brown carbon (BrC) has been found to absorb solar radiation, especially in near-ultraviolet and blue bands, but their radiation impact is far less understood than black carbon (BC). Rapid adjustment thought to occur within a few weeks, induced by aerosol radiative effect and thereby alter cloud cover or other climate components. These effects are particularly pronounced for absorbing aerosols. The data gathered is from an online coupled model, WRF-Chem. A two-simulation test is conducted from July 8 to July 15. The baseline simulation doesn't account for aerosol-radiation interactions, whereas the sensitivity run includes it. The differences between these two simulations represent total effects of the aerosol instantaneous radiative forcing and subsequent rapid adjustment. In Figure 1, without cloud effect (clear sky), at the top of atmosphere (TOA), the SW radiation changes are negative in the PRD region, representing an overall cooling effect of aerosols. However, in the atmosphere (ATM), aerosols heat the atmosphere by absorbing incoming solar radiation with an average of 2.4 W/m2 (Table 1). After including rapid adjustment (all sky), the radiation change pattern becomes significantly different, especially at TOA and surface (SFC). This may be caused by cloud cover change due to rapid adjustment. The magnitude of SW radiation changes for all sky at all levels is smaller than that for clear sky. This result suggests the rapid adjustment counteracts the instantaneous radiative forcing of aerosols. At TOA, the cooling effect of the aerosol is 74% lower for all sky compared with clear sky, highlighting an overall warming effect of rapid adjustment in the PRD region. Aerosol-induced changes (W/m2) TOA ATM SFC Clear Sky -9.2 2.4 -11.6 All Sky -2.4 1.9 -4.3 Table 1. Aerosol-induced averaged changes in shortwave radiation due to aerosol-radiation interactions in the Pearl River Delta. The test shows the rapid adjustment of aerosols offsets part of the aerosol instantaneous negative radiation forcing, especially at TOA and SFC. The only absorbing aerosol species included in the test is BC. If absorption effects of dust and BrC are considered, the contribution of instantaneous radiative forcing and rapid adjustment may change.
Cloud Impacts on Pavement Temperature in Energy Balance Models
NASA Astrophysics Data System (ADS)
Walker, C. L.
2013-12-01
Forecast systems provide decision support for end-users ranging from the solar energy industry to municipalities concerned with road safety. Pavement temperature is an important variable when considering vehicle response to various weather conditions. A complex, yet direct relationship exists between tire and pavement temperatures. Literature has shown that as tire temperature increases, friction decreases which affects vehicle performance. Many forecast systems suffer from inaccurate radiation forecasts resulting in part from the inability to model different types of clouds and their influence on radiation. This research focused on forecast improvement by determining how cloud type impacts the amount of shortwave radiation reaching the surface and subsequent pavement temperatures. The study region was the Great Plains where surface solar radiation data were obtained from the High Plains Regional Climate Center's Automated Weather Data Network stations. Road pavement temperature data were obtained from the Meteorological Assimilation Data Ingest System. Cloud properties and radiative transfer quantities were obtained from the Clouds and Earth's Radiant Energy System mission via Aqua and Terra Moderate Resolution Imaging Spectroradiometer satellite products. An additional cloud data set was incorporated from the Naval Research Laboratory Cloud Classification algorithm. Statistical analyses using a modified nearest neighbor approach were first performed relating shortwave radiation variability with road pavement temperature fluctuations. Then statistical associations were determined between the shortwave radiation and cloud property data sets. Preliminary results suggest that substantial pavement forecasting improvement is possible with the inclusion of cloud-specific information. Future model sensitivity testing seeks to quantify the magnitude of forecast improvement.
NASA Astrophysics Data System (ADS)
Gruber, Simon; Unterstrasser, Simon; Bechtold, Jan; Vogel, Heike; Jung, Martin; Pak, Henry; Vogel, Bernhard
2018-05-01
A high-resolution regional-scale numerical model was extended by a parameterization that allows for both the generation and the life cycle of contrails and contrail cirrus to be calculated. The life cycle of contrails and contrail cirrus is described by a two-moment cloud microphysical scheme that was extended by a separate contrail ice class for a better representation of the high concentration of small ice crystals that occur in contrails. The basic input data set contains the spatially and temporally highly resolved flight trajectories over Central Europe derived from real-time data. The parameterization provides aircraft-dependent source terms for contrail ice mass and number. A case study was performed to investigate the influence of contrails and contrail cirrus on the shortwave radiative fluxes at the earth's surface. Accounting for contrails produced by aircraft enabled the model to simulate high clouds that were otherwise missing on this day. The effect of these extra clouds was to reduce the incoming shortwave radiation at the surface as well as the production of photovoltaic power by up to 10 %.
NASA Technical Reports Server (NTRS)
Brooks, David R.; Fenn, Marta A.
1988-01-01
For several days in January and August 1985, the Earth Radiation Budget Satellite, a component of the Earth Radiation Budget Experiment (ERBE), was operated in an along-track scanning mode. A survey of radiance measurements taken in this mode is given for five ocean regions: the north and south Atlantic, the Arabian Sea, the western Pacific north of the Equator, and part of the Intertropical Convergence Zone. Each overflight contains information about the clear scene and three cloud categories: partly cloudy, mostly cloudy, and overcast. The data presented include the variation of longwave and shortwave radiance in each scene classification as a function of viewing zenity angle during each overflight of one of the five target regions. Several features of interest in the development of anisotropic models are evident, including the azimuthal dependence of shortwave radiance that is an essential feature of shortwave bidirectional models. The data also demonstrate that the scene classification algorithm employed by the ERBE results in scene classifications that are a function of viewing geometry.
Mixed layer modeling in the East Pacific warm pool during 2002
NASA Astrophysics Data System (ADS)
Van Roekel, Luke P.; Maloney, Eric D.
2012-06-01
Two vertical mixing models (the modified dynamic instability model of Price et al.; PWP, and K-Profile Parameterizaton; KPP) are used to analyze intraseasonal sea surface temperature (SST) variability in the northeast tropical Pacific near the Costa Rica Dome during boreal summer of 2002. Anomalies in surface latent heat flux and shortwave radiation are the root cause of the three intraseasonal SST oscillations of order 1°C amplitude that occur during this time, although surface stress variations have a significant impact on the third event. A slab ocean model that uses observed monthly varying mixed layer depths and accounts for penetrating shortwave radiation appears to well-simulate the first two SST oscillations, but not the third. The third oscillation is associated with small mixed layer depths (<5 m) forced by, and acting with, weak surface stresses and a stabilizing heat flux that cause a transient spike in SST of 2°C. Intraseasonal variations in freshwater flux due to precipitation and diurnal flux variability do not significantly impact these intraseasonal oscillations. These results suggest that a slab ocean coupled to an atmospheric general circulation model, as used in previous studies of east Pacific intraseasonal variability, may not be entirely adequate to realistically simulate SST variations. Further, while most of the results from the PWP and KPP models are similar, some important differences that emerge are discussed.
NASA Astrophysics Data System (ADS)
Chen, Tsing-Chang; Weng, Shu-Ping; Schubert, Siegfried
1999-07-01
Using the NASA/GEOS reanalysis data for 1980-95, the austral-summer stationary eddies in the tropical-subtropical Southern Hemisphere are examined in two wave regimes: long and short wave (wave 1 and waves 2-6, respectively). The basic structure of the Bolivian high-Nordeste low (BH-NL) system is formed by a short-wave train across South America but modulated by the long-wave regime. The short-wave train exhibits a monsoonlike vertical phase reversal in the midtroposphere and a quarter-wave phase shift relative to the divergent circulation. As inferred from (a) the spatial relationship between the streamfunction and velocity potential and (b) the structure of the divergent circulation, the short-wave train forming the BH-NL system is maintained by South American local heating and remote African heating, while the long-wave regime is maintained by western tropical Pacific heating.The maintenance of the stationary waves in the two wave regimes is further illustrated by a simple diagnostic scheme that includes the velocity-potential maintenance equation (which links velocity potential and diabatic heating) and the streamfunction budget (which is the inverse Laplacian transform of the vorticity equation). Some simple relationships between streamfunction and velocity potential for both wave regimes are established to substantiate the links between diabatic heating and streamfunction; of particular interest is a Sverdrup balance in the short-wave regime. This simplified vorticity equation explains the vertical structure of the short-wave train associated with the BH-NL system and its spatial relationship with the divergent circulation.Based upon the diagnostic analysis of its maintenance a simple forced barotropic model is adopted to simulate the BH-NL system with idealized forcings, which imitates the real 200-mb divergence centers over South America, Africa, and the tropical Pacific. Numerical simulations demonstrate that the formation of the BH-NL system is affected not only by the African remote forcing, but also by the tropical Pacific forcing.
NASA Astrophysics Data System (ADS)
Lee, Robert B., III; Wilson, Robert S.; Smith, G. Louis; Bush, Kathryn A.; Thomas, Susan; Pandey, Dhirendra K.; Paden, Jack
2004-12-01
The NASA Earth Radiation Budget Experiment (ERBE) missions were designed to monitor long-term changes in the earth radiation budget components which may cause climate changes. During the October 1984 through September 2004 period, the NASA Earth Radiation Budget Satellite (ERBS)/ERBE nonscanning active cavity radiometers (ACR) were used to monitor long-term changes in the earth radiation budget components of the incoming total solar irradiance (TSI), earth-reflected TSI, and earth-emitted outgoing longwave radiation (OLR). The earth-reflected total solar irradiances were measured using broadband shortwave fused, waterless quartz (Suprasil) filters and ACR"s that were covered with a black paint absorbing surface. Using on-board calibration systems, 1984 through 1999, long-term ERBS/ERBE ACR sensor response changes were determined from direct observations of the incoming TSI in the 0.2-5 micrometer shortwave broadband spectral region. During the October 1984 through September 1999 period, the ERBS shortwave sensor responses were found to decrease as much as 8.8% when the quartz filter transmittances decreased due to direct exposure to TSI. On October 6, 1999, the on-board ERBS calibration systems failed. To estimate the 1999-2004, ERBS sensor response changes, the 1984-1997 NOAA-9, and 1986-1995 NOAA-10 Spacecraft ERBE ACR responses were used to characterize response changes as a function of exposure time. The NOAA-9 and NOAA-10 ACR responses decreased as much as 10% due to higher integrated TSI exposure times. In this paper, for each of the ERBS, NOAA-9, and NOAA-10 Spacecraft platforms, the solar calibrations of the ERBE sensor responses are described as well as the derived ERBE sensor response changes as a function of TSI exposure time. For the 1984-2003 ERBS data sets, it is estimated that the calibrated ERBE earth-reflected TSI measurements have precisions approaching 0.2 Watts-per-squared-meter at satellite altitudes.
NASA Astrophysics Data System (ADS)
Stackhouse, Paul; Wong, Takmeng; Kratz, David; Gupta, Shashi; Wiber, Anne; Edwards, Anne
2010-05-01
The FLASHFlux (Fast Longwave and Shortwave radiative Fluxes from CERES and MODIS) project derives daily averaged gridded top-of-atmosphere (TOA) and surface radiative fluxes within one week of observation. Production of CERES based TOA and surface fluxes is achieved by using the latest CERES calibration that is assumed constant in time and by making simplifying assumptions in the computation of time and space averaged quantities. Together these assumptions result in approximately a 1% increase in the uncertainty for FLASHFlux products over CERES. Analysis has clearly demonstrated that the global-annual mean outgoing longwave radiation shows a decrease of ~0.75 Wm-2, from 2007 to 2008, while the global-annual mean reflected shortwave radiation shows a decrease of 0.14 Wm-2 over that same period. Thus, the combined longwave and shortwave changes have resulted in an increase of ~0.89 Wm-2 in net radiation into the Earth climate system in 2008. A time series of TOA fluxes was constructed from CERES EBAF, CERES ERBE-like and FLASHFLUX. Relative to this multi-dataset average from 2001 to 2008, the 2008 global-annual mean anomalies are -0.54/-0.26/+0.80 Wm-2, respectively, for the longwave/shortwave/net radiation. These flux values, which were published in the NOAA 2008 State of the Climate Report, are within their corresponding 2-sigma interannual variabilities for this period. This paper extends these results through 2009, where the net flux is observed to recover. The TOA LW variability is also compared to AIRS OLR showing excellent agreement in the anomalies. The variability appears very well correlated to the to the 2007-2009 La Nina/El Nino cycles, which altered the global distribution of clouds, total column water vapor and temperature. Reassessments of these results are expected when newer Clouds and the Earth's Radiant Energy System (CERES) data are released.
Wu, Wei; Liu, Yangang
2010-05-12
A new one-dimensional radiative equilibrium model is built to analytically evaluate the vertical profile of the Earth's atmospheric radiation entropy flux under the assumption that atmospheric longwave radiation emission behaves as a greybody and shortwave radiation as a diluted blackbody. Results show that both the atmospheric shortwave and net longwave radiation entropy fluxes increase with altitude, and the latter is about one order in magnitude greater than the former. The vertical profile of the atmospheric net radiation entropy flux follows approximately that of the atmospheric net longwave radiation entropy flux. Sensitivity study further reveals that a 'darker' atmosphere with a larger overall atmospheric longwave optical depth exhibits a smaller net radiation entropy flux at all altitudes, suggesting an intrinsic connection between the atmospheric net radiation entropy flux and the overall atmospheric longwave optical depth. These results indicate that the overall strength of the atmospheric irreversible processes at all altitudes as determined by the corresponding atmospheric net entropy flux is closely related to the amount of greenhouse gases in the atmosphere.
NASA Astrophysics Data System (ADS)
Södergren, A. Helena; McDonald, Adrian J.; Bodeker, Gregory E.
2017-11-01
We examine the effects of non-linear interactions between surface albedo, water vapor and cloud cover (referred to as climate variables) on amplified warming of the polar regions, using a new energy balance model. Our simulations show that the sum of the contributions to surface temperature changes due to any variable considered in isolation is smaller than the temperature changes from coupled feedback simulations. This non-linearity is strongest when all three climate variables are allowed to interact. Surface albedo appears to be the strongest driver of this non-linear behavior, followed by water vapor and clouds. This is because increases in longwave radiation absorbed by the surface, related to increases in water vapor and clouds, and increases in surface absorbed shortwave radiation caused by a decrease in surface albedo, amplify each other. Furthermore, our results corroborate previous findings that while increases in cloud cover and water vapor, along with the greenhouse effect itself, warm the polar regions, water vapor also significantly warms equatorial regions, which reduces polar amplification. Changes in surface albedo drive large changes in absorption of incoming shortwave radiation, thereby enhancing surface warming. Unlike high latitudes, surface albedo change at low latitudes are more constrained. Interactions between surface albedo, water vapor and clouds drive larger increases in temperatures in the polar regions compared to low latitudes. This is in spite of the fact that, due to a forcing, cloud cover increases at high latitudes and decreases in low latitudes, and that water vapor significantly enhances warming at low latitudes.
New approaches to quantifying aerosol influence on the cloud radiative effect
Feingold, Graham; McComiskey, Allison; Yamaguchi, Takanobu; ...
2016-02-01
The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol–cloud interactions at ever-increasing levels of detail, but these models lack the resolution tomore » represent clouds and aerosol–cloud interactions adequately. There is a dearth of observational constraints on aerosol–cloud interactions. In this paper, we develop a conceptual approach to systematically constrain the aerosol–cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. Finally, we heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol–cloud radiation system.« less
New approaches to quantifying aerosol influence on the cloud radiative effect
Feingold, Graham; McComiskey, Allison; Yamaguchi, Takanobu; Johnson, Jill S.; Carslaw, Kenneth S.; Schmidt, K. Sebastian
2016-01-01
The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol−cloud interactions at ever-increasing levels of detail, but these models lack the resolution to represent clouds and aerosol−cloud interactions adequately. There is a dearth of observational constraints on aerosol−cloud interactions. We develop a conceptual approach to systematically constrain the aerosol−cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. We heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol−cloud radiation system. PMID:26831092
New approaches to quantifying aerosol influence on the cloud radiative effect.
Feingold, Graham; McComiskey, Allison; Yamaguchi, Takanobu; Johnson, Jill S; Carslaw, Kenneth S; Schmidt, K Sebastian
2016-05-24
The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol-cloud interactions at ever-increasing levels of detail, but these models lack the resolution to represent clouds and aerosol-cloud interactions adequately. There is a dearth of observational constraints on aerosol-cloud interactions. We develop a conceptual approach to systematically constrain the aerosol-cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. We heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol-cloud radiation system.
Measuring and modeling near-surface reflected and emitted radiation fluxes at the FIFE site
NASA Technical Reports Server (NTRS)
Blad, Blaine L.; Walter-Shea, Elizabeth A.; Starks, Patrick J.; Vining, Roel C.; Hays, Cynthia J.; Mesarch, Mark A.
1990-01-01
Information is presented pertaining to the measurement and estimation of reflected and emitted components of the radiation balance. Information is included about reflectance and transmittance of solar radiation from and through the leaves of some grass and forb prairie species, bidirectional reflectance from a prairie canopy is discussed and measured and estimated fluxes are described of incoming and outgoing longwave and shortwave radiation. Results of the study showed only very small differences in reflectances and transmittances for the adaxial and abaxial surfaces of grass species in the visible and infrared wavebands, but some differences in the infrared wavebands were noted for the forbs. Reflectance from the prairie canopy changed as a function of solar and view zenith angles in the solar principal plane with definite asymmetry about nadir. The surface temperature of prairie canopies was found to vary by as much as 5 C depending on view zenith and azimuth position and on the solar azimuth. Aerodynamic temperature calculated from measured sensible heat fluxes ranged from 0 to 3 C higher than nadir-viewed temperatures. Models were developed to estimate incoming and reflected shortwave radiation from data collected with a Barnes Modular Multiband Radiometer. Several algorithms for estimating incoming longwave radiation were evaluated and compared to actual measures of that parameter. Net radiation was calculated using the estimated components of the shortwave radiation streams, determined from the algorithms developed, and from the longwave radiation streams provided by the Brunt, modified Deacon, and the Stefan-Boltzmann models. Estimates of net radiation were compared to measured values and found to be within the measurement error of the net radiometers used in the study.
NASA Technical Reports Server (NTRS)
Klassen, Steve; Bugbee, Bruce
2005-01-01
Accurate shortwave radiation data is critical to evapotranspiration (ET) models used for developing irrigation schedules to optimize crop production while saving water, minimizing fertilizer, herbicide, and pesticide applications, reducing soil erosion, and protecting surface and ground water quality. Low cost silicon cell pyranometers have proven to be sufficiently accurate and robust for widespread use in agricultural applications under unobstructed daylight conditions. More expensive thermopile pyranometers are required for use as calibration standards and measurements under light with unique spectral properties (electric lights, under vegetation, in greenhouses and growth chambers). Routine cleaning, leveling, and annual calibration checks will help to ensure the integrity of long-term data.
Convective signals from surface measurements at ARM Tropical Western Pacific site: Manus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yi; Long, Charles N.; Mather, James H.
2011-02-04
Madden-Julian Oscillation (MJO) signals have been detected using highly sampled observations from the U.S. DOE ARM Climate Research Facility located at the Tropical Western Pacific Manus site. Using downwelling shortwave radiative fluxes and derived shortwave fractional sky cover, and the statistical tools of wavelet, cross wavelet, and Fourier spectrum power, we report finding major convective signals and their phase change from surface observations spanning from 1996 to 2006. Our findings are confirmed with the satellite-gauge combined values of precipitation from the NASA Global Precipitation Climatology Project and the NOAA interpolated outgoing longwave radiation for the same location. We find thatmore » the Manus MJO signal is weakest during the strongest 1997-1998 El Nin˜o Southern Oscillation (ENSO) year. A significant 3-5-month lead in boreal winter is identified further between Manus MJO and NOAA NINO3.4 sea surface temperature (former leads latter). A striking inverse relationship is found also between the instantaneous synoptic and intraseasonal phenomena over Manus. To further study the interaction between intraseasonal and diurnal scale variability, we composite the diurnal cycle of cloudiness for 21-MJO events that have passed over Manus. Our diurnal composite analysis of shortwave and longwave fractional sky covers indicates that during the MJO peak (strong convection), the diurnal amplitude of cloudiness is reduced substantially, while the diurnal mean cloudiness reaches the highest value and there are no significant phase changes. We argue that the increasing diurnal mean and decreasing diurnal amplitude are caused by the systematic convective cloud formation that is associated with the wet phase of the MJO, while the diurnal phase is still regulated by the well-defined solar forcing. This confirms our previous finding of the anti-phase relationship between the synoptic and intraseasonal phenomena. The detection of theMJOover the Manus site provides further opportunities in using other ground-based remote sensing instruments to investigate the vertical distributions of clouds and radiative heatings of the MJO that currently is impossible from satellite observations.« less
Instrumentation for remote sensing solar radiation from light aircraft.
Howard, J A; Barton, I J
1973-10-01
The paper outlines the instrumentation needed to study, from a light aircraft, the solar radiation reflected by ground surfaces and the incoming solar radiation. A global shortwave radiometer was mounted on the roof of the aircraft and a specially designed mount was used to support a downward pointing 70-mm aerial camera, a downward pointing narrow-beam pyranometer, and, sometimes, a downward pointing global shortwave pyranometer. Calibration factors were determined for the three pyranometers by comparison with a standard Angstrom compensation pyrheliometer. Results have indicated trends in the albedos of major plant communities and have shown that the calculated albedo values vary according to whether the downward pointing instrument is narrow-beam or global. Comparisons were also made with albedos measured on the ground.
Characterization of a Low-Cost Multiparameter Sensor for Solar Resource Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron M; Sengupta, Manajit; Andreas, Afshin M
Low-cost, multiparameter sensing and measurement devices enable cost-effective monitoring of the functional, operational reliability, efficiency, and resiliency of the electric grid. The National Renewable Research Laboratory (NREL) Solar Radiation Research Laboratory (SRRL), in collaboration with Arable Labs, Inc., deployed Arable Lab's Mark multiparameter sensor system. The device measures the downwelling and upwelling shortwave solar resource and longwave radiation, humidity, air temperature, and ground temperature. The system is also equipped with six downward-and upward-facing narrowband spectrometer channels that measure spectral radiation and surface spectral reflectance. This study describes the shortwave calibration, characterization, and validation of measurement accuracy of this instrument bymore » comparison with existing instruments that are part of NREL-SRRL's Baseline Measurement System.« less
NASA Technical Reports Server (NTRS)
Russell, P. B.; Livingston, J. M.; Hignett, P.; Kinne, S.; Wong, J.; Chien, A.; Bergstrom, R.; Durkee, P.; Hobbs, P. V.
2000-01-01
The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) measured a variety of aerosol radiative effects (including flux changes) while simultaneously measuring the chemical, physical, and optical properties of the responsible aerosol particles. Here we use TARFOX-determined aerosol and surface properties to compute shortwave radiative flux changes for a variety of aerosol situations, with midvisible optical depths ranging from 0.06 to 0.55. We calculate flux changes by several techniques with varying degrees of sophistication, in part to investigate the sensitivity of results to computational approach. We then compare computed flux changes to those determined from aircraft measurements. Calculations using several approaches yield downward and upward flux changes that agree with measurements. The agreement demonstrates closure (i.e. consistency) among the TARFOX-derived aerosol properties, modeling techniques, and radiative flux measurements. Agreement between calculated and measured downward flux changes is best when the aerosols are modeled as moderately absorbing (midvisible single-scattering albedos between about 0.89 and 0.93), in accord with independent measurements of the TARPOX aerosol. The calculated values for instantaneous daytime upwelling flux changes are in the range +14 to +48 W/sq m for midvisible optical depths between 0.2 and 0.55. These values are about 30 to 100 times the global-average direct forcing expected for the global-average sulfate aerosol optical depth of 0.04. The reasons for the larger flux changes in TARFOX include the relatively large optical depths and the focus on cloud-free, daytime conditions over the dark ocean surface. These are the conditions that produce major aerosol radiative forcing events and contribute to any global-average climate effect.
Validation of CERES/TERRA Data
NASA Technical Reports Server (NTRS)
Barkstrom, Bruce R.; Wieliski, Bruce A.; Smith, G. Louis; Lee, Robert B.; Priestley, Kory J.; Charlock, Thomas P.; Kratz, David P.
2000-01-01
There are 2 CERES scanning radiometer instruments aboard the TERRA spacecraft, one for mapping the solar radiation reflected from the Earth and the outgoing longwave radiation and the other for measuring the anisotropy of the radiation. Each CERES instrument has on-board calibration devices, which have demonstrated that from ground to orbit the broadband total and shortwave sensor responses maintained their ties to the International Temperature Scale of 1990 at precisions approaching radiances have been validated in orbit to +/- 0.3 % (0.3 W/sq m sr). Top of atmosphere fluxes are produced by use of the CERES data alone. By including data from other instruments, surface radiation fluxes and radiant fluxes within the atmosphere and at its top, shortwave and longwave, for both up and down components, are derived. Validation of these data products requires ground and aircraft measurements of fluxes and of cloud properties.
Evaluation of arctic broadband surface radiation measurements
NASA Astrophysics Data System (ADS)
Matsui, N.; Long, C. N.; Augustine, J.; Halliwell, D.; Uttal, T.; Longenecker, D.; Nievergall, O.; Wendell, J.; Albee, R.
2011-08-01
The Arctic is a challenging environment for making in-situ radiation measurements. A standard suite of radiation sensors is typically designed to measure the total, direct and diffuse components of incoming and outgoing broadband shortwave (SW) and broadband thermal infrared, or longwave (LW) radiation. Enhancements can include various sensors for measuring irradiance in various narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers) that rotate sensors and shading devices that track the sun. High quality measurements require striking a balance between locating sensors in a pristine undisturbed location free of artificial blockage (such as buildings and towers) and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data include solar tracker malfunctions, rime/frost/snow deposition on the instruments and operational problems due to limited operator access in extreme weather conditions. In this study, a comparison is made between the global and component sum (direct [vertical component] + diffuse) shortwave measurements. The difference between these two quantities (that theoretically should be zero) is used to illustrate the magnitude and seasonality of radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both shortwave and longwave measurements. Solutions to these operational problems are proposed that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols.
An observational radiative constraint on hydrologic cycle intensification.
DeAngelis, Anthony M; Qu, Xin; Zelinka, Mark D; Hall, Alex
2015-12-10
Intensification of the hydrologic cycle is a key dimension of climate change, with substantial impacts on human and natural systems. A basic measure of hydrologic cycle intensification is the increase in global-mean precipitation per unit surface warming, which varies by a factor of three in current-generation climate models (about 1-3 per cent per kelvin). Part of the uncertainty may originate from atmosphere-radiation interactions. As the climate warms, increases in shortwave absorption from atmospheric moistening will suppress the precipitation increase. This occurs through a reduction of the latent heating increase required to maintain a balanced atmospheric energy budget. Using an ensemble of climate models, here we show that such models tend to underestimate the sensitivity of solar absorption to variations in atmospheric water vapour, leading to an underestimation in the shortwave absorption increase and an overestimation in the precipitation increase. This sensitivity also varies considerably among models due to differences in radiative transfer parameterizations, explaining a substantial portion of model spread in the precipitation response. Consequently, attaining accurate shortwave absorption responses through improvements to the radiative transfer schemes could reduce the spread in the predicted global precipitation increase per degree warming for the end of the twenty-first century by about 35 per cent, and reduce the estimated ensemble-mean increase in this quantity by almost 40 per cent.
Historical Tropospheric and Stratospheric Ozone Radiative Forcing Using the CMIP6 Database
NASA Astrophysics Data System (ADS)
Checa-Garcia, Ramiro; Hegglin, Michaela I.; Kinnison, Douglas; Plummer, David A.; Shine, Keith P.
2018-04-01
We calculate ozone radiative forcing (RF) and stratospheric temperature adjustments for the period 1850-2014 using the newly available Coupled Model Intercomparison Project phase 6 (CMIP6) ozone data set. The CMIP6 total ozone RF (1850s to 2000s) is 0.28 ± 0.17 W m-2 (which is 80% higher than our CMIP5 estimation), and 0.30 ± 0.17 W m-2 out to the present day (2014). The total ozone RF grows rapidly until the 1970s, slows toward the 2000s, and shows a renewed growth thereafter. Since the 1990s the shortwave RF exceeds the longwave RF. Global stratospheric ozone RF is positive between 1930 and 1970 and then turns negative but remains positive in the Northern Hemisphere throughout. Derived stratospheric temperature changes show a localized cooling in the subtropical lower stratosphere due to tropospheric ozone increases and cooling in the upper stratosphere due to ozone depletion by more than 1 K already prior to the satellite era (1980) and by more than 2 K out to the present day (2014).
An inquiry into the cirrus-cloud thermostat effect for tropical sea surface temperature
NASA Technical Reports Server (NTRS)
Lau, K.-M.; Sui, C.-H.; Chou, M.-D.; Tao, W.-K.
1994-01-01
In this paper, we investigate the relative importance of local vs remote control on cloud radiative forcing using a cumulus ensemble model. It is found that cloud and surface radiation forcings are much more sensitive to the mean vertical motion assoicated with large scale tropical circulation than to the local SST (sea surface temperature). When the local SST is increased with the mean vertical motion held constant, increased surface latent and sensible heat flux associated with enhanced moisture recycling is found to be the primary mechanism for cooling the ocean surface. Large changes in surface shortwave fluxes are related to changes in cloudiness induced by changes in the large scale circulation. These results are consistent with a number of earlier empirical studies, which raised concerns regarding the validity of the cirrus-thermostat hypothesis (Ramanathan and Collins, 1991). It is argued that for a better understanding of cloud feedback, both local and remote controls need to be considered and that a cumulus ensemble model is a powerful tool that should be explored for such purpose.
NASA Astrophysics Data System (ADS)
Sanchez, K.; Roberts, G.; Calmer, R.; Nicoll, K.; Hashimshoni, E.; Rosenfeld, D.; Ovadnevaite, J.; Preissler, J.; Ceburnis, D.; O'Dowd, C. D. D.; Russell, L. M.
2017-12-01
Top-down and bottom-up aerosol-cloud shortwave radiative flux closures were conducted at the Mace Head atmospheric research station in Galway, Ireland in August 2015. Instrument platforms include ground-based, unmanned aerial vehicles (UAV), and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction, or a 5-hole probe for 3D wind vectors. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in-situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF) by between 25 W m-2 and 60 W m-2. After accounting for entrainment, satellite-derived cloud droplet number concentrations (CDNC) were within 30% of simulated CDNC. In cases with a well-mixed boundary layer, δRF is no greater than 20 W m-2 after accounting for cloud-top entrainment, and up to 50 W m-2 when entrainment is not taken into account. In cases with a decoupled boundary layer, cloud microphysical properties are inconsistent with ground-based aerosol measurements, as expected, and δRF is as high as 88 W m-2, even high (> 30 W m-2) after accounting for cloud-top entrainment. This work demonstrates the need to take in-situ measurements of aerosol properties for cases where the boundary layer is decoupled as well as consider cloud-top entrainment to accurately model stratocumulus cloud radiative flux.
NASA Astrophysics Data System (ADS)
Sanchez, K.; Roberts, G.; Calmer, R.; Nicoll, K.; Hashimshoni, E.; Rosenfeld, D.; Ovadnevaite, J.; Preissler, J.; Ceburnis, D.; O'Dowd, C. D. D.; Russell, L. M.
2016-12-01
Top-down and bottom-up aerosol-cloud shortwave radiative flux closures were conducted at the Mace Head atmospheric research station in Galway, Ireland in August 2015. Instrument platforms include ground-based, unmanned aerial vehicles (UAV), and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction, or a 5-hole probe for 3D wind vectors. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in-situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF) by between 25 W m-2 and 60 W m-2. After accounting for entrainment, satellite-derived cloud droplet number concentrations (CDNC) were within 30% of simulated CDNC. In cases with a well-mixed boundary layer, δRF is no greater than 20 W m-2 after accounting for cloud-top entrainment, and up to 50 W m-2 when entrainment is not taken into account. In cases with a decoupled boundary layer, cloud microphysical properties are inconsistent with ground-based aerosol measurements, as expected, and δRF is as high as 88 W m-2, even high (> 30 W m-2) after accounting for cloud-top entrainment. This work demonstrates the need to take in-situ measurements of aerosol properties for cases where the boundary layer is decoupled as well as consider cloud-top entrainment to accurately model stratocumulus cloud radiative flux.
Measuring Earth's Radiation Budget from the Vicinity of the Moon
NASA Astrophysics Data System (ADS)
Swartz, W. H.; Lorentz, S. R.; Erlandson, R. E.; Cahalan, R. F.; Huang, P. M.
2018-02-01
We propose to measure Earth's radiation budget (integrated total and solar-reflected shortwave) using broadband radiometers and other technology demonstrated in space. The instrument is compact, autonomous, and has modest resource requirements.
NASA Astrophysics Data System (ADS)
Ding, Jing; Zhang, Yufen; Han, Suqin; Xiao, Zhimei; Wang, Jiao; Feng, Yinchang
2018-05-01
Aerosol and water vapor radiative forcings, shortwave atmospheric heating rates and longwave atmospheric cooling rates were determined based on in situ physical and chemical measurements of aerosol, associated with the Mie theory and a radiative transfer model, LOWTRAN7, during the two haze episodes in the winter of 2013 in Tianjin, China. The aerosol types considered in LOWTRAN7 included rural, urban, marine, desert and custom aerosols. The default ratio of the absorption coefficient to the extinction coefficient for urban aerosol in LOWTRAN7 was approximately double of those found in this work, implying the weaker absorption ability of aerosols in the North China Plain (NCP). Moreover, the aerosol is assumed to be evenly distributed below 1 km of planetary boundary layer (PBL) on hazy days in LOWTRAN7. If the default urban aerosol optical properties and extinction profile in LOWTRAN7 is employed directly, a larger energy imbalance between the atmosphere and surface is generated and the warming effect of the aerosol is magnified. Hence, modified urban aerosol optical properties were established to replace the corresponding parameters' database in LOWTRAN7. The aerosol extinction profiles were obtained based on a 255-m meteorological tower and observed results from the studies about Tianjin. In the NCP, the aerosol had little impact on atmospheric counter radiation. The water vapor is the crucial factor that affects atmospheric counter radiation. Both modified high shortwave heating rates and longwave cooling rates occur near the surface due to the abundance of aerosol and water vapor. The modified net atmospheric heating rate near the surface is 1.2 K d-1 on hazy days and 0.3 K d-1 on non-hazy days. Compared with the default urban aerosol optical properties and its vertical distribution in LOWTRAN7, the feedback effect of the modified urban aerosol on the boundary layer may not necessarily result in a stable lower atmosphere, but depends on the aerosol light absorption ability and its vertical distribution.
Comparing a Carbon Budget for the Amazon Basin Derived from Aircraft Observations
NASA Astrophysics Data System (ADS)
Chow, V. Y.; Dayalu, A.; Wofsy, S. C.; Gerbig, C.
2015-12-01
We present and compare a carbon budget for the Brazilian Amazon Basin based on the Balanço Atmosférico Regional de Carbono na Amazônia (BARCA) aircraft program, which occurred in November 2008 & May 2009, to other published carbon budgets. In particular, we compare our budget and analysis to others also derived from aircraft observations. Using mesoscale meteorological fields from ECMWF and WRF, we drive the Stochastic Time-Inverted Lagrangian Transport (STILT) model and couple the footprint, or influence, to a biosphere model represented by the Vegetation Photosynthesis Respiration Model (VPRM). Since it is the main driver for the VPRM, we use observed shortwave radiation from towers in Brazil and French Guyana to examine the modeled shortwave radiation data from GL 1.2 (a global radiation model based on GOES 8 visible imagery), ECMWF, and WRF to determine if there are any biases in the modeled shortwave radiation output. We use WRF-STILT and ECMWF-STILT, GL 1.2 shortwave radiation, temperature, and vegetation maps (IGBP and SYNMAP) updated by landuse scenarios modeled by Sim Amazonia 2 and Sim Brazil, to compute hourly a priori CO2 fluxes by calculating Gross Ecosystem Exchange and Respiration for the 4 significant vegetation types across two (wet and dry) seasons as defined by 10-years of averaged TRIMM precipitation data. SF6 from stations and aircraft observations are used to determine the anthropogenic CO2 background and the lateral boundary conditions are taken from CarbonTracker2013B. The BARCA aircraft mixing ratios are then used as a top down constraint in an inversion framework that solves for the parameters controlling the fluxes for each vegetation type. The inversion provides scaling factors for GEE and R for each vegetation type in each season. From there, we derive a budget for the Basin and compare/contrast with other published basinwide CO2 fluxes.
Cloud effects on the SW radiation at the surface at a mid-latitude site in southwestern Europe
NASA Astrophysics Data System (ADS)
Salgueiro, Vanda; João Costa, Maria; Silva, Ana Maria; Lanconelli, Christian; Bortoli, Daniele
2017-04-01
This work presents a study of cloud radiative effects on shortwave (CRESW) radiation at the surface in Évora region (southwestern Europe) during 2015 and a case study is analyzed. CRESW (in Wm-2) is defined as the difference between the net shortwave irradiance (downward minus upward shortwave irradiance) in cloudy and clear sky conditions. This measure is usually used to translate changes in the SW radiation that reaches the surface due to changes in clouds (type and/or cover). The CRESW is obtained using measured SW irradiance recorded with a Kipp&Zonen CM 6B pyranometer (broadband 305 - 2800 nm) during the period from January to December 2015, and is related with the cloud liquid water path (LWP) and with cloud ice water path (IWP) showing the importance of the different type of clouds in attenuating the SW radiation at the surface. The cloud modification factor, also a measure of the cloud radiative effects (CMF; ratio between the measured SW irradiance under cloudy conditions and the estimated SW irradiance in clear-sky conditions) is related with the cloud optical thickness (COT; obtained from satellite data). This relation between CMF and COT is shown for different cloud fractions revealing an exponential decreasing of CMF as COT increases. Reductions in the SW radiation of the order of 80% (CMF = 0.2) as well enhancements in the SW radiation larger than 30% (CMF = 1.3) were found for small COT values and for different cloud fractions. A case study to analyse the enhancement events in a cloudy day was considered and the cloud properties, COT and LWP (from satellite and surface measurements), were related with the CRESW.
Characterization of a Low-Cost Multi-Parameter Sensor for Resource Applications: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron M; Sengupta, Manajit; Andreas, Afshin M
Low-cost multi-parameter sensing and measurement devices enable cost-effective monitoring of the functional, operational reliability, efficiency, and resiliency of the electrical grid. The National Renewable Research Laboratory (NREL) Solar Radiation Research Laboratory (SRRL), in collaboration with Arable Labs Inc., deployed Arable Lab's Mark multi-parameter sensor system. The unique suite of system sensors measures the down-welling and upwelling shortwave solar resource and longwave radiation, humidity, air temperature, and ground temperature. This study describes the shortwave calibration, characteriza-tion, and validation of measurement accuracy of this instrument by comparison with existing instruments that are part of NREL-SRRL's Baseline Measurement System.
The Langley Parameterized Shortwave Algorithm (LPSA) for Surface Radiation Budget Studies. 1.0
NASA Technical Reports Server (NTRS)
Gupta, Shashi K.; Kratz, David P.; Stackhouse, Paul W., Jr.; Wilber, Anne C.
2001-01-01
An efficient algorithm was developed during the late 1980's and early 1990's by W. F. Staylor at NASA/LaRC for the purpose of deriving shortwave surface radiation budget parameters on a global scale. While the algorithm produced results in good agreement with observations, the lack of proper documentation resulted in a weak acceptance by the science community. The primary purpose of this report is to develop detailed documentation of the algorithm. In the process, the algorithm was modified whenever discrepancies were found between the algorithm and its referenced literature sources. In some instances, assumptions made in the algorithm could not be justified and were replaced with those that were justifiable. The algorithm uses satellite and operational meteorological data for inputs. Most of the original data sources have been replaced by more recent, higher quality data sources, and fluxes are now computed on a higher spatial resolution. Many more changes to the basic radiation scheme and meteorological inputs have been proposed to improve the algorithm and make the product more useful for new research projects. Because of the many changes already in place and more planned for the future, the algorithm has been renamed the Langley Parameterized Shortwave Algorithm (LPSA).
The radiation schemes in the Weather Research and Forecasting (WRF) model have previously not accounted for the presence of subgrid-scale cumulus clouds, thereby resulting in unattenuated shortwave radiation, which can lead to overly energetic convection and overpredicted surface...
Aerosol Direct Radiative Effects and Heating in the New Era of Active Satellite Observations
NASA Astrophysics Data System (ADS)
Matus, Alexander V.
Atmospheric aerosols impact the global energy budget by scattering and absorbing solar radiation. Despite their impacts, aerosols remain a significant source of uncertainty in our ability to predict future climate. Multi-sensor observations from the A-Train satellite constellation provide valuable observational constraints necessary to reduce uncertainties in model simulations of aerosol direct effects. This study will discuss recent efforts to quantify aerosol direct effects globally and regionally using CloudSat's radiative fluxes and heating rates product. Improving upon previous techniques, this approach leverages the capability of CloudSat and CALIPSO to retrieve vertically resolved estimates of cloud and aerosol properties critical for accurately evaluating the radiative impacts of aerosols. We estimate the global annual mean aerosol direct effect to be -1.9 +/- 0.6 W/m2, which is in better agreement with previously published estimates from global models than previous satellite-based estimates. Detailed comparisons against a fully coupled simulation of the Community Earth System Model, however, reveal that this agreement on the global annual mean masks large regional discrepancies between modeled and observed estimates of aerosol direct effects related to model biases in cloud cover. A low bias in stratocumulus cloud cover over the southeastern Pacific Ocean, for example, leads to an overestimate of the radiative effects of marine aerosols. Stratocumulus clouds over the southeastern Atlantic Ocean can enhance aerosol absorption by 50% allowing aerosol layers to remain self-lofted in an area of subsidence. Aerosol heating is found to peak at 0.6 +/- 0.3 K/day an altitude of 4 km in September when biomass burning reaches a maximum. Finally, the contributions of observed aerosols components are evaluated to estimate the direct radiative forcing of anthropogenic aerosols. Aerosol forcing is computed using satellite-based radiative kernels that describe the sensitivity of shortwave fluxes in response to aerosol optical depth. The direct radiative forcing is estimated to be -0.21 W/m2 with the largest contributions from pollution that is partially offset by a positive forcing from smoke aerosols. The results from these analyses provide new benchmarks on the global radiative effects of aerosols and offer new insights for improving future assessments.
Atmospheric Science Data Center
2015-10-28
The NASA/GEWEX Surface Radiation Budget (SRB) project produces and archives global 3-hourly, daily, monthly/3-hourly, and monthly averages of surface and top-of-atmospheric (TOA) longwave and shortwave radiative parameters on a 1°x1° grid....
Midlatitude Cloud Shifts, Their Primary Link to the Hadley Cell, and Their Diverse Radiative Effects
NASA Technical Reports Server (NTRS)
Tselioudis, George; Lipat, Bernard R.; Konsta, Dimitra; Grise, Kevin M.; Polvani, Lorenzo M.
2016-01-01
We investigate the interannual relationship among clouds, their radiative effects, and two key indices of the atmospheric circulation: the latitudinal positions of the Hadley cell edge and the midlatitude jet. From reanalysis data and satellite observations, we find a clear and consistent relationship between the width of the Hadley cell and the high cloud field, statistically significant in nearly all regions and seasons. In contrast, shifts of the midlatitude jet correlate significantly with high cloud shifts only in the North Atlantic region during the winter season. While in that region and season poleward high cloud shifts are associated with shortwave radiative warming, over the Southern Oceans during all seasons they are associated with shortwave radiative cooling. Finally, a trend analysis reveals that poleward high cloud shifts observed over the 1983-2009 period are more likely related to Hadley cell expansion, rather than poleward shifts of the midlatitude jets.
Dome Degradation Characterization of Wide-Field-of-View Nonscanner Aboard ERBE and Its Reprocessing
NASA Technical Reports Server (NTRS)
Shrestha, Alok K.; Kato, Seiji; Wong, Takmeng; Su, Wenying; Stackhouse, Paul W., Jr.; Rose, Fred; Miller, Walter F.; Bush, Kathryn; Rutan, David A.; Minnis, Patrick;
2015-01-01
Earth Radiation Budget Experiment (ERBE) wide-field-of-view (WFOV) nonscanners aboard ERBS and NOAA- 9/NOAA-10 provided broadband shortwave and longwave irradiances from 1985 to 1999. The previous analysis showed dome degradation in the shortwave nonscanner instruments. The correction was performed with a constant spectral (gray assumption) degradation. We suspect that the gray assumption affected daytime longwave irradiance and led to a day-minus-night longwave flux differences (little change in night time longwave) increase over time. Based on knowledge from the CERES process, we will reprocess entire ERBE nonscanner radiation dataset by characterizing shortwave dome transmissivity with spectral dependent degradation using the solar data observed by these instruments. Once spectral dependent degradation is derived, imager derived cloud fraction and the cloud phase as well as surface type over the FOV of nonscanner instruments will be used to model unfiltering coefficients. This poster primarily explains the reprocessing techniques and includes initial comparison of several months of data processed with existing and our recent methods.
NASA Astrophysics Data System (ADS)
Miller, W. F.; Kato, S.; Rose, F. G.; Sun-Mack, S.
2009-12-01
Under the NASA Energy and Water Cycle System (NEWS) program, cloud and aerosol properties derived from CALIPSO, CloudSat, and MODIS data then matched to the CERES footprint are used for irradiance profile computations. Irradiance profiles are included in the publicly available product, CCCM. In addition to the MODIS and CALIPSO generated aerosol, aerosol optical thickness is calculated over ocean by processing MODIS radiance through the Stowe-Ignatov algorithm. The CERES cloud mask and properties algorithm are use with MODIS radiance to provide additional cloud information to accompany the actively sensed data. The passively sensed data is the only input to the standard CERES radiative flux products. The combined information is used as input to the NASA Langley Fu-Liou radiative transfer model to determine vertical profiles and Top of Atmosphere shortwave and longwave flux for pristine, all-sky, and aerosol conditions for the special data product. In this study, the three sources of aerosol optical thickness will be compared directly and their influence on the calculated and measured TOA fluxes. Earlier studies indicate that the largest uncertainty in estimating direct aerosol forcing using aerosol optical thickness derived from passive sensors is caused by cloud contamination. With collocated CALIPSO data, we are able to estimate frequency of occurrence of cloud contamination, effect on the aerosol optical thickness and direct radiative effect estimates.
Can regional climate engineering save the summer Arctic sea ice?
NASA Astrophysics Data System (ADS)
Tilmes, S.; Jahn, Alexandra; Kay, Jennifer E.; Holland, Marika; Lamarque, Jean-Francois
2014-02-01
Rapid declines in summer Arctic sea ice extent are projected under high-forcing future climate scenarios. Regional Arctic climate engineering has been suggested as an emergency strategy to save the sea ice. Model simulations of idealized regional dimming experiments compared to a business-as-usual greenhouse gas emission simulation demonstrate the importance of both local and remote feedback mechanisms to the surface energy budget in high latitudes. With increasing artificial reduction in incoming shortwave radiation, the positive surface albedo feedback from Arctic sea ice loss is reduced. However, changes in Arctic clouds and the strongly increasing northward heat transport both counteract the direct dimming effects. A 4 times stronger local reduction in solar radiation compared to a global experiment is required to preserve summer Arctic sea ice area. Even with regional Arctic dimming, a reduction in the strength of the oceanic meridional overturning circulation and a shut down of Labrador Sea deep convection are possible.
NASA Astrophysics Data System (ADS)
Mallet, M.; Roger, J. C.; Dubuisson, P.; Putaud, J. P.; van Dingenen, R.; Despiau, S.
Radiative forcing by aerosol particles is one of the largest source of uncertainties in predicting climate change (IPCC, 2001). Indeed, quantitative estimates of this effect are still uncertain due to little knowledge of these atmospheric particles. Atmospheric particles influence the Earth's radiation balance both directly and indirectly. The indi- rect effect denotes the effect of aerosols acting as cloud condensation nuclei, possibly modifying cloud albedo and cloud lifetime. The direct effect is due to scattering and absorption of radiation and each of these processes depends mainly on the refractive index and the size distribution of aerosol particles. During the ESCOMPTE campaign, which took place in coastal Mediterranean area during the summer 2001, we estimated these aerosol micro-physical properties during a pollution event at two different sites. The first is an urban site (the city of Marseille), and the second is a rural area located fifty kilometers inland. The aerosol size distribution was measured with an SMPS for the particles with radii < 1 µm, and an optical counter for r > 1 µm. The chemi- cal composition (including different ionic compounds , dust, elemental and organic carbon) was deduced from chromatography analysis. The aerosol optical properties calculated from measured aerosol physical and chemical properties at ground level (from Mie theory) are used as input to a shortwave radiative transfer model. Then, this model is used to calculate the diurnally averaged direct aerosol forcing at surface and to compare this values with those measured from the ARAT aircraft and surface pyranometer during the campaign.
Yu, Xingna; Lü, Rui; Kumar, K Raghavendra; Ma, Jia; Zhang, Qiuju; Jiang, Yilun; Kang, Na; Yang, Suying; Wang, Jing; Li, Mei
2016-08-01
The ground-based characteristics (optical and radiative properties) of dust aerosols measured during the springtime between 2001 and 2014 were investigated over urban Beijing, China. The seasonal averaged aerosol optical depth (AOD) during spring of 2001-2014 was about 0.78 at 440 nm. During dust days, higher AOD occurred associated with lower Ångström exponent (AE). The mean AE440-870 in the springtime was about 1.0, indicating dominance of fine particles over the region. The back-trajectory analysis revealed that the dust was transported from the deserts of Inner Mongolia and Mongolia arid regions to Beijing. The aerosol volume size distribution showed a bimodal distribution pattern, with its highest peak observed in coarse mode for all episodes (especially for dust days with increased volume concentration). The single scattering albedo (SSA) increased with wavelength on dust days, indicating the presence of more scattering particles. Furthermore, the complex parts (real and imaginary) of refractive index showed distinct characteristics with lower imaginary values (also scattering) on dust days. The shortwave (SW; 0.2-4.0 μm) and longwave (LW; 4-100 μm) aerosol radiative forcing (ARF) values were computed from the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model both at the top of atmosphere (TOA) and the bottom of atmosphere (BOA) during dust and non-dust (dust free) days, and the corresponding heating rates and forcing efficiencies were also estimated. The SW (LW) ARF, therefore, produced significant cooling (warming) effects at both the TOA and the BOA over Beijing.
New measurements quantify atmospheric greenhouse effect
NASA Astrophysics Data System (ADS)
Bhattacharya, Atreyee
2012-10-01
In spite of a large body of existing measurements of incoming short-wave solar radiation and outgoing long-wave terrestrial radiation at the surface of the Earth and, more recently, in the upper atmosphere, there are few observations documenting how radiation profiles change through the atmosphere—information that is necessary to fully quantify the greenhouse effect of Earth's atmosphere. Through the use of existing technology but employing improvements in observational techniques it may now be possible not only to quantify but also to understand how different components of the atmosphere (e.g., concentration of gases, cloud cover, moisture, and aerosols) contribute to the greenhouse effect. Using weather balloons equipped with radiosondes, Philipona et al. continuously measured radiation fluxes from the surface of Earth up to altitudes of 35 kilometers in the upper stratosphere. Combining data from flights conducted during both day and night with continuous 24-hour measurements made at the surface of the Earth, the researchers created radiation profiles of all four components necessary to fully capture the radiation budget of Earth, namely, the upward and downward short-wave and long-wave radiation as a function of altitude.
Clouds enhance Greenland ice sheet mass loss
NASA Astrophysics Data System (ADS)
Van Tricht, Kristof; Gorodetskaya, Irina V.; L'Ecuyer, Tristan; Lenaerts, Jan T. M.; Lhermitte, Stef; Noel, Brice; Turner, David D.; van den Broeke, Michiel R.; van Lipzig, Nicole P. M.
2015-04-01
Clouds have a profound influence on both the Arctic and global climate, while they still represent one of the key uncertainties in climate models, limiting the fidelity of future climate projections. The potentially important role of thin liquid-containing clouds over Greenland in enhancing ice sheet melt has recently gained interest, yet current research is spatially and temporally limited, focusing on particular events, and their large scale impact on the surface mass balance remains unknown. We used a combination of satellite remote sensing (CloudSat - CALIPSO), ground-based observations and climate model (RACMO) data to show that liquid-containing clouds warm the Greenland ice sheet 94% of the time. High surface reflectivity (albedo) for shortwave radiation reduces the cloud shortwave cooling effect on the absorbed fluxes, while not influencing the absorption of longwave radiation. Cloud warming over the ice sheet therefore dominates year-round. Only when albedo values drop below ~0.6 in the coastal areas during summer, the cooling effect starts to overcome the warming effect. The year-round excess of energy due to the presence of liquid-containing clouds has an extensive influence on the mass balance of the ice sheet. Simulations using the SNOWPACK snow model showed not only a strong influence of these liquid-containing clouds on melt increase, but also on the increased sublimation mass loss. Simulations with the Community Earth System Climate Model for the end of the 21st century (2080-2099) show that Greenland clouds contain more liquid water path and less ice water path. This implies that cloud radiative forcing will be further enhanced in the future. Our results therefore urge the need for improving cloud microphysics in climate models, to improve future projections of ice sheet mass balance and global sea level rise.
NASA Astrophysics Data System (ADS)
Quaas, J.; Ming, Y.; Menon, S.; Takemura, T.; Wang, M.; Penner, J. E.; Gettelman, A.; Lohmann, U.; Bellouin, N.; Boucher, O.; Sayer, A. M.; Thomas, G. E.; McComiskey, A.; Feingold, G.; Hoose, C.; Kristjánsson, J. E.; Liu, X.; Balkanski, Y.; Donner, L. J.; Ginoux, P. A.; Stier, P.; Grandey, B.; Feichter, J.; Sednev, I.; Bauer, S. E.; Koch, D.; Grainger, R. G.; Kirkevåg, A.; Iversen, T.; Seland, Ø.; Easter, R.; Ghan, S. J.; Rasch, P. J.; Morrison, H.; Lamarque, J.-F.; Iacono, M. J.; Kinne, S.; Schulz, M.
2009-11-01
Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (τa) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over the ocean. The relationship between τa and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (fcld) and τa as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld-τa relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between τa and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR-τa relationship show a strong positive correlation between τa and fcld. The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of τa, and parameterisation assumptions such as a lower bound on Nd. Nevertheless, the strengths of the statistical relationships are good predictors for the aerosol forcings in the models. An estimate of the total short-wave aerosol forcing inferred from the combination of these predictors for the modelled forcings with the satellite-derived statistical relationships yields a global annual mean value of -1.5±0.5 Wm-2. In an alternative approach, the radiative flux perturbation due to anthropogenic aerosols can be broken down into a component over the cloud-free portion of the globe (approximately the aerosol direct effect) and a component over the cloudy portion of the globe (approximately the aerosol indirect effect). An estimate obtained by scaling these simulated clear- and cloudy-sky forcings with estimates of anthropogenic τa and satellite-retrieved Nd-τa regression slopes, respectively, yields a global, annual-mean aerosol direct effect estimate of -0.4±0.2 Wm-2 and a cloudy-sky (aerosol indirect effect) estimate of -0.7±0.5 Wm-2, with a total estimate of -1.2±0.4 Wm-2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quaas, Johannes; Ming, Yi; Menon, Surabi
2010-03-12
Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth ({tau}{sub a}) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is foundmore » that the model-simulated influence of aerosols on cloud droplet number concentration (N{sub d}) compares relatively well to the satellite data at least over the ocean. The relationship between {tau}{sub a} and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (f{sub cld}) and {tau}{sub a} as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong f{sub cld} - {tau}{sub a} relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between {tau}{sub a} and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - {tau}{sub a} relationship show a strong positive correlation between {tau}{sub a} and f{sub cld} The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of {tau}{sub a}, and parameterization assumptions such as a lower bound on N{sub d}. Nevertheless, the strengths of the statistical relationships are good predictors for the aerosol forcings in the models. An estimate of the total short-wave aerosol forcing inferred from the combination of these predictors for the modelled forcings with the satellite-derived statistical relationships yields a global annual mean value of -1.5 {+-} 0.5 Wm{sup -2}. In an alternative approach, the radiative flux perturbation due to anthropogenic aerosols can be broken down into a component over the cloud-free portion of the globe (approximately the aerosol direct effect) and a component over the cloudy portion of the globe (approximately the aerosol indirect effect). An estimate obtained by scaling these simulated clear- and cloudy-sky forcings with estimates of anthropogenic {tau}{sub a} and satellite-retrieved Nd - {tau}{sub a} regression slopes, respectively, yields a global, annual-mean aerosol direct effect estimate of -0.4 {+-} 0.2 Wm{sup -2} and a cloudy-sky (aerosol indirect effect) estimate of -0.7 {+-} 0.5 Wm{sup -2}, with a total estimate of -1.2 {+-} 0.4 Wm{sup -2}.« less
An observational radiative constraint on hydrologic cycle intensification
DeAngelis, Anthony M.; Qu, Xin; Zelinka, Mark D.; ...
2015-12-09
We report that intensification of the hydrologic cycle is a key dimension of climate change, with substantial impacts on human and natural systems. A basic measure of hydrologic cycle intensification is the increase in global-mean precipitation per unit surface warming, which varies by a factor of three in current-generation climate models (about 1–3 per cent per kelvin). Part of the uncertainty may originate from atmosphere–radiation interactions. As the climate warms, increases in shortwave absorption from atmospheric moistening will suppress the precipitation increase. This occurs through a reduction of the latent heating increase required to maintain a balanced atmospheric energy budget.more » Using an ensemble of climate models, here we show that such models tend to underestimate the sensitivity of solar absorption to variations in atmospheric water vapour, leading to an underestimation in the shortwave absorption increase and an overestimation in the precipitation increase. This sensitivity also varies considerably among models due to differences in radiative transfer parameterizations, explaining a substantial portion of model spread in the precipitation response. Consequently, attaining accurate shortwave absorption responses through improvements to the radiative transfer schemes could reduce the spread in the predicted global precipitation increase per degree warming for the end of the twenty-first century by about 35 per cent, and reduce the estimated ensemble-mean increase in this quantity by almost 40 per cent.« less
NASA Astrophysics Data System (ADS)
Aebi, Christine; Gröbner, Julian; Kämpfer, Niklaus; Vuilleumier, Laurent
2017-04-01
Our study analyses climatologies of cloud fraction, cloud type and cloud radiative effect depending on different parameters at two stations in Switzerland. The calculations have been performed for shortwave (0.3 - 3 μm) and longwave (3 - 100 μm) radiation separately. Information about fractional cloud coverage and cloud type is automatically retrieved from images taken by visible all-sky cameras at the two stations Payerne (490 m asl) and Davos (1594 m asl) using a cloud detection algorithm developed by PMOD/WRC (Wacker et al., 2015). Radiation data are retrieved from pyranometers and pyrgeometers, the cloud base height from a ceilometer and IWV data from GPS measurements. Interestingly, Davos and Payerne show different trends in terms of cloud coverage and cloud fraction regarding seasonal variations. The absolute longwave cloud radiative effect (LCE) for low-level clouds and a cloud coverage of 8 octas has a median value between 61 and 72 Wm-2. It is shown that the fractional cloud coverage, the cloud base height (CBH) and integrated water vapour (IWV) all have an influence on the magnitude of the LCE and will be illustrated with key examples. The relative values of the shortwave cloud radiative effect (SCE) for low-level clouds and a cloud coverage of 8 octas are between -88 to -62 %. The SCE is also influenced by the latter parameters, but also if the sun is covered or not by clouds. At both stations situations of shortwave radiation cloud enhancements have been observed and will be discussed. Wacker S., J. Gröbner, C. Zysset, L. Diener, P. Tzoumanikas, A. Kazantzidis, L. Vuilleumier, R. Stöckli, S. Nyeki, and N. Kämpfer (2015) Cloud observations in Switzerland using hemispherical sky cameras, J. Geophys. Res. Atmos, 120, 695-707.
NASA Astrophysics Data System (ADS)
Hansell, Richard Allen, Jr.
The radiative effects of dust aerosol on our climate system have yet to be fully understood and remain a topic of contemporary research. To investigate these effects, detection/retrieval methods for dust events over major dust outbreak and transport areas have been developed using satellite and ground-based approaches. To this end, both the shortwave and longwave surface radiative forcing of dust aerosol were investigated. The ground-based remote sensing approach uses the Atmospheric Emitted Radiance Interferometer brightness temperature spectra to detect mineral dust events and to retrieve their properties. Taking advantage of the high spectral resolution of the AERI instrument, absorptive differences in prescribed thermal IR window sub-band channels were exploited to differentiate dust from cirrus clouds. AERI data collected during the UAE2 at Al-Ain UAE was employed for dust retrieval. Assuming a specified dust composition model a priori and using the light scattering programs of T-matrix and the finite difference time domain methods for oblate spheroids and hexagonal plates, respectively, dust optical depths have been retrieved and compared to those inferred from a collocated and coincident AERONET sun-photometer dataset. The retrieved optical depths were then used to determine the dust longwave surface forcing during the UAE2. Likewise, dust shortwave surface forcing is investigated employing a differential technique from previous field studies. The satellite-based approach uses MODIS thermal infrared brightness temperature window data for the simultaneous detection/separation of mineral dust and cirrus clouds. Based on the spectral variability of dust emissivity at the 3.75, 8.6, 11 and 12 mum wavelengths, the D*-parameter, BTD-slope and BTD3-11 tests are combined to identify dust and cirrus. MODIS data for the three dust-laden scenes have been analyzed to demonstrate the effectiveness of this detection/separation method. Detected daytime dust and cloud coverage for the Persian Gulf case compare reasonably well to those from the "Deep Blue" algorithm developed at NASA-GSFC. The nighttime dust/cloud detection for the cases surrounding Cape Verde and Niger, West Africa has been validated by comparing to coincident and collocated ground-based micro-pulse lidar measurements.
NASA Astrophysics Data System (ADS)
Alfaro-Contreras, Ricardo; Zhang, Jianglong; Reid, Jeffrey S.; Christopher, Sundar
2017-11-01
By combining Collection 6 Moderate Resolution and Imaging Spectroradiometer (MODIS) and Version 22 Multi-angle Imaging Spectroradiometer (MISR) aerosol products with Cloud and Earth's Radiant Energy System (CERES) flux products, the aerosol optical thickness (AOT, at 0.55 µm) and shortwave (SW) aerosol radiative effect (SWARE) trends are studied over ocean for the near-full Terra (2000-2015) and Aqua (2002-2015) data records. Despite differences in sampling methods, regional SWARE and AOT trends are highly correlated with one another. Over global oceans, weak SWARE (cloud-free SW flux) and AOT trends of 0.5-0.6 W m-2 (-0.5 to -0.6 W m-2) and 0.002 AOT decade-1 are found using Terra data. Near-zero AOT and SWARE trends are also found for using Aqua data, regardless of the angular distribution models (ADMs) used. Regionally, positive AOT and cloud-free SW flux (negative SWARE) trends are found over the Bay of Bengal, the Arabian Sea, the Arabian/Persian Gulf and the Red Sea, while statistically significant negative trends are derived over the Mediterranean Sea and the eastern US coast. In addition, the global mean instantaneous SW aerosol direct forcing efficiencies are found to be ˜ -60 W m-2 AOT-1, with corresponding SWARE values of ˜ -7 W m-2 from both Aqua and Terra data, again regardless of CERES ADMs used. Regionally, SW aerosol direct forcing efficiency values of ˜ -40 W m-2 AOT-1 are found over the southwest coast of Africa where smoke aerosol particles dominate in summer. Larger (in magnitude) SW aerosol direct forcing efficiency values of -50 to -80 W m-2 AOT-1 are found over several other dust- and pollutant-aerosol-dominated regions. Lastly, the AOT and SWARE trends from this study are also intercompared with aerosol trends (such as active-based ones) from several previous studies. Findings suggest that a cohesive understanding of the changing aerosol skies can be achieved through the analysis of observations from both passive- and active-based analyses, as well as from both narrowband and broadband datasets.
2012-09-30
and Forecasting Based on Observations, Adaptive Sampling, and Numerical Prediction Steven R. Ramp Soliton Ocean Services, Inc. 691 Country Club... Soliton Ocean Services, Inc,691 Country Club Drive,Monterey,CA,93924 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S...shortwave. The results show that the incoming shortwave radiation was the dominant term, even when averaged over the dark hours, which accounts
NASA Astrophysics Data System (ADS)
Geiger, B.; Carrer, D.; Meurey, C.; Roujean, J.-L.
2006-08-01
The Satellite Application Facility for Land Surface Anal- ysis hosted by the Portuguese Meteorological Institute in Lisbon generates and distributes value added satellite products for numerical weather prediction and environ- mental applications in near-real time. Within the project consortium M´et´eo-France is responsible for the land sur- face albedo and down-welling short-wave radiation flux products. Since the beginning of the year 2005 Meteosat Second Generation data are routinely processed by the Land-SAF operational system. In general the validation studies carried out so far show a good consistency with in-situ observations or equivalent products derived from other satellites. After one year of operations a summary of the product characteristics and performances is given. Key words: Surface Albedo; Down-welling Radiation; Land-SAF.
SAGE III/ISS L2 Solar Event Species Profiles (Native) V5 (g3bsspb)
Atmospheric Science Data Center
2017-12-21
SAGE III/ISS L2 Solar Event Species Profiles (Native) V5 (g3bsspb) Project ... present Temporal Resolution: 1 file per event File Format: BINARY Tools: Earthdata ... Radiation Longwave Radiation Shortwave Radiation Event Tag Event Type Obs Beta Angle Order Data: ...
SAGE III/ISS L2 Lunar Event Species Profiles (Native) V5 (g3blspb)
Atmospheric Science Data Center
2018-01-08
SAGE III/ISS L2 Lunar Event Species Profiles (Native) V5 (g3blspb) Project ... present Temporal Resolution: 1 file per event File Format: BINARY Tools: Earthdata ... Radiation Longwave Radiation Shortwave Radiation Event Tag Event Type Obs Beta Angle Order Data: ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jianjun; Zheng, Youfei; Li, Zhanqing
2012-02-09
Four years of columnar aerosol particle optical properties (2006 to 2009) and one year database worth of aerosol particle vertical profile of 527 nm extinction coefficient (June 2008 to May 2009) are analyzed at Taihu in the central Yangtze Delta region in eastern China. Seasonal variations of aerosol optical properties, vertical distribution, and influence on shortwave radiation and heating rates were investigated. Multiyear variations of aerosol optical depths (AOD), Angstrom exponents, single scattering albedo (SSA) and asymmetry factor (ASY) are analyzed, together with the vertical profile of aerosol extinction. AOD is largest in summer and smallest in winter. SSAs exhibitmore » weak seasonal variation with the smallest values occurring during winter and the largest during summer. The vast majority of aerosol particles are below 2 km, and about 62%, 67%, 67% and 83% are confined to below 1 km in spring, summer, autumn and winter, respectively. Five-day back trajectory analyses show that the some aerosols aloft are traced back to northern/northwestern China, as far as Mongolia and Siberia, in spring, autumn and winter. The presence of dust aerosols were identified based on the linear depolarization measurements together with other information (i.e., back trajectory, precipitation, aerosol index). Dust strongly impacts the vertical particle distribution in spring and autumn, with much smaller effects in winter. The annual mean aerosol direct shortwave radiative forcing (efficiency) at the bottom, top and within the atmosphere are -34.8 {+-} 9.1 (-54.4 {+-} 5.3), -8.2 {+-} 4.8 (-13.1 {+-} 1.5) and 26.7 {+-} 9.4 (41.3 {+-} 4.6) W/m{sup 2} (Wm{sup -2} T{sup -1}), respectively. The mean reduction in direct and diffuse radiation reaching surface amount to 109.2 {+-} 49.4 and 66.8 {+-} 33.3 W/m{sup 2}, respectively. Aerosols significantly alter the vertical profile of solar heating, with great implications for atmospheric stability and dynamics within the lower troposphere.« less
Hydrodynamic Modeling of Diego Garcia Lagoon
2014-08-01
relative humidity, rainfall rate (m/s), evapotranspiration rate (m/s), net solar shortwave radiation (J/m2/s), cloud cover, wind speed (m/s), and... Evapotranspiration estimates were made using a version of the Modified Penman Equation (CIMIS, 2014). Solar radiation measurements were obtained from
NASA Astrophysics Data System (ADS)
Zhang, T.; Stackhouse, P. W.; Gupta, S. K.; Cox, S. J.; Mikovitz, J. C.; Nasa Gewex Srb
2011-12-01
The NASA GEWEX-SRB (Global Energy and Water cycle Experiment - Surface Radiation Budget) project produces and archives shortwave and longwave atmospheric radiation data at the top of the atmosphere (TOA) and the Earth's surface. The archive holds uninterrupted records of shortwave/longwave downward/upward radiative fluxes at 1 degree by 1 degree resolution for the entire globe. The latest version in the archive, Release 3.0, is available as 3-hourly, daily and monthly means, spanning 24.5 years from July 1983 to December 2007. Primary inputs to the models used to produce the data include: shortwave and longwave radiances from International Satellite Cloud Climatology Project (ISCCP) pixel-level (DX) data, cloud and surface properties derived therefrom, temperature and moisture profiles from GEOS-4 reanalysis product obtained from the NASA Global Modeling and Assimilation Office (GMAO), and column ozone amounts constituted from Total Ozone Mapping Spectrometer (TOMS), TIROS Operational Vertical Sounder (TOVS) archives, and Stratospheric Monitoring-group's Ozone Blended Analysis (SMOBA), an assimilation product from NOAA's Climate Prediction Center. The data in the archive have been validated systemically against ground-based measurements which include the Baseline Surface Radiation Network (BSRN) data, the World Radiation Data Centre (WRDC) data, and the Global Energy Balance Archive (GEBA) data, and generally good agreement has been achieved. In addition to all-sky radiative fluxes, the output data include clear-sky fluxes, cloud optical depth, cloud fraction and so on. The BSRN archive also includes observations that can be used to derive the cloud fraction, which provides a means for analyzing and explaining the SRB-BSRN flux differences. In this paper, we focus on the effect of cloud fraction on the surface shortwave flux and the level of agreement between the satellite-based SRB data and the ground-based BSRN data. The satellite and BSRN employ different measuring methodologies and thus result in data representing means on dramatically different spatial scales. Therefore, the satellite-based and ground-based measurements are not expected to agree all the time, especially under skies with clouds. The flux comparisons are made under different cloud fractions, and it is found that the SRB-BSRN radiative flux discrepancies can be explained to a certain extent by the SRB-BSRN cloud fraction discrepancies. Apparently, cloud fraction alone cannot completely define the role of clouds in radiation transfer. Further studies need to incorporate the classification of cloud types, altitudes, cloud optical depths and so on.
Climate Implications of the Heterogeneity of Anthropogenic Aerosol Forcing
NASA Astrophysics Data System (ADS)
Persad, Geeta Gayatri
Short-lived anthropogenic aerosols are concentrated in regions of high human activity, where they interact with radiation and clouds, causing horizontally heterogeneous radiative forcing between polluted and unpolluted regions. Aerosols can absorb shortwave energy in the atmosphere, but deplete it at the surface, producing opposite radiative perturbations between the surface and atmosphere. This thesis investigates climate and policy implications of this horizontal and vertical heterogeneity of anthropogenic aerosol forcing, employing the Geophysical Fluid Dynamics Laboratory's AM2.1 and AM3 models, both at a global scale and using East Asia as a regional case study. The degree of difference between spatial patterns of climate change due to heterogeneous aerosol forcing versus homogeneous greenhouse gas forcing deeply impacts the detection, attribution, and prediction of regional climate change. This dissertation addresses a gap in current understanding of these two forcings' response pattern development, using AM2.1 historical forcing simulations. The results indicate that fast atmospheric and land-surface processes alone substantially homogenize the global pattern of surface energy flux response to heterogeneous aerosol forcing. Aerosols' vertical redistribution of energy significantly impacts regional climate, but is incompletely understood. It is newly identified here, via observations and historical and idealized forcing simulations, that increased aerosol-driven atmospheric absorption may explain half of East Asia's recent surface insolation decline. Further, aerosols' surface and atmospheric effects counteract each other regionally---atmospheric heating enhances summer monsoon circulation, while surface dimming suppresses it---but absorbing aerosols' combined effects reduce summer monsoon rainfall. This thesis constitutes the first vertical decomposition of aerosols' impacts in this high-emissions region and elucidates the monsoonal response to aerosols' surface versus atmospheric forcing. Future aerosol emissions patterns will affect the distribution of regional climate impacts. This dissertation interrogates how international trade affects existing assumptions about East Asia's future black carbon aerosol emissions, using integrated assessment modeling, emissions and economic data, and AM3 simulations. Exports emerge as a uniquely large and potentially growing source of Chinese black carbon emissions that could impede projected regional emissions reductions, with substantial climate and health consequences. The findings encourage greater emissions projection sophistication and illustrate how societal decisions may influence future aerosol forcing heterogeneity.
NASA Astrophysics Data System (ADS)
Meola, Joseph; Absi, Anthony; Leonard, James D.; Ifarraguerri, Agustin I.; Islam, Mohammed N.; Alexander, Vinay V.; Zadnik, Jerome A.
2013-05-01
A fundamental limitation of current visible through shortwave infrared hyperspectral imaging systems is the dependence on solar illumination. This reliance limits the operability of such systems to small windows during which the sun provides enough solar radiation to achieve adequate signal levels. Similarly, nighttime collection is infeasible. This work discusses the development and testing of a high-powered super-continuum laser for potential use as an on-board illumination source coupled with a hyperspectral receiver to allow for day/night operability. A 5-watt shortwave infrared supercontinuum laser was developed, characterized in the lab, and tower-tested along a 1.6km slant path to demonstrate propagation capability as a spectral light source.
Todd A. Schroeder; Robbie Hember; Nicholas C. Coops; Shunlin Liang
2009-01-01
The magnitude and distribution of incoming shortwave solar radiation (SW) has significant influence on the productive capacity of forest vegetation. Models that estimate forest productivity require accurate and spatially explicit radiation surfaces that resolve both long- and short-term temporal climatic patterns and that account for topographic variability of the land...
SAGE III/ISS L1B Solar Event Transmission Data (Native) V5 (g3btb)
Atmospheric Science Data Center
2017-12-21
SAGE III/ISS L1B Solar Event Transmission Data (Native) V5 (g3btb) Project Title: ... present Temporal Resolution: 1 file per event File Format: BINARY Tools: Earthdata ... Radiation Longwave Radiation Shortwave Radiation Event Tag Event Type Obs Beta Angle Order Data: ...
SAGE III/ISS L2 Solar Event Species Profiles (HDF-EOS) V5 (g3bssp)
Atmospheric Science Data Center
2017-12-21
SAGE III/ISS L2 Solar Event Species Profiles (HDF-EOS) V5 (g3bssp) Project ... present Temporal Resolution: 1 file per event File Format: HDF-4 Tools: Earthdata ... Radiation Longwave Radiation Shortwave Radiation Event Tag Event Type Obs Beta Angle Order Data: ...
SAGE III/ISS L2 Lunar Event Species Profiles (HDF-EOS) V5 (g3blsp)
Atmospheric Science Data Center
2018-01-04
SAGE III/ISS L2 Lunar Event Species Profiles (HDF-EOS) V5 (g3blsp) Project ... present Temporal Resolution: 1 file per event File Format: HDF-4 Tools: Earthdata ... Radiation Longwave Radiation Shortwave Radiation Event Tag Event Type Obs Beta Angle Order Data: ...
NASA Astrophysics Data System (ADS)
Cox, Stephen J.; Stackhouse, Paul W.; Gupta, Shashi K.; Mikovitz, J. Colleen; Zhang, Taiping
2017-02-01
The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The current Release 3.0 (available at gewex-srb.larc.nasa.gov) uses the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This product is subsampled to 30 km. ISCCP is currently recalibrating and recomputing their entire data series, to be released as the H product, at 10km resolution. The ninefold increase in pixel number will allow SRB a higher resolution gridded product (e.g. 0.5 degree), as well as the production of pixel-level fluxes. Other key input improvements include a detailed aerosol history using the Max Planck Institute Aerosol Climatology (MAC), and temperature and moisture profiles from nnHIRS.
Multi-site characterization of tropical aerosols: Implications for regional radiative forcing
NASA Astrophysics Data System (ADS)
Sumit, Kumar; Devara, P. C. S.; Manoj, M. G.
2012-03-01
A land campaign, as a part of the Indian Space Research Organization-Geosphere Biosphere Program (ISRO-GBP), has been organized using a suit of instruments like AERONET (Aerosol Robotic Network) Sun/Sky sunphotometer, Microtops-II (MICROprocessor-controlled Total Ozone Portable Spectrometer), short-wave pyranometer from December 1, 2006 to April 30, 2007, over five locations (Ahmedabad, Pune, Sinhgad, Trivandrum and Gadanki) representing different environments. The dominance of different aerosol types such as biomass burning, urban/industrial pollution, marine origin and desert-dust particles is expected at these five sites. In all locations, significant day-to-day variability in AOD and Ångström exponent is observed. The Ångström exponent exhibits its lowest values over semi-arid region (Ahmedabad) 0.4-0.7, while it is around 1.8 at rural site (Gadanki). The retrieved volume size distributions for Pune, Ahmedabad and Trivandrum are found to be bimodal with varying concentration of each mode. Interesting feature of this observation is, very low coarse-mode volume concentration observed at Trivandrum even though observations were made about 300 m from the coast. The synergy of results from these complementary measurements is reflected in the computed regional aerosol radiative forcing and heating rates. We have used a radiative transfer model (SBDART) to examine the variations of aerosol direct radiative effect (ADRE) and heating rates to give an overall estimation of the effect on climate. The ADRE, over different measurement sites, at short wavelength is found to be negative at the surface in the range of - 18 to - 59 W m - 2 , and TOA forcing values varied from + 0.9 to - 8 W m - 2 .
NASA Astrophysics Data System (ADS)
Bilbao, Julia; Román, Roberto; Yousif, Charles; Mateos, David; Miguel, Argimiro
2013-04-01
The Universities of Malta and Valladolid (Spain) developed a measurement campaign, which took place in the Institute for Energy Technology in Marsaxlokk (Southern Malta) between May and October 2012, and it was supported by the Spanish government through the Project titled "Measurement campaign about Solar Radiation, Ozone, and Aerosol in the Mediterranean area" (with reference CGL2010-12140-E). This campaign provided the first ground-based measurements in Malta of erythemal radiation and UV index, which indicate the effectiveness of the sun exposure to produce sunburn on human skin. A wide variety of instruments was involved in the campaign, providing a complete atmospheric characterization. Data of erythemal radiation and UV index (from UVB-1 pyranometer), total shortwave radiaton (global and diffuse components from CM-6B pyranometers), and total ozone column, aerosol optical thickness, and precitable water column (from a Microtops-II sunphotometer) were available in the campaign. Ground-based and satellite instruments were used in the analysis, and several intercomparisons were carried out to validate remote sensing data. OMI, GOME, GOME-2, and MODIS instruments, which provide data of ozone, aerosol load and optical properties, were used to this end. The effects on solar radiation, ultraviolet and total shortwave ranges, of total ozone column, aerosol optical thickness and precipitable water column were obtained using radiation measurements at different fixed solar zenith angles. The empirical results shown a determinant role of the solar position, a negligible effect of ozone on total shortwave radiation, and a stronger attenuation provided by aerosol particles in the erythemal radiation. A variety of aerosol types from different sources (desert dust, biomass burning, continental, and maritime) reach Malta, in this campaign several dust events from the Sahara desert occurred and were analyzed establishing the air mass back-trajectories ending at Malta at several heights calculated by means of the HYSPLIT model. Hence, changes in the UV index due to atmospheric aerosol were characterized.
Multiyear Statistics of 2-D Shortwave Radiative Effects at Three ARM Sites
NASA Technical Reports Server (NTRS)
Varnai, Tamas
2010-01-01
This study examines the importance of horizontal photon transport effects, which are not considered in the 1-D calculations of solar radiative heating used by most atmospheric dynamical models. In particular, the paper analyzes the difference between 2-D and 1-D radiative calculations for 2-D vertical cross-sections of clouds that were observed at three sites over 2- to 3-year periods. The results show that 2-D effects increase multiyear 24-hour average total solar absorption by about 4.1 W/sq m, 1.2 W/sq m, and 0.3 W/sq m at a tropical, mid-latitude, and arctic site, respectively. However, 2-D effects are often much larger than these average values, especially for high sun and for convective clouds. The results also reveal a somewhat unexpected behavior, that horizontal photon transport often enhances solar heating even for oblique sun. These findings underscore the need for fast radiation calculation methods that can allow atmospheric dynamical simulations to consider the inherently multidimensional nature of shortwave radiative processes.
The radiative forcing potential of different climate geoengineering options
NASA Astrophysics Data System (ADS)
Lenton, T. M.; Vaughan, N. E.
2009-01-01
Climate geoengineering proposals seek to rectify the Earth's current radiative imbalance, either by reducing the absorption of incoming solar (shortwave) radiation, or by removing CO2 from the atmosphere and transferring it to long-lived reservoirs, thus increasing outgoing longwave radiation. A fundamental criterion for evaluating geoengineering options is their climate cooling effectiveness, which we quantify here in terms of radiative forcing potential. We use a simple analytical approach, based on the global energy balance and pulse response functions for the decay of CO2 perturbations. This aids transparency compared to calculations with complex numerical models, but is not intended to be definitive. Already it reveals some significant errors in existing calculations, and it allows us to compare the relative effectiveness of a range of proposals. By 2050, only stratospheric aerosol injections or sunshades in space have the potential to cool the climate back toward its pre-industrial state, but some land carbon cycle geoengineering options are of comparable magnitude to mitigation "wedges". Strong mitigation, i.e. large reductions in CO2 emissions, combined with global-scale air capture and storage, afforestation, and bio-char production, i.e. enhanced CO2 sinks, might be able to bring CO2 back to its pre-industrial level by 2100, thus removing the need for other geoengineering. Alternatively, strong mitigation stabilising CO2 at 500 ppm, combined with geoengineered increases in the albedo of marine stratiform clouds, grasslands, croplands and human settlements might achieve a patchy cancellation of radiative forcing. Ocean fertilisation options are only worthwhile if sustained on a millennial timescale and phosphorus addition probably has greater long-term potential than iron or nitrogen fertilisation. Enhancing ocean upwelling or downwelling have trivial effects on any meaningful timescale. Our approach provides a common framework for the evaluation of climate geoengineering proposals, and our results should help inform the prioritisation of further research into them.
Warming slowdown over the Tibetan plateau in recent decades
NASA Astrophysics Data System (ADS)
Liu, Yaojie; Zhang, Yangjian; Zhu, Juntao; Huang, Ke; Zu, Jiaxing; Chen, Ning; Cong, Nan; Stegehuis, Annemiek Irene
2018-03-01
As the recent global warming hiatus and the warming on high elevations are attracting worldwide attention, this study examined the robustness of the warming slowdown over the Tibetan plateau (TP) and its related driving forces. By integrating multiple-source data from 1982 to 2015 and using trend analysis, we found that the mean temperature (T mean), maximum temperature (T max) and minimum temperature (T min) showed a slowdown of the warming trend around 1998, during the period of the global warming hiatus. This was found over both the growing season (GS) and non-growing season (NGS) and suggested a robust warming hiatus over the TP. Due to the differences in trends of T max and T min, the trend of diurnal temperature range (DTR) also shifted after 1998, especially during the GS temperature. The warming rate was spatially heterogeneous. The northern TP (NTP) experienced more warming than the southern TP (STP) in all seasons from 1982 to 1998, while the pattern was reversed in the period from 1998 to 2015. Water vapour was found to be the main driving force for the trend in T mean and T min by influencing downward long wave radiation. Sunshine duration was the main driving force behind the trend in T max and DTR through a change in downward shortwave radiation that altered the energy source of daytime temperature. Water vapour was the major driving force for temperature change over the NTP, while over the STP, sunshine duration dominated the temperature trend.
Influence of ground surface characteristics on the mean radiant temperature in urban areas.
Lindberg, Fredrik; Onomura, Shiho; Grimmond, C S B
2016-09-01
The effect of variations in land cover on mean radiant temperature (T mrt ) is explored through a simple scheme developed within the radiation model SOLWEIG. Outgoing longwave radiation is parameterised using surface temperature observations on a grass and an asphalt surface, whereas outgoing shortwave radiation is modelled through variations in albedo for the different surfaces. The influence of ground surface materials on T mrt is small compared to the effects of shadowing. Nevertheless, altering ground surface materials could contribute to a reduction in T mrt to reduce the radiant load during heat-wave episodes in locations where shadowing is not an option. Evaluation of the new scheme suggests that despite its simplicity it can simulate the outgoing fluxes well, especially during sunny conditions. However, it underestimates at night and in shadowed locations. One grass surface used to develop the parameterisation, with very different characteristics compared to an evaluation grass site, caused T mrt to be underestimated. The implications of using high temporal resolution (e.g. 15 minutes) meteorological forcing data under partly cloudy conditions are demonstrated even for fairly proximal sites.
Explicit validation of a surface shortwave radiation balance model over snow-covered complex terrain
NASA Astrophysics Data System (ADS)
Helbig, N.; Löwe, H.; Mayer, B.; Lehning, M.
2010-09-01
A model that computes the surface radiation balance for all sky conditions in complex terrain is presented. The spatial distribution of direct and diffuse sky radiation is determined from observations of incident global radiation, air temperature, and relative humidity at a single measurement location. Incident radiation under cloudless sky is spatially derived from a parameterization of the atmospheric transmittance. Direct and diffuse sky radiation for all sky conditions are obtained by decomposing the measured global radiation value. Spatial incident radiation values under all atmospheric conditions are computed by adjusting the spatial radiation values obtained from the parametric model with the radiation components obtained from the decomposition model at the measurement site. Topographic influences such as shading are accounted for. The radiosity approach is used to compute anisotropic terrain reflected radiation. Validations of the shortwave radiation balance model are presented in detail for a day with cloudless sky. For a day with overcast sky a first validation is presented. Validation of a section of the horizon line as well as of individual radiation components is performed with high-quality measurements. A new measurement setup was designed to determine terrain reflected radiation. There is good agreement between the measurements and the modeled terrain reflected radiation values as well as with incident radiation values. A comparison of the model with a fully three-dimensional radiative transfer Monte Carlo model is presented. That validation reveals a good agreement between modeled radiation values.
Holland, Marika M; Landrum, Laura
2015-07-13
We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Holland, Marika M.; Landrum, Laura
2015-01-01
We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state. PMID:26032318
Global model comparison of heterogeneous ice nucleation parameterizations in mixed phase clouds
NASA Astrophysics Data System (ADS)
Yun, Yuxing; Penner, Joyce E.
2012-04-01
A new aerosol-dependent mixed phase cloud parameterization for deposition/condensation/immersion (DCI) ice nucleation and one for contact freezing are compared to the original formulations in a coupled general circulation model and aerosol transport model. The present-day cloud liquid and ice water fields and cloud radiative forcing are analyzed and compared to observations. The new DCI freezing parameterization changes the spatial distribution of the cloud water field. Significant changes are found in the cloud ice water fraction and in the middle cloud fractions. The new DCI freezing parameterization predicts less ice water path (IWP) than the original formulation, especially in the Southern Hemisphere. The smaller IWP leads to a less efficient Bergeron-Findeisen process resulting in a larger liquid water path, shortwave cloud forcing, and longwave cloud forcing. It is found that contact freezing parameterizations have a greater impact on the cloud water field and radiative forcing than the two DCI freezing parameterizations that we compared. The net solar flux at top of atmosphere and net longwave flux at the top of the atmosphere change by up to 8.73 and 3.52 W m-2, respectively, due to the use of different DCI and contact freezing parameterizations in mixed phase clouds. The total climate forcing from anthropogenic black carbon/organic matter in mixed phase clouds is estimated to be 0.16-0.93 W m-2using the aerosol-dependent parameterizations. A sensitivity test with contact ice nuclei concentration in the original parameterization fit to that recommended by Young (1974) gives results that are closer to the new contact freezing parameterization.
NASA Astrophysics Data System (ADS)
Zender, C. S.; Wang, W.; van As, D.
2017-12-01
Clouds have strong impacts on Greenland's surface melt through the interaction with the dry atmosphere and reflective surfaces. However, their effects are uncertain due to the lack of in situ observations. To better quantify cloud radiative effects (CRE) in Greenland, we analyze and interpret multi-year radiation measurements from 30 automatic weather stations encompassing a broad range of climatological and topographical conditions. During melt season, clouds warm surface over most of Greenland, meaning the longwave greenhouse effect outweighs the shortwave shading effect; on the other hand, the spatial variability of net (longwave and shortwave) CRE is dominated by shortwave CRE and in turn by surface albedo, which controls the potential absorption of solar radiation when clouds are absent. The net warming effect decreases with shortwave CRE from high to low altitudes and from north to south (Fig. 1). The spatial correlation between albedo and net CRE is strong (r=0.93, p<<0.01). In the accumulation zone, the net CRE seasonal trend is controlled by longwave CRE associated with cloud fraction and liquid water content. It becomes stronger from May to July and stays constant in August. In the ablation zone, albedo determines the net CRE seasonal trend, which decreases from May to July and increases afterwards. On an hourly timescale, we find two distinct radiative states in Greenland (Fig. 2). The clear state is characterized by clear-sky conditions or thin clouds, when albedo and solar zenith angle (SZA) weakly correlates with CRE. The cloudy state is characterized by opaque clouds, when the combination of albedo and SZA strongly correlates with CRE (r=0.85, p<0.01). Although cloud properties intrinsically affect CRE, the large melt-season variability of these two non-cloud factors, albedo and solar zenith angle, explains the majority of the CRE variation in spatial distribution, seasonal trend in the ablation zone, and in hourly variability in the cloudy radiative state. Clouds warm the brighter and colder surfaces of Greenland, enhance snow melt, and tend to lower the albedo. Clouds cool the darker and warmer surfaces, inhibiting snow melt, which increases albedo, and thus stabilizes surface melt. This stabilizing mechanism may also occur over sea ice, helping to forestall surface melt as the Arctic becomes dimmer.
NASA Astrophysics Data System (ADS)
Pillai, Priya Ramachandran
Emissions of greenhouse gases (GHG) and primary release and secondary formation of aerosols alter the earth's radiative balance and therefore have important climatic implications. Savings in carbon dioxide (CO2) emissions accomplished by replacing fossil fuels with biofuels may increase the nitrous oxide (N2O) emissions. Among various atmospheric trace gases, N2O, irrespective of its low atmospheric concentration, is the fourth most important gas in causing the global greenhouse effect. Major processes, those affect the concentration of atmospheric N2O, are soil microbial activities leading to nitrification and denitrification. Therefore, anthropogenic activities such as industrial emissions, and agricultural practices including application of nitrogenous fertilizers, land use changes, biomass combustion all contribute to the atmospheric N2O concentration. The emission rates of N2O related to biofuel production depend on the nitrogen (N) fertilizer uptake efficiency of biofuel crops. However, crops with less N demand, such as switchgrass may have more favorable climate impacts when compared to crops with high N demands, such as corn. Despite its wide environmental tolerance, the regional adaptability of the potential biofuel crop switch grass varies considerably. Therefore, it is important to regionally quantify the GHG emissions and crop yield in response to N-fertilization. A major objective of this study is to quantify soil emissions of N2O from switchgrass and corn fields as a function of N-fertilization. The roles of soil moisture and soil temperature on N2O fluxes were analyzed. These N2O observations may be used to parameterize the biogeochemical models to better understand the impact of different N2O emission scenarios. This study allows for improvements in climate models that focus on understanding the environmental impacts of the climate change mitigation strategy of replacing fossil fuels with biofuels. As a second major objective, the top of the atmosphere (TOA) shortwave aerosol direct radiative forcing (SWARF) by regionally nucleated particles over a forest site in the Southeastern United States was estimated. Particle size distributions (aerodynamic diameter, Dp 10.2 nm to 250 nm), total number concentrations of nucleation mode (Dp < 25 nm) and fine mode (25 < Dp < 250 nm) particles, and growth rates were analyzed to identify regional nucleation events during November 2005 to September 2007. Shortwave flux from Clouds and Earth's Radiant Energy System (CERES) and aerosol optical depth at 550 nm (AOD, tau550) from Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard the Earth Observing System (EOS) Terra satellite were used to estimate SWARF. AOD was highest (0.38 +/- 0.20) in summer (period of highest particle growth rate) and lowest (0.06 +/- 0.05) in winter (period of lowest particle growth rate). The nucleation day SWARF forcing was -24 +/- 11 Wm-2 in summer and -15 +/- 19 Wm-2 in spring. The radiative forcing efficiency was lower (-54 Wm-2, tau550 -1) in summer (period of highest tau550 and organic PM2.5 concentrations) as compared to spring (-93 Wm-2, tau550 -1). The results show that, during spring and summer 2006 and 2007, the radiative forcing efficiency of regionally nucleated aerosols was -73 Wm-2, tau550 -1. Formations of particles during regional nucleation events introduced significant radiative forcing that need to examine for other regions of the globe where intense regional nucleation events occur frequently.
SAGE III/ISS L1B Solar Event Transmission Data (HDF-EOS) V5 (g3bt)
Atmospheric Science Data Center
2017-12-21
SAGE III/ISS L1B Solar Event Transmission Data (HDF-EOS) V5 (g3bt) Project Title: ... present Temporal Resolution: 1 file per event File Format: HDF-4 Tools: Earthdata ... Radiation Longwave Radiation Shortwave Radiation Event Tag Event Type Obs Beta Angle Order Data: ...
Ma, H. -Y.; Klein, S. A.; Xie, S.; ...
2018-02-27
Many weather forecast and climate models simulate warm surface air temperature (T 2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T 2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions ofmore » surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T 2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T 2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.« less
NASA Astrophysics Data System (ADS)
Ma, H.-Y.; Klein, S. A.; Xie, S.; Zhang, C.; Tang, S.; Tang, Q.; Morcrette, C. J.; Van Weverberg, K.; Petch, J.; Ahlgrimm, M.; Berg, L. K.; Cheruy, F.; Cole, J.; Forbes, R.; Gustafson, W. I.; Huang, M.; Liu, Y.; Merryfield, W.; Qian, Y.; Roehrig, R.; Wang, Y.-C.
2018-03-01
Many weather forecast and climate models simulate warm surface air temperature (T2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions of surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, H. -Y.; Klein, S. A.; Xie, S.
Many weather forecast and climate models simulate warm surface air temperature (T 2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T 2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions ofmore » surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T 2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T 2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.« less
Kang, Na; Kumar, K Raghavendra; Yu, Xingna; Yin, Yan
2016-09-01
Aerosol optical properties were measured and analyzed through the ground-based remote sensing Aerosol Robotic Network (AERONET) over an urban-industrial site, Nanjing (32.21° N, 118.72° E, and 62 m above sea level), in the Yangtze River Delta, China, during September 2007-August 2008. The annual averaged values of aerosol optical depth (AOD500) and the Ångström exponent (AE440-870) were measured to be 0.94 ± 0.52 and 1.10 ± 0.21, respectively. The seasonal averaged values of AOD500 (AE440-870) were noticed to be high in summer (autumn) and low in autumn (spring). The characterization of aerosol types showed the dominance of mixed type followed by the biomass burning and urban-industrial type of aerosol at Nanjing. Subsequently, the curvature (a 2) obtained from the second-order polynomial fit and the second derivative of AE (α') were also analyzed to understand the dominant aerosol type. The single scattering albedo at 440 nm (SSA440) varied from 0.88 to 0.93 with relatively lower (higher) values during the summer (spring), suggesting an increase in black carbon and mineral dust (desert dust) aerosols of absorbing (scattering) nature. The averaged monthly and seasonal evolutions of shortwave (0.3-4.0 μm) direct aerosol radiative forcing (DARF) values were computed from the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model both at the top of atmosphere (TOA) and bottom of atmosphere (SUR) during the study period. Further, the aerosol forcing efficiency (AFE) and the corresponding atmospheric heating rates (AHR) were also estimated from the forcing within the atmosphere (ATM). The derived DARF values, therefore, produced a warming effect within the atmosphere due to strong absorption of solar radiation.
NASA Astrophysics Data System (ADS)
Luo, S.
2016-12-01
Radiation field and cloud properties over the Southern Ocean area generated by the Australian Community Climate and Earth System Simulator (ACCESS) are evaluated using multiple-satellite products from the Fast Longwave And Shortwave radiative Fluxes (FLASHFlux) project and NASA/GEWEX surface radiation budget (SRB) data. The cloud properties are also evaluated using the observational simulator package COSP, a synthetic brightness temperature model (SBTM) and cloud liquid-water path data (UWisc) from the University of Wisconsin satellite retrievals. All of these evaluations are focused on the Southern Ocean area in an effort to understand the reasons behind the short-wave radiation biases at the surface. It is found that the model overestimates the high-level cloud fraction and frequency of occurrence of small ice-water content and underestimates the middle and low-level cloud fraction and water content. In order to improve the modelled radiation fields over the Southern Ocean area, two main modifications have been made to the physical schemes in the ACCESS model. Firstly the autoconversion rate at which the cloud water is converted into rain and the accretion rate in the warm rain scheme have been modified, which increases the cloud liquid-water content in warm cloud layers. Secondly, the scheme which determines the fraction of supercooled liquid water in mixed-phase clouds in the parametrization of cloud optical properties has been changed to use one derived from CALIPSO data which provides larger liquid cloud fractions and thus higher optical depths than the default scheme. Sensitivity tests of these two schemes in ACCESS climate runs have shown that applying either can lead to a reduction of the solar radiation reaching the surface and reduce the short-wave radiation biases.
Intercomparison of Air-Sea Fluxes in the Bay of Bengal
NASA Astrophysics Data System (ADS)
Buckley, J.; Weller, R. A.; Farrar, J. T.; Tandon, A.
2016-02-01
Heat and momentum exchange between the air and sea in the Bay of Bengal is an important driver of atmospheric convection during the Asian Monsoon. Warm sea surface temperatures resulting from salinity stratified shallow mixed layers trigger widespread showers and thunderstorms. In this study, we compare atmospheric reanalysis flux products to air-sea flux values calculated from shipboard observations from four cruises and an air-sea flux mooring in the Bay of Bengal as part of the Air-Sea Interactions in the Northern Indian Ocean (ASIRI) experiment. Comparisons with months of mooring data show that most long timescale reanalysis error arises from the overestimation of longwave and shortwave radiation. Ship observations and select data from the air-sea flux mooring reveals significant errors on shorter timescales (2-4 weeks) which are greatly influenced by errors in shortwave radiation and latent and sensible heat. During these shorter periods, the reanalyses fail to properly show sharp decreases in air temperature, humidity, and shortwave radiation associated with mesoscale convective systems. Simulations with the Price-Weller-Pinkel (PWP) model show upper ocean mixing and deepening mixed layers during these events that effect the long term upper ocean stratification. Mesoscale convective systems associated with cloudy skies and cold and dry air can reduce net heat into the ocean for minutes to a few days, significantly effecting air-sea heat transfer, upper ocean stratification, and ocean surface temperature and salinity.
Hagos, Samson M.; Zhang, Chidong; Feng, Zhe; ...
2016-09-19
Influences of the diurnal cycle of convection on the propagation of the Madden-Julian Oscillation (MJO) across the Maritime Continent (MC) are examined using cloud-permitting regional model simulations and observations. A pair of ensembles of control (CONTROL) and no-diurnal cycle (NODC) simulations of the November 2011 MJO episode are performed. In the CONTROL simulations, the MJO signal is weakened as it propagates across the MC, with much of the convection stalling over the large islands of Sumatra and Borneo. In the NODC simulations, where the incoming shortwave radiation at the top of the atmosphere is maintained at its daily mean value,more » the MJO signal propagating across the MC is enhanced. Examination of the surface energy fluxes in the simulations indicates that in the presence of the diurnal cycle, surface downwelling shortwave radiation in CONTROL simulations is larger because clouds preferentially form in the afternoon. Furthermore, the diurnal co-variability of surface wind speed and skin temperature results in a larger sensible heat flux and a cooler land surface in CONTROL compared to NODC simulations. Here, an analysis of observations indicates that the modulation of the downwelling shortwave radiation at the surface by the diurnal cycle of cloudiness negatively projects on the MJO intraseasonal cycle and therefore disrupts the propagation of the MJO across the MC.« less
Saharan Dust Event Impacts on Cloud Formation and Radiation over Western Europe
NASA Technical Reports Server (NTRS)
Bangert, M.; Nenes, A.; Vogel, B.; Vogel, H.; Barahona, D.; Karydis, V. A.; Kumar, P.; Kottmeier, C.; Blahak, U.
2013-01-01
We investigated the impact of mineral dust particles on clouds, radiation and atmospheric state during a strong Saharan dust event over Europe in May 2008, applying a comprehensive online-coupled regional model framework that explicitly treats particle-microphysics and chemical composition. Sophisticated parameterizations for aerosol activation and ice nucleation, together with two-moment cloud microphysics are used to calculate the interaction of the different particles with clouds depending on their physical and chemical properties. The impact of dust on cloud droplet number concentration was found to be low, with just a slight increase in cloud droplet number concentration for both uncoated and coated dust. For temperatures lower than the level of homogeneous freezing, no significant impact of dust on the number and mass concentration of ice crystals was found, though the concentration of frozen dust particles reached up to 100 l-1 during the ice nucleation events. Mineral dust particles were found to have the largest impact on clouds in a temperature range between freezing level and the level of homogeneous freezing, where they determined the number concentration of ice crystals due to efficient heterogeneous freezing of the dust particles and modified the glaciation of mixed phase clouds. Our simulations show that during the dust events, ice crystals concentrations were increased twofold in this temperature range (compared to if dust interactions are neglected). This had a significant impact on the cloud optical properties, causing a reduction in the incoming short-wave radiation at the surface up to -75Wm-2. Including the direct interaction of dust with radiation caused an additional reduction in the incoming short-wave radiation by 40 to 80Wm-2, and the incoming long-wave radiation at the surface was increased significantly in the order of +10Wm-2. The strong radiative forcings associated with dust caused a reduction in surface temperature in the order of -0.2 to -0.5K for most parts of France, Germany, and Italy during the dust event. The maximum difference in surface temperature was found in the East of France, the Benelux, and Western Germany with up to -1 K. This magnitude of temperature change was sufficient to explain a systematic bias in numerical weather forecasts during the period of the dust event.
The influence of mixed and phase clouds on surface shortwave irradiance during the Arctic spring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lubin D.; Vogelmann A.
2011-10-13
The influence of mixed-phase stratiform clouds on the surface shortwave irradiance is examined using unique spectral shortwave irradiance measurements made during the Indirect and Semi-Direct Aerosol Campaign (ISDAC), supported by the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program. An Analytical Spectral Devices (ASD, Inc.) spectroradiometer measured downwelling spectral irradiance from 350 to 2200 nm in one-minute averages throughout April-May 2008 from the ARM Climate Research Facility's North Slope of Alaska (NSA) site at Barrow. This study examines spectral irradiance measurements made under single-layer, overcast cloud decks having geometric thickness < 3000 m. Cloud optical depth is retrieved frommore » irradiance in the interval 1022-1033 nm. The contrasting surface radiative influences of mixed-phase clouds and liquid-water clouds are discerned using irradiances in the 1.6-{micro}m window. Compared with liquid-water clouds, mixed-phase clouds during the Arctic spring cause a greater reduction of shortwave irradiance at the surface. At fixed conservative-scattering optical depth (constant optical depth for wavelengths {lambda} < 1100 nm), the presence of ice water in cloud reduces the near-IR surface irradiance by an additional several watts-per-meter-squared. This additional reduction, or supplemental ice absorption, is typically {approx}5 W m{sup -2} near solar noon over Barrow, and decreases with increasing solar zenith angle. However, for some cloud decks this additional absorption can be as large as 8-10 W m{sup -2}.« less
Reflection and emission models for deserts derived from Nimbus-7 ERB scanner measurements
NASA Technical Reports Server (NTRS)
Staylor, W. F.; Suttles, J. T.
1986-01-01
Broadband shortwave and longwave radiance measurements obtained from the Nimbus-7 Earth Radiation Budget scanner were used to develop reflectance and emittance models for the Sahara-Arabian, Gibson, and Saudi Deserts. The models were established by fitting the satellite measurements to analytic functions. For the shortwave, the model function is based on an approximate solution to the radiative transfer equation. The bidirectional-reflectance function was obtained from a single-scattering approximation with a Rayleigh-like phase function. The directional-reflectance model followed from integration of the bidirectional model and is a function of the sum and product of cosine solar and viewing zenith angles, thus satisfying reciprocity between these angles. The emittance model was based on a simple power-law of cosine viewing zenith angle.
Effects of clouds on the surface shortwave radiation at a rural inland mid-latitude site
NASA Astrophysics Data System (ADS)
Salgueiro, Vanda; Costa, Maria João; Silva, Ana Maria; Bortoli, Daniele
2016-09-01
Seven years (2003-2010) of measured shortwave (SW) irradiances were used to obtain estimates of the 10 min averaged effective cloud optical thickness (ECOT) and of the shortwave cloud radiative effect (CRESW) at the surface in a mid-latitude site (Évora - south of Portugal), and its seasonal variability is presented. The ECOT, obtained using transmittance measurements at 415 nm, was compared with the correspondent MODIS cloud optical thickness (MODIS COT) for non-precipitating water clouds and cloud fractions higher than 0.25. This comparison showed that the ECOT represents well the cloud optical thickness over the study area. The CRESW, determined for two SW broadband ranges (300-1100 nm; 285-2800 nm), was normalized (NCRESW) and related with the obtained ECOT. A logarithmic relation between NCRESW and ECOT was found for both SW ranges, presenting lower dispersion for overcast-sky situations than for partially cloudy-sky situations. The NCRESW efficiency (NCRESW per unit of ECOT) was also related with the ECOT for overcast-sky conditions. The relation found is parameterized by a power law function showing that NCRESW efficiency decreases as the ECOT increases, approaching one for ECOT values higher than about 50.
NASA Astrophysics Data System (ADS)
Garratt, J. R.
1995-05-01
There is direct evidence that excess net radiation calculated in general circulation models at continental surfaces [of about 11-17 W m2 (20%-27%) on an annual ~1 is not only due to overestimates in annual incoming shortwave fluxes [of 9-18 W m2 (6%-9%)], but also to underestimates in outgoing longwave fluxes. The bias in the outgoing longwave flux is deduced from a comparison of screen-air temperature observations, available as a global climatology of mean monthly values, and model-calculated surface and screen-air temperatures. An underestimate in the screen temperature computed in general circulation models over continents, of about 3 K on an annual basis, implies an underestimate in the outgoing longwave flux, averaged in six models under study, of 11-15 W m2 (3%-4%). For a set of 22 inland stations studied previously, the residual bias on an annual basis (the residual is the net radiation minus incoming shortwave plus outgoing longwave) varies between 18 and 23 W m2 for the models considered. Additional biases in one or both of the reflected shortwave and incoming longwave components cannot be ruled out.
Microphysics, Radiation and Surface Processes in the Goddard Cumulus Ensemble (GCE) Model
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2002-01-01
In this talk, five specific major GCE improvements: (1) ice microphysics, (2) longwave and shortwave radiative transfer processes, (3) land surface processes, (4) ocean surface fluxes and (5) ocean mixed layer processes are presented. The performance of these new GCE improvements will be examined. Observations are used for model validation.
The ability of a coupled meteorology–chemistry model, i.e., Weather Research and Forecast and Community Multiscale Air Quality (WRF-CMAQ), to reproduce the historical trend in aerosol optical depth (AOD) and clear-sky shortwave radiation (SWR) over the Northern Hemisphere h...
The Aerosol Coarse Mode Initiative
NASA Astrophysics Data System (ADS)
Arnott, W. P.; Adhikari, N.; Air, D.; Kassianov, E.; Barnard, J.
2014-12-01
Many areas of the world show an aerosol volume distribution with a significant coarse mode and sometimes a dominant coarse mode. The large coarse mode is usually due to dust, but sea salt aerosol can also play an important role. However, in many field campaigns, the coarse mode tends to be ignored, because it is difficult to measure. This lack of measurements leads directly to a concomitant "lack of analysis" of this mode. Because, coarse mode aerosols can have significant effects on radiative forcing, both in the shortwave and longwave spectrum, the coarse mode -- and these forcings -- should be accounted for in atmospheric models. Forcings based only on fine mode aerosols have the potential to be misleading. In this paper we describe examples of large coarse modes that occur in areas of large aerosol loading (Mexico City, Barnard et al., 2010) as well as small loadings (Sacramento, CA; Kassianov et al., 2012; and Reno, NV). We then demonstrate that: (1) the coarse mode can contribute significantly to radiative forcing, relative to the fine mode, and (2) neglecting the coarse mode may result in poor comparisons between measurements and models. Next we describe -- in general terms -- the limitations of instrumentation to measure the coarse mode. Finally, we suggest a new initiative aimed at examining coarse mode aerosol generation mechanisms; transport and deposition; chemical composition; visible and thermal IR refractive indices; morphology; microphysical behavior when deposited on snow and ice; and specific instrumentation needs. Barnard, J. C., J. D. Fast, G. Paredes-Miranda, W. P. Arnott, and A. Laskin, 2010: Technical Note: Evaluation of the WRF-Chem "Aerosol Chemical to Aerosol Optical Properties" Module using data from the MILAGRO campaign, Atmospheric Chemistry and Physics, 10, 7325-7340. Kassianov, E. I., M. S. Pekour, and J. C. Barnard, 2012: Aerosols in Central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing, Geophys. Res. Lett., 39, L20806, doi:10.1029/2012GL053469.
NASA Technical Reports Server (NTRS)
Cheng, Anning; Xu, Kuan-Man
2015-01-01
Five-year simulation experiments with a multi-scale modeling Framework (MMF) with a advanced intermediately prognostic higher-order turbulence closure (IPHOC) in its cloud resolving model (CRM) component, also known as SPCAM-IPHOC (super parameterized Community Atmospheric Model), are performed to understand the fast tropical (30S-30N) cloud response to an instantaneous doubling of CO2 concentration with SST held fixed at present-day values. SPCAM-IPHOC has substantially improved the low-level representation compared with SPCAM. It is expected that the cloud responses to greenhouse warming in SPCAM-IPHOC is more realistic. The change of rising motion, surface precipitation, cloud cover, and shortwave and longwave cloud radiative forcing in SPCAM-IPHOC from the greenhouse warming will be presented in the presentation.
Clouds and the Earth's Radiant Energy System (CERES) Data Products for Climate Research
NASA Technical Reports Server (NTRS)
Kato, Seiji; Loeb, Norman G.; Rutan, David A.; Rose, Fred G.
2015-01-01
NASA's Clouds and the Earth's Radiant Energy System (CERES) project integrates CERES, Moderate Resolution Imaging Spectroradiometer (MODIS), and geostationary satellite observations to provide top-of-atmosphere (TOA) irradiances derived from broadband radiance observations by CERES instruments. It also uses snow cover and sea ice extent retrieved from microwave instruments as well as thermodynamic variables from reanalysis. In addition, these variables are used for surface and atmospheric irradiance computations. The CERES project provides TOA, surface, and atmospheric irradiances in various spatial and temporal resolutions. These data sets are for climate research and evaluation of climate models. Long-term observations are required to understand how the Earth system responds to radiative forcing. A simple model is used to estimate the time to detect trends in TOA reflected shortwave and emitted longwave irradiances.
Thermal evolutions of two kinds of melt pond with different salinity
NASA Astrophysics Data System (ADS)
Kim, Joo-Hong; Wilkinson, Jeremy; Moon, Woosok; Hwang, Byongjun; Granskog, Mats
2016-04-01
Melt ponds are water pools on sea ice. Their formation reduces ice surface albedo and alter surface energy balance, by which the ice melting and freezing processes are regulated. Thus, better understanding of their radiative characteristics has been vital to improve the simulation of melting/freezing of sea ice in numerical models. A melt pond would preserve nearly fresh water if it formed on multi-year ice and no flooding of sea water occurred, whereas a melt pond would contain more salty water if it formed on thinner and porous first-year ice, if there were an inflow of sea water by streams or cracks. One would expect that the fluid dynamic/thermodynamic properties (e.g., turbulence, stability, etc.) of pond water are influenced by the salinity, so that the response of pond water to any heat input (e.g., shortwave radiation) would be different. Therefore, better understanding of the salinity-dependent thermal evolution also has significant potential to improve the numerical simulation of the sea ice melting/freezing response to radiative thermal forcing. To observe and understand the salinity-dependent thermal evolution, two ice mass balance buoys (IMBs) were deployed in two kinds (fresh and salty) of melt pond on a same ice floe on 13 August 2015 during Araon Arctic cruise. The thermistor chain, extending from the air through the pond and ice into the sea water, was deployed through a drilled borehole inside the pond. Besides, the IMBs were also accompanied with three broadband solar radiation sensors (two (up and down) in the air over melt pond and one upward-looking under sea ice) to measure the net shortwave radiation at the pond surface and the penetrating solar radiation through ice. Also, the web camera was installed to observe any updates in the conditions of equipment and surrounding environment (e.g., weather, surface state, etc.). On the date of deployment, the fresh pond had salinity of 2.3 psu, light blue color, lots of slush ice particles which increased opacity, and under-pond ice thickness of 219 cm, whereas the salty pond had salinity of 20 psu, dark blue color, only transparent water, and under-pond ice thickness of 100 cm. Temporal evolutions of mean water temperature of the two ponds are contrasted and showed that the fresh pond had about 1degC warmer temperature than the salty pond. The existence of slush ice particles in the pond seems to be responsible for this temperature difference. Multiple scattering by slush ice particles could lead to more absorption of shortwave radiation. A comparison of vertical profiles of water temperature shows that there existed an internal maximum heating layer in the fresh pond. Possibly, this profile might indicate the the below layer unstable, which might have efficient thermal propagation to the ice surface. On the other hand, the vertical temperature profile of the salty pond had internal thermocline near the pond bottom, but so that the upper heating may not efficiently propagate downward to the ice surface.
NASA Astrophysics Data System (ADS)
Kato, Seiji; Loeb, Norman G.; Minnis, Patrick; Francis, Jennifer A.; Charlock, Thomas P.; Rutan, David A.; Clothiaux, Eugene E.; Sun-Mack, Szedung
2006-10-01
The daytime cloud fraction derived by the Clouds and the Earth's Radiant Energy System (CERES) cloud algorithm using Moderate Resolution Imaging Spectroradiometer (MODIS) radiances over the Arctic from March 2000 through February 2004 increases at a rate of 0.047 per decade. The trend is significant at an 80% confidence level. The corresponding top-of-atmosphere (TOA) shortwave irradiances derived from CERES radiance measurements show less significant trend during this period. These results suggest that the influence of reduced Arctic sea ice cover on TOA reflected shortwave radiation is reduced by the presence of clouds and possibly compensated by the increase in cloud cover. The cloud fraction and TOA reflected shortwave irradiance over the Antarctic show no significant trend during the same period.
Reassessing the effect of cloud type on Earth's energy balance
NASA Astrophysics Data System (ADS)
Hang, A.; L'Ecuyer, T.
2017-12-01
Cloud feedbacks depend critically on the characteristics of the clouds that change, their location and their environment. As a result, accurately predicting the impact of clouds on future climate requires a better understanding of individual cloud types and their spatial and temporal variability. This work revisits the problem of documenting the effects of distinct cloud regimes on Earth's radiation budget distinguishing cloud types according to their signatures in spaceborne active observations. Using CloudSat's multi-sensor radiative fluxes product that leverages high-resolution vertical cloud information from CloudSat, CALIPSO, and MODIS observations to provide the most accurate estimates of vertically-resolved radiative fluxes available to date, we estimate the global annual mean net cloud radiative effect at the top of the atmosphere to be -17.1 W m-2 (-44.2 W m-2 in the shortwave and 27.1 W m-2 in the longwave), slightly weaker than previous estimates from passive sensor observations. Multi-layered cloud systems, that are often misclassified using passive techniques but are ubiquitous in both hemispheres, contribute about -6.2 W m-2 of the net cooling effect, particularly at ITCZ and higher latitudes. Another unique aspect of this work is the ability of CloudSat and CALIPSO to detect cloud boundary information providing an improved capability to accurately discern the impact of cloud-type variations on surface radiation balance, a critical factor in modulating the disposition of excess energy in the climate system. The global annual net cloud radiative effect at the surface is estimated to be -24.8 W m-2 (-51.1 W m-2 in the shortwave and 26.3 W m-2 in the longwave), dominated by shortwave heating in multi-layered and stratocumulus clouds. Corresponding estimates of the effects of clouds on atmospheric heating suggest that clouds redistribute heat from poles to equator enhancing the general circulation.
NASA Technical Reports Server (NTRS)
Russell, Philip B.; Redemann, J.; Schmid, B.; Livingston, J. M.; Bergstrom, R. W.; Ramirez, S. A.; Hipskind, R. Stephen (Technical Monitor)
2001-01-01
The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the Second Aerosol Characterization Experiment (ACE-2) made simultaneous measurements of shortwave radiative fluxes, solar-beam transmissions, and the aerosols affecting those fluxes and transmissions. Besides the measured fluxes and transmissions, other obtained properties include aerosol scattering and absorption measured in situ at the surface and aloft; aerosol single scattering albedo retrieved from skylight radiances; and aerosol complex refractive index derived by combining profiles of backscatter, extinction, and size distribution. These measurements of North Atlantic boundary layer aerosols impacted by anthropogenic pollution revealed the following characteristic results: (1) Better agreement among different types of remote measurements of aerosols (e.g., optical depth, extinction, and backscattering from sunphotometers, satellites, and lidars) than between remote and in situ measurements; 2) More extinction derived from transmission measurements than from in situ measurements; (3) Larger aerosol absorption inferred from flux radiometry than from other measurements. When the measured relationships between downwelling flux and optical depth (or beam transmission) are used to derive best-fit single scattering albedos for the polluted boundary layer aerosol, both TARFOX and ACE-2 yield midvisible values of 0.90 +/- 0.04. The other techniques give larger single scattering albedos (i.e. less absorption) for the polluted boundary layer, with a typical result of 0.95 +/- 0.04. Although the flux-based results have the virtue of describing the column aerosol unperturbed by sampling, they are subject to questions about representativeness and other uncertainties (e.g., unknown gas absorption). Current uncertainties in aerosol single scattering albedo are large in terms of climate effects. They also have an important influence on aerosol optical depths retrieved from satellite radiances. More tests are needed of the consistency among different methods and of the effects of changing humidity on aerosol.
NASA Technical Reports Server (NTRS)
Ye, B.; DelGenio, A. D.
1999-01-01
Areally extensive, optically thick anvil clouds associated with mesoscale convective clusters dominate the shortwave cloud forcing in the tropics and provide longwave forcing comparable to that of thin cirrus. Changes in the cover and optical thickness of tropical anvils as climate warms can regulate the sign of cloud feedback. As a prelude to the study of MMCR data from the ARM TWP sites, we analyze ISCCP-derived radiative characteristics of anvils observed in the tropical west Pacific during the TOGA-COARE IOP. Anvils with radius greater than 100 km were identified and tracked from inception to decay using the Machado-Rossow algorithm. Corresponding environmental conditions just prior to the start of the convectove event were diagnosed using the Lin-Johnson objective analysis product. Small clusters (100-200 km radius) are observed to have a broad range of optical thicknesses (10-50), while intermediate optical thickness clusters are observed to range in size from 100 km to almost 1000 km. Large-size clusters appear to be favored by strong pre-storm large scale upward motion throughout the troposphere, moist low-to-midlevel relative humidities, environments with slightly higher CAPE than those for smaller clusters, and strong front-to-rear flow. Optically thick anvils are favored in situations of strong low-level moisture convergence and strong upper-level shear.
Atmospheric Science Data Center
2017-09-06
... The series of Stratospheric Aerosol and Gas Experiments (SAGE I, II, and III) are satellite-based solar occultation ... significantly more shortwave radiation than previously thought. Clouds in a Clear Sky Scientists have detected a nearly ...
NASA Astrophysics Data System (ADS)
Zhang, Ming; Ma, Yingying; Gong, Wei; Liu, Boming; Shi, Yifan; Chen, ZhongYong
2018-06-01
Poor air quality episodes are common in central China. Here, based on 10 years of ground-based sun-photometric observations, aerosol optical and radiative forcing characteristics were analyzed in Wuhan, the biggest metropolis in central China. Aerosol optical depth (AOD) in the last decade declined significantly, while the Ångström exponent (AE) showed slight growth. Single scattering albedo (SSA) at 440 nm reached the lowest value (0.87) in winter and highest value (0.93) in summer. Aerosol parameters derived from sun-photometric observations were used as input in a radiative transfer model to calculate aerosol radiative forcing (ARF) on the surface in ultraviolet (UV), visible (VIS), near-infrared (NIR), and shortwave (SW) spectra. ARFSW sustained decreases (the absolute values) over the last 10 years. In terms of seasonal variability, due to the increases in multiple scattering effects and attenuation of the transmitted radiation as AOD increased, ARF in summer displayed the largest value (-73.94 W/m2). After eliminating the influence of aerosol loading, the maximum aerosol radiative forcing efficiency in SW range (ARFESW) achieved a value of -64.5 W/m2/AOD in April. The ARFE change in each sub-interval spectrum was related to the change in SSA and effective radius of fine mode particles (Refff), that is, ARFE increased with the decreases in SSA and Refff. The smallest contribution of ARFENIR to ARFESW was 34.11% under strong absorbing and fine particle conditions, and opposite results were found for the VIS range, whose values were always over 51.82%. Finally, due to the serious air pollution and frequency of haze day, aerosol characteristics in haze and clear days were analyzed. The percentage of ARFENIR increased from 35.71% on clear-air days to 37.63% during haze periods, while both the percentage of ARFEUV and ARFENIR in ARFESW kept decreasing. The results of this paper should help us to better understand the effect of aerosols on solar spectral radiation and to develop improved the aerosol models over central China.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Shie, C.-L.; Johnson, D; Simpson, J.; Starr, David OC. (Technical Monitor)
2002-01-01
A two-dimensional version of the Goddard Cumulus Ensemble (GCE) Model is used to simulate convective systems that developed in various geographic locations. Observed large-scale advective tendencies for potential temperature, water vapor mixing ratio, and horizontal momentum derived from field campaigns are used as the main forcing. By examining the surface energy budgets, the model results show that the two largest terms are net condensation (heating/drying) and imposed large-scale forcing (cooling/moistening) for tropical oceanic cases. These two terms arc opposite in sign, however. The contributions by net radiation and latent heat flux to the net condensation vary in these tropical cases, however. For cloud systems that developed over the South China Sea and eastern Atlantic, net radiation (cooling) accounts for about 20% or more of the net condensation. However, short-wave heating and long-wave cooling are in balance with each other for cloud systems over the West Pacific region such that the net radiation is very small. This is due to the thick anvil clouds simulated in the cloud systems over the Pacific region. Large-scale cooling exceeds large-scale moistening in the Pacific and Atlantic cases. For cloud systems over the South China Sea, however, there is more large-scale moistening than cooling even though the cloud systems developed in a very moist environment. though For three cloud systems that developed over a mid-latitude continent, the net radiation and sensible and latent heat fluxes play a much more important role. This means the accurate measurement of surface fluxes and radiation is crucial for simulating these mid-latitude cases.
NASA Astrophysics Data System (ADS)
Nyeki, Stephan; Wacker, Stefan; Gröbner, Julian; Finsterle, Wolfgang; Wild, Martin
2017-08-01
A large number of radiometers are traceable to the World Standard Group (WSG) for shortwave radiation and the interim World Infrared Standard Group (WISG) for longwave radiation, hosted by the Physikalisch-Meteorologisches Observatorium Davos/World Radiation Centre (PMOD/WRC, Davos, Switzerland). The WSG and WISG have recently been found to over- and underestimate radiation values, respectively (Fehlmann et al., 2012; Gröbner et al., 2014), although research is still ongoing. In view of a possible revision of the reference scales of both standard groups, this study discusses the methods involved and the implications on existing archives of radiation time series, such as the Baseline Surface Radiation Network (BSRN). Based on PMOD/WRC calibration archives and BSRN data archives, the downward longwave radiation (DLR) time series over the 2006-2015 period were analysed at four stations (polar and mid-latitude locations). DLR was found to increase by up to 3.5 and 5.4 W m-2 for all-sky and clear-sky conditions, respectively, after applying a WISG reference scale correction and a minor correction for the dependence of pyrgeometer sensitivity on atmospheric integrated water vapour content. Similar increases in DLR may be expected at other BSRN stations. Based on our analysis, a number of recommendations are made for future studies.
NASA Astrophysics Data System (ADS)
Feldman, D.; Collins, W. D.; Wielicki, B. A.; Shea, Y.; Mlynczak, M. G.; Kuo, C.; Nguyen, N.
2017-12-01
Shortwave feedbacks are a persistent source of uncertainty for climate models and a large contributor to the diagnosed range of equilibrium climate sensitivity (ECS) for the international multi-model ensemble. The processes that contribute to these feedbacks affect top-of-atmosphere energetics and produce spectral signatures that may be time-evolving. We explore the value of such spectral signatures for providing an observational constraint on model ECS by simulating top-of-atmosphere shortwave reflectance spectra across much of the energetically-relevant shortwave bandpass (300 to 2500 nm). We present centennial-length shortwave hyperspectral simulations from low, medium and high ECS models that reported to the CMIP5 archive as part of an Observing System Simulation Experiment (OSSE) in support of the CLimate Absolute Radiance and Refractivity Observatory (CLARREO). Our framework interfaces with CMIP5 archive results and is agnostic to the choice of model. We simulated spectra from the INM-CM4 model (ECS of 2.08 °K/2xCO2), the MIROC5 model (ECS of 2.70 °K/2xCO2), and the CSIRO Mk3-6-0 (ECS of 4.08 °K/2xCO2) based on those models' integrations of the RCP8.5 scenario for the 21st Century. This approach allows us to explore how perfect data records can exclude models of lower or higher climate sensitivity. We find that spectral channels covering visible and near-infrared water-vapor overtone bands can potentially exclude a low or high sensitivity model with under 15 years' of absolutely-calibrated data. These different spectral channels are sensitive to model cloud radiative effect and cloud height changes, respectively. These unprecedented calculations lay the groundwork for spectral simulations of perturbed-physics ensembles in order to identify those shortwave observations that can help narrow the range in shortwave model feedbacks and ultimately help reduce the stubbornly-large range in model ECS.
Top-of-the-Atmosphere Shortwave Flux Estimation from UV Observations: An Empirical Approach
NASA Technical Reports Server (NTRS)
Gupta, P.; Joiner, Joanna; Vasilkov, A.; Bhartia, P. K.; da Silva, Arlindo
2012-01-01
Measurements of top of the atmosphere (TOA) radiation are essential to the understanding of Earth's climate. Clouds, aerosols, and ozone (0,) are among the most important agents impacting the Earth's short-wave (SW) radiation budget. There are several sensors in orbit that provide independent information related to the Earth's SW radiation budget. Having coincident information from these sensors is important for understanding their potential contributions. The A-train constellation of satellites provides a unique opportunity to analyze near-simultaneous data from several of these sensors. They include the Ozone Monitoring Instrument (OMI), on the NASA Aura satellite, that makes TOA hyper-spectral measurements from ultraviolet (UV) to visible wavelengths, and Clouds and the Earth's Radiant Energy System (CERES) instrument, on the NASA Aqua satellite, that makes broadband measurements in both the long- and short-wave. OMI measurements have been successfully utilized to derive the information on trace gases (e.g., 0 1, NO" and SO,), clouds, and absorbing aerosols. TOA SW fluxes are estimated using a combination of data from CERES and the Aqua MODerate-resolution Imaging Spectroradiometer (MODIS). In this paper, OMI retrievals of cloud/aerosol parameters and 0 1 have been collocated with CERES TOA SW flux retrievals. We use this collocated data to develop a neural network that estimates TOA shortwave flux globally over ocean using data from OMI and meteorological analyses. This input data include the effective cloud fraction, cloud optical centroid pressure (OCP), total-column 0" and sun-satellite viewing geometry from OMI as well as wind speed and water vapor from the Goddard Earth Observing System 5 Modern Era Retrospective-analysis for Research and Applications (GEOS-5 MERRA) along with a climatology of chlorophyll content. We train the neural network using a subset of CERES retrievals of TOA SW flux as the target output (truth) and withhold a different subset of the CERES data to be used for validation.
NASA Astrophysics Data System (ADS)
Pani, Shantanu Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Lee, Chung-Te; Tsay, Si-Chee; Holben, Brent; Janjai, Serm; Hsiao, Ta-Chih; Chuang, Ming-Tung; Chantara, Somporn
2016-04-01
Biomass-burning (BB) aerosols are the significant contributor to the regional/global aerosol loading and radiation budgets. BB aerosols affect the radiation budget of the earth and atmosphere by scattering and absorbing directly the incoming solar and outgoing terrestrial radiation. These aerosols can exert either cooling or warming effect on climate, depending on the balance between scattering and absorption. BB activities in the form of wildland forest fires and agricultural crop burning are very pronounced in the Indochina peninsular regions in Southeast Asia mainly in spring (late February to April) season. The region of interest includes Doi Ang Khang (19.93° N, 99.05° E, 1536 msl) in northern Thailand, as part of the Seven South East Asian Studies (7-SEAS)/BASELInE (Biomass-burning Aerosols & Stratocumulus Environment: Lifecycles & Interactions Experiment) campaign in 2013. In this study, for the first time, the direct aerosol radiative effects of BB aerosols over near-source BB emissions, during the peak loading spring season, in northern Indochina were investigated by using ground-based physical, chemical, and optical properties of aerosols as well as the aerosol optical and radiative transfer models. Information on aerosol parameters in the field campaign was used in the OPAC (Optical Properties of Aerosols and Clouds) model to estimate various optical properties corresponding to aerosol compositions. Clear-sky shortwave direct aerosol radiative effects were further estimated with a raditive transfer model SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer). The columnar aerosol optical depth (AOD500) was found to be ranged from 0.26 to 1.13 (with the mean value 0.71 ± 0.24). Fine-mode (fine mode fraction ≈0.98, angstrom exponent ≈1.8) and significantly absorbing aerosols (columnar single-scattering albedo ≈0.89, asymmetry-parameter ≈0.67 at 441 nm wavelength) dominated in this region. Water soluble and black carbon (BC) aerosols mainly dominate the both surface mass concentration and the columnar burden. The BC contributed only 6% to the aerosol mass loading, but its contribution to the total AOD and net atmospheric forcing were 12% and 75%, respectively. The mean radiative forcing was -6.8 to -8.7 W m-2 at the top-of-atmosphere and -28 to -33 W m-2 at surface. Furthermore BC aerosols contributed 45-49% to the surface radiative forcing along with the water soluble aerosols (49-52%), thus, significantly contributing to solar dimming
NASA Astrophysics Data System (ADS)
Bates, T. S.; Anderson, T. L.; Baynard, T.; Bond, T.; Boucher, O.; Carmichael, G.; Clarke, A.; Erlick, C.; Guo, H.; Horowitz, L.; Howell, S.; Kulkarni, S.; Maring, H.; McComiskey, A.; Middlebrook, A.; Noone, K.; O'Dowd, C. D.; Ogren, J. A.; Penner, J.; Quinn, P. K.; Ravishankara, A. R.; Savoie, D. L.; Schwartz, S. E.; Shinozuka, Y.; Tang, Y.; Weber, R. J.; Wu, Y.
2005-12-01
The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar) radiation by anthropogenic aerosols in cloud-free conditions. Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean during INDOEX, the Northwest Pacific Ocean during ACE-Asia, and the Northwest Atlantic Ocean during ICARTT), incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART). Measurements of burdens, extinction optical depth, and direct radiative effect of aerosols (change in radiative flux due to total aerosols) are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity) are used as input parameters to two radiative transfer models (GFDL and University of Michigan) to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Such comparisons with observations and resultant reductions in uncertainties are essential for improving and developing confidence in climate model calculations incorporating aerosol forcing.
NASA Astrophysics Data System (ADS)
Moise Famien, Adjoua; Janicot, Serge; Delfin Ochou, Abe; Vrac, Mathieu; Defrance, Dimitri; Sultan, Benjamin; Noël, Thomas
2018-03-01
The objective of this paper is to present a new dataset of bias-corrected CMIP5 global climate model (GCM) daily data over Africa. This dataset was obtained using the cumulative distribution function transform (CDF-t) method, a method that has been applied to several regions and contexts but never to Africa. Here CDF-t has been applied over the period 1950-2099 combining Historical runs and climate change scenarios for six variables: precipitation, mean near-surface air temperature, near-surface maximum air temperature, near-surface minimum air temperature, surface downwelling shortwave radiation, and wind speed, which are critical variables for agricultural purposes. WFDEI has been used as the reference dataset to correct the GCMs. Evaluation of the results over West Africa has been carried out on a list of priority user-based metrics that were discussed and selected with stakeholders. It includes simulated yield using a crop model simulating maize growth. These bias-corrected GCM data have been compared with another available dataset of bias-corrected GCMs using WATCH Forcing Data as the reference dataset. The impact of WFD, WFDEI, and also EWEMBI reference datasets has been also examined in detail. It is shown that CDF-t is very effective at removing the biases and reducing the high inter-GCM scattering. Differences with other bias-corrected GCM data are mainly due to the differences among the reference datasets. This is particularly true for surface downwelling shortwave radiation, which has a significant impact in terms of simulated maize yields. Projections of future yields over West Africa are quite different, depending on the bias-correction method used. However all these projections show a similar relative decreasing trend over the 21st century.
Atmospheric Science Data Center
2017-09-06
... The series of Stratospheric Aerosol and Gas Experiments (SAGE I, II, and III) are satellite-based solar occultation ... significantly more shortwave radiation than previously thought. Clouds in a Clear Sky Scientists have detected a nearly ...
NASA Astrophysics Data System (ADS)
Niu, Hailin; Zhang, Xiaotong; Liu, Qiang; Feng, Youbin; Li, Xiuhong; Zhang, Jialin; Cai, Erli
2015-12-01
The ocean surface albedo (OSA) is a deciding factor on ocean net surface shortwave radiation (ONSSR) estimation. Several OSA schemes have been proposed successively, but there is not a conclusion for the best OSA scheme of estimating the ONSSR. On the base of analyzing currently existing OSA parameterization, including Briegleb et al.(B), Taylor et al.(T), Hansen et al.(H), Jin et al.(J), Preisendorfer and Mobley(PM86), Feng's scheme(F), this study discusses the difference of OSA's impact on ONSSR estimation in condition of actual downward shortwave radiation(DSR). Then we discussed the necessity and applicability for the climate models to integrate the more complicated OSA scheme. It is concluded that the SZA and the wind speed are the two most significant effect factor to broadband OSA, thus the different OSA parameterizations varies violently in the regions of both high latitudes and strong winds. The OSA schemes can lead the ONSSR results difference of the order of 20 w m-2. The Taylor's scheme shows the best estimate, and Feng's result just following Taylor's. However, the accuracy of the estimated instantaneous OSA changes at different local time. Jin's scheme has the best performance generally at noon and in the afternoon, and PM86's is the best of all in the morning, which indicate that the more complicated OSA schemes reflect the temporal variation of OWA better than the simple ones.
NASA Astrophysics Data System (ADS)
Kumar, Sarvan; Kumar, Sanjay; Kaskaoutis, D. G.; Singh, Ramesh P.; Singh, Rajeev K.; Mishra, Amit K.; Srivastava, Manoj K.; Singh, Abhay K.
2015-06-01
During the pre-monsoon season (April-June), the Indo-Gangetic Basin (IGB) suffers from frequent and intense dust storms originated from the arid and desert regions of southwest Asia (Iran, Afghanistan), Arabia and Thar desert blanketing IGB and Himalayan foothills. The present study examines the columnar and vertical aerosol characteristics and estimates the shortwave (0.25-4.0 μm) aerosol radiative forcing (ARF) and atmospheric heating rates over Kanpur, central IGB, during three intense dust-storm events in the pre-monsoon season of 2010. MODIS images, meteorological and AERONET observations clearly show that all the dust storms either originated from the Thar desert or transported over, under favorable meteorological conditions (low pressure and strong surface winds) affecting nearly the whole IGB and modifying the aerosol loading and characteristics (Ångström exponent, single scattering albedo, size distribution and refractive index). CALIPSO observations reveal the presence of high-altitude (up to 3-5 km) dust plumes that strongly modify the vertical aerosol profile and are transported over Himalayan foothills with serious climate implications (atmospheric warming, enhanced melting of glaciers). Shortwave ARF calculations over Kanpur using SBDART model show large negative forcing values at the surface (-93.27, -101.60 and -66.71 W m-2) during the intense dusty days, associated with planetary (top of atmosphere) cooling (-18.16, -40.95, -29.58 W m-2) and significant atmospheric heating (75.11, 60.65, 37.13 W m-2), which is translated to average heating rates of 1.57, 1.41 and 0.78 K day-1, respectively in the lower atmosphere (below ∼3.5 km). The ARF estimates are in satisfactory agreement with the AERONET ARF retrievals over Kanpur.
Relationships between radiation, clouds, and convection during DYNAMO
NASA Astrophysics Data System (ADS)
Ciesielski, Paul E.; Johnson, Richard H.; Jiang, Xianan; Zhang, Yunyan; Xie, Shaocheng
2017-03-01
The relationships between radiation, clouds, and convection on an intraseasonal time scale are examined with data taken during the Dynamics of the Madden-Julian Oscillation (MJO) field campaign. Specifically, column-net, as well as vertical profiles of radiative heating rates, computed over Gan Island in the central Indian Ocean (IO) are used along with an objective analysis of large-scale fields to examine three MJO events that occurred during the 3 month period (October to December 2011) over this region. Longwave (LW) and shortwave radiative heating rates exhibit tilted structures, reflecting radiative effects associated with the prevalence of shallow cumulus during the dry, suppressed MJO phase followed by increasing deep convection leading into the active phase. As the convection builds going into the MJO active phase, there are increasingly top-heavy anomalous radiative heating rates while the column-net radiative cooling rate
Relationships between radiation, clouds, and convection during DYNAMO.
Ciesielski, Paul E; Johnson, Richard H; Jiang, Xianan; Zhang, Yunyan; Xie, Shaocheng
2017-03-16
The relationships between radiation, clouds, and convection on an intraseasonal time scale are examined with data taken during the Dynamics of the Madden-Julian Oscillation (MJO) field campaign. Specifically, column-net, as well as vertical profiles of radiative heating rates, computed over Gan Island in the central Indian Ocean (IO) are used along with an objective analysis of large-scale fields to examine three MJO events that occurred during the 3 month period (October to December 2011) over this region. Longwave (LW) and shortwave radiative heating rates exhibit tilted structures, reflecting radiative effects associated with the prevalence of shallow cumulus during the dry, suppressed MJO phase followed by increasing deep convection leading into the active phase. As the convection builds going into the MJO active phase, there are increasingly top-heavy anomalous radiative heating rates while the column-net radiative cooling rate < Q r > progressively decreases. Temporal fluctuations in the cloud radiative forcing, being quite sensitive to changes in high cloudiness, are dominated by LW effects with an intraseasonal variation of ~0.4-0.6 K/d. While both the water vapor and cloud fields are inextricably linked, it appears that the tilted radiative structures are more related to water vapor effects. The intraseasonal variation of column-net radiative heating < Q r > enhances the convective signal in the mean by ~20% with a minimum in this enhancement ~10 days prior to peak MJO rainfall and maximum ~7 days after. This suggests that as MJO convective envelope weakens over the central IO, cloud-radiative feedbacks help maintain the mature MJO as it moves eastward.
Relationships between radiation, clouds, and convection during DYNAMO
Ciesielski, Paul E.; Johnson, Richard H.; Jiang, Xianan; Zhang, Yunyan; Xie, Shaocheng
2017-01-01
The relationships between radiation, clouds, and convection on an intraseasonal time scale are examined with data taken during the Dynamics of the Madden-Julian Oscillation (MJO) field campaign. Specifically, column-net, as well as vertical profiles of radiative heating rates, computed over Gan Island in the central Indian Ocean (IO) are used along with an objective analysis of large-scale fields to examine three MJO events that occurred during the 3 month period (October to December 2011) over this region. Longwave (LW) and shortwave radiative heating rates exhibit tilted structures, reflecting radiative effects associated with the prevalence of shallow cumulus during the dry, suppressed MJO phase followed by increasing deep convection leading into the active phase. As the convection builds going into the MJO active phase, there are increasingly top-heavy anomalous radiative heating rates while the column-net radiative cooling rate
NASA Astrophysics Data System (ADS)
Barrientos Velasco, C.; Macke, A.; Griesche, H.; Engelmann, R.; Deneke, H.; Seifert, P.
2017-12-01
The Arctic is warming at a higher rate than the rest of the planet. This has been leading to a dramatically decrease of snow coverage and sea ice thickness in recent years and several studies have suggested that a similar trend is expected in the upcoming years. Large uncertainties in predicting the Arctic climate arise from our lack of understanding the role clouds play in sea ice / atmosphere interaction. During summer the shortwave radiation dominates and clouds have a net cooling effect at the surface. The strength of this cooling critically depends on cloud phase, composition and height. Clouds interactions with aerosols, and its sensitivity to surface properties further complicates their role in the Arctic system. Scattering between the surface and cloud layers amplifies the cloud shortwave contribution, especially over a highly reflective surface such as snow or ice. Therefore, to comprehend how the Arctic's surface is significantly modulated by solar radiation is necessary to more clearly understand the cloud-induced spatio-temporal variability at process relevant scales. Irradiance variability may also have an effect on the biological productivity of various plankton species below the ice. The present study provides an overview of spatio-temporal variability at spatial scales ranging from several decameters to 1 kilometer of the global transmittance derived from 15 pyranometer stations installed at an ice floe station (June 4-16 2017) during the POLARSTERN expedition PS106/1. Specific irradiance statistics under clear sky, broken clouds and overcast conditions will be described considering the combination of a Cloud Radar Mira 35 and a Polly Raman polarization Lidar. Ultimately, radiative closure studies will be performed to quantify our abilities to reproduce realistic cloud solar radiative forcing under Arctic conditions. Acknowledgements. This research is funded by Deutsche Forschunsgemeinschaft (DFG) and involves the active participation of Leibniz Institut für Troposphärenforschung (TROPOS), Universität Leipzig Institut für Meteorologie (LIM), Universitäat Bremen, Universität zu Köln and Alfred-Wegener-Institut, Helmholtz Zentrum für Polar - und Meeresforschung (AWI).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Xiaoning; Zhang, He; Liu, Xiaodong
Aerosol-induced increase of relative dispersion of cloud droplet size distribution ε exerts a warming effect and partly offsets the cooling of aerosol indirect radiative forcing (AIF) associated with increased droplet concentration by increasing the cloud droplet effective radius ( R e) and enhancing the cloud-to-rain autoconversion rate (Au) (labeled aBut, the total dispersion effects on both R e and Au are not fully considered in most GCMs, especially in different versions of the Community Atmospheric Model (CAM). Furthermore, in order to accurately evaluate the dispersion effect on AIF, the new complete cloud parameterizations of R e and Au explicitly accountingmore » for ε are implemented into the CAM version 5.1 (CAM5.1), and a suite of sensitivity experiments is conducted with different representations of ε reported in the literature. It is shown that the shortwave cloud radiative forcing is much better simulated with the new cloud parameterizations as compared to the standard scheme in CAM5.1, whereas the influences on longwave cloud radiative forcing and surface precipitation are minimal. In addition, consideration of the dispersion effect can significantly reduce the changes induced by anthropogenic aerosols in the cloud-top effective radius and the liquid water path, especially in the Northern Hemisphere. The corresponding AIF with the dispersion effect considered can also be reduced substantially by a range of 0.10 to 0.21 W m -2 at the global scale and by a much bigger margin of 0.25 to 0.39 W m -2 for the Northern Hemisphere in comparison with that of fixed relative dispersion, mainly dependent on the change of relative dispersion and droplet concentrations (Δε/ΔN).« less
NASA Astrophysics Data System (ADS)
Xie, Xiaoning; Zhang, He; Liu, Xiaodong; Peng, Yiran; Liu, Yangang
2017-05-01
Aerosol-induced increase of relative dispersion of cloud droplet size distribution ɛ exerts a warming effect and partly offsets the cooling of aerosol indirect radiative forcing (AIF) associated with increased droplet concentration by increasing the cloud droplet effective radius (Re) and enhancing the cloud-to-rain autoconversion rate (Au) (labeled as the dispersion effect), which can help reconcile global climate models (GCMs) with the satellite observations. However, the total dispersion effects on both Re and Au are not fully considered in most GCMs, especially in different versions of the Community Atmospheric Model (CAM). In order to accurately evaluate the dispersion effect on AIF, the new complete cloud parameterizations of Re and Au explicitly accounting for ɛ are implemented into the CAM version 5.1 (CAM5.1), and a suite of sensitivity experiments is conducted with different representations of ɛ reported in the literature. It is shown that the shortwave cloud radiative forcing is much better simulated with the new cloud parameterizations as compared to the standard scheme in CAM5.1, whereas the influences on longwave cloud radiative forcing and surface precipitation are minimal. Additionally, consideration of the dispersion effect can significantly reduce the changes induced by anthropogenic aerosols in the cloud-top effective radius and the liquid water path, especially in the Northern Hemisphere. The corresponding AIF with the dispersion effect considered can also be reduced substantially by a range of 0.10 to 0.21 W m-2 at the global scale and by a much bigger margin of 0.25 to 0.39 W m-2 for the Northern Hemisphere in comparison with that of fixed relative dispersion, mainly dependent on the change of relative dispersion and droplet concentrations (Δɛ/ΔNc).
Response of the Water Cycle of West Africa and Atlantic to Radiative Forcing by Saharan Dust
NASA Technical Reports Server (NTRS)
Lau, K. M.; Kim, Kyu-Myong; Sud, Yogesh C.; Walker, Gregory L.
2010-01-01
The responses of the atmospheric water cycle and climate of West Africa and the Atlantic to radiative forcing of Saharan dust are studied using the NASA finite volume general circulation model (fvGCM), coupled to a mixed layer ocean. We find evidence in support of the "elevated heat pump" (EHP) mechanism that underlines the responses of the atmospheric water cycle to dust forcing as follow. During the boreal summer, as a result of large-scale atmospheric feed back triggered by absorbing dust aerosols, rainfall and cloudiness are enhanced over the West Africa/Easter Atlantic ITCZ, and suppressed over the West Atlantic and Caribbean. region. Shortwave radiation absorption by dust warms the atmosphere and cools the surface, while long wave has the opposite response. The elevated dust layer warms the air over Nest Africa and the eastern Atlantic. The condensation heating associated with the induced deep convection drives and maintains an anomalous large-scale east-west overturning circulation with rising motion over West Africa/eastern Atlantic, and sinking motion over the Caribbean region. The response also includes a strengthening of the West African monsoon, manifested in northward shift of the West Africa precipitation over land, increased low-level westerlies flow over West Africa at the southern edge of the dust layer, and a near surface energy fluxes, resulting in cooling of the Nest African land and the eastern Atlantic, and a warming in the West Atlantic and Caribbean. The EHP effect is most effective for moderate to highly absorbing dusts, and becomes minimized for reflecting dust with single scattering albedo at 0.95 or higher.
Xie, Xiaoning; Zhang, He; Liu, Xiaodong; ...
2017-05-12
Aerosol-induced increase of relative dispersion of cloud droplet size distribution ε exerts a warming effect and partly offsets the cooling of aerosol indirect radiative forcing (AIF) associated with increased droplet concentration by increasing the cloud droplet effective radius ( R e) and enhancing the cloud-to-rain autoconversion rate (Au) (labeled aBut, the total dispersion effects on both R e and Au are not fully considered in most GCMs, especially in different versions of the Community Atmospheric Model (CAM). Furthermore, in order to accurately evaluate the dispersion effect on AIF, the new complete cloud parameterizations of R e and Au explicitly accountingmore » for ε are implemented into the CAM version 5.1 (CAM5.1), and a suite of sensitivity experiments is conducted with different representations of ε reported in the literature. It is shown that the shortwave cloud radiative forcing is much better simulated with the new cloud parameterizations as compared to the standard scheme in CAM5.1, whereas the influences on longwave cloud radiative forcing and surface precipitation are minimal. In addition, consideration of the dispersion effect can significantly reduce the changes induced by anthropogenic aerosols in the cloud-top effective radius and the liquid water path, especially in the Northern Hemisphere. The corresponding AIF with the dispersion effect considered can also be reduced substantially by a range of 0.10 to 0.21 W m -2 at the global scale and by a much bigger margin of 0.25 to 0.39 W m -2 for the Northern Hemisphere in comparison with that of fixed relative dispersion, mainly dependent on the change of relative dispersion and droplet concentrations (Δε/ΔN).« less
Response to marine cloud brightening in a multi-model ensemble
NASA Astrophysics Data System (ADS)
Stjern, Camilla W.; Muri, Helene; Ahlm, Lars; Boucher, Olivier; Cole, Jason N. S.; Ji, Duoying; Jones, Andy; Haywood, Jim; Kravitz, Ben; Lenton, Andrew; Moore, John C.; Niemeier, Ulrike; Phipps, Steven J.; Schmidt, Hauke; Watanabe, Shingo; Egill Kristjánsson, Jón
2018-01-01
Here we show results from Earth system model simulations from the marine cloud brightening experiment G4cdnc of the Geoengineering Model Intercomparison Project (GeoMIP). The nine contributing models prescribe a 50 % increase in the cloud droplet number concentration (CDNC) of low clouds over the global oceans in an experiment dubbed G4cdnc, with the purpose of counteracting the radiative forcing due to anthropogenic greenhouse gases under the RCP4.5 scenario. The model ensemble median effective radiative forcing (ERF) amounts to -1.9 W m-2, with a substantial inter-model spread of -0.6 to -2.5 W m-2. The large spread is partly related to the considerable differences in clouds and their representation between the models, with an underestimation of low clouds in several of the models. All models predict a statistically significant temperature decrease with a median of (for years 2020-2069) -0.96 [-0.17 to -1.21] K relative to the RCP4.5 scenario, with particularly strong cooling over low-latitude continents. Globally averaged there is a weak but significant precipitation decrease of -2.35 [-0.57 to -2.96] % due to a colder climate, but at low latitudes there is a 1.19 % increase over land. This increase is part of a circulation change where a strong negative top-of-atmosphere (TOA) shortwave forcing over subtropical oceans, caused by increased albedo associated with the increasing CDNC, is compensated for by rising motion and positive TOA longwave signals over adjacent land regions.
NASA Astrophysics Data System (ADS)
Sicart, J. E.; Pomeroy, J. W.; Essery, R. L. H.; Bewley, D.
2006-11-01
At high latitudes, longwave radiation can provide similar, or higher, amounts of energy to snow than shortwave radiation due to the low solar elevation (cosine effect and increased scattering due to long atmospheric path lengths). This effect is magnified in mountains due to shading and longwave emissions from the complex topography. This study examines longwave irradiance at the snow surface in the Wolf Creek Research Basin, Yukon Territory, Canada (60° 36N, 134° 57W) during the springs of 2002 and 2004. Incoming longwave radiation was estimated from standard meteorological measurements by segregating radiation sources into clear sky, clouds and surrounding terrain. A sensitivity study was conducted to detect the atmospheric and topographic conditions under which emission from adjacent terrain significantly increases the longwave irradiance. The total incoming longwave radiation is more sensitive to sky view factor than to the temperature of the emitting terrain surfaces. Brutsaert's equation correctly simulates the clear-sky irradiance for hourly time steps using temperature and humidity. Longwave emissions from clouds, which raised longwave radiation above that from clear skies by 16% on average, were best estimated using daily atmospheric shortwave transmissivity and hourly relative humidity. An independent test of the estimation procedure for a prairie site near Saskatoon, Saskatchewan, Canada, indicated that the calculations are robust in late winter and spring conditions. Copyright
Surface radiation budget for climate applications
NASA Technical Reports Server (NTRS)
Suttles, J. T. (Editor); Ohring, G. (Editor)
1986-01-01
The Surface Radiation Budget (SRB) consists of the upwelling and downwelling radiation fluxes at the surface, separately determined for the broadband shortwave (SW) (0 to 5 micron) and longwave (LW) (greater than 5 microns) spectral regions plus certain key parameters that control these fluxes, specifically, SW albedo, LW emissivity, and surface temperature. The uses and requirements for SRB data, critical assessment of current capabilities for producing these data, and directions for future research are presented.
NASA Astrophysics Data System (ADS)
Jethva, H.; Torres, O.; Remer, L. A.; Bhartia, P. K.
2012-12-01
Light absorbing particles such as carbonaceous aerosols generated from biomass burning activities and windblown dust particles can exert a net warming effect on climate; the strength of which depends on the absorption capacity of the particles and brightness of the underlying reflecting background. When advected over low-level bright clouds, these aerosols absorb the cloud reflected radiation from ultra-violet (UV) to shortwave-IR (SWIR) and makes cloud scene darker-a phenomenon commonly known as "cloud darkening". The apparent "darkening" effect can be seen by eyes in satellite images as well as quantitatively in the spectral reflectance measurements made by space borne sensors over regions where light absorbing carbonaceous and dust aerosols overlay low-level cloud decks. Theoretical radiative transfer simulations support the observational evidence, and further reveal that the strength of the cloud darkening and its spectral signature (or color ratio) between measurements at two wavelengths are a bi-function of aerosol and cloud optical thickness (AOT and COT); both are measures of the total amount of light extinction caused by aerosols and cloud, respectively. Here, we developed a retrieval technique, named as the "color ratio method" that uses the satellite measurements at two channels, one at shorter wavelength in the visible and one at longer wavelength in the shortwave-IR for the simultaneous retrieval of AOT and COT. The present technique requires assumptions on the aerosol single-scattering albedo and aerosol-cloud separation which are supplemented by the Aerosol Robotic Network (AERONET) and space borne CALIOP lidar measurements. The retrieval technique has been tested making use of the near-UV and visible reflectance observations made by the Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) for distinct above-cloud smoke and dust aerosol events observed seasonally over the southeast and tropical Atlantic Ocean, respectively. This study constitutes the first attempt to use non-polarized and non-lidar reflectance observations-both of them shown to have above-cloud aerosols retrieval capability, to retrieve above-cloud AOT by a passive non-polarized sensor. The uncertainty analysis suggests that the present method should retrieve above-cloud AOT within -10% to 50% which mainly arises due to uncertainty associated with the single-scattering albedo assumption. Although, currently tested by making use of OMI and MODIS measurements, the present color ratio method can be equally applied to the other satellite measurements that carry similar or near-by channels in VIS region of the spectrum such as MISR and NPP/VIIRS. The capability of quantifying the above-cloud aerosol load will facilitate several aspects of cloud-aerosol interaction research such as estimation of the direct radiative forcing of aerosols above clouds; the sign of which can be opposite (warming) to cloud-free aerosol forcing (cooling), aerosol transport, indirect effects of aerosols on clouds, and hydrological cycle.
West Antarctic Ice Sheet cloud cover and surface radiation budget from NASA A-Train satellites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Ryan C.; Lubin, Dan; Vogelmann, Andrew M.
Clouds are an essential parameter of the surface energy budget influencing the West Antarctic Ice Sheet (WAIS) response to atmospheric warming and net contribution to global sea-level rise. A four-year record of NASA A-Train cloud observations is combined with surface radiation measurements to quantify the WAIS radiation budget and constrain the three-dimensional occurrence frequency, thermodynamic phase partitioning, and surface radiative effect of clouds over West Antarctica (WA). The skill of satellite-modeled radiative fluxes is confirmed through evaluation against measurements at four Antarctic sites (WAIS Divide Ice Camp, Neumayer, Syowa, and Concordia Stations). And due to perennial high-albedo snow and icemore » cover, cloud infrared emission dominates over cloud solar reflection/absorption leading to a positive net all-wave cloud radiative effect (CRE) at the surface, with all monthly means and 99.15% of instantaneous CRE values exceeding zero. The annual-mean CRE at theWAIS surface is 34 W m -2, representing a significant cloud-induced warming of the ice sheet. Low-level liquid-containing clouds, including thin liquid water clouds implicated in radiative contributions to surface melting, are widespread and most frequent in WA during the austral summer. Clouds warm the WAIS by 26 W m -2, in summer, on average, despite maximum offsetting shortwave CRE. Glaciated cloud systems are strongly linked to orographic forcing, with maximum incidence on the WAIS continuing downstream along the Transantarctic Mountains.« less
West Antarctic Ice Sheet cloud cover and surface radiation budget from NASA A-Train satellites
Scott, Ryan C.; Lubin, Dan; Vogelmann, Andrew M.; ...
2017-04-26
Clouds are an essential parameter of the surface energy budget influencing the West Antarctic Ice Sheet (WAIS) response to atmospheric warming and net contribution to global sea-level rise. A four-year record of NASA A-Train cloud observations is combined with surface radiation measurements to quantify the WAIS radiation budget and constrain the three-dimensional occurrence frequency, thermodynamic phase partitioning, and surface radiative effect of clouds over West Antarctica (WA). The skill of satellite-modeled radiative fluxes is confirmed through evaluation against measurements at four Antarctic sites (WAIS Divide Ice Camp, Neumayer, Syowa, and Concordia Stations). And due to perennial high-albedo snow and icemore » cover, cloud infrared emission dominates over cloud solar reflection/absorption leading to a positive net all-wave cloud radiative effect (CRE) at the surface, with all monthly means and 99.15% of instantaneous CRE values exceeding zero. The annual-mean CRE at theWAIS surface is 34 W m -2, representing a significant cloud-induced warming of the ice sheet. Low-level liquid-containing clouds, including thin liquid water clouds implicated in radiative contributions to surface melting, are widespread and most frequent in WA during the austral summer. Clouds warm the WAIS by 26 W m -2, in summer, on average, despite maximum offsetting shortwave CRE. Glaciated cloud systems are strongly linked to orographic forcing, with maximum incidence on the WAIS continuing downstream along the Transantarctic Mountains.« less
NASA Technical Reports Server (NTRS)
Stowe, Larry; Ardanuy, Philip; Hucek, Richard; Abel, Peter; Jacobowitz, Herbert
1991-01-01
A set of system simulations was performed to evaluate candidate scanner configurations to fly as a part of the Earth Radiation Budget Instrument (ERBI) on the polar platforms during the 1990's. The simulation is considered of instantaneous sampling (without diurnal averaging) of the longwave and shortwave fluxes at the top of the atmosphere (TOA). After measurement and subsequent inversion to the TOA, the measured fluxes were compared to the reference fluxes for 2.5 deg lat/long resolution targets. The reference fluxes at this resolution are obtained by integrating over the 25 x 25 = 625 grid elements in each target. The differences between each of these two resultant spatially averaged sets of target measurements (errors) are taken and then statistically summarized. Five instruments are considered: (1) the Conically Scanning Radiometer (CSR); (2) the ERBE Cross Track Scanner; (3) the Nimbus-7 Biaxial Scanner; (4) the Clouds and Earth's Radiant Energy System Instrument (CERES-1); and (5) the Active Cavity Array (ACA). Identical studies of instantaneous error were completed for many days, two seasons, and several satellite equator crossing longitudes. The longwave flux errors were found to have the same space and time characteristics as for the shortwave fluxes, but the errors are only about 25 pct. of the shortwave errors.
NASA Astrophysics Data System (ADS)
Kumar, M.; Raju, M. P.; Singh, R. K.; Singh, A. K.; Singh, R. S.; Banerjee, T.
2017-01-01
Winter-specific characteristics of airborne particulates over middle Indo-Gangetic Plain (IGP) were evaluated in terms of aerosol chemical and micro-physical properties under three-dimensional domain. Emphases were made for the first time to identify intra-seasonal variations of aerosols sources, horizontal and vertical transport, effects of regional meteorology and estimating composite aerosol short-wave radiative forcing over an urban region (25°10‧-25°19‧N; 82°54‧-83°4‧E) at middle-IGP. Space-borne passive (Aqua and Terra MODIS, Aura OMI) and active sensor (CALIPSO-CALIOP) based observations were concurrently used with ground based aerosol mass measurement for entire winter and pre-summer months (December, 1, 2014 to March, 31, 2015). Exceptionally high aerosol mass loading was recorded for both PM10 (267.6 ± 107.0 μg m- 3) and PM2.5 (150.2 ± 89.4 μg m- 3) typically exceeding national standard. Aerosol type was mostly dominated by fine particulates (particulate ratio: 0.61) during pre to mid-winter episodes before being converted to mixed aerosol types (ratio: 0.41-0.53). Time series analysis of aerosols mass typically identified three dissimilar aerosol loading episodes with varying attributes, well resemble to that of previous year's observation representing its persisting nature. Black carbon (9.4 ± 3.7 μg m- 3) was found to constitute significant proportion of fine particulates (2-27%) with a strong diurnal profile. Secondary inorganic ions also accounted a fraction of particulates (PM2.5: 22.5%; PM10: 26.9%) having SO4- 2, NO3- and NH4+ constituting major proportion. Satellite retrieved MODIS-AOD (0.01-2.30) and fine mode fractions (FMF: 0.01-1.00) identified intra-seasonal variation with transport of aerosols from upper to middle-IGP through continental westerly. Varying statistical association of columnar and surface aerosol loading both in terms of fine (r; PM2.5: MODIS-AOD: 0.51) and coarse particulates (PM10: MODIS-AOD: 0.53) was found influenced by local meteorology (boundary layer and humidity) and aerosol vertical profile. A gradual increase in aerosol vertical profile (surface to 4.9 km) was evident with dominance of polluted continental, polluted dust and smoke at lower altitude. Presence of mineral dusts in higher altitude during later phase was linked with its transboundary transport, originating from western dry regions. Conclusively, winter-specific short-wave aerosol radiative forcing revealed an ATM warming effect (31-47 W m- 2) while cooling both at TOA (- 20 to - 32 W m- 2) and SUF (- 51 to - 80 W m- 2) with significant level of intra-seasonal variations in heating rates (0.86-1.32 K day- 1).
What parameters are available?
Atmospheric Science Data Center
2014-12-08
... Albedo - The ratio of reflective shortwave flux to the solar incoming flux at top of atmosphere (TOA), where zero (0.0) represents ... of total radiative flux energy deposited into the Earth system at top of the atmosphere (TOA). OLR - Outgoing Longwave ...
Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels
NASA Technical Reports Server (NTRS)
Susskind,Joel
2009-01-01
AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. AIRS is a grating spectrometer with a number of linear arrays of detectors with each detector sensitive to outgoing radiation in a characteristic frequency v(sub i) with a spectral band pass delta v(sub i) of roughly v(sub i) /1200. AIRS contains 2378 spectral channels covering portions of the spectral region 650 cm(exp -1) (15.38 gm) - 2665 cm(exp -1)' (3.752 micrometers). These spectral regions contain significant absorption features from two CO2 absorption bands, the 15 micrometer (longwave) CO2 band, and the 4.3 micrometer (shortwave) CO, absorption band. There are also two atmospheric window regions, the 12 micrometerm - 8 micrometer (longwave) window, and the 4.17 micrometer - 3.75 micrometer (shortwave) window. Historically, determination of surface and atmospheric temperatures from satellite observations was performed using primarily observations in the longwave window and CO2 absorption regions. One reason for this was concerns about the effects, during the day, of reflected sunlight and non-Local Thermodynamic Equilibrium (non-LTE) on the observed radiances in the shortwave portion of the spectrum. According to cloud clearing theory, more accurate soundings of both surface skin and atmospheric temperatures can be obtained under partial cloud cover conditions if one uses the longwave channels to determine cloud cleared radiances R(sub i) for all channels, and uses R(sub i) only from shortwave channels in the determination of surface and atmospheric temperatures. This procedure is now being used by the AIRS Science Team in preparation for the AIRS Version 6 Retrieval Algorithm. This paper describes how the effects on the radiances of solar radiation reflected by clouds and the Earth's surface, and also of non-LTE, are accounted for in the analysis of the data. Results are presented for both daytime and nighttime conditions showing improved surface and atmospheric soundings under partial cloud cover resulted from not using R(sub i) in the retrieval process for any longwave channels sensitive to cloud effects. This improvement is made possible because AIRS NEDT in the shortwave portion of the spectrum is extremely low.
Assessment of BSRN radiation records for the computation of monthly means
NASA Astrophysics Data System (ADS)
Roesch, A.; Wild, M.; Ohmura, A.; Dutton, E. G.; Long, C. N.; Zhang, T.
2011-02-01
The integrity of the Baseline Surface Radiation Network (BSRN) radiation monthly averages are assessed by investigating the impact on monthly means due to the frequency of data gaps caused by missing or discarded high time resolution data. The monthly statistics, especially means, are considered to be important and useful values for climate research, model performance evaluations and for assessing the quality of satellite (time- and space-averaged) data products. The study investigates the spread in different algorithms that have been applied for the computation of monthly means from 1-min values. The paper reveals that the computation of monthly means from 1-min observations distinctly depends on the method utilized to account for the missing data. The intra-method difference generally increases with an increasing fraction of missing data. We found that a substantial fraction of the radiation fluxes observed at BSRN sites is either missing or flagged as questionable. The percentage of missing data is 4.4%, 13.0%, and 6.5% for global radiation, direct shortwave radiation, and downwelling longwave radiation, respectively. Most flagged data in the shortwave are due to nighttime instrumental noise and can reasonably be set to zero after correcting for thermal offsets in the daytime data. The study demonstrates that the handling of flagged data clearly impacts on monthly mean estimates obtained with different methods. We showed that the spread of monthly shortwave fluxes is generally clearly higher than for downwelling longwave radiation. Overall, BSRN observations provide sufficient accuracy and completeness for reliable estimates of monthly mean values. However, the value of future data could be further increased by reducing the frequency of data gaps and the number of outliers. It is shown that two independent methods for accounting for the diurnal and seasonal variations in the missing data permit consistent monthly means to within less than 1 W m-2 in most cases. The authors suggest using a standardized method for the computation of monthly means which addresses diurnal variations in the missing data in order to avoid a mismatch of future published monthly mean radiation fluxes from BSRN. The application of robust statistics would probably lead to less biased results for data records with frequent gaps and/or flagged data and outliers. The currently applied empirical methods should, therefore, be completed by the development of robust methods.
NASA Astrophysics Data System (ADS)
Kazil, J.; Stier, P.; Zhang, K.; Quaas, J.; Kinne, S.; O'Donnell, D.; Rast, S.; Esch, M.; Ferrachat, S.; Lohmann, U.; Feichter, J.
2010-05-01
Nucleation from the gas phase is an important source of aerosol particles in the Earth's atmosphere, contributing to the number of cloud condensation nuclei, which form cloud droplets. We have implemented in the aerosol-climate model ECHAM5-HAM a new scheme for neutral and charged nucleation of sulfuric acid and water based on laboratory data, and nucleation of an organic compound and sulfuric acid using a parametrization of cluster activation based on field measurements. We give details of the implementation, compare results with observations, and investigate the role of the individual aerosol nucleation mechanisms for clouds and the Earth's radiative budget. The results of our simulations are most consistent with observations when neutral and charged nucleation of sulfuric acid proceed throughout the troposphere and nucleation due to cluster activation is limited to the forested boundary layer. The globally averaged annual mean contributions of the individual nucleation processes to total absorbed solar short-wave radiation via the direct, semi-direct, indirect cloud-albedo and cloud-lifetime effects in our simulations are -1.15 W/m2 for charged H2SO4/H2O nucleation, -0.235 W/m2 for cluster activation, and -0.05 W/m2 for neutral H2SO4/H2O nucleation. The overall effect of nucleation is -2.55 W/m2, which exceeds the sum of the individual terms due to feedbacks and interactions in the model. Aerosol nucleation contributes over the oceans with -2.18 W/m2 to total absorbed solar short-wave radiation, compared to -0.37 W/m2 over land. We explain the higher effect of aerosol nucleation on Earth's radiative budget over the oceans with the larger area covered by ocean clouds, due to the larger contrast in albedo between clouds and the ocean surface compared to continents, and the larger susceptibility of pristine clouds owing to the saturation of effects. The large effect of charged nucleation in our simulations is not in contradiction with small effects seen in local measurements: over southern Finland, where cluster activation proceeds efficiently, we find that charged nucleation of sulfuric acid and water contributes on average less than 10% to ultrafine aerosol concentrations, in good agreement with observations.
Major Characteristics of Southern Ocean Cloud Regimes and Their Effects on the Energy Budget
NASA Technical Reports Server (NTRS)
Haynes, John M.; Jakob, Christian; Rossow, William B.; Tselioudis, George; Brown, Josephine
2011-01-01
Clouds over the Southern Ocean are often poorly represented by climate models, but they make a significant contribution to the top-of-atmosphere (TOA) radiation balance, particularly in the shortwave portion of the energy spectrum. This study seeks to better quantify the organization and structure of Southern Hemisphere midlatitude clouds by combining measurements from active and passive satellite-based datasets. Geostationary and polar-orbiter satellite data from the International Satellite Cloud Climatology Project (ISCCP) are used to quantify large-scale, recurring modes of cloudiness, and active observations from CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) are used to examine vertical structure, radiative heating rates, and precipitation associated with these clouds. It is found that cloud systems are organized into eight distinct regimes and that ISCCP overestimates the midlevel cloudiness of these regimes. All regimes contain a relatively high occurrence of low cloud, with 79%of all cloud layers observed having tops below 3 km, but multiple-layered clouds systems are present in approximately 34% of observed cloud profiles. The spatial distribution of regimes varies according to season, with cloud systems being geometrically thicker, on average, during the austral winter. Those regimes found to be most closely associated with midlatitude cyclones produce precipitation the most frequently, although drizzle is extremely common in low-cloud regimes. The regimes associated with cyclones have the highest in-regime shortwave cloud radiative effect at the TOA, but the low-cloud regimes, by virtue of their high frequency of occurrence over the oceans, dominate both TOA and surface shortwave effects in this region as a whole.
Oliveira, Steffan Edward Octávio; Costa, Cíntia Carol de Melo; de Souza, João Batista Freire; de Queiroz, João Paulo Araújo Fernandes; Maia, Alex Sandro Campos; Costa, Leonardo Lelis de Macedo
2014-12-01
The amount of short-wave solar radiation willingly tolerated by lactating Holstein cows on pasture was determined in an equatorial semi-arid environment. The study was carried out on a dairy farm located in Limoeiro do Norte, CE, northeastern Brazil. The observed behaviours were as follows: grazing, under the sun, under the shade, standing, lying, ruminating, idling and wallowing in the water. The behaviours were recorded using instantaneous scan sampling at regular intervals of 15 min from 0600 to 1800 hours over 5 days. On all sampling days, the meteorological variables, including local short-wave solar radiation (R S-W, W m(-2)), were recorded. The R S-W data were divided into five levels. The sun exposure was more frequent under low (100 %) and moderately low (97 %) levels, when R S-W remained below 500 W m(-2). The grazing was more intense under low (100 %) and moderately low (93 %) levels. Above 500 W m(-2), the grazing time significantly decreased (11 %). The cows avoided grazing under high (0 %) and very high (0 %) levels, when R S-W exceeded 700 W m(-2). The ruminating behaviour was more frequent under high (33 %) and very high (37 %) levels, in which the highest averages of R S-W were recorded (815 and 958 W m(-2), respectively). The standing posture was more frequent under low (100 %) and moderately low (97 %) levels. Therefore, the critical R S-W level that motivates cows to stop grazing and seek shade was in the interval between 500 and 700 W m(-2).
Tang, Zhanghong; Wang, Qun; Ji, Zhijiang; Shi, Meiwu; Hou, Guoyan; Tan, Danjun; Wang, Pengqi; Qiu, Xianbo
2014-12-01
With the increasing city size, high-power electromagnetic radiation devices such as high-power medium-wave (MW) and short-wave (SW) antennas have been inevitably getting closer and closer to buildings, which resulted in the pollution of indoor electromagnetic radiation becoming worsened. To avoid such radiation exceeding the exposure limits by national standards, it is necessary to predict and survey the electromagnetic radiation by MW and SW antennas before constructing the buildings. In this paper, a modified prediction method for the far-field electromagnetic radiation is proposed and successfully applied to predict the electromagnetic environment of an area close to a group of typical high-power MW and SW wave antennas. Different from currently used simplified prediction method defined in the Radiation Protection Management Guidelines (H J/T 10. 3-1996), the new method in this article makes use of more information such as antennas' patterns to predict the electromagnetic environment. Therefore, it improves the prediction accuracy significantly by the new feature of resolution at different directions. At the end of this article, a comparison between the prediction data and the measured results is given to demonstrate the effectiveness of the proposed new method. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Dogu-Baykut, Esra; Gunes, Gurbuz; Decker, Eric Andrew
2014-08-15
Thyme is a good source of antioxidant compounds but it can be contaminated by microorganisms. An experimental fluid bed ultraviolet (UV) reactor was designed for microbial decontamination of thyme samples and the effect of shortwave ultraviolet light (UV-C) radiation on antioxidant properties of thyme was studied. Samples were exposed to UV-C radiation for 16 or 64 min. UV-C treatment led to 1.04 and 1.38 log CFU/g reduction of total aerobic mesophilic bacteria (TAMB) counts. Hunter a(∗) value was the most sensitive colour parameter during UV-C treatment. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging activity of extracts was not significantly affected by UV-C. Addition of thyme extracts at 0.15 and 0.3 μmol GAE/ml emulsion delayed the formation of lipid hydroperoxides and headspace hexanal in the 5.0%(wt) corn oil-in-water emulsion from 4 to 9 and 14 days, respectively. No significant changes in oxidation rates were observed between UV-C treated and untreated samples at same concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Garratt, J. R.; Prata, A. J.
1996-03-01
Previous work suggests that general circulation (global climate) models have excess net radiation at land surfaces, apparently due to overestimates in downwelling shortwave flux and underestimates in upwelling long-wave flux. Part of this excess, however, may be compensated for by an underestimate in downwelling longwave flux. Long term observations of the downwelling longwave component at several land stations in Europe, the United States, Australia, and Antarctica suggest that climate models (four are used, as in previous studies) underestimate this flux component on an annual basis by up to 10 W m2, yet with low statistical significance. It is probable that the known underestimate in boundary-layer air temperature contributes to this, as would low model cloudiness and neglect of minor gases such as methane, nitrogen oxide, and the freons. The bias in downwelling longwave flux, together with those found earlier for downwelling shortwave and upwlling long-wave fluxes, are consistent with the model bias found previously for net radiation. All annually averaged fluxes and biases are deduced for global land as a whole.
Interactions between marine biota and ENSO: a conceptual model analysis
NASA Astrophysics Data System (ADS)
Heinemann, M.; Timmermann, A.; Feudel, U.
2011-01-01
We develop a conceptual coupled atmosphere-ocean-ecosystem model for the tropical Pacific to investigate the interaction between marine biota and the El Niño-Southern Oscillation (ENSO). Ocean and atmosphere are represented by a two-box model for the equatorial Pacific cold tongue and the warm pool, including a simplified mixed layer scheme. Marine biota are represented by a three-component (nutrient, phytoplankton, and zooplankton) ecosystem model. The atmosphere-ocean model exhibits an oscillatory state which qualitatively captures the main physics of ENSO. During an ENSO cycle, the variation of nutrient upwelling, and, to a small extent, the variation of photosynthetically available radiation force an ecosystem oscillation. The simplified ecosystem in turn, due to the effect of phytoplankton on the absorption of shortwave radiation in the water column, leads to (1) a warming of the tropical Pacific, (2) a reduction of the ENSO amplitude, and (3) a prolongation of the ENSO period. We qualitatively investigate these bio-physical coupling mechanisms using continuation methods. It is demonstrated that bio-physical coupling may play a considerable role in modulating ENSO variability.
NASA Astrophysics Data System (ADS)
Feng, N.; Christopher, S. A.; Nair, U. S.
2014-12-01
Due to increasing urbanization, deforestation, and agriculture, land use change over Southeast Asia has dramatically risen during the last decades. Large areas of peat swamp forests over the Southeast Asian Maritime Continent region (10°S~20°N and 90°E~135°E) have been cleared for agricultural purposes. The Center for Remote Imaging, Sensing and Processing (CRISP) Moderate Resolution Imaging Spectroradiometer (MODIS) derived land cover classification data show that changes in land use are dominated by conversion of peat swamp forests to oil palm plantation, open lowland or lowland mosaic categories. Nested grid simulations based on Weather Research Forecasting Version 3.6 modelling system (WRFV3.6) over the central region of the Sarawak coast are used to investigate the climatic impacts of land use change over Maritime Continent. Numerical simulations were conducted for August of 2009 for satellite derived land cover scenarios for years 2000 and 2010. The variations in cloud formation, precipitation, and regional radiative and non-radiative parameters on climate results from land use change have been assessed based on numerical simulation results. Modelling studies demonstrate that land use change such as extensive deforestation processes can produce a negative radiative forcing due to the surface albedo increase and evapotranspiration decrease, while also largely caused reduced rainfall and cloud formation, and enhanced shortwave radiative forcing and temperature over the study area. Land use and land cover changes, similar to the domain in this study, has also occurred over other regions in Southeast Asia including Indonesia and could also impact cloud and precipitation formation in these regions.
NASA Astrophysics Data System (ADS)
Li, Yuanlong; Han, Weiqing; Shinoda, Toshiaki; Wang, Chunzai; Lien, Ren-Chieh; Moum, James N.; Wang, Jih-Wang
2013-10-01
The effects of solar radiation diurnal cycle on intraseasonal mixed layer variability in the tropical Indian Ocean during boreal wintertime Madden-Julian Oscillation (MJO) events are examined using the HYbrid Coordinate Ocean Model. Two parallel experiments, the main run and the experimental run, are performed for the period of 2005-2011 with daily atmospheric forcing except that an idealized hourly shortwave radiation diurnal cycle is included in the main run. The results show that the diurnal cycle of solar radiation generally warms the Indian Ocean sea surface temperature (SST) north of 10°S, particularly during the calm phase of the MJO when sea surface wind is weak, mixed layer is thin, and the SST diurnal cycle amplitude (dSST) is large. The diurnal cycle enhances the MJO-forced intraseasonal SST variability by about 20% in key regions like the Seychelles-Chagos Thermocline Ridge (SCTR; 55°-70°E, 12°-4°S) and the central equatorial Indian Ocean (CEIO; 65°-95°E, 3°S-3°N) primarily through nonlinear rectification. The model also well reproduced the upper-ocean variations monitored by the CINDY/DYNAMO field campaign between September-November 2011. During this period, dSST reaches 0.7°C in the CEIO region, and intraseasonal SST variability is significantly amplified. In the SCTR region where mean easterly winds are strong during this period, diurnal SST variation and its impact on intraseasonal ocean variability are much weaker. In both regions, the diurnal cycle also has a large impact on the upward surface turbulent heat flux QT and induces diurnal variation of QT with a peak-to-peak difference of O(10 W m-2).
NASA Technical Reports Server (NTRS)
Lau, K. M.; Kim, K. M.; Sud, Y. C.; Walker, G. K.
2009-01-01
The responses of the atmospheric water cycle and climate of West Africa and the Atlantic to radiative forcing of Saharan dust are studied using the NASA finite volume general circulation model (fvGCM), coupled to a mixed layer ocean. We find evidence of an "elevated heat pump" (EHP) mechanism that underlines the responses of the atmospheric water cycle to dust forcing as follow. During the boreal summerr, as a result of large-scale atmospheric feedback triggered by absorbing dust aerosols, rainfall and cloudiness are ehanIed over the West Africa/Eastern Atlantic ITCZ, and suppressed over the West Atlantic and Caribbean region. Shortwave radiation absorption by dust warms the atmosphere and cools the surface, while longwave has the opposite response. The elevated dust layer warms the air over West Africa and the eastern Atlantic. As the warm air rises, it spawns a large-scale onshore flow carrying the moist air from the eastern Atlantic and the Gulf of Guinea. The onshore flow in turn enhances the deep convection over West Africa land, and the eastern Atlantic. The condensation heating associated with the ensuing deep convection drives and maintains an anomalous large-scale east-west overturning circulation with rising motion over West Africa/eastern Atlantic, and sinking motion over the Caribbean region. The response also includes a strengthening of the West African monsoon, manifested in a northward shift of the West Africa precipitation over land, increased low-level westerlies flow over West Africa at the southern edge of the dust layer, and a near surface westerly jet underneath the dust layer overr the Sahara. The dust radiative forcing also leads to significant changes in surface energy fluxes, resulting in cooling of the West African land and the eastern Atlantic, and warming in the West Atlantic and Caribbean. The EHP effect is most effective for moderate to highly absorbing dusts, and becomes minimized for reflecting dust with single scattering albedo at0.95 or higher.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michalsky, J.; Harrison, L.
1995-04-26
The authors goal in the ARM program is the improvement of radiation models used in GCMs, especially in the shortwave, (1) by providing improved shortwave radiometric measurements for the testing of models and (2) by developing methods for retrieving climatologically sensitive parameters that serve as input to shortwave and longwave models. They are acquiring downwelling direct and diffuse spectral irradiance, at six wavelengths, plus downwelling broadband longwave, and upwelling and downwelling broadband shortwave irradiances that they combined with surface and upper air data from the Albany airport as a test data set for ARM modelers. They have also developed algorithmsmore » to improve shortwave measurements made at the Southern Great Plains (SGP) ARM site by standard thermopile instruments and by the multifolter rotating shadowband radiometer (MFRSR). However, the major objective of the program has been the development of two spectral versions of the rotating shadowband radiometer. The MFRSR, has become a workhose at the CART site in Oklahoma and Kansas, and it is widely deployed in other climate programs. They have spent most of their effort this year developing techniques to retrieve column aerosol, water vapor, and ozone from direct beam spectral measurements of the MFRSR. Additionally, they have had success in calculating shortwave surface albedo and aerosol optical depth from the ratio of direct to diffuse spectral irradiance. Using the surface albedo and the global irradiance, they have calculated cloud optical depths. From cloud optical depth and liquid water measured with the microwave radiometer, they have calculated effective liquid cloud particle radii. In each case the authors have attempted to validate the approach using independent measurements or retrievals of the parameters under investigation. With the exception of the ozone intercomparison, the corroborative measurements have been made at the SGP CART site. This report highlights these results.« less
Aerosol contribution to the rapid warming of near-term climate under RCP 2.6
NASA Astrophysics Data System (ADS)
Chalmers, N.; Highwood, E. J.; Hawkins, E.; Sutton, R.; Wilcox, L. J.
2012-09-01
The importance of aerosol emissions for near term climate projections is investigated by analysing simulations with the HadGEM2-ES model under two different emissions scenarios: RCP2.6 and RCP4.5. It is shown that the near term warming projected under RCP2.6 is greater than under RCP4.5, even though the greenhouse gas forcing is lower. Rapid and substantial reductions in sulphate aerosol emissions due to a reduction of coal burning in RCP2.6 lead to a reduction in the negative shortwave forcing due to aerosol direct and indirect effects. Indirect effects play an important role over the northern hemisphere oceans, especially the subtropical northeastern Pacific where an anomaly of 5-10 Wm-2 develops. The pattern of surface temperature change is consistent with the expected response to this surface radiation anomaly, whilst also exhibiting features that reflect redistribution of energy, and feedbacks, within the climate system. These results demonstrate the importance of aerosol emissions as a key source of uncertainty in near term projections of global and regional climate.
Measurement of surface physical properties and radiation balance for KUREX-91 study
NASA Technical Reports Server (NTRS)
Walter-Shea, Elizabeth A.; Blad, Blaine L.; Mesarch, Mark A.; Hays, Cynthia J.
1992-01-01
Biophysical properties and radiation balance components were measured at the Streletskaya Steppe Reserve of the Russian Republic in July 1991. Steppe vegetation parameters characterized include leaf area index (LAI), leaf angle distribution, mean tilt angle, canopy height, leaf spectral properties, leaf water potential, fraction of absorbed photosynthetically active radiation (APAR), and incoming and outgoing shortwave and longwave radiation. Research results, biophysical parameters, radiation balance estimates, and sun-view geometry effects on estimating APAR are discussed. Incoming and outgoing radiation streams are estimated using bidirectional spectral reflectances and bidirectional thermal emittances. Good agreement between measured and modeled estimates of the radiation balance were obtained.
Radiation budget changes with dry forest clearing in temperate Argentina.
Houspanossian, Javier; Nosetto, Marcelo; Jobbágy, Esteban G
2013-04-01
Land cover changes may affect climate and the energy balance of the Earth through their influence on the greenhouse gas composition of the atmosphere (biogeochemical effects) but also through shifts in the physical properties of the land surface (biophysical effects). We explored how the radiation budget changes following the replacement of temperate dry forests by crops in central semiarid Argentina and quantified the biophysical radiative forcing of this transformation. For this purpose, we computed the albedo and surface temperature for a 7-year period (2003-2009) from MODIS imagery at 70 paired sites occupied by native forests and crops and calculated the radiation budget at the tropopause and surface levels using a columnar radiation model parameterized with satellite data. Mean annual black-sky albedo and diurnal surface temperature were 50% and 2.5 °C higher in croplands than in dry forests. These contrasts increased the outgoing shortwave energy flux at the top of the atmosphere in croplands by a quarter (58.4 vs. 45.9 W m(-2) ) which, together with a slight increase in the outgoing longwave flux, yielded a net cooling of -14 W m(-2) . This biophysical cooling effect would be equivalent to a reduction in atmospheric CO2 of 22 Mg C ha(-1) , which involves approximately a quarter to a half of the typical carbon emissions that accompany deforestation in these ecosystems. We showed that the replacement of dry forests by crops in central Argentina has strong biophysical effects on the energy budget which could counterbalance the biogeochemical effects of deforestation. Underestimating or ignoring these biophysical consequences of land-use changes on climate will certainly curtail the effectiveness of many warming mitigation actions, particularly in semiarid regions where high radiation load and smaller active carbon pools would increase the relative importance of biophysical forcing. © 2012 Blackwell Publishing Ltd.
NASA Technical Reports Server (NTRS)
Kasoar, M.; Voulgarakis, Apostolos; Lamarque, Jean-Francois; Shindell, Drew T.; Bellouin, Nicholas; Collins, William J.; Faluvegi, Greg; Tsigaridis, Kostas
2016-01-01
We use the HadGEM3-GA4, CESM1, and GISS ModelE2 climate models to investigate the global and regional aerosol burden, radiative flux, and surface temperature responses to removing anthropogenic sulfur dioxide (SO2) emissions from China. We find that the models differ by up to a factor of 6 in the simulated change in aerosol optical depth (AOD) and shortwave radiative flux over China that results from reduced sulfate aerosol, leading to a large range of magnitudes in the regional and global temperature responses. Two of the three models simulate a near-ubiquitous hemispheric warming due to the regional SO2 removal, with similarities in the local and remote pattern of response, but overall with a substantially different magnitude. The third model simulates almost no significant temperature response. We attribute the discrepancies in the response to a combination of substantial differences in the chemical conversion of SO2 to sulfate, translation of sulfate mass into AOD, cloud radiative interactions, and differences in the radiative forcing efficiency of sulfate aerosol in the models. The model with the strongest response (HadGEM3-GA4) compares best with observations of AOD regionally, however the other two models compare similarly (albeit poorly) and still disagree substantially in their simulated climate response, indicating that total AOD observations are far from sufficient to determine which model response is more plausible. Our results highlight that there remains a large uncertainty in the representation of both aerosol chemistry as well as direct and indirect aerosol radiative effects in current climate models, and reinforces that caution must be applied when interpreting the results of modelling studies of aerosol influences on climate. Model studies that implicate aerosols in climate responses should ideally explore a range of radiative forcing strengths representative of this uncertainty, in addition to thoroughly evaluating the models used against observations.
Relationships between radiation, clouds, and convection during DYNAMO
Ciesielski, Paul E.; Johnson, Richard H.; Jiang, Xianan; ...
2017-02-16
In this paper, the relationships between radiation, clouds, and convection on an intraseasonal time scale are examined with data taken during the Dynamics of the Madden-Julian Oscillation (MJO) field campaign. Specifically, column-net, as well as vertical profiles of radiative heating rates, computed over Gan Island in the central Indian Ocean (IO) are used along with an objective analysis of large-scale fields to examine three MJO events that occurred during the 3 month period (October to December 2011) over this region. Longwave (LW) and shortwave radiative heating rates exhibit tilted structures, reflecting radiative effects associated with the prevalence of shallow cumulusmore » during the dry, suppressed MJO phase followed by increasing deep convection leading into the active phase. As the convection builds going into the MJO active phase, there are increasingly top-heavy anomalous radiative heating rates while the column-net radiative cooling rate Q r progressively decreases. Temporal fluctuations in the cloud radiative forcing, being quite sensitive to changes in high cloudiness, are dominated by LW effects with an intraseasonal variation of ~0.4–0.6 K/d. While both the water vapor and cloud fields are inextricably linked, it appears that the tilted radiative structures are more related to water vapor effects. The intraseasonal variation of column-net radiative heating Q r enhances the convective signal in the mean by ~20% with a minimum in this enhancement ~10 days prior to peak MJO rainfall and maximum ~7 days after. Finally, this suggests that as MJO convective envelope weakens over the central IO, cloud-radiative feedbacks help maintain the mature MJO as it moves eastward.« less
NASA Technical Reports Server (NTRS)
HARSHVARDHAN
1990-01-01
Broad-band parameterizations for atmospheric radiative transfer were developed for clear and cloudy skies. These were in the shortwave and longwave regions of the spectrum. These models were compared with other models in an international effort called ICRCCM (Intercomparison of Radiation Codes for Climate Models). The radiation package developed was used for simulations of a General Circulation Model (GCM). A synopsis is provided of the research accomplishments in the two areas separately. Details are available in the published literature.
Thermodynamics and Cloud Radiative Effect from the First Year of GoAmazon
NASA Technical Reports Server (NTRS)
Collow, Allie Marquardt; Miller, Mark; Trabachino, Lynne
2015-01-01
Deforestation is an ongoing concern for the Amazon Rainforest of Brazil and associated changes to the land surface have been hypothesized to alter the climate in the region. A comprehensive set of meteorological observations at the surface and within the lower troposphere above Manacapuru, Brazil and data from the Modern Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) are used to evaluate the seasonal cycle of cloudiness, thermodynamics, and the radiation budget. While ample moisture is present in the Amazon Rainforest year round, the northward progression of the Hadley circulation during the dry season contributes to a drying of the middle troposphere and inhibits the formation of deep convection. This results in a reduction in cloudiness and precipitation as well as an increase in the height of the lifting condensation level, which is shown to have a negative correlation to the fraction of low clouds. Frequent cloudiness prevents solar radiation from reaching the surface and clouds are often reflective with high values of shortwave cloud radiative effect at the surface and top of the atmosphere. Cloud radiative effect is reduced during the dry season however the dry season surface shortwave cloud radiative effect is still double what is observed during the wet season in other tropical locations. Within the column, the impact of clouds on the radiation budget is more prevalent in the longwave part of the spectrum, with a net warming in the wet season.
Surface Energy Budget Disruption in the Northeast Pacific in Response to a Marine Heat Wave
NASA Astrophysics Data System (ADS)
Schmeisser, L.; Siedlecki, S. A.; Ackerman, T. P.; Bond, N. A.
2016-12-01
The surface energy budget of the ocean varies greatly over space and time as a result of ocean-atmosphere interactions. Changes in the budget due to variability in incident shortwave radiation can alter the thermal structure of the upper ocean, influence photosynthetic processes, and ultimately affect marine biogeochemistry. Thus, accurate representation of the surface energy budget over the oceans is essential for successfully modeling ocean processes and ocean-atmosphere interactions. Siedlecki et al. [Scientific Reports 6 (2016): 27203] show that NOAA's Climate Forecast System (CFS) shortwave radiation fields are biased high relative to CFS reanalysis data by about 50 W/m2 in the study area off the coast of Washington and Oregon. This bias varies in space and time and is known to exist in large scale climate models. The bias results in reduced skill in ocean forecasts at the surface, with specific impacts on sea surface temperature and biogeochemistry. In order to better understand the surface radiation balance over the ocean and the biases present in large scale climate models, we use several data sets to analyze an anomalous sea surface temperature event (marine heat wave, MHW) in the Northeast Pacific during 2014-2015. This `blob' of warm water disrupted ocean-atmosphere feedbacks in the region and altered the surface energy balance; thus, it provides a case study to better understand physical mechanisms at play in the surface radiation balance. CERES SYN1deg satellite data are compared to model output from CFS (1°x1° resolution) and WRF (12km resolution). We use all three fields to assess the impact of model resolution on the surface energy budget, as well as identify feedbacks in ocean-atmosphere processes that may differ between the observations and the models. Observational time series from 2009-15 of shortwave radiation, longwave radiation, and cloud parameters across 3 latitudinal lines (44.5N, 47N, 50N) in the Northeast Pacific (150W to 125W) clearly show disruption in cloud fraction, water content, and radiative fluxes during the MHW. The timing and spatial extent of the disruption differ in the models. The surface radiation budget for the Northeast Pacific over this time period from the observations and models is compared and discussed.
Volcanos and El Nino: Signal separation in northern hemisphere winter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirchner, I.; Graf, H.F.
The frequent coincidence of volcanic forcing with El Nino events disables the clear assignment of climate anomalies to either volcanic or El Nino forcing. In order to select the signals, a set of four different perpetual January GCM experiments was performed (control, volcano case, El Nino case and combined volcano/El Nino case) and studied with advanced statistical methods for the Northern Hemisphere winter. The results were compared with observations. The signals for the different forcings are discussed for three variables (temperature, zonal wind and geopotential height) and five levels (surface, 850 hPa. 500 hPa, 200 hPa and 50 hPa). Themore » global El Nino signal can be selected more clearly in the troposphere than in the stratosphere. In contrast, the global volcano signal is strongest in the stratospheric temperature field. The amplitude of the perturbation for the volcano case is largest in the Atlantic region. The observed effect of local cooling due to the volcanic reduction of short-wave radiation over large land areas (like Asia) in sub-tropical regions, the observed advective warming over Eurasia and the advective cooling over Greenland are well simulated in the model. The radiative cooling near the surface is important for the volcano signal in the subtropics, but it is weak in high latitudes during winter. A statistically significant tropospheric signal of El Nino forcing occurs in the subtropics and in the mid-latitudes of the North Pacific. The local anomalies in the El Nino forcing region in the tropics, and the warming over North America in middle and high latitudes are simulated as observed. The combined signal is different from a simple linear combination of the separate signals. It leads to a climate perturbation stronger than for forcing with El Nino or stratospheric aerosol alone and to a somewhat modified pattern. 73 refs., 16 figs., 2 tabs.« less
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A.; Doelling, David R.; Young, David F.; Loeb, Norman G.; Garber, Donald P.; MacDonnell, David G.
2008-01-01
vAs the potential impacts of global climate change become more clear [1], the need to determine the accuracy of climate prediction over decade-to-century time scales has become an urgent and critical challenge. The most critical tests of climate model predictions will occur using observations of decadal changes in climate forcing, response, and feedback variables. Many of these key climate variables are observed by remotely sensing the global distribution of reflected solar spectral and broadband radiance. These "reflected solar" variables include aerosols, clouds, radiative fluxes, snow, ice, vegetation, ocean color, and land cover. Achieving sufficient satellite instrument accuracy, stability, and overlap to rigorously observe decadal change signals has proven very difficult in most cases and has not yet been achieved in others [2]. One of the earliest efforts to make climate quality observations was for Earth Radiation Budget: Nimbus 6/7 in the late 1970s, ERBE in the 1980s/90s, and CERES in 2000s are examples of the most complete global records. The recent CERES data products have carried out the most extensive intercomparisons because if the need to merge data from up to 11 instruments (CERES, MODIS, geostationary imagers) on 7 spacecraft (Terra, Aqua, and 5 geostationary) for any given month. In order to achieve climate calibration for cloud feedbacks, the radiative effect of clear-sky, all-sky, and cloud radiative effect must all be made with very high stability and accuracy. For shortwave solar reflected flux, even the 1% CERES broadband absolute accuracy (1-sigma confidence bound) is not sufficient to allow gaps in the radiation record for decadal climate change. Typical absolute accuracy for the best narrowband sensors like SeaWiFS, MISR, and MODIS range from 2 to 4% (1-sigma). IPCC greenhouse gas radiative forcing is approx. 0.6 W/sq m per decade or 0.6% of the global mean shortwave reflected flux, so that a 50% cloud feedback would change the global reflected flux by approx. 0.3 W/sq m or 0.3% per decade in broadband SW calibration change. Recent results comparing CERES reflected flux changes with MODIS, MISR, and SeaWiFS narrowband changes concluded that only SeaWiFS and CERES were approaching sufficient stability in calibration for decadal climate change [3]. Results using deep convective clouds in the optically thick limit as a stability target may prove very effective for improving past data sets like ISCCP. Results for intercalibration of geostationary imagers to CERES using an entire month of regional nearly coincident data demonstrates new approaches to constraining the calibration of current geostationary imagers. The new Decadal Survey Mission CLARREO is examining future approaches to a "NIST-in-Orbit" approach of very high absolute accuracy reference radiometers that cover the full solar and infrared spectrum at high spectral resolution but at low spatial resolution. Sampling studies have shown that a precessing CLARREO mission could calibrate other geo and leo reflected solar radiation and thermal infrared sensors.
NASA Astrophysics Data System (ADS)
Bates, T. S.; Anderson, T. L.; Baynard, T.; Bond, T.; Boucher, O.; Carmichael, G.; Clarke, A.; Erlick, C.; Guo, H.; Horowitz, L.; Howell, S.; Kulkarni, S.; Maring, H.; McComiskey, A.; Middlebrook, A.; Noone, K.; O'Dowd, C. D.; Ogren, J.; Penner, J.; Quinn, P. K.; Ravishankara, A. R.; Savoie, D. L.; Schwartz, S. E.; Shinozuka, Y.; Tang, Y.; Weber, R. J.; Wu, Y.
2006-05-01
The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar) radiation by anthropogenic aerosols in cloud-free conditions (IPCC, 2001). Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean (NIO) during INDOEX, the Northwest Pacific Ocean (NWP) during ACE-Asia, and the Northwest Atlantic Ocean (NWA) during ICARTT), incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART). Measurements of burdens, extinction optical depth (AOD), and direct radiative effect of aerosols (DRE - change in radiative flux due to total aerosols) are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity) are used as input parameters to two radiative transfer models (GFDL and University of Michigan) to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Constraining the radiative transfer calculations by observational inputs increases the clear-sky, 24-h averaged AOD (34±8%), top of atmosphere (TOA) DRE (32±12%), and TOA direct climate forcing of aerosols (DCF - change in radiative flux due to anthropogenic aerosols) (37±7%) relative to values obtained with "a priori" parameterizations of aerosol loadings and properties (GFDL RTM). The resulting constrained clear-sky TOA DCF is -3.3±0.47, -14±2.6, -6.4±2.1 Wm-2 for the NIO, NWP, and NWA, respectively. With the use of constrained quantities (extensive and intensive parameters) the calculated uncertainty in DCF was 25% less than the "structural uncertainties" used in the IPCC-2001 global estimates of direct aerosol climate forcing. Such comparisons with observations and resultant reductions in uncertainties are essential for improving and developing confidence in climate model calculations incorporating aerosol forcing.
Estimating canopy water content from spectroscopy
USDA-ARS?s Scientific Manuscript database
Foliar water content is a dynamic quantity depending on water losses from transpiration and water uptake from the soil. Absorption of shortwave radiation by water is determined by various frequency overtones of fundamental bending and stretching molecular transitions. Leaf water potential and rela...
MISR Science Data Validation Plan Summary Charts
NASA Technical Reports Server (NTRS)
Conel, J.; Ledeboer, W.; Ackerman, T.; Marchand, R.; Clothiaux, E.
2000-01-01
The purpose of the MISR experiment is to acquire systematic multi-angle imagery for global monitoring over a multi-year period of top-of-atmosphere and surface albedos and to measure the shortwave radiative properties of aerosols, clouds, and surface scenes.
History of satellite missions and measurements of the Earth Radiation Budget (1957-1984)
NASA Technical Reports Server (NTRS)
House, F. B.; Gruber, A.; Hunt, G. E.; Mecherikunnel, A. T.
1986-01-01
The history of satellite missions and their measurements of the earth radiation budget from the beginning of the space age until the present time are reviewed. The survey emphasizes the early struggle to develop instrument systems to monitor reflected shortwave and emitted long-wave exitances from the earth, and the problems associated with the interpretation of these observations from space. In some instances, valuable data sets were developed from satellite measurements whose instruments were not specifically designed for earth radiation budget observations.
Radiative transfer model validations during the First ISLSCP Field Experiment
NASA Technical Reports Server (NTRS)
Frouin, Robert; Breon, Francois-Marie; Gautier, Catherine
1990-01-01
Two simple radiative transfer models, the 5S model based on Tanre et al. (1985, 1986) and the wide-band model of Morcrette (1984) are validated by comparing their outputs with results obtained during the First ISLSCP Field Experiment on concomitant radiosonde, aerosol turbidity, and radiation measurements and sky photographs. Results showed that the 5S model overestimates the short-wave irradiance by 13.2 W/sq m, whereas the Morcrette model underestimated the long-wave irradiance by 7.4 W/sq m.
NASA Astrophysics Data System (ADS)
Orsini, Antonio; Tomasi, Claudio; Calzolari, Francescopiero; Nardino, Marianna; Cacciari, Alessandra; Georgiadis, Teodoro
2002-04-01
Simultaneous measurements of downwelling short-wave solar irradiance and incoming total radiation flux were performed at the Reeves Nevè glacier station (1200 m MSL) in Antarctica on 41 days from late November 1994 to early January 1995, employing the upward sensors of an albedometer and a pyrradiometer. The downwelling short-wave radiation measurements were analysed following the Duchon and O'Malley [J. Appl. Meteorol. 38 (1999) 132] procedure for classifying clouds, using the 50-min running mean values of standard deviation and the ratio of scaled observed to scaled clear-sky irradiance. Comparing these measurements with the Duchon and O'Malley rectangular boundaries and the local human observations of clouds collected on 17 days of the campaign, we found that the Duchon and O'Malley classification method obtained a success rate of 93% for cirrus and only 25% for cumulus. New decision criteria were established for some polar cloud classes providing success rates of 94% for cirrus, 67% for cirrostratus and altostratus, and 33% for cumulus and altocumulus. The ratios of the downwelling short-wave irradiance measured for cloudy-sky conditions to that calculated for clear-sky conditions were analysed in terms of the Kasten and Czeplak [Sol. Energy 24 (1980) 177] formula together with simultaneous human observations of cloudiness, to determine the empirical relationship curves providing reliable estimates of cloudiness for each of the three above-mentioned cloud classes. Using these cloudiness estimates, the downwelling long-wave radiation measurements (obtained as differences between the downward fluxes of total and short-wave radiation) were examined to evaluate the downwelling long-wave radiation flux normalised to totally overcast sky conditions. Calculations of the long-wave radiation flux were performed with the MODTRAN 3.7 code [Kneizys, F.X., Abreu, L.W., Anderson, G.P., Chetwynd, J.H., Shettle, E.P., Berk, A., Bernstein, L.S., Robertson, D.C., Acharya, P., Rothman, L.S., Selby, J.E.A., Gallery, W.O., Clough, S.A., 1996. In: Abreu, L.W., Anderson, G.P. (Eds.), The MODTRAN 2/3 Report and LOWTRAN 7 MODEL. Contract F19628-91-C.0132, Phillips Laboratory, Geophysics Directorate, PL/GPOS, Hanscom AFB, MA, 261 pp.] for both clear-sky and cloudy-sky conditions, considering various cloud types characterised by different cloud base altitudes and vertical thicknesses. From these evaluations, best-fit curves of the downwelling long-wave radiation flux were defined as a function of the cloud base height for the three polar cloud classes. Using these relationship curves, average estimates of the cloud base height were obtained from the three corresponding sub-sets of long-wave radiation measurements. The relative frequency histograms of the cloud base height defined by examining these three sub-sets were found to present median values of 4.7, 1.7 and 3.6 km for cirrus, cirrostratus/altostratus and cumulus/altocumulus, respectively, while median values of 6.5, 1.8 and 2.9 km were correspondingly determined by analysing only the measurements taken together with simultaneous cloud observations.
Response to marine cloud brightening in a multi-model ensemble
Stjern, Camilla W.; Muri, Helene; Ahlm, Lars; ...
2018-01-19
In this paper we show results from Earth system model simulations from the marine cloud brightening experiment G4cdnc of the Geoengineering Model Intercomparison Project (GeoMIP). The nine contributing models prescribe a 50 % increase in the cloud droplet number concentration (CDNC) of low clouds over the global oceans in an experiment dubbed G4cdnc, with the purpose of counteracting the radiative forcing due to anthropogenic greenhouse gases under the RCP4.5 scenario. The model ensemble median effective radiative forcing (ERF) amounts to –1.9 Wm –2, with a substantial inter-model spread of –0.6 to –2.5 Wm –2. The large spread is partly relatedmore » to the considerable differences in clouds and their representation between the models, with an underestimation of low clouds in several of the models. All models predict a statistically significant temperature decrease with a median of (for years 2020–2069) –0.96 [–0.17 to –1.21] K relative to the RCP4.5 scenario, with particularly strong cooling over low-latitude continents. Globally averaged there is a weak but significant precipitation decrease of –2.35 [–0.57 to –2.96]% due to a colder climate, but at low latitudes there is a 1.19 % increase over land. This increase is part of a circulation change where a strong negative top-of-atmosphere (TOA) shortwave forcing over subtropical oceans, caused by increased albedo associated with the increasing CDNC, is compensated for by rising motion and positive TOA longwave signals over adjacent land regions.« less
Response to marine cloud brightening in a multi-model ensemble
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stjern, Camilla W.; Muri, Helene; Ahlm, Lars
In this paper we show results from Earth system model simulations from the marine cloud brightening experiment G4cdnc of the Geoengineering Model Intercomparison Project (GeoMIP). The nine contributing models prescribe a 50 % increase in the cloud droplet number concentration (CDNC) of low clouds over the global oceans in an experiment dubbed G4cdnc, with the purpose of counteracting the radiative forcing due to anthropogenic greenhouse gases under the RCP4.5 scenario. The model ensemble median effective radiative forcing (ERF) amounts to –1.9 Wm –2, with a substantial inter-model spread of –0.6 to –2.5 Wm –2. The large spread is partly relatedmore » to the considerable differences in clouds and their representation between the models, with an underestimation of low clouds in several of the models. All models predict a statistically significant temperature decrease with a median of (for years 2020–2069) –0.96 [–0.17 to –1.21] K relative to the RCP4.5 scenario, with particularly strong cooling over low-latitude continents. Globally averaged there is a weak but significant precipitation decrease of –2.35 [–0.57 to –2.96]% due to a colder climate, but at low latitudes there is a 1.19 % increase over land. This increase is part of a circulation change where a strong negative top-of-atmosphere (TOA) shortwave forcing over subtropical oceans, caused by increased albedo associated with the increasing CDNC, is compensated for by rising motion and positive TOA longwave signals over adjacent land regions.« less
JPRS Report, Science & Technology, USSR: Space
1988-02-26
data on short-wave length radiation of galaxies. Areas in the constellations Puppis and Andromeda have been selected as objects of observations...the days just past, and photographing of individual sections of the constellation Triangulum and the Andromeda Nebula is planned for today. Both
Relationship between clouds and sea surface temperatures in the western tropical Pacific
NASA Technical Reports Server (NTRS)
Arking, Albert; Ziskin, Daniel
1994-01-01
Analysis of four years of earth radiation budget, cloud, and sea surface temperature data confirms that cloud parameters change dramatically when and where sea surface temperatures increase above approximately 300K. These results are based upon monthly mean values within 2.5 deg x 2.5 deg grid points over the 'warm pool' region of the western tropical Pacific. The question of whether sea surface temperatures are influenced, in turn, by the radiative effects of these clouds (Ramanathan and Collins) is less clear. Such a feedback, if it exists, is weak. The reason why clouds might have so little influence, despite large changes in their longwave and shortwave radiative effects, might be that the sea surface responds to both the longwave heating and the shortwave cooling effects of clouds, and the two effects nearly cancel. There are strong correlations between the rate of change of sea surface temperature and any of the radiation budget parameters that are highly correlated with the incident solar flux-implying that season and latitude are the critical factors determining sea surface temperatures. With the seasonal or both seasonal and latitudinal variations removed, the rate of change of sea surface temperature shows no correlation with cloud-related parameters in the western tropical Pacific.
Simultaneous Retrieval of Multiple Aerosol Parameters Using a Multi-Angular Approach
NASA Technical Reports Server (NTRS)
Kuo, K.-S.; Weger, R. C.; Welch, R. M.
1997-01-01
Atmospheric aerosol particles, both natural and anthropogenic, are important to the earth's radiative balance through their direct and indirect effects. They scatter the incoming solar radiation (direct effect) and modify the shortwave reflective properties of clouds by acting as cloud condensation nuclei (indirect effect). Although it has been suggested that aerosols exert a net cooling influence on climate, this effect has received less attention than the radiative forcing due to clouds and greenhouse gases. In order to understand the role that aerosols play in a changing climate, detailed and accurate observations are a prerequisite. The retrieval of aerosol optical properties by satellite remote sensing has proven to be a difficult task. The difficulty results mainly from the tenuous nature and variable composition of aerosols. To date, with single-angle satellite observations, we can only retrieve reliably against dark backgrounds, such as over oceans and dense vegetation. Even then, assumptions must be made concerning the chemical composition of aerosols. In this investigation we examine the feasibility of simultaneous retrieval of multiple aerosol optical parameters using reflectances from a typical set of twelve angles observed by the French POLDER instrument. The retrieved aerosol optical parameters consist of asymmetry factor, single scattering albedo, surface albedo, and optical thickness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kay, Jennifer E.; Wall, Casey; Yettella, Vineel
Here, a large, long-standing, and pervasive climate model bias is excessive absorbed shortwave radiation (ASR) over the midlatitude oceans, especially the Southern Ocean. This study investigates both the underlying mechanisms for and climate impacts of this bias within the Community Earth System Model, version 1, with the Community Atmosphere Model, version 5 [CESM1(CAM5)]. Excessive Southern Ocean ASR in CESM1(CAM5) results in part because low-level clouds contain insufficient amounts of supercooled liquid. In a present-day atmosphere-only run, an observationally motivated modification to the shallow convection detrainment increases supercooled cloud liquid, brightens low-level clouds, and substantially reduces the Southern Ocean ASR bias.more » Tuning to maintain global energy balance enables reduction of a compensating tropical ASR bias. In the resulting preindustrial fully coupled run with a brighter Southern Ocean and dimmer tropics, the Southern Ocean cools and the tropics warm. As a result of the enhanced meridional temperature gradient, poleward heat transport increases in both hemispheres (especially the Southern Hemisphere), and the Southern Hemisphere atmospheric jet strengthens. Because northward cross-equatorial heat transport reductions occur primarily in the ocean (80%), not the atmosphere (20%), a proposed atmospheric teleconnection linking Southern Ocean ASR bias reduction and cooling with northward shifts in tropical precipitation has little impact. In summary, observationally motivated supercooled liquid water increases in shallow convective clouds enable large reductions in long-standing climate model shortwave radiation biases. Of relevance to both model bias reduction and climate dynamics, quantifying the influence of Southern Ocean cooling on tropical precipitation requires a model with dynamic ocean heat transport.« less
Kay, Jennifer E.; Wall, Casey; Yettella, Vineel; ...
2016-06-10
Here, a large, long-standing, and pervasive climate model bias is excessive absorbed shortwave radiation (ASR) over the midlatitude oceans, especially the Southern Ocean. This study investigates both the underlying mechanisms for and climate impacts of this bias within the Community Earth System Model, version 1, with the Community Atmosphere Model, version 5 [CESM1(CAM5)]. Excessive Southern Ocean ASR in CESM1(CAM5) results in part because low-level clouds contain insufficient amounts of supercooled liquid. In a present-day atmosphere-only run, an observationally motivated modification to the shallow convection detrainment increases supercooled cloud liquid, brightens low-level clouds, and substantially reduces the Southern Ocean ASR bias.more » Tuning to maintain global energy balance enables reduction of a compensating tropical ASR bias. In the resulting preindustrial fully coupled run with a brighter Southern Ocean and dimmer tropics, the Southern Ocean cools and the tropics warm. As a result of the enhanced meridional temperature gradient, poleward heat transport increases in both hemispheres (especially the Southern Hemisphere), and the Southern Hemisphere atmospheric jet strengthens. Because northward cross-equatorial heat transport reductions occur primarily in the ocean (80%), not the atmosphere (20%), a proposed atmospheric teleconnection linking Southern Ocean ASR bias reduction and cooling with northward shifts in tropical precipitation has little impact. In summary, observationally motivated supercooled liquid water increases in shallow convective clouds enable large reductions in long-standing climate model shortwave radiation biases. Of relevance to both model bias reduction and climate dynamics, quantifying the influence of Southern Ocean cooling on tropical precipitation requires a model with dynamic ocean heat transport.« less
NASA Technical Reports Server (NTRS)
Cox, Stephen J.; Stackhouse, Paul W., Jr.; Gupta, Shashi K.; Mikovitz, J. Colleen; Zhang, Taiping
2016-01-01
The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The current release 3.0 (available at gewex-srb.larc.nasa.gov) uses the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This product is subsampled to 30 km. ISCCP is currently recalibrating and recomputing their entire data series, to be released as the H product, at 10km resolution. The ninefold increase in pixel number will allow SRB a higher resolution gridded product (e.g. 0.5 degree), as well as the production of pixel-level fluxes. In addition to the input data improvements, several important algorithm improvements have been made. Most notable has been the adaptation of Angular Distribution Models (ADMs) from CERES to improve the initial calculation of shortwave TOA fluxes, from which the surface flux calculations follow. Other key input improvements include a detailed aerosol history using the Max Planck Institut Aerosol Climatology (MAC), temperature and moisture profiles from HIRS, and new topography, surface type, and snow/ice. Here we present results for the improved GEWEX Shortwave and Longwave algorithm (GSW and GLW) with new ISCCP data, the various other improved input data sets and the incorporation of many additional internal SRB model improvements. As of the time of abstract submission, results from 2007 have been produced with ISCCP H availability the limiting factor. More SRB data will be produced as ISCCP reprocessing continues. The SRB data produced will be released as part of the Release 4.0 Integrated Product, recognizing the interdependence of the radiative fluxes with other GEWEX products providing estimates of the Earth's global water and energy cycle (I.e., ISCCP, SeaFlux, LandFlux, NVAP, etc.).
NASA/GEWEX Surface Radiation Budget: First Results From The Release 4 GEWEX Integrated Data Products
NASA Astrophysics Data System (ADS)
Stackhouse, Paul; Cox, Stephen; Gupta, Shashi; Mikovitz, J. Colleen; zhang, taiping
2016-04-01
The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The current release 3 (available at gewex-srb.larc.nasa.gov) uses the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This product is subsampled to 30 km. ISCCP is currently recalibrating and recomputing their entire data series, to be released as the H product, at 10km resolution. The ninefold increase in pixel number should help improve the RMS of the existing products and allow for future higher resolution SRB gridded product (e.g. 0.5 degree). In addition to the input data improvements, several important algorithm improvements have been made. Most notable has been the adaptation of Angular Distribution Models (ADMs) from CERES to improve the initial calculation of shortwave TOA fluxes, from which the surface flux calculations follow. Other key input improvements include a detailed aerosol history using the Max Planck Institut Aerosol Climatology (MAC), temperature and moisture profiles from HIRS, and new topography, surface type, and snow/ice. Here we present results for the improved GEWEX Shortwave and Longwave algorithm (GSW and GLW) with new ISCCP data, the various other improved input data sets and the incorporation of many additional internal SRB model improvements. As of the time of abstract submission, results from 2007 have been produced with ISCCP H availability the limiting factor. More SRB data will be produced as ISCCP reprocessing continues. The SRB data produced will be released as part of the Release 4.0 Integrated Product, recognizing the interdependence of the radiative fluxes with other GEWEX products providing estimates of the Earth's global water and energy cycle (I.e., ISCCP, SeaFlux, LandFlux, NVAP, etc.).
Influence of Ice Particle Surface Roughening on the Global Cloud Radiative Effect
NASA Technical Reports Server (NTRS)
Yi, Bingqi; Yang, Ping; Baum, Bryan A.; LEcuyer, Tristan; Oreopoulos, Lazaros; Mlawer, Eli J.; Heymsfield, Andrew J.; Liou, Kuo-Nan
2013-01-01
Ice clouds influence the climate system by changing the radiation budget and large-scale circulation. Therefore, climate models need to have an accurate representation of ice clouds and their radiative effects. In this paper, new broadband parameterizations for ice cloud bulk scattering properties are developed for severely roughened ice particles. The parameterizations are based on a general habit mixture that includes nine habits (droxtals, hollow/solid columns, plates, solid/hollow bullet rosettes, aggregate of solid columns, and small/large aggregates of plates). The scattering properties for these individual habits incorporate recent advances in light-scattering computations. The influence of ice particle surface roughness on the ice cloud radiative effect is determined through simulations with the Fu-Liou and the GCM version of the Rapid Radiative Transfer Model (RRTMG) codes and the National Center for Atmospheric Research Community Atmosphere Model (CAM, version 5.1). The differences in shortwave (SW) and longwave (LW) radiative effect at both the top of the atmosphere and the surface are determined for smooth and severely roughened ice particles. While the influence of particle roughening on the single-scattering properties is negligible in the LW, the results indicate that ice crystal roughness can change the SW forcing locally by more than 10 W m(exp -2) over a range of effective diameters. The global-averaged SW cloud radiative effect due to ice particle surface roughness is estimated to be roughly 1-2 W m(exp -2). The CAM results indicate that ice particle roughening can result in a large regional SW radiative effect and a small but nonnegligible increase in the global LW cloud radiative effect.
NASA Astrophysics Data System (ADS)
Neilson, B. T.; Hatch, C. E.; Bingham, Q. G.; Tyler, S. W.
2008-12-01
In recent years, distributed temperature sensing (DTS) has enjoyed steady increases in the number and diversity of applications. Because fiber optic cables used for DTS are typically sheathed in dark materials resistant to UV deterioration, the question arises of how shortwave solar radiation penetrating a water column influences the accuracy of absolute DTS-derived temperatures. Initial calculations of these affects considered: shortwave radiation as a function of time of day, water depth, and water clarity; fiber optic cable dimensions; and fluid velocity. These indicate that for clear waterbodies with low velocities and shallow depths, some heating on the cable is likely during peak daily solar radiation. Given higher water velocities, substantial increases in turbidity, and/or deeper water, there should be negligible solar heating on the cable. To confirm these calculations, a field study was conducted to test the effects of solar radiation by installing two types of fiber optic cable at multiple, uniform depths in a trapezoidal canal with constant flow determined by a controlled release from Porcupine Dam near Paradise, Utah. Cables were installed in water depths from 0.05 to 0.79 m in locations of faster (center of canal) and slower (sidewall) water velocities. Thermister strings were installed at the same depths, but shielded from solar radiation and designed to record absolute water temperatures. Calculations predict that at peak solar radiation, in combination with shallow depths and slow velocities, typical fiber-optic cable is likely to experience heating greater than the ambient water column. In this study, DTS data show differences of 0.1-0.2°C in temperatures as seen by cables separated vertically by 0.31 m on the sidewall and center of the channel. Corresponding thermister data showed smaller vertical differences (~0.03-0.1°C) suggesting thermal stratification was also present in the canal. However, the magnitude of the DTS differences could not be fully explained by stratification alone. Additional information from cables installed in a shallow, near-zero velocity pool showed significantly higher temperature differences with cable depth when compared to the cable in the higher-velocity canal flows. This indicates a higher potential for heating of fiber-optic cable in stagnant, shallow waters. With sufficient water velocities and depths, the effect of shortwave solar radiation on DTS measurement accuracy via heating of the fiber- optic cable is negligible. Particular care in experimental design is recommended in shallow or low-velocity systems, including consideration of solar radiation, and independent quantification of (or calibration for) absolute temperatures.
Aspects of Boreal Forest Hydrology: From Stand to Watershed
NASA Technical Reports Server (NTRS)
Nijssen, B.
2000-01-01
This report evaluates land surface hydrologic processes in the boreal forest using observations collected during the Boreal Ecosystem Atmospheric Study (BOREAS), carried out in the boreal forest of central Canada from 1994 to 1996. Three separate studies, each of which constitutes a journal publication, are included. The first study describes the application of a spatially-distributed hydrologic model, originally developed for mid-latitude forested environments, to selected BOREAS flux measurement sites. Compared to point observations at the flux towers, the model represented energy and moisture fluxes reasonably well, but shortcomings were identified in the soil thermal submodel and the partitioning of evapotranspiration into canopy and subcanopy components. As a first step towards improving this partitioning, the second study develops a new parameterization for transmission of shortwave radiation through boreal forest canopies. The new model accounts for the transmission of diffuse and direct shortwave radiation and accounts for multiple scattering in the canopy and multiple reflections between the canopy layers.
NASA Astrophysics Data System (ADS)
Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.-L.
2015-05-01
Intel Many Integrated Core (MIC) ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our results of optimizing the updated Goddard shortwave radiation Weather Research and Forecasting (WRF) scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The co-processor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of Xeon Phi will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 1.3x.
Tilt Error in Cryospheric Surface Radiation Measurements at High Latitudes: A Model Study
NASA Astrophysics Data System (ADS)
Bogren, W.; Kylling, A.; Burkhart, J. F.
2015-12-01
We have evaluated the magnitude and makeup of error in cryospheric radiation observations due to small sensor misalignment in in-situ measurements of solar irradiance. This error is examined through simulation of diffuse and direct irradiance arriving at a detector with a cosine-response foreoptic. Emphasis is placed on assessing total error over the solar shortwave spectrum from 250nm to 4500nm, as well as supporting investigation over other relevant shortwave spectral ranges. The total measurement error introduced by sensor tilt is dominated by the direct component. For a typical high latitude albedo measurement with a solar zenith angle of 60◦, a sensor tilted by 1, 3, and 5◦ can respectively introduce up to 2.6, 7.7, and 12.8% error into the measured irradiance and similar errors in the derived albedo. Depending on the daily range of solar azimuth and zenith angles, significant measurement error can persist also in integrated daily irradiance and albedo.
NASA Technical Reports Server (NTRS)
Gautier, C.
1986-01-01
The evolution of the net shortwave (NSW) radiation fields during the monsoon of 1979 was analyzed, using geostationary satellite data, collected before, during, and after the monsoon onset. It is seen, from the time sequence of NSW fields, that during the preonset phase the characteristics of the NSW field are dominated by a strong maximum in the entire Arabian Sea and by a strong minimum in the central and eastern equatorial Indian Ocean, the minimum being associated with the intense convective activity occurring in that region. As the season evolves, the minima of NSW associated with the large scale convective activity propagate westward in the equatorial ocean. During the monsoon onset, there occurs an explosive onset of the convection activity in the Arabian Sea: the maximum has retreated towards the Somalia coast, and most of the sea then experiences a strong minimum of NSW associated with the intense precipitation occurring along the southwestern coast of the Indian subcontinent.
NASA Astrophysics Data System (ADS)
Nuterman, Roman; Pagh Nielsen, Kristian; Baklanov, Alexander; Kaas, Eigil
2014-05-01
The summer of 2010 was characterized by severe weather events such as floods, heat waves and droughts across Middle East, most of Europe and European Russia. Among them the wildfires in Portugal and European Russia were some of the most prominent and led to substantial increase of atmospheric aerosols concentration. For instance, pollution from Russian wildfires, which were the most noticeable, spread around the entire central part of the country and also dispersed towards the Northern Europe. This study is devoted to Enviro-HIRLAM (Environment - HIgh Resolution Limited Area Model) model evaluation and analysis of radiation balance change due to increased aerosol burden caused by wildfires in Russia. For this purpose the model was forced by boundary and initial conditions produced by ECMWF (European Center for Medium-Range Weather Forecast) IFS and MOZART models for meteorology and atmospheric composition, respectively. The model setup included aerosol microphysics module M7 with simple tropospheric sulfur chemistry, anthropogenic emissions by TNO, wildfires emissions by FMI and interactive sea-salt and dust emissions. During the model run surface data assimilation of meteorological parameters was applied. The HIRLAM Savijarvi radiation scheme has been improved to account explicitly for aerosol radiation interactions. So that the short-wave radiative transfer calculations are performed as standard 2-stream calculations for averages of aerosol optical properties weighted over the entire spectrum. The model shows good correlation of particulate matter (PM) concentrations on diurnal cycle as well as day-to-day variability, but one always has negative bias of PM. The Enviro-HIRLAM is able to capture concentration peaks both from short-term and long-term trans boundary transport of PM and predicted the Aerosol Optical Thickness (at 550 nm) up to 2 over wildfire-polluted regions. And the direct radiative forcing is less than -100 W/m2.
Radiation Transfer in the Atmosphere: Scattering
NASA Technical Reports Server (NTRS)
Mishchenko, M.; Travis, L.; Lacis, Andrew A.
2014-01-01
Sunlight illuminating the Earth's atmosphere is scattered by gas molecules and suspended particles, giving rise to blue skies, white clouds, and optical displays such as rainbows and halos. By scattering and absorbing the shortwave solar radiation and the longwave radiation emitted by the underlying surface, cloud and aerosol particles strongly affect the radiation budget of the terrestrial climate system. As a consequence of the dependence of scattering characteristics on particle size, morphology, and composition, scattered light can be remarkably rich in information on particle properties and thus provides a sensitive tool for remote retrievals of macro- and microphysical parameters of clouds and aerosols.
Zhang, Yang; Chen, Ying; Fan, Jiwen; ...
2015-09-14
Aerosol particles can affect cloud microphysical properties by serving as ice nuclei (IN). Large uncertainties exist in the ice nucleation parameterizations (INPs) used in current climate models. In this Part II paper, to examine the sensitivity of the model predictions to different heterogeneous INPs, WRF-CAM5 simulation using the INP of Niemand et al. (N12) [1] is conducted over East Asia for two full years, 2006 and 2011, and compared with simulation using the INP of Meyers et al. (M92) [2], which is the original INP used in CAM5. M92 calculates the nucleated ice particle concentration as a function of icemore » supersaturation, while N12 represents the nucleated ice particle concentration as a function of temperature and the number concentrations and surface areas of dust particles. Compared to M92, the WRF-CAM5 simulation with N12 produces significantly higher nucleated ice crystal number concentrations (ICNCs) in the northern domain where dust sources are located, leading to significantly higher cloud ice number and mass concentrations and ice water path, but the opposite is true in the southern domain where temperatures and moistures play a more important role in ice formation. Overall, the simulation with N12 gives lower downward shortwave radiation but higher downward longwave radiation, cloud liquid water path, cloud droplet number concentrations, and cloud optical depth. The increase in cloud optical depth and the decrease in downward solar flux result in a stronger shortwave and longwave cloud forcing, and decreases temperature at 2-m and precipitation. Changes in temperature and radiation lower surface concentrations of OH, O₃, SO₄²⁻, and PM 2.5, but increase surface concentrations of CO, NO₂, and SO₂ over most of the domain. By acting as cloud condensation nuclei (CCN) and IN, dust particles have different impacts on cloud water and ice number concentrations, radiation, and temperature at 2-m and precipitation depending on whether the dominant role of dust is CCN or IN. These results indicate the importance of the heterogeneous ice nucleation treatments and dust emissions in accurately simulating regional climate and air quality.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yang; Chen, Ying; Fan, Jiwen
Aerosol particles can affect cloud microphysical properties by serving as ice nuclei (IN). Large uncertainties exist in the ice nucleation parameterizations (INPs) used in current climate models. In this Part II paper, to examine the sensitivity of the model predictions to different heterogeneous INPs, WRF-CAM5 simulation using the INP of Niemand et al. (N12) [1] is conducted over East Asia for two full years, 2006 and 2011, and compared with simulation using the INP of Meyers et al. (M92) [2], which is the original INP used in CAM5. M92 calculates the nucleated ice particle concentration as a function of icemore » supersaturation, while N12 represents the nucleated ice particle concentration as a function of temperature and the number concentrations and surface areas of dust particles. Compared to M92, the WRF-CAM5 simulation with N12 produces significantly higher nucleated ice crystal number concentrations (ICNCs) in the northern domain where dust sources are located, leading to significantly higher cloud ice number and mass concentrations and ice water path, but the opposite is true in the southern domain where temperatures and moistures play a more important role in ice formation. Overall, the simulation with N12 gives lower downward shortwave radiation but higher downward longwave radiation, cloud liquid water path, cloud droplet number concentrations, and cloud optical depth. The increase in cloud optical depth and the decrease in downward solar flux result in a stronger shortwave and longwave cloud forcing, and decreases temperature at 2-m and precipitation. Changes in temperature and radiation lower surface concentrations of OH, O₃, SO₄²⁻, and PM 2.5, but increase surface concentrations of CO, NO₂, and SO₂ over most of the domain. By acting as cloud condensation nuclei (CCN) and IN, dust particles have different impacts on cloud water and ice number concentrations, radiation, and temperature at 2-m and precipitation depending on whether the dominant role of dust is CCN or IN. These results indicate the importance of the heterogeneous ice nucleation treatments and dust emissions in accurately simulating regional climate and air quality.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yang; Chen, Ying; Fan, Jiwen
Aerosol particles can affect cloud microphysical properties by serving as ice nuclei (IN). Large uncertainties exist in the ice nucleation parameterizations (INPs) used in current climate models. In this Part II paper, to examine the sensitivity of the model predictions to different heterogeneous INPs, WRF-CAM5 simulation using the INP of Niemand et al. (N12) [1] is conducted over East Asia for two full years, 2006 and 2011, and compared with simulation using the INP of Meyers et al. (M92) [2], which is the original INP used in CAM5. M92 calculates the nucleated ice particle concentration as a function of icemore » supersaturation, while N12 represents the nucleated ice particle concentration as a function of temperature and the number concentrations and surface areas of dust particles. Compared to M92, the WRF-CAM5 simulation with N12 produces significantly higher nucleated ice crystal number concentrations (ICNCs) in the northern domain where dust sources are located, leading to significantly higher cloud ice number and mass concentrations and ice water path, but the opposite is true in the southern domain where temperatures and moistures play a more important role in ice formation. Overall, the simulation with N12 gives lower downward shortwave radiation but higher downward longwave radiation, cloud liquid water path, cloud droplet number concentrations, and cloud optical depth. The increase in cloud optical depth and the decrease in downward solar flux result in a stronger shortwave and longwave cloud forcing, and decreases temperature at 2-m and precipitation. Changes in temperature and radiation lower surface concentrations of OH, O 3, SO 4 2-, and PM2.5, but increase surface concentrations of CO, NO 2, and SO 2 over most of the domain. By acting as cloud condensation nuclei (CCN) and IN, dust particles have different impacts on cloud water and ice number concentrations, radiation, and temperature at 2-m and precipitation depending on whether the dominant role of dust is CCN or IN. These results indicate the importance of the heterogeneous ice nucleation treatments and dust emissions in accurately simulating regional climate and air quality.« less
Study of aerosol effect on accelerated snow melting over the Tibetan Plateau during boreal spring
NASA Astrophysics Data System (ADS)
Lee, Woo-Seop; Bhawar, Rohini L.; Kim, Maeng-Ki; Sang, Jeong
2013-08-01
In the present study, a coupled atmosphere-ocean global climate model (CSIRO-Mk3.6) is used to investigate the role of aerosol forcing agents as drivers of snow melting trends in the Tibetan Plateau (TP) region. Anthropogenic aerosol-induced snow cover changes in a warming climate are calculated from the difference between historical run (HIST) and all forcing except anthropogenic aerosol (NoAA). Absorbing aerosols can influence snow cover by warming the atmosphere, reducing snow reflectance after deposition. The warming the rate of snow melt, exposing darker surfaces below to short-wave radiation sooner, and allowing them to heat up even faster in the Himalayas and TP. The results show a strong spring snow cover decrease over TP when absorbing anthropogenic aerosol forcing is considered, whereas snow cover fraction (SCF) trends in NoAA are weakly negative (but insignificant) during 1951-2005. The enhanced spring snow cover trends in HIST are due to overall effects of different forcing agents: When aerosol forcing (AERO) is considered, a significant reduction of SCF than average can be found over the western TP and Himalayas. The large decreasing trends in SCF over the TP, with the maximum reduction of SCF around 12-15% over the western TP and Himalayas slope. Also accelerated snow melting during spring is due to effects of aerosol on snow albedo, where aerosol deposition cause decreases snow albedo. However, the SCF change in the “NoAA” simulations was observed to be less.
NASA Astrophysics Data System (ADS)
Nyman, P.; Duff, T. J.; Sheridan, G. J.
2016-12-01
Moisture content in litter on the forest floor can control ignition and spread of forest fires. The micrometeorological factors driving variation in litter moisture at the landscape scale are poorly understood, particularly in areas with heterogeneous vegetation and complex terrain. In this research we seek to quantify how climate, vegetation and eco-hydrological feedbacks contribute to variation in net radiation and potential evaporation at the forest floor. Research sites were established at 12 locations in southeast Australia with variable precipitation, solar exposure, and drainage areas. Forests ranged from open woodland to tall temperate forests. We measured solar radiation, air temperature, relative humidity, litter moisture, soil moisture, and litter temperature. Forest structure was characterised using hemispherical photos and LIDAR. Using these data on microclimate and vegetation structure we parameterise a model of daily potential evaporation at the forest floor. Results show that variation in evaporation rates from litter is driven by net radiation and the role of vapour pressure deficit is almost negligible due to high aerodynamic resistance. In open woodlands the net radiation is directly related to short-wave radiation and evaporation remains high despite low temperatures. In the tall wet forests, commonly found along drainage lines and on slopes with polar-facing aspects, the long-wave radiation was just as important as the shortwave radiation. Air temperature is therefore important in determining the flammability of these more productive forests. By implication, in complex terrain with heterogeneous forests, the temperature in the wet parts of the landscape is important in controlling connectivity of fuels and large-scale fire activity.
1992-05-22
PIC simulation code to study several of the constraints imposed by plasma phenomena on the propagation of ultrashort high intensity laser pulses in...and radiation spectrum of free electrons in the focus of an ultrashort high intensity laser pulse is solved. Motion and radiation of electrons in a...higher harmonics. These studies are intended as a prelude to experiments with high intensity ultrashort laser pulses . To investigate the motion of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei; Schumacher, Courtney; McFarlane, Sally A.
2013-01-31
Radiative heating profiles of the International Satellite Cloud Climatology Project (ISCCP) cloud regimes (or weather states) were estimated by matching ISCCP observations with radiative properties derived from cloud radar and lidar measurements from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) sites at Manus, Papua New Guinea, and Darwin, Australia. Focus was placed on the ISCCP cloud regimes containing the majority of upper level clouds in the tropics, i.e., mesoscale convective systems (MCSs), deep cumulonimbus with cirrus, mixed shallow and deep convection, and thin cirrus. At upper levels, these regimes have average maximum cloud occurrences ranging from 30% tomore » 55% near 12 km with variations depending on the location and cloud regime. The resulting radiative heating profiles have maxima of approximately 1 K/day near 12 km, with equal heating contributions from the longwave and shortwave components. Upper level minima occur near 15 km, with the MCS regime showing the strongest cooling of 0.2 K/day and the thin cirrus showing no cooling. The gradient of upper level heating ranges from 0.2 to 0.4 K/(day∙km), with the most convectively active regimes (i.e., MCSs and deep cumulonimbus with cirrus) having the largest gradient. When the above heating profiles were applied to the 25-year ISCCP data set, the tropics-wide average profile has a radiative heating maximum of 0.45Kday-1 near 250 hPa. Column-integrated radiative heating of upper level cloud accounts for about 20% of the latent heating estimated by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The ISCCP radiative heating of tropical upper level cloud only slightly modifies the response of an idealized primitive equation model forced with the tropics-wide TRMM PR latent heating, which suggests that the impact of upper level cloud is more important to large-scale tropical circulation variations because of convective feedbacks rather than direct forcing by the cloud radiative heating profiles. However, the height of the radiative heating maxima and gradient of the heating profiles are important to determine the sign and patterns of the horizontal circulation anomaly driven by radiative heating at upper levels.« less
NASA Astrophysics Data System (ADS)
Avolio, E.; Federico, S.; Miglietta, M. M.; Lo Feudo, T.; Calidonna, C. R.; Sempreviva, A. M.
2017-08-01
The sensitivity of boundary layer variables to five (two non-local and three local) planetary boundary-layer (PBL) parameterization schemes, available in the Weather Research and Forecasting (WRF) mesoscale meteorological model, is evaluated in an experimental site in Calabria region (southern Italy), in an area characterized by a complex orography near the sea. Results of 1 km × 1 km grid spacing simulations are compared with the data collected during a measurement campaign in summer 2009, considering hourly model outputs. Measurements from several instruments are taken into account for the performance evaluation: near surface variables (2 m temperature and relative humidity, downward shortwave radiation, 10 m wind speed and direction) from a surface station and a meteorological mast; vertical wind profiles from Lidar and Sodar; also, the aerosol backscattering from a ceilometer to estimate the PBL height. Results covering the whole measurement campaign show a cold and moist bias near the surface, mostly during daytime, for all schemes, as well as an overestimation of the downward shortwave radiation and wind speed. Wind speed and direction are also verified at vertical levels above the surface, where the model uncertainties are, usually, smaller than at the surface. A general anticlockwise rotation of the simulated flow with height is found at all levels. The mixing height is overestimated by all schemes and a possible role of the simulated sensible heat fluxes for this mismatching is investigated. On a single-case basis, significantly better results are obtained when the atmospheric conditions near the measurement site are dominated by synoptic forcing rather than by local circulations. From this study, it follows that the two first order non-local schemes, ACM2 and YSU, are the schemes with the best performance in representing parameters near the surface and in the boundary layer during the analyzed campaign.
NASA Astrophysics Data System (ADS)
Zhang, Yang; Wang, Kai; He, Jian
2017-09-01
Following a comprehensive evaluation of WRF-CAM5 in Part I, Part II describes analyses of interannual variability, multi-year variation trends, and the direct, indirect, and total effects of anthropogenic aerosols. The interannual variations of chemical column and surface concentrations, and ozone (O3)/particulate matter (PM) indicators are strongly correlated to anthropogenic emission changes. Despite model biases, the model captures well the observed interannual variations of temperature at 2-m, cloud fraction, shortwave cloud forcing, downwelling shortwave radiation, cloud droplet number concentration, column O3, and column formaldehyde (HCHO) for the whole domain. While the model reproduces the volatile organic compound (VOC)-limited regimes of O3 chemistry at sites in Hong Kong, Taiwan, Japan, South Korea, and from the Acid Deposition Monitoring Network in East Asia (EANET) and the degree of sulfate neutralization at the EANET sites, it has limited capability in capturing the interannual variations of the ratio of O3 and nitrogen dioxide (O3/NO2) and PM chemical regime indicators, due to uncertainties in the emissions of precursors for O3 and secondary PM, the model assumption for ammonium bisulfate (NH4HSO4) as well as lack of gas/particle partitioning of total ammonia and total nitrate. While the variation trends in multi-year periods in aerosol optical depth and column concentrations of carbon monoxide, sulfur dioxide, and NO2 are mainly caused by anthropogenic emissions, those of major meteorological and cloud variables partly reflect feedbacks of chemistry to meteorological variables. The impacts of anthropogenic aerosol indirect effects either dominate or play an important role in the aerosol total effects for most cloud and chemical predictions, whereas anthropogenic aerosol direct effects influence most meteorological and radiation variables. The direct, indirect, and total effects of anthropogenic aerosols exhibit a strong interannual variability in 2001, 2006, and 2011.
Implementation & Evaluation of a New Shallow Convection Scheme in WRF
Clouds are well-known to be a crucial component of the weather and climate system since they transport heat, moisture and momentum vertically in the atmosphere, and strongly modify shortwave and longwave radiation budgets. From the air quality point of view, cloud processes, in p...
Quantifying the Sources of Intermodel Spread in Equilibrium Climate Sensitivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caldwell, Peter M.; Zelinka, Mark D.; Taylor, Karl E.
This paper clarifies the causes of intermodel differences in the global-average temperature response to doubled CO 2, commonly known as equilibrium climate sensitivity (ECS). The authors begin by noting several issues with the standard approach for decomposing ECS into a sum of forcing and feedback terms. This leads to a derivation of an alternative method based on linearizing the effect of the net feedback. Consistent with previous studies, the new method identifies shortwave cloud feedback as the dominant source of intermodel spread in ECS. This new approach also reveals that covariances between cloud feedback and forcing, between lapse rate andmore » longwave cloud feedbacks, and between albedo and shortwave cloud feedbacks play an important and previously underappreciated role in determining model differences in ECS. Finally, defining feedbacks based on fixed relative rather than specific humidity (as suggested by Held and Shell) reduces the covariances between processes and leads to more straightforward interpretations of results.« less
Quantifying the Sources of Intermodel Spread in Equilibrium Climate Sensitivity
Caldwell, Peter M.; Zelinka, Mark D.; Taylor, Karl E.; ...
2016-01-07
This paper clarifies the causes of intermodel differences in the global-average temperature response to doubled CO 2, commonly known as equilibrium climate sensitivity (ECS). The authors begin by noting several issues with the standard approach for decomposing ECS into a sum of forcing and feedback terms. This leads to a derivation of an alternative method based on linearizing the effect of the net feedback. Consistent with previous studies, the new method identifies shortwave cloud feedback as the dominant source of intermodel spread in ECS. This new approach also reveals that covariances between cloud feedback and forcing, between lapse rate andmore » longwave cloud feedbacks, and between albedo and shortwave cloud feedbacks play an important and previously underappreciated role in determining model differences in ECS. Finally, defining feedbacks based on fixed relative rather than specific humidity (as suggested by Held and Shell) reduces the covariances between processes and leads to more straightforward interpretations of results.« less
NASA Astrophysics Data System (ADS)
Cherviakov, Maksim; Bogdanov, Mikhail; Spiryakhina, Anastasia; Shishkina, Elena; Surkova, Yana; Kulkova, Eugenia
2017-04-01
This report describes Earth's radiation budget IKOR-M satellite program which has been started in Russia. The first satellite "Meteor-M» No 1 of this project was put into orbit in September, 2009. The IKOR-M radiometer is a satellite instrument that measures reflected shortwave radiation (0.3-4.0 µm). It was created in Saratov State University and installed on Russian hydrometeorological satellites "Meteor-M" No 1 and No 2. Radiometer IKOR-M designed for satellite monitoring of the outgoing reflected short-wave radiation, which is one of the components of Earth's radiation budget. Such measurements can be used to derive Earth's surface albedo and absorbed solar radiation. This information also can be used in different models of long-term weather forecasts and in researches of climate change trends (Sklyarov et al., 2016). Satellite "Meteor-M" No 1 and No 2 are heliosynchronous that allows observing from North to South Poles. The basic products of data processing are given in the form of global maps of distribution outgoing short-wave radiation (OSR), albedo and absorbed solar radiation (ASR). Such maps were made for each month during observation period. The IKOR-M product archive is available online at all times. A searchable catalogue of data products is continually updated and users may search and download data products via the Earth radiation balance components research laboratory website (http://www.sgu.ru/structure/geographic/metclim/balans) as soon as they become available. Two series of measurements from two different IKOR-M are available. The first radiometer had worked from October, 2009 to August, 2014 and second - from August, 2014 to the present. Therefore, there is a period when both radiometers work at the same time. Top-of-atmosphere fluxes deduced from the "Meteor-M" No 1 measurements in August, 2014 show very good agreement with the fluxes determined from "Meteor-M" No 2 (Bogdanov et al., 2016). The effect of aging is investigated for first IKOR-M. This radiometer worked on board of the "Meteor-M" No 1 satellite for five years. Parameters of linear trends are estimated for the Earth's surface area albedo with approximately constant values of this characteristic and the estimate of sensitivity change over time for the radiometer is obtained. The seasonal and interannual variations of OSR, albedo and ASR were discussed. The variations between SW radiation budget components seem to be within observational uncertainty and natural variability governed by cloudiness, water vapor and aerosol variations. It should be noted that cloudiness makes a significant contribution to the planetary albedo of the Earth, largely determines its spatial-temporal distribution. In particular, it is important to know what contribution cloudiness makes to albedo and what the relationship between them. Therefore, comparisons between albedo and cloudiness were conducted separately for land and oceans. The comparison of the distributions of cloudiness and albedo had identified the existence of significant correlation to the World Ocean, lower values for the World Ocean and land together and small correlation for land. It was assessed spatial and temporal variations of albedo and the absorbed solar radiation over different regions. Latitudinal distributions of albedo and ASR were estimated in more detail. Meridional cross sections over oceans and land were used separately for this estimation. It was shown that the albedo and ASR data received from the radiometer IKOR-M can be used to detect El Nino in the Pacific Ocean and monitoring of the East Asian Summer Monsoon. The report will be presented more detailed results. The reported study was funded by Russian Geographical Society according financial support in the framework of a research project No 40/2016-R. Latitudinal distributions of albedo and ASR study was funded by RFBR according to the research project No.16-35-00284 mol_a. References 1. Sklyarov Yu.A., Vorob'ev V.A., Kotuma A.I., Chervyakov M.Yu., Feigin V.M. The measurement of the radiation balance component from "Meteor-M" satellite. The IKOR-M radiometer // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No 2, pp. 173-180. 2. Sklyarov Yu.A., Vorob'ev V.A., Kotuma A.I., Chervyakov M.Yu., Feigin V.M. The algorithms for the processing of outgoing shortwave radiation measurements from "Meteor- M" No 1 satellite // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No 3, pp. 83-90. 3. Bogdanov M.B., Vorobyov A.I., Kotuma A.I., Cherviakov M.Yu. Scaling factor between reflected shortwave radiation mesured by IKOR-M on board the Veteor-M No 1 and No 2 // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 20126, Vol. 13, No4, pp. 252-260.
Estimating the Longwave Radiation Underneath the Forest Canopy in Snow-dominated Setting
NASA Astrophysics Data System (ADS)
Zhou, Y.; Kumar, M.; Link, T. E.
2017-12-01
Forest canopies alter incoming longwave radiation at the land surface, thus influencing snow cover energetics. The snow surface receives longwave radiation from the sky as well as from surrounding vegetation. The longwave radiation from trees is determined by its skin temperature, which shows significant heterogeneity depending on its position and morphometric attributes. Here our goal is to derive an effective tree temperature that can be used to estimate the longwave radiation received by the land surface pixel. To this end, we implement these three steps: 1) derive a relation between tree trunk surface temperature and the incident longwave radiation, shortwave radiation, and air temperature; 2) develop an inverse model to calculate the effective temperature by establishing a relationship between the effective temperature and the actual tree temperature; and 3) estimate the effective temperature using widely measured variables, such as solar radiation and forest density. Data used to derive aforementioned relations were obtained at the University of Idaho Experimental Forest, in northern Idaho. Tree skin temperature, incoming longwave radiation, solar radiation received by the tree surface, and air temperature were measured at an isolated tree and a tree within a homogeneous forest stand. Longwave radiation received by the land surface and the sky view factors were also measured at the same two locations. The calculated effective temperature was then compared with the measured tree trunk surface temperature. Additional longwave radiation measurements with pyrgeometer arrays were conducted under forests with different densities to evaluate the relationship between effective temperature and forest density. Our preliminary results show that when exposed to direct shortwave radiation, the tree surface temperature shows a significant difference from the air temperature. Under cloudy or shaded conditions, the tree surface temperature closely follows the air temperature. The effective tree temperature follows the air temperature in a dense forest stand, although it is significantly larger than the air temperature near the isolated tree. This discrepancy motivates us to explore ways to represent the effective tree temperature for stands with different densities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gan, Chuen-Meei; Pleim, Jonathan; Mathur, Rohit
2014-02-14
Long term datasets of total (all-sky) and clear-sky downwelling shortwave (SW) radiation, cloud cover fraction (cloudiness) and aerosol optical depth (AOD) are analyzed together with aerosol concentration from several networks (e.g. SURFRAD, CASTNET, IMPROVE and ARM) in the United States (US). Seven states with varying climatology are selected to better understand the effect of aerosols and clouds on SW radiation. This analysis aims to test the hypothesis that the reductions in anthropogenic aerosol burden resulting from substantial reductions in emissions of sulfur dioxide and nitrogen oxides over the past 15 years across the US has caused an increase in surfacemore » SW radiation. We show that the total and clear-sky downwelling SW radiation from seven sites have increasing trends except Penn State which shows no tendency in clear-sky SW radiation. After investigating several confounding factors, the causes can be due to the geography of the site, aerosol distribution, heavy air traffic and increasing cloudiness. Moreover, we assess the relationship between total column AOD with surface aerosol concentration to test our hypothesis. In our findings, the trends of clear-sky SW radiation, AOD, and aerosol concentration from the sites in eastern US agree well with our hypothesis. However, the sites in western US demonstrate increasing AOD associated with mostly increasing trends in surface aerosol concentration. At these sites, the changes in aerosol burden and/or direct aerosol effects alone cannot explain the observed changes in SW radiation, but other factors need to be considered such as cloudiness, aerosol vertical profiles and elevated plumes.« less
Measurement-based estimates of direct radiative effects of absorbing aerosols above clouds
NASA Astrophysics Data System (ADS)
Feng, Nan; Christopher, Sundar A.
2015-07-01
The elevated layers of absorbing smoke aerosols from western African (e.g., Gabon and Congo) biomass burning activities have been frequently observed above low-level stratocumulus clouds off the African coast, which presents an excellent natural laboratory for studying the effects of aerosols above clouds (AAC) on regional energy balance in tropical and subtropical environments. Using spatially and temporally collocated Moderate Resolution Imaging Spectroradiometer, Ozone Monitoring Instrument (OMI), and Clouds and the Earth's Radiant Energy System data sets, the top-of-atmosphere shortwave aerosol direct shortwave radiative effects (ARE) of absorbing aerosols above low-level water clouds in the southeast Atlantic Ocean was examined in this study. The regional averaged instantaneous ARE has been estimated to be 36.7 ± 20.5 Wm-2 (regional mean ± standard deviation) along with a mean positive OMI Aerosol Index at 1.3 in August 2006 based on multisensors measurements. The highest magnitude of instantaneous ARE can even reach 138.2 Wm-2. We assess that the 660 nm cloud optical depth (COD) values of 8-12 is the critical value above (below) which aerosol absorption (scattering) effect dominates and further produces positive (negative) ARE values. The results further show that ARE values are more sensitive to aerosols above lower COD values than cases for higher COD values. This is among the first studies to provide quantitative estimates of shortwave ARE due to AAC events from an observational perspective.
NASA Technical Reports Server (NTRS)
Duda, David P.; Stephens, Graeme L.; Cox, Stephen K.
1990-01-01
Measurements of longwave and shortwave radiation were made using an instrument package on the NASA tethered balloon during the FIRE Marine Stratocumulus experiment. Radiation data from two pairs of pyranometers were used to obtain vertical profiles of the near-infrared and total solar fluxes through the boundary layer, while a pair of pyrgeometers supplied measurements of the longwave fluxes in the cloud layer. The radiation observations were analyzed to determine heating rates and to measure the radiative energy budget inside the stratocumulus clouds during several tethered balloon flights. The radiation fields in the cloud layer were also simulated by a two-stream radiative transfer model, which used cloud optical properties derived from microphysical measurements and Mie scattering theory.
A Sulfate Aerosol Trigger for the Sturtian Neoproterozoic Snowball Event
NASA Astrophysics Data System (ADS)
Wordsworth, R. D.; Macdonald, F. A.
2017-12-01
Despite the dominance of the carbon cycle in determining the evolution of Earth's climate in general, certain events defy easy explanation via atmospheric CO2 changes alone. Here we discuss the particular role that transient planetary albedo changes via sulfate aerosol formation can play in major climate transitions. Specifically, we propose that SO2 outgassing associated with the eruption of the Franklin Large Igneous Province (LIP) led to the first Neoproterozoic Snowball event, the Sturtian, 716 Ma. We summarize U/Pb zircon and baddeleyite dating indicating the synchronicity of the Franklin eruptions and the onset of the Sturtian, and paleomagnetic data indicating that the Franklin erupted close to the equator. We then discuss in detail the modeling we have performed of eruption rate, the plume height achieved during basaltic fissure volcanism, the chemistry and microphysics of sulfate aerosol formation, and the dependence of aerosol longwave and shortwave radiative effects on atmospheric loading, particle size and surface albedo. We discuss the critical importance of the latitude of eruption, the tropopause height, and ocean dynamics in determining the strength and sign of aerosol radiative forcing. We finish by comparing the Franklin event with other LIP emplacement events in Earth history and make suggestions for future modeling.
NASA Astrophysics Data System (ADS)
Takenaka, H.; Teruyuki, N.; Nakajima, T. Y.; Higurashi, A.; Hashimoto, M.; Suzuki, K.; Uchida, J.; Nagao, T. M.; Shi, C.; Inoue, T.
2017-12-01
It is important to estimate the earth's radiation budget accurately for understanding of climate. Clouds can cool the Earth by reflecting solar radiation but also maintain warmth by absorbing and emitting terrestrial radiation. similarly aerosols also have an effect on radiation budget by absorption and scattering of Solar radiation. In this study, we developed the high speed and accurate algorithm for shortwave (SW) radiation budget and it's applied to geostationary satellite for rapid analysis. It enabled highly accurate monitoring of solar radiation and photo voltaic (PV) power generation. Next step, we try to update the algorithm for retrieval of Aerosols and Clouds. It indicates the accurate atmospheric parameters for estimation of solar radiation. (This research was supported in part by CREST/EMS).
The SMART Ground-based Remote Sensing for Terra/MODIS Validation
NASA Technical Reports Server (NTRS)
Tsay, Si-Chee; Ji, Q. Jack; Barenbrug, M.; Lau, William K.-M. (Technical Monitor)
2001-01-01
A ground-based remote sensing system - SMART (Surface Measurements for Atmospheric Radiative Transfer) - was deployed during both the SAFARI-2000 and the ARREX-1999 dry season campaigns. The measurement site is the Skukuza airport. The operation period for 1999 is from August 16 to September 10. The main instruments include shortwave (approximately 0.28-2.8 micrometers) and longwave (approximately 4-50 micrometers) broadband radiometers, a shadow-band radiometer, a micro-pulse lidar, and a microwave radiometer. We also did some measurements of solar spectral flux by using an ASD spectrometer. The operation period for 2000 is from August 15 to September 22. This time we added a few new features to the SMART system: a solar tracker for direct and diffuse components of solar fluxes; the scanning capability to the microwave radiometer; a whole sky camera for documenting the sky conditions every minute; and a mini-weather station for atmospheric pressure, temperature, humidity, wind speed/direction. A surface SSFR (Solar Spectral Flux Radiometer) from NASA Ames also joined us for the measurements. This is a unique data set with reasonably long observational period and high accuracy. The data show good correlation with the local weather patterns. We also see diurnal change and some special events, such as fierce fires nearby. To quantify the surface radiative forcing of biomass burning aerosols, many pyranometers, pyrgeometers, and pyrheliometers measure the global, direct, and diffuse irradiance at the surface. These fluxes combining with the collocated optical thickness retrievals from sun photometer (or shadow-band radiometer), the solar radiative forcing, proportional to delta F/delta tau, can be investigated. Integrated with measurements of other instruments at the site, these data sets will serve as "ground truth" for the satellite measurements and modeling.
NASA Astrophysics Data System (ADS)
Vyas, B. M.
2017-12-01
The analysis of investigation describes the experimental results of monthly surafcae short wave radiative(SWR) and longwave radaitive(LWR) atmospheric aerosols radaitive forcing derived from daily mesaured values of AOD at 550 nm from MODIS Terra and Acqau satellite as well as hourly measurement of AOD at 500nm from MICROTOPS _II sunsphotometer ( M/S Solar Light Co. USA) with round the clock of 24 hourly measurement of CNR-1 ( M/s KIP & ZONN, Netherland) during the clear sky days over Udaipur. For the present investigation, such above simulatneous daily data sets of period from Oct.,2011 to June 2017 were used to study the monthly and sesaonal ground level SWR and LWR over a semi- urban and semi-arid western Indian tropical site for pre- monsoon, post-monsoon and winter months. In this study, a well known method of computing surface SWR and LWR has been employed as Method -1 as suggested by Shrivastava et al., 2011. A stong and distinct different sesaonal surface SWR and LWR due to atmospheric aerosols has observed that the well defined seasonal neagtive SWR is observed maximum in pre- monsoon and minimum in winter and post-monsoon months. But in contary to the above, higher positive monthly LWR values are noticed in pre-monsoon as compared to in winter months. The The inter- annual sesaonal trend of the SWR and LWR are also noticed in the present work. The reslts of present study will be compared with other availlable simillar study using SBDART at other other Indian stations.
Variability in Global Top-of-Atmosphere Shortwave Radiation Between 2000 and 2005
NASA Technical Reports Server (NTRS)
Loebe, Norman G.; Wielicki, Bruce A.; Rose, Fred G.; Doelling, David R.
2007-01-01
Measurements from various instruments and analysis techniques are used to directly compare changes in Earth-atmosphere shortwave (SW) top-of-atmosphere (TOA) radiation between 2000 and 2005. Included in the comparison are estimates of TOA reflectance variability from published ground-based Earthshine observations and from new satellite-based CERES, MODIS and ISCCP results. The ground-based Earthshine data show an order-of-magnitude more variability in annual mean SW TOA flux than either CERES or ISCCP, while ISCCP and CERES SW TOA flux variability is consistent to 40%. Most of the variability in CERES TOA flux is shown to be dominated by variations global cloud fraction, as observed using coincident CERES and MODIS data. Idealized Earthshine simulations of TOA SW radiation variability for a lunar-based observer show far less variability than the ground-based Earthshine observations, but are still a factor of 4-5 times more variable than global CERES SW TOA flux results. Furthermore, while CERES global albedos exhibit a well-defined seasonal cycle each year, the seasonal cycle in the lunar Earthshine reflectance simulations is highly variable and out-of-phase from one year to the next. Radiative transfer model (RTM) approaches that use imager cloud and aerosol retrievals reproduce most of the change in SW TOA radiation observed in broadband CERES data. However, assumptions used to represent the spectral properties of the atmosphere, clouds, aerosols and surface in the RTM calculations can introduce significant uncertainties in annual mean changes in regional and global SW TOA flux.
Variability in global top-of-atmosphere shortwave radiation between 2000 and 2005
NASA Astrophysics Data System (ADS)
Loeb, Norman G.; Wielicki, Bruce A.; Rose, Fred G.; Doelling, David R.
2007-02-01
Measurements from various instruments and analysis techniques are used to directly compare changes in Earth-atmosphere shortwave (SW) top-of-atmosphere (TOA) radiation between 2000 and 2005. Included in the comparison are estimates of TOA reflectance variability from published ground-based Earthshine observations and from new satellite-based CERES, MODIS and ISCCP results. The ground-based Earthshine data show an order-of-magnitude more variability in annual mean SW TOA flux than either CERES or ISCCP, while ISCCP and CERES SW TOA flux variability is consistent to 40%. Most of the variability in CERES TOA flux is shown to be dominated by variations global cloud fraction, as observed using coincident CERES and MODIS data. Idealized Earthshine simulations of TOA SW radiation variability for a lunar-based observer show far less variability than the ground-based Earthshine observations, but are still a factor of 4-5 times more variable than global CERES SW TOA flux results. Furthermore, while CERES global albedos exhibit a well-defined seasonal cycle each year, the seasonal cycle in the lunar Earthshine reflectance simulations is highly variable and out-of-phase from one year to the next. Radiative transfer model (RTM) approaches that use imager cloud and aerosol retrievals reproduce most of the change in SW TOA radiation observed in broadband CERES data. However, assumptions used to represent the spectral properties of the atmosphere, clouds, aerosols and surface in the RTM calculations can introduce significant uncertainties in annual mean changes in regional and global SW TOA flux.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnard, James C.; Flynn, Donna M.
2002-10-08
The ability of the SBDART radiative transfer model to predict clear-sky diffuse and direct normal broadband shortwave irradiances is investigated. Model calculations of these quantities are compared with data from the Atmospheric Radiation Measurement (ARM) program’s Southern Great Plains (SGP) and North Slope of Alaska (NSA) sites. The model tends to consistently underestimate the direct normal irradiances at both sites by about 1%. In regards to clear-sky diffuse irradiance, the model overestimates this quantity at the SGP site in a manner similar to what has been observed in other studies (Halthore and Schwartz, 2000). The difference between the diffuse SBDARTmore » calculations and Halthore and Schwartz’s MODTRAN calculations is very small, thus demonstrating that SBDART performs similarly to MODTRAN. SBDART is then applied to the NSA site, and here it is found that the discrepancy between the model calculations and corrected diffuse measurements (corrected for daytime offsets, Dutton et al., 2001) is 0.4 W/m2 when averaged over the 12 cases considered here. Two cases of diffuse measurements from a shaded “black and white” pyranometer are also compared with the calculations and the discrepancy is again minimal. Thus, it appears as if the “diffuse discrepancy” that exists at the SGP site does not exist at the NSA sites. We cannot yet explain why the model predicts diffuse radiation well at one site but not at the other.« less
The long-term Global LAnd Surface Satellite (GLASS) product suite and applications
NASA Astrophysics Data System (ADS)
Liang, S.
2015-12-01
Our Earth's environment is experiencing rapid changes due to natural variability and human activities. To monitor, understand and predict environment changes to meet the economic, social and environmental needs, use of long-term high-quality satellite data products is critical. The Global LAnd Surface Satellite (GLASS) product suite, generated at Beijing Normal University, currently includes 12 products, including leaf area index (LAI), broadband shortwave albedo, broadband longwave emissivity, downwelling shortwave radiation and photosynthetically active radiation, land surface skin temperature, longwave net radiation, daytime all-wave net radiation, fraction of absorbed photosynetically active radiation absorbed by green vegetation (FAPAR), fraction of green vegetation coverage, gross primary productivity (GPP), and evapotranspiration (ET). Most products span from 1981-2014. The algorithms for producing these products have been published in the top remote sensing related journals and books. More and more applications have being reported in the scientific literature. The GLASS products are freely available at the Center for Global Change Data Processing and Analysis of Beijing Normal University (http://www.bnu-datacenter.com/), and the University of Maryland Global Land Cover Facility (http://glcf.umd.edu). After briefly introducing the basic characteristics of GLASS products, we will present some applications on the long-term environmental changes detected from GLASS products at both global and local scales. Detailed analysis of regional hotspots, such as Greenland, Tibetan plateau, and northern China, will be emphasized, where environmental changes have been mainly associated with climate warming, drought, land-atmosphere interactions, and human activities.
MTCLIM: a mountain microclimate simulation model
Roger D. Hungerford; Ramakrishna R. Nemani; Steven W. Running; Joseph C. Coughlan
1989-01-01
A model for calculating daily microclimate conditions in mountainous terrain is presented. Daily air temperature, shortwave radiation, relative humidity, and precipitation are extrapolated form data measured at National Weather Service stations. The model equations are given and the paper describes how to execute the model. Model outputs are compared with observed data...
Remote sensing of leaf, canopy and vegetation water contents for satellite climate data records
USDA-ARS?s Scientific Manuscript database
Foliar water content is a dynamic quantity depending on water losses from transpiration and water uptake from the soil. Absorption of shortwave radiation by water is determined by various frequency overtones of fundamental bending and stretching molecular transitions. Leaf water potential and rela...
Response to marine cloud brightening in a multi-model ensemble
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stjern, Camilla W.; Muri, Helene; Ahlm, Lars
Here we show results from Earth system model simulations from the marine cloud brightening experiment G4cdnc of the Geoengineering Model Intercomparison Project (GeoMIP). The nine contributing models prescribe a 50 % increase in the cloud droplet number concentration (CDNC) of low clouds over the global oceans in an experiment dubbed G4cdnc, with the purpose of counteracting the radiative forcing due to anthropogenic greenhouse gases under the RCP4.5 scenario. The model ensemble median effective radiative forcing (ERF) amounts to −1.9 W m −2, with a substantial inter-model spread of −0.6 to −2.5 W m −2. The large spread is partly related to the considerable differences inmore » clouds and their representation between the models, with an underestimation of low clouds in several of the models. All models predict a statistically significant temperature decrease with a median of (for years 2020–2069) −0.96 [−0.17 to −1.21] K relative to the RCP4.5 scenario, with particularly strong cooling over low-latitude continents. Globally averaged there is a weak but significant precipitation decrease of −2.35 [−0.57 to −2.96] % due to a colder climate, but at low latitudes there is a 1.19 % increase over land. This increase is part of a circulation change where a strong negative top-of-atmosphere (TOA) shortwave forcing over subtropical oceans, caused by increased albedo associated with the increasing CDNC, is compensated for by rising motion and positive TOA longwave signals over adjacent land regions.« less
Snow Never Falls on Satellite Radiometers: A Compelling Alternative to Ground Observations
NASA Astrophysics Data System (ADS)
Hinkelman, L. M.; Lapo, K. E.; Cristea, N. C.; Lundquist, J. D.
2014-12-01
Snowmelt is an important source of surface water for ecosystems, river flow, drinking water, and production of hydroelectric power. Thus accurate modeling of snow accumulation and melt is needed to improve our understanding of the impact of climate change on mountain snowpack and for use in water resource forecasting and management decisions. One of the largest potential sources of uncertainty in modeling mountain snow is the net radiative flux. This is because while net irradiance makes up the majority of the surface energy balance, it is one of the most difficult forcings to measure at remote mountain locations. Here we investigate the use of irradiances derived from satellite measurements in the place of surface observations. NASA's Clouds and the Earth's Radiant Energy System (CERES) SYN satellite product provides longwave and shortwave irradiances at the ground on three-hourly temporal and one degree spatial resolution.Although the low resolution of these data is a drawback, their availability over the entire globe for the full period of March 2000 through December 2010 (and beyond, as processing continues) makes them an attractive option for use in modeling. We first assessed the accuracy of the SYN downwelling solar and longwave fluxes by comparison to measurements at NOAA's Surface Radiation Network (SURFRAD) reference stations and at remote mountain stations. The performance of several snow models of varying complexity when using SYN irradiances as forcing data was then evaluated. Simulated snow water equivalent and runoff from cases using SYN data fell in the range of those from simulations forced with irradiances from higher quality surface observations or more highly-regarded empirical methods. We therefore judge the SYN irradiances to be suitable for use in snowmelt modeling and preferable to in situ measurements of questionable quality.
NASA Astrophysics Data System (ADS)
Bates, T. S.; Anderson, T. L.; Baynard, T.; Bond, T.; Boucher, O.; Carmichael, G.; Clarke, A.; Erlick, C.; Guo, H.; Horowitz, L.; Howell, S.; Kulkarni, S.; Maring, H.; McComiskey, A.; Middlebrook, A.; Noone, K.; O'Dowd, C. D.; Ogren, J.; Penner, J.; Quinn, P. K.; Ravishankara, A. R.; Savoie, D. L.; Schwartz, S. E.; Shinozuka, Y.; Tang, Y.; Weber, R. J.; Wu, Y.
2006-01-01
The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar) radiation by anthropogenic aerosols in cloud-free conditions (IPCC, 2001). Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean (NIO) during INDOEX, the Northwest Pacific Ocean (NWP) during ACE-Asia, and the Northwest Atlantic Ocean (NWA) during ICARTT), incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART). Measurements of burdens, extinction optical depth (AOD), and direct radiative effect of aerosols (DRE - change in radiative flux due to total aerosols) are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity) are used as input parameters to two radiative transfer models (GFDL and University of Michigan) to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Constraining the radiative transfer calculations by observational inputs increases the clear-sky, 24-h averaged AOD (34±8%), top of atmosphere (TOA) DRE (32±12%), and TOA direct climate forcing of aerosols (DCF - change in radiative flux due to anthropogenic aerosols) (37±7%) relative to values obtained with "a priori" parameterizations of aerosol loadings and properties (GFDL RTM). The resulting constrained TOA DCF is -3.3±0.47, -14±2.6, -6.4±2.1 Wm-2 for the NIO, NWP, and NWA, respectively. Constraining the radiative transfer calculations by observational inputs reduces the uncertainty range in the DCF in these regions relative to global IPCC (2001) estimates by a factor of approximately 2. Such comparisons with observations and resultant reductions in uncertainties are essential for improving and developing confidence in climate model calculations incorporating aerosol forcing.
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Chou, Shu-Hsien; Zhao, Wenzhong
1999-01-01
The energy budget of the tropical western Pacific (TWP) is particularly important because this is one of the most energetic convection regions on the Earth. Nearly half of the solar radiation incident at the top of atmosphere is absorbed at the surface and only about 22% absorbed in the atmosphere. A large portion of the excess heat absorbed at the surface is transferred to the atmosphere through evaporation, which provides energy and water for convection and precipitation. The western equatorial Pacific is characterized by the highest sea surface temperature (SST) and heaviest rainfall in the world ocean. A small variation of SST associated with the eastward shift of the warm pool during El-Nino/Souther Oscillation changes the atmospheric circulation pattern and affects the global climate. In a study of the TWP surface heat and momentum fluxes during the Tropical Ocean and Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) Intensive observing period (IOP) from November 1992 to February have found that the solar radiation is the most important component of the surface energy budget, which undergoes significant temporal and spatial variation. The variations are influenced by the two 40-50 days Madden Julian Oscillations (MJOs) which propagated eastward from the Indian Ocean to the Central Pacific during the IOP. The TWP surface solar radiation during the COARE IOP was investigated by a number of studies. In addition, the effects of clouds on the solar heating of the atmosphere in the TWP was studied using energy budget analysis. In this study, we present some results of the TWP surface solar shortwave or SW radiation budget and the effect of clouds on the atmospheric solar heating using the surface radiation measurements and Japan's Geostationary Meteorological Satellite 4 radiance measurements during COARE IOP.
NASA Astrophysics Data System (ADS)
Moody, M.; Bailey, B.; Stoll, R., II
2017-12-01
Understanding how changes in the microclimate near individual plants affects the surface energy budget is integral to modeling land-atmosphere interactions and a wide range of near surface atmospheric boundary layer phenomena. In urban areas, the complex geometry of the urban canopy layer results in large spatial deviations of turbulent fluxes further complicating the development of models. Accurately accounting for this heterogeneity in order to model urban energy and water use requires a sub-plant level understanding of microclimate variables. We present analysis of new experimental field data taken in and around two Blue Spruce (Picea pungens) trees at the University of Utah in 2015. The test sites were chosen in order study the effects of heterogeneity in an urban environment. An array of sensors were placed in and around the conifers to quantify transport in the soil-plant-atmosphere continuum: radiative fluxes, temperature, sap fluxes, etc. A spatial array of LEMS (Local Energy Measurement Systems) were deployed to obtain pressure, surrounding air temperature and relative humidity. These quantities are used to calculate the radiative and turbulent fluxes. Relying on measurements alone is insufficient to capture the complexity of microclimate distribution as one reaches sub-plant scales. A spatially-explicit radiation and energy balance model previously developed for deciduous trees was extended to include conifers. The model discretizes the tree into isothermal sub-volumes on which energy balances are performed and utilizes incoming radiation as the primary forcing input. The radiative transfer component of the model yields good agreement between measured and modeled upward longwave and shortwave radiative fluxes. Ultimately, the model was validated through an examination of the full energy budget including radiative and turbulent fluxes through isolated Picea pungens in an urban environment.
Variability of Earth's radiation budget components during 2009 - 2015 from radiometer IKOR-M data
NASA Astrophysics Data System (ADS)
Cherviakov, Maksim
2016-04-01
This report describes a new «Meteor-M» satellite program which has been started in Russia. The first satellite of new generation "Meteor-M» № 1 was put into orbit in September, 2009. The radiometer IKOR-M - «The Measuring instrument of short-wave reflected radiation" was created in Saratov State University. It was installed on Russian hydrometeorological satellites «Meteor-M» № 1 and № 2. Radiometer IKOR-M designed for satellite monitoring of the outgoing reflected short-wave radiation, which is one of the components of Earth's radiation budget. Such information can be used in different models of long-term weather forecasts, in researches of climate change trends and also in calculation of absorbed solar radiation values and albedo of the Earth-atmosphere system. Satellite «Meteor-M» № 1 and № 2 are heliosynchronous that allows observing from North to South Poles. The basic products of data processing are given in the form of global maps of distribution outgoing short-wave radiation (OSR), albedo and absorbed solar radiation (ASR). Such maps were made for each month during observation period. The IKOR-M product archive is available online at all times. A searchable catalogue of data products is continually updated and users may search and download data products via the Earth radiation balance components research laboratory website (http://www.sgu.ru/structure/geographic/metclim/balans) as soon as they become available. Two series of measurements from two different IKOR-M are available. The first radiometer had worked from October, 2009 to August, 2014 and second - from August, 2014 to the present. Therefore, there is a period when both radiometers work at the same time. Top-of-atmosphere fluxes deduced from the «Meteor-M» № 1 measurements in August, 2014 show very good agreement with the fluxes determined from «Meteor-M» № 2. The seasonal and interannual variations of OSR, albedo and ASR were discussed. The variations between SW radiation budget components seem to be within observational uncertainty and natural variability governed by cloudiness, water vapor and aerosol variations. It was assessed spatial and temporal variations of albedo and the absorbed solar radiation over different regions. Latitudinal distributions of albedo and ASR were estimated in more detail. Meridional cross sections over oceans and land were used separately for this estimation. It was shown that the albedo and ASR data received from the radiometer IKOR-M can be used to detect El Nino in the Pacific Ocean and monitoring of the East Asian Summer Monsoon. The report will be presented more detailed results. The reported study was funded by RFBR according to the research project No.16-35-00284 mol_a.
NASA Astrophysics Data System (ADS)
Wen, Guoyong; Cahalan, Robert F.; Rind, David; Jonas, Jeffrey; Pilewskie, Peter; Wu, Dong L.; Krivova, Natalie A.
2017-03-01
We apply two reconstructed spectral solar forcing scenarios, one SIM (Spectral Irradiance Monitor) based, the other the SATIRE (Spectral And Total Irradiance REconstruction) modeled, as inputs to the GISS (Goddard Institute for Space Studies) GCMAM (Global Climate Middle Atmosphere Model) to examine climate responses on decadal to centennial time scales, focusing on quantifying the difference of climate response between the two solar forcing scenarios. We run the GCMAM for about 400 years with present day trace gas and aerosol for the two solar forcing inputs. We find that the SIM-based solar forcing induces much larger long-term response and 11-year variation in global averaged stratospheric temperature and column ozone. We find significant decreasing trends of planetary albedo for both forcing scenarios in the 400-year model runs. However the mechanisms for the decrease are very different. For SATIRE solar forcing, the decreasing trend of planetary albedo is associated with changes in cloud cover. For SIM-based solar forcing, without significant change in cloud cover on centennial and longer time scales, the apparent decreasing trend of planetary albedo is mainly due to out-of-phase variation in shortwave radiative forcing proxy (downwelling flux for wavelength >330 nm) and total solar irradiance (TSI). From the Maunder Minimum to present, global averaged annual mean surface air temperature has a response of 0.1 °C to SATIRE solar forcing compared to 0.04 °C to SIM-based solar forcing. For 11-year solar cycle, the global surface air temperature response has 3-year lagged response to either forcing scenario. The global surface air 11-year temperature response to SATIRE forcing is about 0.12 °C, similar to recent multi-model estimates, and comparable to the observational-based evidence. However, the global surface air temperature response to 11-year SIM-based solar forcing is insignificant and inconsistent with observation-based evidence.
NASA Astrophysics Data System (ADS)
Gilgen, H.; Roesch, A.; Wild, M.; Ohmura, A.
2009-05-01
Decadal changes in shortwave irradiance at the Earth's surface are estimated for the period from approximately 1960 through to 2000 from pyranometer records stored in the Global Energy Balance Archive. For this observational period, estimates could be calculated for a total of 140 cells of the International Satellite Cloud Climatology Project grid (an equal area 2.5° × 2.5° grid at the equator) using regression models allowing for station effects. In large regions worldwide, shortwave irradiance decreases in the first half of the observational period, recovers from the decrease in the 1980s, and thereafter increases, in line with previous reports. Years of trend reversals are determined for the grid cells which are best described with a second-order polynomial model. This reversal of the trend is observed in the majority of the grid cells in the interior of Europe and in Japan. In China, shortwave irradiance recovers during the 1990s in the majority of the grid cells in the southeast and northeast from the decrease observed in the period from 1960 through to 1990. A reversal of the trend in the 1980s or early 1990s is also observed for two grid cells in North America, and for the grid cells containing the Kuala Lumpur (Malaysia), Singapore, Casablanca (Morocco), Valparaiso (Chile) sites, and, noticeably, the remote South Pole and American Samoa sites. Negative trends persist, i.e., shortwave radiation decreases, for the observational period 1960 through to 2000 at the European coasts, in central and northwest China, and for three grid cells in India and two in Africa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassanein, Ahmed; Konkashbaev, Isak
A device and method for generating extremely short-wave ultraviolet electromagnetic wave uses two intersecting plasma beams generated by two plasma accelerators. The intersection of the two plasma beams emits electromagnetic radiation and in particular radiation in the extreme ultraviolet wavelength. In the preferred orientation two axially aligned counter streaming plasmas collide to produce an intense source of electromagnetic radiation at the 13.5 nm wavelength. The Mather type plasma accelerators can utilize tin, or lithium covered electrodes. Tin, lithium or xenon can be used as the photon emitting gas source.
Cloud feedback mechanisms and their representation in global climate models
Ceppi, Paulo; Brient, Florent; Zelinka, Mark D.; ...
2017-05-11
Cloud feedback—the change in top-of-atmosphere radiative flux resulting from the cloud response to warming—constitutes by far the largest source of uncertainty in the climate response to CO 2 forcing simulated by global climate models (GCMs). In this paper, we review the main mechanisms for cloud feedbacks, and discuss their representation in climate models and the sources of intermodel spread. Global-mean cloud feedback in GCMs results from three main effects: (1) rising free-tropospheric clouds (a positive longwave effect); (2) decreasing tropical low cloud amount (a positive shortwave [SW] effect); (3) increasing high-latitude low cloud optical depth (a negative SW effect). Thesemore » cloud responses simulated by GCMs are qualitatively supported by theory, high-resolution modeling, and observations. Rising high clouds are consistent with the fixed anvil temperature (FAT) hypothesis, whereby enhanced upper-tropospheric radiative cooling causes anvil cloud tops to remain at a nearly fixed temperature as the atmosphere warms. Tropical low cloud amount decreases are driven by a delicate balance between the effects of vertical turbulent fluxes, radiative cooling, large-scale subsidence, and lower-tropospheric stability on the boundary-layer moisture budget. High-latitude low cloud optical depth increases are dominated by phase changes in mixed-phase clouds. Finally, the causes of intermodel spread in cloud feedback are discussed, focusing particularly on the role of unresolved parameterized processes such as cloud microphysics, turbulence, and convection.« less
Cloud feedback mechanisms and their representation in global climate models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceppi, Paulo; Brient, Florent; Zelinka, Mark D.
Cloud feedback—the change in top-of-atmosphere radiative flux resulting from the cloud response to warming—constitutes by far the largest source of uncertainty in the climate response to CO 2 forcing simulated by global climate models (GCMs). In this paper, we review the main mechanisms for cloud feedbacks, and discuss their representation in climate models and the sources of intermodel spread. Global-mean cloud feedback in GCMs results from three main effects: (1) rising free-tropospheric clouds (a positive longwave effect); (2) decreasing tropical low cloud amount (a positive shortwave [SW] effect); (3) increasing high-latitude low cloud optical depth (a negative SW effect). Thesemore » cloud responses simulated by GCMs are qualitatively supported by theory, high-resolution modeling, and observations. Rising high clouds are consistent with the fixed anvil temperature (FAT) hypothesis, whereby enhanced upper-tropospheric radiative cooling causes anvil cloud tops to remain at a nearly fixed temperature as the atmosphere warms. Tropical low cloud amount decreases are driven by a delicate balance between the effects of vertical turbulent fluxes, radiative cooling, large-scale subsidence, and lower-tropospheric stability on the boundary-layer moisture budget. High-latitude low cloud optical depth increases are dominated by phase changes in mixed-phase clouds. Finally, the causes of intermodel spread in cloud feedback are discussed, focusing particularly on the role of unresolved parameterized processes such as cloud microphysics, turbulence, and convection.« less
Simultaneous Retrieval of Multiple Aerosol Parameters Using a Multi-Angular Approach
NASA Technical Reports Server (NTRS)
Kuo, K. S.; Weger, R. C.; Welch, R. M.
1997-01-01
Atmospheric aerosol particles, both natural and anthropogenic, are important to the earth's radiative balance through their direct and indirect effects. They scatter the incoming solar radiation (direct effect) and modify the shortwave reflective properties of clouds by acting as cloud condensation nuclei (indirect effect). Although it has been suggested that aerosols exert a net cooling influence on climate, this effect has received less attention than the radiative forcing due to clouds and greenhouse gases. In order to understand the role that aerosols play in a changing climate, detailed and accurate observations are a prerequisite. The retrieval of aerosol optical properties by satellite remote sensing has proven to be a difficult task. The difficulty results mainly from the tenuous nature and variable composition of aerosols. To date, with single-angle satellite observations, we can only retrieve reliably against dark backgrounds, such as over oceans and dense vegetation. Even then, assumptions must be made concerning the chemical composition of aerosols. The best hope we have for aerosol retrievals over bright backgrounds are observations from multiple angles, such as those provided by the MISR and POLDER instruments. In this investigation we examine the feasibility of simultaneous retrieval of multiple aerosol optical parameters using reflectances from a typical set of twelve angles observed by the French POLDER instrument. The retrieved aerosol optical parameters consist of asymmetry factor, single scattering albedo, surface albedo, and optical thickness.
MAC-v1: A new global aerosol climatology for climate studies
NASA Astrophysics Data System (ADS)
Kinne, Stefan; O'Donnel, Declan; Stier, Philip; Kloster, Silvia; Zhang, Kai; Schmidt, Hauke; Rast, Sebastian; Giorgetta, Marco; Eck, Tom F.; Stevens, Bjorn
2013-12-01
The Max-Planck-Institute Aerosol Climatology version 1 (MAC-v1) is introduced. It describes the optical properties of tropospheric aerosols on monthly timescales and with global coverage at a spatial resolution of 1° in latitude and longitude. By providing aerosol radiative properties for any wavelength of the solar (or shortwave) and of the terrestrial (or longwave) radiation spectrum, as needed in radiative transfer applications, this MAC-v1 data set lends itself to simplified and computationally efficient representations of tropospheric aerosol in climate studies. Estimates of aerosol radiative properties are provided for both total and anthropogenic aerosol in annual time steps from preindustrial times (i.e., starting with year 1860) well into the future (until the year 2100). Central to the aerosol climatology is the merging of monthly statistics of aerosol optical properties for current (year 2000) conditions. Hereby locally sparse but trusted high-quality data by ground-based sun-photometer networks are merged onto complete background maps defined by central data from global modeling with complex aerosol modules. This merging yields 0.13 for the global annual midvisible aerosol optical depth (AOD), with 0.07 attributed to aerosol sizes larger than 1 µm in diameter and 0.06 of attributed to aerosol sizes smaller than 1 µm in diameter. Hereby larger particles are less absorbing with a single scattering albedo (SSA) of 0.98 compared to 0.93 for smaller sizes. Simulation results of a global model are applied to prescribe the vertical distribution and to estimate anthropogenic contributions to the smaller size AOD as a function of time, with a 0.037 value for current conditions. In a demonstration application, the associated aerosol direct radiative effects are determined. For current conditions, total aerosol is estimated to reduce the combined shortwave and longwave net-flux balance at the top of the atmosphere by about -1.6 W/m2 from which -0.5 W/m2 (with an uncertainty of ±0.2 W/m2) is attributed to anthropogenic activities. Based on past and projected aerosol emission data, the global anthropogenic direct aerosol impact (i.e., ToA cooling) is currently near the maximum and is projected to drop by 2100 to about -0.3 W/m2. The reported global averages are driven by considerable spatial and temporal variability. To better convey this diversity, regional and seasonal distributions of aerosol optical properties and their radiative effects are presented. On regional scales, the anthropogenic direct aerosol forcing can be an order of magnitude stronger than the global average and it can be of either sign. It is also shown that maximum anthropogenic impacts have shifted during the last 30 years from the U.S. and Europe to eastern and southern Asia.
January 2016 West Antarctic Melt Event: Large Scale Forcing and Local Processes
NASA Astrophysics Data System (ADS)
Bromwich, D. H.; Nicolas, J. P.
2017-12-01
A huge surface melt event occurred in January 2016 that affected a large portion of the Ross Ice Shelf and adjacent parts of Marie Byrd Land of West Antarctica. It coincided with one of the strongest El Niño events on record in the tropical Pacific Ocean. The El Niño teleconnection pattern in the South Pacific Ocean favors the advection of warm, moist air into the western part of West Antarctica. At the same time strong westerly winds over the Southern Ocean, captured by the Southern Annular Mode or SAM, were strong before, during, and after the melting episode, and these tend to limit the transport of marine air into the Ross Ice Shelf region. This prominent melt event demonstrates that extensive melting can happen regardless of the state of the SAM when the El Niño forcing is strong. Furthermore, because climate models project more frequent major El Niños in the future with a warming climate, we can expect more major surface melt events in West Antarctica as the 21st century unfolds. The melting event occurred in part of the West Antarctic Ice Sheet that the ice sheet modeling study of DeConto and Pollard (2016) suggests is prone to collapse as a result of extreme greenhouse warming. This melt event happened while an important field campaign, the Atmospheric Radiation Measurement West Antarctic Radiation Experiment (AWARE), was ongoing in central West Antarctica. The observations collected during this campaign provided unique insight into some of the physical mechanisms governing surface melting in this otherwise data-sparse region. In particular, these observations highlighted the presence of low-level liquid-water clouds, which aided the radiative heating of the snow surface from both shortwave and longwave radiation, reminiscent of summer melting conditions in Greenland. The resulting large flux of energy into the snow pack was reflected in increased satellite microwave brightness temperatures that were used to follow the evolution of the widespread melting.
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Chan, Pui-King; Yan, Michael M.-H.
2000-01-01
The sea-surface shortwave and longwave radiative fluxes have been retrieved from the radiances measured by Japan's Geostationary Meteorological Satellite 5. The surface radiation data set covers the domain 40S-40N and 90E-170W. The temporal resolution is 1 day, and the spatial resolution is 0.5 deg x 0.5 deg latitude-longitude. The retrieved surface radiation have been validated with the radiometric measurements at the Atmospheric Radiation Measuring (ARM) site on Manus island in the equatorial western Pacific for a period of 15 months. It has also been validated with the measurements at the radiation site on Dungsha island in the South China Sea during the South China Sea Monsoon Experiment (SCSMEX) Intensive Observing Period (May and June 1998). The data set is used to study the effect of El Nino and East Asian Summer monsoon on the heating of the ocean in the tropical western Pacific and the South China Sea. Interannual variations of clouds associated with El Nino and the East Asian Summer monsoon have a large impact on the radiative heating of the ocean. It has been found that the magnitude of the interannual variation of the seasonal mean surface radiative heating exceeds 40 W/sq m over large areas. Together with the Clouds and the Earth's Radiant Energy System (CERES) shortwave fluxes at top of the atmosphere and the radiative transfer calculations of clear-sky fluxes, this surface radiation data set is also used to study the impact of clouds on the solar heating of the atmosphere. It is found that clouds enhance the atmospheric solar heating by approx. 20 W/sq m in the tropical western Pacific and the South China Sea. This result is important for evaluating the accuracy of solar flux calculations in clear and cloudy atmospheres.
Global shortwave energy budget at the earth's surface from ERBE observations
NASA Technical Reports Server (NTRS)
Breon, Francois-Marie; Frouin, Robert
1994-01-01
A method is proposed to compute the net solar (shortwave) irradiance at the earth's surface from Earth Radiation Budget Experiment (ERBE) data in the S4 format. The S4 data are monthly averaged broadband planetary albedo collected at selected times during the day. Net surface shortwave irradiance is obtained from the shortwave irradiance incident at the top of the atmosphere (known) by subtracting both the shortwave energy flux reflected by the earth-atmosphere system (measured) and the energy flux absorbed by the atmosphere (modeled). Precalculated atmospheric- and surface-dependent functions that characterize scattering and absorption in the atmosphere are used, which makes the method easily applicable and computationally efficient. Four surface types are distinguished, namely, ocean, vegetation, desert, and snow/ice. Over the tropical Pacific Ocean, the estimates based on ERBE data compare well with those obtained from International Satellite Cloud Climatology Project (ISCCP) B3 data. For the 9 months analyzed the linear correlation coefficient and the standard difference between the two datasets are 0.95 and 14 W/sq m (about 6% of the average shortwave irradiance), respectively, and the bias is 15 W/sq m (higher ERBE values). The bias, a strong function of ISCCP satellite viewing zenith angle, is mostly in the ISCCP-based estimates. Over snow/ice, vegetation, and desert no comparison is made with other satellite-based estimates, but theoretical calculations using the discrete ordinate method suggest that over highly reflective surfaces (snow/ice, desert) the model, which accounts crudely for multiple reflection between the surface and clouds, may substantially overestimate the absorbed solar energy flux at the surface, especially when clouds are optically thick. The monthly surface shortwave irradiance fields produced for 1986 exhibit the main features characteristic of the earth's climate. As found in other studies, our values are generally higher than Esbensen and Kushnir's by as much as 80 W/sq m in the tropical oceans. A cloud parameter, defined as the difference between clear-sky and actual irradiances normalized to top-of-atmosphere clear-sky irradiance, is also examined. This parameter, minimally affected by sun zenith angle, is higher in the midlatitude regions of storm tracks than in the intertropical convergence zone (ITCZ), suggesting that, on average, the higher cloud coverage in midlatitudes is more effective at reducing surface shortwave irradiance than opaque, convective, yet sparser clouds in the ITCZ. Surface albedo estimates are realistic, generally not exceeding 0.06 in the ocean, as high as 0.9 in polar regions, and reaching 0.5 in the Sahara and Arabian deserts.
NASA Technical Reports Server (NTRS)
Pistone, K.; Eisenman, I.; Ramanathan, V.
2017-01-01
The Arctic region has seen dramatic changes over the past several decades, from polar amplification of global temperature rise to ecosystem changes to the decline of the sea ice. While there has been much speculation as to when the world will see an ice-free Arctic, the radiative impacts of an eventual disappearance of the Arctic sea ice are likely to be significant regardless of the timing. Using CERES radiation and microwave satellite sea ice data, Pistone et al (2014) estimated the radiative forcing due to albedo changes associated with the Arctic sea ice retreat over the 30 years of the satellite data record. In this study, we found that the Arctic Ocean saw a decrease in all-sky albedo of 4% (from 52% to 48%), for an estimated increase in solar heating of 6.4 W/m(exp 2) between 1979 and 2011, or 0.21 W/m(exp 2) when averaged over the globe. This value is substantial--approximately 25% as large as the forcing due to the change in CO2 during the same period. Here we update and expand upon this previous work and use the CERES broadband shortwave observations to explore the radiative impacts of a transition to completely ice-free Arctic Ocean. We estimate the annually-averaged Arctic Ocean planetary albedo under ice-free and cloud-free conditions to be 14% over the region, or approximately 25% lower in absolute terms than the Arctic Ocean cloud-free albedo in 1979. However, the question of all-sky conditions (i.e. including the effects of clouds) introduces a new level of complexity. We explore several cloud scenarios and the resultant impact on albedo. In each of these cases, the estimated forcing is not uniformly distributed throughout the year. We describe the relative contributions of ice loss by month as well as the spatial distributions of the resulting changes in absorbed solar energy. The seasonal timing and location—in addition to magnitude—of the altered solar absorption may have significant implications for atmospheric and ocean dynamics in the Arctic and at lower latitudes; this observationally-based estimate of the large-scale characteristics of an ice-free Arctic thus provides a valuable tool to complement and validate model-based assessments of future climate.
Tilt error in cryospheric surface radiation measurements at high latitudes: a model study
NASA Astrophysics Data System (ADS)
Bogren, Wiley Steven; Faulkner Burkhart, John; Kylling, Arve
2016-03-01
We have evaluated the magnitude and makeup of error in cryospheric radiation observations due to small sensor misalignment in in situ measurements of solar irradiance. This error is examined through simulation of diffuse and direct irradiance arriving at a detector with a cosine-response fore optic. Emphasis is placed on assessing total error over the solar shortwave spectrum from 250 to 4500 nm, as well as supporting investigation over other relevant shortwave spectral ranges. The total measurement error introduced by sensor tilt is dominated by the direct component. For a typical high-latitude albedo measurement with a solar zenith angle of 60°, a sensor tilted by 1, 3, and 5° can, respectively introduce up to 2.7, 8.1, and 13.5 % error into the measured irradiance and similar errors in the derived albedo. Depending on the daily range of solar azimuth and zenith angles, significant measurement error can persist also in integrated daily irradiance and albedo. Simulations including a cloud layer demonstrate decreasing tilt error with increasing cloud optical depth.
Hou, Lan-Gong; Zou, Song-Bing; Xiao, Hong-Lang; Yang, Yong-Gang
2013-01-01
The standardized FAO56 Penman-Monteith model, which has been the most reasonable method in both humid and arid climatic conditions, provides reference evapotranspiration (ETo) estimates for planning and efficient use of agricultural water resources. And sensitivity analysis is important in understanding the relative importance of climatic variables to the variation of reference evapotranspiration. In this study, a non-dimensional relative sensitivity coefficient was employed to predict responses of ETo to perturbations of four climatic variables in the Ejina oasis northwest China. A 20-year historical dataset of daily air temperature, wind speed, relative humidity and daily sunshine duration in the Ejina oasis was used in the analysis. Results have shown that daily sensitivity coefficients exhibited large fluctuations during the growing season, and shortwave radiation was the most sensitive variable in general for the Ejina oasis, followed by air temperature, wind speed and relative humidity. According to this study, the response of ETo can be preferably predicted under perturbation of air temperature, wind speed, relative humidity and shortwave radiation by their sensitivity coefficients.
NASA Astrophysics Data System (ADS)
Cox, S. J.; Stackhouse, P. W., Jr.; Mikovitz, J. C.; Zhang, T.
2017-12-01
The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The new Release 4 uses the newly processed ISCCP HXS product as its primary input for cloud and radiance data. The ninefold increase in pixel number compared to the previous ISCCP DX allows finer gradations in cloud fraction in each grid box. It will also allow higher spatial resolutions (0.5 degree) in future releases. In addition to the input data improvements, several important algorithm improvements have been made since Release 3. These include recalculated atmospheric transmissivities and reflectivities yielding a less transmissive atmosphere. The calculations also include variable aerosol composition, allowing for the use of a detailed aerosol history from the Max Planck Institut Aerosol Climatology (MAC). Ocean albedo and snow/ice albedo are also improved from Release 3. Total solar irradiance is now variable, averaging 1361 Wm-2. Water vapor is taken from ISCCP's nnHIRS product. Results from GSW Release 4 are presented and analyzed. Early comparison to surface measurements show improved agreement.
BOREAS RSS-14 Level-2 GOES-7 Shortwave and Longwave Radiation Images
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Gu, Jiujing; Smith, Eric A.
2000-01-01
The BOREAS RSS-14 team collected and processed several GOES-7 and GOES-8 image data sets that covered the BOREAS study region. This data set contains images of shortwave and longwave radiation at the surface and top of the atmosphere derived from collected GOES-7 data. The data cover the time period of 05-Feb-1994 to 20-Sep-1994. The images missing from the temporal series were zero-filled to create a consistent sequence of files. The data are stored in binary image format files. Due to the large size of the images, the level-1a GOES-7 data are not contained on the BOREAS CD-ROM set. An inventory listing file is supplied on the CD-ROM to inform users of what data were collected. The level-1a GOES-7 image data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). See sections 15 and 16 for more information. The data files are available on a CD-ROM (see document number 20010000884).
Volcanic forcing for climate modeling: a new microphysics-based data set covering years 1600-present
NASA Astrophysics Data System (ADS)
Arfeuille, F.; Weisenstein, D.; Mack, H.; Rozanov, E.; Peter, T.; Brönnimann, S.
2014-02-01
As the understanding and representation of the impacts of volcanic eruptions on climate have improved in the last decades, uncertainties in the stratospheric aerosol forcing from large eruptions are now linked not only to visible optical depth estimates on a global scale but also to details on the size, latitude and altitude distributions of the stratospheric aerosols. Based on our understanding of these uncertainties, we propose a new model-based approach to generating a volcanic forcing for general circulation model (GCM) and chemistry-climate model (CCM) simulations. This new volcanic forcing, covering the 1600-present period, uses an aerosol microphysical model to provide a realistic, physically consistent treatment of the stratospheric sulfate aerosols. Twenty-six eruptions were modeled individually using the latest available ice cores aerosol mass estimates and historical data on the latitude and date of eruptions. The evolution of aerosol spatial and size distribution after the sulfur dioxide discharge are hence characterized for each volcanic eruption. Large variations are seen in hemispheric partitioning and size distributions in relation to location/date of eruptions and injected SO2 masses. Results for recent eruptions show reasonable agreement with observations. By providing these new estimates of spatial distributions of shortwave and long-wave radiative perturbations, this volcanic forcing may help to better constrain the climate model responses to volcanic eruptions in the 1600-present period. The final data set consists of 3-D values (with constant longitude) of spectrally resolved extinction coefficients, single scattering albedos and asymmetry factors calculated for different wavelength bands upon request. Surface area densities for heterogeneous chemistry are also provided.
Volcanic forcing for climate modeling: a new microphysics-based dataset covering years 1600-present
NASA Astrophysics Data System (ADS)
Arfeuille, F.; Weisenstein, D.; Mack, H.; Rozanov, E.; Peter, T.; Brönnimann, S.
2013-02-01
As the understanding and representation of the impacts of volcanic eruptions on climate have improved in the last decades, uncertainties in the stratospheric aerosol forcing from large eruptions are now not only linked to visible optical depth estimates on a global scale but also to details on the size, latitude and altitude distributions of the stratospheric aerosols. Based on our understanding of these uncertainties, we propose a new model-based approach to generating a volcanic forcing for General-Circulation-Model (GCM) and Chemistry-Climate-Model (CCM) simulations. This new volcanic forcing, covering the 1600-present period, uses an aerosol microphysical model to provide a realistic, physically consistent treatment of the stratospheric sulfate aerosols. Twenty-six eruptions were modeled individually using the latest available ice cores aerosol mass estimates and historical data on the latitude and date of eruptions. The evolution of aerosol spatial and size distribution after the sulfur dioxide discharge are hence characterized for each volcanic eruption. Large variations are seen in hemispheric partitioning and size distributions in relation to location/date of eruptions and injected SO2 masses. Results for recent eruptions are in good agreement with observations. By providing accurate amplitude and spatial distributions of shortwave and longwave radiative perturbations by volcanic sulfate aerosols, we argue that this volcanic forcing may help refine the climate model responses to the large volcanic eruptions since 1600. The final dataset consists of 3-D values (with constant longitude) of spectrally resolved extinction coefficients, single scattering albedos and asymmetry factors calculated for different wavelength bands upon request. Surface area densities for heterogeneous chemistry are also provided.
A Comparison of Climate Feedback Strength between CO2 Doubling and LGM Experiments
NASA Astrophysics Data System (ADS)
Yoshimori, M.; Yokohata, T.; Abe-Ouchi, A.
2008-12-01
Studies of past climate potentially provide a constraint on the uncertainty of climate sensitivity, but previous studies warn against a simple scaling to the future. The climate sensitivity is determined by various feedback processes and they may vary with climate states and forcings. In this study, we investigate similarities and differences of feedbacks for a CO2 doubling, a last glacial maximum (LGM), and LGM greenhouse gas (GHG) forcing experiments, using an atmospheric general circulation model coupled to a slab ocean model. After computing the radiative forcing, the individual feedback strengths: water vapor, lapse rate, albedo, and cloud feedbacks, are evaluated explicitly. For this particular model, the difference in the climate sensitivity among experiments is attributed to the shortwave cloud feedback in which there is a tendency that it becomes weaker or even negative in the cooling experiments. No significant difference is found in the water vapor feedback between warming and cooling experiments by GHGs despite the nonlinear dependence of the Clausius-Clapeyron relation on temperature. The weaker water vapor feedback in the LGM experiment due to a relatively weaker tropical forcing is compensated by the stronger lapse rate feedback due to a relatively stronger extratropical forcing. A hypothesis is proposed which explains the asymmetric cloud response between warming and cooling experiments associated with a displacement of the region of mixed- phase clouds. The difference in the total feedback strength between experiments is, however, relatively small compared to the current intermodel spread, and does not necessarily preclude the use of LGM climate as a future constraint.
Improvements to Shortwave Absorption in the GFDL General Circulation Model Radiation Code
NASA Astrophysics Data System (ADS)
Freidenreich, S.
2015-12-01
The multiple-band shortwave radiation parameterization used in the GFDL general circulation models is being revised to better simulate the disposition of the solar flux in comparison with line-by-line+doubling-adding reference calculations based on the HITRAN 2012 catalog. For clear skies, a notable deficiency in the older formulation is an underestimate of atmospheric absorption. The two main reasons for this is the neglecting of both H2O absorption for wavenumbers < 2500 cm-1 and the O2 continuum. Further contributions to this underestimate are due to neglecting the effects of CH4, N2O and stratospheric H2O absorption. These issues are addressed in the revised formulation and result in globally average shortwave absorption increasing from 74 to 78 Wm-2. The number of spectral bands considered remains the same (18), but the number of pseudomonochromatic intervals (based mainly on the exponential-sum-fit technique) for the determination of H2O absorption is increased from 38 to 74, allowing for more accuracy in its simulation. Also, CO2 absorption is now determined by the exponential-sum-fit technique, replacing an algebraic absorptivity expression in the older parameterization; this improves the simulation of the heating in the stratosphere. Improvements to the treatment of multiple scattering are currently being tested. This involves replacing the current algorithm, which consists of the two stream delta-Eddington, with a four stream algorithm. Initial results show that in most, but not all cases these produce better agreement with the reference doubling-adding results.
Sea Ice, Clouds, Sunlight, and Albedo: The Umbrella Versus the Blanket
NASA Astrophysics Data System (ADS)
Perovich, D. K.
2017-12-01
The Arctic sea ice cover has undergone a major decline in recent years, with reductions in ice extent, ice thickness, and ice age. Understanding the feedbacks and forcing driving these changes is critical in improving predictions. The surface radiation budget plays a central role in summer ice melt and is governed by clouds and surface albedo. Clouds act as an umbrella reducing the downwelling shortwave, but also serve as a blanket increasing the downwelling longwave, with the surface albedo also determining the net balance. Using field observations from the SHEBA program, pairs of clear and cloudy days were selected for each month from May through September and the net radiation flux was calculated for different surface conditions and albedos. To explore the impact of albedo we calculated a break even albedo, where the net radiation for cloudy skies is the same as clear skies. For albedos larger than the break-even value the net radiation flux is smaller under clear skies compared to cloudy skies. Break-even albedos ranged from 0.30 in September to 0.58 in July. For snow covered or bare ice, clear skies always resulted in less radiative heat input. In contrast, leads always had, and ponds usually had, more radiative heat input under clear skies than cloudy skies. Snow covered ice had a net radiation flux that was negative or near zero under clear skies resulting in radiative cooling. We combined the albedo of individual ice types with the area of those ice types to calculate albedos averaged over a 50 km x 50 km area. The July case had the smallest areally averaged albedo of 0.50. This was less than the breakeven albedo, so cloudy skies had a smaller net radiation flux than clear skies. For the cases from the other four months, the areally averaged albedo was greater than the break-even albedo. The areally averaged net radiation flux was negative under clear skies for the May and September cases.
Zhang, Xiaoyu; Li, Lingling
2016-03-21
Net surface shortwave radiation (NSSR) significantly affects regional and global climate change, and is an important aspect of research on surface radiation budget balance. Many previous studies have proposed methods for estimating NSSR. This study proposes a method to calculate NSSR using FY-2D short-wave channel data. Firstly, a linear regression model is established between the top-of-atmosphere (TOA) broadband albedo (r) and the narrowband reflectivity (ρ1), based on data simulated with MODTRAN 4.2. Secondly, the relationship between surface absorption coefficient (as) and broadband albedo (r) is determined by dividing the surface type into land, sea, or snow&ice, and NSSR can then be calculated. Thirdly, sensitivity analysis is performed for errors associated with sensor noise, vertically integrated atmospheric water content, view zenith angle and solar zenith angle. Finally, validation using ground measurements is performed. Results show that the root mean square error (RMSE) between the estimated and actual r is less than 0.011 for all conditions, and the RMSEs between estimated and real NSSR are 26.60 W/m2, 9.99 W/m2, and 23.40 W/m2, using simulated data for land, sea, and snow&ice surfaces, respectively. This indicates that the proposed method can be used to adequately estimate NSSR. Additionally, we compare field measurements from TaiYuan and ChangWu ecological stations with estimates using corresponding FY-2D data acquired from January to April 2012, on cloud-free days. Results show that the RMSE between the estimated and actual NSSR is 48.56W/m2, with a mean error of -2.23W/m2. Causes of errors also include measurement accuracy and estimations of atmospheric water vertical contents. This method is only suitable for cloudless conditions.
Improved atmosphere-ocean coupled modeling in the tropics for climate prediction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Minghua
2015-01-01
We investigated the initial development of the double ITCZ in the Community Climate System Model (CCSM Version 3) in the central Pacific. Starting from a resting initial condition of the ocean in January, the model developed a warm bias of sea-surface temperature (SST) in the central Pacific from 5oS to 10oS in the first three months. We found this initial bias to be caused by excessive surface shortwave radiation that is also present in the standalone atmospheric model. The initial bias is further amplified by biases in both surface latent heat flux and horizontal heat transport in the upper ocean.more » These biases are caused by the responses of surface winds to SST bias and the thermocline structure to surface wind curls. We also showed that the warming biases in surface solar radiation and latent heat fluxes are seasonally offset by cooling biases from reduced solar radiation after the austral summer due to cloud responses and in the austral fall due to enhanced evaporation when the maximum SST is closest to the equator. The warming biases from the dynamic heat transport by ocean currents however stay throughout all seasons once they are developed, which are eventually balanced by enhanced energy exchange and penetration of solar radiation below the mixed layer. Our results also showed that the equatorial cold tongue develops after the warm biases in the south central Pacific, and the overestimation of surface shortwave radiation recurs in the austral summer in each year.« less
Impact of cirrus on the surface radiative environment at the FIRE ETLA Palisades, NY site
NASA Technical Reports Server (NTRS)
Robinson, David A.; Kukla, George; Frei, Allan
1990-01-01
FIRE Extended Time Limited Area (ETLA) observations provide year round information critical to gaining a better understanding of cloud/climate interactions. The Lamont/Rutgers team has participated in the ETLS program through the collection and analysis of shortwave and longwave downwelling irradiances at Palisades, NY. These data are providing useful information on surface radiative fluxes with respect to sky condition, solar zenith angle and season. Their utility extends to the calibration and validation of cloud/radiative models and satellite cloud and radiative retrievals. The impact cirrus clouds have on the surface radiative environment is examined using Palisades ETLA information on atmospheric transmissivities and downwelling longwave fluxes for winter and summer cirrus and clear sky episodes in 1987.
NASA Astrophysics Data System (ADS)
Sicart, J. E.; Ramseyer, V.; Lejeune, Y.; Essery, R.; Webster, C.; Rutter, N.
2017-12-01
At high altitudes and latitudes, snow has a large influence on hydrological processes. Large fractions of these regions are covered by forests, which have a strong influence on snow accumulation and melting processes. Trees absorb a large part of the incoming shortwave radiation and this heat load is mostly dissipated as longwave radiation. Trees shelter the snow surface from wind, so sub-canopy snowmelt depends mainly on the radiative fluxes: vegetation attenuates the transmission of shortwave radiation but enhances longwave irradiance to the surface. An array of 13 pyranometers and 11 pyrgeometers was deployed on the snow surface below a coniferous forest at the CEN-MeteoFrance Col de Porte station in the French Alps (1325 m asl) during the 2017 winter in order to investigate spatial and temporal variabilities of solar and infrared irradiances in different meteorological conditions. Sky view factors measured with hemispherical photographs at each radiometer location were in a narrow range from 0.2 to 0.3. The temperature of the vegetation was measured with IR thermocouples and an IR camera. In clear sky conditions, the attenuation of solar radiation by the canopy reached 96% and its spatial variability exceeded 100 W m-2. Longwave irradiance varied by 30 W m-2 from dense canopy to gap areas. In overcast conditions, the spatial variabilities of solar and infrared irradiances were reduced and remained closely related to the sky view factor. A simple radiative model taking into account the penetration through the canopy of the direct and diffuse solar radiation, and isotropic infrared emission of the vegetation as a blackbody emitter, accurately reproduced the dynamics of the radiation fluxes at the snow surface. Model results show that solar transmissivity of the canopy in overcast conditions is an excellent proxy of the sky view factor and the emitting temperature of the vegetation remained close to the air temperature in this typically dense Alpine forest.
Wandera, Loise; Mallick, Kaniska; Kiely, Gerard; ...
2017-01-11
Upscaling instantaneous evapotranspiration retrieved at any specific time-of-day (ET i) to daily evapotranspiration (ET d) is a key challenge in mapping regional ET using polar orbiting sensors. Various studies have unanimously cited the shortwave incoming radiation ( R S) to be the most robust reference variable explaining the ratio between ET d and ET i. This study aims to contribute in ET i upscaling for global studies using the ratio between daily and instantaneous incoming shortwave radiation ( R Sd/ R Si) as a factor for converting ET i to ET d. This paper proposes an artificial neural network (ANN)more » machine-learning algorithm first to predict R Sd from R Si followed by using the R Sd/ R Si ratio to convert ET i to ET d across different terrestrial ecosystems. Using R Si and R Sd observations from multiple sub-networks of the FLUXNET database spread across different climates and biomes (to represent inputs that would typically be obtainable from remote sensors during the overpass time) in conjunction with some astronomical variables (e.g. solar zenith angle, day length, exoatmospheric shortwave radiation), we developed the ANN model for reproducing R Sd and further used it to upscale ET i to ET d. The efficiency of the ANN is evaluated for different morning and afternoon times of day, under varying sky conditions, and also at different geographic locations. R S-based upscaled ET d produced a significant linear relation ( R 2 = 0.65 to 0.69), low bias (-0.31 to -0.56 MJ m -2 d -1; approx. 4 %), and good agreement (RMSE 1.55 to 1.86 MJ m -2 d -1; approx. 10 %) with the observed ET d, although a systematic overestimation of ET d was also noted under persistent cloudy sky conditions. Inclusion of soil moisture and rainfall information in ANN training reduced the systematic overestimation tendency in predominantly overcast days. An intercomparison with existing upscaling method at daily, 8-day, monthly, and yearly temporal resolution revealed a robust performance of the ANN-driven R S-based ET i upscaling method and was found to produce lowest RMSE under cloudy conditions. Sensitivity analysis revealed variable sensitivity of the method to biome selection and high ET d prediction errors in forest ecosystems are primarily associated with greater rainfall and cloudiness. As a result, the overall methodology appears to be promising and has substantial potential for upscaling ET i to ET d for field and regional-scale evapotranspiration mapping studies using polar orbiting satellites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wandera, Loise; Mallick, Kaniska; Kiely, Gerard
Upscaling instantaneous evapotranspiration retrieved at any specific time-of-day (ET i) to daily evapotranspiration (ET d) is a key challenge in mapping regional ET using polar orbiting sensors. Various studies have unanimously cited the shortwave incoming radiation ( R S) to be the most robust reference variable explaining the ratio between ET d and ET i. This study aims to contribute in ET i upscaling for global studies using the ratio between daily and instantaneous incoming shortwave radiation ( R Sd/ R Si) as a factor for converting ET i to ET d. This paper proposes an artificial neural network (ANN)more » machine-learning algorithm first to predict R Sd from R Si followed by using the R Sd/ R Si ratio to convert ET i to ET d across different terrestrial ecosystems. Using R Si and R Sd observations from multiple sub-networks of the FLUXNET database spread across different climates and biomes (to represent inputs that would typically be obtainable from remote sensors during the overpass time) in conjunction with some astronomical variables (e.g. solar zenith angle, day length, exoatmospheric shortwave radiation), we developed the ANN model for reproducing R Sd and further used it to upscale ET i to ET d. The efficiency of the ANN is evaluated for different morning and afternoon times of day, under varying sky conditions, and also at different geographic locations. R S-based upscaled ET d produced a significant linear relation ( R 2 = 0.65 to 0.69), low bias (-0.31 to -0.56 MJ m -2 d -1; approx. 4 %), and good agreement (RMSE 1.55 to 1.86 MJ m -2 d -1; approx. 10 %) with the observed ET d, although a systematic overestimation of ET d was also noted under persistent cloudy sky conditions. Inclusion of soil moisture and rainfall information in ANN training reduced the systematic overestimation tendency in predominantly overcast days. An intercomparison with existing upscaling method at daily, 8-day, monthly, and yearly temporal resolution revealed a robust performance of the ANN-driven R S-based ET i upscaling method and was found to produce lowest RMSE under cloudy conditions. Sensitivity analysis revealed variable sensitivity of the method to biome selection and high ET d prediction errors in forest ecosystems are primarily associated with greater rainfall and cloudiness. As a result, the overall methodology appears to be promising and has substantial potential for upscaling ET i to ET d for field and regional-scale evapotranspiration mapping studies using polar orbiting satellites.« less
NASA Astrophysics Data System (ADS)
Ogura, Tomoo; Shiogama, Hideo; Watanabe, Masahiro; Yoshimori, Masakazu; Yokohata, Tokuta; Annan, James D.; Hargreaves, Julia C.; Ushigami, Naoto; Hirota, Kazuya; Someya, Yu; Kamae, Youichi; Tatebe, Hiroaki; Kimoto, Masahide
2017-12-01
This study discusses how much of the biases in top-of-atmosphere (TOA) radiation and clouds can be removed by parameter tuning in the present-day simulation of a climate model in the Coupled Model Inter-comparison Project phase 5 (CMIP5) generation. We used output of a perturbed parameter ensemble (PPE) experiment conducted with an atmosphere-ocean general circulation model (AOGCM) without flux adjustment. The Model for Interdisciplinary Research on Climate version 5 (MIROC5) was used for the PPE experiment. Output of the PPE was compared with satellite observation data to evaluate the model biases and the parametric uncertainty of the biases with respect to TOA radiation and clouds. The results indicate that removing or changing the sign of the biases by parameter tuning alone is difficult. In particular, the cooling bias of the shortwave cloud radiative effect at low latitudes could not be removed, neither in the zonal mean nor at each latitude-longitude grid point. The bias was related to the overestimation of both cloud amount and cloud optical thickness, which could not be removed by the parameter tuning either. However, they could be alleviated by tuning parameters such as the maximum cumulus updraft velocity at the cloud base. On the other hand, the bias of the shortwave cloud radiative effect in the Arctic was sensitive to parameter tuning. It could be removed by tuning such parameters as albedo of ice and snow both in the zonal mean and at each grid point. The obtained results illustrate the benefit of PPE experiments which provide useful information regarding effectiveness and limitations of parameter tuning. Implementing a shallow convection parameterization is suggested as a potential measure to alleviate the biases in radiation and clouds.
NASA Astrophysics Data System (ADS)
Sukeyasu, T.; Ueyama, M.; Ando, T.; Kosugi, Y.; Kominami, Y.
2017-12-01
The urban heat island is associated with land cover changes and increases in anthropogenic heat fluxes. Clear understanding of the surface energy budget at urban area is the most important for evaluating the urban heat island. In this study, we develop a model based on remotely-sensed data for the Kansai area in Japan and clarify temporal transitions and spatial distributions of the surface energy flux from 2000 to 2016. The model calculated the surface energy fluxes based on various satellite and GIS products. The model used land surface temperature, surface emissivity, air temperature, albedo, downward shortwave radiation and land cover/use type from the moderate resolution imaging spectroradiometer (MODIS) under cloud free skies from 2000 to 2016 over the Kansai area in Japan (34 to 35 ° N, 135 to 136 ° E). Net radiation was estimated by a radiation budget of upward/downward shortwave and longwave radiation. Sensible heat flux was estimated by a bulk aerodynamic method. Anthropogenic heat flux was estimated by the inventory data. Latent heat flux was examined with residues of the energy budget and parameterization of bulk transfer coefficients. We validated the model using observed fluxes from five eddy-covariance measurement sites: three urban sites and two forested sites. The estimated net radiation roughly agreed with the observations, but the sensible heat flux were underestimated. Based on the modeled spatial distributions of the fluxes, the daytime net radiation in the forested area was larger than those in the urban area, owing to higher albedo and land surface temperatures in the urban area than the forested area. The estimated anthropogenic heat flux was high in the summer and winter periods due to increases in energy-requirements.
NASA Astrophysics Data System (ADS)
Yamasoe, M. A.; do Rosário, N. M. E.; Barros, K. M.
2017-01-01
We analyzed the variability of downward solar irradiance reaching the surface at São Paulo city, Brazil, and estimated the climatological aerosol and cloud radiative effects. Eleven years of irradiance were analyzed, from 2005 to 2015. To distinguish the aerosol from the cloud effect, the radiative transfer code LibRadtran was used to calculate downward solar irradiance. Two runs were performed, one considering only ozone and water vapor daily variability, with AOD set to zero and the second allowing the three variables to change, according to mean climatological values. The difference of the 24 h mean irradiance calculated with and without aerosol resulted in the shortwave aerosol direct radiative effect, while the difference between the measured and calculated, including the aerosol, represented the cloud effect. Results showed that, climatologically, clouds can be 4 times more effective than aerosols. The cloud shortwave radiative effect presented a maximum reduction of about -170 W m-2 in January and a minimum in July, of -37 W m-2. The aerosol direct radiative effect was maximum in spring, when the transport of smoke from the Amazon and central parts of South America is frequent toward São Paulo. Around mid-September, the 24 h radiative effect due to aerosol only was estimated to be -50 W m-2. Throughout the rest of the year, the mean aerosol effect was around -20 W m-2 and was attributed to local urban sources. The effect of the cloud fraction on the cloud modification factor, defined as the ratio of all-sky irradiation to cloudless sky irradiation, showed dependence on the cloud height. Low clouds presented the highest impact while the presence of high clouds only almost did not affect solar transmittance, even in overcast conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, H. -Y.; Klein, S. A.; Xie, S.
Many weather forecasting and climate models simulate a warm surface air temperature (T2m) bias over mid-latitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multi-model intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to T2m bias using a short-term hindcast approach with observations mainly from the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site during the period of April to August 2011. The present study examines the contributionmore » of surface energy budget errors to the bias. All participating models simulate higher net shortwave and longwave radiative fluxes at the surface but there is no consistency on signs of biases in latent and sensible heat fluxes over the Central U.S. and ARM SGP. Nevertheless, biases in net shortwave and downward longwave fluxes, as well as surface evaporative fraction (EF) are the main contributors to T2m bias. Radiation biases are largely affected by cloud simulations, while EF is affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation is derived to further quantify the magnitudes of radiation and EF contributions to T2m bias. Our analysis suggests that radiation errors are always an important source of T2m error for long-term climate runs with EF errors either of equal or lesser importance. However, for the short-term hindcasts, EF errors are more important provided a model has a substantial EF bias.« less
Delivery outcome among physiotherapists in Sweden: is non-ionizing radiation a fetal hazard
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kallen, B.; Malmquist, G.; Moritz, U.
1982-03-01
A cohort study was made on 2,043 infants born to 2,018 females registered as physiotherapists at the time of pregnancy during 1973 to 1978. The incidence of perinatal death, serious malformation, short gestational duration, and low birth weight was slightly below the expected with consideration given to maternal age and parity distribution. Information on occupational exposure (use of shortwave, microwave, and ultrasonic equipment, X-ray exposure, use of electrostimulator or hexachlorophene-containing soaps) was obtained in a case-control study within the cohort from mail questionnaires with a 93% response rate. The only positive finding was a higher incidence of shortwave equipment usemore » among the females with a dead or malformed infant than among controls. Various explanations for this finding are discussed.« less
NASA Astrophysics Data System (ADS)
Burgman, R.; Kirtman, B. P.; Clement, A. C.; Vazquez, H.
2017-12-01
Recent studies suggest that low clouds in the Pacific play an important role in the observed decadal climate variability and future climate change. In this study, we implement a novel modeling experiment designed to isolate how interactions between local and remote feedbacks associated with low cloud, SSTs, and the largescale circulation play a significant role in the observed persistence of tropical Pacific SST and associated North American drought. The modeling approach involves the incorporation of observed patterns of satellite-derived shortwave cloud radiative effect (SWCRE) into the coupled model framework and is ideally suited for examining the role of local and large-scale coupled feedbacks and ocean heat transport in Pacific decadal variability. We show that changes in SWCRE forcing in eastern subtropical Pacific alone reproduces much of the observed changes in SST and atmospheric circulation over the past 16 years, including the observed changes in precipitation over much of the Western Hemisphere.
Ship track observations of a reduced shortwave aerosol indirect effect in mixed-phase clouds
NASA Astrophysics Data System (ADS)
Christensen, M. W.; Suzuki, K.; Zambri, B.; Stephens, G. L.
2014-10-01
Aerosol influences on clouds are a major source of uncertainty to our understanding of forced climate change. Increased aerosol can enhance solar reflection from clouds countering greenhouse gas warming. Recently, this indirect effect has been extended from water droplet clouds to other types including mixed-phase clouds. Aerosol effects on mixed-phase clouds are important because of their fundamental role on sea ice loss and polar climate change, but very little is known about aerosol effects on these clouds. Here we provide the first analysis of the effects of aerosol emitted from ship stacks into mixed-phase clouds. Satellite observations of solar reflection in numerous ship tracks reveal that cloud albedo increases 5 times more in liquid clouds when polluted and persist 2 h longer than in mixed-phase clouds. These results suggest that seeding mixed-phase clouds via shipping aerosol is unlikely to provide any significant counterbalancing solar radiative cooling effects in warming polar regions.
Chen, Ying; Zhang, Yang; Fan, Jiwen; ...
2015-08-18
Online-coupled climate and chemistry models are necessary to realistically represent the interactions between climate variables and chemical species and accurately simulate aerosol direct and indirect effects on cloud, precipitation, and radiation. In this Part I of a two-part paper, simulations from the Weather Research and Forecasting model coupled with the physics package of Community Atmosphere Model (WRF-CAM5) are conducted with the default heterogeneous ice nucleation parameterization over East Asia for two full years: 2006 and 2011. A comprehensive model evaluation is performed using satellite and surface observations. The model shows an overall acceptable performance for major meteorological variables at themore » surface and in the boundary layer, as well as column variables (e.g., precipitation, cloud fraction, precipitating water vapor, downward longwave and shortwave radiation). Moderate to large biases exist for cloud condensation nuclei over oceanic areas, cloud variables (e.g., cloud droplet number concentration, cloud liquid and ice water paths, cloud optical depth, longwave and shortwave cloud forcing). These biases indicate a need to improve the model treatments for cloud processes, especially cloud droplets and ice nucleation, as well as to reduce uncertainty in the satellite retrievals. The model simulates well the column abundances of chemical species except for column SO 2 but relatively poor for surface concentrations of several species such as CO, NO 2, SO 2, PM 2.5, and PM 10. Several reasons could contribute to the underestimation of major chemical species in East Asia including underestimations of anthropogenic emissions and natural dust emissions, uncertainties in the spatial and vertical distributions of the anthropogenic emissions, as well as biases in meteorological, radiative, and cloud predictions. Despite moderate to large biases in the chemical predictions, the model performance is generally consistent with or even better than that reported for East Asia with only a few exceptions. The model generally reproduces the observed seasonal variations and the difference between 2006 and 2011 for most variables or chemical species. Overall, these results demonstrate promising skills of WRF-CAM5 for long-term simulations at a regional scale and suggest several areas of potential improvements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ying; Zhang, Yang; Fan, Jiwen
Online-coupled climate and chemistry models are necessary to realistically represent the interactions between climate variables and chemical species and accurately simulate aerosol direct and indirect effects on cloud, precipitation, and radiation. In this Part I of a two-part paper, simulations from the Weather Research and Forecasting model coupled with the physics package of Community Atmosphere Model (WRF-CAM5) are conducted with the default heterogeneous ice nucleation parameterization over East Asia for two full years: 2006 and 2011. A comprehensive model evaluation is performed using satellite and surface observations. The model shows an overall acceptable performance for major meteorological variables at themore » surface and in the boundary layer, as well as column variables (e.g., precipitation, cloud fraction, precipitating water vapor, downward longwave and shortwave radiation). Moderate to large biases exist for cloud condensation nuclei over oceanic areas, cloud variables (e.g., cloud droplet number concentration, cloud liquid and ice water paths, cloud optical depth, longwave and shortwave cloud forcing). These biases indicate a need to improve the model treatments for cloud processes, especially cloud droplets and ice nucleation, as well as to reduce uncertainty in the satellite retrievals. The model simulates well the column abundances of chemical species except for column SO 2 but relatively poor for surface concentrations of several species such as CO, NO 2, SO 2, PM2.5, and PM10. Several reasons could contribute to the underestimation of major chemical species in East Asia including underestimations of anthropogenic emissions and natural dust emissions, uncertainties in the spatial and vertical distributions of the anthropogenic emissions, as well as biases in meteorological, radiative, and cloud predictions. Despite moderate to large biases in the chemical predictions, the model performance is generally consistent with or even better than that reported for East Asia with only a few exceptions. The model generally reproduces the observed seasonal variations and the difference between 2006 and 2011 for most variables or chemical species. Overall, these results demonstrate promising skills of WRF-CAM5 for long-term simulations at a regional scale and suggest several areas of potential improvements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ying; Zhang, Yang; Fan, Jiwen
Online-coupled climate and chemistry models are necessary to realistically represent the interactions between climate variables and chemical species and accurately simulate aerosol direct and indirect effects on cloud, precipitation, and radiation. In this Part I of a two-part paper, simulations from the Weather Research and Forecasting model coupled with the physics package of Community Atmosphere Model (WRF-CAM5) are conducted with the default heterogeneous ice nucleation parameterization over East Asia for two full years: 2006 and 2011. A comprehensive model evaluation is performed using satellite and surface observations. The model shows an overall acceptable performance for major meteorological variables at themore » surface and in the boundary layer, as well as column variables (e.g., precipitation, cloud fraction, precipitating water vapor, downward longwave and shortwave radiation). Moderate to large biases exist for cloud condensation nuclei over oceanic areas, cloud variables (e.g., cloud droplet number concentration, cloud liquid and ice water paths, cloud optical depth, longwave and shortwave cloud forcing). These biases indicate a need to improve the model treatments for cloud processes, especially cloud droplets and ice nucleation, as well as to reduce uncertainty in the satellite retrievals. The model simulates well the column abundances of chemical species except for column SO 2 but relatively poor for surface concentrations of several species such as CO, NO 2, SO 2, PM 2.5, and PM 10. Several reasons could contribute to the underestimation of major chemical species in East Asia including underestimations of anthropogenic emissions and natural dust emissions, uncertainties in the spatial and vertical distributions of the anthropogenic emissions, as well as biases in meteorological, radiative, and cloud predictions. Despite moderate to large biases in the chemical predictions, the model performance is generally consistent with or even better than that reported for East Asia with only a few exceptions. The model generally reproduces the observed seasonal variations and the difference between 2006 and 2011 for most variables or chemical species. Overall, these results demonstrate promising skills of WRF-CAM5 for long-term simulations at a regional scale and suggest several areas of potential improvements.« less
NASA Astrophysics Data System (ADS)
Maksimovich, E.
2010-09-01
The spring onset of snow melt on the Arctic sea ice shows large inter-annual variability. Surface melt triggers positive feedback mechanisms between the albedo, snow properties and thickness, as well as sea ice thickness. Hence, it is important to quantify the factors contributing to inter-annual variability of the melt onset (MO) in various parts of the Arctic Ocean. Meteorological factors controlling surface heat budget and surface melting/freezing are the shortwave and longwave radiative fluxes and the turbulent fluxes of sensible and latent heat. These fluxes depend on the weather conditions, including the radiative impact of clouds, heat advection and wind speed. We make use of SSM/I-based MO time series (Markus, Miller and Stroeve) and the ECMWF ERA Interim reanalysis on the meteorological conditions and surface fluxes, both data sets spanning the period 1989-2008 and covering recent years with a rapid sea ice decline. The advantage is that SSM/I-based MO time series are independent of the ERA-Interim data. Our objective is to investigate if there exists a physically consistent and statistically significant relationship between MO timing and corresponding meteorological conditions. Results based on the regression analysis between the MO timing and seasonal anomalies of surface longwave radiative fluxes reveal strong relationships. Synoptic scale (3-14 days) anomalies in downward longwave radiation are essential in the Western Arctic. Regarding the longer history (20-60 days) the distinct contribution from the downward longwave radiative fluxes is captured within the whole study region. Positive anomalies in the downward longwave radiation dominate over the simultaneous negative anomalies in the downward shortwave radiation. The anomalies in downward radiative fluxes are consistent with the total column water vapor, sea level pressure and 10-m wind direction. Sensible and latent heat fluxes affect surface melt timing in the Beaufort Sea and in the Atlantic sector of the Arctic Basin. Stronger winds strengthen the relationship between the turbulent fluxes and the MO timing. The turbulent surface fluxes in spring are relatively weak, of the order of 1-10W/m2, compared to the downward shortwave and longwave radiative fluxes, which are of the order of 100-150W/m2. As soon as data uncertainties are comparable to the anomaly in turbulent fluxes, statistical relationships found between MO timing and preceding anomaly in turbulent fluxes do not necessarily prove their reasonal-causal relationship. This joint study of SSM/I-based MO record and the ERA-Interim meteorological fields region-wide with a focus on the seasonal transition demonstrates their consistency in time and space. Such result could be regarded as an important indicator that both data sets have the appropriate performance of the surface state in the Arctic Ocean. Nevertheless, an important additional effort is needed for to resolve better the cloud radiative and boundary layer turbulent processes over the sea ice.
NASA Astrophysics Data System (ADS)
Yahya, Khairunnisa; Wang, Kai; Campbell, Patrick; Glotfelty, Timothy; He, Jian; Zhang, Yang
2016-02-01
The Weather Research and Forecasting model with Chemistry (WRF/Chem) v3.6.1 with the Carbon Bond 2005 (CB05) gas-phase mechanism is evaluated for its first decadal application during 2001-2010 using the Representative Concentration Pathway 8.5 (RCP 8.5) emissions to assess its capability and appropriateness for long-term climatological simulations. The initial and boundary conditions are downscaled from the modified Community Earth System Model/Community Atmosphere Model (CESM/CAM5) v1.2.2. The meteorological initial and boundary conditions are bias-corrected using the National Center for Environmental Protection's Final (FNL) Operational Global Analysis data. Climatological evaluations are carried out for meteorological, chemical, and aerosol-cloud-radiation variables against data from surface networks and satellite retrievals. The model performs very well for the 2 m temperature (T2) for the 10-year period, with only a small cold bias of -0.3 °C. Biases in other meteorological variables including relative humidity at 2 m, wind speed at 10 m, and precipitation tend to be site- and season-specific; however, with the exception of T2, consistent annual biases exist for most of the years from 2001 to 2010. Ozone mixing ratios are slightly overpredicted at both urban and rural locations with a normalized mean bias (NMB) of 9.7 % but underpredicted at rural locations with an NMB of -8.8 %. PM2.5 concentrations are moderately overpredicted with an NMB of 23.3 % at rural sites but slightly underpredicted with an NMB of -10.8 % at urban/suburban sites. In general, the model performs relatively well for chemical and meteorological variables, and not as well for aerosol-cloud-radiation variables. Cloud-aerosol variables including aerosol optical depth, cloud water path, cloud optical thickness, and cloud droplet number concentration are generally underpredicted on average across the continental US. Overpredictions of several cloud variables over the eastern US result in underpredictions of radiation variables (such as net shortwave radiation - GSW - with a mean bias - MB - of -5.7 W m-2) and overpredictions of shortwave and longwave cloud forcing (MBs of ˜ 7 to 8 W m-2), which are important climate variables. While the current performance is deemed to be acceptable, improvements to the bias-correction method for CESM downscaling and the model parameterizations of cloud dynamics and thermodynamics, as well as aerosol-cloud interactions, can potentially improve model performance for long-term climate simulations.
Documentation of meteorological data from the coniferous forest biome primary station in Oregon.
R.H. Waring; H.R. Holbo; R.P. Bueb; R.L. Fredriksen
1978-01-01
As part of the International Biological Program, a primary meteorological station was installed in the west-central Cascade Range of Oregon. Short-wave solar radiation, air temperature, dewpoint temperature, windspeed, and precipitation are recorded continuously. Climatic data are summarized in a daily record available from May 11, 1972, to date. This report details...
NASA Astrophysics Data System (ADS)
Cherviakov, M.; Spiryakhina, A.; Surkova, Y.; Kulkova, E.; Shishkina, E.
2017-12-01
This report describes Earth's energy budget IKOR-M satellite program which has been started in Russia. The first satellite "Meteor-M" No 1 of this project was put into orbit in 2009. The IKOR-M radiometer is a satellite instrument which can measure reflected shortwave radiation (0.3-4.0 µm). It was created in Saratov University and installed on Russian meteorological satellites "Meteor-M" No 1 and No 2. IKOR-M designed for satellite monitoring of the outgoing short-wave radiation at top-of-atmosphere (TOA), which is one of the components of Earth's energy budget. Such measurements can be used to derive albedo and absorbed solar radiation at TOA. The basic products of data processing are given in the form of global maps of distribution outgoing short-wave radiation, albedo and absorbed solar radiation (ASR). Such maps were made for each month during observation period. The IKOR-M product archive is available online at all times. A searchable catalogue of data products is continually updated and users may search and download data products via the Earth radiation balance components research laboratory website (www.sgu.ru/structure/geographic/metclim/balans) as soon as they become available. Two series of measurements from two different IKOR-M are available. The first radiometer had worked from October 2009 to August 2014 and second - from August 2014 to the present. Therefore, there is a period when both radiometers work at the same time. Top-of-atmosphere fluxes deduced from the "Meteor-M" No 1 measurements in August 2014 show very good agreement with the fluxes determined from "Meteor-M" No 2. It was shown that the albedo and ASR data received from the radiometer IKOR-M can be used to detect El Nino in the Pacific Ocean. During the radiometer operation, there were two significant El Nino events. Spatial-temporal distribution of the albedo in the equatorial part of the Pacific Ocean was analyzed. Region with high albedo values of 35-40 % is formed in the region 180E in January-February 2010 during El Nino event. It is associated with the development of a powerful convective cloudiness caused by the increase SST, at certain points the values can reach 45 %. The Nino 4 region is the most representative for detecting El Nino events (Fig. 1). The reported study was funded by RFBR according to the research project No.16-35-00284 mol_a.
Reproducibility of precipitation distributions over extratropical continental regions in the CMIP5
NASA Astrophysics Data System (ADS)
Hirota, Nagio; Takayabu, Yukari
2013-04-01
Reproducibility of precipitation distributions over extratropical continental regions in the CMIP5 Nagio Hirota1,2 and Yukari N. Takayabu2 (1) National Institute of Polar Research (NIPR) (2) Atmosphere and Ocean Research Institute (AORI), the University of Tokyo Reproducibility of precipitation distributions over extratropical continental regions by CMIP5 climate models in their historical runs are evaluated, in comparison with GPCP(V2.2), CMAP(V0911), daily gridded gauge data APHRODITE. Surface temperature, cloud radiative forcing, and atmospheric circulations are also compared with observations of CRU-UEA, CERES, and ERA-interim/ERA40/JRA reanalysis data. It is shown that many CMIP5 models underestimate and overestimate summer precipitation over West and East Eurasia, respectively. These precipitation biases correspond to moisture transport associated with a cyclonic circulation bias over the whole continent of Eurasia. Meanwhile, many models underestimate cloud over the Eurasian continent, and associated shortwave cloud radiative forcing result in a significant warm bias. Evaporation feedback amplify the warm bias over West Eurasia. These processes consistently explain the precipitation biases over the Erasian continent in summer. We also examined reproducibility of winter precipitation, but robust results are not obtained yet due to the large uncertainty in observation associated with the adjustment of snow measurement in windy condition. Better observational data sets are necessary for further model validation. Acknowledgment: This study is supported by the PMM RA of JAXA, Green Network of Excellence (GRENE) Program by the Ministry of Education, Culture, Sports, Science and Technology, Japan, and Environment Research and Technology Development Fund (A-1201) of the Ministry of the Environment, Japan.
Parameter Uncertainty on AGCM-simulated Tropical Cyclones
NASA Astrophysics Data System (ADS)
He, F.
2015-12-01
This work studies the parameter uncertainty on tropical cyclone (TC) simulations in Atmospheric General Circulation Models (AGCMs) using the Reed-Jablonowski TC test case, which is illustrated in Community Atmosphere Model (CAM). It examines the impact from 24 parameters across the physical parameterization schemes that represent the convection, turbulence, precipitation and cloud processes in AGCMs. The one-at-a-time (OAT) sensitivity analysis method first quantifies their relative importance on TC simulations and identifies the key parameters to the six different TC characteristics: intensity, precipitation, longwave cloud radiative forcing (LWCF), shortwave cloud radiative forcing (SWCF), cloud liquid water path (LWP) and ice water path (IWP). Then, 8 physical parameters are chosen and perturbed using the Latin-Hypercube Sampling (LHS) method. The comparison between OAT ensemble run and LHS ensemble run shows that the simulated TC intensity is mainly affected by the parcel fractional mass entrainment rate in Zhang-McFarlane (ZM) deep convection scheme. The nonlinear interactive effect among different physical parameters is negligible on simulated TC intensity. In contrast, this nonlinear interactive effect plays a significant role in other simulated tropical cyclone characteristics (precipitation, LWCF, SWCF, LWP and IWP) and greatly enlarge their simulated uncertainties. The statistical emulator Extended Multivariate Adaptive Regression Splines (EMARS) is applied to characterize the response functions for nonlinear effect. Last, we find that the intensity uncertainty caused by physical parameters is in a degree comparable to uncertainty caused by model structure (e.g. grid) and initial conditions (e.g. sea surface temperature, atmospheric moisture). These findings suggest the importance of using the perturbed physics ensemble (PPE) method to revisit tropical cyclone prediction under climate change scenario.
Dennehy, K.F.; McMahon, P.B.
1985-01-01
Two years of selected hydrologic and micrometeorologic data collected at a low-level radioactive waste burial site near Barnwell, South Carolina are available on magnetic tape in card-image format. Hydrologic data include daily measurements of soil-moisture tension, soil-moisture specific conductance, and soil temperature at four monitoring site locations. Micrometeorlogic data include hourly measurements for the following parameters: dry- and wet-bulb temperatures, soil temperatures, soil heat flux, wind speeds and direction, incoming and reflected short-wave solar radiation, incoming and emitted long-wave radiation, net radiation and precipitation. (USGS)
NASA Technical Reports Server (NTRS)
Wiscombe, W.
1999-01-01
The purpose of this paper is discuss the concept of fractal dimension; multifractal statistics as an extension of this; the use of simple multifractal statistics (power spectrum, structure function) to characterize cloud liquid water data; and to understand the use of multifractal cloud liquid water models based on real data as input to Monte Carlo radiation models of shortwave radiation transfer in 3D clouds, and the consequences of this in two areas: the design of aircraft field programs to measure cloud absorptance; and the explanation of the famous "Landsat scale break" in measured radiance.
UV filters for lighting of plants
NASA Astrophysics Data System (ADS)
Doehring, T.; Koefferlein, M.; Thiel, S.; Seidlitz, H. K.; Payer, H. D.
1994-03-01
The wavelength dependent interaction of biological systems with radiation is commonly described by appropriate action spectra. Particularly effective plant responses are obtained for ultraviolet (UV) radiation. Excess shortwave UV-B radiation will induce genetic defects and plant damage. Besides the ecological discussion of the deleterious effects of the excess UV radiation there is increasing interest in horticultural applications of this spectral region. Several metabolic pathways leading to valuable secondary plant products like colors, odors, taste, or resulting in mechanical strength and vitality are triggered by UV radiation. Thus, in ecologically as well as in economically oriented experiments the exact generation and knowledge of the spectral irradiance, particularly near the UV absorption edge, is essential. The ideal filter 'material' to control the UV absorption edge would be ozone itself. However, due to problems in controlling the toxic and chemically aggressive, instable gas, only rather 'small ozone filters' have been realized so far. In artificial plant lighting conventional solid filter materials such as glass sheets and plastic foils (celluloseacetate or cellulosetriacetate) which can be easily handled have been used to absorb the UV-C and the excess shortwave UV-B radiation of the lamp emissions. Different filter glasses are available which provide absorption properties suitable for gradual changes of the spectral UV-B illumination of artificial lighting. Using a distinct set of lamps and filter glasses an acceptable simulation of the UV-B part of natural global radiation can be achieved. The aging of these and other filter materials under the extreme UV radiation in the lamphouse of a solar simulator is presently unavoidable. This instability can be dealt with only by a precise spectral monitoring and by replacing the filters accordingly. For this reason attempts would be useful to develop real ozone filters which can replace glass filters. In any case chamber experiments require a careful selection of the filter material used and must be accompanied by a continuous UV-B monitoring.
UV filters for lighting of plants
NASA Technical Reports Server (NTRS)
Doehring, T.; Koefferlein, M.; Thiel, S.; Seidlitz, H. K.; Payer, H. D.
1994-01-01
The wavelength dependent interaction of biological systems with radiation is commonly described by appropriate action spectra. Particularly effective plant responses are obtained for ultraviolet (UV) radiation. Excess shortwave UV-B radiation will induce genetic defects and plant damage. Besides the ecological discussion of the deleterious effects of the excess UV radiation there is increasing interest in horticultural applications of this spectral region. Several metabolic pathways leading to valuable secondary plant products like colors, odors, taste, or resulting in mechanical strength and vitality are triggered by UV radiation. Thus, in ecologically as well as in economically oriented experiments the exact generation and knowledge of the spectral irradiance, particularly near the UV absorption edge, is essential. The ideal filter 'material' to control the UV absorption edge would be ozone itself. However, due to problems in controlling the toxic and chemically aggressive, instable gas, only rather 'small ozone filters' have been realized so far. In artificial plant lighting conventional solid filter materials such as glass sheets and plastic foils (celluloseacetate or cellulosetriacetate) which can be easily handled have been used to absorb the UV-C and the excess shortwave UV-B radiation of the lamp emissions. Different filter glasses are available which provide absorption properties suitable for gradual changes of the spectral UV-B illumination of artificial lighting. Using a distinct set of lamps and filter glasses an acceptable simulation of the UV-B part of natural global radiation can be achieved. The aging of these and other filter materials under the extreme UV radiation in the lamphouse of a solar simulator is presently unavoidable. This instability can be dealt with only by a precise spectral monitoring and by replacing the filters accordingly. For this reason attempts would be useful to develop real ozone filters which can replace glass filters. In any case chamber experiments require a careful selection of the filter material used and must be accompanied by a continuous UV-B monitoring.
Radiative impact of Etna volcanic aerosols over south eastern Italy on 3 December 2015
NASA Astrophysics Data System (ADS)
Romano, S.; Burlizzi, P.; Kinne, S.; De Tomasi, F.; Hamann, U.; Perrone, M. R.
2018-06-01
Irradiance and LiDAR measurements at the surface combined with satellite products from SEVIRI (Spinning Enhanced Visible and InfraRed Imager) and MODIS (MODerate resolution Imaging Spectroradiometer) were used to detect and characterize the Etna volcano (Italy) plume that crossed southeastern Italy on 3 December 2015, from about 10:00 up to 11:30 UTC, and estimate its radiative impact. The volcanic plume was delivered by a violent and short paroxysmal eruption that occurred from 02:30 to 03:10 UTC of 3 December 2015, about 400 km away from the monitoring site. Measurements from the LiDAR combined with model results showed that the aerosol optical depth of the volcanic plume, located from about 11 to 13 km above sea level (asl), was equal to 0.80 ± 0.07 at 532 nm. A low tropospheric aerosol load, located up to about 7 km asl, with optical depth equal to 0.19 ± 0.01 at 532 nm was also revealed by the LiDAR measurements. Short-Wave (SW) downward and upward irradiance measurements revealed that the instantaneous SW direct radiative forcing at the surface (DRFsurf) decreased to -146 ± 16 W m-2 at 10:50 UTC because of the volcanic plume passage. A Two-Stream radiative transfer model integrated with experimental measurements, which took into account the volcanic plume and the low tropospheric aerosol properties, was used to reproduce the SW radiative flux measurements at the surface and estimate the aerosol DRF both at the top of the atmosphere (TOA) and at the surface, in addition to the aerosol heating rate vertical profile. We found that the clear-sky, instantaneous, SW DRF at the TOA and the atmospheric forcing were equal to -112 and 33 W m-2, respectively, at 10:50 UTC that represented the time at which the volcanic plume radiative impact was the highest. The SW aerosol heating rate reached the peak value of 1.24 K day-1 at 12 km asl and decreased to -0.06 K day-1 at 11 km asl, at 10:50 UTC. The role of the aerosol load located up to about 7 km asl and the corresponding radiative impact has also been evaluated.
NASA Astrophysics Data System (ADS)
Braghiere, Renato; Quaife, Tristan; Black, Emily
2016-04-01
Incoming shortwave radiation is the primary source of energy driving the majority of the Earth's climate system. The partitioning of shortwave radiation by vegetation into absorbed, reflected, and transmitted terms is important for most of biogeophysical processes, including leaf temperature changes and photosynthesis, and it is currently calculated by most of land surface schemes (LSS) of climate and/or numerical weather prediction models. The most commonly used radiative transfer scheme in LSS is the two-stream approximation, however it does not explicitly account for vegetation architectural effects on shortwave radiation partitioning. Detailed three-dimensional (3D) canopy radiative transfer schemes have been developed, but they are too computationally expensive to address large-scale related studies over long time periods. Using a straightforward one-dimensional (1D) parameterisation proposed by Pinty et al. (2006), we modified a two-stream radiative transfer scheme by including a simple function of Sun zenith angle, so-called "structure factor", which does not require an explicit description and understanding of the complex phenomena arising from the presence of vegetation heterogeneous architecture, and it guarantees accurate simulations of the radiative balance consistently with 3D representations. In order to evaluate the ability of the proposed parameterisation in accurately represent the radiative balance of more complex 3D schemes, a comparison between the modified two-stream approximation with the "structure factor" parameterisation and state-of-art 3D radiative transfer schemes was conducted, following a set of virtual scenarios described in the RAMI4PILPS experiment. These experiments have been evaluating the radiative balance of several models under perfectly controlled conditions in order to eliminate uncertainties arising from an incomplete or erroneous knowledge of the structural, spectral and illumination related canopy characteristics typical of model comparisons with in-situ observations. The structure factor parameters were obtained for each canopy structure through the inversion against direct and diffuse fraction of absorbed photosynthetically active radiation (fAPAR), and albedo PAR. Overall, the modified two-stream approximation consistently showed a good agreement with the RAMI4PILPS reference values under direct and diffuse illumination conditions. It is an efficient and accurate tool to derive PAR absorptance and reflectance for scenarios with different canopy densities, leaf densities and soil background albedos, with especial attention to brighter backgrounds, i.e., snowy. The major difficulty of its applicability in the real world is to acquire the parameterisation parameters from in-situ observations. The derivation of parameters from Digital Hemispherical Photographs (DHP) is highly promising at forest stands scales. DHP provide a permanent record and are a valuable information source for position, size, density, and distribution of canopy gaps. The modified two-stream approximation parameters were derived from gap probability data extracted from DHP obtained in a woody savannah in California, USA. Values of fAPAR and albedo PAR were evaluated against a tree-based vegetation canopy model, MAESPA, which used airborne LiDAR data to define the individual-tree locations, and extract structural information such as tree height and crown diameter. The parameterisation improved the performance of a two-stream approximation by making it achieves comparable results to complex 3D model calculations under observed conditions.
Caribbean coral growth influenced by anthropogenic aerosol emissions
NASA Astrophysics Data System (ADS)
Kwiatkowski, Lester; Cox, Peter M.; Economou, Theo; Halloran, Paul R.; Mumby, Peter J.; Booth, Ben B. B.; Carilli, Jessica; Guzman, Hector M.
2013-05-01
Coral growth rates are highly dependent on environmental variables such as sea surface temperature and solar irradiance. Multi-decadal variability in coral growth rates has been documented throughout the Caribbean over the past 150-200 years, and linked to variations in Atlantic sea surface temperatures. Multi-decadal variability in sea surface temperatures in the North Atlantic, in turn, has been linked to volcanic and anthropogenic aerosol forcing. Here, we examine the drivers of changes in coral growth rates in the western Caribbean between 1880 and 2000, using previously published coral growth chronologies from two sites in the region, and a numerical model. Changes in coral growth rates over this period coincided with variations in sea surface temperature and incoming short-wave radiation. Our model simulations show that variations in the concentration of anthropogenic aerosols caused variations in sea surface temperature and incoming radiation in the second half of the twentieth century. Before this, variations in volcanic aerosols may have played a more important role. With the exception of extreme mass bleaching events, we suggest that neither climate change from greenhouse-gas emissions nor ocean acidification is necessarily the driver of multi-decadal variations in growth rates at some Caribbean locations. Rather, the cause may be regional climate change due to volcanic and anthropogenic aerosol emissions.
The highs and lows of cloud radiative feedback: Comparing observational data and CMIP5 models
NASA Astrophysics Data System (ADS)
Jenney, A.; Randall, D. A.
2014-12-01
Clouds play a complex role in the climate system, and remain one of the more difficult aspects of the future climate to predict. Over subtropical eastern ocean basins, particularly next to California, Peru, and Southwest Africa, low marine stratocumulus clouds (MSC) help to reduce the amount of solar radiation that reaches the surface by reflecting incident sunlight. The climate feedback associated with these clouds is thought to be positive. This project looks at CMIP5 models and compares them to observational data from CERES and ERA-Interim to try and find observational evidence and model agreement for low, marine stratocumulus cloud feedback. Although current evidence suggests that the low cloud feedback is positive (IPCC, 2014), an analysis of the simulated relationship between July lower tropospheric stability (LTS) and shortwave cloud forcing in MSC regions suggests that this feedback is not due to changes in LTS. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
NASA Astrophysics Data System (ADS)
Shin, Sun-Hee; Kim, Ok-Yeon; Kim, Dongmin; Lee, Myong-In
2017-07-01
Using 32 CMIP5 (Coupled Model Intercomparison Project Phase 5) models, this study examines the veracity in the simulation of cloud amount and their radiative effects (CREs) in the historical run driven by observed external radiative forcing for 1850-2005, and their future changes in the RCP (Representative Concentration Pathway) 4.5 scenario runs for 2006-2100. Validation metrics for the historical run are designed to examine the accuracy in the representation of spatial patterns for climatological mean, and annual and interannual variations of clouds and CREs. The models show large spread in the simulation of cloud amounts, specifically in the low cloud amount. The observed relationship between cloud amount and the controlling large-scale environment are also reproduced diversely by various models. Based on the validation metrics, four models—ACCESS1.0, ACCESS1.3, HadGEM2-CC, and HadGEM2-ES—are selected as best models, and the average of the four models performs more skillfully than the multimodel ensemble average. All models project global-mean SST warming at the increase of the greenhouse gases, but the magnitude varies across the simulations between 1 and 2 K, which is largely attributable to the difference in the change of cloud amount and distribution. The models that simulate more SST warming show a greater increase in the net CRE due to reduced low cloud and increased incoming shortwave radiation, particularly over the regions of marine boundary layer in the subtropics. Selected best-performing models project a significant reduction in global-mean cloud amount of about -0.99% K-1 and net radiative warming of 0.46 W m-2 K-1, suggesting a role of positive feedback to global warming.
Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J.; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan H.; Molina, Mario J.
2014-01-01
Atmospheric aerosols affect weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the effects of anthropogenic aerosols on the Pacific storm track, using a multiscale global aerosol–climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and preindustrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by −2.5 and +1.3 W m−2, respectively, by emission changes from preindustrial to present day, and an increased cloud top height indicates invigorated midlatitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides, for the first time to the authors’ knowledge, a global perspective of the effects of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multiscale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on a global scale. PMID:24733923
NASA Astrophysics Data System (ADS)
Ji, Zhenming; Wang, Guiling; Pal, Jeremy S.; Yu, Miao
2016-02-01
Mineral dusts present in the atmosphere can play an important role in climate over West Africa and surrounding regions. However, current understanding regarding how dust aerosols influence climate of West Africa is very limited. In this study, a regional climate model is used to investigate the potential climatic impacts of dust aerosols. Two sets of simulations driven by reanalysis and Earth System Model boundary conditions are performed with and without the representation of dust processes. The model, regardless of the boundary forcing, captures the spatial and temporal variability of the aerosol optical depth and surface concentration. The shortwave radiative forcing of dust is negative at the surface and positive in the atmosphere, with greater changes in the spring and summer. The presence of mineral dusts causes surface cooling and lower troposphere heating, resulting in a stabilization effect and reduction in precipitation in the northern portion of the monsoon close to the dust emissions region. This results in an enhancement of precipitation to the south. While dusts cause the lower troposphere to stabilize, upper tropospheric cooling makes the region more prone to intense deep convection as is evident by a simulated increase in extreme precipitation. In a companion paper, the impacts of dust emissions on future West African climate are investigated.
Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan H; Molina, Mario J
2014-05-13
Atmospheric aerosols affect weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the effects of anthropogenic aerosols on the Pacific storm track, using a multiscale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and preindustrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by -2.5 and +1.3 W m(-2), respectively, by emission changes from preindustrial to present day, and an increased cloud top height indicates invigorated midlatitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides, for the first time to the authors' knowledge, a global perspective of the effects of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multiscale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on a global scale.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Sartelet, K.; Wu, S.-Y.; Seigneur, C.
2013-07-01
Comprehensive model evaluation and comparison of two 3-D air quality modeling systems (i.e., the Weather Research and Forecast model (WRF)/Polyphemus and WRF with chemistry and the Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID) (WRF/Chem-MADRID)) are conducted over Western Europe. Part 1 describes the background information for the model comparison and simulation design, the application of WRF for January and July 2001 over triple-nested domains in Western Europe at three horizontal grid resolutions: 0.5°, 0.125°, and 0.025°, and the effect of aerosol/meteorology interactions on meteorological predictions. Nine simulated meteorological variables (i.e., downward shortwave and longwave radiation fluxes (SWDOWN and LWDOWN), outgoing longwave radiation flux (OLR), temperature at 2 m (T2), specific humidity at 2 m (Q2), relative humidity at 2 m (RH2), wind speed at 10 m (WS10), wind direction at 10 m (WD10), and precipitation (Precip)) are evaluated using available observations in terms of spatial distribution, domainwide daily and site-specific hourly variations, and domainwide performance statistics. The vertical profiles of temperature, dew points, and wind speed/direction are also evaluated using sounding data. WRF demonstrates its capability in capturing diurnal/seasonal variations and spatial gradients and vertical profiles of major meteorological variables. While the domainwide performance of LWDOWN, OLR, T2, Q2, and RH2 at all three grid resolutions is satisfactory overall, large positive or negative biases occur in SWDOWN, WS10, and Precip even at 0.125° or 0.025° in both months and in WD10 in January. In addition, discrepancies between simulations and observations exist in T2, Q2, WS10, and Precip at mountain/high altitude sites and large urban center sites in both months, in particular, during snow events or thunderstorms. These results indicate the model's difficulty in capturing meteorological variables in complex terrain and subgrid-scale meteorological phenomena, due to inaccuracies in model initialization parameterization (e.g., lack of soil temperature and moisture nudging), limitations in the physical parameterizations (e.g., shortwave radiation, cloud microphysics, cumulus parameterizations, and ice nucleation treatments) as well as limitations in surface heat and moisture budget parameterizations (e.g., snow-related processes, subgrid-scale surface roughness elements, and urban canopy/heat island treatments and CO2 domes). While the use of finer grid resolutions of 0.125° and 0.025° shows some improvements for WS10, WD10, Precip, and some mesoscale events (e.g., strong forced convection and heavy precipitation), it does not significantly improve the overall statistical performance for all meteorological variables except for Precip. The WRF/Chem simulations with and without aerosols show that aerosols lead to reduced net shortwave radiation fluxes, 2 m temperature, 10 m wind speed, planetary boundary layer (PBL) height, and precipitation and increase aerosol optical depth, cloud condensation nuclei, cloud optical depth, and cloud droplet number concentrations over most of the domain. These results indicate a need to further improve the model representations of the above parameterizations as well as aerosol-meteorology interactions at all scales.
Clastogenic effects of radiofrequency radiations on chromosomes of Tradescantia.
Haider, T; Knasmueller, S; Kundi, M; Haider, M
1994-06-01
The clastogenicity of electromagnetic fields (EMF) has so far been studied only under laboratory conditions. We used the Tradescantia-micronucleus (Trad-MCN) bioassay in an in situ experiment to find out whether short-wave electromagnetic fields used for broadcasting (10-21 MHz) may show genotoxic effects. Plant cuttings bearing young flower buds were exposed (30 h) on both sides of a slewable curtain antenna (300/500 kW, 40-170 V/m) and 15 m (90 V/m) and 30 m (70 V/m) distant from a vertical cage antenna (100 kW) as well as at the neighbors living near the broadcasting station (200 m, 1-3 V/m). The exposure at both sides of the slewable curtain antenna was performed simultaneously within cages, one of the Faraday type shielding the field and one non-shielding mesh cage. Laboratory controls were maintained for comparison. Higher MCN frequencies than in laboratory controls were found for all exposure sites in the immediate vicinity of the antennae, where the exposure standards of the electric field strength of the International Radiation Protection Association (IRPA) were exceeded. The results at all exposure sites except one were statistically significant. Since the parallel exposure in a non-shielding and a shielding cage also revealed significant differences in MCN frequencies (the latter showing no significant differences from laboratory controls), the clastogenic effects are clearly attributable to the short-wave radiation from the antennae.
NASA Astrophysics Data System (ADS)
Shankar, Mohan; Priestley, Kory; Smith, Nathaniel; Smith, Nitchie; Thomas, Susan; Walikainen, Dale
2015-10-01
The Clouds and Earth's Radiant Energy System (CERES) instruments help to study the impact of clouds on the earth's radiation budget. There are currently five instruments- two each on board Aqua and Terra spacecraft and one on the Suomi NPP spacecraft to measure the earth's reflected shortwave and emitted longwave energy, which represent two components of the earth's radiation energy budget. Flight Models (FM) 1 and 2 are on Terra, FM 3 and 4 are on Aqua, and FM5 is on Suomi NPP. The measurements are made by three sensors on each instrument: a shortwave sensor that measures the 0.3-5 microns wavelength band, a window sensor that measures the water vapor window between 8-12 microns, and a total sensor that measures all incident energy (0.3- >100 microns). The required accuracy of CERES measurements of 0.5% in the longwave and 1% in the shortwave is achieved through an extensive pre-launch ground calibration campaign as well as on-orbit calibration and validation activities. Onorbit calibration is carried out using the Internal Calibration Module (ICM) that consists of a tungsten lamp, blackbodies, and a solar diffuser known as the Mirror Attenuator Mosaic (MAM). The ICM calibration provides information about the stability of the sensors' broadband radiometric gains on-orbit. Several validation studies are conducted in order to monitor the behavior of the instruments in various spectral bands. The CERES Edition-4 data products for the FM1-FM4 instruments incorporate the latest calibration methodologies to improve on the Edition-3 data products. In this paper, we discuss the updated calibration methodology and present some validation studies to demonstrate the improvement in the trends using the CERES Edition-4 data products for all four instruments.
Radiation Climatology of the Greenland Ice Sheet Derived from Greenland Climate Network Data
NASA Technical Reports Server (NTRS)
Steffen, Konrad; Box, Jason
2003-01-01
The magnitude of shortwave and longwave dative fluxes are critical to surface energy balance variations over the Greenland ice sheet, affecting many aspects of its climate, including melt rates, the nature of low-level temperature inversions, the katabatic wind regime and buoyant stability of the atmosphere. Nevertheless, reliable measurements of the radiative fluxes over the ice sheet are few in number, and have been of limited duration and areal distribution (e.g. Ambach, 1960; 1963, Konzelmann et al., 1994, Harding et al., 1995, Van den Broeke, 1996). Hourly GC-Net radiation flux measurements spanning 1995-2001 period have been used to produce a monthly dataset of surface radiation balance components. The measurements are distributed widely across Greenland and incorporate multiple sensors
Simple Thermal Environment Model (STEM) User's Guide
NASA Technical Reports Server (NTRS)
Justus, C.G.; Batts, G. W.; Anderson, B. J.; James, B. F.
2001-01-01
This report presents a Simple Thermal Environment Model (STEM) for determining appropriate engineering design values to specify the thermal environment of Earth-orbiting satellites. The thermal environment of a satellite, consists of three components: (1) direct solar radiation, (2) Earth-atmosphere reflected shortwave radiation, as characterized by Earth's albedo, and (3) Earth-atmosphere-emitted outgoing longwave radiation (OLR). This report, together with a companion "guidelines" report provides methodology and guidelines for selecting "design points" for thermal environment parameters for satellites and spacecraft systems. The methods and models reported here are outgrowths of Earth Radiation Budget Experiment (ERBE) satellite data analysis and thermal environment specifications discussed by Anderson and Smith (1994). In large part, this report is intended to update (and supersede) those results.
NASA Astrophysics Data System (ADS)
Meftah, M.; Keckhut, P.; Damé, L.; Bekki, S.; Sarkissian, A.; Hauchecorne, A.
2018-05-01
Within the past decade, satellites constellations have become possible and practical. One of the interest to use a satellites constellation is to measure the true Earth Radiation Imbalance, which is a crucial quantity for testing climate models and for predicting the future course of global warming. This measurement presents a high interest because the 2001-2010 decade has not shown the accelerating pace of global warming that most models predict, despite the fact that the greenhouse-gas radiative forcing continues to rise. All estimates (ocean heat content and top of atmosphere) show that over the past decade the Earth radiation imbalance ranges between 0.5 to 1W-2. Up to now, the Earth radiation imbalance has not been measured directly. The only way to measure the imbalance with sufficient accuracy is to measure both the incoming solar radiations (total solar irradiance) and the outgoing terrestrial radiations (top of atmosphere outgoing longwave radiations and shortwave radiations) onboard the same satellite, and ideally, with the same instrument. The incoming solar radiations and the outgoing terrestrial radiations are of nearly equal magnitude of the order of 340.5W-2. The objective is to measure these quantities over time by using differential Sun-Earth measurements (to counter calibration errors) with an accuracy better than 0.05Wm-2 at 1σ. It is also necessary to have redundant instruments to track aging in space in order to measure during a decade and to measure the global diurnal cycle with a dozen satellites. Solar irradiance and Earth Radiation Budget (SERB) is a potential first in orbit demonstration satellite. The SERB nano-satellite aims to measure on the same platform the different components of the Earth radiation budget and the total solar irradiance. Instrumental payloads (solar radiometer and Earth radiometers) can acquire the technical maturity for the future large missions (constellation that insure global measurement cover) by flying in a CubeSat. This paper is intended to demonstrate the ability to build a low-cost satellite with a high accuracy measurement in order to have constant flow of data from space.
A Modeling Study of Oceanic Response to Daily and Monthly Surface Forcing
NASA Technical Reports Server (NTRS)
Sui, Chung-Hsiung; Li, Xiao-Fan; Rienecker, Michele M.; Lau, William K.-M.; Einaudi, Franco (Technical Monitor)
2001-01-01
The goal of this study is to investigate the effect of high-frequency surface forcing (wind stresses and heat fluxes) on upper-ocean response. We use the reduced-gravity quasi-isopycnal ocean model by Schopf and Loughe (1995) for this study. Two experiments are performed: one with daily and the other with monthly surface forcing. The two experiments are referred to as DD and MM, respectively. The daily surface wind stress is produced from the SSM/I wind data (Atlas et al. 1991) using the drag coefficient of Large and Pond (1982). The surface latent and sensible heat fluxes are estimated using the atmospheric mixed layer model by Seager et al. (1995) with the time-varying air temperature and specific humidity from the NCEP-NCAR reanalysis (Kalnay et al. 1996). The radiation is based on climatological shortwave radiation from the Earth Radiation Budget Experiment (ERBE) [Harrison et al. 1993] and the daily GEWEX SRB data. The ocean model domain is restricted to the Pacific Ocean with realistic land boundaries. At the southern boundary the model temperature and salinity are relaxed to the Levitus (1994) climatology. The time-mean SST distribution from MM is close to the observed SST climatology while the mean SST field from DD is about 1.5 C cooler. To identify the responsible processes, we examined the mean heat budgets and the heat balance during the first year (when the difference developed) in the two experiments. The analysis reveals that this is contributed by two factors. One is the difference in latent heat flux. The other is the difference in mixing processes. To further evaluate the responsible processes, we repeated the DD experiment by reducing the based vertical diffusion from 1e-4 to 0.5e-5. The resultant SST field becomes quite closer to the observed SST field. SST variability from the two experiments is generally similar, but the equatorial SST differences between the two experiments show interannual variations. We are investigating the possible mechanisms responsible for the different responses.
NASA Astrophysics Data System (ADS)
Humpage, N.; Boesch, H.; Palmer, P. I.; Parr-Burman, P.; Vick, A.; Bezawada, N.; Black, M.; Born, A.; Gao, X.; Pearson, D.; Samara-Ratna, P.; Strachan, J.; Wells, M.
2015-12-01
GHOST is a novel, compact shortwave infrared spectrometer, designed for remote sensing of tropospheric columns of greenhouse gases (GHGs) over the ocean from an unmanned aircraft. This is achieved by observing solar radiation at high spectral resolution which has been directly reflected by the ocean surface. The GHOST system has been specifically designed and built to address the following science objectives: 1) testing of atmospheric transport models; 2) validation of GHG column observations over oceans obtained using polar orbiting satellites; and 3) complement in-situ tropopause transition layer observations from other instruments. During January and February 2015 GHOST successfully underwent rigorous environmental testing and was installed on board the Northrop Grumman Global Hawk N872NA, an unmanned aircraft operated by NASA from the Armstrong Flight Research Centre at Edwards Air Force Base, California. Here, we present first results from two Global Hawk flights which took place in March 2015 as part of the CAST-ATTREX campaign. The science flights comprised long, approximately north-south transects over the eastern Pacific Ocean, providing an opportunity to observe spatial trends in GHG column concentrations on regional scale. The second science flight on 10th March 2015 coincided with overpasses from both the NASA OCO-2 (Orbiting Carbon Observatory) and the JAXA GOSAT (Greenhouse gases Observing SATellite) satellites, enabling inter-comparison of the GHOST results with total column observations from both satellites. A TCCON (Total Carbon Column Observing Network) station was also operational at Edwards during the two flights, allowing the GHOST observations to be validated against ground based total column measurements of GHGs.
NASA Astrophysics Data System (ADS)
Stackhouse, P. W.; Gupta, S. K.; Cox, S. J.; Mikovitz, J. C.; Zhang, T.
2015-12-01
The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The current release 3.0 (available at gewex-srb.larc.nasa.gov) uses the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This product is subsampled to 30 km. ISCCP is currently recalibrating and recomputing their entire data series, to be released as the H product, at 10km resolution. The ninefold increase in pixel number will allow SRB a higher resolution gridded product (e.g. 0.5 degree), as well as the production of pixel-level fluxes. Other key input improvements include a detailed aerosol history using the Max Planck Institut Aerosol Climatology (MAC), temperature and moisture profiles from HIRS, and new topography, surface type, and snow/ice. At the time of abstract submission, results from the year 2007 have been produced. More years will be added as ISCCP reprocessing occurs. Here we present results for the improved GEWEX Shortwave and Longwave algorithm (GSW and GLW) with new ISCCP data, the various other improved input data sets and the incorporation of many additional internal SRB model improvements. Improvements in GSW include an expansion of the number of wavelength bands from five to eighteen, and the inclusion of ice cloud vs. water cloud radiative transfer. The SRB data produced will be released as part of the Release 4.0 Integrated Product, recognizing the interdependence of the radiative fluxes with other GEWEX products providing estimates of the Earth's global water and energy cycle (I.e., ISCCP, SeaFlux, LandFlux, NVAP, etc.).
NASA Astrophysics Data System (ADS)
Silverman, Vered; Harnik, Nili; Matthes, Katja; Lubis, Sandro W.; Wahl, Sebastian
2018-05-01
The radiative effects induced by the zonally asymmetric part of the ozone field have been shown to significantly change the temperature of the NH winter polar cap, and correspondingly the strength of the polar vortex. In this paper, we aim to understand the physical processes behind these effects using the National Center for Atmospheric Research (NCAR)'s Whole Atmosphere Community Climate Model, run with 1960s ozone-depleting substances and greenhouse gases. We find a mid-winter polar vortex influence only when considering the quasi-biennial oscillation (QBO) phases separately, since ozone waves affect the vortex in an opposite manner. Specifically, the emergence of a midlatitude QBO signal is delayed by 1-2 months when radiative ozone-wave effects are removed. The influence of ozone waves on the winter polar vortex, via their modulation of shortwave heating, is not obvious, given that shortwave heating is largest during fall, when planetary stratospheric waves are weakest. Using a novel diagnostic of wave 1 temperature amplitude tendencies and a synoptic analysis of upward planetary wave pulses, we are able to show the chain of events that lead from a direct radiative effect on weak early fall upward-propagating planetary waves to a winter polar vortex modulation. We show that an important stage of this amplification is the modulation of individual wave life cycles, which accumulate during fall and early winter, before being amplified by wave-mean flow feedbacks. We find that the evolution of these early winter upward planetary wave pulses and their induced stratospheric zonal mean flow deceleration is qualitatively different between QBO phases, providing a new mechanistic view of the extratropical QBO signal. We further show how these differences result in opposite radiative ozone-wave effects between east and west QBOs.
NASA Astrophysics Data System (ADS)
Han, W.; Li, Y.; Shinoda, T.; Wang, C.; Ravichandran, M.; Wang, J. W.
2014-12-01
Intraseasonal sea surface temperature (SST) variability over the Seychelles-Chagos thermocline ridge (SCTR) induced by boreal wintertime Madden-Julian oscillations (MJOs) is investigated by performing a series of OGCM experiments with improved model configuration and the recently available high quality satellite forcing fields. The impact of the ocean interannual variation of the thermocline depth -represented by the depth of 20C isotherm (D20) - in the SCTR is also assessed. The OGCM main run solution agrees well with the observations. The results show that for the 2001-2011 period, surface shortwave radiation (SWR), turbulent heat fluxes associated with wind speed, and wind stress-driven ocean dynamical processes are all important in causing the MJO-related intraseasonal SST variability in the SCTR region. Overall, forcing by SWR contributes ~31%, and forcing by winds (via both surface turbulent heat flux and ocean dynamics) contributes ~62%. The contribution of turbulent heat flux associated with wind speed is ~39% and that of wind-stress driven ocean dynamics is ~23%. The contribution of ocean dynamics, however, is considerably larger during strong ("prime") MJO events under "strong" thermocline condition. The overall effect of interannual variability of D20 on intraseasonal SST during 2001-2011 is significant in the eastern part of the SCTR (70E-85E), where the intraseasonal SST amplitudes are strengthened by about 20%. In general, a shallower/deeper SCTR favors larger/smaller SST responses to the MJO forcing. In the eastern SCTR, both the heat flux forcing and entrainment are greatly amplified under the strong SCTR condition, but only slightly suppressed under the weak SCTR condition, leading to an overall strengthening effect on intraseasonal SST variability.
NASA Astrophysics Data System (ADS)
Leauthaud, Crystele; Cappelaere, Bernard; Demarty, Jérôme; Guichard, Françoise; Velluet, Cécile; Kergoat, Laurent; Vischel, Théo; Grippa, Manuela; Mouhaimouni, Mohammed; Bouzou Moussa, Ibrahim; Mainassara, Ibrahim; Sultan, Benjamin
2017-04-01
The Sahel has experienced strong climate variability in the past decades. Understanding its implications for natural and cultivated ecosystems is pivotal in a context of high population growth and mainly agriculture-based livelihoods. However, efforts to model processes at the land-atmosphere interface are hindered, particularly when the multi-decadal timescale is targeted, as climatic data are scarce, largely incomplete and often unreliable. This study presents the generation of a long-term, high-temporal resolution, multivariate local climatic data set for Niamey, Central Sahel. The continuous series spans the period 1950-2009 at a 30-min timescale and includes ground station-based meteorological variables (precipitation, air temperature, relative and specific humidity, air pressure, wind speed, downwelling long- and short-wave radiation) as well as process-modelled surface fluxes (upwelling long- and short-wave radiation,latent, sensible and soil heat fluxes and surface temperature). A combination of complementary techniques (linear/spline regressions, a multivariate analogue method, artificial neural networks and recursive gap filling) was used to reconstruct missing meteorological data. The complete surface energy budget was then obtained for two dominant land cover types, fallow bush and millet, by applying the meteorological forcing data set to a finely field-calibrated land surface model. Uncertainty in reconstructed data was expressed by means of a stochastic ensemble of plausible historical time series. Climatological statistics were computed at sub-daily to decadal timescales and compared with local, regional and global data sets such as CRU and ERA-Interim. The reconstructed precipitation statistics, ˜1°C increase in mean annual temperature from 1950 to 2009, and mean diurnal and annual cycles for all variables were in good agreement with previous studies. The new data set, denoted NAD (Niamey Airport-derived set) and publicly available, can be used to investigate the water and energy cycles in Central Sahel, while the methodology can be applied to reconstruct series at other stations. The study has been published in Int. J. Climatol. (2016), DOI: 10.1002/joc.4874
NASA Astrophysics Data System (ADS)
Zhong, Shi; Qian, Yun; Zhao, Chun; Leung, Ruby; Wang, Hailong; Yang, Ben; Fan, Jiwen; Yan, Huiping; Yang, Xiu-Qun; Liu, Dongqing
2017-04-01
The WRF-Chem model coupled with a single-layer urban canopy model (UCM) is integrated for 5 years at convection-permitting scale to investigate the individual and combined impacts of urbanization-induced changes in land cover and pollutant emissions on regional climate in the Yangtze River Delta (YRD) region in eastern China. Simulations with the urbanization effects reasonably reproduced the observed features of temperature and precipitation in the YRD region. Urbanization over the YRD induces an urban heat island (UHI) effect, which increases the surface temperature by 0.53 °C in summer and increases the annual heat wave days at a rate of 3.7 d yr-1 in the major megacities in the YRD, accompanied by intensified heat stress. In winter, the near-surface air temperature increases by approximately 0.7 °C over commercial areas in the cities but decreases in the surrounding areas. Radiative effects of aerosols tend to cool the surface air by reducing net shortwave radiation at the surface. Compared to the more localized UHI effect, aerosol effects on solar radiation and temperature influence a much larger area, especially downwind of the city cluster in the YRD. Results also show that the UHI increases the frequency of extreme summer precipitation by strengthening the convergence and updrafts over urbanized areas in the afternoon, which favor the development of deep convection. In contrast, the radiative forcing of aerosols results in a surface cooling and upper-atmospheric heating, which enhances atmospheric stability and suppresses convection. The combined effects of the UHI and aerosols on precipitation depend on synoptic conditions. Two rainfall events under two typical but different synoptic weather patterns are further analyzed. It is shown that the impact of urban land cover and aerosols on precipitation is not only determined by their influence on local convergence but also modulated by large-scale weather systems. For the case with a strong synoptic forcing associated with stronger winds and larger spatial convergence, the UHI and aerosol effects are relatively weak. When the synoptic forcing is weak, however, the UHI and aerosol effects on local convergence dominate. This suggests that synoptic forcing plays a significant role in modulating the urbanization-induced land-cover and aerosol effects on individual rainfall event. Hence precipitation changes due to urbanization effects may offset each other under different synoptic conditions, resulting in little changes in mean precipitation at longer timescales.
NASA Astrophysics Data System (ADS)
Kruschke, Tim; Kunze, Markus; Misios, Stergios; Matthes, Katja; Langematz, Ulrike; Tourpali, Kleareti
2016-04-01
Advanced spectral solar irradiance (SSI) reconstructions differ significantly from each other in terms of the mean solar spectrum, that is the spectral distribution of energy, and solar cycle variability. Largest uncertainties - relative to mean irradiance - are found for the ultraviolet range of the spectrum, a spectral region highly important for radiative heating and chemistry in the stratosphere and troposphere. This study systematically analyzes the effects of employing different SSI reconstructions in long-term (40 years) chemistry-climate model (CCM) simulations to estimate related uncertainties of the atmospheric response. These analyses are highly relevant for the next round of CCM studies as well as climate models within the CMIP6 exercise. The simulations are conducted by means of two state-of-the-art CCMs - CESM1(WACCM) and EMAC - run in "atmosphere-only"-mode. These models are quite different with respect to the complexity of the implemented radiation and chemistry schemes. CESM1(WACCM) features a chemistry module with considerably higher spectral resolution of the photolysis scheme while EMAC employs a radiation code with notably higher spectral resolution. For all simulations, concentrations of greenhouse gases and ozone depleting substances, as well as observed sea surface temperatures (SST) are set to average conditions representative for the year 2000 (for SSTs: mean of decade centered over year 2000) to exclude anthropogenic influences and differences due to variable SST forcing. Only the SSI forcing differs for the various simulations. Four different forcing datasets are used: NRLSSI1 (used as a reference in all previous climate modeling intercomparisons, i.e. CMIP5, CCMVal, CCMI), NRLSSI2, SATIRE-S, and the SSI forcing dataset recommended for the CMIP6 exercise. For each dataset, a solar maximum and minimum timeslice is integrated, respectively. The results of these simulations - eight in total - are compared to each other with respect to their shortwave heating rate differences (additionally collated with line-by-line calculations using libradtran), differences in the photolysis rates, as well as atmospheric circulation features (temperature, zonal wind, geopotential height, etc.). It is shown that atmospheric responses to the different SSI datasets differ significantly from each other. This is a result from direct radiative effects as well as indirect effects induced by ozone feedbacks. Differences originating from using different SSI datasets for the same level of solar activity are in the same order of magnitude as those associated with the 11 year solar cycle within a specific dataset. However, the climate signals related to the solar cycle are quite comparable across datasets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Shi; Qian, Yun; Zhao, Chun
The WRF-Chem model coupled with a single-layer urban canopy model (UCM) is integrated for 5 years at convection-permitting scale to investigate the individual and combined impacts of urbanization-induced changes in land cover and pollutant emissions on regional climate in the Yangtze River Delta (YRD) region in eastern China. Simulations with the urbanization effects reasonably reproduced the observed features of temperature and precipitation in the YRD region. Urbanization over the YRD induces an urban heat island (UHI) effect, which increases the surface temperature by 0.53 °C in summer and increases the annual heat wave days at a rate of 3.7 d yr −1 in themore » major megacities in the YRD, accompanied by intensified heat stress. In winter, the near-surface air temperature increases by approximately 0.7 °C over commercial areas in the cities but decreases in the surrounding areas. Radiative effects of aerosols tend to cool the surface air by reducing net shortwave radiation at the surface. Compared to the more localized UHI effect, aerosol effects on solar radiation and temperature influence a much larger area, especially downwind of the city cluster in the YRD. Results also show that the UHI increases the frequency of extreme summer precipitation by strengthening the convergence and updrafts over urbanized areas in the afternoon, which favor the development of deep convection. In contrast, the radiative forcing of aerosols results in a surface cooling and upper-atmospheric heating, which enhances atmospheric stability and suppresses convection. The combined effects of the UHI and aerosols on precipitation depend on synoptic conditions. Two rainfall events under two typical but different synoptic weather patterns are further analyzed. It is shown that the impact of urban land cover and aerosols on precipitation is not only determined by their influence on local convergence but also modulated by large-scale weather systems. For the case with a strong synoptic forcing associated with stronger winds and larger spatial convergence, the UHI and aerosol effects are relatively weak. When the synoptic forcing is weak, however, the UHI and aerosol effects on local convergence dominate. This suggests that synoptic forcing plays a significant role in modulating the urbanization-induced land-cover and aerosol effects on individual rainfall event. Hence precipitation changes due to urbanization effects may offset each other under different synoptic conditions, resulting in little changes in mean precipitation at longer timescales.« less
Zhong, Shi; Qian, Yun; Zhao, Chun; ...
2017-04-27
The WRF-Chem model coupled with a single-layer urban canopy model (UCM) is integrated for 5 years at convection-permitting scale to investigate the individual and combined impacts of urbanization-induced changes in land cover and pollutant emissions on regional climate in the Yangtze River Delta (YRD) region in eastern China. Simulations with the urbanization effects reasonably reproduced the observed features of temperature and precipitation in the YRD region. Urbanization over the YRD induces an urban heat island (UHI) effect, which increases the surface temperature by 0.53 °C in summer and increases the annual heat wave days at a rate of 3.7 d yr −1 in themore » major megacities in the YRD, accompanied by intensified heat stress. In winter, the near-surface air temperature increases by approximately 0.7 °C over commercial areas in the cities but decreases in the surrounding areas. Radiative effects of aerosols tend to cool the surface air by reducing net shortwave radiation at the surface. Compared to the more localized UHI effect, aerosol effects on solar radiation and temperature influence a much larger area, especially downwind of the city cluster in the YRD. Results also show that the UHI increases the frequency of extreme summer precipitation by strengthening the convergence and updrafts over urbanized areas in the afternoon, which favor the development of deep convection. In contrast, the radiative forcing of aerosols results in a surface cooling and upper-atmospheric heating, which enhances atmospheric stability and suppresses convection. The combined effects of the UHI and aerosols on precipitation depend on synoptic conditions. Two rainfall events under two typical but different synoptic weather patterns are further analyzed. It is shown that the impact of urban land cover and aerosols on precipitation is not only determined by their influence on local convergence but also modulated by large-scale weather systems. For the case with a strong synoptic forcing associated with stronger winds and larger spatial convergence, the UHI and aerosol effects are relatively weak. When the synoptic forcing is weak, however, the UHI and aerosol effects on local convergence dominate. This suggests that synoptic forcing plays a significant role in modulating the urbanization-induced land-cover and aerosol effects on individual rainfall event. Hence precipitation changes due to urbanization effects may offset each other under different synoptic conditions, resulting in little changes in mean precipitation at longer timescales.« less
NASA Technical Reports Server (NTRS)
Zhu, L.; Martins, J. V.; Yu, H.
2012-01-01
This study develops an algorithm for representing detailed spectral features of vegetation albedo based on Moderate Resolution Imaging Spectrometer (MODIS) observations at 7 discrete channels, referred to as the MODIS Enhanced Vegetation Albedo (MEVA) algorithm. The MEVA algorithm empirically fills spectral gaps around the vegetation red edge near 0.7 micrometers and vegetation water absorption features at 1.48 and 1.92 micrometers which cannot be adequately captured by the MODIS 7 channels. We then assess the effects of applying MEVA in comparison to four other traditional approaches to calculate solar fluxes and aerosol direct radiative forcing (DRF) at the top of atmosphere (TOA) based on the MODIS discrete reflectance bands. By comparing the DRF results obtained through the MEVA method with the results obtained through the other four traditional approaches, we show that filling the spectral gap of the MODIS measurements around 0.7 micrometers based on the general spectral behavior of healthy green vegetation leads to significant improvement in the instantaneous aerosol DRF at TOA (up to 3.02Wm(exp -2) difference or 48% fraction of the aerosol DRF, .6.28Wm(exp -2), calculated for high spectral resolution surface reflectance from 0.3 to 2.5 micrometers for deciduous vegetation surface). The corrections of the spectral gaps in the vegetation spectrum in the near infrared, again missed by the MODIS reflectances, also contributes to improving TOA DRF calculations but to a much lower extent (less than 0.27Wm(exp -2), or about 4% of the instantaneous DRF). Compared to traditional approaches, MEVA also improves the accuracy of the outgoing solar flux between 0.3 to 2.5 micrometers at TOA by over 60Wm(exp -2) (for aspen 3 surface) and aerosol DRF by over 10Wm(exp -2) (for dry grass). Specifically, for Amazon vegetation types, MEVA can improve the accuracy of daily averaged aerosol radiative forcing in the spectral range of 0.3 to 2.5 micrometers at equator at the equinox by 3.7Wm(exp -2). These improvements indicate that MEVA can contribute to regional climate studies over vegetated areas and can help to improve remote sensing-based studies of climate processes and climate change.
NASA Astrophysics Data System (ADS)
Fernández, A. J.; Molero, F.; Salvador, P.; Revuelta, A.; Becerril-Valle, M.; Gómez-Moreno, F. J.; Artíñano, B.; Pujadas, M.
2017-11-01
Aerosol measurements at two AERONET (AErosol RObotic NETwork) sites of the Iberian Peninsula: Madrid (40°.45N, 3.72W) and La Coruña (43°.36N, 8°.42W) have been analyzed for the period 2012-2015 to assess aerosol optical properties (intensive and extensive) throughout the atmospheric column and their radiative forcing (RF) and radiative forcing efficiency (RFeff) estimates at the Bottom and Top Of Atmosphere (BOA and TOA respectively). Specific conditions as dust-free and African dust have been considered for the study. Unprecedented, this work uses the quantification of the African dust aerosol at ground level which allows us to study such AERONET products at different intensity levels of African events: Low (L), High (H) and very high (VH). The statistical difference between dust-free and African dust conditions on the aforementioned parameters, quantified by means of the non-parametric Kolmogorov-Smirnov test, is quite clear in Madrid, however it is not in La Coruña. Scattering Angstrom Exponent (SAE) and Absorption Angstrom Exponent (AAE) were found to be 1.64 ± 0.29 and 1.14 ± 0.23 respectively in Madrid for dust-free conditions because typical aerosol sources are traffic emissions and residential heating, and black carbon is an important compound in this aerosol kind. On the other hand, SAE and AAE were 0.96 ± 0.60 and 1.44 ± 0.51 for African dust conditions in this location. RF (at shortwave radiation) seems to decrease as the African dust contribution at ground level is larger which indicates the cooling effect of African dust aerosol in Madrid. We have also proved the potential of a 2D-cluster analysis based on AAE and SAE to differentiate both situations in Madrid. Conversely, it is suggested that aerosols observed in La Coruña under dust-free conditions might come from different sources. Then, SAE and AAE are not good enough indicators to distinguish between dust-free and African dust conditions. Besides, as La Coruña is at a further distance than Madrid from the African dust source it is believed that aerosol optical properties might significantly change due to some deposition and aging/coating process and therefore the cooling effect (RF decreases as the African dust contribution at ground level is larger) is not observed.
A Predictor Analysis Framework for Surface Radiation Budget Reprocessing Using Design of Experiments
NASA Astrophysics Data System (ADS)
Quigley, Patricia Allison
Earth's Radiation Budget (ERB) is an accounting of all incoming energy from the sun and outgoing energy reflected and radiated to space by earth's surface and atmosphere. The National Aeronautics and Space Administration (NASA)/Global Energy and Water Cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project produces and archives long-term datasets representative of this energy exchange system on a global scale. The data are comprised of the longwave and shortwave radiative components of the system and is algorithmically derived from satellite and atmospheric assimilation products, and acquired atmospheric data. It is stored as 3-hourly, daily, monthly/3-hourly, and monthly averages of 1° x 1° grid cells. Input parameters used by the algorithms are a key source of variability in the resulting output data sets. Sensitivity studies have been conducted to estimate the effects this variability has on the output data sets using linear techniques. This entails varying one input parameter at a time while keeping all others constant or by increasing all input parameters by equal random percentages, in effect changing input values for every cell for every three hour period and for every day in each month. This equates to almost 11 million independent changes without ever taking into consideration the interactions or dependencies among the input parameters. A more comprehensive method is proposed here for the evaluating the shortwave algorithm to identify both the input parameters and parameter interactions that most significantly affect the output data. This research utilized designed experiments that systematically and simultaneously varied all of the input parameters of the shortwave algorithm. A D-Optimal design of experiments (DOE) was chosen to accommodate the 14 types of atmospheric properties computed by the algorithm and to reduce the number of trials required by a full factorial study from millions to 128. A modified version of the algorithm was made available for testing such that global calculations of the algorithm were tuned to accept information for a single temporal and spatial point and for one month of averaged data. The points were from each of four atmospherically distinct regions to include the Amazon Rainforest, Sahara Desert, Indian Ocean and Mt. Everest. The same design was used for all of the regions. Least squares multiple regression analysis of the results of the modified algorithm identified those parameters and parameter interactions that most significantly affected the output products. It was found that Cosine solar zenith angle was the strongest influence on the output data in all four regions. The interaction of Cosine Solar Zenith Angle and Cloud Fraction had the strongest influence on the output data in the Amazon, Sahara Desert and Mt. Everest Regions, while the interaction of Cloud Fraction and Cloudy Shortwave Radiance most significantly affected output data in the Indian Ocean region. Second order response models were built using the resulting regression coefficients. A Monte Carlo simulation of each model extended the probability distribution beyond the initial design trials to quantify variability in the modeled output data.
Evaluating Surface Flux Results from CERES-FLASHFlux
NASA Astrophysics Data System (ADS)
Wilber, A. C.; Stackhouse, P. W., Jr.; Kratz, D. P.; Gupta, S. K.; Sawaengphokhai, P.
2016-12-01
The Clouds and Earth's Radiant Energy System (CERES) mission provides TOA (Top-of-Atmosphere) and surface radiative flux products for each CERES footprint (Single Scanner Footprint) and also time integrated and spatially averaged (TISA) to provide 1ox1o fluxes at various temporal averages. The CERES TISA products are available to the public within 3-6 months of observation. The CERES Fast Longwave and SHortwave radiative Flux (FLASHFlux) data products were developed to provide a rapid release version of the CERES data products. FLASHFlux data products are made available to the research and applications communities within one week of the satellite observations. Over the last several years, the CERES team has contributed to a section on the variability of radiation budget at the Top-of-Atmosphere in the annual "State of the Climate Report" published in BAMS using CERES TISA and FLASHFlux data products. Recently, the FLASHFlux data were used to investigate the radiative impacts of the intense 2015-2016 El Nino event. In addition FLASHFlux date are routinely used by applied science in energy related and agricultural sectors. The current version of FLASHFlux is being upgraded to FLASHFlux Version4A to improve consistency with the climate quality Edition 4 CERES data products. This presentation will describe the planned changes including the change to the latest meteorological product from Global Modeling and Assimilation Office (GMAO), GEOS FP-IT (5.12.4). GEOS 5.12.4 is an assimilation that is consistent with MERRA-2. We present comparisons of global and regional changes in the TOA and surface radiative fluxes as a result of the upgrade for both longwave (LW) and shortwave (SW) surface fluxes. We also compare the data products against ground measurements using data from the Baseline Surface Radiation Network (BSRN) - including NOAA SURFRAD, Atmospheric Radiation Measurement (ARM) and Ocean buoy measurements from Woods Hole Oceanographic Institute (WHOI).
NASA Astrophysics Data System (ADS)
Sigmund, Armin; Pfister, Lena; Sayde, Chadi; Thomas, Christoph K.
2017-06-01
In recent years, the spatial resolution of fiber-optic distributed temperature sensing (DTS) has been enhanced in various studies by helically coiling the fiber around a support structure. While solid polyvinyl chloride tubes are an appropriate support structure under water, they can produce considerable errors in aerial deployments due to the radiative heating or cooling. We used meshed reinforcing fabric as a novel support structure to measure high-resolution vertical temperature profiles with a height of several meters above a meadow and within and above a small lake. This study aimed at quantifying the radiation error for the coiled DTS system and the contribution caused by the novel support structure via heat conduction. A quantitative and comprehensive energy balance model is proposed and tested, which includes the shortwave radiative, longwave radiative, convective, and conductive heat transfers and allows for modeling fiber temperatures as well as quantifying the radiation error. The sensitivity of the energy balance model to the conduction error caused by the reinforcing fabric is discussed in terms of its albedo, emissivity, and thermal conductivity. Modeled radiation errors amounted to -1.0 and 1.3 K at 2 m height but ranged up to 2.8 K for very high incoming shortwave radiation (1000 J s-1 m-2) and very weak winds (0.1 m s-1). After correcting for the radiation error by means of the presented energy balance, the root mean square error between DTS and reference air temperatures from an aspirated resistance thermometer or an ultrasonic anemometer was 0.42 and 0.26 K above the meadow and the lake, respectively. Conduction between reinforcing fabric and fiber cable had a small effect on fiber temperatures (< 0.18 K). Only for locations where the plastic rings that supported the reinforcing fabric touched the fiber-optic cable were significant temperature artifacts of up to 2.5 K observed. Overall, the reinforcing fabric offers several advantages over conventional support structures published to date in the literature as it minimizes both radiation and conduction errors.
CERES FLASHFlux: CERES Data Products for Science and Applications
NASA Astrophysics Data System (ADS)
Sawaengphokhai, P.; Stackhouse, P. W.; Kratz, D. P.; Gupta, S. K.; Wilber, A. C.
2013-12-01
The Clouds and Earth's Radiant Energy System (CERES) Fast Longwave And SHortwave Radiative Fluxes (FLASHFlux) data products were introduced at the NASA Langley Research Center to address the needs of the science community for global surface and top-of-atmosphere (TOA) radiative fluxes on a near real-time basis. This has been accomplished by enhancing the speed of CERES processing using simplified calibration and averaging techniques to produce daily TOA fluxes and fast radiation parameterizations to produce daily surface fluxes within a week of satellite observation. While the resulting products are not considered to be sufficiently accurate for studying long-term climate trends, they satisfy the needs for many near real-time scientific data analyses and industrial applications. Currently, FLASHFlux produces daily Level-2 Single Scanner Footprint (SSF) and Level-3 Temporally Interpolated and Spatially Averaged (TISA) data products. The SSF products are derived for the cross-track CERES instrument on Terra and Aqua separately. The TISA data products are derived using measurements from the CERES instruments from Terra and Aqua together. TOA fluxes from SSF have been used to validate flux products from CloudSat and Megha-Tropiques and are available within about 4 days of real-time.. Additionally, we show the usefulness of the FLASHFlux TISA top-of-atmosphere data products for near real term application such as extending the CERES Energy Balance And Filled (EBAF) data to assess Earth's radiation budget variability as presented in the State of the Climate 2012. The FLASHFlux SSF and TISA employ the Langley Parameterize Shortwave Algorithm (LPSA) and Langley Parameterize Longwave Algorithm (LPLA) to derive daily surface flux estimates within about 6-7 days of satellite observation. Preliminary surface validation of the FLASHFlux Version3A shows underestimation less than 5 Wm-2 for downward longwave flux and less than 20 Wm-2 for downward shortwave flux. Improvement in cloud transmission algorithm is currently being investigated to address the underestimation in LPSA. Nevertheless, we illustrate the usefulness of the surface TISA data products, particularly the daily averaged solar fluxes, in the monitoring solar power systems either standalone or attached to buildings. The daily solar flux products are shown to correlate well to surface measurements and solar system output.
NASA Astrophysics Data System (ADS)
Pinker, R. T.; Ma, Y.; Nussbaumer, E. A.
2012-04-01
The overall goal of the MEaSUREs activity titled: "Developing Consistent Earth System Data Records for the Global Terrestrial Water Cycle" is to develop consistent, long-term Earth System Data Records (ESDRs) for the major components of the terrestrial water cycle at a climatic time scale. The shortwave (SW) and longwave (LW) radiative fluxes at the Earth's surface determine the exchange of energy between the land and the atmosphere are the focus of this presentation. During the last two decades, significant progress has been made in assessing the Earth Radiation Balance from satellite observations. Yet, satellite based estimates differ from each other and long term satellite observations at global scale are not readily available. There is a need to utilize existing records of satellite observations and to improve currently available estimates. This paper reports on improvements introduced to an existing methodology to estimate shortwave (SW) radiative fluxes within the atmospheric system, on the development of a new inference scheme for deriving LW fluxes, the implementation of the approach with the ISCCP DX observations and improved atmospheric inputs for the period of 1983-2007, evaluation against ground observations, and comparison with independent satellite methods and numerical models. The resulting ESDRs from the entire MEaSUREs Project are intended to provide a consistent basis for estimating the mean state and variability of the land surface water cycle at a spatial scale relevant to major global river basins. MEaSUREs Project "Developing Consistent Earth System Data Records for the Global Terrestrial Water Cycle" Team Members: E. F. Wood (PI)1, T. J Bohn2, J. L Bytheway3, X. Feng4, H. Gao2, P. R.Houser4 (CO-I), C. D Kummerow3 (CO-I), D. P Lettenmaier2 (CO-I), C. Li5, Y. Ma5, R. F MacCracken4, M. Pan1, R. T Pinker5 (CO-I), A. K. Sahoo1, J. Sheffield1 1. Dept of CEE, Princeton University, Princeton, NJ, USA. 2. Dept of CEE, University of Washington, Seattle, WA, USA. 3. Dept of Atmospheric Science, Fort Collins, CO, USA. 4. Dept of Geography and GeoInformation Scie., George Mason University, Fairfax, VA, USA. 5. Dept of Meteorology, University of Maryland, College Park, MD, USA.
Correcting Satellite Image Derived Surface Model for Atmospheric Effects
NASA Technical Reports Server (NTRS)
Emery, William; Baldwin, Daniel
1998-01-01
This project was a continuation of the project entitled "Resolution Earth Surface Features from Repeat Moderate Resolution Satellite Imagery". In the previous study, a Bayesian Maximum Posterior Estimate (BMPE) algorithm was used to obtain a composite series of repeat imagery from the Advanced Very High Resolution Radiometer (AVHRR). The spatial resolution of the resulting composite was significantly greater than the 1 km resolution of the individual AVHRR images. The BMPE algorithm utilized a simple, no-atmosphere geometrical model for the short-wave radiation budget at the Earth's surface. A necessary assumption of the algorithm is that all non geometrical parameters remain static over the compositing period. This assumption is of course violated by temporal variations in both the surface albedo and the atmospheric medium. The effect of the albedo variations is expected to be minimal since the variations are on a fairly long time scale compared to the compositing period, however, the atmospheric variability occurs on a relatively short time scale and can be expected to cause significant errors in the surface reconstruction. The current project proposed to incorporate an atmospheric correction into the BMPE algorithm for the purpose of investigating the effects of a variable atmosphere on the surface reconstructions. Once the atmospheric effects were determined, the investigation could be extended to include corrections various cloud effects, including short wave radiation through thin cirrus clouds. The original proposal was written for a three year project, funded one year at a time. The first year of the project focused on developing an understanding of atmospheric corrections and choosing an appropriate correction model. Several models were considered and the list was narrowed to the two best suited. These were the 5S and 6S shortwave radiation models developed at NASA/GODDARD and tested extensively with data from the AVHRR instrument. Although the 6S model was a successor to the 5S and slightly more advanced, the 5S was selected because outputs from the individual components comprising the short-wave radiation budget were more easily separated. The separation was necessary since both the 5S and 6S did not include geometrical corrections for terrain, a fundamental constituent of the BMPE algorithm. The 5S correction code was incorporated into the BMPE algorithm and many sensitivity studies were performed.
Radiative effects of global MODIS cloud regimes
Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji
2018-01-01
We update previously published MODIS global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 dataset. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux datasets. Our results clearly show the CRs are radiatively distinct in terms of shortwave, longwave and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance datasets suffering from imperfect spatiotemporal matching depend on CR, and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations. PMID:29619289
Radiative effects of global MODIS cloud regimes.
Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji
2016-03-16
We update previously published MODIS global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 dataset. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux datasets. Our results clearly show the CRs are radiatively distinct in terms of shortwave, longwave and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance datasets suffering from imperfect spatiotemporal matching depend on CR, and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations.
Radiative Effects of Global MODIS Cloud Regimes
NASA Technical Reports Server (NTRS)
Oraiopoulos, Lazaros; Cho, Nayeong; Lee, Dong Min; Kato, Seiji
2016-01-01
We update previously published MODIS global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 dataset. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux datasets. Our results clearly show the CRs are radiatively distinct in terms of shortwave, longwave and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance datasets suffering from imperfect spatiotemporal matching depend on CR, and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations.
Site selection and directional models of deserts used for ERBE validation targets
NASA Technical Reports Server (NTRS)
Staylor, W. F.
1986-01-01
Broadband shortwave and longwave radiance measurements obtained from the Nimbus 7 Earth Radiation Budget scanner were used to develop reflectance and emittance models for the Sahara, Gibson, and Saudi Deserts. These deserts will serve as in-flight validation targets for the Earth Radiation Budget Experiment being flown on the Earth Radiation Budget Satellite and two National Oceanic and Atmospheric Administration polar satellites. The directional reflectance model derived for the deserts was a function of the sum and product of the cosines of the solar and viewing zenith angles, and thus reciprocity existed between these zenith angles. The emittance model was related by a power law of the cosine of the viewing zenith angle.
Shortwave surface radiation network for observing small-scale cloud inhomogeneity fields
NASA Astrophysics Data System (ADS)
Lakshmi Madhavan, Bomidi; Kalisch, John; Macke, Andreas
2016-03-01
As part of the High Definition Clouds and Precipitation for advancing Climate Prediction Observational Prototype Experiment (HOPE), a high-density network of 99 silicon photodiode pyranometers was set up around Jülich (10 km × 12 km area) from April to July 2013 to capture the small-scale variability of cloud-induced radiation fields at the surface. In this paper, we provide the details of this unique setup of the pyranometer network, data processing, quality control, and uncertainty assessment under variable conditions. Some exemplary days with clear, broken cloudy, and overcast skies were explored to assess the spatiotemporal observations from the network along with other collocated radiation and sky imager measurements available during the HOPE period.
NASA Technical Reports Server (NTRS)
Hucek, Richard R.; Ardanuy, Philip; Kyle, H. Lee
1990-01-01
The results of a constrained, wide field-of-view radiometer measurement deconvolution are presented and compared against higher resolution results obtained from the Earth Radiation Budget instrument on the Nimbus-7 satellite and from the Earth Radiation Budget Experiment. The method is applicable to both longwave and shortwave observations and is specifically designed to treat the problem of anisotropic reflection and emission at the top of the atmosphere as well as low signal-to-noise ratios that arise regionally within a field. The procedure is reviewed, and the improvements in resolution obtained are examined. Some minor improvements in the albedo algorithm are also described.
Adesina, Ayodele Joseph; Piketh, Stuart; Kanike, Raghavendra Kumar; Venkataraman, Sivakumar
2017-07-01
The detailed analysis of columnar optical and microphysical properties of aerosols obtained from the AErosol RObotic NETwork (AERONET) Cimel sun photometer operated at Skukuza (24.98° S, 31.60° E, 150 m above sea level), South Africa was carried out using the level 2.0 direct sun and inversion products measured during 1999-2010. The observed aerosol optical depth (AOD) was generally low over the region, with high values noted in late winter (August) and mid-spring (September and October) seasons. The major aerosol types found during the study period were made of 3.74, 69.63, 9.34, 8.83, and 8.41% for polluted dust (PD), polluted continental (PC), non-absorbing (NA), slightly absorbing (SA), and moderately absorbing (MA) aerosols, respectively. Much attention was given to the aerosol fine- and coarse-modes deduced from the particle volume concentration, effective radius, and fine-mode volume fraction. The aerosol volume size distribution pattern was found to be bimodal with the fine-mode showing predominance relative to coarse-mode during the winter and spring seasons, owing to the onset of the biomass burning season. The mean values of total, fine-, and coarse-mode volume particle concentrations were 0.07 ± 0.04, 0.03 ± 0.03, and 0.04 ± 0.02 μm 3 μm -2 , respectively, whereas the mean respective effective radii observed at Skukuza for the abovementioned modes were 0.35 ± 0.17, 0.14 ± 0.02, and 2.08 ± 0.02 μm. The averaged shortwave direct aerosol radiative forcing (ARF) observed within the atmosphere was found to be positive (absorption or heating effect), whereas the negative forcing in the surface and TOA depicted significant cooling effect due to more scattering type particles.
NASA Technical Reports Server (NTRS)
Wang, J.; Park, S.; Zeng, J.; Ge, C.; Yang, K.; Carn, S.; Krotkov, N.; Omar, A. H.
2013-01-01
Volcanic SO2 column amount and injection height retrieved from the Ozone Monitoring Instrument (OMI) with the Extended Iterative Spectral Fitting (EISF) technique are used to initialize a global chemistry transport model (GEOS-Chem) to simulate the atmospheric transport and lifecycle of volcanic SO2 and sulfate aerosol from the 2008 Kasatochi eruption, and to subsequently estimate the direct shortwave, top-of-the-atmosphere radiative forcing of the volcanic sulfate aerosol. Analysis shows that the integrated use of OMI SO2 plume height in GEOS-Chem yields: (a) good agreement of the temporal evolution of 3-D volcanic sulfate distributions between model simulations and satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP), and (b) an e-folding time for volcanic SO2 that is consistent with OMI measurements, reflecting SO2 oxidation in the upper troposphere and stratosphere is reliably represented in the model. However, a consistent (approx. 25 %) low bias is found in the GEOS-Chem simulated SO2 burden, and is likely due to a high (approx.20 %) bias of cloud liquid water amount (as compared to the MODIS cloud product) and the resultant stronger SO2 oxidation in the GEOS meteorological data during the first week after eruption when part of SO2 underwent aqueous-phase oxidation in clouds. Radiative transfer calculations show that the forcing by Kasatochi volcanic sulfate aerosol becomes negligible 6 months after the eruption, but its global average over the first month is -1.3W/sq m, with the majority of the forcing-influenced region located north of 20degN, and with daily peak values up to -2W/sq m on days 16-17. Sensitivity experiments show that every 2 km decrease of SO2 injection height in the GEOS-Chem simulations will result in a approx.25% decrease in volcanic sulfate forcing; similar sensitivity but opposite sign also holds for a 0.03 m increase of geometric radius of the volcanic aerosol particles. Both sensitivities highlight the need to characterize the SO2 plume height and aerosol particle size from space. While more research efforts are warranted, this study is among the first to assimilate both satellite-based SO2 plume height and amount into a chemical transport model for an improved simulation of volcanic SO2 and sulfate transport.
Douglas Allen; William Dietrich; Peter Baker; Frank Ligon; Bruce Orr
2007-01-01
We describe a mechanistically-based stream model, BasinTemp, which assumes that direct shortwave radiation moderated by riparian and topographic shading, controls stream temperatures during the hottest part of the year. The model was developed to support a temperature TMDL for the South Fork Eel basin in Northern California and couples a GIS and a 1-D energy balance...
Do Southern Ocean Cloud Feedbacks Matter for 21st Century Warming?
NASA Astrophysics Data System (ADS)
Frey, W. R.; Maroon, E. A.; Pendergrass, A. G.; Kay, J. E.
2017-12-01
Cloud phase improvements in a state-of-the-art climate model produce a large 1.5 K increase in equilibrium climate sensitivity (ECS, the surface warming in response to instantaneously doubled CO2) via extratropical shortwave cloud feedbacks. Here we show that the same model improvements produce only a small surface warming increase in a realistic 21st century emissions scenario. The small 21st century warming increase is attributed to extratropical ocean heat uptake. Southern Ocean mean-state circulation takes up heat while a slowdown in North Atlantic circulation acts as a feedback to slow surface warming. Persistent heat uptake by extratropical oceans implies that extratropical cloud biases may not be as important to 21st century warming as biases in other regions. Observational constraints on cloud phase and shortwave radiation that produce a large ECS increase do not imply large changes in 21st century warming.
NASA Technical Reports Server (NTRS)
Avis, L. M.; Green, R. N.; Suttles, J. T.; Gupta, S. K.
1984-01-01
Computer simulations of a least squares estimator operating on the ERBE scanning channels are discussed. The estimator is designed to minimize the errors produced by nonideal spectral response to spectrally varying and uncertain radiant input. The three ERBE scanning channels cover a shortwave band a longwave band and a ""total'' band from which the pseudo inverse spectral filter estimates the radiance components in the shortwave band and a longwave band. The radiance estimator draws on instantaneous field of view (IFOV) scene type information supplied by another algorithm of the ERBE software, and on a priori probabilistic models of the responses of the scanning channels to the IFOV scene types for given Sun scene spacecraft geometry. It is found that the pseudoinverse spectral filter is stable, tolerant of errors in scene identification and in channel response modeling, and, in the absence of such errors, yields minimum variance and essentially unbiased radiance estimates.
van der Laan, J. D.; Sandia National Lab.; Scrymgeour, D. A.; ...
2015-03-13
We find for infrared wavelengths there are broad ranges of particle sizes and refractive indices that represent fog and rain where the use of circular polarization can persist to longer ranges than linear polarization. Using polarization tracking Monte Carlo simulations for varying particle size, wavelength, and refractive index, we show that for specific scene parameters circular polarization outperforms linear polarization in maintaining the intended polarization state for large optical depths. This enhancement with circular polarization can be exploited to improve range and target detection in obscurant environments that are important in many critical sensing applications. Specifically, circular polarization persists bettermore » than linear for radiation fog in the short-wave infrared, for advection fog in the short-wave infrared and the long-wave infrared, and large particle sizes of Sahara dust around the 4 micron wavelength.« less
NASA Astrophysics Data System (ADS)
Wang, P.; Knap, W. H.; Kuipers Munneke, P.; Stammes, P.
2009-04-01
During the last two decades, several attempts have been made to achieve agreement between clear-sky shortwave broadband irradiance models and surface measurements of direct and diffuse irradiance. In general, models and measurements agreed well for the direct component but closing the gap for diffuse irradiances remained problematic. The number of studies reporting a satisfactory degree of closure for both direct and diffuse irradiance is still limited, which motivated us to perform the study presented here. In this paper a clear-sky shortwave closure analysis is presented for the Baseline Surface Radiation Network (BSRN) site of Cabauw, the Netherlands (51.97 °N, 4.93 °E). The analysis is based on an exceptional period of fine weather in the first half of May 2008 during the Intensive Measurement Period At the Cabauw Tower (IMPACT), an activity of the European Integrated project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI). Although IMPACT produced a wealth of data, it was decided to conduct the closure analysis using routine measurements only, provided by BSRN and the Aerosol Robotic Network (AERONET), completed with radiosonde obervations. The rationale for this pragmatic approach is the possibility of applying the method presented here to other periods and (BSRN) sites, where routine measurements are readily available, without having to deal with the investments and restrictions of an intensive observation period. The analysis is based on a selection of 72 comparisons on 6 days between BSRN measurements and Doubling Adding KNMI (DAK) model simulations of direct, diffuse, and global irradiance. The data span a wide range of aerosol properties, water vapour columns, and solar zenith angles. The model input consisted of operational Aerosol Robotic Network (AERONET) aerosol products and radiosonde data. On the basis of these data excellent closure was obtained: the mean differences between model and measurements are 2 W/m2 (+0.2%) for direct irradiance, 1 W/m2 (+0.8%) for diffuse irradiance, and 2 W/m2 (+0.3%) for global irradiance.
Satellite Data Support for the ARM Climate Research Facility, 8/01/2009 - 7/31/2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minnis, Patrick; Khaiyer, Mandana M
This report summarizes the support provided by NASA Langley Research for the DOE ARM Program in the form of cloud and radiation products derived from satellite imager data for the period between 8/01/09 through 7/31/15. Cloud properties such as cloud amount, height, and optical depth as well as outgoing longwave and shortwave broadband radiative fluxes were derived from geostationary and low-earth orbiting satellite imager radiance measurements for domains encompassing ARM permanent sites and field campaigns during the performance period. Datasets provided and documents produced are listed.
NASA Technical Reports Server (NTRS)
Simpson, J. J.; Frouin, R.
1996-01-01
Grant activities accomplished during this reporting period are summarized. The contributions of the principle investigator are reported under four categories: (1) AHVRR (Advanced Very High Resolution Radiometer) data; (2) GOES (Geostationary Operational Environ Satellite) data; (3) system software design; and (4) ATSR (Along Track Scanning Radiometer) data. The contributions of the associate investigator are reported for:(1) longwave irradiance at the surface; (2) methods to derive surface short-wave irradiance; and (3) estimating PAR (photo-synthetically active radiation) surface. Several papers have resulted. Abstracts for each paper are provided.
NASA Technical Reports Server (NTRS)
Xi, B.; Minnis, P.
2006-01-01
Data collected at the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Central Facility (SCF) are analyzed to determine the monthly and hourly variations of cloud fraction and radiative forcing between January 1997 and December 2002. Cloud fractions are estimated for total cloud cover and for single-layered low (0-3 km), middle (3-6 km), and high clouds (more than 6 km) using ARM SCG ground-based paired lidar-radar measurements. Shortwave (SW) and longwave (LW) fluxes are derived from up- and down-looking standard precision spectral pyranometers and precision infrared radiometer measurements with uncertainties of approximately 10 Wm(exp -2). The annual averages of total, and single-layered low, middle and high cloud fractions are 0.49, 0.11, 0.03, and 0.17, respectively. Both total and low cloud amounts peak during January and February and reach a minimum during July and August, high clouds occur more frequently than other types of clouds with a peak in summer. The average annual downwelling surface SW fluxes for total and low clouds (151 and 138 Wm(exp-2), respectively) are less than those under middle and high clouds (188 and 201 Wm(exp -2), respectively), but the downwelling LW fluxes (349 and 356 Wm(exp -2)) underneath total and low clouds are greater than those from middle and high clouds (337 and 333 Wm(exp -2)). Low clouds produce the largest LW warming (55 Wm(exp -2) and SW cooling (-91 Wm(exp -2)) effects with maximum and minimum absolute values in spring and summer, respectively. High clouds have the smallest LW warming (17 Wm(exp -2)) and SW cooling (-37 Wm(exp -2)) effects at the surface. All-sky SW CRF decreases and LW CRF increases with increasing cloud fraction with mean slopes of -0.984 and 0.616 Wm(exp -2)%(exp -1), respectively. Over the entire diurnal cycle, clouds deplete the amount of surface insolation more than they add to the downwelling LW flux. The calculated CRFs do not appear to be significantly affected by uncertainties in data sampling and clear-sky screening. Traditionally, cloud radiative forcing includes, not only the radiative impact of the hydrometeors, but also the changes in the environment. Taken together over the ARM SCF, changes in humidity and surface albedo between clear and cloudy conditions offset approximately 20% of the NET radiative forcing caused by the cloud hydrometeors alone. Variations in water vapor, on average, account for 10% and 83% of the SW and LW CRFs, respectively, in total cloud cover conditions. The error analysis further reveals that the cloud hydrometeors dominate the SW CRF, while water vapor changes are most important for LW flux changes in cloudy skies. Similar studies over other locales are encouraged where water and surface albedo changes from clear to cloudy conditions may be much different than observed over the ARM SCF.
NASA Astrophysics Data System (ADS)
Shi, H.
2017-12-01
We presented a method to identify and calculate cloud radiative forcing (CRF) and horizontal chore length (L) of shallow convective clouds (SCC) using a network of 9 broadband pyranometers. The analyzing data was collected from the SCC campaign during two years summers (2015 2016) at Baiqi site over Inner Mongolia grassland. The network of pyranometers was operated across a spatial domain covering 42.16-42.30° N and 114.83-114.98° E. The SCC detection method was verified by observer reports and cameras, which showed that the detection method and human observations were in agreement about 75 %. The differences between the SCC detection method and human observations can be responsible for following factors: 1) small or dissipating clouds can be neglected for the value of 1 min of temporal resolution of pyranometer; 2) human observation recorded weather conditions four times every day; 3) SCC was indistinguishable from coexistence of SCC and Cirrus (Ci); 4) the SCC detection method is weighted toward clouds crossing the sun's path, while the human observer can view clouds over the entire sky. The deviation of L can be attributed to two factors: 1) the accuracy of wind speed at height of SCC and the ratio of horizontal and vertical length play a key role in determine values of L; 2) the effect of variance of solar zenith angle can be negligible. The downwelling shortwave CRF of SCC was -134.1 Wm-2. The average value of L of SCC was 1129 m. Besides, the distribution of normalized cloud chore length agreed well with power-law fit.
Observed Cloud Properties Above the Northern Indian Ocean During CARDEX 2012
NASA Astrophysics Data System (ADS)
Gao, L.; Wilcox, E. M.
2016-12-01
An analysis of cloud microphysical, macrophysical and radiative properties during the dry winter monsoon season above the northern Indian Ocean is presented. The Cloud Aerosol Radiative Forcing Experiment (CARDEX), conducted from 16 February to 30 March 2012 at the Maldives Climate Observatory on Hanimaadhoo (MCOH), used autonomous unmanned aerial vehicles (UAVs) to measure the aerosol profiles, water vapor flux and cloud properties concurrent with continuous ground measurements of surface aerosol and meteorological variables as well as the total-column precipitable water vapor (PWV) and the cloud liquid water path (LWP). Here we present the cloud properties only for the cases with lower atmospheric water vapor using the criterion that the PWV less than 40 kg/m2. This criterion acts to filter the data to control for the natural meteorological variability in the region according to previous studies. The high polluted case is found to correlate with warmer temperature, higher relative humidity in boundary layer and lower lifted condensation level (LCL). Micro Pulse Lidar (MPL) retrieved cloud base height coincides with calculated LCL height which is lower for high polluted case. Meanwhile satellite retrieved cloud top height didn't show obvious variation indicating cloud deepening which is consistent with the observed greater cloud LWP in high polluted case. Those high polluted clouds are associated with more cloud droplets and smaller effective radius and are generally becoming narrower due to the stronger cloud side evaporation-entrainment effect and becoming deeper due to more moist static energy. Clouds in high polluted condition become brighter with higher albedo which can cause a net shortwave forcing over -40 W/m2 in this region.
NASA Astrophysics Data System (ADS)
Mueller-Stoffels, M.; Wackerbauer, R.
2010-12-01
The Arctic ocean and sea ice form a feedback system which plays an important role in the global climate. Variations of the global ice and snow distribution have a significant effect on the planetary albedo which governs the absorption of shortwave radiation. The complexity of highly parametrized GCMs makes it very difficult to assess single feedback processes in the climate system without the concurrent use of simple models where the physics are understood [1][2][3]. We introduce a complex systems model to investigate thermodynamic feedback processes in an Arctic ice-ocean layer. The ice-ocean layer is represented as a regular network of coupled cells. The state of each cell is determined by its energy content, which also defines the phase of the cell. The energy transport between cells is described with nonlinear and heterogeneous diffusion constants. And the time-evolution of the ice-ocean is driven by shortwave, longwave and lateral oceanic and atmospheric thermal forcing. This model is designed to study the stability of an ice cover under various heat intake scenarios. The network structure of the model allows to easily introduce albedo heterogeneities due to aging ice, wind blown snow cover, and ice movement to explore the time-evolution and pattern formation (melt ponds) processes in the Arctic sea ice. The solely thermodynamic model exhibits two stable states; one in the perennially ice covered domain and one in the perennially open water domain. Their existence is due to the temperature dependence of the longwave radiative budget. Transition between these states can be forced via lateral heat fluxes. During the transition from the ice covered to the open water stable state the ice albedo feedback effects are manifested as an increased warming rate of the ice cover together with enhanced seasonal energy oscillations. In the current model realization seasonal ice cover is present as a transient state only. Furthermore, the model exhibits hysteresis between the ice covered and the open water state when varying the lateral atmospheric (or oceanic) heat intake. Once the ice-ocean layer has transitioned from the ice covered to the open water stable state significant cooling (reduction of lateral fluxes) is necessary to return to the ice covered stable state. We also find that ocean heat fluxes are more efficient than atmospheric heat fluxes to melt Arctic sea ice; only small portions of heat entering from the bottom of the ice-ocean layer induce already a transition to the stable asymptotic state with perennial open water. This indicates that ocean currents, understood as heat conveyors, can play a significant role in melting continuous ice covers. This is consistent with the findings of Shimada et al. for the Canada basin [4]. References: [1] S. Bony et al., How well do we understand and evaluate climate change feedback processes?, J of Climate 19, 3445 (2006). [2]I. Eisenman and J.S. Wettlaufer, Nonlinear threshold behavior during the loss of Arctic sea ice, PNAS 106, 28 (2009). [3]A.S. Thorndike, A Toy Model Linking Atmospheric and Thermal Radiation and Sea Ice Growth, JGR 97, 9401 (1992). [4] K. Shimada et al., Paci[|#12#|]c Ocean inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean, GRL 33, L08605 (2006).
NASA Technical Reports Server (NTRS)
Kato, Seiji; Rose, Fred G.; Rutan, David A.; Charlock, Thomas P.
2008-01-01
The zonal mean atmospheric cloud radiative effect, defined as the difference of the top-of-atmosphere (TOA) and surface cloud radiative effects, is estimated from three years of Clouds and the Earth's Radiant Energy System (CERES) data. The zonal mean shortwave effect is small, though it tends to be positive (warming). This indicates that clouds increase shortwave absorption in the atmosphere, especially in midlatitudes. The zonal mean atmospheric cloud radiative effect is, however, dominated by the longwave effect. The zonal mean longwave effect is positive in the tropics and decreases with latitude to negative values (cooling) in polar regions. The meridional gradient of cloud effect between midlatitude and polar regions exists even when uncertainties in the cloud effect on the surface enthalpy flux and in the modeled irradiances are taken into account. This indicates that clouds increase the rate of generation of mean zonal available potential energy. Because the atmospheric cooling effect in polar regions is predominately caused by low level clouds, which tend to be stationary, we postulate that the meridional and vertical gradients of cloud effect increase the rate of meridional energy transport by dynamics in the atmosphere from midlatitude to polar region, especially in fall and winter. Clouds then warm the surface in polar regions except in the Arctic in summer. Clouds, therefore, contribute in increasing the rate of meridional energy transport from midlatitude to polar regions through the atmosphere.
NASA Astrophysics Data System (ADS)
Xie, Shengbo; Qu, Jianjun; Mu, Yanhu; Xu, Xiangtian
Mechanical control of drifting sand used to protect the Qinghai-Tibet Railway from sand damage inevitably results in sand deposition, and the change in radiation and heat flux after the ground surface is covered with sandy sediments remains unclear. These variations were studied in this work through field observations along with laboratory analyses and tests. After the ground surface was covered with sandy sediments produced by the mechanical control of sand in the Qinghai-Tibet Railway, the reflectivity increased, and the annual average reflectivity on the surface covered with sandy sediments was higher than that without sandy sediments, with the value increasing by 0.043. Moreover, the surface shortwave radiation increased, whereas the surface net radiation decreased. The annual average value of the surface shortwave radiant flux density on the sandy sediments was higher than that without sandy sediments, with the value increasing by 7.291 W·m-2. The annual average value of the surface net radiant flux density on the sandy sediments decreased by 9.639 W·m-2 compared with that without sandy sediments. The soil heat flux also decreased, and the annual average value of the heat flux in the sandy sediments decreased by 0.375 W·m-2 compared with that without sandy sediments. These variations caused the heat source on the surface of sandy sediments underground to decrease, which is beneficial for preventing permafrost from degradation in the section of sand control of the railway.
NASA Astrophysics Data System (ADS)
Mallet, M.; Solmon, F.; Roblou, L.; Peers, F.; Turquety, S.; Waquet, F.; Jethva, H.; Torres, O.
2017-10-01
The regional climate model RegCM has been modified to better account for the climatic effects of biomass-burning particles. Smoke aerosols are represented by new tracers with consistent radiative and hygroscopic properties to simulate the direct radiative forcing (DRF), and a new parameterization has been integrated for relating the droplet number concentration to the aerosol concentration for marine stratocumulus clouds (Sc). RegCM has been tested during the summer of 2008 over California, when extreme concentration of smoke, together with the presence of Sc, is observed. This work indicates that significant aerosol optical depth (AOD) ( 1-2 at 550 nm) is related to the intense 2008 fires. Compared to Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer, the regional pattern of RegCM AOD is well represented although the magnitude is lower than satellite observations. Comparisons with Polarization and Directionality of Earth Reflectances (POLDER) above-clouds aerosol optical depth (ACAOD) show the ability of RegCM to simulate realistic ACAOD during the transport of smoke above the Pacific Ocean. The simulated single scattering albedo is 0.90 (at 550 nm) near biomass-burning sources, consistent with OMI and POLDER, and smoke leads to shortwave heating rates 1.5-2°K d-1. RegCM is not able to correctly resolve the daily patterns in cloud properties notably due to its coarse horizontal resolutions. However, the changes in the sign of the DRF at top of atmosphere (TOA) (negative to positive) from clear-sky to all-sky conditions is well simulated. Finally, the "aerosol-cloud" parameterization allows simulating an increase of the cloud optical depth for significant concentrations, leading to large perturbations of radiative fluxes at TOA.
NASA Astrophysics Data System (ADS)
Gupta, P.; Joiner, J.; Vasilkov, A. P.; Bhartia, P. K.
2012-12-01
Measurements of top of the atmosphere (TOA) radiation are essential for the understanding of Earth's energy budget and climate system. Clouds, aerosols, water vapor, and ozone (O3) are among the most important agents impacting the Earth's short-wave (SW) radiation budget. There are several sensors in the orbit that provide independent information related to the Earth's SW radiation budget. Having coincident information from these sensors is important for understanding their potential contributions. The A-train constellation of satellites provides a unique opportunity to analyze near-simultaneous data from several of these sensors. They include the Clouds and the Earth's Radiant Energy System (CERES) instrument, on the NASA Aqua satellite, that makes broadband measurements in both the long-wave and short-wave region of electromagnetic spectrum, and the Ozone Monitoring Instrument (OMI), on the NASA Aura satellite, that makes TOA hyper-spectral measurements from ultraviolet (UV) to visible wavelengths. Top of the atmosphere SW fluxes are estimated using a combination of data from CERES and the Aqua MODerate-resolution Imaging Spectroradiometer (MODIS). OMI measurements have been successfully utilized to derive the information on trace gases (e.g., O3, NO2, and SO2), clouds, and absorbing aerosols. In this paper, OMI retrievals of cloud/aerosol parameters and O3 have been collocated with CERES TOA SW flux retrievals. We use this collocated data to develop a neural network that estimates TOA shortwave flux globally over ocean using data from OMI and meteorological analyses. These input data include the effective cloud fraction, cloud optical centroid pressure (OCP), total-column O3, and sun-satellite viewing geometry from OMI as well as wind speed and total column water vapor from the Goddard Earth Observing System 5 Modern Era Retrospective-analysis for Research and Applications (GEOS-5 MERRA) along with a climatology of chlorophyll content from SeaWiFs satellite. We train the neural network using a subset of CERES retrievals of TOA SW flux as the target output (truth) and withhold a different subset of the CERES data to be used for validation. Our comparison of OMI-estimated TOA SW flux with independent CERES retrievals shows a high degree of correlation (R>0.96) between the two. About 85% of all the analyzed OMI flux data falls within ±5% of the CERES observations and global mean biases varies within ±3% over the entire year. We further examine the sensitivity of the neural network SW flux estimation to the choice of input parameters. Application of our neural network to OMI heritage measurements from the Total Ozone Mapping Spectrometer (TOMS) series can potentially provide a unique long term global record of estimated TOA SW flux starting in late 1978.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Li; Pierce, David W.; Russell, Lynn M.
This study examines multi-year climate variability associated with sea salt aerosols and their contribution to the variability of shortwave cloud forcing (SWCF) using a 150-year simulation for pre-industrial conditions of the Community Earth System Model version 1.0 (CESM1). The results suggest that changes in sea salt and related cloud and radiative properties on interannual timescales are dominated by the ENSO cycle. Sea salt variability on longer (interdecadal) timescales is associated with low-frequency Pacific ocean variability similar to the interdecadal Pacific Oscillation (IPO), but does not show a statistically significant spectral peak. A multivariate regression suggests that sea salt aerosol variabilitymore » may contribute to SWCF variability in the tropical Pacific, explaining up to 25-35% of the variance in that region. Elsewhere, there is only a small aerosol influence on SWCF through modifying cloud droplet number and liquid water path that contributes to the change of cloud effective radius and cloud optical depth (and hence cloud albedo), producing a multi-year aerosol-cloud-wind interaction.« less
NASA Technical Reports Server (NTRS)
Shuai, Yanmin; Masek, Jeffrey G.; Gao, Feng; Schaaf, Crystal B.
2011-01-01
We present a new methodology to generate 30-m resolution land surface albedo using Landsat surface reflectance and anisotropy information from concurrent MODIS 500-m observations. Albedo information at fine spatial resolution is particularly useful for quantifying climate impacts associated with land use change and ecosystem disturbance. The derived white-sky and black-sky spectral albedos maybe used to estimate actual spectral albedos by taking into account the proportion of direct and diffuse solar radiation arriving at the ground. A further spectral-to-broadband conversion based on extensive radiative transfer simulations is applied to produce the broadband albedos at visible, near infrared, and shortwave regimes. The accuracy of this approach has been evaluated using 270 Landsat scenes covering six field stations supported by the SURFace RADiation Budget Network (SURFRAD) and Atmospheric Radiation Measurement Southern Great Plains (ARM/SGP) network. Comparison with field measurements shows that Landsat 30-m snow-free shortwave albedos from all seasons generally achieve an absolute accuracy of +/-0.02 - 0.05 for these validation sites during available clear days in 2003-2005,with a root mean square error less than 0.03 and a bias less than 0.02. This level of accuracy has been regarded as sufficient for driving global and regional climate models. The Landsat-based retrievals have also been compared to the operational 16-day MODIS albedo produced every 8-days from MODIS on Terra and Aqua (MCD43A). The Landsat albedo provides more detailed landscape texture, and achieves better agreement (correlation and dynamic range) with in-situ data at the validation stations, particularly when the stations include a heterogeneous mix of surface covers.
NASA Astrophysics Data System (ADS)
Wang, Chenxi; Yang, Ping; Nasiri, Shaima L.; Platnick, Steven; Baum, Bryan A.; Heidinger, Andrew K.; Liu, Xu
2013-02-01
A computationally efficient radiative transfer model (RTM) for calculating visible (VIS) through shortwave infrared (SWIR) reflectances is developed for use in satellite and airborne cloud property retrievals. The full radiative transfer equation (RTE) for combinations of cloud, aerosol, and molecular layers is solved approximately by using six independent RTEs that assume the plane-parallel approximation along with a single-scattering approximation for Rayleigh scattering. Each of the six RTEs can be solved analytically if the bidirectional reflectance/transmittance distribution functions (BRDF/BTDF) of the cloud/aerosol layers are known. The adding/doubling (AD) algorithm is employed to account for overlapped cloud/aerosol layers and non-Lambertian surfaces. Two approaches are used to mitigate the significant computational burden of the AD algorithm. First, the BRDF and BTDF of single cloud/aerosol layers are pre-computed using the discrete ordinates radiative transfer program (DISORT) implemented with 128 streams, and second, the required integral in the AD algorithm is numerically implemented on a twisted icosahedral mesh. A concise surface BRDF simulator associated with the MODIS land surface product (MCD43) is merged into a fast RTM to accurately account for non-isotropic surface reflectance. The resulting fast RTM is evaluated with respect to its computational accuracy and efficiency. The simulation bias between DISORT and the fast RTM is large (e.g., relative error >5%) only when both the solar zenith angle (SZA) and the viewing zenith angle (VZA) are large (i.e., SZA>45° and VZA>70°). For general situations, i.e., cloud/aerosol layers above a non-Lambertian surface, the fast RTM calculation rate is faster than that of the 128-stream DISORT by approximately two orders of magnitude.
NASA Technical Reports Server (NTRS)
Hansell, R. A.; Tsay, S. C.; Ji, Q.; Hsu, N. C.; Jeong, M. J.; Wang, S. H.; Reid, J. S.; Liou, K. N.; Ou, S. C.
2010-01-01
In September 2006, NASA Goddard s mobile ground-based laboratories were deployed to Sal Island in Cape Verde (16.73degN, 22.93degW) to support the NASA African Monsoon Multidisciplinary Analysis (NAMMA) field study. The Atmospheric Emitted Radiance Interferometer (AERI), a key instrument for spectrally characterizing the thermal IR, was used to retrieve the dust IR aerosol optical depths (AOTs) in order to examine the diurnal variability of airborne dust with emphasis on three separate dust events. AERI retrievals of dust AOT are compared with those from the coincident/collocated multifilter rotating shadow-band radiometer (MFRSR), micropulse lidar (MPL), and NASA Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) sensors. The retrieved AOTs are then inputted into the Fu-Liou 1D radiative transfer model to evaluate local instantaneous direct longwave radiative effects (DRE(sub LW)) of dust at the surface in cloud-free atmospheres and its sensitivity to dust microphysical parameters. The top-of-atmosphere DRE(sub LW) and longwave heating rate profiles are also evaluated. Instantaneous surface DRE(sub LW) ranges from 2 to 10 W/sq m and exhibits a strong linear dependence with dust AOT yielding a DRE(sub LW) of 16 W/sq m per unit dust AOT. The DRE(sub LW) is estimated to be approx.42% of the diurnally averaged direct shortwave radiative effect at the surface but of opposite sign, partly compensating for the shortwave losses. Certainly nonnegligible, the authors conclude that DRE(sub LW) can significantly impact the atmospheric energetics, representing an important component in the study of regional climate variation.
NASA Astrophysics Data System (ADS)
Riihelä, Aku; Key, Jeffrey R.; Meirink, Jan Fokke; Kuipers Munneke, Peter; Palo, Timo; Karlsson, Karl-Göran
2017-05-01
Accurate determination of radiative energy fluxes over the Arctic is of crucial importance for understanding atmosphere-surface interactions, melt and refreezing cycles of the snow and ice cover, and the role of the Arctic in the global energy budget. Satellite-based estimates can provide comprehensive spatiotemporal coverage, but the accuracy and comparability of the existing data sets must be ascertained to facilitate their use. Here we compare radiative flux estimates from Clouds and the Earth's Radiant Energy System (CERES) Synoptic 1-degree (SYN1deg)/Energy Balanced and Filled, Global Energy and Water Cycle Experiment (GEWEX) surface energy budget, and our own experimental FluxNet / Satellite Application Facility on Climate Monitoring cLoud, Albedo and RAdiation (CLARA) data against in situ observations over Arctic sea ice and the Greenland Ice Sheet during summer of 2007. In general, CERES SYN1deg flux estimates agree best with in situ measurements, although with two particular limitations: (1) over sea ice the upwelling shortwave flux in CERES SYN1deg appears to be underestimated because of an underestimated surface albedo and (2) the CERES SYN1deg upwelling longwave flux over sea ice saturates during midsummer. The Advanced Very High Resolution Radiometer-based GEWEX and FluxNet-CLARA flux estimates generally show a larger range in retrieval errors relative to CERES, with contrasting tendencies relative to each other. The largest source of retrieval error in the FluxNet-CLARA downwelling shortwave flux is shown to be an overestimated cloud optical thickness. The results illustrate that satellite-based flux estimates over the Arctic are not yet homogeneous and that further efforts are necessary to investigate the differences in the surface and cloud properties which lead to disagreements in flux retrievals.
NASA Astrophysics Data System (ADS)
Wang, Xuemei; Situ, Shuping; Guenther, Alex; Chen, Fei; Wu, Zhiyong; Xia, Beicheng; Wang, Tijian
2011-04-01
This study intended to provide 4-km gridded, hourly, year-long, regional estimates of terpenoid emissions in the Pearl River Delta (PRD), China. It combined Thematic Mapper images and local-survey data to characterize plant functional types, and used observed emission potential of biogenic volatile organic compounds (BVOC) from local plant species and high-resolution meteorological outputs from the MM5 model to constrain the MEGAN BVOC-emission model. The estimated annual emissions for isoprene, monoterpene and sesquiterpene are 95.55 × 106 kg C, 117.35 × 106 kg C and 9.77 × 106 kg C, respectively. The results show strong variabilities of terpenoid emissions spanning diurnal and seasonal time scales, which are mainly distributed in the remote areas (with more vegetation and less economic development) in PRD. Using MODIS PFTs data reduced terpenoid emissions by 27% in remote areas. Using MEGAN-model default emission factors led to a 24% increase in BVOC emission. The model errors of temperature and radiation in MM5 output were used to assess impacts of uncertainties in meteorological forcing on emissions: increasing (decreasing) temperature and downward shortwave radiation produces more (less) terpenoid emissions for July and January. Strong temporal variability of terpenoid emissions leads to enhanced ozone formation during midday in rural areas where the anthropogenic VOC emissions are limited.
Greenland surface albedo changes in July 1981-2012 from satellite observations
NASA Astrophysics Data System (ADS)
He, Tao; Liang, Shunlin; Yu, Yunyue; Wang, Dongdong; Gao, Feng; Liu, Qiang
2013-12-01
Significant melting events over Greenland have been observed over the past few decades. This study presents an analysis of surface albedo change over Greenland using a 32-year consistent satellite albedo product from the global land surface satellite (GLASS) project together with ground measurements. Results show a general decreasing trend of surface albedo from 1981 to 2012 (-0.009 ± 0.002 decade-1, p < 0.01). However, a large decrease has occurred since 2000 (-0.028 ± 0.008 decade-1, p < 0.01) with most significant decreases at elevations between 1000 and 1500 m (-0.055 decade-1, p < 0.01) which may be associated with surface temperature increases. The surface radiative forcing from albedo changes is 2.73 W m-2 decade-1 and 3.06 W m-2 decade-1 under full-sky and clear-sky conditions, respectively, which indicates that surface albedo changes are likely to have a larger impact on the surface shortwave radiation budget than that caused by changes in the atmosphere over Greenland. A comparison made between satellite albedo products and data output from the Coupled Model Inter-comparison Project 5 (CMIP5) general circulation models (GCMs) shows that most of the CMIP5 models do not detect the significantly decreasing trends of albedo in recent decades. This suggests that more efforts are needed to improve our understanding and simulation of climate change at high latitudes.
NASA Astrophysics Data System (ADS)
Ganzherli, Nina M.; Gulyaev, Sergey N.; Maurer, Irina A.; Chernykh, Dmitrii F.
2009-05-01
Holographic fabrication methods of regular and nonregular relief-phase structures on silver-halide photographic emulsions are considered. Methods of gelatin photodestruction under short-wave ultra-violet radiation and chemical hardening with the help of dichromated solutions were used as a technique for surface relief formation. The developed techniques permitted us to study specimens of holographic diffusers and microlens rasters with small absorption and high light efficiency.
Method for plasma formation for extreme ultraviolet lithography-theta pinch
Hassanein, Ahmed [Naperville, IL; Konkashbaev, Isak [Bolingbrook, IL; Rice, Bryan [Hillsboro, OR
2007-02-20
A device and method for generating extremely short-wave ultraviolet electromagnetic wave, utilizing a theta pinch plasma generator to produce electromagnetic radiation in the range of 10 to 20 nm. The device comprises an axially aligned open-ended pinch chamber defining a plasma zone adapted to contain a plasma generating gas within the plasma zone; a means for generating a magnetic field radially outward of the open-ended pinch chamber to produce a discharge plasma from the plasma generating gas, thereby producing a electromagnetic wave in the extreme ultraviolet range; a collecting means in optical communication with the pinch chamber to collect the electromagnetic radiation; and focusing means in optical communication with the collecting means to concentrate the electromagnetic radiation.
NASA Astrophysics Data System (ADS)
Wei, Liqing; Xiao, Xizhong; Wang, Yueming; Zhuang, Xiaoqiong; Wang, Jianyu
2017-11-01
Space-borne hyperspectral imagery is an important tool for earth sciences and industrial applications. Higher spatial and spectral resolutions have been sought persistently, although this results in more power, larger volume and weight during a space-borne spectral imager design. For miniaturization of hyperspectral imager and optimization of spectral splitting methods, several methods are compared in this paper. Spectral time delay integration (TDI) method with high transmittance Integrated Stepwise Filter (ISF) is proposed.With the method, an ISF imaging spectrometer with TDI could achieve higher system sensitivity than the traditional prism/grating imaging spectrometer. In addition, the ISF imaging spectrometer performs well in suppressing infrared background radiation produced by instrument. A compact shortwave infrared (SWIR) hyperspectral imager prototype based on HgCdTe covering the spectral range of 2.0-2.5 μm with 6 TDI stages was designed and integrated. To investigate the performance of ISF spectrometer, a method to derive the optimal blocking band curve of the ISF is introduced, along with known error characteristics. To assess spectral performance of the ISF system, a new spectral calibration based on blackbody radiation with temperature scanning is proposed. The results of the imaging experiment showed the merits of ISF. ISF has great application prospects in the field of high sensitivity and high resolution space-borne hyperspectral imagery.
NASA Astrophysics Data System (ADS)
Du, Minglong; Yang, Lijun
2017-10-01
A linear analysis method was used to investigate the mechanics of radiation heat loss and mass transfer in the porous wall of premixed annular flames and their effect on thermodiffusive instability. The dispersion relation between the disturbance wave growth rate and wavenumber was calculated numerically. Results showed that radiation heat loss elevated the annular flame slightly away from the porous wall. In the annular flame with small Lewis numbers, radiation heat loss changed the thermodiffusive instability from a pulsating to a cellular state, while for the large Lewis numbers, only the pulsating instability was represented. Increasing radiation heat loss and the radius of the porous wall enhanced the instability of the annular flames. Heat losses decreased with the continued increase in thickness of the porous wall and the decrease in porosity. Annular flames with long-wave mode along the angular direction were more unstable than the shortwave mode.
Comparison of radiation parametrizations within the HARMONIE-AROME NWP model
NASA Astrophysics Data System (ADS)
Rontu, Laura; Lindfors, Anders V.
2018-05-01
Downwelling shortwave radiation at the surface (SWDS, global solar radiation flux), given by three different parametrization schemes, was compared to observations in the HARMONIE-AROME numerical weather prediction (NWP) model experiments over Finland in spring 2017. Simulated fluxes agreed well with each other and with the observations in the clear-sky cases. In the cloudy-sky conditions, all schemes tended to underestimate SWDS at the daily level, as compared to the measurements. Large local and temporal differences between the model results and observations were seen, related to the variations and uncertainty of the predicted cloud properties. The results suggest a possibility to benefit from the use of different radiative transfer parametrizations in a NWP model to obtain perturbations for the fine-resolution ensemble prediction systems. In addition, we recommend usage of the global radiation observations for the standard validation of the NWP models.
Effects of Cloud-Microphysics on Tropical Atmospheric Hydrologic Processes in the GEOS GCM
NASA Technical Reports Server (NTRS)
Lau, K. M.; Wu, H. T.; Sud, Y. C.; Walker, G. K.
2004-01-01
The sensitivity of tropical atmospheric hydrologic processes to cloud-microphysics is investigated using the NASA GEOS GCM. Results show that a faster autoconversion - rate produces more warm rain and less clouds at all levels. Fewer clouds enhances longwave cooling and reduces shortwave heating in the upper troposphere, while more warm rain produces increased condensation heating in the lower troposphere. This vertical heating differential destablizes the tropical atmosphere, producing a positive feedback resulting in more rain over the tropics. The feedback is maintained via a two-cell secondary circulation. The lower cell is capped by horizontal divergence and maximum cloud detrainment near the melting/freezing, with rising motion in the warm rain region connected to descending motion in the cold rain region. The upper cell is found above the freezing/melting level, with longwave-induced subsidence in the warm rain and dry regions, coupled to forced ascent in the deep convection region. The tropical large scale circulation is found to be very sensitive to the radiative-dynamic effects induced by changes in autoconversion rate. Reduced cloud-radiation processes feedback due to a faster autoconversion rate results in intermittent but more energetic eastward propagating Madden and Julian Oscillations (MJO). Conversely,-a slower autconversion rate, with increased cloud radiation produces MJO's with more realistic westward propagating transients, resembling a supercloud cluster structure. Results suggests that warm rain and associated low and mid level clouds, i.e., cumulus congestus, may play a critical role in regulating the time-intervals of deep convections and hence the fundamental time scales of the MJO.
NASA Technical Reports Server (NTRS)
Valero, Francisco P. J.; Cess, Robert D.; Zhang, Minghua; Pope, Shelly K.; Bucholtz, Anthony; Bush, Brett; Vitko, John, Jr.
1997-01-01
As part of the Atmospheric Radiation Measurement (ARM) Enhanced Shortwave Experiment (ARESE), we have obtained and analyzed measurements made from collocated aircraft of the absorption of solar radiation within the atmospheric column between the two aircraft. The measurements were taken during October 1995 at the ARM site in Oklahoma. Relative to a theoretical radiative transfer model, we find no evidence for excess solar absorption in the clear atmosphere and significant evidence for its existence in the cloudy atmosphere. This excess cloud solar absorption appears to occur in both visible (0.224-0.68 microns) and near-infrared (0.68-3.30 microns) spectral regions, although not at 0.5 microns for the visible contribution, and it is shown to be true absorption rather than an artifact of sampling errors caused by measuring three-dimensional clouds.
Solar radiation variability over La Réunion island and associated larger-scale dynamics
NASA Astrophysics Data System (ADS)
Mialhe, Pauline; Morel, Béatrice; Pohl, Benjamin; Bessafi, Miloud; Chabriat, Jean-Pierre
2017-04-01
This study aims to examine the solar radiation variability over La Réunion island and its relationship with large-scale circulation. The Satellite Application Facility on Climate Monitoring (CM SAF) produces a Shortwave Incoming Solar radiation (SIS) data record called Solar surfAce RAdiation Heliosat - East (SARAH-E). A comparison to in situ observations from Météo-France measurements networks quantifies the skill of SARAH-E grids which we use as dataset. First step of the work, irradiance mean cycles are calculated to describe the diurnal-seasonal SIS behaviour over La Réunion island. By analogy with the climate anomalies, instantaneous deviations are computed after removal of the mean states. Finally, we associate these anomalies with larger-scale atmospheric dynamics into the South West Indian Ocean by applying multivariate clustering analyses (Hierarchical Ascending Classification, k-means).
[UV-radiation--sources, wavelength, environment].
Hölzle, Erhard; Hönigsmann, Herbert
2005-09-01
The UV-radiation in our environment is part of the electromagnetic radiation, which emanates from the sun. It is designated as optical radiation and reaches from 290-4,000 nm on the earth's surface. According to international definitions UV irradiation is divided into short-wave UVC (200-280 nm), medium-wave UVB (280-320 nm), and long-wave UVA (320-400 nm). Solar radiation which reaches the surface of the globe at a defined geographical site and a defined time point is called global radiation. It is modified quantitatively and qualitatively while penetrating the atmosphere. Besides atmospheric conditions, like ozone layer and air pollution, geographic latitude, elevation, time of the season, time of the day, cloudiness and the influence of indirect radiation resulting from stray effects in the atmosphere and reflection from the underground play a role in modifying global radiation, which finally represents the biologically effective radiation. The radiation's distribution on the body surface varies according to sun angle and body posture. The cumulative UV exposure is mainly influenced by outdoor profession and recreational activities. The use of sun beds and phototherapeutic measures additionally may contribute to the cumulative UV dose.
Avetissian, H K; Ghazaryan, A G; Matevosyan, H H; Mkrtchian, G F
2015-10-01
The microscopic quantum theory of plasma nonlinear interaction with the coherent shortwave electromagnetic radiation of arbitrary intensity is developed. The Liouville-von Neumann equation for the density matrix is solved analytically considering a wave field exactly and a scattering potential of plasma ions as a perturbation. With the help of this solution we calculate the nonlinear inverse-bremsstrahlung absorption rate for a grand canonical ensemble of electrons. The latter is studied in Maxwellian, as well as in degenerate quantum plasma for x-ray lasers at superhigh intensities and it is shown that one can achieve the efficient absorption coefficient in these cases.
Communications Corner: Tune in News and Science with Your Shortwave Receiver.
ERIC Educational Resources Information Center
Wolf, David A.
1991-01-01
Information on how a shortwave radio can be used to make empirical observations about solar activity and the Earth's geomagnetic field is provided. How to interpret transmissions of shortwave propagation information, weather conditions, and highly accurate time signals from shortwave stations is discussed. (KR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landsfeld, M.; Gautier, C.; Figel, T.
1995-01-01
To better predict global climate change, scientists are developing climate models that require interdisciplinary and collaborative efforts in their building. The authors are currently involved in several such projects but will briefly discuss activities in support of two such complementary projects: the Atmospheric Radiation Measurement (ARM) program of the Department of Energy and Sequoia 2000, a joint venture of the University of California, the private sector, and government. The author`s contribution to the ARM program is to investigate the role of clouds on the top of the atmosphere and on surface radiance fields through the data analysis of surface andmore » satellite observations and complex modeling of the interaction of radiation with clouds. One of the first ARM research activities involves the computation of the broadband shortwave surface irradiance from satellite observations. Geostationary satellite images centered over the first ARM observation site are received hourly over the Internet network and processed in real time to compute hourly and daily composite shortwave irradiance fields. The images and the results are transferred via a high-speed network to the Sequoia 2000 storage facility in Berkeley, where they are archived. These satellite-derived results are compared with the surface observations to evaluate the accuracy of the satellite estimate and the spatial representation of the surface observations. In developing the software involved in calculating the surface shortwave irradiance, the authors have produced an environment whereby they can easily modify and monitor the data processing as required. Through the principles of modular programming, they have developed software that is easily modified as new algorithms for computation are developed or input data availability changes. In addition, the software was designed so that it could be run from an interactive, icon-driven, graphical interface, TCL-TK, developed by Sequoia 2000 participants.« less
Simulation of Longwave Enhancement beneath Montane and Boreal Forests in CLM4.5
NASA Astrophysics Data System (ADS)
Todt, M.; Rutter, N.; Fletcher, C. G.; Wake, L. M.; Loranty, M. M.
2017-12-01
CMIP5 models have been shown to underestimate both trend and variability in northern hemisphere spring snow cover extent. A substantial fraction of this area is covered by boreal forests, in which the snow energy balance is dominated by radiation. Forest coverage impacts the surface radiation budget by shading the ground and enhancing longwave radiation. Longwave enhancement in boreal forests is a potential mechanism that contributes to uncertainty in snowmelt modelling, however, its impact on snowmelt in global land models has not been analysed yet. This study assesses the simulation of sub-canopy longwave radiation and longwave enhancement by CLM4.5, the land component of the NCAR Community Earth System Model, in which boreal forests are represented by three plant functional types (PFT): evergreen needleleaf trees (ENT), deciduous needleleaf trees (DNT), and deciduous broadleaf trees (DBT). Simulation of sub-canopy longwave enhancement is evaluated at boreal forest sites covering the three boreal PFT in CLM4.5 to assess the dependence of simulation errors on meteorological forcing, vegetation type and vegetation density. ENT are evaluated over a total of six snowmelt seasons in Swiss alpine and subalpine forests, as well as a single season at a Finnish arctic site with varying vegetation density. A Swedish artic site features varying vegetation density for DBT for a single winter, and two sites in Eastern Siberia are included covering a total of four snowmelt seasons in DNT forests. CLM4.5 overestimates the diurnal range of sub-canopy longwave radiation and consequently longwave enhancement, overestimating daytime values and underestimating nighttime values. Simulation errors result mainly from clear sky conditions, due to high absorption of shortwave radiation during daytime and radiative cooling during nighttime. Using recent improvements to the canopy parameterisations of SNOWPACK as a guideline, CLM4.5 simulations of sub-canopy longwave radiation improved through the implementation of a heat mass parameterisation, i.e. including thermal inertia due to biomass. However, this improvement does not substantially reduce the amplitude of the diurnal cycle, a result also found during the development of SNOWPACK.
Evaluation of Himawari-8 surface downwelling solar radiation by ground-based measurements
NASA Astrophysics Data System (ADS)
Damiani, Alessandro; Irie, Hitoshi; Horio, Takashi; Takamura, Tamio; Khatri, Pradeep; Takenaka, Hideaki; Nagao, Takashi; Nakajima, Takashi Y.; Cordero, Raul R.
2018-04-01
Observations from the new Japanese geostationary satellite Himawari-8 permit quasi-real-time estimation of global shortwave radiation at an unprecedented temporal resolution. However, accurate comparisons with ground-truthing observations are essential to assess their uncertainty. In this study, we evaluated the Himawari-8 global radiation product AMATERASS using observations recorded at four SKYNET stations in Japan and, for certain analyses, from the surface network of the Japanese Meteorological Agency in 2016. We found that the spatiotemporal variability of the satellite estimates was smaller than that of the ground observations; variability decreased with increases in the time step and spatial domain. Cloud variability was the main source of uncertainty in the satellite radiation estimates, followed by direct effects caused by aerosols and bright albedo. Under all-sky conditions, good agreement was found between satellite and ground-based data, with a mean bias in the range of 20-30 W m-2 (i.e., AMATERASS overestimated ground observations) and a root mean square error (RMSE) of approximately 70-80 W m-2. However, results depended on the time step used in the validation exercise, on the spatial domain, and on the different climatological regions. In particular, the validation performed at 2.5 min showed largest deviations and RMSE values ranging from about 110 W m-2 for the mainland to a maximum of 150 W m-2 in the subtropical region. We also detected a limited overestimation in the number of clear-sky episodes, particularly at the pixel level. Overall, satellite-based estimates were higher under overcast conditions, whereas frequent episodes of cloud-induced enhanced surface radiation (i.e., measured radiation was greater than expected clear-sky radiation) tended to reduce this difference. Finally, the total mean bias was approximately 10-15 W m-2 under clear-sky conditions, mainly because of overall instantaneous direct aerosol forcing efficiency in the range of 120-150 W m-2 per unit of aerosol optical depth (AOD). A seasonal anticorrelation between AOD and global radiation differences was evident at all stations and was also observed within the diurnal cycle.
Antarctic cloud and surface properties: Satellite observations and climate implications
NASA Astrophysics Data System (ADS)
Berque, Joannes
2004-12-01
The radiative effect of clouds in the Antarctic, although small at the top of the atmosphere, is very large within the surface-atmosphere system, and influences a variety of climate processes on a global scale. Because field observations are difficult in the Antarctic interior, satellite observations may be especially valuable in this region; but the remote sensing of clouds and surface properties over the high ice sheets is problematic due to the lack of radiometric contrast between clouds and the snow. A radiative transfer model of the Antarctic snow-atmosphere system is developed, and a new method is proposed for the examination of the problem of cloud properties retrieval from multi-spectral measurements. Key limitations are identified, and a method is developed to overcome them. Using data from the Advanced Very High Resolution Radiometer (AVHRR) onboard National Oceanic and Atmospheric Agency (NOAA) polar orbiters, snow grain size is retrieved over the course of a summer. Significant variability is observed, and it appears related to major precipitation events. A radiative transfer model and a single-column model are used to evaluate the impact of this variability on the Antarctic plateau. The range of observed grain size induces changes of up to 30 Wm-2 on the absorption of shortwave radiation in both models. Cloud properties are then retrieved in summertime imagery of the South Pole. Comparison of model to observations over a wide range of cloud optical depths suggests that this method allows the meaningful interpretation of AVHRR radiances in terms of cloud properties over the Antarctic plateau. The radiative effect of clouds at the top of the atmosphere is evaluated over the South Pole with ground-based lidar observations and data from Clouds and the Earth Radiant Energy System (CERES) onboard NASA's Terra satellite. In accord with previous work, results indicate that the shortwave and net effect are one of cooling throughout the year, while the longwave effect is one of cooling in winter and slight warming in summer.
The Pilatus Unmanned Aircraft System for Lower Atmospheric Research
NASA Technical Reports Server (NTRS)
de Boer, Gijs; Palo, Scott; Argrow, Brian; LoDolce, Gabriel; Mack, James; Gao, Ru-shan; Telg, Hagen; Trussel, Cameron; Fromm, Joshua; Long, Charles N.;
2016-01-01
This paper presents details of the University of Colorado (CU) "Pilatus" unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might be expected due to uneven heating of the sensor housing over the course of a racetrack pattern, was detected. The results from these flights indicate that the CU Pilatus platform is capable of performing research-grade lower tropospheric measurement missions.
NASA Astrophysics Data System (ADS)
Yang, Jun; Leconte, Jérémy; Wolf, Eric T.; Goldblatt, Colin; Feldl, Nicole; Merlis, Timothy; Wang, Yuwei; Koll, Daniel D. B.; Ding, Feng; Forget, François; Abbot, Dorian S.
2016-08-01
An accurate estimate of the inner edge of the habitable zone is critical for determining which exoplanets are potentially habitable and for designing future telescopes to observe them. Here, we explore differences in estimating the inner edge among seven one-dimensional radiative transfer models: two line-by-line codes (SMART and LBLRTM) as well as five band codes (CAM3, CAM4_Wolf, LMDG, SBDART, and AM2) that are currently being used in global climate models. We compare radiative fluxes and spectra in clear-sky conditions around G and M stars, with fixed moist adiabatic profiles for surface temperatures from 250 to 360 K. We find that divergences among the models arise mainly from large uncertainties in water vapor absorption in the window region (10 μm) and in the region between 0.2 and 1.5 μm. Differences in outgoing longwave radiation increase with surface temperature and reach 10-20 W m-2 differences in shortwave reach up to 60 W m-2, especially at the surface and in the troposphere, and are larger for an M-dwarf spectrum than a solar spectrum. Differences between the two line-by-line models are significant, although smaller than among the band models. Our results imply that the uncertainty in estimating the insolation threshold of the inner edge (the runaway greenhouse limit) due only to clear-sky radiative transfer is ≈10% of modern Earth’s solar constant (I.e., ≈34 W m-2 in global mean) among band models and ≈3% between the two line-by-line models. These comparisons show that future work is needed that focuses on improving water vapor absorption coefficients in both shortwave and longwave, as well as on increasing the resolution of stellar spectra in broadband models.
NASA Astrophysics Data System (ADS)
Stackhouse, P. W., Jr.; Cox, S. J.; Mikovitz, J. C.; Zhang, T.; Gupta, S. K.
2016-12-01
The NASA/GEWEX Surface Radiation Budget (SRB) project produces, validates and analyzes shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. The current release 3.0/3.1 consists of 1x1 degree radiative fluxes (available at gewex-srb.larc.nasa.gov) and is produced using the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This ISCCP DX product is subsampled to 30 km. ISCCP is currently recalibrating and reprocessing their entire data series, to be released as the H product series, with its highest resolution at 10km pixel resolution. The nine-fold increase in number of pixels will allow SRB to produce a higher resolution gridded product (e.g. 0.5 degree or higher), as well as the production of pixel-level fluxes. Other key input improvements include a detailed aerosol history using the Max Planck Institute Aerosol Climatology (MAC), temperature and moisture profiles from HIRS, and new topography, surface type, and snow/ice maps. Here we present results for the improved GEWEX Shortwave and Longwave algorithm (GSW and GLW) with new ISCCP data (for at least 5 years, 2005-2009), various other improved input data sets and incorporation of many additional internal SRB model improvements. We assess the radiative fluxes from new SRB products and contrast these at various resolutions. All these fluxes are compared to both surface measurements and to CERES SYN1Deg and EBAF data products for assessment of the effect of improvements. The SRB data produced will be released as part of the Release 4.0 Integrated Product that shares key input and output quantities with other GEWEX global products providing estimates of the Earth's global water and energy cycle (i.e., ISCCP, SeaFlux, LandFlux, NVAP, etc.).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jun; Wang, Yuwei; Leconte, Jérémy
An accurate estimate of the inner edge of the habitable zone is critical for determining which exoplanets are potentially habitable and for designing future telescopes to observe them. Here, we explore differences in estimating the inner edge among seven one-dimensional radiative transfer models: two line-by-line codes (SMART and LBLRTM) as well as five band codes (CAM3, CAM4-Wolf, LMDG, SBDART, and AM2) that are currently being used in global climate models. We compare radiative fluxes and spectra in clear-sky conditions around G and M stars, with fixed moist adiabatic profiles for surface temperatures from 250 to 360 K. We find thatmore » divergences among the models arise mainly from large uncertainties in water vapor absorption in the window region (10 μ m) and in the region between 0.2 and 1.5 μ m. Differences in outgoing longwave radiation increase with surface temperature and reach 10–20 W m{sup 2}; differences in shortwave reach up to 60 W m{sup 2}, especially at the surface and in the troposphere, and are larger for an M-dwarf spectrum than a solar spectrum. Differences between the two line-by-line models are significant, although smaller than among the band models. Our results imply that the uncertainty in estimating the insolation threshold of the inner edge (the runaway greenhouse limit) due only to clear-sky radiative transfer is ≈10% of modern Earth’s solar constant (i.e., ≈34 W m{sup 2} in global mean) among band models and ≈3% between the two line-by-line models. These comparisons show that future work is needed that focuses on improving water vapor absorption coefficients in both shortwave and longwave, as well as on increasing the resolution of stellar spectra in broadband models.« less
The pilatus unmanned aircraft system for lower atmospheric research
NASA Astrophysics Data System (ADS)
de Boer, G.; Palo, S.; Argrow, B.; LoDolce, G.; Mack, J.; Gao, R.-S.; Telg, H.; Trussel, C.; Fromm, J.; Long, C. N.; Bland, G.; Maslanik, J.; Schmid, B.; Hock, T.
2015-11-01
This paper presents details of the University of Colorado (CU) Pilatus unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take off weight of 25 kg and is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and it's orientation to the upward looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might be expected due to uneven heating of the sensor housing over the course of a racetrack pattern, was detected. The results from these flights indicate that the CU Pilatus platform is capable of performing research grade lower tropospheric measurement missions.
The Pilatus unmanned aircraft system for lower atmospheric research
NASA Astrophysics Data System (ADS)
de Boer, Gijs; Palo, Scott; Argrow, Brian; LoDolce, Gabriel; Mack, James; Gao, Ru-Shan; Telg, Hagen; Trussel, Cameron; Fromm, Joshua; Long, Charles N.; Bland, Geoff; Maslanik, James; Schmid, Beat; Hock, Terry
2016-04-01
This paper presents details of the University of Colorado (CU) "Pilatus" unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might be expected due to uneven heating of the sensor housing over the course of a racetrack pattern, was detected. The results from these flights indicate that the CU Pilatus platform is capable of performing research-grade lower tropospheric measurement missions.
NASA Astrophysics Data System (ADS)
Bandurkin, I. V.; Kaminsky, A. K.; Perelstein, E. A.; Peskov, N. Yu.; Savilov, A. V.; Sedykh, S. N.
2012-08-01
The possibility of using frequency multiplication in order to obtain high-power short-wavelength radiation from a free-electron maser (FEM) with a Bragg resonator has been studied. Preliminary experiments with an LIU-3000 (JINR) linear induction accelerator demonstrate the operation of a frequency-multiplying FEM at megawatt power in the 6- and 4-mm wave bands on the second and third harmonic, respectively.
NASA Astrophysics Data System (ADS)
Peris-Ferrús, C.; Gómez-Amo, J. L.; Marcos, C.; Freile-Aranda, M. D.; Utrillas, M. P.; Martínez-Lozano, J. A.
2017-07-01
We analyze the vertically-resolved radiative impact due to a dust storm in the Western Mediterranean. The dust plume travels around 3-5 km altitude and the aerosol optical depth derived by MODIS at 550 nm ranges from 0.33 to 0.52 at the overpass time (13:05 UT). The aerosol radiative forcing (ARF), forcing efficiency (FE) and heating rate profile (AHR) are determined throughout the dust trajectory in shortwave (SW) and longwave (LW) ranges. To do this, we integrate different satellite observations (CALIPSO and MODIS) and detailed radiative transfer modeling. The combined (SW + LW) effect of the dust event induces a net cooling in the studied region. On average, the FE at 22.4° solar zenith angle is -190.3 W m-2 and -38.1 W m-2, at surface and TOA, respectively. The corresponding LW/SW offset is 14% and 38% at surface and TOA, respectively. Our results at TOA are sensitive to the surface albedo in the SW and surface temperature in the LW. The absolute value of FE decrease (increase) in the SW (LW) with the surface albedo, resulting in an increasing LW/SW offset, up to 76%. The AHR profiles show a net warming within the dust layer, with a maximum value of 3.3 Kd-1. The ARF, FE and AHR are also highly sensitive to the dust optical properties in SW and LW. We evaluate this sensitivity by comparing the results obtained using two set of dust properties as input in our simulations: a) the prescribed dust model by Optical Properties of Aerosols and Clouds (OPAC) and; b) the dust optical properties derived from measurements of the size distribution and refractive index. Experimentally derived dust properties present larger SSA and asymmetry parameter in the SW than OPAC dust. Conversely, OPAC dust presents higher AOD in the LW range. These parameters drive the FE and AHR sensitivities in the SW and LW ranges, respectively. Therefore, when measured dust properties are used in our simulations: the ARF in the LW substantially reduces at surface and TOA (up to 57%); the absolute value of SW ARF is reduced by 15% at surface and an enhancement of 31% is observed at TOA; the AHR present less warming in the entire profile with deviations up to 53% within the dust layer, with respect to the results obtained using OPAC.